WorldWideScience

Sample records for human body posture

  1. Body posture modulates action perception.

    Science.gov (United States)

    Zimmermann, Marius; Toni, Ivan; de Lange, Floris P

    2013-04-03

    Recent studies have highlighted cognitive and neural similarities between planning and perceiving actions. Given that action planning involves a simulation of potential action plans that depends on the actor's body posture, we reasoned that perceiving actions may also be influenced by one's body posture. Here, we test whether and how this influence occurs by measuring behavioral and cerebral (fMRI) responses in human participants predicting goals of observed actions, while manipulating postural congruency between their own body posture and postures of the observed agents. Behaviorally, predicting action goals is facilitated when the body posture of the observer matches the posture achieved by the observed agent at the end of his action (action's goal posture). Cerebrally, this perceptual postural congruency effect modulates activity in a portion of the left intraparietal sulcus that has previously been shown to be involved in updating neural representations of one's own limb posture during action planning. This intraparietal area showed stronger responses when the goal posture of the observed action did not match the current body posture of the observer. These results add two novel elements to the notion that perceiving actions relies on the same predictive mechanism as planning actions. First, the predictions implemented by this mechanism are based on the current physical configuration of the body. Second, during both action planning and action observation, these predictions pertain to the goal state of the action.

  2. The personification of animals: coding of human and nonhuman body parts based on posture and function.

    Science.gov (United States)

    Welsh, Timothy N; McDougall, Laura; Paulson, Stephanie

    2014-09-01

    The purpose of the present research was to determine how humans represent the bodies and limbs of nonhuman mammals based on anatomical and functional properties. To this end, participants completed a series of body-part compatibility tasks in which they responded with a thumb or foot response to the color of a stimulus (red or blue, respectively) presented on different limbs of several animals. Across the studies, this compatibility task was conducted with images of human and nonhuman animals (bears, cows, and monkeys) in bipedal or quadrupedal postures. The results revealed that the coding of the limbs of nonhuman animals is strongly influenced by the posture of the body, but not the functional capacity of the limb. Specifically, body-part compatibility effects were present for both human and nonhuman animals when the figures were in a bipedal posture, but were not present when the animals were in a quadrupedal stance (Experiments 1a-c). Experiments 2a and 2b revealed that the posture-based body-part compatibility effects were not simply a vertical spatial compatibility effect or due to a mismatch between the posture of the body in the image and the participant. These data indicate that nonhuman animals in a bipedal posture are coded with respect to the "human" body representation, whereas nonhuman animals in a quadrupedal posture are not mapped to the human body representation. Overall, these studies provide new insight into the processes through which humans understand, mimic, and learn from the actions of nonhuman animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Human Body 3D Posture Estimation Using Significant Points and Two Cameras

    Science.gov (United States)

    Juang, Chia-Feng; Chen, Teng-Chang; Du, Wei-Chin

    2014-01-01

    This paper proposes a three-dimensional (3D) human posture estimation system that locates 3D significant body points based on 2D body contours extracted from two cameras without using any depth sensors. The 3D significant body points that are located by this system include the head, the center of the body, the tips of the feet, the tips of the hands, the elbows, and the knees. First, a linear support vector machine- (SVM-) based segmentation method is proposed to distinguish the human body from the background in red, green, and blue (RGB) color space. The SVM-based segmentation method uses not only normalized color differences but also included angle between pixels in the current frame and the background in order to reduce shadow influence. After segmentation, 2D significant points in each of the two extracted images are located. A significant point volume matching (SPVM) method is then proposed to reconstruct the 3D significant body point locations by using 2D posture estimation results. Experimental results show that the proposed SVM-based segmentation method shows better performance than other gray level- and RGB-based segmentation approaches. This paper also shows the effectiveness of the 3D posture estimation results in different postures. PMID:24883422

  4. Holistic processing of human body postures: evidence from the composite effect.

    Science.gov (United States)

    Willems, Sam; Vrancken, Leia; Germeys, Filip; Verfaillie, Karl

    2014-01-01

    The perception of socially relevant stimuli (e.g., faces and bodies) has received considerable attention in the vision science community. It is now widely accepted that human faces are processed holistically and not only analytically. One observation that has been taken as evidence for holistic face processing is the face composite effect: two identical top halves of a face tend to be perceived as being different when combined with different bottom halves. This supports the hypothesis that face processing proceeds holistically. Indeed, the interference effect disappears when the two face parts are misaligned (blocking holistic perception). In the present study, we investigated whether there is also a composite effect for the perception of body postures: are two identical body halves perceived as being in different poses when the irrelevant body halves differ from each other? Both a horizontal (i.e., top-bottom body halves; Experiment 1) and a vertical composite effect (i.e., left-right body halves; Experiment 2) were examined by means of a delayed matching-to-sample task. Results of both experiments indicate the existence of a body posture composite effect. This provides evidence for the hypothesis that body postures, as faces, are processed holistically.

  5. Comparison of organ doses in human phantoms: variations due to body size and posture

    International Nuclear Information System (INIS)

    Feng, Xu; Xiang-Hong, Jia; Xue-Jun, Yu; Zhan-Chun, Pan; Qian, Liu; Chun-Xin, Yang

    2017-01-01

    Organ dose calculations performed using human phantoms can provide estimates of astronauts' health risks due to cosmic radiation. However, the characteristics of such phantoms strongly affect the estimation precision. To investigate organ dose variations with body size and posture in human phantoms, a non-uniform rational B-spline boundary surfaces model was constructed based on cryo-section images. This model was used to establish four phantoms with different body size and posture parameters, whose organs parameters were changed simultaneously and which were voxelised with 4x4x4 mm"3 resolution. Then, using Monte Carlo transport code, the organ doses caused by ≤500 MeV isotropic incident protons were calculated. The dose variations due to body size differences within a certain range were negligible, and the doses received in crouching and standing-up postures were similar. Therefore, a standard Chinese phantom could be established, and posture changes cannot effectively protect astronauts during solar particle events. (authors)

  6. Holistic processing of human body postures: Evidence from the composite effect

    Directory of Open Access Journals (Sweden)

    Sam eWillems

    2014-06-01

    Full Text Available The perception of socially relevant stimuli (e.g., faces and bodies has received considerable attention in the vision science community. It is now widely accepted that human faces are processed holistically and not only analytically. One observation that has been taken as evidence for holistic face processing is the face composite effect: Two identical top halves of a face tend to be perceived as being different when combined with different bottom halves. This supports the hypothesis that face processing proceeds holistically. Indeed, the interference effect disappears when the two face parts are misaligned (blocking holistic perception. In the present study, we investigated whether there is also a composite effect for the perception of body postures: Are two identical body halves perceived as being in different poses when the irrelevant body halves differ from each other? Both a horizontal (i.e., top-bottom body halves; Experiment 1 and a vertical composite effect (i.e., left-right body halves; Experiment 2 were examined by means of a delayed matching-to-sample task. Results of both experiments indicate the existence of a body posture composite effect. This provides evidence for the hypothesis that body postures, as faces, are processed holistically.

  7. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial.

    Science.gov (United States)

    Verrusio, W; Gianturco, V; Cacciafesta, M; Marigliano, V; Troisi, G; Ripani, M

    2017-04-01

    Fall risk in elderly has been related with physical decline, low quality of life and reduced survival. To evaluate the impact of exoskeleton human body posturizer (HBP) on the fall risk in the elderly. 150 subjects (mean age 64.85; 79 M/71 F) with mild fall risk were randomized into two groups: 75 for group treated with human body posturizer (HBP group) and 75 for physical training without HBP group (exercise group). The effects of interventions were assessed by differences in tests related to balance and falls. Medically eligible patients were screened with Tinetti balance and Gait evaluation scale, short physical performance battery and numeric pain rating scale to determine fall risk in elderly people. In the HBP group there was a significant improvement in short physical performance battery, Tinetti scale and Pain Numeric rating scale with a significant reduction in fall risk (p fall risk and improving quality of life by reducing pain. The use of exoskeleton human body posturizer seems to be a new significant device for prevention of fall in elderly patients. Further research should be carried out to obtain more evidence on effects of robotic technology for fall prevention in the elderly.

  8. Human body modeling method to simulate the biodynamic characteristics of spine in vivo with different sitting postures.

    Science.gov (United States)

    Dong, Rui-Chun; Guo, Li-Xin

    2017-11-01

    The aim of this study is to model the computational model of seated whole human body including skeleton, muscle, viscera, ligament, intervertebral disc, and skin to predict effect of the factors (sitting postures, muscle and skin, buttocks, viscera, arms, gravity, and boundary conditions) on the biodynamic characteristics of spine. Two finite element models of seated whole body and a large number of finite element models of different ligamentous motion segments were developed and validated. Static, modal, and transient dynamic analyses were performed. The predicted vertical resonant frequency of seated body model was in the range of vertical natural frequency of 4 to 7 Hz. Muscle, buttocks, viscera, and the boundary conditions of buttocks have influence on the vertical resonant frequency of spine. Muscle played a very important role in biodynamic response of spine. Compared with the vertical posture, the posture of lean forward or backward led to an increase in stress on anterior or lateral posterior of lumbar intervertebral discs. This indicated that keeping correct posture could reduce the injury of vibration on lumbar intervertebral disc under whole-body vibration. The driving posture not only reduced the load of spine but also increased the resonant frequency of spine. Copyright © 2017 John Wiley & Sons, Ltd.

  9. DTN routing in body sensor networks with dynamic postural partitioning.

    Science.gov (United States)

    Quwaider, Muhannad; Biswas, Subir

    2010-11-01

    This paper presents novel store-and-forward packet routing algorithms for Wireless Body Area Networks ( WBAN ) with frequent postural partitioning. A prototype WBAN has been constructed for experimentally characterizing on-body topology disconnections in the presence of ultra short range radio links, unpredictable RF attenuation, and human postural mobility. On-body DTN routing protocols are then developed using a stochastic link cost formulation, capturing multi-scale topological localities in human postural movements. Performance of the proposed protocols are evaluated experimentally and via simulation, and are compared with a number of existing single-copy DTN routing protocols and an on-body packet flooding mechanism that serves as a performance benchmark with delay lower-bound. It is shown that via multi-scale modeling of the spatio-temporal locality of on-body link disconnection patterns, the proposed algorithms can provide better routing performance compared to a number of existing probabilistic, opportunistic, and utility-based DTN routing protocols in the literature.

  10. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R P; Dimbylow, P J [National Radiological Protection Board, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2005-08-21

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions.

  11. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    International Nuclear Information System (INIS)

    Findlay, R P; Dimbylow, P J

    2005-01-01

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions

  12. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    Science.gov (United States)

    Findlay, R. P.; Dimbylow, P. J.

    2005-08-01

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions.

  13. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.

    Science.gov (United States)

    Grasso, R; Zago, M; Lacquaniti, F

    2000-01-01

    Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms

  14. The Effect of Body Posture on Brain Glymphatic Transport.

    Science.gov (United States)

    Lee, Hedok; Xie, Lulu; Yu, Mei; Kang, Hongyi; Feng, Tian; Deane, Rashid; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2015-08-05

    The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF-interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by "retention" of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans. The rodent brain removes waste better during sleep or anesthesia compared with the awake state. Animals exhibit different body posture during the awake and sleep states, which might affect the brain's waste removal efficiency. We investigated the influence of body posture on brainwide transport of inert

  15. Body posture measurement in a context of example-based teaching

    International Nuclear Information System (INIS)

    Benoit, Eric; Perrin, Stephane; Coquin, Didier

    2015-01-01

    This paper presents a measurement process of body postures operated in a context of humanoid robot learning. The basic measured quantities are the angle joints of a human skeleton and the angle joints of a humanoid robot. Due to the differences between the two mechanical structures, the measurement results are expressed into a common representation space by the way of fuzzy scales. This paper shows how the common representation space can be defined, and presents a method to match weakly defined postures with uncertain measurements of a human posture

  16. Evaluation of Neutral Body Posture on Shuttle Mission STS-57 (SPACEHAB-1). Revision

    Science.gov (United States)

    Mount, Frances E.; Whitmore, Mihriban; Stealey, Sheryl L.

    2003-01-01

    Research has shown that the space environment induces physiological changes in the human body, such as fluid shifts in the upper body and chest cavity, spinal lengthening, muscular atrophy, space motion sickness, cardiopulmonary deconditioning, and bone mass loss, as well as some changes in visual perception. These require a period of adaptation and can substantially affect both crew member performance and posture. These physiological effects, when work activities are conducted, have been known to impact the body's center of gravity, reach, flexibility, and dexterity. All these aspects of posture must be considered to safely and efficiently design space systems and hardware. NASA has documented its microgravity body posture in the Man-Systems Integration Standards (MSIS); the space community uses the MSIS posture to design workstations and tools for space application. However, the microgravity body posture should be further investigated for several reasons, including small sample size in previous studies, possible imprecision, and lack of detail. JSC undertook this study to investigate human body posture exhibited under microgravity conditions. STS-57 crew members were instructed to assume a relaxed posture that was not oriented to any work area or task. Crew members were asked to don shorts and tank tops and to be blindfolded while data were recorded. Video data were acquired once during the mission from each of the six crew members. No one crew member exhibited the typical NBP called out in the MSIS; one composite posture is not adequate. A range of postures may be more constructive for design purposes. Future evaluations should define precise posture requirements for workstation, glove box, maintenance, foot-restraint, and handhold activities.

  17. Somatic features and body posture in children with scoliosis and scoliotic posture

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2017-08-01

    Full Text Available Abstract The aim of the study was to evaluate the relationship between somatic features and body posture in children with scoliosis and scoliotic posture. The study included 28 girls aged 7-18 with scoliosis and scoliotic posture. The selection of the subjects was deliberate. Height measurements were conducted with an anthropometer and weight measurements were done with an electronic scale. Body posture tests were performed using Exhibeon 3D digital photogrammetry and digital radiographs. The significant Spearman correlations between postural variables for the sagittal plane and the somatic variables regarded: trunk inclination angle and BMI (R= 0,4553, p= p=0,015, Abs of the trunk inclination angle and BMI (R = 0.5522, p = 0.002, length of thoracic kyphosis and BMI (R=0,4147, p=0.028, lumbar lordosis and BMI (R=0,4509, p=0,016. The significant Spearman correlations between scoliotic posture variables and the somatic variables concerned: length of primary lordosis and body height (R =0,4923, p=0.008, the length of the primary lordosis and body mass (R = 0.3932, p = 0.038, the length of the primary lordosis and BMI (R=0,4923, p=0.008. Variation analysis regarding postural (Exhibeon and somatic variables showed significant correlations between the direction of the primary curvature and body mass (p=0,0432, body height and primary angle location (p=0,0290 and between the height of the body and the location of the secondary angle (p = 0,0278.

  18. Modeling On-Body DTN Packet Routing Delay in the Presence of Postural Disconnections

    Directory of Open Access Journals (Sweden)

    Taghizadeh Mahmoud

    2011-01-01

    Full Text Available This paper presents a stochastic modeling framework for store-and-forward packet routing in Wireless Body Area Networks (WBAN with postural partitioning. A prototype WBANs has been constructed for experimentally characterizing and capturing on-body topology disconnections in the presence of ultrashort range radio links, unpredictable RF attenuation, and human postural mobility. Delay modeling techniques for evaluating single-copy on-body DTN routing protocols are then developed. End-to-end routing delay for a series of protocols including opportunistic, randomized, and two other mechanisms that capture multiscale topological localities in human postural movements have been evaluated. Performance of the analyzed protocols are then evaluated experimentally and via simulation to compare with the results obtained from the developed model. Finally, a mechanism for evaluating the topological importance of individual on-body sensor nodes is developed. It is shown that such information can be used for selectively reducing the on-body sensor-count without substantially sacrificing the packet delivery delay.

  19. Modeling On-Body DTN Packet Routing Delay in the Presence of Postural Disconnections.

    Science.gov (United States)

    Quwaider, Muhannad; Taghizadeh, Mahmoud; Biswas, Subir

    2011-01-01

    This paper presents a stochastic modeling framework for store-and-forward packet routing in Wireless Body Area Networks ( WBAN ) with postural partitioning. A prototype WBANs has been constructed for experimentally characterizing and capturing on-body topology disconnections in the presence of ultrashort range radio links, unpredictable RF attenuation, and human postural mobility. Delay modeling techniques for evaluating single-copy on-body DTN routing protocols are then developed. End-to-end routing delay for a series of protocols including opportunistic, randomized, and two other mechanisms that capture multiscale topological localities in human postural movements have been evaluated. Performance of the analyzed protocols are then evaluated experimentally and via simulation to compare with the results obtained from the developed model. Finally, a mechanism for evaluating the topological importance of individual on-body sensor nodes is developed. It is shown that such information can be used for selectively reducing the on-body sensor-count without substantially sacrificing the packet delivery delay.

  20. The effect of body postures on the distribution of air gap thickness and contact area.

    Science.gov (United States)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M

    2017-02-01

    The heat and mass transfer in clothing is predominantly dependent on the thickness of air layer and the magnitude of contact area between the body and the garment. The air gap thickness and magnitude of the contact area can be affected by the posture of the human body. Therefore, in this study, the distribution of the air gap and the contact area were investigated for different body postures of a flexible manikin. In addition, the effect of the garment fit (regular and loose) and style (t-shirts, sweatpants, jacket and trousers) were analysed for the interaction between the body postures and the garment properties. A flexible manikin was scanned using a three-dimensional (3D) body scanning technique, and the scans were post-processed in dedicated software. The body posture had a strong effect on the air gap thickness and the contact area for regions where the garment had a certain distance from the body. Furthermore, a mathematical model was proposed to estimate the possible heat transfer coefficient for the observed air layers and their change with posture. The outcome of this study can be used to improve the design of the protective and functional garments and predict their effect on the human body.

  1. First-Person Perspective Virtual Body Posture Influences Stress: A Virtual Reality Body Ownership Study

    Science.gov (United States)

    Bergström, Ilias; Kilteni, Konstantina; Slater, Mel

    2016-01-01

    In immersive virtual reality (IVR) it is possible to replace a person’s real body by a life-sized virtual body that is seen from first person perspective to visually substitute their own. Multisensory feedback from the virtual to the real body (such as the correspondence of touch and also movement) can also be present. Under these conditions participants typically experience a subjective body ownership illusion (BOI) over the virtual body, even though they know that it is not their real one. In most studies and applications the posture of the real and virtual bodies are as similar as possible. Here we were interested in whether the BOI is diminished when there are gross discrepancies between the real and virtual body postures. We also explored whether a comfortable or uncomfortable virtual body posture would induce feelings and physiological responses commensurate with the posture. We carried out an experiment with 31 participants in IVR realized with a wide field-of-view head-mounted display. All participants were comfortably seated. Sixteen of them were embodied in a virtual body designed to be in a comfortable posture, and the remainder in an uncomfortable posture. The results suggest that the uncomfortable body posture led to lesser subjective BOI than the comfortable one, but that participants in the uncomfortable posture experienced greater awareness of their autonomic physiological responses. Moreover their heart rate, heart rate variability, and the number of mistakes in a cognitive task were associated with the strength of their BOI in the uncomfortable posture: greater heart rate, lower heart rate variability and more mistakes were associated with higher levels of the BOI. These findings point in a consistent direction—that the BOI over a body that is in an uncomfortable posture can lead to subjective, physiological and cognitive effects consistent with discomfort that do not occur with the BOI over a body in a comfortable posture. PMID:26828365

  2. Human Posture and Movement Prediction based on Musculoskeletal Modeling

    DEFF Research Database (Denmark)

    Farahani, Saeed Davoudabadi

    2014-01-01

    Abstract This thesis explores an optimization-based formulation, so-called inverse-inverse dynamics, for the prediction of human posture and motion dynamics performing various tasks. It is explained how this technique enables us to predict natural kinematic and kinetic patterns for human posture...... and motion using AnyBody Modeling System (AMS). AMS uses inverse dynamics to analyze musculoskeletal systems and is, therefore, limited by its dependency on input kinematics. We propose to alleviate this dependency by assuming that voluntary postures and movement strategies in humans are guided by a desire...... expenditure, joint forces and other physiological properties derived from the detailed musculoskeletal analysis. Several attempts have been made to uncover the principles underlying motion control strategies in the literature. In case of some movements, like human squat jumping, there is almost no doubt...

  3. Differences in body composition and prevalence for postural ...

    African Journals Online (AJOL)

    The aim of this study is to compare the prevalence rate for postural deviations and body composition status among two racial groups in South Africa. The sample (n = 216) consisted of 89 African girls and 127 Caucasian girls. Anthropometric (BMI and percentage body fat) and body posture measurements were performed.

  4. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size

    OpenAIRE

    Kubo, Tai; Kubo, Mugino O.

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. Accordi...

  5. Perceiving Conspecifics is Not Purely Visual: “Body Gestalt” Completion is Influenced by the Body Posture of the Observer

    Directory of Open Access Journals (Sweden)

    K Kessler

    2011-04-01

    Full Text Available When we perceive other people in our everyday encounters their bodies are often partially occluded. High-level visual areas are known to automatically complete partially occluded objects, as revealed by the classic “gestalt” phenomena. However, here we set out to investigate if “body gestalt” completion is “embodied” and not purely visual. Human observers might intuitively map their own body knowledge onto partially occluded others and thereby complete their “body gestalt” by means of posture and/or motor resonance. To this end we developed new stimuli showing a face and two hands that could either form a “body gestalt” or not. Our most important finding across five behavioural experiments was that body gestalt completion was not solely based on visual features like the classic gestalt phenomena. Responses were significantly faster when the observer's posture matched the configuration of face and hands shown on screen then. In this sense body gestalt completion is an embodied process, where humans intuitively use their own body knowledge to ‘fill in the gaps’ in a body stimulus. We further conclude that in our particular paradigm posture resonance was apparently more important for body gestalt completion than motor resonance—with the former being most likely mediated by proprioceptive body schema representations, while the latter by the mirror neuron system. Finally, we will also present preliminary analysis of MEG data. Our findings elucidate the mechanisms of how humans perceive others holistically and how they might implicitly align themselves in everyday social interactions to facilitate an optimal co-representation of each other.

  6. The relationship between the stomatognathic system and body posture

    Directory of Open Access Journals (Sweden)

    Antonino Cuccia

    2009-01-01

    Full Text Available In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing, oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system's proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus. If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss.

  7. The Relationship Between the Stomatognathic System and Body Posture

    Science.gov (United States)

    Cuccia, Antonino; Caradonna, Carola

    2009-01-01

    In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system’s proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss. PMID:19142553

  8. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    Directory of Open Access Journals (Sweden)

    Tai Kubo

    Full Text Available Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade, yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals are above 500 g, except for macroscelid mammals (i.e., elephant shrew, a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs. When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna.

  9. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    Science.gov (United States)

    Kubo, Tai; Kubo, Mugino O

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals) are above 500 g, except for macroscelid mammals (i.e., elephant shrew), a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs). When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna.

  10. Body segments decoupling in sitting: control of body posture from automatic chair adjustments

    NARCIS (Netherlands)

    van Geffen, P.; Molier, B.I.; Reenalda, Jasper; Veltink, Petrus H.; Koopman, Hubertus F.J.M.

    2008-01-01

    Background Individuals who cannot functionally reposition themselves adopt a passive body posture and suffer from physical discomfort in long-term sitting. To regulate body load and to prevent sitting related mobility problems, proper posture control is important. The inability to reposition

  11. Dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.

    Science.gov (United States)

    Kujala, Miiamaaria V; Kujala, Jan; Carlson, Synnöve; Hari, Riitta

    2012-01-01

    We read conspecifics' social cues effortlessly, but little is known about our abilities to understand social gestures of other species. To investigate the neural underpinnings of such skills, we used functional magnetic resonance imaging to study the brain activity of experts and non-experts of dog behavior while they observed humans or dogs either interacting with, or facing away from a conspecific. The posterior superior temporal sulcus (pSTS) of both subject groups dissociated humans facing toward each other from humans facing away, and in dog experts, a distinction also occurred for dogs facing toward vs. away in a bilateral area extending from the pSTS to the inferior temporo-occipital cortex: the dissociation of dog behavior was significantly stronger in expert than control group. Furthermore, the control group had stronger pSTS responses to humans than dogs facing toward a conspecific, whereas in dog experts, the responses were of similar magnitude. These findings suggest that dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.

  12. Enhancing creativity: Proper body posture meets proper emotion.

    Science.gov (United States)

    Hao, Ning; Xue, Hua; Yuan, Huan; Wang, Qing; Runco, Mark A

    2017-02-01

    This study tested whether compatibility or incompatibility between body posture and emotion was beneficial for creativity. In Study 1, participants were asked to solve the Alternative Uses Task (AUT) problems when performing open or closed body posture in positive or negative emotional state respectively. The results showed that originality of AUT performance was higher in the compatible conditions (i.e., open-positive and closed-negative) than in the incompatible conditions (i.e., closed-positive and open-negative). In Study 2, the compatibility effect was replicated in both the AUT and the Realistic Presented Problem test (i.e., RPP). Moreover, it was revealed that participants exhibited the highest associative flexibility in the open-positive condition, and the highest persistence in the closed-negative condition. These findings indicate that compatibility between body posture and emotion is beneficial for creativity. This may be because when the implicit emotions elicited by body posture match explicit emotions, the effects of emotions on creativity are enhanced, therefore promoting creativity through the flexibility or the persistence pathway respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Body posture recognition and turning recording system for the care of bed bound patients.

    Science.gov (United States)

    Hsiao, Rong-Shue; Mi, Zhenqiang; Yang, Bo-Ru; Kau, Lih-Jen; Bitew, Mekuanint Agegnehu; Li, Tzu-Yu

    2015-01-01

    This paper proposes body posture recognition and turning recording system for assisting the care of bed bound patients in nursing homes. The system continuously detects the patient's body posture and records the length of time for each body posture. If the patient remains in the same body posture long enough to develop pressure ulcers, the system notifies caregivers to change the patient's body posture. The objective of recording is to provide the log of body turning for querying of patients' family members. In order to accurately detect patient's body posture, we developed a novel pressure sensing pad which contains force sensing resistor sensors. Based on the proposed pressure sensing pad, we developed a bed posture recognition module which includes a bed posture recognition algorithm. The algorithm is based on fuzzy theory. The body posture recognition algorithm can detect the patient's bed posture whether it is right lateral decubitus, left lateral decubitus, or supine. The detected information of patient's body posture can be then transmitted to the server of healthcare center by the communication module to perform the functions of recording and notification. Experimental results showed that the average posture recognition accuracy for our proposed module is 92%.

  14. Body Context and Posture Affect Mental Imagery of Hands

    Science.gov (United States)

    Ionta, Silvio; Perruchoud, David; Draganski, Bogdan; Blanke, Olaf

    2012-01-01

    Different visual stimuli have been shown to recruit different mental imagery strategies. However the role of specific visual stimuli properties related to body context and posture in mental imagery is still under debate. Aiming to dissociate the behavioural correlates of mental processing of visual stimuli characterized by different body context, in the present study we investigated whether the mental rotation of stimuli showing either hands as attached to a body (hands-on-body) or not (hands-only), would be based on different mechanisms. We further examined the effects of postural changes on the mental rotation of both stimuli. Thirty healthy volunteers verbally judged the laterality of rotated hands-only and hands-on-body stimuli presented from the dorsum- or the palm-view, while positioning their hands on their knees (front postural condition) or behind their back (back postural condition). Mental rotation of hands-only, but not of hands-on-body, was modulated by the stimulus view and orientation. Additionally, only the hands-only stimuli were mentally rotated at different speeds according to the postural conditions. This indicates that different stimulus-related mechanisms are recruited in mental rotation by changing the bodily context in which a particular body part is presented. The present data suggest that, with respect to hands-only, mental rotation of hands-on-body is less dependent on biomechanical constraints and proprioceptive input. We interpret our results as evidence for preferential processing of visual- rather than kinesthetic-based mechanisms during mental transformation of hands-on-body and hands-only, respectively. PMID:22479618

  15. Static body postural misalignment in individuals with temporomandibular disorders: a systematic review

    Science.gov (United States)

    Chaves, Thaís C.; Turci, Aline M.; Pinheiro, Carina F.; Sousa, Letícia M.; Grossi, Débora B.

    2014-01-01

    BACKGROUND: The association between body postural changes and temporomandibular disorders (TMD) has been widely discussed in the literature, however, there is little evidence to support this association. OBJECTIVES: The aim of the present study was to conduct a systematic review to assess the evidence concerning the association between static body postural misalignment and TMD. METHOD: A search was conducted in the PubMed/Medline, Embase, Lilacs, Scielo, Cochrane, and Scopus databases including studies published in English between 1950 and March 2012. Cross-sectional, cohort, case control, and survey studies that assessed body posture in TMD patients were selected. Two reviewers performed each step independently. A methodological checklist was used to evaluate the quality of the selected articles. RESULTS: Twenty studies were analyzed for their methodological quality. Only one study was classified as a moderate quality study and two were classified as strong quality studies. Among all studies considered, only 12 included craniocervical postural assessment, 2 included assessment of craniocervical and shoulder postures,, and 6 included global assessment of body posture. CONCLUSION: There is strong evidence of craniocervical postural changes in myogenous TMD, moderate evidence of cervical postural misalignment in arthrogenous TMD, and no evidence of absence of craniocervical postural misalignment in mixed TMD patients or of global body postural misalignment in patients with TMD. It is important to note the poor methodological quality of the studies, particularly those regarding global body postural misalignment in TMD patients. PMID:25590441

  16. Evaluation of body posture in nursing students

    Directory of Open Access Journals (Sweden)

    Marília Fernandes Andrade

    2017-08-01

    Full Text Available Abstract OBJECTIVE To investigate the body posture of nursing students before and after clinical practice. METHOD The study was developed in two stages. Initially the body posture of students of the 2nd, 4th, 6th, and 8th periods were assessed through photogrammetry. All images were analyzed in a random and masked manner with CorporisPro® 3.1.3 software. Three evaluations were performed for each angle and then the mean value was calculated. Two years later, when the 4th period students had developed their clinical internships, their body posture was again evaluated. RESULTS The total sample consisted of 112 students. Comparison of their posture with the normality pattern showed that all the angles presented significant differences (p< 0.00, except for the angle of the Thales triangle. Reassessment of these students evidenced significant differences in the angles of the acromioclavicular joint (p=0.03, knee flexion (p< 0.00 and in the tibiotarsal angle (p< 0.00. CONCLUSION All the students presented alterations when compared to the normality values. The segments that presented significant differences between before and after practice were the acromioclavicular angle, knee flexion, and tibiotarsal angle; the latter two were in the rolling position.

  17. Quantification of ln-Flight Physical Changes: Anthropometry and Neutral Body Posture

    Science.gov (United States)

    Young, K. S.; Amick, R.; Rajulu, S.

    2016-01-01

    Currently, NASA does not have sufficient in-flight anthropometric data to assess the impact of changes in body shape and size. For developing future planetary and reduced-gravity suits, NASA needs to quantify the impacts of microgravity on anthropometry and body posture to ensure optimal crew performance, fit, and comfort. To obtain data on these changes, circumference, length, height, breadth, and depth for body segments (chest, waist, bicep, thigh, calf) from astronauts for preflight, in-flight, and post-flight conditions needs to be collected. Once these data have been collected, pre-flight, in-flight, and post-flight anthropometric values will be compared, yielding microgravity factors. The neutral body posture (NBP) will also be measured, to determine body posture (joint angle) changes between subjects throughout the duration of a mission. Data collection, starting with Increments 37/38, is still in progress but has been completed for 6 out of 9 subjects. NASA suit engineers and NASA's Extravehicular Activity (EVA) Project Office have identified that suit fit in microgravity could become an issue. It has been noted that crewmembers often need to adjust their suit sizing once they are in orbit. This adjustment could be due to microgravity effects on anthropometry and postural changes, and is necessary to ensure optimal crew performance, fit, and comfort in space. To date, the only data collected to determine the effects of microgravity on physical human changes were collected during Skylab 4, the Apollo-Soyuz Test Project (ASTP), Space Shuttle mission STS-57, and a recent HRP study on seated height changes due to spinal elongation (Spinal Elongation, Master Task List [MTL] #221). The Skylab 4, ASTP, and the STS-57 studies found that, according to photographs, a distinct NBP exists. The still photographs showed a distinguishable posture with the arms raised and the shoulders abducted; in addition, the knees are flexed, with noticeable hip flexion, and the foot

  18. Human posture experiments under water: ways of applying the findings to microgravity

    Science.gov (United States)

    Dirlich, Thomas

    For the design and layout human spacecraft interiors the Neutral Body Posture (NBP) in micro-gravity is of great importance. The NBP has been defined as the stable, replicable and nearly constant posture the body "automatically" assumes when a human relaxes in microgravity. Furthermore the NBP, as published, suggests that there is one standard neutral posture for all individuals. Published experiments from space, parabolic flights and under water on the other hand show strong inter-individual variations of neutral (relaxed) postures. This might originate from the quite small sample sizes of subjects analyzed or the different experiment conditions, e. g. space and under water. Since 2008 a collaborative research project focussing on human postures and motions in microgravity has been ongoing at the Technische Univer-sitüt München (TUM). This collaborative effort is undertaken by the Institute of Astronautics a (LRT) and the Institute of Ergonomics (LfE). Several test campaigns have been conducted in simulated microgravity under water using a specially designed standardized experiment setup. Stereo-metric HD video footage and anthropometric data from over 50 subjects (female and male) has been gathered in over 80 experiments. The video data is analyzed using PCMAN software, developed by the LfE, resulting in a 3D volumetric CAD-based model of each subject and posture. Preliminary and ongoing analysis of the data offer evidence for the existence of intra-individually constant neutral postures, as well as continuously recurring relaxation strate-gies. But as with the data published prior the TUM experiments show quite a large variation of inter-individual postures. These variation might be induced or influenced by the special environmental conditions in the underwater experiment. Thus in present paper ways of stan-dardizing data and applying the findings gathered under water to real microgravity are being discussed. The following influences stemming from the

  19. Prevalence of incorrect body posture in children and adolescents with overweight and obesity.

    Science.gov (United States)

    Maciałczyk-Paprocka, Katarzyna; Stawińska-Witoszyńska, Barbara; Kotwicki, Tomasz; Sowińska, Anna; Krzyżaniak, Alicja; Walkowiak, Jarosław; Krzywińska-Wiewiorowska, Małgorzata

    2017-05-01

    The ever increasing epidemics of overweight and obesity in school children may be one of the reasons of the growing numbers of children with incorrect body posture. The purpose of the study was the assessment of the prevalence of incorrect body posture in children and adolescents with overweight and obesity in Poznań, Poland. The population subject to study consisted of 2732 boys and girls aged 3-18 with obesity, overweight, and standard body mass. The assessment of body mass was performed based on BMI, adopting Cole's cutoff values. The evaluation of body posture was performed according to the postural error chart based on criteria complied by professor Dega. The prevalence rates of postural errors were significantly higher among children and adolescents with overweight and obesity than among the group with standard body mass. In the overweight group, it amounted to 69.2% and in the obese group to 78.6%.  The most common postural deviations in obese children and adolescents were valgus knees and flat feet. Overweight and obesity in children and adolescents, predisposing to higher incidence of some types of postural errors, call for prevention programs addressing both health problems. What is Known: • The increase in the prevalence of overweight and obesity among children and adolescents has drawn attention to additional health complications which may occur in this population such as occurrence of incorrect body posture. What is New: • The modified chart of postural errors proved to be an effective tool in the assessment of incorrect body posture. • This chart may be used in the assessment of posture during screening tests and prevention actions at school.

  20. Evaluation of body posture in individuals with internal temporomandibular joint derangement.

    Science.gov (United States)

    Munhoz, Wagner Cesar; Marques, Amélia Pasqual; de Siqueira, José Tadeu Tesseroli

    2005-10-01

    Temporomandibular dysfunctions (TMD) comprise a great number of disruptions that may affect the temporomandibular joint (TMJ), the masticatory muscles, or both. TMJ internal derangement is a specific type of TMD, of which the etiology and physiopathology are broadly unknown, but have been suggested to be linked to head, neck, and body posture factors. This study aimed at verifying possible relationships between body posture and TMJ internal derangements (TMJ-id), by comparing 30 subjects presenting typical TMJ-id signs to 20 healthy subjects. Subjects' clinical evaluations included anamnesis, stomatognatic system evaluation, and plotting analysis on body posture photographs. No statistically significant differences were found between the groups. Results do not support the assertion that body posture plays a role in causing or enhancing TMD; however, these results should be cautiously considered because of the small number of subjects evaluated and the many posture variables submitted to statistical procedures that lead to high standard deviations.

  1. Stereotypes and prejudice affect the recognition of emotional body postures.

    Science.gov (United States)

    Bijlstra, Gijsbert; Holland, Rob W; Dotsch, Ron; Wigboldus, Daniel H J

    2018-03-26

    Most research on emotion recognition focuses on facial expressions. However, people communicate emotional information through bodily cues as well. Prior research on facial expressions has demonstrated that emotion recognition is modulated by top-down processes. Here, we tested whether this top-down modulation generalizes to the recognition of emotions from body postures. We report three studies demonstrating that stereotypes and prejudice about men and women may affect how fast people classify various emotional body postures. Our results suggest that gender cues activate gender associations, which affect the recognition of emotions from body postures in a top-down fashion. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Quantification of In-flight Physical Changes: Anthropometry and Neutral Body Posture

    Science.gov (United States)

    Young, K. S.; Reid, C. R.; Rajulu, S.

    2014-01-01

    Currently, NASA does not have sufficient in-flight anthropometric data gathered to assess the impact of physical body shape and size changes on suit sizing. For developing future planetary and reduced gravity suits, NASA needs to quantify the impacts of microgravity on anthropometry, body posture, and neutral body postures (NBP) to ensure optimal crew performance, fit, and comfort. To obtain these impacts, anthropometric data, circumference, length, height, breadth, and depth for body segments (i.e. chest, waist, bicep, thigh, calf) from astronauts for pre, in-, and postflight conditions needs to be collected. Once this data has been collected, a comparison between pre, in-, and postflight anthropometric values will be analyzed, yielding microgravity factors. The NBP will be used to determined body posture (joint angle) changes between subjects throughout the duration of a mission. Data collection, starting with Increments 37/38, is still in progress with the completion of 3 out of 12 subjects. NASA suit engineers and NASA's Extravehicular Activity (EVA) Project Office have identified that suit fit in microgravity could become an issue. It has been noted that crewmembers often need to adjust their suit sizing once they are in orbit. This adjustment could be due to microgravity effects on anthropometry and postural changes, and is necessary to ensure optimal crew performance, fit, and comfort in space. To date, the only data collected to determine the effects of microgravity on physical human changes have been during Skylab, STS-57, and a recent HRP study on seated height changes due to spinal elongation (Spinal Elongation, Master Task List [MTL] #221). The Skylab and the STS-57 studies found that there is a distinct neutral body posture (NBP) based on photographs. The still photographs showed that there is a distinguishable posture with the arms raised and the shoulder abducted; and, in addition, the knees were flexed with noticeable hip flexion and the foot

  3. Human cerebral venous outflow pathway depends on posture and central venous pressure

    DEFF Research Database (Denmark)

    Gisolf, J; van Lieshout, J J; van Heusden, K

    2004-01-01

    Internal jugular veins are the major cerebral venous outflow pathway in supine humans. In upright humans the positioning of these veins above heart level causes them to collapse. An alternative cerebral outflow pathway is the vertebral venous plexus. We set out to determine the effect of posture...... and during a Valsalva manoeuvre in both body positions, correlate highly with model simulation of the jugular cross-sectional area (R(2) = 0.97). The results suggest that the cerebral venous flow distribution depends on posture and CVP: in supine humans the internal jugular veins are the primary pathway...

  4. Application of postured human model for SAR measurements

    Science.gov (United States)

    Vuchkovikj, M.; Munteanu, I.; Weiland, T.

    2013-07-01

    In the last two decades, the increasing number of electronic devices used in day-to-day life led to a growing interest in the study of the electromagnetic field interaction with biological tissues. The design of medical devices and wireless communication devices such as mobile phones benefits a lot from the bio-electromagnetic simulations in which digital human models are used. The digital human models currently available have an upright position which limits the research activities in realistic scenarios, where postured human bodies must be considered. For this reason, a software application called "BodyFlex for CST STUDIO SUITE" was developed. In its current version, this application can deform the voxel-based human model named HUGO (Dipp GmbH, 2010) to allow the generation of common postures that people use in normal life, ensuring the continuity of tissues and conserving the mass to an acceptable level. This paper describes the enhancement of the "BodyFlex" application, which is related to the movements of the forearm and the wrist of a digital human model. One of the electromagnetic applications in which the forearm and the wrist movement of a voxel based human model has a significant meaning is the measurement of the specific absorption rate (SAR) when a model is exposed to a radio frequency electromagnetic field produced by a mobile phone. Current SAR measurements of the exposure from mobile phones are performed with the SAM (Specific Anthropomorphic Mannequin) phantom which is filled with a dispersive but homogeneous material. We are interested what happens with the SAR values if a realistic inhomogeneous human model is used. To this aim, two human models, a homogeneous and an inhomogeneous one, in two simulation scenarios are used, in order to examine and observe the differences in the results for the SAR values.

  5. Physical Activity and Compensation of Body Posture Disorders in Children Aged Seven

    Directory of Open Access Journals (Sweden)

    Hricková Katarína

    2016-09-01

    Full Text Available Introduction. Physical activity is an indelible part of human life, but the impact of industrial changes on society has led to a hypokinetic lifestyle not only in adults but also in children and youth. This paper aims to present the results of a study of the body posture of 7-year-olds, which is an essential part of their physical development evaluation. The aim of our study was to expand our knowledge of the occurrence of body posture disorders in 7-year-olds, as well as to develop an appropriate movement programme which would help improve the current situation. Material and methods. The research sample consisted of 393 first-graders from 4 grammar schools in Kosice. We used muscle testing according to Janda and Tichy to obtain data on individual muscle weaknesses and postural deviations. Results. Our research confirmed the findings of several other researchers who had pointed out that muscle weaknesses and postural deviations can be observed already in preschoolers. Due to a lack of physical activity and movement, muscle weakness in preschool children results in more serious health issues at school age and later in adulthood. Conclusions. We managed to stabilise and even to correct the weaknesses we observed by implementing a movement programme focusing on the diagnosed muscle weakness.

  6. Evaluation of body posture in nursing students.

    Science.gov (United States)

    Andrade, Marília Fernandes; Chaves, Érika de Cássia Lopes; Miguel, Michele Rita Oliveira; Simão, Talita Prado; Nogueira, Denismar Alves; Iunes, Denise Hollanda

    2017-08-28

    To investigate the body posture of nursing students before and after clinical practice. The study was developed in two stages. Initially the body posture of students of the 2nd, 4th, 6th, and 8th periods were assessed through photogrammetry. All images were analyzed in a random and masked manner with CorporisPro® 3.1.3 software. Three evaluations were performed for each angle and then the mean value was calculated. Two years later, when the 4th period students had developed their clinical internships, their body posture was again evaluated. The total sample consisted of 112 students. Comparison of their posture with the normality pattern showed that all the angles presented significant differences (pcomposta por 112 estudantes. Comparando-se os estudantes com o padrão de normalidade, todos os ângulos apresentaram diferença significativa (p< 0,00), com exceção do ângulo triângulo de Tales. Reavaliando os mesmos estudantes, houve diferença significativa nos ângulos da articulação acromioclavicular (p=0,03), da flexão de joelhos (p< 0,00) e no ângulo tibiotársico (p< 0,00). Todos os estudantes apresentaram alterações, comparadas aos valores de normalidade. Os segmentos com diferença significativa, comparando-se antes e após a prática, foram o ângulo acromioclavicular, flexo de joelho e ângulo tibiotársico, sendo os dois últimos na posição de rolamento.

  7. Effect of body posture on involuntary swallow in healthy volunteers.

    Science.gov (United States)

    Shiino, Yoshitaka; Sakai, Shogo; Takeishi, Ryosuke; Hayashi, Hirokazu; Watanabe, Masahiro; Tsujimura, Takanori; Magara, Jin; Ito, Kayoko; Tsukada, Tetsu; Inoue, Makoto

    2016-03-01

    Clinically, reclining posture has been reported to reduce risk of aspiration. However, during involuntary swallow in reclining posture, changes in orofacial and pharyngeal movement before and during pharyngeal swallow should be considered. Further, the mechanisms underlying the effect of body posture on involuntary swallow remain unclear. The aim of the present study was to determine the effect of body posture on activity patterns of the suprahyoid muscles and on patterns of bolus transport during a natural involuntary swallow. Thirteen healthy male adults participated in a water infusion test and a chewing test. In the water infusion test, thickened water was delivered into the pharynx at a very slow rate until the first involuntary swallow was evoked. In the chewing test, subjects were asked to eat 10 g of gruel rice. In both tests, the recording was performed at four body postures between upright and supine positions. Results showed that reclining changed the location of the bolus head at the start of swallow and prolonged onset latency of the swallowing initiation. Muscle burst duration and whiteout time measured by videoendoscopy significantly increased with body reclining and prolongation of the falling time. In the chewing test, reclining changed the location of the bolus head at the start of swallow, and the frequency of bolus residue after the first swallow increased. Duration and area of EMG burst and whiteout time significantly increased with body reclining. These data suggest that body reclining may result in prolongation of pharyngeal swallow during involuntary swallow. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Pelvic morphology, body posture and standing balance characteristics of adolescent able-bodied and idiopathic scoliosis girls.

    Science.gov (United States)

    Stylianides, Georgios A; Dalleau, Georges; Begon, Mickaël; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds system. Standing balance was measured using a force plate to identify the center of pressure (COP), and its anteroposterior (AP) and mediolateral (ML) displacements. A multivariate analysis of variance (MANOVA) was performed to determine differences between the two groups. A factor analysis was used to identify factors that best describe both groups. Statistical differences were identified between the groups for each of the parameter types. While spatial orientation of the pelvis was similar in both groups, five of the eight trunk postural variables of the scoliotic group were significantly different that the able-bodied group. Also, five out of the seven standing balance variables were higher in the scoliotic girls. Approximately 60% of the variation is supported by 4 factors that can be associated with a set of variables; standing balance variables (factor 1), body posture variables (factor 2), and pelvic morphology variables (factors 3 and 4). Pelvic distortion, body posture asymmetry, and standing imbalance are more pronounced in scoliotic girls, when compared to able-bodied girls. These findings may be beneficial when addressing balance and ankle proprioception exercises for the scoliotic population.

  9. Revisiting the Body-Schema Concept in the Context of Whole-Body Postural-Focal Dynamics

    Science.gov (United States)

    Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo

    2015-01-01

    The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory–motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability. PMID:25741274

  10. Revisiting the body-schema concept in the context of whole-body postural-focal dynamics.

    Science.gov (United States)

    Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo

    2015-01-01

    The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory-motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability.

  11. Revisiting the body-schema concept in the context of Whole-Body Postural-Focal Dynamics

    Directory of Open Access Journals (Sweden)

    Pietro eMorasso

    2015-02-01

    Full Text Available The body schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert, but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the Equilibrium Point Hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory-motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability.

  12. THE PRESENCE OF POSTURAL DEFORMITIES OF THE YOUTH DEPENDING ON THE LEVEL OF PARENTS KNOWLADGE ABOUT DEFICIENT BODY POSTURE

    Directory of Open Access Journals (Sweden)

    Zoran Bogdanović

    2007-05-01

    Full Text Available The subject of this study is deterimining the presence of postural deformities in sagittal view (defi cient kyphotic and lordotic body posture of the youth depanding on the level of parents knowladge about defi cient body posture. The complete content of the program was conducted in the territory of the city of Kragujevac in several elementary schools, comprising 299 students of the 5th grade and their parents. The object of this study was to determine the number of students with defi cient kyphotic and lordotic body posture, to determine the presence of dis arrangements depanding on the gender and to determine the presence of kyphotic and lordotic deformity depanding on the parents level of information about defi ciant body posture among children. Kyphotic deformity of the examiners of male population is mostly present in the group of parents who are poorly informed about body posture defi ciency. Regarding examiners of female population , the presence of deformation is equally divided on the group of parents who expressed themselves as being very well, those who are undecided and those who are poorly informed. The more signifi cant presence of kyphotic deformity is at examiners of male population than at the examiners of female population while the higher presence of lordotic deformity is at the examiners of female population. Regarding female population we can observe the highest presence of deformation in the group of parents who are undecided while the other groups are very equabal by the presence of deformation. Stated measures impose a statement that it is necessary to continuosly work on both - children education and parents education aiming to recognize posture defi ciency and physical deformation of school and preschool population and all of this with the object of reducing the deformation and on time detecting certain disarrangements and taking adaquate measures for its senctuary

  13. Pelvic morphology, body posture and standing balance characteristics of adolescent able-bodied and idiopathic scoliosis girls.

    Directory of Open Access Journals (Sweden)

    Georgios A Stylianides

    Full Text Available The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds system. Standing balance was measured using a force plate to identify the center of pressure (COP, and its anteroposterior (AP and mediolateral (ML displacements. A multivariate analysis of variance (MANOVA was performed to determine differences between the two groups. A factor analysis was used to identify factors that best describe both groups. Statistical differences were identified between the groups for each of the parameter types. While spatial orientation of the pelvis was similar in both groups, five of the eight trunk postural variables of the scoliotic group were significantly different that the able-bodied group. Also, five out of the seven standing balance variables were higher in the scoliotic girls. Approximately 60% of the variation is supported by 4 factors that can be associated with a set of variables; standing balance variables (factor 1, body posture variables (factor 2, and pelvic morphology variables (factors 3 and 4. Pelvic distortion, body posture asymmetry, and standing imbalance are more pronounced in scoliotic girls, when compared to able-bodied girls. These findings may be beneficial when addressing balance and ankle proprioception exercises for the scoliotic population.

  14. Pelvic Morphology, Body Posture and Standing Balance Characteristics of Adolescent Able-Bodied and Idiopathic Scoliosis Girls

    OpenAIRE

    Stylianides, Georgios A.; Dalleau, Georges; Begon, Micka?l; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds sys...

  15. Mechanical impedance of the human body in vertical direction.

    Science.gov (United States)

    Holmlund, P; Lundström, R; Lindberg, L

    2000-08-01

    The mechanical impedance of the human body in sitting posture and vertical direction was measured during different experimental conditions, such as vibration level (0.5-1.4 m/s2), frequency (2-100 Hz), body weight (57-92 kg), relaxed and erect upper body posture. The outcome shows that impedance increases with frequency up to a peak at about 5 Hz after which it decreases in a complex manner which includes two additional peaks. The frequency at which the first and second impedance peak occurs decreases with higher vibration level. Erect, compared with relaxed body posture resulted in higher impedance magnitudes and with peaks located at somewhat higher frequencies. Heavy persons show higher impedance magnitudes and peaks at lower frequencies.

  16. Body posture in children with obesity - the relationship to physical activity (PA).

    Science.gov (United States)

    Brzęk, Anna; Sołtys, Jacek; Gallert-Kopyto, Weronika; Gwizdek, Katarzyna; Plinta, Ryszard

    2016-01-01

    The modern world of electronic devices offers children and young people various forms of leisure activities, while reducing the need for natural movement, necessary for normal psychomotor development. Sedentary life contributes to an increased body weight and, thereby, to the development of body posture abnormalities. The aim of the study was to evaluate body posture, leisure activities, and the number of hours spent using electronic devices among children with obesity. The study involved 51 children with obesity (BMI above 95 percentile) - A group, and 69 children with normal body weight at the age of 9-13 years (10.98 ± 1.29) - B group (control). Body posture has been evaluated with the scoliometer, the digital inclinometer and the plumb line. The hump ratio has been calculated on the basis of SOSORT recommendations. Time spent in front of electronic devices based on a questionnaire results has also been calculated. Children with obesity have more body posture defects in the sagittal plane than children with normal z-scores (pchildren in group A have distorted depth of the two curvatures of the spine. In the control group, the majority of deviations have been observed in the evaluation of the ATR (Angle Trunk Rotation) at the lumbar spine (pelectronic devices at least 3 days a week (p>0.05). Obese children often use mobile devices, while children with normal body weight often use desktop equipment. Definitely more body posture abnormalities are found in the group of obese children. Children use electronic devices regardless of weight. It is worth to expand educational activities with programs that improve the quality of body posture through a daily change of abnormal patterns. © Polish Society for Pediatric Endocrinology and Diabetology.

  17. The effects of odour and body posture on perceived duration

    Directory of Open Access Journals (Sweden)

    Eliane eSchreuder

    2014-02-01

    Full Text Available This study reports an examination of the internal clock model, according to which subjective time duration is influenced by attention and arousal state. In a time production task, we examine the hypothesis that an arousing odour and an upright body posture affect perceived duration.The experimental task was performed while participants were exposed to an odour and either sitting upright (arousing condition or lying down in a relaxing chair (relaxing condition. They were allocated to one of three experimental odour conditions: rosemary (arousing condition, peppermint (relaxing condition and no odour (control condition. The predicted effects of the odours were not borne out by the results. Self-reported arousal and pleasure states were measured before, during (after each body posture condition and post experimentally. Heart rate and skin conductance were measured before and during the experiment. As expected, odour had an effect on perceived duration. When participants were exposed to rosemary odour, they produced significantly shorter time intervals than in the no odour condition. This effect, however, could not be explained by increased arousal. There was no effect of body posture on perceived duration, even though body posture did induce arousal. The results do not support the proposed arousal mechanism of the internal clock model.

  18. Posture Control—Human-Inspired Approaches for Humanoid Robot Benchmarking: Conceptualizing Tests, Protocols and Analyses

    Directory of Open Access Journals (Sweden)

    Thomas Mergner

    2018-05-01

    Full Text Available Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1 four basic physical disturbances (support surface (SS tilt and translation, field and contact forces may affect the balancing in any given degree of freedom (DoF. Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2 Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with “reactive” balancing of external disturbances and “proactive” balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3 Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking

  19. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle

    International Nuclear Information System (INIS)

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-01

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver’s seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm. (paper)

  20. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle.

    Science.gov (United States)

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-07

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.

  1. Relationships between Malocclusion, Body Posture, and Nasopharyngeal Pathology in Pre-Orthodontic Children.

    Science.gov (United States)

    Šidlauskienė, Monika; Smailienė, Dalia; Lopatienė, Kristina; Čekanauskas, Emilis; Pribuišienė, Rūta; Šidlauskas, Mantas

    2015-06-18

    Malocclusion, body posture, and breathing pattern may be correlated, but this issue is still controversial. The aim of the study was to examine the relationship between the type of malocclusion, body posture, and nasopharyngeal obstruction in children aged 7-14 years. The study group comprised 94 patients aged 7-14 years (mean±SD: 11.9±2.1 years); 44 (46.8%) males and 50 (53.2%) females. All patients passed an examination performed by the same orthodontist (study model and cephalometric radiograph analysis), orthopedic surgeon (body posture examined from the front, side, and back), and otorhinolaryngologist (anterior and posterior rhinoscopy and pharyngoscopy) in a blind manner. Postural disorders were observed in 72 (76.6%) patients. Hypertrophy of the adenoids was diagnosed in 54 (57.4%) patients, hypertrophy of the tonsils in 85 (90.3%), nasal septum deviation in 51 (54.3%), and allergic rhinitis in 19 (20.2%) patients. There was a statistically significant correlation between presence of kyphotic posture and a reduction in the SNB angle, representing sagittal position of the mandible. Also, there was a statistically significant association between kyphotic posture and nasopharyngeal obstruction (54.1% of patients with nasopharyngeal obstruction were kyphotic, compared with 25% of patients with no nasopharyngeal obstruction; p=0.02). Kyphotic posture and reduced SNB angle were more common among males. We concluded that: 1) there was a significant association between the sagittal position of the mandible (SNB angle) and a kyphotic posture; 2) kyphotic posture was significantly more common among patients with nasopharyngeal obstruction.

  2. Emotion expression in body action and posture.

    Science.gov (United States)

    Dael, Nele; Mortillaro, Marcello; Scherer, Klaus R

    2012-10-01

    Emotion communication research strongly focuses on the face and voice as expressive modalities, leaving the rest of the body relatively understudied. Contrary to the early assumption that body movement only indicates emotional intensity, recent studies have shown that body movement and posture also conveys emotion specific information. However, a deeper understanding of the underlying mechanisms is hampered by a lack of production studies informed by a theoretical framework. In this research we adopted the Body Action and Posture (BAP) coding system to examine the types and patterns of body movement that are employed by 10 professional actors to portray a set of 12 emotions. We investigated to what extent these expression patterns support explicit or implicit predictions from basic emotion theory, bidimensional theory, and componential appraisal theory. The overall results showed partial support for the different theoretical approaches. They revealed that several patterns of body movement systematically occur in portrayals of specific emotions, allowing emotion differentiation. Although a few emotions were prototypically expressed by one particular pattern, most emotions were variably expressed by multiple patterns, many of which can be explained as reflecting functional components of emotion such as modes of appraisal and action readiness. It is concluded that further work in this largely underdeveloped area should be guided by an appropriate theoretical framework to allow a more systematic design of experiments and clear hypothesis testing.

  3. Evaluation of the lambda model for human postural control during ankle strategy.

    Science.gov (United States)

    Micheau, Philippe; Kron, Aymeric; Bourassa, Paul

    2003-09-01

    An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.

  4. Evaluation of work posture and quantification of fatigue by Rapid Entire Body Assessment (REBA)

    Science.gov (United States)

    Rizkya, I.; Syahputri, K.; Sari, R. M.; Anizar; Siregar, I.

    2018-02-01

    Work related musculoskeletal disorders (MSDs), poor body postures, and low back injuries are the most common problems occurring in many industries including small-medium industries. This study presents assessment and evaluation of ergonomic postures of material handling worker. That evaluation was carried out using REBA (Rapid Entire Body Assessment). REBA is a technique to quantize the fatigue experienced by the worker while manually lifting loads. Fatigue due to abnormal work posture leads to complaints of labor-perceived pain. REBA methods were used to an assessment of working postures for the existing process by a procedural analysis of body postures involved. This study shows that parts of the body have a high risk of work are the back, neck, and upper arms with REBA score 9, so action should be taken as soon as possible. Controlling actions were implemented to those process with high risk then substantial risk reduction was achieved.

  5. Scan posture definition and hip girth measurement: the impact on clothing design and body scanning.

    Science.gov (United States)

    Gill, Simeon; Parker, Christopher J

    2017-08-01

    Ergonomic measurement is central to product design and development; especially for body worn products and clothing. However, there is a large variation in measurement definitions, complicated by new body scanning technology that captures measurements in a posture different to traditional manual methods. Investigations of hip measurement definitions in current clothing measurement practices supports analysis of the effect of scan posture and hip measurement definition on the circumferences of the hip. Here, the hip girth is a key clothing measurement that is not defined in current body scanning measurement standards. Sixty-four participants were scanned in the standard scan posture of a [TC] 2 body scanner, and also in a natural posture similar to that of traditional manual measurement collection. Results indicate that scan posture affects hip girth circumferences, and that some current clothing measurement practices may not define the largest lower body circumference. Recommendations are made concerning how the hip is defined in measurement practice and within body scanning for clothing product development. Practitioner Summary: The hip girth is an important measurement in garment design, yet its measurement protocol is not currently defined. We demonstrate that body posture during body scanning affects hip circumferences, and that current clothing measurement practices may not define the largest lower body circumference. This paper also provides future measurement practice recommendations.

  6. Differences in body composition and occurrence of postural ...

    African Journals Online (AJOL)

    Differences in body composition and occurrence of postural deviations in boys from two ... African Journal for Physical Activity and Health Sciences ... procedures of the International Society for the Advancement of Kinanthropometry (ISAK).

  7. Human body motion tracking based on quantum-inspired immune cloning algorithm

    Science.gov (United States)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  8. Body posture in the sagittal plane and scoliotic variables in girls aged 7-18

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2018-02-01

    Introduction. The aim of the study was to analyze the correlation between the variable posture in the sagittal plane and the scoliotic variables. Material and methods. The study involved 28 girls aged 7-18 years with scoliotic posture and scoliosis. Body posture as well as the spine were examined using Moiré’s spatial photogrammetry and the Exhibeon digital radiography method. Based on the size of the spinal curvature, the following were distinguished: scoliotic postures: 1-9° and scoliosis: ≥10°. Results. There were 21 (75% with scoliotic posture and 7 (25% with scoliosis. The size of the thoracic kyphosis and lumbar lordosis was normal. Conclusions. Between the body postural variables in the sagittal plane and the scoliotic variables, both positive (direct proportional and negative (inversely proportional correlations occurred. In the selection of scoliosis treatment method, the size of the postural variables in the sagittal plane should be taken into account, and each patient’s case should be individually considered.

  9. Predictive Value of Body Posture and Pupil Dilation in Assessing Consumer Preference and Choice

    DEFF Research Database (Denmark)

    Ramsøy, Thomas Zoëga; Jacobsen, Catrine; Friis-Olivarius, Morten

    2017-01-01

    in the mechanisms of decision-making, other, less known physiological responses indicators, such as body posture, may provide additional valuable insight into decision-making processes. Here, we report the results from two separate high-resolution eye-tracking studies in which pupil dilation and body posture...

  10. Holding a handle for balance during continuous postural perturbations – immediate and transitionary effects on whole body posture

    Directory of Open Access Journals (Sweden)

    Jernej Camernik

    2016-09-01

    Full Text Available When balance is exposed to perturbations, hand contacts are often used to assist postural control. We investigated the immediate and the transitionary effects of supportive hand contacts during continuous anteroposterior perturbations of stance by automated waist-pulls. Ten young adults were perturbed for five minutes and required to maintain balance by holding to a stationary, shoulder-high handle and following its removal. Centre of pressure (COP displacement, hip, knee, and ankle angles, leg and trunk muscle activity and handle contact forces were acquired. The analysis of results show that COP excursions are significantly smaller when the subjects utilize supportive hand contact and that the displacement of COP is strongly correlated to the perturbation force and significantly larger in the anterior than posterior direction. Regression analysis of hand forces revealed that subjects utilized the hand support significantly more during the posterior than anterior perturbations. Moreover, kinematical analysis showed that utilization of supportive hand contacts alters posture of the whole body and that postural readjustments after the release of the handle occur at different time scales in the hip, knee, and ankle joints. Overall, our findings show that supportive hand contacts are efficiently used for balance control during continuous postural perturbations and that utilization of a handle has significant immediate and transitionary effects on whole body posture.

  11. Body posture changes in women with migraine with or without temporomandibular disorders

    OpenAIRE

    Ferreira, Mariana C.; Bevilaqua-Grossi, Débora; Dach, Fabíola É.; Speciali, José G.; Gonçalves, Maria C.; Chaves, Thais C.

    2014-01-01

    Background: Migraine and temporomandibular disorders (TMDs) are reported to be associated. However, there are no reports on the association among migraines, TMDs and changes in body posture. Objectives : To assess changes in body posture in women suffering migraines with or without TMD compared with a control group. Method: Sixty-six women with a mean age of 18 to 45 years participated in this study. The groups were composed of 22 volunteers with migraine and TMD (MTMD), 22 volunteers ...

  12. Temporal parameter change of human postural control ability during upright swing using recursive least square method

    Science.gov (United States)

    Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi

    2010-01-01

    The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.

  13. Effects of experimental occlusal interference on body posture: an optoelectronic stereophotogrammetric analysis.

    Science.gov (United States)

    Marini, I; Gatto, M R; Bartolucci, M L; Bortolotti, F; Alessandri Bonetti, G; Michelotti, A

    2013-07-01

    In recent years, there has been increasing interest in the relationship between dental occlusion and body posture both among people and in scientific literature. The aim of the present longitudinal study is to investigate the effects of an experimental occlusal interference on body posture by means of a force platform and an optoelectronic stereophotogrammetric analysis. An occlusal interference of a 0- to 2-mm-thick glass composite was prepared to disturb the intercuspal position while not creating interference during lateral or protrusive mandibular excursions. Frontal and sagittal kinematic parameters, dynamic gait measurements and superficial electromyographic (SEMG) activity of head and neck muscles were performed on 12 healthy subjects. Measurements were taken 10 days before the application of the occlusal interference, and then immediately before the application, the day after it, and at a distance of 7 and 14 days under four different exteroceptive conditions. The outcomes of this study show that an occlusal interference does not modify significantly over time static and dynamic parameters of body posture under different exteroceptive conditions. It has a minimal influence only on the frontal kinematic parameters related to mandibular position, and it induces a transient increase of the activity of masticatory muscles. In this study, the experimental occlusal interference did not significantly influence the body posture during a 14-day follow-up period. © 2013 John Wiley & Sons Ltd.

  14. Body posture and postural stability of people practicing qigong

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2015-07-01

    Full Text Available Introduction: Correct and stable posture is essential for the implementation of the majority of voluntary movements and locomotion. The study of postural stability is an element of clinical trials evaluating physical activity in order to determine the optimal therapeutic procedures. Qigong exercises are not only a form of prevention, helpful in maintaining wellbeing, but also a means of therapy in many diseases, including disorders of postural stability. Aim of the research: To analyse the association between the quality of posture and postural stability of people practicing qigong. Material and methods : The study involved 32 people. The mean age of those tested was 54 years. Posture study used optoelectronic method Diers formetric III 4D. Postural stability was tested on the platform Biodex Balance System. The studies were performed at the Posture Laboratory of the Institute of Physiotherapy at Jan Kochanowski University in Kielce. Results and conclusions : Spearman rank order correlation showed a positive correlation of relative rotation of the spine area with a general indicator of stability (p = 0.0206 at an average level (R = 0.4075 and with the index of the stability A/P (p = 0.0310, although at a lower level (R = 0.3819. With the increase in the relative rotation of the spine area the overall stability indicator and stability indicator A/P also increased. Significant positive correlations were also seen for the surface rotation (+max and a general indication of the stability and the stability index A/P. With the increase of surface rotation (+max of the spine the overall stability indicator and stability indicator A/P also increased.

  15. The effect of body posture during medication inhalation on exercise induced bronchoconstriction in asthmatic children

    NARCIS (Netherlands)

    Visser, R.; Wind, M.; de Graaf, B.J.; de Jong, F.H.; van der Palen, Jacobus Adrianus Maria; Thio, B.J.

    2015-01-01

    RATIONALE: Inhaling medication in a standard body posture leads to impaction of particles in the sharp angle of the upper airway. Stretching the upper airway by extending the neck in a forward leaning body posture may improve pulmonary deposition. A single dose of inhaled corticosteroids (ICS)

  16. Relationships between malocclusion, body posture, and nasopharyngeal pathology in pre-orthodontic children

    OpenAIRE

    Šidlauskienė, Monika; Smailienė, Dalia; Lopatienė, Kristina; Čekanauskas, Emilis; Pribuišienė, Rūta; Šidlauskas, Mantas

    2015-01-01

    BACKGROUND Malocclusion, body posture, and breathing pattern may be correlated, but this issue is still controversial. The aim of the study was to examine the relationship between the type of malocclusion, body posture, and nasopharyngeal obstruction in children aged 7-14 years. MATERIAL AND METHODS The study group comprised 94 patients aged 7-14 years (mean±SD: 11.9±2.1 years); 44 (46.8%) males and 50 (53.2%) females. All patients passed an examination performed by the same orthodontist (stu...

  17. Embodied prosthetic arm stabilizes body posture, while unembodied one perturbs it.

    Science.gov (United States)

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2016-10-01

    Senses of ownership (this arm belongs to me) and agency (I am controlling this arm) originate from sensorimotor system. External objects can be integrated into the sensorimotor system following long-term use, and recognized as one's own body. We examined how an (un)embodied prosthetic arm modulates whole-body control, and assessed the components of prosthetic embodiment. Nine unilateral upper-limb amputees participated. Four frequently used their prosthetic arm, while the others rarely did. Their postural sway was measured during quiet standing with or without their prosthesis. The frequent users showed greater sway when they removed the prosthesis, while the rare users showed greater sway when they fitted the prosthesis. Frequent users reported greater everyday feelings of postural stabilization by prosthesis and a larger sense of agency over the prosthesis. We suggest that a prosthetic arm maintains or perturbs postural control, depending on the prosthetic embodiment, which involves sense of agency rather than ownership. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Prediction of postural risk of fall initiation based on a two-variable description of body dynamics: position and velocity of center of mass.

    Science.gov (United States)

    Honarvar, Mohammad Hadi; Nakashima, Motomu

    2013-10-01

    This research addresses the question: what is the risk of fall initiation at a certain human posture? There are postures from which no one is able to keep their balance and a fall will surely initiate (risk=1), and others from which everyone may regain their stability (risk=0). In other postures, only a portion of people can control their stability. One may interpret risk to chance of a fall to be initiated, and based on the portion of fallers assign a risk value to a given human posture (postural risk). Human posture can be mapped to a point in a 2-dimensional space: the x-v plane, the axes of which are horizontal components of the position and velocity of the center of mass of the body. For every pair of (x, v), the outcome of the balance recovery problem defines whether a person with a given strength level is able to regain their stability when released from a posture corresponding to that point. Using strength distribution data, we estimated the portion of the population who will initiate a fall if starting at a certain posture. A fast calculation approach is also introduced to replace the time-consuming method of solving the recovery problem many times. Postural risk of fall initiation for situations expressed by (x, v) pairs for the entire x-v plane is calculated and shown in a color-map. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Effect of mat pilates exercise on postural alignment and body composition of middle-aged women.

    Science.gov (United States)

    Lee, Hyo Taek; Oh, Hyun Ok; Han, Hui Seung; Jin, Kwang Youn; Roh, Hyo Lyun

    2016-06-01

    [Purpose] This study attempted to examine whether Pilates is an effective exercise for improving the postural alignment and health of middle-aged women. [Subjects and Methods] The participants in this study were 36 middle-aged women (20 in the experimental group, 16 in the control group). The experimental group participated in Pilates exercise sessions three times a week for 12 weeks. Body alignment and composition measurements before and after applying the Pilates exercise program were performed with a body composition analyzer and a three-dimensional scanner. [Results] Postural alignment in the sagittal and horizontal planes was enhanced in the Pilates exercise group. Trunk alignment showed correlations with body fat and muscle mass. [Conclusion] The Pilates exercises are performed symmetrically and strengthen the deep muscles. Moreover, the results showed that muscle mass was correlated with trunk postural alignment and that the proper amount of muscle is critical in maintaining trunk postural alignment.

  20. Can Tai Chi and Qigong Postures Shape Our Mood? Toward an Embodied Cognition Framework for Mind-Body Research

    Directory of Open Access Journals (Sweden)

    Kamila Osypiuk

    2018-05-01

    Full Text Available Dynamic and static body postures are a defining characteristic of mind-body practices such as Tai Chi and Qigong (TCQ. A growing body of evidence supports the hypothesis that TCQ may be beneficial for psychological health, including management and prevention of depression and anxiety. Although a variety of causal factors have been identified as potential mediators of such health benefits, physical posture, despite its visible prominence, has been largely overlooked. We hypothesize that body posture while standing and/or moving may be a key therapeutic element mediating the influence of TCQ on psychological health. In the present paper, we summarize existing experimental and observational evidence that suggests a bi-directional relationship between body posture and mental states. Drawing from embodied cognitive science, we provide a theoretical framework for further investigation into this interrelationship. We discuss the challenges involved in such an investigation and propose suggestions for future studies. Despite theoretical and practical challenges, we propose that the role of posture in mind-body exercises such as TCQ should be considered in future research.

  1. Expand your body when you look at yourself: The role of the posture in a mirror exposure task.

    Science.gov (United States)

    Miragall, Marta; Etchemendy, Ernestina; Cebolla, Ausiàs; Rodríguez, Víctor; Medrano, Carlos; Baños, Rosa María

    2018-01-01

    Mirror exposure (ME) is one of the main components of the treatment of patients with eating disorders symptomatology and it has shown its effectiveness in improving several outcomes (e.g., body dissatisfaction). However, the study as to what body posture should be adopted to maximize its effectiveness has been neglected. From embodied cognition and emotion theories, the adoption of an expansive (vs. contractive) body posture has been associated with positive changes in cognitive and emotional responses. The objective of this study was to analyze the effect of adopting an expansive (vs. contractive) posture before an ME task on body-related emotions and cognitions, as well as to analyze the possible moderator and mediator variables of these relationships. The sample was composed of 68 women (age: M = 21.74, SD = 3.12) with high scores on body dissatisfaction. Participants were randomly assigned to the expansive or contractive condition, where the openness of the arms/legs and the back position were manipulated. Posture was monitored by an electronic device and participants filled out several self-reported measures. ANCOVAs, moderation, mediation, and moderated mediated analyses were performed. Results showed that women in the expansive condition showed higher positive emotions after the ME. Moreover, exploratory analyses showed that adopting an expansive posture improved positive emotions, leading to improvements in negative emotions, body image satisfaction, and appraisal of the person's own body. Psychological interventions should explore the value of holding an expansive posture before the ME in women with body dissatisfaction.

  2. Effect of postural changes on ICP in healthy and ill subjects

    DEFF Research Database (Denmark)

    Petersen, Lonnie G; Juhler, Marianne

    2015-01-01

    to distinguish normal human physiology from disease entities such as idiopathic intracranial hypertension and normal pressure hydrocephalus, we investigated ICP in different body postures in both normal and ill subjects. METHODS: Thirty-one patients were included: four normal patients following complete removal......: upright standing, sitting in a chair, supine and right lateral lumbar puncture position. RESULTS: Linear regression of median ICP based on patient posture, group, and purpose of monitoring presented a significant model (p ... of differences in median ICP between body postures and supine ICP as the baseline, presented a highly significant model (p posture (p postures enabled...

  3. Identification of the unstable human postural control system

    Directory of Open Access Journals (Sweden)

    Sungjae eHwang

    2016-03-01

    Full Text Available Maintaining upright bipedal posture requires a control system that continually adapts to changing environmental conditions, such as different support surfaces. Behavioral changes associated with different support surfaces, such as the predominance of an ankle or hip strategy, is considered to reflect a change in the control strategy. However, tracing such behavioral changes to a specific component in a closed loop control system is challenging. Here we used the joint input-output (JIO method of closed-loop system identification to identify the musculoskeletal and neural feedback components of the human postural control loop. The goal was to establish changes in the control loop corresponding to behavioral changes observed on different support surfaces. Subjects were simultaneously perturbed by two independent mechanical and two independent sensory perturbations while standing on a normal or short support surface. The results show a dramatic phase reversal between visual input and body kinematics due to the change in surface condition from trunk leads legs to legs lead trunk with increasing frequency of the visual perturbation. Through decomposition of the control loop, we found that behavioral change is not necessarily due to a change in control strategy, but in the case of different support surfaces, is linked to changes in properties of the plant. The JIO method is an important tool to identify the contribution of specific components within a closed loop control system to overall postural behavior and may be useful to devise better treatment of balance disorders.

  4. [Influence of body posture in the prevalence of craniomandibular dysfunction].

    Science.gov (United States)

    Fuentes, R; Freesmeyer, W; Henríquez, J

    1999-09-01

    Postural alterations of the shoulders, dorsal spine and hips could have an influence on the development of craniomandibular dysfunctions. To study the influence of body posture on the prevalence of craniomandibular dysfunction. One hundred thirty six dental students and 41 patients assisting to the temporomandibular joints (TMJ) clinic at the Freie Universität at Berlin, were studied. Masticator, cervical muscles, temporomandibular joints and occlusions were clinically examined. The position of shoulders and hips was measured with the use of an acromiopelvimeter. No relationship was found between postural alterations of the hips and shoulders, articular noises and sensibility or pain while palpating the temporomandibular joints. Among students, a relationship between postural alterations of the shoulders and the sensibility or pain while palpating the TMJ, was observed. When all muscles were considered, a significant relationship between asymmetric shoulders or hips and muscular pain while palpating was observed among students. Some symptoms, especially muscular sensibility is more pronounced in people with hip and shoulder asymmetries. This relation is more pronounced in dental students than in patients.

  5. [Research on respiration course of human at different postures by electrical impedance tomography].

    Science.gov (United States)

    Chen, Xiaoyan; Wu, Jun; Wang, Huaxiang; Li, Da

    2010-10-01

    In this paper, the respiration courses of human at different postures are reconstructed by electrical impedance tomography (EIT). Conjugate gradient least squares (CGLS) algorithm is applied to reconstruct the resistivity distribution during respiration courses, and the EIT images taken from human at flat lying, left lying, right lying, sitting and prone postures are reconstructed and compared. The relative changes of the resistivity in region of interest (ROI) are analyzed to evidence the influences caused by different postures. Results show that the changes in postures are the most influential factors for the reconstructions, and the EIT images vary with the postures. In human at flat-lying posture, the left and right lungs have larger pulmonary ventilation volume simultaneously, and the EIT-measured data are of lower variability.

  6. Body posture changes in women with migraine with or without temporomandibular disorders

    Science.gov (United States)

    Ferreira, Mariana C.; Bevilaqua-Grossi, Débora; Dach, Fabíola É.; Speciali, José G.; Gonçalves, Maria C.; Chaves, Thais C.

    2014-01-01

    Background Migraine and temporomandibular disorders (TMDs) are reported to be associated. However, there are no reports on the association among migraines, TMDs and changes in body posture. Objectives To assess changes in body posture in women suffering migraines with or without TMD compared with a control group. Method Sixty-six women with a mean age of 18 to 45 years participated in this study. The groups were composed of 22 volunteers with migraine and TMD (MTMD), 22 volunteers with migraines without TMD (MG) and 22 women in the control group (CG). Static posture was assessed by photogrammetry, and 19 angles were measured. Results Postural asymmetry was observed in the face for 4 angles measured on the frontal plane in the MG group and for 4 angles of the trunk in the MG and MTMD groups with respect to CG. However, for comparisons between MTMD and CG, clinical relevance was identified for two angles of the sagittal plane (Cervical and Lumbar Lordosis, Effect Size - ES - moderate: 0.53 and 0.60). For comparisons between the MG and CG, the clinical relevance/potential was verified for three angles with moderate ES (ES>0.42). The clinical relevance when comparing MTMD and CG was identified for four angles of facial symmetry head inclination (ES>0.54) and for two angles between MG and CG (ES>0.48). Conclusion The results demonstrated the presence of postural changes compared with a control group in women with migraines with or without TMD, and there were similar clinically relevant postural changes among the patients with migraines with and without TMD. PMID:24675909

  7. Body posture changes in women with migraine with or without temporomandibular disorders

    Directory of Open Access Journals (Sweden)

    Mariana C. Ferreira

    2014-03-01

    Full Text Available Background: Migraine and temporomandibular disorders (TMDs are reported to be associated. However, there are no reports on the association among migraines, TMDs and changes in body posture. Objectives : To assess changes in body posture in women suffering migraines with or without TMD compared with a control group. Method: Sixty-six women with a mean age of 18 to 45 years participated in this study. The groups were composed of 22 volunteers with migraine and TMD (MTMD, 22 volunteers with migraines without TMD (MG and 22 women in the control group (CG. Static posture was assessed by photogrammetry, and 19 angles were measured. Results: Postural asymmetry was observed in the face for 4 angles measured on the frontal plane in the MG group and for 4 angles of the trunk in the MG and MTMD groups with respect to CG. However, for comparisons between MTMD and CG, clinical relevance was identified for two angles of the sagittal plane (Cervical and Lumbar Lordosis, Effect Size - ES - moderate: 0.53 and 0.60. For comparisons between the MG and CG, the clinical relevance/potential was verified for three angles with moderate ES (ES>0.42. The clinical relevance when comparing MTMD and CG was identified for four angles of facial symmetry head inclination (ES>0.54 and for two angles between MG and CG (ES>0.48. Conclusion : The results demonstrated the presence of postural changes compared with a control group in women with migraines with or without TMD, and there were similar clinically relevant postural changes among the patients with migraines with and without TMD.

  8. Reference Values for Human Posture Measurements Based on Computerized Photogrammetry: A Systematic Review.

    Science.gov (United States)

    Macedo Ribeiro, Ana Freire; Bergmann, Anke; Lemos, Thiago; Pacheco, Antônio Guilherme; Mello Russo, Maitê; Santos de Oliveira, Laura Alice; de Carvalho Rodrigues, Erika

    The main objective of this study was to review the literature to identify reference values for angles and distances of body segments related to upright posture in healthy adult women with the Postural Assessment Software (PAS/SAPO). Electronic databases (BVS, PubMed, SciELO and Scopus) were assessed using the following descriptors: evaluation, posture, photogrammetry, physical therapy, postural alignment, postural assessment, and physiotherapy. Studies that performed postural evaluation in healthy adult women with PAS/SAPO and were published in English, Portuguese and Spanish, between the years 2005 and 2014 were included. Four studies met the inclusion criteria. Data from the included studies were grouped to establish the statistical descriptors (mean, variance, and standard deviation) of the body angles and distances. A total of 29 variables were assessed (10 in the anterior views, 16 in the lateral right and left views, and 3 in the posterior views), and its respective mean and standard deviation were calculated. Reference values for the anterior and posterior views showed no symmetry between the right and left sides of the body in the frontal plane. There were also small differences in the calculated reference values for the lateral view. The proposed reference values for quantitative evaluation of the upright posture in healthy adult women estimated in the present study using PAS/SAPO could guide future studies and help clinical practice. Copyright © 2017. Published by Elsevier Inc.

  9. Evaluation of validity and reliability of a methodology for measuring human postural attitude and its relation to temporomandibular joint disorders

    Science.gov (United States)

    Fernández, Ramón Fuentes; Carter, Pablo; Muñoz, Sergio; Silva, Héctor; Venegas, Gonzalo Hernán Oporto; Cantin, Mario; Ottone, Nicolás Ernesto

    2016-01-01

    INTRODUCTION Temporomandibular joint disorders (TMJDs) are caused by several factors such as anatomical, neuromuscular and psychological alterations. A relationship has been established between TMJDs and postural alterations, a type of anatomical alteration. An anterior position of the head requires hyperactivity of the posterior neck region and shoulder muscles to prevent the head from falling forward. This compensatory muscular function may cause fatigue, discomfort and trigger point activation. To our knowledge, a method for assessing human postural attitude in more than one plane has not been reported. Thus, the aim of this study was to design a methodology to measure the external human postural attitude in frontal and sagittal planes, with proper validity and reliability analyses. METHODS The variable postures of 78 subjects (36 men, 42 women; age 18–24 years) were evaluated. The postural attitudes of the subjects were measured in the frontal and sagittal planes, using an acromiopelvimeter, grid panel and Fox plane. RESULTS The method we designed for measuring postural attitudes had adequate reliability and validity, both qualitatively and quantitatively, based on Cohen’s Kappa coefficient (> 0.87) and Pearson’s correlation coefficient (r = 0.824, > 80%). CONCLUSION This method exhibits adequate metrical properties and can therefore be used in further research on the association of human body posture with skeletal types and TMJDs. PMID:26768173

  10. A mathematical model for incorporating biofeedback into human postural control

    Directory of Open Access Journals (Sweden)

    Ersal Tulga

    2013-02-01

    Full Text Available Abstract Background Biofeedback of body motion can serve as a balance aid and rehabilitation tool. To date, mathematical models considering the integration of biofeedback into postural control have represented this integration as a sensory addition and limited their application to a single degree-of-freedom representation of the body. This study has two objectives: 1 to develop a scalable method for incorporating biofeedback into postural control that is independent of the model’s degrees of freedom, how it handles sensory integration, and the modeling of its postural controller; and 2 to validate this new model using multidirectional perturbation experimental results. Methods Biofeedback was modeled as an additional torque to the postural controller torque. For validation, this biofeedback modeling approach was applied to a vibrotactile biofeedback device and incorporated into a two-link multibody model with full-state-feedback control that represents the dynamics of bipedal stance. Average response trajectories of body sway and center of pressure (COP to multidirectional surface perturbations of subjects with vestibular deficits were used for model parameterization and validation in multiple perturbation directions and for multiple display resolutions. The quality of fit was quantified using average error and cross-correlation values. Results The mean of the average errors across all tactor configurations and perturbations was 0.24° for body sway and 0.39 cm for COP. The mean of the cross-correlation value was 0.97 for both body sway and COP. Conclusions The biofeedback model developed in this study is capable of capturing experimental response trajectory shapes with low average errors and high cross-correlation values in both the anterior-posterior and medial-lateral directions for all perturbation directions and spatial resolution display configurations considered. The results validate that biofeedback can be modeled as an additional

  11. A mathematical model for incorporating biofeedback into human postural control

    Science.gov (United States)

    2013-01-01

    Background Biofeedback of body motion can serve as a balance aid and rehabilitation tool. To date, mathematical models considering the integration of biofeedback into postural control have represented this integration as a sensory addition and limited their application to a single degree-of-freedom representation of the body. This study has two objectives: 1) to develop a scalable method for incorporating biofeedback into postural control that is independent of the model’s degrees of freedom, how it handles sensory integration, and the modeling of its postural controller; and 2) to validate this new model using multidirectional perturbation experimental results. Methods Biofeedback was modeled as an additional torque to the postural controller torque. For validation, this biofeedback modeling approach was applied to a vibrotactile biofeedback device and incorporated into a two-link multibody model with full-state-feedback control that represents the dynamics of bipedal stance. Average response trajectories of body sway and center of pressure (COP) to multidirectional surface perturbations of subjects with vestibular deficits were used for model parameterization and validation in multiple perturbation directions and for multiple display resolutions. The quality of fit was quantified using average error and cross-correlation values. Results The mean of the average errors across all tactor configurations and perturbations was 0.24° for body sway and 0.39 cm for COP. The mean of the cross-correlation value was 0.97 for both body sway and COP. Conclusions The biofeedback model developed in this study is capable of capturing experimental response trajectory shapes with low average errors and high cross-correlation values in both the anterior-posterior and medial-lateral directions for all perturbation directions and spatial resolution display configurations considered. The results validate that biofeedback can be modeled as an additional torque to the postural

  12. A Human Body Analysis System

    Directory of Open Access Journals (Sweden)

    Girondel Vincent

    2006-01-01

    Full Text Available This paper describes a system for human body analysis (segmentation, tracking, face/hands localisation, posture recognition from a single view that is fast and completely automatic. The system first extracts low-level data and uses part of the data for high-level interpretation. It can detect and track several persons even if they merge or are completely occluded by another person from the camera's point of view. For the high-level interpretation step, static posture recognition is performed using a belief theory-based classifier. The belief theory is considered here as a new approach for performing posture recognition and classification using imprecise and/or conflicting data. Four different static postures are considered: standing, sitting, squatting, and lying. The aim of this paper is to give a global view and an evaluation of the performances of the entire system and to describe in detail each of its processing steps, whereas our previous publications focused on a single part of the system. The efficiency and the limits of the system have been highlighted on a database of more than fifty video sequences where a dozen different individuals appear. This system allows real-time processing and aims at monitoring elderly people in video surveillance applications or at the mixing of real and virtual worlds in ambient intelligence systems.

  13. Isomap transform for segmenting human body shapes.

    Science.gov (United States)

    Cerveri, P; Sarro, K J; Marchente, M; Barros, R M L

    2011-09-01

    Segmentation of the 3D human body is a very challenging problem in applications exploiting volume capture data. Direct clustering in the Euclidean space is usually complex or even unsolvable. This paper presents an original method based on the Isomap (isometric feature mapping) transform of the volume data-set. The 3D articulated posture is mapped by Isomap in the pose of Da Vinci's Vitruvian man. The limbs are unrolled from each other and separated from the trunk and pelvis, and the topology of the human body shape is recovered. In such a configuration, Hoshen-Kopelman clustering applied to concentric spherical shells is used to automatically group points into the labelled principal curves. Shepard interpolation is utilised to back-map points of the principal curves into the original volume space. The experimental results performed on many different postures have proved the validity of the proposed method. Reliability of less than 2 cm and 3° in the location of the joint centres and direction axes of rotations has been obtained, respectively, which qualifies this procedure as a potential tool for markerless motion analysis.

  14. Long-range tactile masking occurs in the postural body schema.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2016-02-01

    Long-range tactile masking has been reported between mirror symmetric body locations. This suggests a general principle of contralateral inhibition between corresponding points on each side of the body that may serve to enhance distinguishing touches on the two halves of the body. Do such effects occur before or after posture is added to the body schema? Here, we address this question by exploring the effect of arm position on long-range tactile masking. The influence of arm position was investigated using different positions of both the test and masking arms. Tactile sensitivity was measured on one forearm, while vibrotactile-masking stimulation was applied to the opposite arm or to a control site on the shoulder. No difference was found in sensitivity when test arm position was varied. Physical contact between the arms significantly increased the effectiveness of a masking stimulus applied to the other arm. Long-range masking between the arms was strongest when the arms were held parallel to each other and was abolished if the position of either the test arm or the masking arm was moved from this position. Modulation of the effectiveness of masking by the position of both the test and masking arms suggests that these effects occur after posture information is added to the body's representation in the brain.

  15. Postural Effects on the Mental Rotation of Body-Related Pictures: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Fangbing Qu

    2018-05-01

    Full Text Available This study investigated the embodied effects involved in the mental rotation of pictures of body parts (hands and feet. Blood oxygen level-dependent (BOLD signals were collected from 18 healthy volunteers who performed mental rotation tasks of rotated drawings of hands under different arm postures. Congruent drawings of hands (those congruent with left-hand posture evoked stronger activation in the left supplementary motor area (SMA, left precentral gyrus, and left superior parietal lobule (SPL than did incongruent drawings of hands. Congruent drawings of hands (those congruent with right-hand posture evoked significant activation in the left inferior parietal lobule (IPL, right SMA, bilateral middle frontal gyrus (MFG, left inferior frontal gyrus (IFG, and bilateral superior frontal gyrus (SFG compared to that evoked by the incongruent drawings of hands. Similar methodology was implemented with drawings of feet. However, no significant differences in brain activation were observed between congruent and incongruent drawings of feet. This finding suggests that body posture influences body part-related mental rotation in an effector-specific manner. A direct comparison between the medially and laterally rotated drawings revealed activation in the right IPL, left precentral gyrus, bilateral IFG, and bilateral SFG. These results suggest that biomechanical constraints affect the cognitive process of mental rotation.

  16. A dance to the music of time: aesthetically-relevant changes in body posture in performing art.

    Science.gov (United States)

    Daprati, Elena; Iosa, Marco; Haggard, Patrick

    2009-01-01

    In performing arts, body postures are both means for expressing an artist's intentions, and also artistic objects, appealing to the audience. The postures of classical ballet obey the body's biomechanical limits, but also follow strict rules established by tradition. This combination offers a perfect milieu for assessing scientifically how the execution of this particular artistic activity has changed over time, and evaluating what factors may induce such changes. We quantified angles between body segments in archive material showing dancers from a leading company over a 60-year period. The data showed that body positions supposedly fixed by codified choreography were in fact implemented by very different elevation angles, according to the year of ballet production. Progressive changes lead to increasingly vertical positions of the dancer's body over the period studied. Experimental data showed that these change reflected aesthetic choices of naïve modern observers. Even when reduced to stick figures and unrecognisable shapes, the more vertical postures drawn from later productions were systematically preferred to less vertical postures from earlier productions. This gradual change within a conservative art form provides scientific evidence that aesthetic change may arise from continuous interaction between artistic tradition, individual artists' creativity, and a wider environmental context. This context may include social aesthetic pressure from audiences.

  17. The effects of odor and body posture on perceived duration

    NARCIS (Netherlands)

    Schreuder, E.; Hoeksma, M.R.; Smeets, M.A.M.; Semin, G.R.

    2014-01-01

    This study reports an examination of the internal clock model, according to which subjective time duration is influenced by attention and arousal state. In a time production task, we examine the hypothesis that an arousing odor and an upright body posture affect perceived duration. The experimental

  18. Sad or Fearful? The Influence of Body Posture on Adults' and Children's Perception of Facial Displays of Emotion

    Science.gov (United States)

    Mondloch, Catherine J.

    2012-01-01

    The current research investigated the influence of body posture on adults' and children's perception of facial displays of emotion. In each of two experiments, participants categorized facial expressions that were presented on a body posture that was congruent (e.g., a sad face on a body posing sadness) or incongruent (e.g., a sad face on a body…

  19. Viewing pain and happy faces elicited similar changes in postural body sway.

    Directory of Open Access Journals (Sweden)

    Juan Gea

    Full Text Available Affective facial expressions are potent social cues that can induce relevant physiological changes, as well as behavioral dispositions in the observer. Previous studies have revealed that angry faces induced significant reductions in body sway as compared with neutral and happy faces, reflecting an avoidance behavioral tendency as freezing. The expression of pain is usually considered an unpleasant stimulus, but also a relevant cue for delivering effective care and social support. Nevertheless, there are few data about behavioral dispositions elicited by the observation of pain expressions in others. The aim of the present research was to evaluate approach-avoidance tendencies by using video recordings of postural body sway when participants were standing and observing facial expressions of pain, happy and neutral. We hypothesized that although pain faces would be rated as more unpleasant than the other faces, they would provoke significant changes in postural body sway as compared to neutral facial expressions. Forty healthy female volunteers (mean age 25 participated in the study. Amplitude of forward movements and backward movements in the anterior-posterior and medial-lateral axes were obtained. Statistical analyses revealed that pain faces were the most unpleasant stimuli, and that both happy and pain faces were more arousing than neutral ones. Happy and pain faces also elicited greater amplitude of body sway in the anterior-posterior axes as compared with neutral faces. In addition, significant positive correlations were found between body sway elicited by pain faces and pleasantness and empathic ratings, suggesting that changes in postural body sway elicited by pain faces might be associated with approach and cooperative behavioral responses.

  20. Sensorimotor Reorganizations of Arm Kinematics and Postural Strategy for Functional Whole-Body Reaching Movements in Microgravity

    Directory of Open Access Journals (Sweden)

    Thomas Macaluso

    2017-10-01

    Full Text Available Understanding the impact of weightlessness on human behavior during the forthcoming long-term space missions is of critical importance, especially when considering the efficiency of goal-directed movements in these unusual environments. Several studies provided a large set of evidence that gravity is taken into account during the planning stage of arm reaching movements to optimally anticipate its consequence upon the moving limbs. However, less is known about sensorimotor changes required to face weightless environments when individuals have to perform fast and accurate goal-directed actions with whole-body displacement. We thus aimed at characterizing kinematic features of whole-body reaching movements in microgravity, involving high spatiotemporal constraints of execution, to question whether and how humans are able to maintain the performance of a functional behavior in the standards of normogravity execution. Seven participants were asked to reach as fast and as accurately as possible visual targets while standing during microgravity episodes in parabolic flight. Small and large targets were presented either close or far from the participants (requiring, in the latter case, additional whole-body displacement. Results reported that participants successfully performed the reaching task with general temporal features of movement (e.g., movement speed close to land observations. However, our analyses also demonstrated substantial kinematic changes related to the temporal structure of focal movement and the postural strategy to successfully perform -constrained- whole-body reaching movements in microgravity. These immediate reorganizations are likely achieved by rapidly taking into account the absence of gravity in motor preparation and execution (presumably from cues about body limbs unweighting. Specifically, when compared to normogravity, the arm deceleration phase substantially increased. Furthermore, greater whole-body forward displacements

  1. Effect of an Ergonomics-Based Educational Intervention Based on Transtheoretical Model in Adopting Correct Body Posture Among Operating Room Nurses

    OpenAIRE

    Moazzami, Zeinab; Dehdari, Tahere; Taghdisi, Mohammad Hosein; Soltanian, Alireza

    2015-01-01

    Background: One of the preventive strategies for chronic low back pain among operating room nurses is instructing proper body mechanics and postural behavior, for which the use of the Transtheoretical Model (TTM) has been recommended. Methods: Eighty two nurses who were in the contemplation and preparation stages for adopting correct body posture were randomly selected (control group = 40, intervention group = 42). TTM variables and body posture were measured at baseline and again after 1 and...

  2. ESTIMATION OF HUMAN BODY SHAPE PARAMETERS USING MICROSOFT KINECTSENCOR

    Directory of Open Access Journals (Sweden)

    D. M. Vasilkov

    2017-01-01

    Full Text Available In the paper a human body shape estimation technology based on scan data acquired from sensor controller Microsoft Kinect is described. This device includes an RGB camera and a depth sensor that provides, for each pixel of the image,a distance from the camera focus to the object. A scan session produces a triangulated high-density surface noised with oscillations, isolated fragments and holes. When scanning a human, additional noise comes from garment folds and wrinkles. An algorithm of creating a sparse and regular 3D human body model (avatar free of these defects, which approximates shape, posture and basic metrics of the scanned body is proposed. This solution finds application in individual clothing industry and computer games, as well.

  3. Wearable kinesthetic systems for capturing and classifying body posture and gesture.

    Science.gov (United States)

    Tognetti, Alessandro; Lorussi, Federico; Tesconi, Mario; Bartalesi, Raphael; Zupone, Giuseppe; De Rossi, Danilo

    2005-01-01

    Monitoring body kinematics has fundamental relevance in several biological and technical disciplines. In particular the possibility to know the posture exactly may furnish a main aid in rehabilitation topics. This paper deals with the design, the development and the realization of sensing garments, from the characterization of innovative comfortable and spreadable sensors to the methodologies employed to gather information on posture and movement. In the present work an upper limb kinesthetic garment (ULKG), which allows to reconstruct shoulder, elbow and wrist movements and a kinesthetic glove able to detect posture an gesture of the hand are presented. Sensors are directly integrated in Lycra fabrics by using conductive elastomer (CE) sensors. CE sensors show piezoresistive properties when a deformation is applied and they can be integrated onto fabric or other flexible substrate to be employed as strain sensors.

  4. Body posture and pulmonary function in mouth and nose breathing children: cross-sectional study

    Directory of Open Access Journals (Sweden)

    Jovana de Moura Milanesi

    Full Text Available Abstract Introduction: Mouth breathing can lead to changes in body posture and pulmonary function. However, the consequences are still inconclusive and a number of studies are controversial. Objective: Evaluate and correlate spirometric parameters and postural measures in mouth breathing children, and compare them to nose breathers. Methods: two groups of 6 to 12 year-old children were evaluated: mouth breathers (MB, n = 55 and nose breathers (NB, n = 45. Spirometry and body posture analysis using photogrammetry (SAPo 0.68® v were carried out. The following spirometric measures were evaluated: peak expiratory flow (PEF, forced expiratory volume in 1 second (FEV1, forced vital capacity (FVC, FEV1/FVC ratio (% and forced expiratory flow between 25% and 75% of FVC (FEF 25-75%. Biophotogrammetric measures analyzed were: horizontal alignment of acromions (HAA and anterior superior iliac spine (HAASIS, Charpy angle, horizontal alignment of the head (HAH, cervical lordosis (CL, thoracic kyphosis (TK, lumbar lordosis (LL, cervical distance (CD and lumbar distance (LD. Results: There were no intergroup differences in spirometric and postural variables. Positive and moderate correlations were found between CL and CD measures with PEF, FEV1, FVC and FEF 25-75%, while weak correlations were observed between lumbar lordosis and PEF, FEV1 and FVC. Conclusion: The breathing mode had no influence on postural and respiratory measures. However, greater forward head posture, with smaller cervical lordosis, was related to higher lung volumes and flows in both groups.

  5. Weapons, Body Postures, and the Quest for Dominance in Robberies

    DEFF Research Database (Denmark)

    Mosselman, Floris; Weenink, Don; Lindegaard, Marie Rosenkrantz

    2018-01-01

    Objective: A small-scale exploration of the use of video analysis to study robberies. We analyze the use of weapons as part of the body posturing of robbers as they attempt to attain dominance. Methods: Qualitative analyses of video footage of 23 shop robberies. We used Observer XT software (vers...

  6. Posture does not matter! Paw usage and grasping paw preference in a small-bodied rooting quadrupedal mammal.

    Science.gov (United States)

    Joly, Marine; Scheumann, Marina; Zimmermann, Elke

    2012-01-01

    Recent results in birds, marsupials, rodents and nonhuman primates suggest that phylogeny and ecological factors such as body size, diet and postural habit of a species influence limb usage and the direction and strength of limb laterality. To examine to which extent these findings can be generalised to small-bodied rooting quadrupedal mammals, we studied trees shrews (Tupaia belangeri). We established a behavioural test battery for examining paw usage comparable to small-bodied primates and tested 36 Tupaia belangeri. We studied paw usage in a natural foraging situation (simple food grasping task) and measured the influence of varying postural demands (triped, biped, cling, sit) on paw preferences by applying a forced-food grasping task similar to other small-bodied primates. Our findings suggest that rooting tree shrews prefer mouth over paw usage to catch food in a natural foraging situation. Moreover, we demonstrated that despite differences in postural demand, tree shrews show a strong and consistent individual paw preference for grasping across different tasks, but no paw preference at a population level. Tree shrews showed less paw usage than small-bodied quadrupedal and arboreal primates, but the same paw preference. Our results confirm that individual paw preferences remain constant irrespective of postural demand in some small-bodied quadrupedal non primate and primate mammals which do not require fine motoric control for manipulating food items. Our findings suggest that the lack of paw/hand preference for grasping food at a population level is a universal pattern among those species and that the influence of postural demand on manual lateralisation in quadrupeds may have evolved in large-bodied species specialised in fine manipulations of food items.

  7. BODY POSTURES AND ASYMMETRIES IN FRONTAL AND TRANSVERSE PLANES IN THE TRUNK AREA IN TABLE TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Katarzyna Barczyk-Pawelec

    2012-04-01

    Full Text Available The aim of this research was to assess the body posture within the trunk area in table tennis players and to estimate the correlations between the specific body posture types, their asymmetries and table tennis practice (training experience. To evaluate body posture the photogrammetric method based on the Moiré phenomenon with equipment by CQ Electronic was applied. Tests of significance of difference and correlation were used to estimate the correlation of the observed asymmetries with the training experience. 40 table tennis players and 43 subjects not practising sports participated in the research. The analysis of the results revealed that table tennis players, unlike non-players, are characterized by kyphotic body posture. It probably results from a specific trunk, head and limb position during table tennis matches. Thus, many asymmetries in frontal and transverse planes were observed in the examined table tennis players. Perhaps table tennis, which is characterized by intensive and one-sided trunk muscle work during its performance, is in favour of creating asymmetries. The majority of subjects did not reveal any statistically significant correlations between the observed body posture types, their asymmetries and training experience. However, it was observed that training experience is significantly related to the considerable asymmetry of the inclination angle of shoulder line (KLB. It may result from the negative influence of very intensive, one-sided work and constant work of the shoulder girdle muscles of the playing limb with negligence of exercises of the second limb.

  8. A passerine spreads its tail to facilitate a rapid recovery of its body posture during hovering.

    Science.gov (United States)

    Su, Jian-Yuan; Ting, Shang-Chieh; Chang, Yu-Hung; Yang, Jing-Tang

    2012-07-07

    We demonstrate experimentally that a passerine exploits tail spreading to intercept the downward flow induced by its wings to facilitate the recovery of its posture. The periodic spreading of its tail by the White-eye bird exhibits a phase correlation with both wingstroke motion and body oscillation during hovering flight. During a downstroke, a White-eye's body undergoes a remarkable pitch-down motion, with the tail undergoing an upward swing. This pitch-down motion becomes appropriately suppressed at the end of the downstroke; the bird's body posture then recovers gradually to its original status. Employing digital particle-image velocimetry, we show that the strong downward flow induced by downstroking the wings serves as an external jet flow impinging upon the tail, providing a depressing force on the tail to counteract the pitch-down motion of the bird's body. Spreading of the tail enhances a rapid recovery of the body posture because increased forces are experienced. The maximum force experienced by a spread tail is approximately 2.6 times that of a non-spread tail.

  9. Stretch sensors for human body motion

    Science.gov (United States)

    O'Brien, Ben; Gisby, Todd; Anderson, Iain A.

    2014-03-01

    Sensing motion of the human body is a difficult task. From an engineers' perspective people are soft highly mobile objects that move in and out of complex environments. As well as the technical challenge of sensing, concepts such as comfort, social intrusion, usability, and aesthetics are paramount in determining whether someone will adopt a sensing solution or not. At the same time the demands for human body motion sensing are growing fast. Athletes want feedback on posture and technique, consumers need new ways to interact with augmented reality devices, and healthcare providers wish to track recovery of a patient. Dielectric elastomer stretch sensors are ideal for bridging this gap. They are soft, flexible, and precise. They are low power, lightweight, and can be easily mounted on the body or embedded into clothing. From a commercialisation point of view stretch sensing is easier than actuation or generation - such sensors can be low voltage and integrated with conventional microelectronics. This paper takes a birds-eye view of the use of these sensors to measure human body motion. A holistic description of sensor operation and guidelines for sensor design will be presented to help technologists and developers in the space.

  10. Delayed Compensatory Postural Adjustments After Lateral Perturbations Contribute to the Reduced Ability of Older Adults to Control Body Balance.

    Science.gov (United States)

    Claudino, Renato; Dos Santos, Marcio José; Mazo, Giovana Zarpellon

    2017-10-01

    The goal of this study was to investigate the timing of compensatory postural adjustments in older adults during body perturbations in the mediolateral direction, circumstances that increase their risk of falls. The latencies of leg and trunk muscle activation to body perturbations at the shoulder level and variables of center of pressure excursion, which characterize postural stability, were analyzed in 40 older adults (nonfallers and fallers evenly split) and in 20 young participants. The older adults exhibited longer latencies of muscular activation in eight out of 15 postural muscles as compared with young participants; for three muscles, the latencies were longer for the older fallers than nonfallers. Simultaneously, the time for the center of pressure displacement reached its peak after the perturbation was significant longer in both groups of older adults. The observed delays in compensatory postural adjustments may affect the older adults' ability to prompt control body balance after postural disturbances and predispose them to falls.

  11. Imaging Posture Veils Neural Signals

    Directory of Open Access Journals (Sweden)

    Robert T Thibault

    2016-10-01

    Full Text Available Whereas modern brain imaging often demands holding body positions incongruent with everyday life, posture governs both neural activity and cognitive performance. Humans commonly perform while upright; yet, many neuroimaging methodologies require participants to remain motionless and adhere to non-ecological comportments within a confined space. This inconsistency between ecological postures and imaging constraints undermines the transferability and generalizability of many a neuroimaging assay.Here we highlight the influence of posture on brain function and behavior. Specifically, we challenge the tacit assumption that brain processes and cognitive performance are comparable across a spectrum of positions. We provide an integrative synthesis regarding the increasingly prominent influence of imaging postures on autonomic function, mental capacity, sensory thresholds, and neural activity. Arguing that neuroimagers and cognitive scientists could benefit from considering the influence posture wields on both general functioning and brain activity, we examine existing imaging technologies and the potential of portable and versatile imaging devices (e.g., functional near infrared spectroscopy. Finally, we discuss ways that accounting for posture may help unveil the complex brain processes of everyday cognition.

  12. Posture does not matter! Paw usage and grasping paw preference in a small-bodied rooting quadrupedal mammal.

    Directory of Open Access Journals (Sweden)

    Marine Joly

    Full Text Available BACKGROUND: Recent results in birds, marsupials, rodents and nonhuman primates suggest that phylogeny and ecological factors such as body size, diet and postural habit of a species influence limb usage and the direction and strength of limb laterality. To examine to which extent these findings can be generalised to small-bodied rooting quadrupedal mammals, we studied trees shrews (Tupaia belangeri. METHODOLOGY/PRINCIPAL FINDINGS: We established a behavioural test battery for examining paw usage comparable to small-bodied primates and tested 36 Tupaia belangeri. We studied paw usage in a natural foraging situation (simple food grasping task and measured the influence of varying postural demands (triped, biped, cling, sit on paw preferences by applying a forced-food grasping task similar to other small-bodied primates. Our findings suggest that rooting tree shrews prefer mouth over paw usage to catch food in a natural foraging situation. Moreover, we demonstrated that despite differences in postural demand, tree shrews show a strong and consistent individual paw preference for grasping across different tasks, but no paw preference at a population level. CONCLUSIONS/SIGNIFICANCE: Tree shrews showed less paw usage than small-bodied quadrupedal and arboreal primates, but the same paw preference. Our results confirm that individual paw preferences remain constant irrespective of postural demand in some small-bodied quadrupedal non primate and primate mammals which do not require fine motoric control for manipulating food items. Our findings suggest that the lack of paw/hand preference for grasping food at a population level is a universal pattern among those species and that the influence of postural demand on manual lateralisation in quadrupeds may have evolved in large-bodied species specialised in fine manipulations of food items.

  13. Effects of experimental insoles on body posture, mandibular kinematics and masticatory muscles activity. A pilot study in healthy volunteers.

    Science.gov (United States)

    Marini, Ida; Alessandri Bonetti, Giulio; Bortolotti, Francesco; Bartolucci, Maria Lavinia; Gatto, Maria Rosaria; Michelotti, Ambra

    2015-06-01

    It has been hypothesized that different plantar sensory inputs could influence the whole body posture and dental occlusion but there is a lack of evidence on this possible association. To investigate the effects of experimental insoles redistributing plantar pressure on body posture, mandibular kinematics and electromyographic (EMG) activity of masticatory muscles on healthy subjects. A pilot study was conducted on 19 healthy volunteers that wore custom-made insoles normalizing the plantar pressure distribution for 2 weeks. Body posture parameters were measured by means of an optoelectronic stereophotogrammetric analysis; mandibular kinematics was analyzed by means of gothic arch tracings; superficial EMG activity of head and neck muscles was performed. Measurements were carried out 10 days before the insertion of the insoles, immediately before the insertion, the day after, 7 and 14 days after, in four different exteroceptive conditions. The outcomes of the present study show that insoles do not modify significantly over time the parameters of body posture, SEMG activity of head and neck muscles and mandibular kinematics. In this pilot study the experimental insoles did not significantly influence the body posture, the mandibular kinematics and the activity of masticatory muscles during a 14-day follow up period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The ergonomics body posture on repetitive and heavy lifting activities of workers in aerospace manufacturing warehouse

    Science.gov (United States)

    Kamat, S. R.; Zula, N. E. N. Md; Rayme, N. S.; Shamsuddin, S.; Husain, K.

    2017-06-01

    Warehouse is an important entity in manufacturing organizations. It usually involves working activities that relate ergonomics risk factors including repetitive and heavy lifting activities. Aerospace manufacturing workers are prone of having musculoskeletal disorder (MSD) problems because of the manual handling activities. From the questionnaires is states that the workers may have experience discomforts experience during manual handling work. Thus, the objectives of this study are; to investigate the body posture and analyze the level of discomfort for body posture of the workers while performing the repetitive and heavy lifting activities that cause MSD problems and to suggest proper body posture and alternatives to reduce the MSD related problems. Methodology of this study involves interviews, questionnaires distribution, anthropometry measurements, RULA (Right Upper Limb Assessment) assessment sheet and CATIA V5 RULA analysis, NIOSH lifting index (LI) and recommended weight limit (RWL). Ten workers are selected for pilot study and as for anthropometry measurement all workers in the warehouse department were involved. From the first pilot study, the RULA assessment score in CATIA V5 shows the highest score which is 7 for all postures and results after improvement of working posture is very low hence, detecting weight of the material handling is not in recommendation. To reduce the risk of MSD through the improvisation of working posture, the weight limit is also calculated in order to have a RWL for each worker. Therefore, proposing a guideline for the aerospace workers involved with repetitive movement and excessive lifting will help in reducing the risk of getting MSD.

  15. Body measurements and the variability of sitting postures at preschool age as preconditions for an optimal adjustment of chairs and tables.

    Science.gov (United States)

    Voigt, Andrea; Greil, Holle

    2009-03-01

    Preschool age is a biological stage of intensive longitudinal growth with high plasticity of the growing body and of body postures. It is the period where children learn to persist in a sitting posture for a longer time and to use furniture like chairs or other body supporting systems. The growing body shows a special sensitivity for the manifestation of inappropriate postures. In this study the development of body measurements and sitting behaviour of preschool age children is investigated as a precondition for an optimal adjustment of seats and desks to the growing body. Accordingly to the instructions of Knussmann (1988) and Jiirgens (1988) 6 body measurements were taken from 122 German children aged 3 to 7 years from Potsdam, Province Brandenburg. Additionally, every child was videotaped for 10 minutes while crayoning in a sitting position of its own choice using a chair and a desk. To analyse the tapes, the software Noldus Observer was used and examined, picture by picture, to define the different types of sitting postures as well as the duration of persistence in a posture and the number of changes of postures. The used chairs and desks were also measured. Furthermore, the data of the furniture guideline DIN ISO 5970 (DIN, 1981), which regulates the dimensions of furniture for sitting in educational institutions, were compared with the results of the body measurements and with the dimensions of the furniture used by the children.

  16. Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.

    Science.gov (United States)

    Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O

    1996-10-01

    This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.

  17. Human Posture Identification Using a MIMO Array

    Directory of Open Access Journals (Sweden)

    Dai Sasakawa

    2018-03-01

    Full Text Available The elderly are constantly in danger of falling and injuring themselves without anyone realizing it. A safety-monitoring system based on microwaves can ease these concerns. The authors have proposed safety-monitoring systems that use multiple-input multiple-output (MIMO radar to localize persons by capturing their biological activities such as respiration. However, our studies to date have focused on localization, which is easier to achieve than an estimation of human postures. This paper proposes a human posture identification scheme based on height and a Doppler radar cross section (RCS as estimated by a MIMO array. This scheme allows smart home applications to dispense with contact and wearable devices. Experiments demonstrate that this method can identify the supine position (i.e., after a fall with 100% accuracy, and the average identification rate is 95.0%.

  18. Correlation between pulmonary function, posture, and body composition in patients with asthma

    Directory of Open Access Journals (Sweden)

    V.P. Almeida

    2013-09-01

    Full Text Available Aim: Asthma may result in postural disorders due to increased activity of accessory respiratory muscles and hyperinflation. Our primary objective was to assess the correlation between pulmonary function and posture in adult patients with asthma. Secondarily, we aimed to study the correlation between body composition and body posture in this group of patients. Method: This was a cross-sectional study including 34 patients with asthma who were subjected to postural assessment (photogrammetry, pulmonary function testing (spirometry, whole-body plethysmography, diffusing capacity for carbon monoxide, and respiratory muscle strength, and body composition estimation by means of bioelectrical impedance. Results: Most patients were female (70.6% with a median age of 32.5 years (range: 23–42 years old. We found a significant correlation between horizontal alignment of head (anterior view and the ratio of forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC; ρ = −0.37; P = 0.03, total lung capacity (TLC; ρ = 0.42; P = 0.01, and residual volume (RV; ρ = 0.45; P < 0.001. Bronchial obstruction and respiratory muscle strength variables also correlated with postural assessment measures on the right and left lateral views. Both body mass index and the percentage of fat mass were correlated with horizontal alignment of head, horizontal alignment of the pelvis, and the frontal angle of the lower limbs. Conclusion: Adult patients with asthma exhibit specific postural disorders that correlate with pulmonary function and body composition. The assessment of postural variables may provide a better pulmonary rehabilitation approach for these patients. Resumo: Objetivos: A asma pode resultar em alterações posturais causadas pelo aumento da atividade da musculatura acessória, respiratória e insuflação pulmonar. Nosso objetivo primário foi avaliar a correlação entre fun

  19. Modal analysis of human body vibration model for Indian subjects under sitting posture.

    Science.gov (United States)

    Singh, Ishbir; Nigam, S P; Saran, V H

    2015-01-01

    Need and importance of modelling in human body vibration research studies are well established. The study of biodynamic responses of human beings can be classified into experimental and analytical methods. In the past few decades, plenty of mathematical models have been developed based on the diverse field measurements to describe the biodynamic responses of human beings. In this paper, a complete study on lumped parameter model derived from 50th percentile anthropometric data for a seated 54- kg Indian male subject without backrest support under free un-damped conditions has been carried out considering human body segments to be of ellipsoidal shape. Conventional lumped parameter modelling considers the human body as several rigid masses interconnected by springs and dampers. In this study, concept of mass of interconnecting springs has been incorporated and eigenvalues thus obtained are found to be closer to the values reported in the literature. Results obtained clearly establish decoupling of vertical and fore-and-aft oscillations. The mathematical modelling of human body vibration studies help in validating the experimental investigations for ride comfort of a sitting subject. This study clearly establishes the decoupling of vertical and fore-and-aft vibrations and helps in better understanding of possible human response to single and multi-axial excitations.

  20. Otolith and Vertical Canal Contributions to Dynamic Postural Control

    Science.gov (United States)

    Black, F. Owen

    1999-01-01

    The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.

  1. Treatment and ergonomics training of work-related lower back pain and body posture problems for nurses.

    Science.gov (United States)

    Jaromi, Melinda; Nemeth, Andrea; Kranicz, Janos; Laczko, Tamas; Betlehem, Jozsef

    2012-06-01

    The purpose of the study was to measure the effectiveness of a spine training programme (Back School) in nurses who have been living with chronic low back pain. It was hypothesised that active therapy, ergonomics and education called Back School will significantly decrease the pain intensity levels and improve the body posture of the study participants. A chronic low back pain is a significant work-related health problem among healthcare workers around the world. Proper body posture is essential for decreasing pain in healthcare workers who have history of chronic low back pain. By teaching proper body posture and with the creation of occupational settings that are 'spine-friendly' hospitals and other healthcare settings can significantly lower the suffering of their nursing staff. Single-blinded randomised controlled trial was utilised with six- and 12-months follow-up. The study was carried out at the University of Pecs, Faculty of Health Sciences from 2007 to 2008 involving 124 nurses with low back pain. Participants were randomly assigned to the study group (who have received ergonomics training and education called Back School) with an intervention conducted once a week for a six-week period. The control group received passive physiotherapy once a week for a six-week period. Further follow-up measurements were conducted at six and 12 months, respectively. The study variables and outcome measures were pain intensity and body posture (angle of thoracic kyphosis and lumbar lordosis). The pain intensity was investigated with the Visual Analogue Scale. Body posture was recorded and analysed with the Zebris biomechanical motion analysis system. The statistical analysis of repeated measures indicated a significant decrease in back pain intensity after the therapy in both groups, compared with measurements before the therapy; however, the BS group showed significantly better results during the six-month and one-year follow-up period. The biomechanical analysis of

  2. Body surface posture evaluation: construction, validation and protocol of the SPGAP system (Posture evaluation rotating platform system).

    Science.gov (United States)

    Schwertner, Debora Soccal; Oliveira, Raul; Mazo, Giovana Zarpellon; Gioda, Fabiane Rosa; Kelber, Christian Roberto; Swarowsky, Alessandra

    2016-05-04

    Several posture evaluation devices have been used to detect deviations of the vertebral column. However it has been observed that the instruments present measurement errors related to the equipment, environment or measurement protocol. This study aimed to build, validate, analyze the reliability and describe a measurement protocol for the use of the Posture Evaluation Rotating Platform System (SPGAP, Brazilian abbreviation). The posture evaluation system comprises a Posture Evaluation Rotating Platform, video camera, calibration support and measurement software. Two pilot studies were carried out with 102 elderly individuals (average age 69 years old, SD = ±7.3) to establish a protocol for SPGAP, controlling the measurement errors related to the environment, equipment and the person under evaluation. Content validation was completed with input from judges with expertise in posture measurement. The variation coefficient method was used to validate the measurement by the instrument of an object with known dimensions. Finally, reliability was established using repeated measurements of the known object. Expert content judges gave the system excellent ratings for content validity (mean 9.4 out of 10; SD 1.13). The measurement of an object with known dimensions indicated excellent validity (all measurement errors reality. To verify the images of objects with known dimensions the values for the width and height were, respectively, CV 0.88 (width) and 2.33 (height), SD 0.22 (width) and 0.35 (height), minimum and maximum values 24.83-25.2 (width) and 14.56 - 15.75 (height). In the analysis of different images (similar) of an individual, greater discrepancies were observed in the values found. The cervical index, for example, presented minimum and maximum values of 15.38 and 37.5, a coefficient of variation of 0.29 and a standard deviation of 6.78. The SPGAP was shown to be a valid and reliable instrument for the quantitative analysis of body posture with applicability and

  3. A Wireless Accelerometer-Based Body Posture Stability Detection System and Its Application for Meditation Practitioners

    Science.gov (United States)

    Chang, Kang-Ming; Chen, Sih-Huei; Lee, Hsin-Yi; Ching, Congo Tak-Shing; Huang, Chun-Lung

    2012-01-01

    The practice of meditation has become an interesting research issue in recent decades. Meditation is known to be beneficial for health improvement and illness reduction and many studies on meditation have been made, from both the physiological and psychological points of view. It is a fundamental requirement of meditation practice to be able to sit without body motion. In this study, a novel body motion monitoring and estimation system has been developed. A wireless tri-axis accelerometer is used to measure body motion. Both a mean and maximum motion index is derived from the square summation of three axes. Two experiments were conducted in this study. The first experiment was to investigate the motion index baseline among three leg-crossing postures. The second experiment was to observe posture dynamics for thirty minute’s meditation. Twenty-six subjects participated in the experiments. In one experiment, thirteen subjects were recruited from an experienced meditation group (meditation experience > 3 years); and the other thirteen subjects were beginners (meditation experience < 1 years). There was a significant posture stability difference between both groups in terms of either mean or maximum parameters (p < 0.05), according to the results of the experiment. Results from another experiment showed that the motion index is different for various postures, such as full-lotus < half-lotus < non-lotus. PMID:23250281

  4. Application of equivalent electrodes method to analysis of interaction between ELF-LF electric fields and human body

    International Nuclear Information System (INIS)

    Ceselkoska, Vesna C.; Velickovic, Dragutin M.

    2002-01-01

    This paper presents the use of equivalent electrodes method, numerical method, based on surface-charge equation to quantify the interaction of low frequencies electric fields with various models of human body. The evaluation of the electric field intensity on the body surface is performed for a realistic model of the human body. Several examples for different postures of the model are given. (Author)

  5. Thermal sensation during mild hyperthermia is modulated by acute postural change in humans.

    Science.gov (United States)

    Takeda, Ryosuke; Imai, Daiki; Suzuki, Akina; Ota, Akemi; Naghavi, Nooshin; Yamashina, Yoshihiro; Hirasawa, Yoshikazu; Yokoyama, Hisayo; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-12-01

    Thermal sensation represents the primary stimulus for behavioral and autonomic thermoregulation. We assessed whether the sensation of skin and core temperatures for the driving force of behavioral thermoregulation was modified by postural change from the supine (Sup) to sitting (Sit) during mild hyperthermia. Seventeen healthy young men underwent measurements of noticeable increase and decrease (±0.1 °C/s) of skin temperature (thresholds of warm and cold sensation on the skin, 6.25 cm 2 of area) at the forearm and chest and of the whole-body warm sensation in the Sup and Sit during normothermia (NT; esophageal temperature (T es ), ∼36.6 °C) and mild hyperthermia (HT; T es , ∼37.2 °C; lower legs immersion in 42 °C of water). The threshold for cold sensation on the skin at chest was lower during HT than NT in the Sit (P sensation on the skin at both sites remained unchanged with changes in body posture or temperature. The whole-body warm sensation was higher during HT than NT in both postures and higher in the Sit than Sup during both NT and HT (all, P sensation during mild hyperthermia is modulated by postural change from supine to sitting to sense lesser cold on the skin and more whole-body warmth.

  6. Effective seat-to-head transmissibility in whole-body vibration: Effects of posture and arm position

    Science.gov (United States)

    Rahmatalla, Salam; DeShaw, Jonathan

    2011-12-01

    Seat-to-head transmissibility is a biomechanical measure that has been widely used for many decades to evaluate seat dynamics and human response to vibration. Traditionally, transmissibility has been used to correlate single-input or multiple-input with single-output motion; it has not been effectively used for multiple-input and multiple-output scenarios due to the complexity of dealing with the coupled motions caused by the cross-axis effect. This work presents a novel approach to use transmissibility effectively for single- and multiple-input and multiple-output whole-body vibrations. In this regard, the full transmissibility matrix is transformed into a single graph, such as those for single-input and single-output motions. Singular value decomposition and maximum distortion energy theory were used to achieve the latter goal. Seat-to-head transmissibility matrices for single-input/multiple-output in the fore-aft direction, single-input/multiple-output in the vertical direction, and multiple-input/multiple-output directions are investigated in this work. A total of ten subjects participated in this study. Discrete frequencies of 0.5-16 Hz were used for the fore-aft direction using supported and unsupported back postures. Random ride files from a dozer machine were used for the vertical and multiple-axis scenarios considering two arm postures: using the armrests or grasping the steering wheel. For single-input/multiple-output, the results showed that the proposed method was very effective in showing the frequencies where the transmissibility is mostly sensitive for the two sitting postures and two arm positions. For multiple-input/multiple-output, the results showed that the proposed effective transmissibility indicated higher values for the armrest-supported posture than for the steering-wheel-supported posture.

  7. Effect of intermittent feedback control on robustness of human-like postural control system

    Science.gov (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  8. Effect of an Ergonomics-Based Educational Intervention Based on Transtheoretical Model in Adopting Correct Body Posture Among Operating Room Nurses.

    Science.gov (United States)

    Moazzami, Zeinab; Dehdari, Tahere; Taghdisi, Mohammad Hosein; Soltanian, Alireza

    2015-11-03

    One of the preventive strategies for chronic low back pain among operating room nurses is instructing proper body mechanics and postural behavior, for which the use of the Transtheoretical Model (TTM) has been recommended. Eighty two nurses who were in the contemplation and preparation stages for adopting correct body posture were randomly selected (control group = 40, intervention group = 42). TTM variables and body posture were measured at baseline and again after 1 and 6 months after the intervention. A four-week ergonomics educational intervention based on TTM variables was designed and conducted for the nurses in the intervention group. Following the intervention, a higher proportion of nurses in the intervention group moved into the action stage (p 0.05) after the intervention. The TTM provides a suitable framework for developing stage-based ergonomics interventions for postural behavior.

  9. The effects of whole body vibration combined biofeedback postural control training on the balance ability and gait ability in stroke patients.

    Science.gov (United States)

    Uhm, Yo-Han; Yang, Dae-Jung

    2017-11-01

    [Purpose] The purpose of this study was to examine the effect of biofeedback postural control training using whole body vibration in acute stroke patients on balance and gait ability. [Subjects and Methods] Thirty stroke patients participated in this study and were divided into a group of 10, a group for biofeedback postural control training combined with a whole body vibration, one for biofeedback postural control training combined with an aero-step, and one for biofeedback postural control training. Biorescue was used to measure the limits of stability, balance ability, and Lukotronic was used to measure step length, gait ability. [Results] In the comparison of balance ability and gait ability between the groups for before and after intervention, Group I showed a significant difference in balance ability and gait ability compared to Groups II and III. [Conclusion] This study showed that biofeedback postural control training using whole body vibration is effective for improving balance ability and gait ability in stroke patients.

  10. Face piercing (body art: choosing pleasure vs. possible pain and posture instability

    Directory of Open Access Journals (Sweden)

    Eric eMatheron

    2011-09-01

    Full Text Available Piercings (body art, i.e. with jewelry are more and more widespread. They can induce various complications such as infections, allergies, headaches, and various skin, cartilage, or dental problems which will lead to economic effects on health-care systems. We draw attention to other possible side effects resulting from face piercing complications such as eye misalignment, decreased postural control efficiency, and nonspecific chronic back pain. We found that the origin was pierced jewelry on the face. Removing the jewelry restored eye alignment, improved postural control, and alleviated back pain in a lasting way. This observation is important for health; further investigations would be of interest.

  11. CHARACTERISTICS OF BODY POSTURE IN THE SAGITTAL PLANE AND FITNESS OF FIRST-FORM PUPILS FROM RURAL AREAS

    Directory of Open Access Journals (Sweden)

    Hanna Żukowska

    2014-07-01

    Full Text Available Purpose: to find correlations between characteristics of body posture in the sagittal plane and fitness and endurance of first-form children from rural areas. Material: an analysis of more than 30 sources of scientific and educational literature. Results: the study involved 209 children, including 102 girls and 107 boys. They were children who lived in the country since they were born. To assess particular characteristics of body posture, the children were studied by means of the measuring equipment using the projection Moiré system. Motor skills were estimated using selected EUROFIT physical fitness tests (sitting forward bend, standing broad jump, handgrip, sit-and-reach, bent arm hang and 10 x 5 m shuttle run. The level of physical endurance was evaluated with the Harvard Step Test modified by Montoye. Conclusions: the conducted research reveals statistically significant correlations between the characteristics of body posture in the sagittal plane and selected EUROFIT physical fitness tests and physical endurance of the children involved in the study.

  12. Thermal sensation during mild hyperthermia is modulated by acute postural change in humans

    Science.gov (United States)

    Takeda, Ryosuke; Imai, Daiki; Suzuki, Akina; Ota, Akemi; Naghavi, Nooshin; Yamashina, Yoshihiro; Hirasawa, Yoshikazu; Yokoyama, Hisayo; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-12-01

    Thermal sensation represents the primary stimulus for behavioral and autonomic thermoregulation. We assessed whether the sensation of skin and core temperatures for the driving force of behavioral thermoregulation was modified by postural change from the supine (Sup) to sitting (Sit) during mild hyperthermia. Seventeen healthy young men underwent measurements of noticeable increase and decrease (±0.1 °C/s) of skin temperature (thresholds of warm and cold sensation on the skin, 6.25 cm2 of area) at the forearm and chest and of the whole-body warm sensation in the Sup and Sit during normothermia (NT; esophageal temperature (Tes), ˜36.6 °C) and mild hyperthermia (HT; Tes, ˜37.2 °C; lower legs immersion in 42 °C of water). The threshold for cold sensation on the skin at chest was lower during HT than NT in the Sit ( P body posture or temperature. The whole-body warm sensation was higher during HT than NT in both postures and higher in the Sit than Sup during both NT and HT (all, P cold on the skin and more whole-body warmth.

  13. Digital evaluation of sitting posture comfort in human-vehicle system under Industry 4.0 framework

    Science.gov (United States)

    Tao, Qing; Kang, Jinsheng; Sun, Wenlei; Li, Zhaobo; Huo, Xiao

    2016-09-01

    Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation methods in real environment and virtual environment is described. The real experimental environment includes the WBV(whole body vibration) test, questionnaires for human subjective sensation and motion capture. The virtual experimental environment includes the theoretical calculation on simplified 5-DOF human body vibration model, the vibration simulation and analysis within ADAMS/VibrationTM module, and the digital human biomechanics and occupational health analysis in Jack software. While the real experimental environment provides realistic and accurate test results, it also serves as core and validation for the virtual experimental environment. The virtual experimental environment takes full advantages of current available vibration simulation and digital human modelling software, and makes it possible to evaluate the sitting posture comfort in a human-vehicle system with various human anthropometric parameters. How this digital evaluation system for car seat comfort design is fitted in the Industry 4.0 framework is also proposed.

  14. Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Sidan Du

    2013-08-01

    Full Text Available Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods.

  15. The Association Between Body Adiposity Measures, Postural Balance, Fear of Falling, and Fall Risk in Older Community-Dwelling Women.

    Science.gov (United States)

    Neri, Silvia Gonçalves Ricci; Gadelha, André Bonadias; de David, Ana Cristina; Ferreira, Aparecido Pimentel; Safons, Marisete Peralta; Tiedemann, Anne; Lima, Ricardo M

    2017-12-07

    Recent investigations demonstrate an association between obesity and the propensity of older adults to fall. The aim of this study was to investigate the association between body adiposity measures, postural balance, fear of falling, and risk of falls in older women. One hundred forty-seven volunteers took part in this cross-sectional study. Participants underwent body composition assessment using dual-energy x-ray absorptiometry and had body mass index, waist circumference (WC), and body adiposity index measured. Postural balance was assessed using a force platform, while fear of falling and risk of falls were, respectively, evaluated by the Falls Efficacy Scale-International and the QuickScreen Clinical Falls Risk Assessment. All adiposity measures were correlated to at least 1 postural stability parameter and to fear of falling (ρ= 0.163, P risk of falls (ρ= 0.325; P falling (28.04 vs 24.59; P = .002) and had a higher proportion of individuals with increased fall risk (72% vs 35%; P risk of falls in older women, which might be mediated by reduced postural balance and increased fear of falling. Among these indices, WC, an easy and low-cost assessment, demonstrated the strongest association with falls-related outcomes.

  16. Body Posture Asymmetry Differences between Children with Mild Scoliosis and Children with Unilateral Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Małgorzata Domagalska-Szopa

    2013-01-01

    Full Text Available Patients with unilateral cerebral palsy (CP often have impaired movement coordination, reduced between-limb synchronization, and less weight bearing on the affected side, which can affect the maintenance of an upright weight-bearing position and gait. This study evaluated whether the different postural patterns of children with unilateral CP could be statistically recognized using cluster analysis. Forty-five outpatients with unilateral CP (mean age, 9 years and 5 months and 51 able-bodied children with mild scoliosis (mean age, 9 years and 2 months were included. One observer performed moiré topography (MT examinations using a CQ Electronic System (Poland device. A weight distribution analysis on the base of support (BOS between the body sides was performed simultaneously. A force plate dynamographic platform (PDM, ZEBRIS (Germany, with FootPrint software was used for these measurements. Cluster analysis revealed three groups: Cluster 1 (, 73.96%, Cluster 2 (, 8.33%, and Cluster 3 (, 17.71%. Based on the MT parameters (extracted using a data reduction technique, three typical asymmetrical postural patterns were described: (1 the postural pattern of children with mild scoliosis (SCOL, (2 the progravitational postural pattern (PGPP, and (3 the antigravitational pattern. Patterns two and three were identified in children with unilateral CP.

  17. Effects of Four-Month Exercise Program on Correction of Body Posture of Persons with Different Visual Impairment

    Directory of Open Access Journals (Sweden)

    Damira Vranesic-Hadzimehmedovic

    2018-04-01

    Full Text Available The aim of this study was to determine the effect of a four-month specific exercise program on correcting the posture of persons with different visual impairment. The sample consisted of 20 elementary students with visual impairment diagnosis, 11 boys and 9 girls aged 9-14 (12±0.6. The classification of the examinees was performed according to the established degree of visual impairment, 10 blind persons and 10 partially sighted persons. The pupils voluntarily participated in the exercise program. The exercise program was structured of two phases: exercise on dryland and exercise in water. A total of 36 exercise units were completed during four months period. Seven tests were used to evaluate the body posture, based on the determination of segmental dimensions and the visual projection of the marked points. The contents of the program were performed with the aim of preventing and correcting the observed irregularities of the body posture. The t-test scores indicated statistically significant differences between two measurements (p<0.05, p<0.01. It can be concluded that elementary movements, performed through dryland and especially water exercises, had a good effect on correcting the body's posture of blind and partially sighted persons.

  18. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperature......, body posture and human respiratory flow. To determine to what extent the experiments represent the realistic scenario, the additional experiments were performed with a real human subject. The results show that at a lower room air temperature (20°C), the fluctuations of air temperature increased close...... to the surface of the body. The large standard deviation of air temperature fluctuations, up to 1.2°C, was recorded in the region of the chest, and up to 2.9°C when the exhalation was applied. The manikin leaned backwards increased the air temperature in the breathing zone, which was opposite from the forward...

  19. Human bipedalism and body-mass index.

    Science.gov (United States)

    Yi, Su Do; Noh, Jae Dong; Minnhagen, Petter; Song, Mi-Young; Chon, Tae-Soo; Kim, Beom Jun

    2017-06-16

    Body-mass index, abbreviated as BMI and given by M/H 2 with the mass M and the height H, has been widely used as a useful proxy to measure a general health status of a human individual. We generalise BMI in the form of M/H p and pursue to answer the question of the value of p for populations of animal species including human. We compare values of p for several different datasets for human populations with the ones obtained for other animal populations of fish, whales, and land mammals. All animal populations but humans analyzed in our work are shown to have p ≈ 3 unanimously. In contrast, human populations are different: As young infants grow to become toddlers and keep growing, the sudden change of p is observed at about one year after birth. Infants younger than one year old exhibit significantly larger value of p than two, while children between one and five years old show p ≈ 2, sharply different from other animal species. The observation implies the importance of the upright posture of human individuals. We also propose a simple mechanical model for a human body and suggest that standing and walking upright should put a clear division between bipedal human (p ≈ 2) and other animals (p ≈ 3).

  20. Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD).

    Science.gov (United States)

    Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W

    2016-01-01

    Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial

  1. Perception of biological motion from size-invariant body representations

    Directory of Open Access Journals (Sweden)

    Markus eLappe

    2015-03-01

    Full Text Available The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.

  2. Protective effect of prone posture against hypergravity-induced arterial hypoxaemia in humans

    Science.gov (United States)

    Rohdin, M; Petersson, J; Mure, M; Glenny, R W; Lindahl, S G E; Linnarsson, D

    2003-01-01

    Patients with acute respiratory distress syndrome have increased lung tissue weight and therefore an increased hydrostatic pressure gradient down the lung. Also, they have a better arterial oxygenation in prone (face down) than in supine (face up) posture. We hypothesized that this effect of the direction of gravity also existed in healthy humans, when increased hydrostatic gradients were induced by hypergravity. Ten healthy subjects were studied in a human centrifuge while exposed to 1 or 5 G in anterio-posterior (supine) or posterio-anterior (prone) direction. We measured blood gases using remote-controlled sampling and gas exchange by mass spectrometry. Hypergravity led to marked impairments of arterial oxygenation in both postures and more so in supine posture. At 5 G, the arterial oxygen saturation was 84.6 ± 1.2 % (mean ±s.e.m.) in supine and 89.7 ± 1.4 % in prone posture (P postures. The alveolar-to-arterial PO2 difference increased at 5 G to 8.0 ± 0.2 kPa and 6.6 ± 0.3 kPa in supine and prone postures (P = 0.003). Arterial oxygenation was less impaired in prone during hypergravity due to a better-preserved alveolo-arterial oxygen transport. We speculate that mammals have developed a cardiopulmonary structure that favours function with the gravitational vector in the posterio-anterior direction. PMID:12598589

  3. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  4. Face Piercing (Body Art): Choosing Pleasure vs. Possible Pain and Posture Instability

    Science.gov (United States)

    Matheron, Eric; Kapoula, Zoï

    2011-01-01

    Piercings (body art, i.e., with jewelry) are more and more widespread. They can induce various complications such as infections, allergies, headaches, and various skin, cartilage, or dental problems, and represent a public health problem. We draw attention to possible side effects resulting from face piercing complications observed on four young adults such as eye misalignment, decreased postural control efficiency, and non-specific chronic back pain with associated comorbidity. We found that the origin was pierced jewelry on the face. Removing the jewelry restored eye alignment, improved postural control, and alleviated back pain in a lasting way. We suggest that pierced facial jewelry can disturb somaesthetic signals driven by the trigeminal nerve, and thus interfere with central integration processes, notably in the cerebellum and the vestibular nucleus involved in postural control and eye alignment. Facial piercings could induce sensory–motor conflict, exacerbate, or precipitate a pre-existing undetermined conflict, which leads pain and complaints. These findings are significant for health; further investigations would be of interest. PMID:21960975

  5. Cross-cultural examination of the semantic dimensions of body postures.

    Science.gov (United States)

    Kudoh, T; Matsumoto, D

    1985-06-01

    In two studies, we examined the cross-cultural validity of the dimensional structures with which postures are judged. In Study 1, 686 Japanese subjects rated 40 posture expressions on sixteen 5-point semantic differential scale items. Subjects inferred an encoder's attitude towards oneself (i.e., the decoding subject) in hypothetical dyadic situations. A principal-component factor analysis yielded evidence for three independent dimensions resembling those proposed by Schlosberg (1954), Osgood (1966), and Williams and Sundene (1965). These three factors were named self-fulfillment, interpersonal positiveness, and interpersonal consciousness. In Study 2, 336 Japanese students again rated the 40 posture expressions on the sixteen 5-point differential items, but an attempt was made to control for the status of the hypothetical encoder. The results of this study essentially replicated those of Study 1. One interesting finding was that although we found the same factors as those found in studies conducted in the West, the order of the factors in our studies was the reverse of the order found in these previous studies. The findings are discussed in terms of proposed cultural differences in the maintenance of human relations.

  6. Guide to Good Posture

    Science.gov (United States)

    ... you are moving or still, can prevent pain, injuries, and other health problems. What is posture? Posture is how you hold your body. There are two types: Dynamic posture is how you hold yourself when you are moving, like when you are walking, running, or bending over to pick up something. Static ...

  7. Evaluation of Intracranial Pressure in Different Body Postures and Disease Entities

    DEFF Research Database (Denmark)

    Andresen, Morten; Hadi, Amer; Juhler, Marianne

    2016-01-01

    We currently do not have sufficient knowledge regarding appropriate boundaries between "normal" and "abnormal" intracranial pressure (ICP) in humans. Our objective in this study was to quantify the effects of postural changes on ICP in normal and ill subjects. As a model for normal patients, we i...

  8. Stochastic resonance whole-body vibration improves postural control in health care professionals: a worksite randomized controlled trial.

    Science.gov (United States)

    Elfering, Achim; Schade, Volker; Stoecklin, Lukas; Baur, Simone; Burger, Christian; Radlinger, Lorenz

    2014-05-01

    Slip, trip, and fall injuries are frequent among health care workers. Stochastic resonance whole-body vibration training was tested to improve postural control. Participants included 124 employees of a Swiss university hospital. The randomized controlled trial included an experimental group given 8 weeks of training and a control group with no intervention. In both groups, postural control was assessed as mediolateral sway on a force plate before and after the 8-week trial. Mediolateral sway was significantly decreased by stochastic resonance whole-body vibration training in the experimental group but not in the control group that received no training (p < .05). Stochastic resonance whole-body vibration training is an option in the primary prevention of balance-related injury at work. Copyright 2014, SLACK Incorporated.

  9. Impact of body posture on laterality judgement and explicit recognition tasks performed on self and others' hands.

    Science.gov (United States)

    Conson, Massimiliano; Errico, Domenico; Mazzarella, Elisabetta; De Bellis, Francesco; Grossi, Dario; Trojano, Luigi

    2015-04-01

    Judgments on laterality of hand stimuli are faster and more accurate when dealing with one's own than others' hand, i.e. the self-advantage. This advantage seems to be related to activation of a sensorimotor mechanism while implicitly processing one's own hands, but not during explicit one's own hand recognition. Here, we specifically tested the influence of proprioceptive information on the self-hand advantage by manipulating participants' body posture during self and others' hand processing. In Experiment 1, right-handed healthy participants judged laterality of either self or others' hands, whereas in Experiment 2, an explicit recognition of one's own hands was required. In both experiments, the participants performed the task while holding their left or right arm flexed with their hand in direct contact with their chest ("flexed self-touch posture") or with their hand placed on a wooden smooth surface in correspondence with their chest ("flexed proprioceptive-only posture"). In an "extended control posture", both arms were extended and in contact with thighs. In Experiment 1 (hand laterality judgment), we confirmed the self-advantage and demonstrated that it was enhanced when the subjects judged left-hand stimuli at 270° orientation while keeping their left arm in the flexed proprioceptive-only posture. In Experiment 2 (explicit self-hand recognition), instead, we found an advantage for others' hand ("self-disadvantage") independently from posture manipulation. Thus, position-related proprioceptive information from left non-dominant arm can enhance sensorimotor one's own body representation selectively favouring implicit self-hands processing.

  10. Proper and incorrect body posture in students from music schools

    OpenAIRE

    Hadlich, Roland

    2017-01-01

    Hadlich Roland. Proper and incorrect body posture in students from music schools. Journal of Education, Health and Sport. 2017;7(2):562-584. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.556100 http://ojs.ukw.edu.pl/index.php/johs/article/view/4405 The journal has had 7 points in Ministry of Science and Higher Education parametric evaluation. Part B item 1223 (26.01.2017). 1223 Journal of Education, Health and Sport eISSN 2391-8306 7 © The Author...

  11. Recognition of dance-like actions: memory for static posture or dynamic movement?

    Science.gov (United States)

    Vicary, Staci A; Robbins, Rachel A; Calvo-Merino, Beatriz; Stevens, Catherine J

    2014-07-01

    Dance-like actions are complex visual stimuli involving multiple changes in body posture across time and space. Visual perception research has demonstrated a difference between the processing of dynamic body movement and the processing of static body posture. Yet, it is unclear whether this processing dissociation continues during the retention of body movement and body form in visual working memory (VWM). When observing a dance-like action, it is likely that static snapshot images of body posture will be retained alongside dynamic images of the complete motion. Therefore, we hypothesized that, as in perception, posture and movement would differ in VWM. Additionally, if body posture and body movement are separable in VWM, as form- and motion-based items, respectively, then differential interference from intervening form and motion tasks should occur during recognition. In two experiments, we examined these hypotheses. In Experiment 1, the recognition of postures and movements was tested in conditions in which the formats of the study and test stimuli matched (movement-study to movement-test, posture-study to posture-test) or mismatched (movement-study to posture-test, posture-study to movement-test). In Experiment 2, the recognition of postures and movements was compared after intervening form and motion tasks. These results indicated that (1) the recognition of body movement based only on posture is possible, but it is significantly poorer than recognition based on the entire movement stimulus, and (2) form-based interference does not impair memory for movements, although motion-based interference does. We concluded that, whereas static posture information is encoded during the observation of dance-like actions, body movement and body posture differ in VWM.

  12. Dynamic Postural Control in Female Athletes and Nonathletes After a Whole-Body Fatigue Protocol.

    Science.gov (United States)

    Baghbani, Fatemeh; Woodhouse, Linda J; Gaeini, Abbas A

    2016-07-01

    Baghbani, F, Woodhouse, LJ, and Gaeini, AA. Dynamic postural control in female athletes and nonathletes after a whole-body fatigue protocol. J Strength Cond Res 30(7): 1942-1947, 2016-Postural control is a crucial element in regular training of athletes, development of complex technical movement, and injury prevention; however, distributing factor of the postural control such as fatigue has been neglected by athletic trainers in novice and inexperienced athletes. The objective of this study was to compare changes in dynamic postural control of young female athletes and nonathletes after a fatigue protocol. Thirty females (15 athletes and 15 nonathletes) with no orthopedic problems were recruited to participate in this study. All participants completed the pre-SEBT (star excursion balance test) in 8 directions at baseline; then, they performed a 20-minute fatigue protocol after which post-SEBT was measured. Rating of perceived exertion was measured using the Borg scale immediately before, mid-way through (i.e., after the third station), and after performing the fatigue protocol (i.e., immediately before the post-SEBT). Female nonathlete groups had significant differences in dynamic balance performance after fatigue in the medial, posteromedial, and posterior directions (p postural control of the novice with progressing the exercise time. Our findings could also help coaches to develop trainings focused on the 3 directions of medial, posteromedial, and posterior directions and aimed at exercises increasing fatigue resistance.

  13. Voluntarily controlled but not merely observed visual feedback affects postural sway

    Science.gov (United States)

    Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi

    2018-01-01

    Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421

  14. The effects of whole body vibration combined computerized postural control training on the lower extremity muscle activity and cerebral cortex activity in stroke patients.

    Science.gov (United States)

    Uhm, Yo-Han; Yang, Dae-Jung

    2018-02-01

    [Purpose] The purpose of this study was to examine the effect of computerized postural control training using whole body vibration on lower limb muscle activity and cerebral cortical activation in acute stroke patients. [Subjects and Methods] Thirty stroke patients participated and were divided into groups of 10, a group of the computerized postural control training using whole body vibration (Group I), the computerized postural control training combined with aero step (Group II) and computerized postural control training (Group III). MP100 was used to measure lower limb muscle activity, and QEEG-8 was used to measure cerebral cortical activation. [Results] Comparison of muscle activity and cerebral cortical activation before and after intervention between groups showed that Group I had significant differences in lower limb muscle activity and cerebral cortical activation compared to Groups II and III. [Conclusion] This study showed that whole body vibration combined computerized postural control training is effective for improving muscle activity and cerebral cortex activity in stroke patients.

  15. Education and the Prevention of Postural Defects

    Directory of Open Access Journals (Sweden)

    Olchowska-Kotala Agnieszka

    2014-12-01

    Full Text Available Purpose. The aim of this study was to determine: whether and at what stage of education is proper body posture learned, the intention of young adults to participate in activities teaching proper posture, and the effects of factors related with the said intention. Methods. The study involved 430 university students aged 18-24 years. Anthropometric data was collected. Participants completed questionnaires assessing physical activity level (IPAQ and their intention to participate in extracurricular activities teaching proper posture while sitting or walking, proper running technique, corrective gymnastics, or weight loss exercises. A self-assessment of posture, physical fitness, attractiveness, and body satisfaction was also completed. Results. Lower back pain was experienced by 41% of the respondents. Most were taught proper posture-related habits in primary school, followed by secondary school, and then at university. Many students expressed their intention to participate in the extracurricular activities. None of the questionnaire variables were associated with the intention to learn proper walking posture or proper running technique. The intention to participate in classes teaching proper sitting posture was associated with lower back pain in women and low physical activity level in men. In women, a relationship was found between the intention to participate in weight loss exercises and body dissatisfaction, high BMI, and poor self-evaluations of posture and attractiveness. In men, this activity was associated with body dissatisfaction. Conclusions. There is a need for further education on the development of proper postural habits at the university level.

  16. Global body posture and plantar pressure distribution in individuals with and without temporomandibular disorder: a preliminary study.

    Science.gov (United States)

    Souza, Juliana A; Pasinato, Fernanda; Corrêa, Eliane C R; da Silva, Ana Maria T

    2014-01-01

    The aim of this study was to evaluate body posture and the distribution of plantar pressure at physiologic rest of the mandible and during maximal intercuspal positions in subjects with and without temporomandibular disorder (TMD). Fifty-one subjects were assessed by the Diagnostic Criteria for Research on Temporomandibular Disorders and divided into a symptomatic group (21) and an asymptomatic group (30). Postural analysis for both groups was conducted using photogrammetry (SAPo version 0.68; University of São Paulo, São Paulo, Brazil). The distribution of plantar pressures was evaluated by means of baropodometry (Footwork software), at physiologic rest and maximal intercuspal positions. Of 18 angular measurements, 3 (17%) were statistically different between the groups in photogrammetric evaluation. The symptomatic group showed more pronounced cervical distance (P = .0002), valgus of the right calcaneus (P = .0122), and lower pelvic tilt (P = .0124). The baropodometry results showed the TMD subjects presented significantly higher rearfoot and lower forefoot distribution than those in the asymptomatic group. No differences were verified in maximal intercuspal position in the between-group analysis and between the 2 mandibular positions in the within-group analysis. Subjects with and without TMD presented with global body posture misalignment. Postural changes were more pronounced in the subjects with TMD. In addition, symptomatic subjects presented with abnormal plantar pressure distribution, suggesting that TMD may have an influence on the postural system. Copyright © 2014 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  17. Self versus environment motion in postural control.

    Directory of Open Access Journals (Sweden)

    Kalpana Dokka

    2010-02-01

    Full Text Available To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results.

  18. Functional Neuroanatomy for Posture and Gait Control

    Directory of Open Access Journals (Sweden)

    Kaoru Takakusaki

    2017-01-01

    Full Text Available Here we argue functional neuroanatomy for posture- gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture- gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling.

  19. What women like: influence of motion and form on esthetic body perception

    Directory of Open Access Journals (Sweden)

    Valentina eCazzato

    2012-07-01

    Full Text Available Several studies have shown the distinct contribution of motion and form to the esthetic evaluation of female bodies. Here, we investigated how variations of implied motion and body size interact in the esthetic evaluation of female and male bodies in a sample of young healthy women. Participants provided attractiveness, beauty, and liking ratings for the shape and posture of virtual renderings of human bodies with variable body size and implied motion. The esthetic judgments for both shape and posture of human models were influenced by body size and implied motion, with a preference for thinner and more dynamic stimuli. Implied motion, however, attenuated the impact of extreme body size on the esthetic evaluation of body postures, and body size variations did not affect the preference for more dynamic stimuli. Results show that body form and action cues interact in esthetic perception, but the final esthetic appreciation of human bodies is predicted by a mixture of perceptual and affective evaluative components.

  20. Postural And Eye-Positional Effects On Human Biting Force: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Altay Tabancacı

    2012-06-01

    Full Text Available Muscle groups affected on biting force are called temporal muscle as a major and masseter muscle as a minor. According to the human posture stability, forces of these muscles vary with the force directions. In this case, experimental investigation is strictly important such that biting force under different postural and eye- positional situations is changed. In this study, seven-male and seven-female within the age-range of 17-24 are considered corresponding to having with restorated molar tooth and without that type of tooth. With the help of specially designed biting fork, different posture- and eye-positions are investigated for experimental biting force analysis. Changes in eye-positions are not indicated significant difference for all postural positions. On one hand, it is obtained that biting force of no-filling tooth in men becomes maximum if facial muscles give full effort to biting. On the other hand, effect of facial muscles for women is not clearly noticed depending on the postural differences.

  1. Repositioning the knee joint in human body FE models using a graphics-based technique.

    Science.gov (United States)

    Jani, Dhaval; Chawla, Anoop; Mukherjee, Sudipto; Goyal, Rahul; Vusirikala, Nataraju; Jayaraman, Suresh

    2012-01-01

    Human body finite element models (FE-HBMs) are available in standard occupant or pedestrian postures. There is a need to have FE-HBMs in the same posture as a crash victim or to be configured in varying postures. Developing FE models for all possible positions is not practically viable. The current work aims at obtaining a posture-specific human lower extremity model by reconfiguring an existing one. A graphics-based technique was developed to reposition the lower extremity of an FE-HBM by specifying the flexion-extension angle. Elements of the model were segregated into rigid (bones) and deformable components (soft tissues). The bones were rotated about the flexion-extension axis followed by rotation about the longitudinal axis to capture the twisting of the tibia. The desired knee joint movement was thus achieved. Geometric heuristics were then used to reposition the skin. A mapping defined over the space between bones and the skin was used to regenerate the soft tissues. Mesh smoothing was then done to augment mesh quality. The developed method permits control over the kinematics of the joint and maintains the initial mesh quality of the model. For some critical areas (in the joint vicinity) where element distortion is large, mesh smoothing is done to improve mesh quality. A method to reposition the knee joint of a human body FE model was developed. Repositions of a model from 9 degrees of flexion to 90 degrees of flexion in just a few seconds without subjective interventions was demonstrated. Because the mesh quality of the repositioned model was maintained to a predefined level (typically to the level of a well-made model in the initial configuration), the model was suitable for subsequent simulations.

  2. The influence of anthropometric factors on postural balance: the relationship between body composition and posturographic measurements in young adults

    Directory of Open Access Journals (Sweden)

    Angélica Castilho Alonso

    2012-12-01

    Full Text Available OBJECTIVE: The aim of the present study was to evaluate the influence of anthropometric characteristics and gender on postural balance in adults. One hundred individuals were examined (50 males, 50 females; age range 20-40 years. METHODS: The following body composition measurements were collected (using bone densitometry measurements: fat percentage (% fat, tissue (g, fat (g, lean mass (g, bone mineral content (g, and bone mineral density (g/cm2. In addition, the following anthropometric measurements were collected: body mass (kg, height (cm, length of the trunk-cephalic region (cm, length of the lower limbs (cm and length of the upper limbs (cm. The following indices were calculated: body mass index (kg/m², waist-hip ratio and the support base (cm². Also, a postural balance test was performed using posturography variables with open and closed eyes. RESULTS: The analysis revealed poor correlations between postural balance and the anthropometric variables. A multiple linear regression analysis demonstrated that the whole group (female and male height explained 12% of the medial-lateral displacement, 10% of the speed of oscillation, and 11% of the displacement area. The length of the trunk-cephalic length explained 6% of the displacement in the anteroposterior direction. With eyes closed, the support base and height explained 18% of the medial displacement, and the lateral height explained 10% of the displacement speed and 5% of the scroll area. CONCLUSION: Measured using posturography, the postural balance was only slightly influenced by the anthropometric variables, both with open and closed eyes. Height was the anthropometric variable that most influenced postural balance, both in the whole group and separately for each gender. Postural balance was more influenced by anthropometric factors in males than females.

  3. Imitation of Body Postures and Hand Movements in Children with Specific Language Impairment

    Science.gov (United States)

    Marton, Klara

    2009-01-01

    Within the domain-general theory of language impairment, this study examined body posture and hand movement imitation in children with specific language impairment (SLI) and in their age-matched peers. Participants included 40 children with SLI (5 years 3 months to 6 years 10 months of age) and 40 children with typical language development (5…

  4. MRI-related static magnetic stray fields and postural body sway: a double-blind randomized crossover study.

    Science.gov (United States)

    van Nierop, Lotte E; Slottje, Pauline; Kingma, Herman; Kromhout, Hans

    2013-07-01

    We assessed postural body sway performance after exposure to movement induced time-varying magnetic fields in the static magnetic stray field in front of a 7 Tesla (T) magnetic resonance imaging scanner. Using a double blind randomized crossover design, 30 healthy volunteers performed two balance tasks (i.e., standing with eyes closed and feet in parallel and then in tandem position) after standardized head movements in a sham, low exposure (on average 0.24 T static magnetic stray field and 0.49 T·s(-1) time-varying magnetic field) and high exposure condition (0.37 T and 0.70 T·s(-1)). Personal exposure to static magnetic stray fields and time-varying magnetic fields was measured with a personal dosimeter. Postural body sway was expressed in sway path, area, and velocity. Mixed-effects model regression analysis showed that postural body sway in the parallel task was negatively affected (P < 0.05) by exposure on all three measures. The tandem task revealed the same trend, but did not reach statistical significance. Further studies are needed to investigate the possibility of independent or synergetic effects of static magnetic stray field and time-varying magnetic field exposure. In addition, practical safety implications of these findings, e.g., for surgeons and others working near magnetic resonance imaging scanners need to be investigated. Copyright © 2012 Wiley Periodicals, Inc.

  5. What is the most effective posture to conduct vibration from the lower to the upper extremities during whole-body vibration exercise?

    Directory of Open Access Journals (Sweden)

    Tsukahara Y

    2016-01-01

    Full Text Available Yuka Tsukahara, Jun Iwamoto, Kosui Iwashita, Takuma Shinjo, Koichiro Azuma, Hideo MatsumotoInstitute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan Background: Whole-body vibration (WBV exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives: The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods: Twelve healthy volunteers (age: 22–34 years were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900 with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results: Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion: This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. Keywords: whole-body vibration exercise, upper

  6. Human cerebral venous outflow pathway depends on posture and central venous pressure

    Science.gov (United States)

    Gisolf, J; van Lieshout, J J; van Heusden, K; Pott, F; Stok, W J; Karemaker, J M

    2004-01-01

    Internal jugular veins are the major cerebral venous outflow pathway in supine humans. In upright humans the positioning of these veins above heart level causes them to collapse. An alternative cerebral outflow pathway is the vertebral venous plexus. We set out to determine the effect of posture and central venous pressure (CVP) on the distribution of cerebral outflow over the internal jugular veins and the vertebral plexus, using a mathematical model. Input to the model was a data set of beat-to-beat cerebral blood flow velocity and CVP measurements in 10 healthy subjects, during baseline rest and a Valsalva manoeuvre in the supine and standing position. The model, consisting of 2 jugular veins, each a chain of 10 units containing nonlinear resistances and capacitors, and a vertebral plexus containing a resistance, showed blood flow mainly through the internal jugular veins in the supine position, but mainly through the vertebral plexus in the upright position. A Valsalva manoeuvre while standing completely re-opened the jugular veins. Results of ultrasound imaging of the right internal jugular vein cross-sectional area at the level of the laryngeal prominence in six healthy subjects, before and during a Valsalva manoeuvre in both body positions, correlate highly with model simulation of the jugular cross-sectional area (R2 = 0.97). The results suggest that the cerebral venous flow distribution depends on posture and CVP: in supine humans the internal jugular veins are the primary pathway. The internal jugular veins are collapsed in the standing position and blood is shunted to an alternative venous pathway, but a marked increase in CVP while standing completely re-opens the jugular veins. PMID:15284348

  7. Sad or fearful? The influence of body posture on adults' and children's perception of facial displays of emotion.

    Science.gov (United States)

    Mondloch, Catherine J

    2012-02-01

    The current research investigated the influence of body posture on adults' and children's perception of facial displays of emotion. In each of two experiments, participants categorized facial expressions that were presented on a body posture that was congruent (e.g., a sad face on a body posing sadness) or incongruent (e.g., a sad face on a body posing fear). Adults and 8-year-olds made more errors and had longer reaction times on incongruent trials than on congruent trials when judging sad versus fearful facial expressions, an effect that was larger in 8-year-olds. The congruency effect was reduced when faces and bodies were misaligned, providing some evidence for holistic processing. Neither adults nor 8-year-olds were affected by congruency when judging sad versus happy expressions. Evidence that congruency effects vary with age and with similarity of emotional expressions is consistent with dimensional theories and "emotional seed" models of emotion perception. 2011 Elsevier Inc. All rights reserved.

  8. Human Posture Identification Using a MIMO Array

    OpenAIRE

    Dai Sasakawa; Naoki Honma; Takeshi Nakayama; Shoichi Iizuka

    2018-01-01

    The elderly are constantly in danger of falling and injuring themselves without anyone realizing it. A safety-monitoring system based on microwaves can ease these concerns. The authors have proposed safety-monitoring systems that use multiple-input multiple-output (MIMO) radar to localize persons by capturing their biological activities such as respiration. However, our studies to date have focused on localization, which is easier to achieve than an estimation of human postures. This paper pr...

  9. Spinal lordosis optimizes the requirements for a stable erect posture.

    Science.gov (United States)

    Wagner, Heiko; Liebetrau, Anne; Schinowski, David; Wulf, Thomas; de Lussanet, Marc H E

    2012-04-16

    Lordosis is the bending of the lumbar spine that gives the vertebral column of humans its characteristic ventrally convex curvature. Infants develop lordosis around the time when they acquire bipedal locomotion. Even macaques develop a lordosis when they are trained to walk bipedally. The aim of this study was to investigate why humans and some animals develop a lumbar lordosis while learning to walk bipedally. We developed a musculoskeletal model of the lumbar spine, that includes an asymmetric, dorsally shifted location of the spinal column in the body, realistic moment arms, and physiological cross-sectional areas (PCSA) of the muscles as well as realistic force-length and force-velocity relationships. The model was used to analyze the stability of an upright body posture. According to our results, lordosis reduces the local joint torques necessary for an equilibrium of the vertebral column during an erect posture. At the same time lordosis increases the demands on the global muscles to provide stability. We conclude that the development of a spinal lordosis is a compromise between the stability requirements of an erect posture and the necessity of torque equilibria at each spinal segment.

  10. Spinal lordosis optimizes the requirements for a stable erect posture

    Directory of Open Access Journals (Sweden)

    Wagner Heiko

    2012-04-01

    Full Text Available Abstract Background Lordosis is the bending of the lumbar spine that gives the vertebral column of humans its characteristic ventrally convex curvature. Infants develop lordosis around the time when they acquire bipedal locomotion. Even macaques develop a lordosis when they are trained to walk bipedally. The aim of this study was to investigate why humans and some animals develop a lumbar lordosis while learning to walk bipedally. Results We developed a musculoskeletal model of the lumbar spine, that includes an asymmetric, dorsally shifted location of the spinal column in the body, realistic moment arms, and physiological cross-sectional areas (PCSA of the muscles as well as realistic force-length and force-velocity relationships. The model was used to analyze the stability of an upright body posture. According to our results, lordosis reduces the local joint torques necessary for an equilibrium of the vertebral column during an erect posture. At the same time lordosis increases the demands on the global muscles to provide stability. Conclusions We conclude that the development of a spinal lordosis is a compromise between the stability requirements of an erect posture and the necessity of torque equilibria at each spinal segment.

  11. The Correlation between Duration of Employment, Body Posture and Smoking Habit on Low Back Pain Incidence An Analytic Observational Study Among Taxi Driver in Semarang Municipality

    Directory of Open Access Journals (Sweden)

    Syifa Dian Firmanita

    2015-06-01

    Full Text Available Introduction: Low back pain ((LBP ranks as number two of neurological disease’s highest prevalence after cephalgia and migraine in Indonesia. Objective: This study aim to determine the relationship between duration of employment, body posture and smoking habit on the incidence of low back pain on taxi driver. Method: This research is an observational analytic cross sectional design. Seventyfour taxi drivers in Semarang municipality was screened with Beck’s Depression Inventory Scale to meet the inclusion and exclusion criteria. Respondents were then given Risk Factor of LBP questionnaire. Data were analyzed with a bivariate correlation test contingency coefficient to see the relationship between duration of employment, body posture, smoking habit and low back pain.Result: the taxi driver with duration of employment >10 years were moderate smokers and having astenis body posture. The analysis of correlation coefficients contingency test showed a significance relationship between duration of employment (p = 0,000, body posture (p = 0,000, and moderate smokers (p=0.010 with the incidence of LBP. Conclusion: the taxi driver with duration of employment >10 years with astenis body posture, and moderate smokers were posstively correlated with LBP.

  12. Cortical involvement in anticipatory postural reactions in man

    DEFF Research Database (Denmark)

    Petersen, Tue Hvass; Rosenberg, Kasper; Petersen, Nicolas Caesar

    2009-01-01

    All movements are accompanied by postural reactions which ensure that the balance of the body is maintained. It has not been resolved that to what extent the primary motor cortex and corticospinal tract are involved in the control of these reactions. Here, we investigated the contribution...... of the corticospinal tract to the activation of the soleus (SOL) muscle in standing human subjects (n = 10) in relation to voluntary heel raise, anticipatory postural activation of the soleus muscle when the subject pulled a handle and to reflex activation of the soleus muscle when the subject was suddenly pulled...... was observed prior to EMG onset for the external perturbation. These data suggest that the primary motor cortex is involved in activating the SOL muscle as part of an anticipatory postural reaction....

  13. Reversibility of pulmonary function after inhaling salbutamol in different doses and body postures in asthmatic children.

    Science.gov (United States)

    Visser, R; Kelderman, S; de Jongh, F H C; van der Palen, J; Thio, B J

    2015-10-01

    Pulmonary medication is often delivered in the form of medical aerosols designed for inhalation. Recently, breath actuated inhalers (BAI's) gained popularity as they can be used without spacers. A major drawback of BAI's is the impaction in the upper airway. Stretching the upper airway by a forward leaning body posture with the neck extended ("sniffing position") during inhalation may reduce upper airway impaction and improve pulmonary deposition. Aim of this study was to investigate the reversibility of lung function with different doses salbutamol inhaled with a BAI in the forward leaning posture compared to the standard posture in asthmatic children. 22 clinically stable asthmatic children, 5-14 years old, performed four reversibility measurements. Children inhaled 200 μg or 400 μg salbutamol with a BAI in the standard or in the forward leaning posture with the neck extended in a randomized single-blinded cross-over design. Reversibility of lung function after inhaling salbutamol in the forward leaning posture was not significantly different compared to inhalation in the standard posture. Mean FEV1 reversibility was significantly greater after inhaling 400 μg salbutamol compared to 200 μg salbutamol in the standard posture (9.4% ± 9.5% versus 4.5% ± 7.5%, difference 4.9% (95CI 0.9; 9.0%); p = 0.021). In clinically stable asthmatic children, inhalation of salbutamol with a BAI in a forward leaning posture does not increase reversibility of lung function. Inhalation of 400 μg compared to 200 μg salbutamol with a BAI does improve reversibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The effects of body posture, anatomy, age and pregnancy on the calculation of induced current densities at 50 Hz

    International Nuclear Information System (INIS)

    Dimbylow, P.; Findlay, R.

    2010-01-01

    This paper presents calculations of the induced current density in the body at 50 Hz from applied electric and magnetic fields. An extensive ensemble of 25 voxel models has been used to investigate the effects of body posture, anatomy, age and pregnancy. This set includes six adult models, eight child models and seven pregnant female models at various stages of gestation. The four postures investigated in the HPA adult model, NORMAN, were the standard position with the arms at the side, with the arms vertically above the head, the arms horizontally to the side and sitting. (authors)

  15. CAD Design of Human Male Body for Mass–Inertial Characteristics Studies

    Directory of Open Access Journals (Sweden)

    Nikolova Gergana

    2018-01-01

    Full Text Available The aim of the present research is to present a 16-segmental biomechanical model of the Bulgarian male to determine the mass-inertial characteristics of the body of the Bulgarian male based on parameters available in the literature and its 3D generation within SolidWorks software. The motivation of the research is to support mainly sport, rehabilitation, wearable robots and furniture design users. The proposed CAD model of the human body of men is verified against the analytical results from our previous investigation, as well as through comparison with data available in the provided references. In this paper we model two basic human body positions: standing position and sitting with thighs elevated. The comparison performed between our model results and data reported in literature gives us confidence that this model can be reliably used to calculate the mass-inertial characteristics of male body at any postures of the body that is of interest. Therefore, our model can be used to obtain data for positions which the human body has to take in everyday live, in sport, leisure, including space exploration, for investigating criminology cases – body fall, car crash, etc. The model is suitable for performing computer simulation in robotics, medicine, sport and other areas.

  16. Kinematics of the human mandible for different head postures.

    Science.gov (United States)

    Visscher, C M; Huddleston Slater, J J; Lobbezoo, F; Naeije, M

    2000-04-01

    The influence of head posture on movement paths of the incisal point (IP) and of the mandibular condyles during free open-close movements was studied. Ten persons, without craniomandibular or cervical spine disorders, participated in the study. Open close mandibular movements were recorded with the head in five postures, viz., natural head posture, forward head posture, military posture, and lateroflexion to the right and to the left side, using the Oral Kinesiologic Analysis System (OKAS-3D). This study showed that in a military head posture, the opening movement path of the incisal point is shifted anteriorly relative to the path in a natural head posture. In a forward head posture, the movement path is shifted posteriorly whereas during lateroflexion, it deviates to the side the head has moved to. Moreover, the intra-articular distance in the temporomandibular joint during closing is smaller with the head in military posture and greater in forward head posture, as compared to the natural head posture. During lateroflexion, the intra-articular distance on the ipsilateral side is smaller. The influence of head posture upon the kinematics of the mandible is probably a manifestation of differences in mandibular loading in the different head postures.

  17. The Impact of Feet Callosities, Arm Posture, and Usage of Electrolyte Wipes on Body Composition by Bioelectrical Impedance Analysis in Morbidly Obese Adults.

    Science.gov (United States)

    Roekenes, Jessica; Strømmen, Magnus; Kulseng, Bård; Martins, Catia

    2015-01-01

    This study evaluated the impact of feet callosities, arm posture, and use of electrolyte wipes on body composition measurements by bioelectrical impedance analysis (BIA) in morbidly obese adults. 36 morbidly obese patients (13 males, aged 28-70 years, BMI 41.6 ± 4.3 kg/m2) with moderate/severe feet callosities participated in this study. Body composition (percent body fat (%BF)) was measured while fasting using multi-frequency BIA (InBody 720®), before and after removal of callosities, with and without InBody® electrolyte wipes and custom-built auxiliary pads (to assess arm posture impact). Results from BIA were compared to air displacement plethysmography (ADP, BodPod®). Median %BF was significantly higher with auxiliary pads than without (50.1 (interquartile range 8.2) vs. 49.3 (interquartile range 9.1); p interquartile range 9.1) vs. 50.0 (interquartile range 7.9); NS) or use of wipes (49.6 (interquartile range 8.5) vs. 49.3 (interquartile range 9.1); NS). No differences in %BF were found between BIA and ADP (49.1 (IQR: 8.9) vs. 49.3 (IQR: 9.1); NS). Arm posture has a significant impact on %BF assessed by BIA, contrary to the presence of feet callosities and use of electrolyte wipes. Arm posture standardization during BIA for body composition assessment is, therefore, recommended. © 2015 S. Karger GmbH, Freiburg.

  18. The influence of gravity on regional lung blood flow in humans: SPECT in the upright and head-down posture.

    Science.gov (United States)

    Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J

    2017-06-01

    Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99m Tc or 113m In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.

  19. Postural Variables in Girls Practicing Volleyball

    Science.gov (United States)

    Grabara, Malgorzata; Hadzik, Andrzej

    2009-01-01

    Study aim: To assess body posture of young female volleyball players in relation to their untrained mates. Material and methods: A group of 42 volleyball players and another of 43 untrained girls, all aged 13-16 years were studied with respect to their body posture indices by using computer posturography. Spinal angles and curvatures were…

  20. Acute effect of whole body vibration on postural control in congenitally blind subjects: a preliminary evidence.

    Science.gov (United States)

    di Cagno, Alessandra; Giombini, Arrigo; Iuliano, Enzo; Moffa, Stefano; Caliandro, Tiziana; Parisi, Attilio; Borrione, Paolo; Calcagno, Giuseppe; Fiorilli, Giovanni

    2017-07-11

    The purpose of this study was to investigate the acute effects of whole body vibration at optimal frequency, on postural control in blind subjects. Twenty-four participants, 12 congenital blind males (Experimental Group), and 12 non-disabled males with no visual impairment (Control Groups) were recruited. The area of the ellipse and the total distance of the center of pressure displacements, as postural control parameters, were evaluated at baseline (T0), immediately after the vibration (T1), after 10 min (T10) and after 20 min (T20). Whole body vibration protocol consisted into 5 sets of 1 min for each vibration, with 1 min rest between each set on a vibrating platform. The total distance of center of pressure showed a significant difference (p < 0.05) amongst groups, while the area remained constant. No significant differences were detected among times of assessments, or in the interaction group × time. No impairments in static balance were found after an acute bout of whole body vibration at optimal frequency in blind subjects and, consequently, whole body vibration may be considered as a safe application in individuals who are blind.

  1. Effect of Body Mass Index on Postural Balance and Muscle Strength in Children Aged 8-10 years

    Directory of Open Access Journals (Sweden)

    Lucky Prasetiowati

    2017-04-01

    Full Text Available Background:Childhood overweight and obesity, which are considered as global epidemic, can be assessed using Body Mass Index (BMI. BMI difference can lead to anatomic changes due to an increased body load. This increase might also affect motor performance, including changes in postural balance and muscle strength. Aims and Objectives: to explain the influence of BMI on postural balance and lower limb muscle strength and to assess the correlation between those two variables in children aged 8-10 years. Material and methods:The sample consisted of 63 children aged 8-10 years, which were divided in 3 groups: BMI-normal, BMI-overweight, and BMI-obese. The postural balance was assessed using single leg balance test on MatScan and the Center Of Pressure (COP area was recorded. Isometric muscle strength of hip extensor and knee extensor were measured using a hand-held dynamometer. Results: Obese children had significantly largerCOP area than overweight (p = 0.004 and normal weight children (p = 0.000.There were no significant differences in hip extensor muscle strength between obese children with overweight and normal weight children (p=0.527. The absolute knee extensor muscle strength in obese group was significantly higher than the overweight and normal group (p = 0.003. However the relative muscle strength of lower limb for obese children was significantly lower than for normal weight. There was no significant correlation between absolute hip extensor and knee extensor muscles strength with COP area. Conclusion: Obese children have decreased postural balance and increased absolute knee extensormuscle strength significantly when compared to overweight and normal children. There is no significant correlation between postural balance and muscle strength.

  2. A research on the postural stability of a person wearing the lower limb exoskeletal robot by the HAT model.

    Science.gov (United States)

    Chang, Minsu; Kim, Yeongmin; Lee, Yoseph; Jeon, Doyoung

    2017-07-01

    This paper proposes a method of detecting the postural stability of a person wearing the lower limb exoskeletal robot with the HAT(Head-Arm-Trunk) model. Previous studies have shown that the human posture is stable when the CoM(Center of Mass) of the human body is placed on the BoS(Base of Support). In the case of the lower limb exoskeletal robot, the motion data, which are used for the CoM estimation, are acquired by sensors in the robot. The upper body, however, does not have sensors in each segment so that it may cause the error of the CoM estimation. In this paper, the HAT(Head-Arm-Trunk) model which combines head, arms, and torso into a single segment is considered because the motion of head and arms are unknown due to the lack of sensors. To verify the feasibility of HAT model, the reflecting markers are attached to each segment of the whole human body and the exact motion data are acquired by the VICON to compare the COM of the full body model and HAT model. The difference between the CoM with full body and that with HAT model is within 20mm for the various motions of head and arms. Based on the HAT model, the XCoM(Extrapolated Center of Mass) which includes the velocity of the CoM is used for prediction of the postural stability. The experiment of making unstable posture shows that the XCoM of the whole body based on the HAT model is feasible to detect the instance of postural instability earlier than the CoM by 20-250 msec. This result may be used for the lower limb exoskeletal robot to prepare for any action to prevent the falling down.

  3. Determining suitable dimensions for dairy goat feeding places by evaluating body posture and feeding reach.

    Science.gov (United States)

    Keil, Nina M; Pommereau, Marc; Patt, Antonia; Wechsler, Beat; Gygax, Lorenz

    2017-02-01

    Confined goats spend a substantial part of the day feeding. A poorly designed feeding place increases the risk of feeding in nonphysiological body postures, and even injury. Scientifically validated information on suitable dimensions of feeding places for loose-housed goats is almost absent from the literature. The aim of the present study was, therefore, to determine feeding place dimensions that would allow goats to feed in a species-appropriate, relaxed body posture. A total of 27 goats with a height at the withers of 62 to 80 cm were included in the study. Goats were tested individually in an experimental feeding stall that allowed the height difference between the feed table, the standing area of the forelegs, and a feeding area step (difference in height between forelegs and hind legs) to be varied. The goats accessed the feed table via a palisade feeding barrier. The feed table was equipped with recesses at varying distances to the feeding barrier (5-55 cm in 5-cm steps) at angles of 30°, 60°, 90°, 120°, or 150° (feeding angle), which were filled with the goats' preferred food. In 18 trials, balanced for order across animals, each animal underwent all possible combinations of feeding area step (3 levels: 0, 10, and 20 cm) and of difference in height between feed table and standing area of forelegs (6 levels: 0, 5, 10, 15, 20, and 25 cm). The minimum and maximum reach at which the animals could reach feed on the table with a relaxed body posture was determined for each combination. Statistical analysis was performed using mixed-effects models. The animals were able to feed with a relaxed posture when the feed table was at least 10 cm higher than the standing height of the goats' forelegs. Larger goats achieved smaller minimum reaches and minimum reach increased if the goats' head and neck were angled. Maximum reach increased with increasing height at withers and height of the feed table. The presence of a feeding area step had no influence on minimum and

  4. Muscular tension and body posture in relation to voice handicap and voice quality in teachers with persistent voice complaints.

    Science.gov (United States)

    Kooijman, P G C; de Jong, F I C R S; Oudes, M J; Huinck, W; van Acht, H; Graamans, K

    2005-01-01

    The aim of this study was to investigate the relationship between extrinsic laryngeal muscular hypertonicity and deviant body posture on the one hand and voice handicap and voice quality on the other hand in teachers with persistent voice complaints and a history of voice-related absenteeism. The study group consisted of 25 female teachers. A voice therapist assessed extrinsic laryngeal muscular tension and a physical therapist assessed body posture. The assessed parameters were clustered in categories. The parameters in the different categories represent the same function. Further a tension/posture index was created, which is the summation of the different parameters. The different parameters and the index were related to the Voice Handicap Index (VHI) and the Dysphonia Severity Index (DSI). The scores of the VHI and the individual parameters differ significantly except for the posterior weight bearing and tension of the sternocleidomastoid muscle. There was also a significant difference between the individual parameters and the DSI, except for tension of the cricothyroid muscle and posterior weight bearing. The score of the tension/posture index correlates significantly with both the VHI and the DSI. In a linear regression analysis, the combination of hypertonicity of the sternocleidomastoid, the geniohyoid muscles and posterior weight bearing is the most important predictor for a high voice handicap. The combination of hypertonicity of the geniohyoid muscle, posterior weight bearing, high position of the hyoid bone, hypertonicity of the cricothyroid muscle and anteroposition of the head is the most important predictor for a low DSI score. The results of this study show the higher the score of the index, the higher the score of the voice handicap and the worse the voice quality is. Moreover, the results are indicative for the importance of assessment of muscular tension and body posture in the diagnosis of voice disorders.

  5. The effects of brief swaying on postural control.

    Science.gov (United States)

    Pagé, Sara; Maheu, Maxime; Landry, Simon P; Champoux, François

    2017-12-06

    Postural control can be improved with balance training. However, the nature and duration of the training required to enhance posture remains unclear. We studied the effects of 5 min of a self-initiated balance exercise along a single axis on postural control in healthy individuals. Postural control was measured before and after a 5-min period where members of the experimental group were asked to lean their entire body forward and backward and members of the control group were asked to remain seated. A significant improvement for sway velocity, a postural control variable significantly associated with an increased risk of falls, was found in the experimental group following the body sway exercise. These data suggest that a basic exercise can rapidly improve postural control and reduce the risk of falls.

  6. On the importance of body posture and skin modelling with respect to in situ electric field strengths in magnetic field exposure scenarios

    Science.gov (United States)

    Schmid, Gernot; Hirtl, Rene

    2016-06-01

    The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the

  7. The Relationship Between Postural and Movement Stability.

    Science.gov (United States)

    Feldman, Anatol G

    2016-01-01

    Postural stabilization is provided by stretch reflexes, intermuscular reflexes, and intrinsic muscle properties. Taken together, these posture-stabilizing mechanisms resist deflections from the posture at which balance of muscle and external forces is maintained. Empirical findings suggest that for each muscle, these mechanisms become functional at a specific, spatial threshold-the muscle length or respective joint angle at which motor units begin to be recruited. Empirical data suggest that spinal and supraspinal centers can shift the spatial thresholds for a group of muscles that stabilized the initial posture. As a consequence, the same stabilizing mechanisms, instead of resisting motion from the initial posture, drive the body to another stable posture. In other words by shifting spatial thresholds, the nervous system converts movement resisting to movement-producing mechanisms. It is illustrated that, contrary to conventional view, this control strategy allows the system to transfer body balance to produce locomotion and other actions without loosing stability at any point of them. It also helps orient posture and movement with the direction of gravity. It is concluded that postural and movement stability is provided by a common mechanism.

  8. Neural substrates of interpreting actions and emotions from body postures.

    Science.gov (United States)

    Kana, Rajesh K; Travers, Brittany G

    2012-04-01

    Accurately reading the body language of others may be vital for navigating the social world, and this ability may be influenced by factors, such as our gender, personality characteristics and neurocognitive processes. This fMRI study examined the brain activation of 26 healthy individuals (14 women and 12 men) while they judged the action performed or the emotion felt by stick figure characters appearing in different postures. In both tasks, participants activated areas associated with visual representation of the body, motion processing and emotion recognition. Behaviorally, participants demonstrated greater ease in judging the physical actions of the characters compared to judging their emotional states, and participants showed more activation in areas associated with emotion processing in the emotion detection task, whereas they showed more activation in visual, spatial and action-related areas in the physical action task. Gender differences emerged in brain responses, such that men showed greater activation than women in the left dorsal premotor cortex in both tasks. Finally, participants higher in self-reported empathy demonstrated greater activation in areas associated with self-referential processing and emotion interpretation. These results suggest that empathy levels and sex of the participant may affect neural responses to emotional body language.

  9. Postural disorders and spatial neglect in stroke patients: a strong association.

    Science.gov (United States)

    Pérennou, Dominic

    2006-01-01

    In this paper we analyse the arguments for a strong association between spatial neglect and postural disorders and attempt to better understand the mechanisms which underlie that. We first provide a general overview of the available tools for a rational assessment of postural control in a clinical context. We then analyse the arguments in favour of a close relationship, although not necessarily causal, between spatial neglect and: 1) body orientation with respect to gravity (including verticality perception i.e. the visual vertical, the haptic vertical, and the postural vertical); 2) body stabilisation with respect to the base of support; 3) posturographic features of stroke patients; 4) and finally their postural disability in daily life. This second part of the paper is based both on the literature review and on results of our current research. Neglect patients show a dramatic postural disability, due both to problems in body orientation with respect to gravity and to problems in body stabilisation. It might be that these problems are partly caused by a neglect phenomenon bearing on graviceptive (somaesthetic > vestibular) and visual information serving postural control. This could correspond to a kind of postural neglect involving both the bodily and nonbodily domains of spatial neglect. The existence of distorsion(s) in the body scheme are also probably involved, especially to explain the weight-bearing asymmetry in standing, and probably an impaired multisegmental postural coordination leading to an impaired body stabilisation. The present paper explains why neglect patients show longer/worse recovery of postural-walking autonomy than other stroke patients.

  10. A Methodology for Investigating Adaptive Postural Control

    Science.gov (United States)

    McDonald, P. V.; Riccio, G. E.

    1999-01-01

    Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of

  11. Models of Postural Control: Shared Variance in Joint and COM Motions.

    Directory of Open Access Journals (Sweden)

    Melissa C Kilby

    Full Text Available This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM motions was analyzed using multivariate canonical correlation analysis (CCA. The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF, namely, an inverted pendulum ankle model (2DOF, ankle-hip model (4DOF, ankle-knee-hip model (5DOF, and ankle-knee-hip-neck model (7DOF. Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.

  12. Common postural defects among music students.

    Science.gov (United States)

    Blanco-Piñeiro, Patricia; Díaz-Pereira, M Pino; Martínez, Aurora

    2015-07-01

    Postural quality during musical performance affects both musculoskeletal health and the quality of the performance. In this study we examined the posture of 100 students at a Higher Conservatory of Music in Spain. By analysing video tapes and photographs of the students while performing, a panel of experts extracted values of 11 variables reflecting aspects of overall postural quality or the postural quality of various parts of the body. The most common postural defects were identified, together with the situations in which they occur. It is concluded that most students incur in unphysiological postures during performance. It is hoped that use of the results of this study will help correct these errors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. THE TEACHERS ROLE IN FORMING PROPER BODY POSTURE

    Directory of Open Access Journals (Sweden)

    Zoran Bogdanović

    2007-05-01

    Full Text Available Being acquainted and well aware of the presence of physical deformation in school population, this study is based on the research of postural deformity of the pupils of the 5th grade of elementary school and determination of dependance of deformations appearance in relation to frequency of remonstration and indication to correct sitting position from proffesors’ perspective. The complete program content is conducted in the territory of the city of Kragujevac in several elementary schools comprising 299 students of the 5th grade. The object was to determine the number of students with kyphotic and lordotic deformity, to determine the presence of deformation in depandance of gender and to determine the presence of kyphotic and lordotic deformity in depandance of the frequency of proffesors indication to improper sitting. We can notice higher presence of kyphotic deformity at the probationers of male population that it is the case with female population while the higher presence of lordotic deformity is at female population.The highest number of probationers have reported that none of the proffesors warn them about proper sitting. The measures inside the groups sorted by gender qualifi cation, indicate on high percentage of both boys and girls who are not warned on proper sitting. Also, inside the groups of improper body holders, we can notice the most signifi cant kyphotic and lordotic deformity in the category of students who are never warned to sit properly. These indicators report us that is necessary to invest much more work on the education of parents and children as well as school stuff at the preschool and school institutions which would result in reducing the appearence and development of postural deformity at the population who is more liable to transformations of such kind.

  14. The influence of body posture on lithium clearance

    DEFF Research Database (Denmark)

    Kamper, A L; Strandgaard, S; Holstein-Rathlou, N H

    1988-01-01

    measured four times at 1-week intervals: two in the supine and one in the sitting position, and one when the subject was walking around. Glomerular filtration rate was not influenced by posture changes. On the contrary, lithium clearance, which in the supine position was 30 +/- 9 ml/min (1 SD), tended...... during moderate physical activity. Hence, when renal tubular function is studied with the lithium clearance method, standardization of posture and physical activity is important. In such studies physical activity such as walking should particularly be avoided....

  15. Posture-specific phantoms representing female and male adults in Monte Carlo-based simulations for radiological protection

    Science.gov (United States)

    Cassola, V. F.; Kramer, R.; Brayner, C.; Khoury, H. J.

    2010-08-01

    Does the posture of a patient have an effect on the organ and tissue absorbed doses caused by x-ray examinations? This study aims to find the answer to this question, based on Monte Carlo (MC) simulations of commonly performed x-ray examinations using adult phantoms modelled to represent humans in standing as well as in the supine posture. The recently published FASH (female adult mesh) and MASH (male adult mesh) phantoms have the standing posture. In a first step, both phantoms were updated with respect to their anatomy: glandular tissue was separated from adipose tissue in the breasts, visceral fat was separated from subcutaneous fat, cartilage was segmented in ears, nose and around the thyroid, and the mass of the right lung is now 15% greater than the left lung. The updated versions are called FASH2_sta and MASH2_sta (sta = standing). Taking into account the gravitational effects on organ position and fat distribution, supine versions of the FASH2 and the MASH2 phantoms have been developed in this study and called FASH2_sup and MASH2_sup. MC simulations of external whole-body exposure to monoenergetic photons and partial-body exposure to x-rays have been made with the standing and supine FASH2 and MASH2 phantoms. For external whole-body exposure for AP and PA projection with photon energies above 30 keV, the effective dose did not change by more than 5% when the posture changed from standing to supine or vice versa. Apart from that, the supine posture is quite rare in occupational radiation protection from whole-body exposure. However, in the x-ray diagnosis supine posture is frequently used for patients submitted to examinations. Changes of organ absorbed doses up to 60% were found for simulations of chest and abdomen radiographs if the posture changed from standing to supine or vice versa. A further increase of differences between posture-specific organ and tissue absorbed doses with increasing whole-body mass is to be expected.

  16. Short-term effects of whole-body vibration on postural control in unilateral chronic stroke patients: preliminary evidence.

    NARCIS (Netherlands)

    Nes, I.J.W. van; Geurts, A.C.H.; Hendricks, H.T.; Duysens, J.E.J.

    2004-01-01

    The short-term effects of whole-body vibration as a novel method of somatosensory stimulation on postural control were investigated in 23 chronic stroke patients. While standing on a commercial platform, patients received 30-Hz oscillations at 3 mm of amplitude in the frontal plane. Balance was

  17. Considerations on the correlation between real body and body image

    OpenAIRE

    Beatrice ABALAȘEI; Florin TROFIN

    2017-01-01

    very individual in the society has a representation of it’s own body in relation to the spatial cues, postural cues, time cues, etc., considered by specialists the body scheme. Throughout its development, the human being goes through different stages of organization of both the image the and body scheme. We start carrying out this study from the idea that there could be, in male individuals, a link between body representation (own image projected outwardly apparent by reference to an image pr...

  18. Catecholamine responses to changes in posture during human pregnancy.

    Science.gov (United States)

    Whittaker, P G; Gerrard, J; Lind, T

    1985-06-01

    Human pregnancy may induce changes in the sensitivity of the cardiovascular system to endogenous catecholamines. This was investigated in multigravid women with little likelihood of unsuspected vascular disease. The responses of blood pressure, pulse rate, plasma noradrenaline and adrenaline to a change in posture from semi-recumbency to standing were assessed in six normotensive women at 36 weeks gestation and in six non-pregnant control subjects. Standing for 10 min caused a surge in blood pressure, pulse rate and plasma noradrenaline in non-pregnant women. The pregnant women, whose basal levels of noradrenaline were higher than those in non-pregnant women, showed a slower noradrenergic response to postural change, and this response had less effect upon the cardiovascular indices. Blood pressure dropped immediately on standing and pulse rate remained unaffected throughout. It is suggested that some women may maintain a non-pregnant level of pressor sensitivity during pregnancy and thereby become hypertensive.

  19. [Self-evaluation of posture by elderly people with or without thoracic kyphosis].

    Science.gov (United States)

    Gasparotto, Lívia Pimenta Renó; Reis, Camila Costa Ibiapina; Ramos, Luiz Roberto; Santos, José Francisco Quirino Dos

    2012-03-01

    This article lists the differences between self-perception of body posture among the elderly suffering from postural alterations or not, in order to ascertain whether self-evaluation of posture can lead to preventive measures. Eighteen cases from the elderly population participated in the EPIDOSO project at UNIFESP and were subjected to postural evaluation. Postures were photographed and copies given to the participants and their subsequent comments were analyzed by the qualitative method. The narratives were taped and cataloguedusingthe technique of theoretical axial and selective coding from the perspective of symbolic interactionism. A passive attitude was identified among the elderly in relation to postural alterations. There is a distortion of body image by those with postural deviation. Participants with adequate spinal alignment were more conscious about body posture and the importance of this being assimilated in the phases prior to aging. The adoption of postural self-care seems to occur in the earlier stages of aging and preventive measures should be implemented at this stage. Lack of concern about posture is linked to the concept of the elderly regarding the notion that aging is, in itself, the accumulation of inevitably simultaneous or successive dysfunctions.

  20. Eye Movements Affect Postural Control in Young and Older Females.

    Science.gov (United States)

    Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  1. Functional synergies underlying control of upright posture during changes in head orientation.

    Directory of Open Access Journals (Sweden)

    Eunse Park

    Full Text Available BACKGROUND: Studies of human upright posture typically have stressed the need to control ankle and hip joints to achieve postural stability. Recent studies, however, suggest that postural stability involves multi degree-of-freedom (DOF coordination, especially when performing supra-postural tasks. This study investigated kinematic synergies related to control of the body's position in space (two, four and six DOF models and changes in the head's orientation (six DOF model. METHODOLOGY/PRINCIPAL FINDINGS: Subjects either tracked a vertically moving target with a head-mounted laser pointer or fixated a stationary point during 4-min trials. Uncontrolled manifold (UCM analysis was performed across tracking cycles at each point in time to determine the structure of joint configuration variance related to postural stability or tracking consistency. The effect of simulated removal of covariance among joints on that structure was investigated to further determine the role of multijoint coordination. Results indicated that cervical joint motion was poorly coordinated with other joints to stabilize the position of the body center of mass (CM. However, cervical joints were coordinated in a flexible manner with more caudal joints to achieve consistent changes in head orientation. CONCLUSIONS/SIGNIFICANCE: An understanding of multijoint coordination requires reference to the stability/control of important performance variables. The nature of that coordination differs depending on the reference variable. Stability of upright posture primarily involved multijoint coordination of lower extremity and lower trunk joints. Consistent changes in the orientation of the head, however, required flexible coordination of those joints with motion of the cervical spine. A two-segment model of postural control was unable to account for the observed stability of the CM position during the tracking task, further supporting the need to consider multijoint coordination to

  2. Characterizing the human postural control system using detrended fluctuation analysis

    Science.gov (United States)

    Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro

    2010-01-01

    Detrended fluctuation analysis is used to study the behaviour of the time series of the position of the center of pressure, output from the activity of a human postural control system. The results suggest that these trajectories present a crossover in their scaling properties from persistent (for high frequencies, short-range time scale) to anti-persistent (for low frequencies, long-range time scale) behaviours. The values of the scaling exponent found for the persistent parts of the trajectories are very similar for all the cases analysed. The similarity of the results obtained for the measurements done with both eyes open and both eyes closed indicate either that the visual system may be disregarded by the postural control system, while maintaining quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with this technique.

  3. Effect of table top slope and height on body posture and muscular activity pattern.

    Science.gov (United States)

    Hassaïne, M; Hamaoui, A; Zanone, P-G

    2015-04-01

    The objective of this study was to assess the effect of table top slope and height on body posture and muscular activity pattern. Twelve asymptomatic participants performed a 5-min reading task while sitting, in six experimental conditions manipulating the table top slope (20° backward slope, no slope) and its height (low, medium, up). EMGs recordings were taken on 9 superficial muscles located at the trunk and shoulder level, and the angular positions of the head, trunk and pelvis were assessed using an inertial orientation system. Results revealed that the sloping table top was associated with a higher activity of deltoideus pars clavicularis (P<0.05) and a smaller flexion angle of the head (P<0.05). A tentative conclusion is that a sloping table top induces a more erect posture of the head and the neck, but entails an overload of the shoulder, which might be harmful on the long run. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Reflex control of the spine and posture: a review of the literature from a chiropractic perspective

    Directory of Open Access Journals (Sweden)

    Schlappi Mark

    2005-08-01

    Full Text Available Abstract Objective This review details the anatomy and interactions of the postural and somatosensory reflexes. We attempt to identify the important role the nervous system plays in maintaining reflex control of the spine and posture. We also review, illustrate, and discuss how the human vertebral column develops, functions, and adapts to Earth's gravity in an upright position. We identify functional characteristics of the postural reflexes by reporting previous observations of subjects during periods of microgravity or weightlessness. Background Historically, chiropractic has centered around the concept that the nervous system controls and regulates all other bodily systems; and that disruption to normal nervous system function can contribute to a wide variety of common ailments. Surprisingly, the chiropractic literature has paid relatively little attention to the importance of neurological regulation of static upright human posture. With so much information available on how posture may affect health and function, we felt it important to review the neuroanatomical structures and pathways responsible for maintaining the spine and posture. Maintenance of static upright posture is regulated by the nervous system through the various postural reflexes. Hence, from a chiropractic standpoint, it is clinically beneficial to understand how the individual postural reflexes work, as it may explain some of the clinical presentations seen in chiropractic practice. Method We performed a manual search for available relevant textbooks, and a computer search of the MEDLINE, MANTIS, and Index to Chiropractic Literature databases from 1970 to present, using the following key words and phrases: "posture," "ocular," "vestibular," "cervical facet joint," "afferent," "vestibulocollic," "cervicocollic," "postural reflexes," "spaceflight," "microgravity," "weightlessness," "gravity," "posture," and "postural." Studies were selected if they specifically tested any or

  5. Development of low postural tone compensatory patterns in children - theoretical basis.

    Science.gov (United States)

    Gogola, Anna; Saulicz, Edward; Kuszewski, Michał; Matyja, Małgorzata; Myśliwiec, Andrzej

    2014-01-01

    Neurological literature indicates the existence of children with low postural tone without association with central nervous system damage. This fact induces to think about mechanisms, which allow these children to maintain upright posture. There is a suspicion that compensatory mechanism included in this process, enables to achieve upright posture, but at expense of body posture quality. Observations of children's developmental stages caused determination of some postural tone area, which comprise both children with normotonia and with low postural tone without characteristics of central nervous system (CNS) damage. Set of specific qualities allows determination of two types of low postural tone: spastoidal and atetoidal type. Spastoidal type is characterized by deep trunk muscles (local) low postural tone compensated by excessive tension of superficial muscles (global). Atetoidal type includes children with low postural tone in both deep and superficial muscles. At inefficient active subsystem, verticalization proceeds at excessive use of passive subsystem qualities, that is meniscus, ligament, bone shape, and muscles passive features. From neurodevelopmental point of view compensatory mechanisms can be used in children with low postural tone in order to achieve upright posture, but at expense of body posture quality.

  6. An investigation of rugby scrimmaging posture and individual maximum pushing force.

    Science.gov (United States)

    Wu, Wen-Lan; Chang, Jyh-Jong; Wu, Jia-Hroung; Guo, Lan-Yuen

    2007-02-01

    Although rugby is a popular contact sport and the isokinetic muscle torque assessment has recently found widespread application in the field of sports medicine, little research has examined the factors associated with the performance of game-specific skills directly by using the isokinetic-type rugby scrimmaging machine. This study is designed to (a) measure and observe the differences in the maximum individual pushing forward force produced by scrimmaging in different body postures (3 body heights x 2 foot positions) with a self-developed rugby scrimmaging machine and (b) observe the variations in hip, knee, and ankle angles at different body postures and explore the relationship between these angle values and the individual maximum pushing force. Ten national rugby players were invited to participate in the examination. The experimental equipment included a self-developed rugby scrimmaging machine and a 3-dimensional motion analysis system. Our results showed that the foot positions (parallel and nonparallel foot positions) do not affect the maximum pushing force; however, the maximum pushing force was significantly lower in posture I (36% body height) than in posture II (38%) and posture III (40%). The maximum forward force in posture III (40% body height) was also slightly greater than for the scrum in posture II (38% body height). In addition, it was determined that hip, knee, and ankle angles under parallel feet positioning are factors that are closely negatively related in terms of affecting maximum pushing force in scrimmaging. In cross-feet postures, there was a positive correlation between individual forward force and hip angle of the rear leg. From our results, we can conclude that if the player stands in an appropriate starting position at the early stage of scrimmaging, it will benefit the forward force production.

  7. Whole-body vibration versus proprioceptive training on postural control in post-menopausal osteopenic women.

    Science.gov (United States)

    Stolzenberg, Nils; Belavý, Daniel L; Rawer, Rainer; Felsenberg, Dieter

    2013-07-01

    To prevent falls in the elderly, especially those with low bone density, is it necessary to maintain muscle coordination and balance. The aim of this study was to examine the effect of classical balance training (BAL) and whole-body vibration training (VIB) on postural control in post-menopausal women with low bone density. Sixty-eight subjects began the study and 57 completed the nine-month intervention program. All subjects performed resistive exercise and were randomized to either the BAL- (N=31) or VIB-group (N=26). The BAL-group performed progressive balance and coordination training and the VIB-group underwent, in total, four minutes of vibration (depending on exercise; 24-26Hz and 4-8mm range) on the Galileo Fitness. Every month, the performance of a single leg stance task on a standard unstable surface (Posturomed) was tested. At baseline and end of the study only, single leg stance, Romberg-stance, semi-tandem-stance and tandem-stance were tested on a ground reaction force platform (Leonardo). The velocity of movement on the Posturomed improved by 28.3 (36.1%) (ppostural control in post-menopausal women with low bone density. The current study could not provide evidence for a significantly different impact of whole-body vibration or balance training on postural control. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. [Head posture in orthodontics: physiopathology and clinical aspects 2].

    Science.gov (United States)

    Caltabiano, M; Verzi, P; Scire Scappuzzo, G

    1989-01-01

    The Authors review in orthodontic respects present knowledges about head posture involvement in craniofacial morphogenesis and pathology. Relationships between craniofacial morphology, craniocervical posture, craniomandibular posture, cervical spine curvature, hyoid bone position and posture of whole body in space are shown, in attempt to explain conditions such as "forward head posture", mouth breathing and some occlusal disorders. Main methods to evaluate craniocervical relations on lateral skull radiographs are analysed. Pathogenesis of pain syndromes associated with abnormal craniocervical and craniomandibular mechanics are also briefly treated.

  9. Acute Effects of Posture Shirts on Rounded-Shoulder and Forward-Head Posture in College Students.

    Science.gov (United States)

    Manor, John; Hibberd, Elizabeth; Petschauer, Meredith; Myers, Joseph

    2016-12-01

    Rounded-shoulder and forward-head posture can be contributing factors to shoulder pain. Corrective techniques such as manual therapy and exercise have been shown to improve these altered postures, but there is little evidence that corrective garments such as posture shirts can alter posture. To determine the acute effects of corrective postureshirt use on rounded-shoulder and forward-head posture in asymptomatic college students. Repeated-measures intervention study with counterbalanced conditions. Research laboratory. 24 members of the general student body of a university, 18-25 y old, with a forward shoulder angle (FSA) >52° and no history of upper-extremity surgery, scoliosis, active shoulder pain, or shoulder pain in the previous 3 mo that restricted participation for 3 consecutive days. Photographic posture assessment under a control condition, under a sham or treatment condition (counterbalanced), under another control condition, and treatment or sham. FSA and forward head angle (FHA) calculated from a lateral photograph. FSA decreased relative to the control condition while participants wore the sham shirt (P = .029) but not the corrective posture shirt (P = 1.00). FHA was unchanged between groups (P = .371). Application of a corrective posture shirt did not acutely alter FSA or FHA, while application of a sham shirt may decrease FSA at rest.

  10. Validity Evaluation of the Assessment Method for Postural Loading on the Upper Body in Printing Industry

    Directory of Open Access Journals (Sweden)

    Mohammad Khandan

    2016-07-01

    Full Text Available Background and Objectives: Musculoskeletal disorders and injuries are known as a global occupational challenge. These injuries are more are concentrated in the upper limb. There are several methods to assess this kind of disorders, each of which have different efficiencies for various jobs based on their strengths and weaknesses. This study aimed to assess the validity of LUBA method in order to evaluate risk factors for musculoskeletal disorders in a printing industry in Qom province, 2014. Methods: In this descriptive cross-sectional study, all operational workers (n=94 were investigated in 2014. Nordic Musculoskeletal Questionnaire (NMQ was used to collect data on musculoskeletal disorders. We also used LUBA method to analyze postures in four different parts of the body (neck, shoulder, elbow, and wrist. The obtained data were analyzed using Mann-Whitney, Kruskal Wallis, and Kappa agreement tests. Results: Lumbar region of back with 35.1% prevalence had the most problems. The results of LUBA method showed that most postures were located at the second corrective action level, and need further studies. Agreement between assessment of shoulder posture and its disorders was significant (p0.05.  Conclusion: According to the results of this study on reliability and predictive validity of the LUBA method in printing industry, it can be concluded that this method is not a reliable method for posture assessment; however, further and more comprehensive studies are recommended.  

  11. Posture-based processing in visual short-term memory for actions.

    Science.gov (United States)

    Vicary, Staci A; Stevens, Catherine J

    2014-01-01

    Visual perception of human action involves both form and motion processing, which may rely on partially dissociable neural networks. If form and motion are dissociable during visual perception, then they may also be dissociable during their retention in visual short-term memory (VSTM). To elicit form-plus-motion and form-only processing of dance-like actions, individual action frames can be presented in the correct or incorrect order. The former appears coherent and should elicit action perception, engaging both form and motion pathways, whereas the latter appears incoherent and should elicit posture perception, engaging form pathways alone. It was hypothesized that, if form and motion are dissociable in VSTM, then recognition of static body posture should be better after viewing incoherent than after viewing coherent actions. However, as VSTM is capacity limited, posture-based encoding of actions may be ineffective with increased number of items or frames. Using a behavioural change detection task, recognition of a single test posture was significantly more likely after studying incoherent than after studying coherent stimuli. However, this effect only occurred for spans of two (but not three) items and for stimuli with five (but not nine) frames. As in perception, posture and motion are dissociable in VSTM.

  12. Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness.

    Science.gov (United States)

    Naito, Eiichi; Morita, Tomoyo; Amemiya, Kaoru

    2016-03-01

    The human brain can generate a continuously changing postural model of our body. Somatic (proprioceptive) signals from skeletal muscles and joints contribute to the formation of the body representation. Recent neuroimaging studies of proprioceptive bodily illusions have elucidated the importance of three brain systems (motor network, specialized parietal systems, right inferior fronto-parietal network) in the formation of the human body representation. The motor network, especially the primary motor cortex, processes afferent input from skeletal muscles. Such information may contribute to the formation of kinematic/dynamic postural models of limbs, thereby enabling fast online feedback control. Distinct parietal regions appear to play specialized roles in the transformation/integration of information across different coordinate systems, which may subserve the adaptability and flexibility of the body representation. Finally, the right inferior fronto-parietal network, connected by the inferior branch of the superior longitudinal fasciculus, is consistently recruited when an individual experiences various types of bodily illusions and its possible roles relate to corporeal awareness, which is likely elicited through a series of neuronal processes of monitoring and accumulating bodily information and updating the body representation. Because this network is also recruited when identifying one's own features, the network activity could be a neuronal basis for self-consciousness. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  13. A new approach for assessing sleep duration and postures from ambulatory accelerometry.

    Directory of Open Access Journals (Sweden)

    Cornelia Wrzus

    Full Text Available Interest in the effects of sleeping behavior on health and performance is continuously increasing-both in research and with the general public. Ecologically valid investigations of this research topic necessitate the measurement of sleep within people's natural living contexts. We present evidence that a new approach for ambulatory accelerometry data offers a convenient, reliable, and valid measurement of both people's sleeping duration and quality in their natural environment. Ninety-two participants (14-83 years wore acceleration sensors on the sternum and right thigh while spending the night in their natural environment and following their normal routine. Physical activity, body posture, and change in body posture during the night were classified using a newly developed classification algorithm based on angular changes of body axes. The duration of supine posture and objective indicators of sleep quality showed convergent validity with self-reports of sleep duration and quality as well as external validity regarding expected age differences. The algorithms for classifying sleep postures and posture changes very reliably distinguished postures with 99.7% accuracy. We conclude that the new algorithm based on body posture classification using ambulatory accelerometry data offers a feasible and ecologically valid approach to monitor sleeping behavior in sizable and heterogeneous samples at home.

  14. Why do sleeping nematodes adopt a hockey-stick-like posture?

    Directory of Open Access Journals (Sweden)

    Nora Tramm

    Full Text Available A characteristic posture is considered one of the behavioral hallmarks of sleep, and typically includes functional features such as support for the limbs and shielding of sensory organs. The nematode C. elegans exhibits a sleep-like state during a stage termed lethargus, which precedes ecdysis at the transition between larval stages. A hockey-stick-like posture is commonly observed during lethargus. What might its function be? It was previously noted that during lethargus, C. elegans nematodes abruptly rotate about their longitudinal axis. Plausibly, these "flips" facilitate ecdysis by assisting the disassociation of the old cuticle from the new one. We found that body-posture during lethargus was established using a stereotypical motor program and that body bends during lethargus quiescence were actively maintained. Moreover, flips occurred almost exclusively when the animals exhibited a single body bend, preferentially in the anterior or mid section of the body. We describe a simple biomechanical model that imposes the observed lengths of the longitudinally directed body-wall muscles on an otherwise passive elastic rod. We show that this minimal model is sufficient for generating a rotation about the anterior-posterior body axis. Our analysis suggests that posture during lethargus quiescence may serve a developmental role in facilitating flips and that the control of body wall muscles in anterior and posterior body regions are distinct.

  15. The influence of body posture on lithium clearance

    DEFF Research Database (Denmark)

    Kamper, A L; Strandgaard, S; Holstein-Rathlou, N H

    1988-01-01

    To establish appropriate standard circumstances for lithium clearance measurements, a study was undertaken in 12 healthy volunteers. In each subject, the glomerular filtration rate (GFR), as estimated by [51Cr]EDTA plasma clearance, and the renal clearances of lithium, sodium and potassium were...... during moderate physical activity. Hence, when renal tubular function is studied with the lithium clearance method, standardization of posture and physical activity is important. In such studies physical activity such as walking should particularly be avoided....... measured four times at 1-week intervals: two in the supine and one in the sitting position, and one when the subject was walking around. Glomerular filtration rate was not influenced by posture changes. On the contrary, lithium clearance, which in the supine position was 30 +/- 9 ml/min (1 SD), tended...

  16. The influence of body posture on lithium clearance

    DEFF Research Database (Denmark)

    Kamper, A L; Strandgaard, S; Holstein-Rathlou, N H

    1988-01-01

    To establish appropriate standard circumstances for lithium clearance measurements, a study was undertaken in 12 healthy volunteers. In each subject, the glomerular filtration rate (GFR), as estimated by [51Cr]EDTA plasma clearance, and the renal clearances of lithium, sodium and potassium were...... measured four times at 1-week intervals: two in the supine and one in the sitting position, and one when the subject was walking around. Glomerular filtration rate was not influenced by posture changes. On the contrary, lithium clearance, which in the supine position was 30 +/- 9 ml/min (1 SD), tended...... during moderate physical activity. Hence, when renal tubular function is studied with the lithium clearance method, standardization of posture and physical activity is important. In such studies physical activity such as walking should particularly be avoided....

  17. Posture recognition based on fuzzy logic for home monitoring of the elderly.

    Science.gov (United States)

    Brulin, Damien; Benezeth, Yannick; Courtial, Estelle

    2012-09-01

    We propose in this paper a computer vision-based posture recognition method for home monitoring of the elderly. The proposed system performs human detection prior to the posture analysis; posture recognition is performed only on a human silhouette. The human detection approach has been designed to be robust to different environmental stimuli. Thus, posture is analyzed with simple and efficient features that are not designed to manage constraints related to the environment but only designed to describe human silhouettes. The posture recognition method, based on fuzzy logic, identifies four static postures and is robust to variation in the distance between the camera and the person, and to the person's morphology. With an accuracy of 74.29% of satisfactory posture recognition, this approach can detect emergency situations such as a fall within a health smart home.

  18. Influence of Posture and Frequency Modes in Total Body Water Estimation Using Bioelectrical Impedance Spectroscopy in Boys and Adult Males

    Directory of Open Access Journals (Sweden)

    Masaharu Kagawa

    2014-05-01

    Full Text Available The aim of the study was to examine differences in total body water (TBW measured using single-frequency (SF and multi-frequency (MF modes of bioelectrical impedance spectroscopy (BIS in children and adults measured in different postures using the deuterium (2H dilution technique as the reference. Twenty-three boys and 26 adult males underwent assessment of TBW using the dilution technique and BIS measured in supine and standing positions using two frequencies of the SF mode (50 kHz and 100 kHz and the MF mode. While TBW estimated from the MF mode was comparable, extra-cellular fluid (ECF and intra-cellular fluid (ICF values differed significantly (p < 0.01 between the different postures in both groups. In addition, while estimated TBW in adult males using the MF mode was significantly (p < 0.01 greater than the result from the dilution technique, TBW estimated using the SF mode and prediction equation was significantly (p < 0.01 lower in boys. Measurement posture may not affect estimation of TBW in boys and adult males, however, body fluid shifts may still occur. In addition, technical factors, including selection of prediction equation, may be important when TBW is estimated from measured impedance.

  19. Postural Sway Parameters and Gait Symmetry in Preschool Children: Cross-sectional study

    Directory of Open Access Journals (Sweden)

    Fabiane E de Sá

    Full Text Available Abstract The most important function of posture is to ensure the maintenance of control during the start and the continuation of human movement, moreover, posture serves as a reference for the production of precise movements. The aim of this study was to relate the postural sway parameters and gait symmetry in preschool children.This study is a cross-sectional study, conducted in 49 children with a mean age of 4.65 ± 0.44 years. Initially, height and body mass of children were measured using anthropometric scales. Next, an electronic baropodometer was used to evaluate the distribution of dynamic plantar pressure (gait and stabilometry (balance.A Student t test or Mann-Whitney test for comparing two groups was used. To correlate variables, a Pearson's correlation or Spearman's correlation coefficient was used. The stabilometric parameters showed no significant difference between an eyes open test and eyes closed test in preschool child. We found a moderate relationship between axis inclination and cadence symmetry (R=0.40;p=0.007. Postural sway parameters have relationship cadence symmetry of the gait in preschool children.

  20. Recognition of dance-like actions: memory for static posture or dynamic movement?

    OpenAIRE

    Vicary, S.A.; Robbins, R.A.; Calvo-Merino, B.; Stevens, C.J.

    2014-01-01

    Dance-like actions are complex visual stimuli involving multiple changes in body posture across time and space. Visual perception research has demonstrated a difference between the processing of dynamic body movement and the processing of static body posture. Yet, it is unclear whether this processing dissociation continues during the retention of body movement and body form in visual working memory (VWM). When observing a dance-like action, it is likely that static snapshot images of body po...

  1. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    Science.gov (United States)

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. (c) 2008 Wiley-Liss, Inc.

  2. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults.

    Science.gov (United States)

    Paillard, Thierry

    2017-01-01

    Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers.

  3. Does the centre of mass remain stable during complex human postural equilibrium tasks in weightlessness?

    Science.gov (United States)

    Stapley, Paul; Pozzo, Thierry

    In normal gravity conditions the execution of voluntary movement involves the displacement of body segments as well as the maintenance of a stable reference value for equilibrium control. It has been suggested that centre of mass (CM) projection within the supporting base (BS) is the stabilised reference for voluntary action, and is conserved in weightlessness. The purpose of this study was to determine if the CM is stabilised during whole body reaching movements executed in weightlessness. The reaching task was conducted by two cosmonauts aboard the Russian orbital station MIR, during the Franco-Russian mission ALTAIR, 1993. Movements of reflective markers were recorded using a videocamera, successive images being reconstructed by computer every 40ms. The position of the CM, ankle joint torques and shank and thigh angles were computed for each subject pre- in- and post-flight using a 7-link mathematical model. Results showed that both cosmonauts adopted a backward leaning posture prior to reaching movements. Inflight, the CM was displaced throughout values in the horizontal axis three times those of pre-flight measures. In addition, ankle dorsi flexor torques inflight increased to values double those of pre- and post-flight tests. This study concluded that CM displacements do not remain stable during complex postural equilibrium tasks executed in weightlessness. Furthermore, in the absence of gravity, subjects changed their strategy for producing ankle torque during spaceflight from a forward to a backward leaning posture.

  4. The dentist's operating posture - ergonomic aspects.

    Science.gov (United States)

    Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C

    2014-06-15

    The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist's physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture.

  5. A New Standing Posture Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation by Changing Their Standing Posture through a Commercial Wii Balance Board

    Science.gov (United States)

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…

  6. Effect of absence of vision on posture.

    Science.gov (United States)

    Alotaibi, Abdullah Z; Alghadir, Ahmad; Iqbal, Zaheen A; Anwer, Shahnawaz

    2016-04-01

    [Purpose] The visual system is one of the sensory systems that enables the body to assess and process information about the external environment. In the absence of vision, a blind person loses contact with the outside world and develops faulty motor patterns, which results in postural deficiencies. However, literature regarding the development of such deficiencies is limited. The aim of this study was to discuss the effect of absence of vision on posture, the possible biomechanics behind the resulting postural deficiencies, and strategies to correct and prevent them. [Subjects and Methods] Various electronic databases including PubMed, Medline, and Google scholar were examined using the words "body", "posture", "blind" and "absence of vision". References in the retrieved articles were also examined for cross-references. The search was limited to articles in the English language. [Results] A total of 74 papers were shortlisted for this review, most of which dated back to the 1950s and 60s. [Conclusion] Blind people exhibit consistent musculoskeletal deformities. Absence of vision leads to numerous abnormal sensory and motor interactions that often limit blind people in isolation. Rehabilitation of the blind is a multidisciplinary task. Specialists from different fields need to diagnose and treat the deficiencies of the blind together as a team. Before restoring the normal mechanics of posture and gait, the missing link with the external world should be reestablished.

  7. Robot-specific social cues in emotional body language

    NARCIS (Netherlands)

    Embgen, Stephanie; Luber, Matthias; Becker-Asano, Christian; Ragni, Marco; Evers, Vanessa; Arras, Kai O.

    2012-01-01

    Humans use very sophisticated ways of bodily emotion expression combining facial expressions, sound, gestures and full body posture. Like others, we want to apply these aspects of human communication to ease the interaction between robots and users. In doing so we believe there is a need to consider

  8. Do posture correction exercises have to be boring? Using unstable surfaces to prevent poor posture in children

    Directory of Open Access Journals (Sweden)

    Agnieszka Jankowicz-Szymanska

    2016-07-01

    Full Text Available Introduction: Poor posture in children is a common problem. It appears most often in early school-age children and, if not corrected, progresses quickly as they mature. Aim of the research: To find a method that can prevent poor posture, is effective and attractive for children, and can be used on a wide scale in state schools. Material and methods : Seventy-seven first year pupils were tested at the beginning and at the end of the school year. Nineteen children undertook corrective exercises using unstable surfaces; 41 children sat on sensorimotor pillows during classes; and 17 children were the control group. Body mass and body height were measured. Body mass index was calculated. The symmetry of the position of selected skeletal points was assessed: the acromions, lower angles of the scapulas, apexes of the iliac crests, antero-superior iliac spine, and postero-superior iliac spine using a Duometer electronic device. The differences between the groups and changes between the first and second study for each group were estimated. Results : In the first study there were no significant differences in quality of posture. In the second study a significant improvement was noted in symmetry of the shoulders, scapulas, and pelvis in children who sat on sensorimotor pillows, as well as the position of the iliac crests and iliac spines in children exercising regularly on unstable surfaces. Conclusions: Exercises using unstable surfaces and sitting on sensorimotor pillows during classes might be an effective alternative to traditional posture correction exercises.

  9. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array.

    Science.gov (United States)

    Li, Chuantao; Chen, Fuming; Qi, Fugui; Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor's respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person's head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors.

  10. Whole-Body Vibration Does Not Seem to Affect Postural Control in Healthy Active Older Women

    Directory of Open Access Journals (Sweden)

    P. S. C. Gomes

    2018-01-01

    Full Text Available Objective. This study investigated the acute residual effects induced by different frequencies of whole-body vibration (WBV on postural control of elderly women. Design. Thirty physically active elderly women (67±5 years were randomly divided into three groups: two experimental groups (high WBV frequency: 45 Hz and 4 mm amplitude, n=10; low WBV frequency: 30 Hz and 4 mm amplitude, n=10 and one control group (n=10, with no treatment. The participants were first subjected to stabilometry tests and were then guided through three sets of isometric partial squats for 60 s while the WBV stimulation was applied. The control group was subjected to the same conditions but without the WBV stimulation. The participants were again subjected to body balance tests immediately following the end of the intervention period and again at 8, 16, and 24 min. To measure body sway control, three 60 s tests were performed at 10 s intervals for each of the following experimental conditions: (1 eyes opened and (2 eyes closed. The following variables were investigated: the average velocity of the displacement of the centre of pressure in the anterior-posterior and medial-lateral planes as well as in the elliptical area. Results. A 3 (condition × 5 (test two-way repeated-measures ANOVA did not identify significant differences in the stabilometric variables, regardless of group, time, or experimental condition. Conclusions. The effect of WBV, regardless of the stimulation frequency, did not have a significant effect immediately after or up to 24 minutes after vibration cessation, on the variables involved in the control of postural stability in physically active elderly women.

  11. Dogs’ Body Language Relevant to Learning Achievement

    OpenAIRE

    Hasegawa, Masashi; Ohtani, Nobuyo; Ohta, Mitsuaki

    2014-01-01

    Simple Summary For humans and dogs to live together amiably, dog training is required, and a lack of obedience training is significantly related to the prevalence of certain behavioral problems. To train efficiently, it is important that the trainer/owner ascertains the learning level of the dog. Understanding the dog’s body language helps humans understand the animal’s emotions. This study evaluated the posture of certain dog body parts during operant conditioning. Our findings suggest that ...

  12. Geometric morphometrics as a tool for improving the comparative study of behavioural postures.

    Science.gov (United States)

    Fureix, Carole; Hausberger, Martine; Seneque, Emilie; Morisset, Stéphane; Baylac, Michel; Cornette, Raphaël; Biquand, Véronique; Deleporte, Pierre

    2011-07-01

    Describing postures has always been a central concern when studying behaviour. However, attempts to compare postures objectively at phylogenetical, populational, inter- or intra-individual levels generally either rely upon a few key elements or remain highly subjective. Here, we propose a novel approach, based on well-established geometric morphometrics, to describe and to analyse postures globally (i.e. considering the animal's body posture in its entirety rather than focusing only on a few salient elements, such as head or tail position). Geometric morphometrics is concerned with describing and comparing variation and changes in the form (size and shape) of organisms using the coordinates of a series of homologous landmarks (i.e. positioned in relation to skeletal or muscular cues that are the same for different species for every variety of form and function and that have derived from a common ancestor, i.e. they have a common evolutionary ancestry, e.g. neck, wings, flipper/hand). We applied this approach to horses, using global postures (1) to characterise behaviours that correspond to different arousal levels, (2) to test potential impact of environmental changes on postures. Our application of geometric morphometrics to horse postures showed that this method can be used to characterise behavioural categories, to evaluate the impact of environmental factors (here human actions) and to compare individuals and groups. Beyond its application to horses, this promising approach could be applied to all questions involving the analysis of postures (evolution of displays, expression of emotions, stress and welfare, behavioural repertoires…) and could lead to a whole new line of research.

  13. Standing working posture compared in pregnant and non-pregnant conditions.

    Science.gov (United States)

    Paul, J A; Frings-Dresen, M H

    1994-09-01

    During pregnancy, an increase in body weight occurs together with changes in body weight distribution and in fit between body dimensions and workplace layout. These changes may cause alterations in working posture which may, in turn, have adverse consequences for the biomechanical load on the musculoskeletal system and so increase the risk of musculoskeletal disorders. Using photographic posture registration, the standing working posture was studied in 27 women during the last stage of pregnancy and after delivery (the experimental group). The women performed an assembly task while standing at various workplace layouts. The postural differences between the pregnant condition and the non-pregnant condition were studied and the effect of the various workplace layouts assessed. Ten non-pregnant controls were also studied twice to establish the effect of the time interval between the measuring occasions. We found that the women of the experimental group stood further from the work surface in the pregnant condition compared to the non-pregnant condition, the hips were positioned more backwards, and, in order to reach the tesk, they increased the flexion of the trunk, increased the anteflexion of the upper arms, and extended the arms more. At the workplace layout in which the work surface height was self-selected, the postural differences due to pregnancy were smallest or even absent, compared to the postural differences in the other workplace layouts studied. Ergonomists and workers in occupational health services should be alert to the consequences for the biomechanical load on the musculoskeletal system and the risk of development of health complaints caused by postural changes due to pregnancy. An adjustable workplace layout may prevent some problems.

  14. Comparison of posture among adolescent male volleyball players and non-athletes

    Directory of Open Access Journals (Sweden)

    Małgorzata Grabara

    2014-11-01

    Full Text Available Due to high training loads and frequently repeated unilateral exercises, several types of sports training can have an impact on the process of posture development in young athletes. The objective of the study was to assess and compare the postures of adolescent male volleyball players and their non-training peers. The study group comprised 104 volleyball players while the control group consisted of 114 non-training individuals aged 14-16 years. Body posture was assessed by the Moiré method. The volleyball players were significantly taller, and had greater body weight and fat-free mass. The analysis of posture relative to symmetry in the frontal and transverse planes did not show any significant differences between the volleyball players and non-athletes. Postural asymmetries were observed in both the volleyball players and the control participants. Lumbar lordosis was significantly less defined in the volleyball players compared to non-training individuals while no difference was observed in thoracic kyphosis. All athletes demonstrated a loss of lumbar lordosis and an increase in thoracic kyphosis. Significant differences in anteroposterior curvature of the spine between the volleyball players and the non-athletes might be associated with both training and body height. Considering the asymmetric spine overloads which frequently occur in sports training, meticulous posture assessment in young athletes seems well justified.

  15. Comparison of posture among adolescent male volleyball players and non-athlete

    Directory of Open Access Journals (Sweden)

    Małgorzata Grabara

    2014-10-01

    Full Text Available Due to high training loads and frequently repeated unilateral exercises, several types of sports training can have an impact on the process of posture development in young athletes. The objective of the study was to assess and compare the postures of adolescent male volleyball players and their non-training peers. The study group comprised 104 volleyball players while the control group consisted of 114 non-training individuals aged 14-16 years. Body posture was assessed by the Moiré method. The volleyball players were significantly taller, and had greater body weight and fat-free mass. The analysis of posture relative to symmetry in the frontal and transverse planes did not show any significant differences between the volleyball players and non-athletes. Postural asymmetries were observed in both the volleyball players and the control participants. Lumbar lordosis was significantly less defined in the volleyball players compared to non-training individuals while no difference was observed in thoracic kyphosis. All athletes demonstrated a loss of lumbar lordosis and an increase in thoracic kyphosis. Significant differences in anteroposterior curvature of the spine between the volleyball players and the non-athletes might be associated with both training and body height. Considering the asymmetric spine overloads which frequently occur in sports training, meticulous posture assessment in young athletes seems well justified.

  16. Comparison of posture among adolescent male volleyball players and non-athletes

    Science.gov (United States)

    2014-01-01

    Due to high training loads and frequently repeated unilateral exercises, several types of sports training can have an impact on the process of posture development in young athletes. The objective of the study was to assess and compare the postures of adolescent male volleyball players and their non-training peers. The study group comprised 104 volleyball players while the control group consisted of 114 non-training individuals aged 14-16 years. Body posture was assessed by the Moiré method. The volleyball players were significantly taller, and had greater body weight and fat-free mass. The analysis of posture relative to symmetry in the frontal and transverse planes did not show any significant differences between the volleyball players and non-athletes. Postural asymmetries were observed in both the volleyball players and the control participants. Lumbar lordosis was significantly less defined in the volleyball players compared to non-training individuals while no difference was observed in thoracic kyphosis. All athletes demonstrated a loss of lumbar lordosis and an increase in thoracic kyphosis. Significant differences in anteroposterior curvature of the spine between the volleyball players and the non-athletes might be associated with both training and body height. Considering the asymmetric spine overloads which frequently occur in sports training, meticulous posture assessment in young athletes seems well justified. PMID:25729154

  17. Variant and invariant patterns embedded in human locomotion through whole body kinematic coordination.

    Science.gov (United States)

    Funato, Tetsuro; Aoi, Shinya; Oshima, Hiroko; Tsuchiya, Kazuo

    2010-09-01

    Step length, cadence and joint flexion all increase in response to increases in gradient and walking speed. However, the tuning strategy leading to these changes has not been elucidated. One characteristic of joint variation that occurs during walking is the close relationship among the joints. This property reduces the number of degrees of freedom and seems to be a key issue in discussing the tuning strategy. This correlation has been analyzed for the lower limbs, but the relation between the trunk and lower body is generally ignored. Two questions about posture during walking are discussed in this paper: (1) whether there is a low-dimensional restriction that determines walking posture, which depends not just on the lower limbs but on the whole body, including the trunk and (2) whether some simple rules appear in different walking conditions. To investigate the correlation, singular value decomposition was applied to a measured walking pattern. This showed that the whole movement can be described by a closed loop on a two-dimensional plane in joint space. Furthermore, by investigating the effect of the walking condition on the decomposed patterns, the position and the tilt of the constraint plane was found to change significantly, while the loop pattern on the constraint plane was shown to be robust. This result indicates that humans select only certain kinematic characteristics for adapting to various walking conditions.

  18. USE OF SOFTWARES FOR POSTURE ASSESSMENT: INTEGRATIVE REVIEW

    Directory of Open Access Journals (Sweden)

    Edyla Maria Porto de Freitas Camelo

    2015-09-01

    Full Text Available To carry out an integrative literature review on the postural analysis softwares available today. It is an integrative-narrative review of qualitative and methodological nature performed during April-July 2014. As inclusion criteria, the articles should be bibliographical or original research and available with full access. At first, we proceeded to the identification of the keywords for the softwares related to postural assessment commonly used in the health field, in such case "posture", "software", and "postural assessment". The search was narrowed by publication date from 2002 to 2014. Through the information acquired from the articles and from the software developers, information on 12 programs that assist the postural evaluation were obtained - Alcimage, All Body Scan 3D, Aplob, APPID, Biotonix, Corporis Pro, Fisimetrix, Fisiometer Posturograma, Physical Fisio, Physio Easy, Posture Print and SAPO. However, only one tool has more information and studies, namely SAPO. There are many postural analysis softwares available on the internet today, however, these are quite disparate in relation to possible answers and are still poorly widespread as research tools.

  19. Wearable human body joint and posture measuring system

    NARCIS (Netherlands)

    Dunias, P.; Gransier, R.; Jin, A.; Statham, A.; Willems, P.

    2011-01-01

    In many medical applications, especially the orthopaedic setting, ambulatory, monitoring of human joint angles could be of substantial value to improving rehabilitation strategies and unravelling the pathomechanics of many degenerative joint diseases (e.g. knee osteoarthritis). With the ageing of

  20. PERANCANGAN KURSI RODA DAN LAY OUT KAMAR MANDI UNTUK MEMPERBAIKI POSTUR KERJA PERAWAT PANTI WREDHA SEMARANG

    Directory of Open Access Journals (Sweden)

    Purnawan Adi W

    2012-02-01

    Panti Wredha Berthany is a treatment for people who have been elderly. In this house most of the patients dapt not bathe without assistance of others. Nurses who help them a bath about the pain in the back of the spine that often dideritanya. This is due to bad postures nurse. To find out how bad postures nurses, the nurses conducted the analysis with the postures OWAS (Ovako Working Posture Analysis System. Method OWAS built as a tool to identify body postures which may be responsible for muscle problems (Musculoskeletal disorders. This method is based on the simple and systematic classification of work postures. OWAS postures in the workplace are categorized into 3 main body segment of the body, hands and feet. Kegunaanya improve conditions for workers in the work, so that work performance can be improved. Based on the results of analysis using the method OWAS, note that when the postures nurses bathe patients classified in category postures quite dangerous and very dangerous. Therefore, action needs to be improvements in form design wheelchair and lay out a bathroom can make it easier to work when the nurse wash the patient. With this design, the frequency of transfer of patients that must be done by the nurses decreased and postures during patient more better. Keywords: lay out, planning, postures in the workplace, OWAS

  1. Does a crouched leg posture enhance running stability and robustness?

    Science.gov (United States)

    Blum, Yvonne; Birn-Jeffery, Aleksandra; Daley, Monica A; Seyfarth, Andre

    2011-07-21

    Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a model perspective, running with compliant legs can be represented by the planar spring mass model and stabilized by applying swing leg control. Here, linear adaptations of the three leg parameters, leg angle, leg length and leg stiffness during late swing phase are assumed. Experimentally observed kinematic control parameters (leg rotation and leg length change) of human and avian running are compared, and interpreted within the context of this model, with specific focus on stability and robustness characteristics. The results suggest differences in stability characteristics and applied control strategies of human and avian running, which may relate to differences in leg posture (straight leg posture in humans, and crouched leg posture in birds). It has been suggested that crouched leg postures may improve stability. However, as the system of control strategies is overdetermined, our model findings suggest that a crouched leg posture does not necessarily enhance running stability. The model also predicts different leg stiffness adaptation rates for human and avian running, and suggests that a crouched avian leg posture, which is capable of both leg shortening and lengthening, allows for stable running without adjusting leg stiffness. In contrast, in straight-legged human running, the preparation of the ground contact seems to be more critical, requiring leg stiffness adjustment to remain stable. Finally, analysis of a simple robustness measure, the normalized maximum drop, suggests that the crouched leg posture may provide greater robustness to changes in terrain height

  2. Research of Human Postural Balance Parameters

    Directory of Open Access Journals (Sweden)

    Julius Griškevičius

    2011-02-01

    Full Text Available In present article postural balance between subjects with stroke and healthy subjects, is being investigated with eyes opened and eyes closed. In the research participated 30 healthy subjects and 15 subjects with stroke. At the same time two experimental measurements were performed – postural balance was measured using balance platform and oscillations of the centre of mass were observed using two-axial accelerometer. It was noted, that amplitudes of subjects with stroke were larger almost two times than control group’s of healthy subjects. It was find out, that ratios of pressure distribution on both left and right legs are in range from 1 to 0.9 for healthy subjects, and ratios below 0.9 are common for subjects with stroke. When subjects were standing with eyes closed, sway amplitudes were higher and the ratios of load distribution on left and right legs were lower.Article in Lithuanian

  3. Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults.

    Science.gov (United States)

    Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P

    2017-02-01

    It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Body perception of teenagers in school environments

    Directory of Open Access Journals (Sweden)

    Valentin Gavídia Catalan

    2011-12-01

    Full Text Available Objective: To assess body perception of teenagers in school environments. Methods: We conducted a qualitative study in a secondary public school from the city of Fortaleza-CE, Brazil, with students from the ninth grade, aged 14 to 16 years old, independent of sex, from March to June, 2009. The first phase consisted of the selection of ten students, using a schematic drawing of the human body. In the second phase, there was a focal group with guiding questions about body awareness and desire for change. Results: For the students, the idea of good posture would be a person who had good education and to be straightwhen walking and sitting. We perceived dissatisfaction and important misunderstanding in relation to their body and posture, and there was unanimity concerning the desire of achieving changes. Conclusion: There are mixed feelings related to the body, by teenage students, when you inquire about their image and desire to change. If, on one hand, they refer to perceive themselves with proper and correct posture, on the other hand, they are eager for change, easily identified with present standard body reported in the media and worshiped as “ideal body”. It is urgent and necessary to consolidate the culture of health promotion in schools as well as build healthy educational environment.

  5. A Scott bench with ergonomic thorax stabilisation pad improves body posture during preacher arm curl exercise.

    Science.gov (United States)

    Biscarini, Andrea; Benvenuti, Paolo; Busti, Daniele; Zanuso, Silvano

    2016-05-01

    We assessed whether the use of an ergonomic thorax stabilisation pad, during the preacher arm curl exercise, could significantly reduce the excessive shoulder protraction and thoracic kyphosis induced by the standard flat pad built into the existing preacher arm curl equipment. A 3D motion capture system and inclinometers were used to measure shoulder protraction and thoracic kyphosis in 15 subjects performing preacher arm curl with a plate-loaded machine provided with the standard flat pad. The same measures were repeated after replacing the flat pad with a new ergonomic pad, specifically designed to accommodate the thorax profile and improve body posture. Pad replacement significantly (p ergonomic pad may potentially allow a more effective training, prevent musculoskeletal discomfort and reduce the risk of injury. Practitioner summary: We have designed an ergonomic thorax stabilisation pad for the preacher arm curl exercise. The new ergonomic pad improves the poor posture conditions induced by the standard flat pad and may potentially allow a more effective training, prevent musculoskeletal discomfort, improve the breathing function and reduce the risk of injury.

  6. Effects of the sitting position on the body posture of children aged 11 to 13 years.

    Science.gov (United States)

    Drza-Grabiec, Justyna; Snela, Sławomir; Rykała, Justyna; Podgórska, Justyna; Rachwal, Maciej

    2015-01-01

    Nowadays, children spend increasingly more time in a seated position, both at school during class and at home in front of a computer or television. The aim of this study was to compare selected parameters describing body posture and scoliosis among children in sitting and standing positions. It was an observational, cross-sectional study involving 91 primary school children aged 11-13 years. The children's backs were photographed in standing and sitting positions. The values of selected parameters were calculated using photogrammetric examination based on the Moire projection phenomenon. The results show significant statistical differences for the parameters defining the anteroposterior curves of the spine. The sitting position resulted in a decreased angle of inclination of the thoracolumbar spine, reduced depths of thoracic kyphosis and lumbar lordosis, and pelvic asymmetry. Maintaining a sitting position for a long time results in advanced asymmetries of the trunk and scoliosis, and causes a decrease in lumbar lordosis and kyphosis of a child's entire spine. Therefore, we advocate the introduction of posture education programs for schoolchildren.

  7. POSTUR PADA WANITA HAMIL

    Directory of Open Access Journals (Sweden)

    Paryono .

    2013-09-01

    Full Text Available ABSTRACTIntroduction: Pregnancy effects in changes on all body systems leading to a new balance women and maternal adaptation.Weight gain in pregnant women from both the uterus and breast development generally occurs at the front of the body, butwhen standing they were still able to maintain a posture that does not face. The purpose of this article is to examine thereasons why pregnant women do not fall to front and how the good attitude of the pregnant woman's body.Materials and Methods: Material of this article are literatures related to pregnancy and the pregnant woman's bodyp o s t u r e , a n d t h e y w e r e c o l l e c t e d b y l i t e r a t u r e ' s s t u d y a n d l i t e r a r y s t u d y .Discussion: Increased abdominal distension that makes tilting the pelvis forward, decreased abdominal muscle tone andincrease weight gain in late pregnancy requires a readjustment spinal curvature. Woman's center of gravity shifts forward.Lumbosakrum normal curve should be more curved and the curvature of the servikodorsal be formed to maintain balance.Assessment of anterior view, lateral and posterior body should include an understanding of the physical structures such asjoints and muscles as well as how the meridian pathways. To compensate for the anterior position of the enlarged uterus,lordosis shifting center of gravity to the back of the lower limbs. There is an increased sacroiliac joint mobility,sakrokoksigeal, and pubic joints during pregnancy, possibly due to hormonal changes. Individual assessments will berequired to determine the pattern of muscle for every person, especially for those who have musculoskeletal problems.Conclusions and Recommendations: The size of the stomach in a pregnant woman, then the gravity of the body changes.Body to be biased toward the rear, but this position makes your back hurt. Advice for pregnant women in order to maintainyour posture as follows: head upKeyword : Posture, Pregnancy, Women.

  8. Influence of the visual environment on the postural stability in healthy older women.

    Science.gov (United States)

    Brooke-Wavell, K; Perrett, L K; Howarth, P A; Haslam, R A

    2002-01-01

    A poor postural stability in older people is associated with an increased risk of falling. It is recognized that visual environment factors (such as poor lighting and repeating patterns on escalators) may contribute to falls, but little is known about the effects of the visual environment on postural stability in the elderly. To determine whether the postural stability of older women (using body sway as a measure) differed under five different visual environment conditions. Subjects were 33 healthy women aged 65-76 years. Body sway was measured using an electronic force platform which identified the location of their centre of gravity every 0.05 s. Maximal lateral sway and anteroposterior sway were determined and the sway velocity calculated over 1-min trial periods. Body sway was measured under each of the following conditions: (1) normal laboratory lighting (186 lx); (2) moderate lighting (10 lx); (3) dim lighting (1 lx); (4) eyes closed, and (5) repeating pattern projected onto a wall. Each measure of the postural stability was significantly poorer in condition 4 (eyes closed) than in all other conditions. Anteroposterior sway was greater in condition 3 than in conditions 1 and 2, whilst the sway velocity was greater in condition 3 than in condition 2. Lateral sway did not differ significantly between different lighting levels (conditions 1-3). A projected repeating pattern (condition 5) did not significantly influence the postural stability relative to condition 1. The substantially greater body sway with eyes closed than with eyes open confirms the importance of vision in maintaining the postural stability. At the lowest light level, the body sway was significantly increased as compared with the other light levels, but was still substantially smaller than on closing the eyes. A projected repeating pattern did not influence the postural stability. Dim lighting levels and removing visual input appear to be associated with a poorer postural stability in older

  9. Multi-joint postural behavior in patients with knee osteoarthritis.

    Science.gov (United States)

    Turcot, Katia; Sagawa, Yoshimasa; Hoffmeyer, Pierre; Suvà, Domizio; Armand, Stéphane

    2015-12-01

    Previous studies have demonstrated balance impairment in patients with knee osteoarthritis (OA). Although it is currently accepted that postural control depends on multi-joint coordination, no study has previously considered this postural strategy in patients suffering from knee OA. The objectives of this study were to investigate the multi-joint postural behavior in patients with knee OA and to evaluate the association with clinical outcomes. Eighty-seven patients with knee OA and twenty-five healthy elderly were recruited to the study. A motion analysis system and two force plates were used to investigate the joint kinematics (trunk and lower body segments), the lower body joint moments, the vertical ground reaction force ratio and the center of pressure (COP) during a quiet standing task. Pain, functional capacity and quality of life status were also recorded. Patients with symptomatic and severe knee OA adopt a more flexed posture at all joint levels in comparison with the control group. A significant difference in the mean ratio was found between groups, showing an asymmetric weight distribution in patients with knee OA. A significant decrease in the COP range in the anterior-posterior direction was also observed in the group of patients. Only small associations were observed between postural impairments and clinical outcomes. This study brings new insights regarding the postural behavior of patients with severe knee OA during a quiet standing task. The results confirm the multi-joint asymmetric posture adopted by this population. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Study of the human postural control system during quiet standing using detrended fluctuation analysis

    Science.gov (United States)

    Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro

    2009-05-01

    The detrended fluctuation analysis is used to study the behavior of different time series obtained from the trajectory of the center of pressure, the output of the activity of the human postural control system. The results suggest that these trajectories present two different regimes in their scaling properties: persistent (for high frequencies, short-range time scale) to antipersistent (for low frequencies, long-range time scale) behaviors. The similitude between the results obtained for the measurements, done with both eyes open and eyes closed, indicate either that the visual system may be disregarded by the postural control system while maintaining the quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with the type of analysis performed here.

  11. Dogs’ Body Language Relevant to Learning Achievement

    Science.gov (United States)

    Hasegawa, Masashi; Ohtani, Nobuyo; Ohta, Mitsuaki

    2014-01-01

    Simple Summary For humans and dogs to live together amiably, dog training is required, and a lack of obedience training is significantly related to the prevalence of certain behavioral problems. To train efficiently, it is important that the trainer/owner ascertains the learning level of the dog. Understanding the dog’s body language helps humans understand the animal’s emotions. This study evaluated the posture of certain dog body parts during operant conditioning. Our findings suggest that certain postures were related to the dog’s learning level during operant conditioning. Being aware of these postures could be helpful to understand canine emotion during learning. Abstract The facial expressions and body postures of dogs can give helpful information about their moods and emotional states. People can more effectively obedience train their dogs if we can identify the mannerisms associated with learning in dogs. The aim of this study was to clarify the dog’s body language during operant conditioning to predict achievement in the test that followed by measuring the duration of behaviors. Forty-six untrained dogs (17 males and 26 females) of various breeds were used. Each session consisted of 5 minutes of training with a treat reward followed by 3 minutes of rest and finally an operant conditioning test that consisted of 20 “hand motion” cues. The operant tests were conducted a total of nine times over three consecutive days, and the success numbers were counted. The duration of the dog’s behavior, focusing on the dog’s eyes, mouth, ears, tail and tail-wagging, was recorded during the operant conditioning sessions before the test. Particular behaviors, including wide-eyes, closed mouth, erect ears, and forward and high tail carriage, without wagging or with short and quick wagging, related to high achievement results. It is concluded that dogs' body language during operant conditioning was related to their success rate. PMID:26479883

  12. Relationship between craniomandibular disorders and poor posture.

    Science.gov (United States)

    Nicolakis, P; Nicolakis, M; Piehslinger, E; Ebenbichler, G; Vachuda, M; Kirtley, C; Fialka-Moser, V

    2000-04-01

    The purpose of this research was to show that a relationship between craniomandibular disorders (CMD) and postural abnormalities has been repeatedly postulated, but still remains unproven. This study was intended to test this hypothesis. Twenty-five CMD patients (mean age 28.2 years) were compared with 25 gender and age matched controls (mean age 28.3 years) in a controlled, investigator-blinded trial. Twelve postural and ten muscle function parameters were examined. Measurements were separated into three subgroups, consisting of those variables associated with the cervical region, the trunk in the frontal plane, and the trunk in the sagittal plane. Within these subgroups, there was significantly more dysfunction in the patients, compared to control subjects (Mann-Whitney U test p Postural and muscle function abnormalities appeared to be more common in the CMD group. Since there is evidence of the mutual influence of posture and the craniomandibular system, control of body posture in CMD patients is recommended, especially if they do not respond to splint therapy. Whether poor posture is the reason or the result of CMD cannot be distinguished by the data presented here.

  13. Diurnal changes in postural control in normal children: Computerized static and dynamic assessments

    Directory of Open Access Journals (Sweden)

    Sophie Bourelle

    2014-07-01

    Full Text Available Mild traumatic brain injury (mTBI causes postural control deficits and accordingly comparison of aberrant postural control against normal postural control may help diagnose mTBI. However, in the current literature, little is known regarding the normal pattern of postural control in young children. This study was therefore conducted as an effort to fill this knowledge gap. Eight normal school-aged children participated. Posture assessment was conducted before (7-8 a.m. in the morning and after (4-7 p.m. in the afternoon school on regular school days using the Balance Master ® evaluation system composed of 3 static tests and 2 dynamic balance tests. A significant difference in the weight-bearing squats was detected between morning hours and afternoon hours (P < 0.05. By end of afternoon, the body weight was borne mainly on the left side with the knee fully extended and at various degrees of knee flexion. A significantly better directional control of the lateral rhythmic weight shifts was observed at the end of the afternoon than at morning hours (P < 0.05. In summary, most of our findings are inconsistent with results from previous studies in adults, suggesting age-related differences in posture control in humans. On a regular school day, the capacity of postural control and laterality or medio-lateral balance in children varies between morning and afternoon hours. We suggest that posturographic assessment in children, either in normal (e.g., physical education and sports training or in abnormal conditions (e.g., mTBI-associated balance disorders, be better performed late in the afternoon.

  14. Effect of alternating postures on cognitive performance for healthy people performing sedentary work.

    Science.gov (United States)

    Schwartz, Bernhard; Kapellusch, Jay M; Schrempf, Andreas; Probst, Kathrin; Haller, Michael; Baca, Arnold

    2018-06-01

    Prolonged sitting is a risk factor for several diseases and the prevalence of worksite-based interventions such as sit-to-stand workstations is increasing. Although their impact on sedentary behaviour has been regularly investigated, the effect of working in alternating body postures on cognitive performance is unclear. To address this uncertainty, 45 students participated in a two-arm, randomised controlled cross-over trial under laboratory conditions. Subjects executed validated cognitive tests (working speed, reaction time, concentration performance) either in sitting or alternating working postures on two separate days (ClinicalTrials.gov Identifier: NCT02863731). MANOVA results showed no significant difference in cognitive performance between trials executed in alternating, standing or sitting postures. Perceived workload did not differ between sitting and alternating days. Repeated measures ANOVA revealed significant learning effects regarding concentration performance and working speed for both days. These results suggest that working posture did not affect cognitive performance in the short term. Practitioner Summary: Prior reports indicated health-related benefits based on alternated (sit/stand) body postures. Nevertheless, their effect on cognitive performance is unknown. This randomised controlled trial showed that working in alternating body postures did not influence reaction time, concentration performance, working speed or workload perception in the short term.

  15. Evaluation of 6 and 10 Year-Old Child Human Body Models in Emergency Events.

    Science.gov (United States)

    Gras, Laure-Lise; Stockman, Isabelle; Brolin, Karin

    2017-01-01

    Emergency events can influence a child's kinematics prior to a car-crash, and thus its interaction with the restraint system. Numerical Human Body Models (HBMs) can help understand the behaviour of children in emergency events. The kinematic responses of two child HBMs-MADYMO 6 and 10 year-old models-were evaluated and compared with child volunteers' data during emergency events-braking and steering-with a focus on the forehead and sternum displacements. The response of the 6 year-old HBM was similar to the response of the 10 year-old HBM, however both models had a different response compared with the volunteers. The forward and lateral displacements were within the range of volunteer data up to approximately 0.3 s; but then, the HBMs head and sternum moved significantly downwards, while the volunteers experienced smaller displacement and tended to come back to their initial posture. Therefore, these HBMs, originally intended for crash simulations, are not too stiff and could be able to reproduce properly emergency events thanks, for instance, to postural control.

  16. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array

    Science.gov (United States)

    Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor’s respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person’s head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors. PMID:27073860

  17. Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects.

    Science.gov (United States)

    Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura

    2014-01-01

    The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with 2 types of Parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), and in age-matched control subjects standing under perturbed conditions implemented by the Sensory Organization Test (SOT). Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measured the amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions. PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use of inertial sensors on the upper and lower body segments, is a promising and unobtrusive tool to characterize postural strategies performed to attain balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. QC operator’s nonneutral posture against musculoskeletal disorder’s (MSDs) risks

    Science.gov (United States)

    Kautsar, F.; Gustopo, D.; Achmadi, F.

    2018-04-01

    Musculoskeletal disorders refer to a gamut of inflammatory and degenerative disorders aggravated largely by the performance of work. It is the major cause of pain, disability, absenteeism and reduced productivity among workers worldwide. Although it is not fatal, MSDs have the potential to develop into serious injuries in the musculoskeletal system if ignored. QC operators work in nonneutral body posture. This cross-sectional study was condusted in order to investigate correlation between risk assessment results of QEC and body posture calculation of mannequin pro. Statistical analysis was condusted using SPSS version 16.0. Validity test, Reliability test and Regression analysis were conducted to compare the risk assessment output of applied method and nonneutral body posture simulation. All of QEC’s indicator classified as valid and reliable. The result of simple regression anlysis are back (0.3264.32), wrist/hand (4.86 >4.32) and neck (1.298 <4.32). Result of this study shows that there is an influence between nonneutral body posture of the QC operator during work with risk of musculoskeletal disorders. The potential risk of musculoskeletal disorders is in the shoulder/arm and wrist/hand of the QC operator, whereas the back and neck are not affected.

  19. Postural Coordination during Socio-motor Improvisation.

    Science.gov (United States)

    Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.

  20. Postural coordination during socio-motor improvisation

    Directory of Open Access Journals (Sweden)

    Mathieu Gueugnon

    2016-08-01

    Full Text Available Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation. Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively. Our results revealed the spontaneous emergence of in-phase pattern in ML direction and anti-phase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability and antiphase supporting postural control in AP (mechanical stability. Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.

  1. Adolescent standing postural response to backpack loads: a randomised controlled experimental study

    Directory of Open Access Journals (Sweden)

    Pirunsan Ubon

    2002-04-01

    Full Text Available Abstract Background Backpack loads produce changes in standing posture when compared with unloaded posture. Although 'poor' unloaded standing posture has been related to spinal pain, there is little evidence of whether, and how much, exposure to posterior load produces injurious effects on spinal tissue. The objective of this study was to describe the effect on adolescent sagittal plane standing posture of different loads and positions of a common design of school backpack. The underlying study aim was to test the appropriateness of two adult 'rules-of-thumb'-that for postural efficiency, backpacks should be worn high on the spine, and loads should be limited to 10% of body weight. Method A randomised controlled experimental study was conducted on 250 adolescents (12–18 years, randomly selected from five South Australian metropolitan high schools. Sagittal view anatomical points were marked on head, neck, shoulder, hip, thigh, knee and ankle. There were nine experimental conditions: combinations of backpack loads (3, 5 or 10% of body weight and positions (backpack centred at T7, T12 or L3. Sagittal plane photographs were taken of unloaded standing posture (baseline, and standing posture under the experimental conditions. Posture was quantified from the x (horizontal coordinate of each anatomical point under each experimental condition. Differences in postural response were described, and differences between conditions were determined using Analysis of Variance models. Results Neither age nor gender was a significant factor when comparing postural response to backpack loads or conditions. Backpacks positioned at T7 produced the largest forward (horizontal displacement at all the anatomical points. The horizontal position of all anatomical points increased linearly with load. Conclusion There is evidence refuting the 'rule-of-thumb' to carry the backpack high on the back. Typical school backpacks should be positioned with the centre at waist or

  2. Effect of absence of vision on posture

    OpenAIRE

    Alotaibi, Abdullah Z.; Alghadir, Ahmad; Iqbal, Zaheen A.; Anwer, Shahnawaz

    2016-01-01

    [Purpose] The visual system is one of the sensory systems that enables the body to assess and process information about the external environment. In the absence of vision, a blind person loses contact with the outside world and develops faulty motor patterns, which results in postural deficiencies. However, literature regarding the development of such deficiencies is limited. The aim of this study was to discuss the effect of absence of vision on posture, the possible biomechanics behind the ...

  3. iPosture: The Size of Electronic Consumer Devices Affects our Behavior

    OpenAIRE

    Bos, Maarten W.; Cuddy, Amy J. C.

    2013-01-01

    We examined whether incidental body posture, prompted by working on electronic devices of different sizes, affects power-related behaviors. Grounded in research showing that adopting expansive body postures increases psychological power, we hypothesized that working on larger devices, which forces people to physically expand, causes users to behave more assertively. Participants were randomly assigned to interact with one of four electronic devices that varied in size: an iPod Touch, an iPad,...

  4. Spinal curvature and characteristics of postural change in pregnant women.

    Science.gov (United States)

    Okanishi, Natsuko; Kito, Nobuhiro; Akiyama, Mitoshi; Yamamoto, Masako

    2012-07-01

    Pregnant women often report complaints due to physiological and postural changes. Postural changes during pregnancy may cause low back pain and pelvic girdle pain. This study aimed to compare the characteristics of postural changes in pregnant compared with non-pregnant women. Prospective case-control study. Pregnancy care center. Fifteen women at 17-34 weeks pregnancy comprised the study group, while 10 non-pregnant female volunteers comprised the control group. Standing posture was evaluated in the sagittal plane with static digital pictures. Two angles were measured by image analysis software: (1) between the trunk and pelvis; and (2) between the trunk and lower extremity. Spinal curvature was measured with Spinal Mouse® to calculate the means of sacral inclination, thoracic and lumbar curvature and inclination. The principal components were calculated until eigenvalues surpassed 1. Three distinct factors with eigenvalues of 1.00-2.49 were identified, consistent with lumbosacral spinal curvature and inclination, thoracic spine curvature, and inclination of the body. These factors accounted for 77.2% of the total variance in posture variables. Eleven pregnant women showed postural characteristics of lumbar kyphosis and sacral posterior inclination. Body inclination showed a variety of patterns compared with those in healthy women. Spinal curvature demonstrated a tendency for lumbar kyphosis in pregnant women. Pregnancy may cause changes in spinal curvature and posture, which may in turn lead to relevant symptoms. Our data provide a basis for investigating the effects of spinal curvature and postural changes on symptoms during pregnancy. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  5. Effects of affective picture viewing on postural control

    OpenAIRE

    Stins, John F; Beek, Peter J

    2007-01-01

    Abstract Background Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis t...

  6. Posture changes and subfoveal choroidal blood flow.

    Science.gov (United States)

    Longo, Antonio; Geiser, Martial H; Riva, Charles E

    2004-02-01

    To evaluate the effect of posture change on subfoveal choroidal blood flow (ChBF) in normal volunteers. The pulsatile, nonpulsatile, and mean ChBF were measured with laser Doppler flowmetry in 11 healthy volunteers with a mean age of 32 +/- 13 (SD) years. The posture of the subjects was changed from standing (90 degrees ), to supine (-8 degrees ), and back to standing, with a mechanically driven table. During the whole experimental procedure, ChBF and heart rate (HR) were continuously recorded. After 30 seconds in standing position, the subjects were tilted to supine during approximately 30 seconds. They remained in this position for approximately 2 minutes, after which they were tilted back to the standing position (recovery), where they remained for another approximately 2 minutes. Systemic brachial artery blood pressure (BP) was measured in the baseline, supine, and recovery positions. This procedure was repeated to measure the intraocular pressure (IOP) at the different postures. Mean BP did not change significantly throughout the experimental procedure. As the body was tilted from standing to supine, HR decreased by 16% (P blood velocity. Based on previously reported experimental data that indicate that the ocular perfusion pressure increases less than predicted by purely hydrostatic considerations when the body is tilted from the standing to the supine position, the observed increase in ChBF suggests a passive response of the choroidal circulation to the posture change.

  7. A comparison of three observational techniques for assessing postural loads in industry.

    Science.gov (United States)

    Kee, Dohyung; Karwowski, Waldemar

    2007-01-01

    This study aims to compare 3 observational techniques for assessing postural load, namely, OWAS, RULA, and REBA. The comparison was based on the evaluation results generated by the classification techniques using 301 working postures. All postures were sampled from the iron and steel, electronics, automotive, and chemical industries, and a general hospital. While only about 21% of the 301 postures were classified at the action category/level 3 or 4 by both OWAS and REBA, about 56% of the postures were classified into action level 3 or 4 by RULA. The inter-method reliability for postural load category between OWAS and RULA was just 29.2%, and the reliability between RULA and REBA was 48.2%. These results showed that compared to RULA, OWAS, and REBA generally underestimated postural loads for the analyzed postures, irrespective of industry, work type, and whether or not the body postures were in a balanced state.

  8. Postural changes in orthodontic patients treated with clear aligners: A rasterstereographic study.

    Science.gov (United States)

    Parrini, Simone; Comba, Benedetta; Rossini, Gabriele; Ravera, Serena; Cugliari, Giovanni; De Giorgi, Ilaria; Deregibus, Andrea; Castroflorio, Tommaso

    2018-02-01

    Correlation between malocclusions and body posture has been discussed in the last decades, but there is still a lack of consensus in existing literature. Rasterstereography allows tridimensional reconstruction of the spine, starting from the back surface analysis. So far studies which tested modifications of rasterstereographic parameters during orthodontic treatment, comparing with those obtained from untreated control group, are not available. Clear aligner treatment produces alteration of vertical height due to the occlusal coverage and, subsequently, a stimulation of periodontal receptors which causes an inhibition of the jaw closing muscles and, hypothetically, changes in mandibular posture. Evaluate possible correlations between orthodontic treatment and posture. Rasterstereographic values of 15 untreated patients and of 15 patients treated with clear aligners were compared at baseline, after 1, 3 and 6 months. Rasterstereographic parameters considered were the following: the kyphotic angle, the lordotic angle, the upper thoracic inclination, and the pelvic inclination. Correlations between Kyphosis Angle, Upper Toracic Inclination and Pelvic Inclination and body posture were found after 6 months of treatment with clear aligners. Occlusal coverage caused by aligners could influence body posture not only for upper spine sections but also lower spine sections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluation of Artificial Lighting and its Relationship with Body postures During Work in Hamadan Women\\'s Hairdressers

    Directory of Open Access Journals (Sweden)

    Rostam Golmohammadi

    2017-09-01

    Full Text Available Background and objective: long term work, nonstandard and improper tools, and inadequate lighting in the workplaces are important factors which resulted in awkward postures in hairdressers. The present study was performed to assess general and local lighting and investigate its relationship with postural status assessed by Rapid Entire Body Assessment (REBA method in Hamadan’ hair salons. Material and methods: in this descriptive analytical study, 100 hairdressers who worked in 50 hair salons were studied. The local and general lighting was measured using a Hanger ESI photometer. The hairdressers’ postures were assessed using REBA method. Data were analysed using version 21.0 of the SPSS/PC statistical package. Results: in 97 and 72% of the studied hair salons, local and general illuminance levels were lower than the occupational exposure limit, respectively. REBA assessment indicates that 26 and 12.5% of the studied subjects fell in to high and very high risk levels, respectively. ANOVA test showed significant relationship between general illuminance and the REBA scores in face and eyebrow makeup tasks (p<0.05. Conclusions: in most of the hair salons, local and general illuminance was lower than the Iranian occupational exposure limit and it had not a suitable condition in term of quality and quantity. According to the obtained risk levels, the modification of lighting systems of the hair salons and training of the hairdressers are recommended to prevent ergonomic disorders in hairdressers. 

  10. Heat-conserving postures hinder escape: a thermoregulation–predation trade-off in wintering birds

    OpenAIRE

    Jennie M. Carr; Steven L. Lima

    2012-01-01

    Wintering birds may conserve body heat by adopting postures with minimal leg exposure or significant ptiloerection. However, maximally heat-conserving postures may hinder a bird's ability to escape attack, leading to a trade-off between predation risk and thermoregulation. Such a trade-off implies that birds should use the most heat-conserving postures only at very cold temperatures. Feeding in a relatively low-risk environment should also facilitate the use of such heat-conserving postures. ...

  11. A posture recognition based fall detection system for monitoring an elderly person in a smart home environment.

    Science.gov (United States)

    Yu, Miao; Rhuma, Adel; Naqvi, Syed Mohsen; Wang, Liang; Chambers, Jonathon

    2012-11-01

    We propose a novel computer vision based fall detection system for monitoring an elderly person in a home care application. Background subtraction is applied to extract the foreground human body and the result is improved by using certain post-processing. Information from ellipse fitting and a projection histogram along the axes of the ellipse are used as the features for distinguishing different postures of the human. These features are then fed into a directed acyclic graph support vector machine (DAGSVM) for posture classification, the result of which is then combined with derived floor information to detect a fall. From a dataset of 15 people, we show that our fall detection system can achieve a high fall detection rate (97.08%) and a very low false detection rate (0.8%) in a simulated home environment.

  12. The dentist’s operating posture – ergonomic aspects

    Science.gov (United States)

    Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C

    2014-01-01

    Abstract The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist’s physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture. PMID:25184007

  13. POSTURAL SHOCK IN PREGNANCY

    Science.gov (United States)

    Wilkening, Ralph L.; Knauer, John; Larson, Roger K.

    1955-01-01

    Signs and symptoms of shock may be produced in some patients in late pregnancy by putting them in the dorsal recumbent posture. Change from this position will relieve the condition. The features of the supine hypotensive syndrome can be duplicated by applying pressure to the abdomen with the patient in a lateral position. The postural variations of venous pressure, blood pressure, and pulse appear to be due to obstruction of venous return from the lower portion of the body caused by the large uterus of late pregnancy compressing the vena cava. When shock is observed in a woman in late pregnancy, she should be turned to a lateral position before more active measures of treatment are begun. ImagesFigure 1. PMID:14351983

  14. Can smartwatches replace smartphones for posture tracking?

    Science.gov (United States)

    Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid

    2015-10-22

    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed.

  15. Use of Video Analysis System for Working Posture Evaluations

    Science.gov (United States)

    McKay, Timothy D.; Whitmore, Mihriban

    1994-01-01

    In a work environment, it is important to identify and quantify the relationship among work activities, working posture, and workplace design. Working posture may impact the physical comfort and well-being of individuals, as well as performance. The Posture Video Analysis Tool (PVAT) is an interactive menu and button driven software prototype written in Supercard (trademark). Human Factors analysts are provided with a predefined set of options typically associated with postural assessments and human performance issues. Once options have been selected, the program is used to evaluate working posture and dynamic tasks from video footage. PVAT has been used to evaluate postures from Orbiter missions, as well as from experimental testing of prototype glove box designs. PVAT can be used for video analysis in a number of industries, with little or no modification. It can contribute to various aspects of workplace design such as training, task allocations, procedural analyses, and hardware usability evaluations. The major advantage of the video analysis approach is the ability to gather data, non-intrusively, in restricted-access environments, such as emergency and operation rooms, contaminated areas, and control rooms. Video analysis also provides the opportunity to conduct preliminary evaluations of existing work areas.

  16. Attribution of emotions to body postures: an independent component analysis study of functional connectivity in autism.

    Science.gov (United States)

    Libero, Lauren E; Stevens, Carl E; Kana, Rajesh K

    2014-10-01

    The ability to interpret others' body language is a vital skill that helps us infer their thoughts and emotions. However, individuals with autism spectrum disorder (ASD) have been found to have difficulty in understanding the meaning of people's body language, perhaps leading to an overarching deficit in processing emotions. The current fMRI study investigates the functional connectivity underlying emotion and action judgment in the context of processing body language in high-functioning adolescents and young adults with autism, using an independent components analysis (ICA) of the fMRI time series. While there were no reliable group differences in brain activity, the ICA revealed significant involvement of occipital and parietal regions in processing body actions; and inferior frontal gyrus, superior medial prefrontal cortex, and occipital cortex in body expressions of emotions. In a between-group analysis, participants with autism, relative to typical controls, demonstrated significantly reduced temporal coherence in left ventral premotor cortex and right superior parietal lobule while processing emotions. Participants with ASD, on the other hand, showed increased temporal coherence in left fusiform gyrus while inferring emotions from body postures. Finally, a positive predictive relationship was found between empathizing ability and the brain areas underlying emotion processing in ASD participants. These results underscore the differential role of frontal and parietal brain regions in processing emotional body language in autism. Copyright © 2014 Wiley Periodicals, Inc.

  17. Postural Response Signal Characteristics Identified by Method of Developed Statokinesigram

    Directory of Open Access Journals (Sweden)

    Barbolyas Boris

    2015-12-01

    Full Text Available Human postural system is taken as complex biological system with specific input and output time characteristics, in this study. Evaluation of measured output characteristics is useful in medical diagnostics or in describing postural system disorders. System theory principle provide suitable basis for postural signals analysis. Participating volunteers were instructed to maintain quiet upright stance posture on firm support surface of stabilometric platform for 60s. Postural system actuation was realized by vibration stimuli applied bilaterally on Achilles tendons for 20s. Postural reaction signal, its time profile and static and dynamic characteristics were evaluated by Method of Developed Statokinesigram Trajectory (MDST.

  18. Comparison of postural sway depending on balance pad type.

    Science.gov (United States)

    Lee, DongGeon; Kim, HaNa; An, HyunJi; Jang, JiEun; Hong, SoungKyun; Jung, SunHye; Lee, Kyeongbong; Choi, Myong-Ryol; Lee, Kyung-Hee; Lee, GyuChang

    2018-02-01

    [Purpose] The purpose of the present study was to compare the postural sway of healthy adults standing on different types of balance pads. [Subjects and Methods] Nine healthy adults participated in this study. Postural body sway was measured while participants were standing on four different types of balance pads: Balance-pad Elite (BE), Aero-Step XL (AS), Dynair Ballkissen Senso (DBS), and Dynair Ballkissen XXL Meditation and Yoga (DBMY). A Wii Balance Board interfaced with Balancia software was used to measure postural body sway. [Results] In the sway velocity, sway path length, and sway area, no significant differences were found between baseline conditions (participants were standing on the floor with no balance pad) and the use of the BE or AS. However, significant increases in all parameters were found comparing baseline conditions to the use of either Dynair balance pad. Furthermore, the use of either Dynair balance pad significantly increased postural sway compared to both the BE and the AS. [Conclusion] These findings suggest that the DBS and DBMY balance pads may serve as superior tools for providing unstable condition for balance training than the BE and the AS balance pads.

  19. The ergonomics of dishonesty: the effect of incidental posture on stealing, cheating, and traffic violations.

    Science.gov (United States)

    Yap, Andy J; Wazlawek, Abbie S; Lucas, Brian J; Cuddy, Amy J C; Carney, Dana R

    2013-11-01

    Research in environmental sciences has found that the ergonomic design of human-made environments influences thought, feeling, and action. In the research reported here, we examined the impact of physical environments on dishonest behavior. In four studies, we tested whether certain bodily configurations-or postures-incidentally imposed by the environment led to increases in dishonest behavior. The first three experiments showed that individuals who assumed expansive postures (either consciously or inadvertently) were more likely to steal money, cheat on a test, and commit traffic violations in a driving simulation. Results suggested that participants' self-reported sense of power mediated the link between postural expansiveness and dishonesty. Study 4 revealed that automobiles with more expansive driver's seats were more likely to be illegally parked on New York City streets. Taken together, the results suggest that, first, environments that expand the body can inadvertently lead people to feel more powerful, and second, these feelings of power can cause dishonest behavior.

  20. The Fulfillment of Others' Needs Elevates Children's Body Posture

    Science.gov (United States)

    Hepach, Robert; Vaish, Amrisha; Tomasello, Michael

    2017-01-01

    Much is known about young children's helping behavior, but little is known about the underlying motivations and emotions involved. In 2 studies we found that 2-year-old children showed positive emotions of similar magnitude--as measured by changes in their postural elevation using depth sensor imaging technology--after they achieved a goal for…

  1. Experimental System for Investigation of Visual Sensory Input in Postural Feedback Control

    Directory of Open Access Journals (Sweden)

    Jozef Pucik

    2012-01-01

    Full Text Available The human postural control system represents a biological feedback system responsible for maintenance of upright stance. Vestibular, proprioceptive and visual sensory inputs provide the most important information into the control system, which controls body centre of mass (COM in order to stabilize the human body resembling an inverted pendulum. The COM can be measured indirectly by means of a force plate as the centre of pressure (COP. Clinically used measurement method is referred to as posturography. In this paper, the conventional static posturography is extended by visual stimulation, which provides insight into a role of visual information in balance control. Visual stimuli have been designed to induce body sway in four specific directions – forward, backward, left and right. Stabilograms were measured using proposed single-PC based system and processed to calculate velocity waveforms and posturographic parameters. The parameters extracted from pre-stimulus and on-stimulus periods exhibit statistically significant differences.

  2. A flexed posture in elderly patients is associated with impairments in postural control during walking.

    Science.gov (United States)

    de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Beijnen, Jos H; Lamoth, Claudine J C

    2014-02-01

    A flexed posture (FP) is characterized by protrusion of the head and an increased thoracic kyphosis (TK), which may be caused by osteoporotic vertebral fractures (VFs). These impairments may affect motor function, and consequently increase the risk of falling and fractures. The aim of the current study was therefore to examine postural control during walking in elderly patients with FP, and to investigate the relationship with geriatric phenomena that may cause FP, such as increased TK, VFs, frailty, polypharmacy and cognitive impairments. Fifty-six elderly patients (aged 80 ± 5.2 years; 70% female) walked 160 m at self-selected speed while trunk accelerations were recorded. Walking speed, mean stride time and coefficient of variation (CV) of stride time were recorded. In addition, postural control during walking was quantified by time-dependent variability measures derived from the theory of stochastic dynamics, indicating smoothness, degree of predictability, and local stability of trunk acceleration patterns. Twenty-five patients (45%) had FP and demonstrated a more variable and less structured gait pattern, and a more irregular trunk acceleration pattern than patients with normal posture. FP was significantly associated with an increased TK, but not with other geriatric phenomena. An increased TK may bring the body's centre of mass forward, which requires correcting responses, and reduces the ability to respond on perturbation, which was reflected by higher variation in the gait pattern in FP-patients. Impairments in postural control during walking are a major risk factor for falling: the results indicate that patients with FP have impaired postural control during walking and might therefore be at increased risk of falling. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Standing working posture compared in pregnant and non-pregnant conditions

    NARCIS (Netherlands)

    Paul, J. A.; Frings-Dresen, M. H.

    1994-01-01

    During pregnancy, an increase in body weight occurs together with changes in body weight distribution and in fit between body dimensions and workplace layout. These changes may cause alterations in working posture which may, in turn, have adverse consequences for the biomechanical load on the

  4. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R P; Dimbylow, P J [Health Protection Agency, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2006-05-07

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at {approx}130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at {approx}120 MHz and {approx}160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at {approx}180 and {approx}600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the

  5. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    International Nuclear Information System (INIS)

    Findlay, R P; Dimbylow, P J

    2006-01-01

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at ∼130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at ∼120 MHz and ∼160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at ∼180 and ∼600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the

  6. Static trunk posture in sitting and standing during pregnancy and early postpartum.

    Science.gov (United States)

    Gilleard, Wendy L; Crosbie, Jack; Smith, Richard

    2002-12-01

    To investigate the postural alignment of the upper body in the sagittal plane during sitting and standing postures as pregnancy progressed and then in the postpartum period. Longitudinal, repeated-measures design. Biomechanics laboratory in an Australian university. A volunteer convenience sample of 9 primiparous and multiparous women and 12 nulliparous women serving as a control group. Not applicable. Subjects were filmed while sitting and during quiet standing at intervals throughout pregnancy and at 8 weeks postpartum. A repeated-measures analysis of variance was used to assess systematic changes in the alignment of the pelvic, thoracic, and head segments, and the thoracolumbar and cervicothoracic spines. Student t tests were used to compare the postpartum and nulliparous control groups. There was no significant effect of pregnancy on the upper-body posture, although there was a tendency in some subjects for a flatter thoracolumbar spinal curve in sitting as pregnancy progressed. Postpartum during standing, the pelvic segment had a reduced sagittal plane anterior orientation, and the thoracolumbar spine was less extended, indicating a flatter spinal curve compared with the control group. There was no significant effect of pregnancy on upper-body posture during sitting and standing, although individuals varied in their postural response. A flatter spinal curve was found during standing postpartum. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  7. Human body communication performance simulations

    OpenAIRE

    Mufti, H. (Haseeb)

    2016-01-01

    Abstract Human Body Communication (HBC) is a novel communication method between devices which use human body as a transmission medium. This idea is mostly based on the concept of wireless biomedical monitoring system. The on-body sensor nodes can monitor vital signs of a human body and use the body as a transmission medium. This technology is convenient for long durations of clinical monitoring with the option of more mobil...

  8. [Occlusion and posture: is there evidence of correlation?].

    Science.gov (United States)

    Michelotti, A; Manzo, P; Farella, M; Martina, R

    1999-11-01

    The observation that the masticatory system and the postural body regulating system are anatomically and functionally related, has led to postulate several hypotheses of correlation between occlusal and postural disturbances. In the last decade, these arguments have gained a great social impact, also because they have been broadly spread by the mass-media. As a consequence, there has been a growing number of patients seeking concomitant occlusal and postural treatments. The aim of this study was to review critically the current evidence of correlation between the two systems; this in order to address clinical issues for the management of patients. Methodology of the studies reviewed has been evaluated according to the criteria suggested by Storey and Rugh 20 rif. Although there are some evidences of correlation between occlusion and posture, this appears limited to the cranio-cervical tract of the column and tends to disappear when descending in cranio-caudal direction. On the basis of this review of the literature, it's not advisable to treat postural imbalance by means of occlusal treatment or vice versa, particularly if the therapeutic modalities are irreversible.

  9. Cardio-postural interactions and short-arm centrifugation.

    Science.gov (United States)

    Blaber, Andrew; Goswami, Nandu; Xu, Da; Laurin, Alexendre

    INTRODUCTION: We are interested in mechanisms associated with orthostatic tolerance. In previous studies we have shown that postural muscles in the calf contribute to both posture and blood pressure regulation during orthostatic stress. In this study we investigated the relationship between cardiovascular and postural muscle control before, during and after short arm human centrifuge (SAHC) up to 2.2 G. METHODS: Eleven healthy young subjects (6 m, 5 f), with no history of cardiovascular disease, falls or orthostatic hypotension, participated. All were familiarized with the SAHC with 10 minutes at 1-G at the feet. Each subject was instrumented in the supine position on the SAHC for beat-to-beat ECG and blood pressure (Portapres derived SBP). Bilateral lower leg EMG was collected from four leg postural muscles: tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and medial soleus. Transdermal differential recording of signals was performed using an 8-channel EMG system, (Myosystem 1200, Noraxon Inc., Arizona, USA). Postural sway data of the body COP was computed from the force and moment data collected with a force platform (Accusway, AMTI, MA, USA). Before and after SAHC, the subject stood on a force platform with their gaze fixed on a point at eye level, closed their eyes and stood quietly for 5 min. A final stand was conducted 30 min after centrifugation with supine rest in between. During clockwise centrifugation (10-min 1g and 10-min 2.2g at the foot) the subjects’ head was hooded and in the dark. The subject’s body was restrained into the rotation arm with a parachute harness and given additional body support with a foot-plate. ECG, EMG and BP data were collected throughout and centre of pressure trajectory (COP) collected during the stand test. Subjects were requested to relax and not to voluntarily contract the leg muscles; however, they were not to suppress contractions as they occurred involuntarily or by reflex. A Continuous Wavelet

  10. Postural balance and the risk of falling during pregnancy.

    Science.gov (United States)

    Cakmak, Bulent; Ribeiro, Ana Paula; Inanir, Ahmet

    2016-01-01

    Pregnancy is a physiological process and many changes occur in a woman's body during pregnancy. These changes occur in all systems to varying degrees, including the cardiovascular, respiratory, genitourinary, and musculoskeletal systems. The hormonal, anatomical, and physiological changes occurring during pregnancy result in weight gain, decreased abdominal muscle strength and neuromuscular control, increased ligamentous laxity, and spinal lordosis. These alterations shift the centre of gravity of the body, altering the postural balance and increasing the risk of falls. Falls during pregnancy can cause maternal and foetal complications, such as maternal bone fractures, head injuries, internal haemorrhage, abruption placenta, rupture of the uterus and membranes, and occasionally maternal death or intrauterine foetal demise. Preventative strategies, such as physical exercise and the use of maternity support belts, can increase postural stability and reduce the risk of falls during pregnancy. This article reviews studies that have investigated changes in postural balance and risk of falling during pregnancy.

  11. Obesity impact on the attentional cost for controlling posture.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Mignardot

    2010-12-01

    Full Text Available This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing.Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1 and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6 maintained postural stability on a force platform in two postural tasks (seated and unipedal. The two postural tasks were performed (1 alone and (2 in a dual-task paradigm in combination with an auditory reaction time task (RT. Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials.(1 Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP, in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2 Whatever the postural task, the additional RT task did not affect postural stability. (3 Seated, RT did not differ between the two groups. (4 RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity.Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities.

  12. Obesity Impact on the Attentional Cost for Controlling Posture

    Science.gov (United States)

    Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent

    2010-01-01

    Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914

  13. Dual task interference on postural sway, postural transitions and gait in people with Parkinson's disease and freezing of gait.

    Science.gov (United States)

    de Souza Fortaleza, Ana Claudia; Mancini, Martina; Carlson-Kuhta, Patty; King, Laurie A; Nutt, John G; Chagas, Eliane Ferrari; Freitas, Ismael Forte; Horak, Fay B

    2017-07-01

    Freezing of gait (FoG) is associated with less automatic gait and more impaired cognition, balance and postural transitions compared to people with PD who do not have FoG. However, it is unknown whether dual-task cost during postural sway, postural transitions (such as gait initiation and turning), and gait are more in subjects with Parkinson's disease (PD) who have freezing of gait (FoG+) compared to those who do not have FoG (FoG-). Here, we hypothesized that the effects of a cognitive dual task on postural sway, postural transitions and gait would be larger in FoG+ than FoG-. Thirty FoG- and 24 FoG+ performed an Instrumented Stand and Walk test in OFF medication state, with and without a secondary cognitive task (serial subtraction by 3s). Measures of postural sway, gait initiation, turning, and walking were extracted using body-worn inertial sensors. FoG+ showed significantly larger dual task cost than FoG- for several gait metrics, but not during postural sway or postural transitions. During walking, FoG+ exhibited a larger dual task cost than FoG- resulting in shorter stride length and slower stride velocity. During standing, FoG+ showed a larger postural sway compared to FoG- and during gait initiation, FoG+, but not FoG-, showed a longer first step duration during the dual-task condition compared to single-task condition (interaction effect, p=0.04). During turning, both groups showed a slower turn peak speed in the dual-task condition compared to single task condition. These findings partly support our hypothesis that dual task cost on walking is greater in FoG+ than FoG-. Copyright © 2017. Published by Elsevier B.V.

  14. Assessing Somatosensory Utilization during Unipedal Postural Control.

    Science.gov (United States)

    Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P

    2017-01-01

    Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.

  15. Anatomy and histochemistry of spread-wing posture in birds. 2. Gliding flight in the California gull, Larus californicus: a paradox of fast fibers and posture.

    Science.gov (United States)

    Meyers, R A; Mathias, E

    1997-09-01

    Gliding flight is a postural activity which requires the wings to be held in a horizontal position to support the weight of the body. Postural behaviors typically utilize isometric contractions in which no change in length takes place. Due to longer actin-myosin interactions, slow contracting muscle fibers represent an economical means for this type of contraction. In specialized soaring birds, such as vultures and pelicans, a deep layer of the pectoralis muscle, composed entirely of slow fibers, is believed to perform this function. Muscles involved in gliding posture were examined in California gulls (Larus californicus) and tested for the presence of slow fibers using myosin ATPase histochemistry and antibodies. Surprisingly small numbers of slow fibers were found in the M. extensor metacarpi radialis, M. coracobrachialis cranialis, and M. coracobrachialis caudalis, which function in wrist extension, wing protraction, and body support, respectively. The low number of slow fibers in these muscles and the absence of slow fibers in muscles associated with wing extension and primary body support suggest that gulls do not require slow fibers for their postural behaviors. Gulls also lack the deep belly to the pectoralis found in other gliding birds. Since bird muscle is highly oxidative, we hypothesize that fast muscle fibers may function to maintain wing position during gliding flight in California gulls.

  16. The perception of emotion in body expressions.

    Science.gov (United States)

    de Gelder, B; de Borst, A W; Watson, R

    2015-01-01

    During communication, we perceive and express emotional information through many different channels, including facial expressions, prosody, body motion, and posture. Although historically the human body has been perceived primarily as a tool for actions, there is now increased understanding that the body is also an important medium for emotional expression. Indeed, research on emotional body language is rapidly emerging as a new field in cognitive and affective neuroscience. This article reviews how whole-body signals are processed and understood, at the behavioral and neural levels, with specific reference to their role in emotional communication. The first part of this review outlines brain regions and spectrotemporal dynamics underlying perception of isolated neutral and affective bodies, the second part details the contextual effects on body emotion recognition, and final part discusses body processing on a subconscious level. More specifically, research has shown that body expressions as compared with neutral bodies draw upon a larger network of regions responsible for action observation and preparation, emotion processing, body processing, and integrative processes. Results from neurotypical populations and masking paradigms suggest that subconscious processing of affective bodies relies on a specific subset of these regions. Moreover, recent evidence has shown that emotional information from the face, voice, and body all interact, with body motion and posture often highlighting and intensifying the emotion expressed in the face and voice. © 2014 John Wiley & Sons, Ltd.

  17. Efeito da reeducação postural global no alinhamento corporal e nas condições clínicas de indivíduos com disfunção temporomandibular associada a desvios posturais Effect of global postural reeducation on body alignment and on clinical status of individuals with temporomandibular disorder associated to postural deviations

    Directory of Open Access Journals (Sweden)

    Débora Basso

    2010-03-01

    Full Text Available Este estudo visou verificar o efeito da técnica de reeducação postural global (RPG nas condições físicas, psicológicas e psicossociais, assim como no alinhamento corporal, de indivíduos com disfunção temporomandibular (DTM associada a desvio postural. Participaram 20 indivíduos com DTM e com desvio postural confirmado por exame físico, avaliados, antes e depois do tratamento de RPG, pelos critérios diagnósticos de desordens temporomandibulares (RDC/TMD, na sigla em inglês e quanto às medidas angulares, por fotogrametria digital. O tratamento consistiu em 10 sessões semanais de RPG. Os resultados após o tratamento mostram, na classificação da disfunção, maior predomínio de desordens apenas musculares (em detrimento das articulares e por deslocamento de disco e redução da intensidade da dor orofacial; o percentual de indivíduos sem depressão aumentou de 10% para 35%; o percentual de indivíduos com classificação normal de sintomas físicos (excluindo itens de dor passou de 30% para 55%. Foi encontrada melhora estatisticamente significante na maioria das medidas angulares, exceto nos ângulos frontais dos membros inferiores e ângulo perna/retropé direito. O alinhamento horizontal da cabeça e as medidas de lordose cervical e lombar, com valores normais antes da RPG, não se modificaram. Conclui-se que, com o tratamento de RPG, os indivíduos apresentaram importantes melhoras dos sintomas físicos e psicológicos da DTM, assim como melhora do alinhamento e simetria corporais.The purpose of this study was to assess the effects of the technique of global postural re-education (GPR on body alignment and clinical status of individuals with temporomandibular disorder (TMD associated to postural deviations. Twenty individuals with both TMD and postural deviations confirmed by physical examination were assessed, before and after treatment, by the research diagnostic criteria for temporomandibular disorders (RDC/TMD and as to

  18. Postural alignment in children with Duchenne muscular dystrophy and its relationship with balance

    OpenAIRE

    Baptista, Cyntia R. J. A.; Costa, Andreia A.; Pizzato, Tatiana M.; Souza, Francine B.; Mattiello-Sverzut, Ana C.

    2014-01-01

    Background: In Duchenne muscular dystrophy, functional deficits seem to arise from body misalignment, deconditioning, and obesity secondary to weakness and immobility. The question remains about the effects of postural deviations on the functional balance of these children. Objectives: To identify and quantify postural deviations in children with DMD in comparison to non-affected children (eutrophic and overweight/obese), exploring relationships between posture and function. Method: Thi...

  19. Postural control in women with breast hypertrophy

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    2012-07-01

    Full Text Available OBJECTIVES: The consequences of breast hypertrophy have been described based on the alteration of body mass distribution, leading to an impact on psychological and physical aspects. The principles of motor control suggest that breast hypertrophy can lead to sensorimotor alterations and the impairment of body balance due to postural misalignment. The aim of this study is to evaluate the postural control of women with breast hypertrophy under different sensory information conditions. METHOD: This cross-sectional study included 14 women with breast hypertrophy and 14 without breast hypertrophy, and the mean ages of the groups were 39 ±15 years and 39±16 years, respectively. A force platform was used to assess the sensory systems that contribute to postural control: somatosensory, visual and vestibular. Four postural conditions were sequentially tested: eyes open and fixed platform, eyes closed and fixed platform, eyes open and mobile platform, and eyes closed and mobile platform. The data were processed, and variables related to the center of pressure were analyzed for each condition. The Kruskal-Wallis test was used to compare the conditions between the groups for the area of center of pressure displacement and the velocity of center of pressure displacement in the anterior-posterior and medial-lateral directions. The alpha level error was set at 0.05. RESULTS: Women with breast hypertrophy presented an area that was significantly higher for three out of four conditions and a higher velocity of center of pressure displacement in the anterior-posterior direction under two conditions: eyes open and mobile platform and eyes closed and mobile platform. CONCLUSIONS: Women with breast hypertrophy have altered postural control, which was demonstrated by the higher area and velocity of center of pressure displacement.

  20. Assessing dynamic postural control during exergaming in older adults : A probabilistic approach

    NARCIS (Netherlands)

    Soancatl Aguilar, V.; Lamoth, C. J. C.; Maurits, N.M.; Roerdink, J. B. T. M.

    Digital games controlled by body movements (exergames) have been proposed as a way to improve postural control among older adults. Exergames are meant to be played at home in an unsupervised way. However, only few studies have investigated the effect of unsupervised home-exergaming on postural

  1. CALF BLOOD-FLOW AND POSTURE - DOPPLER ULTRASOUND MEASUREMENTS DURING AND AFTER EXERCISE

    NARCIS (Netherlands)

    VANLEEUWEN, BE; BARENDSEN, GJ; LUBBERS, J; DEPATER, L

    To investigate the joint effects of body posture and calf muscle pump, the calf blood flow of eight healthy volunteers was measured with pulsed Doppler equipment during and after 3 min of rhythmic exercise on a calf ergometer in the supine, sitting, and standing postures. Muscle contractions

  2. Characterization of postural control impairment in women with fibromyalgia

    Science.gov (United States)

    Sempere-Rubio, Núria; López-Pascual, Juan; Aguilar-Rodríguez, Marta; Cortés-Amador, Sara; Espí-López, Gemma; Villarrasa-Sapiña, Israel

    2018-01-01

    The main goal of this cross-sectional study was to detect whether women with fibromyalgia syndrome (FMS) have altered postural control and to study the sensory contribution to postural control. We also explored the possibility that self-induced anxiety and lower limb strength may be related to postural control. For this purpose, 129 women within an age range of 40 to 70 years were enrolled. Eighty of the enrolled women had FMS. Postural control variables, such as Ellipse, Root mean square (RMS) and Sample entropy (SampEn), in both directions (i.e. mediolateral and anteroposterior), were calculated under five different conditions. A force plate was used to register the center of pressure shifts. Furthermore, isometric lower limb strength was recorded with a portable dynamometer and normalized by lean body mass. The results showed that women with FMS have impaired postural control compared with healthy people, as they presented a significant increase in Ellipse and RMS values (pPostural control also worsens with the gradual alteration of sensory inputs in this population (p0.05). There were no significant correlations between postural control and lower limb strength (p>0.05). Therefore, women with FMS have impaired postural control that is worse when sensory inputs are altered but is not correlated with their lower limb strength. PMID:29723223

  3. Posture Detection Based on Smart Cushion for Wheelchair Users

    Directory of Open Access Journals (Sweden)

    Congcong Ma

    2017-03-01

    Full Text Available The postures of wheelchair users can reveal their sitting habit, mood, and even predict health risks such as pressure ulcers or lower back pain. Mining the hidden information of the postures can reveal their wellness and general health conditions. In this paper, a cushion-based posture recognition system is used to process pressure sensor signals for the detection of user’s posture in the wheelchair. The proposed posture detection method is composed of three main steps: data level classification for posture detection, backward selection of sensor configuration, and recognition results compared with previous literature. Five supervised classification techniques—Decision Tree (J48, Support Vector Machines (SVM, Multilayer Perceptron (MLP, Naive Bayes, and k-Nearest Neighbor (k-NN—are compared in terms of classification accuracy, precision, recall, and F-measure. Results indicate that the J48 classifier provides the highest accuracy compared to other techniques. The backward selection method was used to determine the best sensor deployment configuration of the wheelchair. Several kinds of pressure sensor deployments are compared and our new method of deployment is shown to better detect postures of the wheelchair users. Performance analysis also took into account the Body Mass Index (BMI, useful for evaluating the robustness of the method across individual physical differences. Results show that our proposed sensor deployment is effective, achieving 99.47% posture recognition accuracy. Our proposed method is very competitive for posture recognition and robust in comparison with other former research. Accurate posture detection represents a fundamental basic block to develop several applications, including fatigue estimation and activity level assessment.

  4. Haptic cues for orientation and postural control in sighted and blind individuals

    Science.gov (United States)

    Jeka, J. J.; Easton, R. D.; Bentzen, B. L.; Lackner, J. R.

    1996-01-01

    Haptic cues from fingertip contact with a stable surface attenuate body sway in subjects even when the contact forces are too small to provide physical support of the body. We investigated how haptic cues derived from contact of a cane with a stationary surface at low force levels aids postural control in sighted and congenitally blind individuals. Five sighted (eyes closed) and five congenitally blind subjects maintained a tandem Romberg stance in five conditions: (1) no cane; (2,3) touch contact (postural sway in all subjects, compared to the no-cane condition. A slanted cane was far more effective in reducing postural sway than was a perpendicular cane. Cane use also decreased head displacement of sighted subjects far more than that of blind subjects. These results suggest that head movement control is linked to postural control through gaze stabilization reflexes in sighted subjects; such reflexes are absent in congenitally blind individuals and may account for their higher levels of head displacement.

  5. Physics of the Human Body

    CERN Document Server

    Herman, Irving P

    2007-01-01

    Physics of the Human Body comprehensively addresses the physical and engineering aspects of human physiology by using and building on first-year college physics and mathematics. Topics include the mechanics of the static body and the body in motion, the materials properties of the body, muscles in the body, the energetics of body metabolism, fluid flow in the cardiovascular and respiratory systems, the acoustics of sound waves in speaking and hearing, vision and the optics of the eye, the electrical properties of the body, and the basic engineering principles of feedback and control in regulating all aspects of function. The goal of this text is to understand physical issues concerning the human body, in part by developing and then using simple and subsequently more refined models of the macrophysics of the human body. Many chapters include a brief review of the necessary physical principles. There are problems at the end of each chapter; solutions to selected problems are also provided. This text is geared t...

  6. Activation timing of postural muscles of lower legs and prediction of postural disturbance during bilateral arm flexion in older adults.

    Science.gov (United States)

    Yaguchi, Chie; Fujiwara, Katsuo; Kiyota, Naoe

    2017-12-22

    Activation timings of postural muscles of lower legs and prediction of postural disturbance were investigated in young and older adults during bilateral arm flexion in a self-timing task and an oddball task with different probabilities of target presentation. Arm flexion was started from a standing posture with hands suspended 10 cm below the horizontal level in front of the body, in which postural control focused on the ankles is important. Fourteen young and 14 older adults raised the arms in response to the target sound signal. Three task conditions were used: 15 and 45% probabilities of the target in the oddball task and self-timing. Analysis items were activation timing of postural muscles (erector spinae, biceps femoris, and gastrocnemius) with respect to the anterior deltoid (AD), and latency and amplitude of the P300 component of event-related brain potential. For young adults, all postural muscles were activated significantly earlier than AD under each condition, and time of preceding gastrocnemius activation was significantly longer in the order of the self-timing, 45 and 15% conditions. P300 latency was significantly shorter, and P300 amplitude was significantly smaller under the 45% condition than under the 15% condition. For older adults, although all postural muscles, including gastrocnemius, were activated significantly earlier than AD in the self-timing condition, only activation timing of gastrocnemius was not significantly earlier than that of AD in oddball tasks, regardless of target probability. No significant differences were found between 15 and 45% conditions in onset times of all postural muscles, and latency and amplitude of P300. These results suggest that during arm movement, young adults can achieve sufficient postural preparation in proportion to the probability of target presentation in the oddball task. Older adults can achieve postural control using ankle joints in the self-timing task. However, in the oddball task, older adults

  7. Feeding and resting postures of wild northern muriquis (Brachyteles hypoxanthus).

    Science.gov (United States)

    Iurck, Maria F; Nowak, Matthew G; Costa, Leny C M; Mendes, Sérgio L; Ford, Susan M; Strier, Karen B

    2013-01-01

    Increased body size in Brachyteles has been regarded as an important evolutionary adaptation that allowed a greater reliance on leaves compared to other more frugivorous Atelidae, but its association with muriqui positional behavior and substrate use is still unknown. Here, we present original data on the feeding and resting postures of the northern muriqui (Brachyteles hypoxanthus) and evaluate predictions about the relationships between body size, postural behavior, and substrate use derived from previously published data for other atelids (e.g. Alouatta, Ateles, and Lagothrix). The study was undertaken from August 2002 to July 2003 on a large group of well-habituated muriquis inhabiting the Reserva Particular do Patrimônio Natural - Felíciano Miguel Abdala in Minas Gerais, Brazil. Consistent with our predictions, we found that B. hypoxanthus was highly suspensory during postural feeding (60.9%) and commonly used tail-hind limb suspension/horizontal tripod (38.0%) or tail-forelimb/hind limb suspension (21.4%). However, although tail-suspensory postures permitted the muriquis to use the terminal canopy and small-sized substrates, these areas were also accessed via tail-assisted above-branch postural behaviors involving multiple substrates. Unexpectedly, tail-suspensory postures were found to be frequently associated with large substrates, tree trunks, and the understory. We suggest that Brachyteles' ability to access food resources from all areas of a feeding tree and from tree crowns at different canopy levels may account for their ability to efficiently exploit food resources in seasonal disturbed forest fragments of the Brazilian Atlantic Forest today. © 2012 Wiley Periodicals, Inc.

  8. Mechanisms of inhibition of vasopressin release during moderate antiorthostatic posture change in humans

    DEFF Research Database (Denmark)

    Pump, B.; Gabrielsen, A.; Christensen, N.J.

    1999-01-01

    The hypothesis was tested that the carotid baroreceptor stimulation caused by a posture change from upright seated with legs horizontal (Seat) to supine (Sup) participates in the suppression of arginine vasopressin (AVP) release. Ten healthy males underwent this posture change for 30 min without...... decreased from 0.9 +/- 0.2 to 0.5 +/- 0.1 pg/ml (P posture...

  9. Postural adjustments are modulated by manual task complexity

    Directory of Open Access Journals (Sweden)

    Luis Augusto Teixeira

    2009-09-01

    Full Text Available Daily life activities of humans are characterized by dual tasks, in which a manual task is performed concomitantly with a postural task. Based on the assumption that both manual and postural tasks require attentional resources, no consensus exists as to how the central nervous system modulates postural adjustments in dual tasks. The aim of the present study was to analyze the effect of a manual task requiring attentional resources on shoulder and ankle adjustments as a function of the direction and predictability of postural perturbation. The participants (n=6 were evaluated during the performance of a simple and a complex manual task, while the base of support was moved backward or forward. Latency of activation of the tibialis anterior and gastroc-nemius muscles and angular acceleration of the shoulder were analyzed. The results showed that execution of the complex manual task delayed postural adjustment. Moreover, this delay occurred differently depending on the direction of postural perturbation. The delay in postural adjustment occurred proximally in the case of anterior displacement of the platform, and distally in the case of posterior displacement. Postural adjustments were more affected by the attentional task than by the predictability of platform displacement. These results are consistent with the concept of an integrated control between manual actions and the maintenance of static posture.

  10. Adolescent idiopathic scoliosis and spinal fusion do not substantially impact on postural balance.

    NARCIS (Netherlands)

    Schimmel, J.J.; Groen, B.E.; Weerdesteijn, V.G.M.; Kleuver, M. de

    2015-01-01

    BACKGROUND: The spinal curvature in patients with Adolescent Idiopathic Scoliosis (AIS) causes an asymmetry of upper body postural alignment, which might affect postural balance. However, the currently available studies on balance in AIS patients are not consistent. Furthermore, it is not known

  11. Influence of dental occlusion on postural control and plantar pressure distribution.

    Science.gov (United States)

    Scharnweber, Benjamin; Adjami, Frederic; Schuster, Gabriele; Kopp, Stefan; Natrup, Jörg; Erbe, Christina; Ohlendorf, Daniela

    2017-11-01

    The number of studies investigating correlations between the temporomandibular system and body posture, postural control or plantar pressure distribution is continuously increasing. If a connection can be found, it is often of minor influence or for only a single parameter. However, small subject groups are critical. This study was conducted to define correlations between dental parameters, postural control and plantar pressure distribution in healthy males. In this study, 87 male subjects with an average age of 25.23 ± 3.5 years (ranging from 18 to 35 years) were examined. Dental casts of the subjects were analyzed. Postural control and plantar pressure distribution were recorded by a force platform. Possible orthodontic and orthopedic factors of influence were determined by either an anamnesis or a questionnaire. All tests performed were randomized and repeated three times each for intercuspal position (ICP) and blocked occlusion (BO). For a statistical analysis of the results, non-parametric tests (Wilcoxon-Matched-Pairs-Test, Kruskall-Wallis-Test) were used. A revision of the results via Bonferroni-Holm correction was considered. ICP increases body sway in the frontal (p ≤ 0.01) and sagittal planes (p ≤ 0.03) compared to BO, whereas all other 29 correlations were independent of the occlusion position. For both of the ICP or BO cases, Angle-class, midline-displacement, crossbite, or orthodontic therapy were found to have no influence on postural control or plantar pressure distribution (p > 0.05). However, the contact time of the left foot decreased (p ≤ 0.001) while detecting the plantar pressure distribution in each position. Persistent dental parameters have no effect on postural sway. In addition, postural control and plantar pressure distribution have been found to be independent postural criteria.

  12. Real-Time Hand Posture Recognition Using a Range Camera

    Science.gov (United States)

    Lahamy, Herve

    The basic goal of human computer interaction is to improve the interaction between users and computers by making computers more usable and receptive to the user's needs. Within this context, the use of hand postures in replacement of traditional devices such as keyboards, mice and joysticks is being explored by many researchers. The goal is to interpret human postures via mathematical algorithms. Hand posture recognition has gained popularity in recent years, and could become the future tool for humans to interact with computers or virtual environments. An exhaustive description of the frequently used methods available in literature for hand posture recognition is provided. It focuses on the different types of sensors and data used, the segmentation and tracking methods, the features used to represent the hand postures as well as the classifiers considered in the recognition process. Those methods are usually presented as highly robust with a recognition rate close to 100%. However, a couple of critical points necessary for a successful real-time hand posture recognition system require major improvement. Those points include the features used to represent the hand segment, the number of postures simultaneously recognizable, the invariance of the features with respect to rotation, translation and scale and also the behavior of the classifiers against non-perfect hand segments for example segments including part of the arm or missing part of the palm. A 3D time-of-flight camera named SR4000 has been chosen to develop a new methodology because of its capability to provide in real-time and at high frame rate 3D information on the scene imaged. This sensor has been described and evaluated for its capability for capturing in real-time a moving hand. A new recognition method that uses the 3D information provided by the range camera to recognize hand postures has been proposed. The different steps of this methodology including the segmentation, the tracking, the hand

  13. Tai Chi training reduced coupling between respiration and postural control.

    Science.gov (United States)

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (ppostural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015

  14. Ergonomic intervention: its effect on working posture and musculoskeletal symptoms in female biomedical scientists.

    LENUS (Irish Health Repository)

    Kilroy, N

    2000-01-01

    This study investigates the effect of ergonomic intervention on working posture and musculoskeletal symptoms in female biomedical scientists. The Nordic musculoskeletal questionnaire (NMQ), body discomfort chart (BDC) and rapid upper-limb assessment (RULA) are the tools for assessment. The study was conducted in three phases: pre-intervention, intervention and post-intervention. Pre-intervention, 79% of subjects reported a three-month prevalence of symptoms, and these were reported more frequently by those working in haematology\\/transfusion. Analysis by RULA showed that the majority (59%) of postures had a grand score of four. A further 24% had scores of five or six. The highest frequency of poor postures was seen in haematology\\/transfusion. Intervention comprised physical workplace changes, a seminar, and advice on risk factors. In the post-intervention phase, baseline measurements were repeated. Reporting of three-month prevalence of symptoms had decreased to 54%, and reports of body discomfort also had decreased. The majority (64%) had a RULA grand score of three. No observed postures had scores of five or six. In conclusion, ergonomic intervention resulted in an improvement in working postures, and a decrease in the prevalence of musculoskeletal symptoms and body discomfort. Analysis of findings indicate that RULA scores generally corresponded with reporting of symptoms (NMQ) and discomfort (BDC).

  15. Effectiveness of elastic band-type ankle–foot orthoses on postural control in poststroke elderly patients as determined using combined measurement of the stability index and body weight-bearing ratio

    Directory of Open Access Journals (Sweden)

    Kim JH

    2015-11-01

    Full Text Available Jong Hyun Kim, Woo Sang Sim, Byeong Hee Won Usability Evaluation Technology Center, Advanced Biomedical and Welfare R&D Group, Korea Institute of Industrial Technology, Cheonan-si, Chungcheongnam-do, South Korea Purpose: Poor recovery of postural stability poststroke is the primary cause of impairment in activities and social participation in elderly stroke survivors. The purpose of our study was to experimentally evaluate the effectiveness of our new elastic ankle–foot orthosis (AFO, compared to a traditional AFO fabricated with hard plastic, in improving postural stability in elderly chronic stroke survivors. Patients and methods: Postural stability was evaluated in ten chronic stroke patients, 55.7±8.43 years old. Postural stability was evaluated using the standardized methods of the Biodex Balance System combined with a foot pressure system, under three experimental conditions, no AFO, rigid plastic AFO, and elastic AFO (E-AFO. The following dependent variables of postural stability were analyzed: plantar pressure under the paretic and nonparetic foot, area of the center of balance (COB and % time spent in each location, distance traveled by the COB away from the body center, distance traveled by the center of pressure, and calculated index of overall stability, as well as indices anterior–posterior and medial–lateral stability. Results: Both AFO designs improved all indices of postural stability. Compared to the rigid plastic AFO, the E-AFO produced additional positive effects in controlling anterior–posterior body sway, equalizing weight bearing through the paretic and nonparetic limbs, and restraining the displacement of the center of pressure and of the COB. Conclusion: Based on our outcomes, we recommend the prescription of E-AFOs as part of a physiotherapy rehabilitation program to promote recovery of postural stability poststroke. When possible, therapeutic outcomes should be documented using the Biodex Balance System and

  16. Postural Control Deficits in Autism Spectrum Disorder: The Role of Sensory Integration

    Science.gov (United States)

    Doumas, Michail; McKenna, Roisin; Murphy, Blain

    2016-01-01

    We investigated the nature of sensory integration deficits in postural control of young adults with ASD. Postural control was assessed in a fixed environment, and in three environments in which sensory information about body sway from visual, proprioceptive or both channels was inaccurate. Furthermore, two levels of inaccurate information were…

  17. Postural reactions of girls and boys aged 12–15 years evaluated using the Romberg test

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2016-07-01

    Full Text Available Introduction : The complex system controlling human posture includes a gaze stabilisation system, which comprises the control of direction and visual acuity during head and body movements, and a posture stabilisation system, keeping the body in balance at rest and in movement. Aim of the research: To analyse the postural reaction of SOX and SOY using the Romberg test with eyes open (EO and closed (CE in girls and boys aged 12–15 years. Material and methods : The study included 503 students of Primary School No. 13 and School No. 4 in Starachowice. Postural reactions were tested on a Cosmogamma platform by Emildue R50300. Postural reactions were analysed, and mean sway X (MSX and mean sway Y (MSY were calculated. Results: Analysis of variance showed significant differences of MSX only between girls and boys (p < 0.036. MSX was significantly lower in girls in both tests with EO and CE. Although there was no apparent significant difference of MSX between the Romberg test with EO and CE, a slight progression was observed in the test with CE. Analysis of variance of MSY with a single classification showed a significant effect of study options (p < 0.048, a significant interaction of gender and options of the study (p < 0.048, and a significant interaction of age and options of the study (p < 0.026. Analysis of variance of MSY showed a significant progression of MSY in the test with CE. Conclusions : Our research showed that balance with CE does not worsen, so it can be assumed that children have limited skills of using vision to maintain balance because there is a lack of appropriate coordination between vision and motor abilities, which in children are in development.

  18. The Throw-and-Catch Model of Human Gait: Evidence from Coupling of Pre-Step Postural Activity and Step Location.

    Science.gov (United States)

    Bancroft, Matthew J; Day, Brian L

    2016-01-01

    Postural activity normally precedes the lift of a foot from the ground when taking a step, but its function is unclear. The throw-and-catch hypothesis of human gait proposes that the pre-step activity is organized to generate momentum for the body to fall ballistically along a specific trajectory during the step. The trajectory is appropriate for the stepping foot to land at its intended location while at the same time being optimally placed to catch the body and regain balance. The hypothesis therefore predicts a strong coupling between the pre-step activity and step location. Here we examine this coupling when stepping to visually-presented targets at different locations. Ten healthy, young subjects were instructed to step as accurately as possible onto targets placed in five locations that required either different step directions or different step lengths. In 75% of trials, the target location remained constant throughout the step. In the remaining 25% of trials, the intended step location was changed by making the target jump to a new location 96 ms ± 43 ms after initiation of the pre-step activity, long before foot lift. As predicted by the throw-and-catch hypothesis, when the target location remained constant, the pre-step activity led to body momentum at foot lift that was coupled to the intended step location. When the target location jumped, the pre-step activity was adjusted (median latency 223 ms) and prolonged (on average by 69 ms), which altered the body's momentum at foot lift according to where the target had moved. We conclude that whenever possible the coupling between the pre-step activity and the step location is maintained. This provides further support for the throw-and-catch hypothesis of human gait.

  19. Children with autism spectrum disorder are skilled at reading emotion body language.

    Science.gov (United States)

    Peterson, Candida C; Slaughter, Virginia; Brownell, Celia

    2015-11-01

    Autism is commonly believed to impair the ability to perceive emotions, yet empirical evidence is mixed. Because face processing may be difficult for those with autism spectrum disorder (ASD), we developed a novel test of recognizing emotion via static body postures (Body-Emotion test) and evaluated it with children aged 5 to 12 years in two studies. In Study 1, 34 children with ASD and 41 typically developing (TD) controls matched for age and verbal intelligence (VIQ [verbal IQ]) were tested on (a) our new Body-Emotion test, (b) a widely used test of emotion recognition using photos of eyes as stimuli (Baron-Cohen et al.'s "Reading Mind in the Eyes: Child" or RMEC [Journal of Developmental and Learning Disorders, 2001, Vol. 5, pp. 47-78]), (c) a well-validated theory of mind (ToM) battery, and (d) a teacher-rated empathy scale. In Study 2 (33 children with ASD and 31 TD controls), the RMEC test was simplified to the six basic human emotions. Results of both studies showed that children with ASD performed as well as their TD peers on the Body-Emotion test. Yet TD children outperformed the ASD group on ToM and on both the standard RMEC test and the simplified version. VIQ was not related to perceiving emotions via either body posture or eyes for either group. However, recognizing emotions from body posture was correlated with ToM, especially for children with ASD. Finally, reading emotions from body posture was easier than reading emotions from eyes for both groups. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Changes in the referent body location and configuration may underlie human gait, as confirmed by findings of multi-muscle activity minimizations and phase resetting.

    Science.gov (United States)

    Feldman, Anatol G; Krasovsky, Tal; Baniña, Melanie C; Lamontagne, Anouk; Levin, Mindy F

    2011-04-01

    Locomotion is presumably guided by feed-forward shifts in the referent body location in the desired direction in the environment. We propose that the difference between the actual and the referent body locations is transmitted to neurons that virtually diminish this difference by appropriately changing the referent body configuration, i.e. the body posture at which muscles reach their recruitment thresholds. Muscles are activated depending on the gap between the actual and the referent body configurations resulting in a step being made to minimize this gap. This hypothesis implies that the actual and the referent leg configurations can match each other at certain phases of the gait cycle, resulting in minimization of leg muscle activity. We found several leg configurations at which EMG minima occurred, both during forward and backward gait. It was also found that the set of limb configurations associated with EMG minima can be changed by modifying the pattern of forward and backward gait. Our hypothesis predicts that, in response to perturbations of gait, the rate of shifts in the referent body location can temporarily be changed to avoid falling. The rate influences the phase of rhythmic limb movements during gait. Therefore, following the change in the rate of the referent body location, the whole gait pattern, for all four limbs, will irreversibly be shifted in time (long-lasting and global phase resetting) with only transient changes in the gait speed, swing and stance timing and cycle duration. Aside from transient changes in the duration of the swing and/or stance phase in response to perturbation, few previous studies have documented long-lasting and global phase resetting of human gait in response to perturbation. Such resetting was a robust finding in our study. By confirming the notion that feed-forward changes in the referent body location and configuration underlie human locomotion, this study solves the classical problem in the relationship between

  1. The differences in postural reactions between scoliosis and scoliotic posture

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2017-05-01

    Full Text Available The aim of the research was to demonstrate the differences in amplitudes of postural reactions in girls with scoliotic posture and idiopathic scoliosis. 28 girls aged 7-18 years old were involved in the study. Children attended to the Interschool Centre of Corrective Exercises in Starachowice. The research was conducted in June 2011. Spine research was made by Exhibeon digital radiography. Based on the size of the angle of spinal curvature there were identified: scoliotic posture: 1-9° and scoliosis: ≥10°. Postural reactions were examined by static-dynamic Tecnobody’s ST 310 Plus Stability System platform. There were 21 (75% children with scoliotic posture, and 7 (25% with idiopathic scoliosis. Student's t-test showed a significantly higher postural reactions for scoliosis in relation to scoliotic postures in case of: Average Forward-Backward Speed (OE, (p=0,05, Medium-Lateral Standard Deviation X (CE, (p=0,002, and Ellipse area (CE, (p=0,012. To verify the significant differences, demonstrating the lack of homogeneity of variance, the Mann–Whitney U-test has been used, which showed a significant differences between the scoliotic posture and scoliosis in case of: Medium-Lateral Standard Deviation X (CE, (p=0,0012, Average Forward-Backward Speed (OE, (p=0,0548, and Ellipse area (CE (p=0,0047. Together with an increase of the angle of curvature, the value of these postural reactions also grew. Most of postural reactions didn’t fit the norm.

  2. Motor Difficulties in Autism Spectrum Disorder: Linking Symptom Severity and Postural Stability

    Science.gov (United States)

    Travers, Brittany G.; Powell, Patrick S.; Klinger, Laura G.; Klinger, Mark R.

    2013-01-01

    Postural stability is a fundamental aspect of motor ability that allows individuals to sustain and maintain the desired physical position of one's body. The present study examined postural stability in average-IQ adolescents and adults with Autism Spectrum Disorder (ASD). Twenty-six individuals with ASD and 26 age-and-IQ-matched individuals…

  3. Neuromechanical tuning of nonlinear postural control dynamics

    Science.gov (United States)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  4. Dynamic representations of human body movement.

    Science.gov (United States)

    Kourtzi, Z; Shiffrar, M

    1999-01-01

    Psychophysical and neurophysiological studies suggest that human body motions can be readily recognized. Human bodies are highly articulated and can move in a nonrigid manner. As a result, we perceive highly dissimilar views of the human form in motion. How does the visual system integrate multiple views of a human body in motion so that we can perceive human movement as a continuous event? The results of a set of priming experiments suggest that motion can readily facilitate the linkage of different views of a moving human. Positive priming was found for novel views of a human body that fell within the path of human movement. However, no priming was observed for novel views outside the path of motion. Furthermore, priming was restricted to those views that satisfied the biomechanical constraints of human movement. These results suggest that visual representation of human movement may be based upon the movement limitations of the human body and may reflect a dynamic interaction of motion and object-recognition processes.

  5. [Evaluation of the posture of patients before and after orthodontic surgery].

    Science.gov (United States)

    Benech, A; Fasciolo, A; De Gioanni, P P; Madaro, E

    1997-09-01

    The term "craniomandibular disorder" is used to describe a series of symptoms and signs that directly affect the stomatognathic apparatus with possible repercussions on the otovestibular and oculomotor apparatus and on the cervical spine that may condition the entire body posture. The aim of this study was to evaluate a series of parameters correlated to the occlusal situation and to verify how these factors are affected by a change following the correction of occulusal ratios. The paper reports a series of 15 patients suffering from facial dysmorphia treated surgically in the Division of Maxillofacial Surgery of S. Giovanni Battista Hospital in Turin in which an evaluation was made of posture and symptoms linked to craniomandibular disorders before surgery and six months after. At the preoperative evaluation a high incidence of this type of symptoms and signs was observed, and in particular a high percentage of patients with postural imbalance and asymmetry of the frontal body segments. From the results obtained it emerges that the surgical re-adaptation of occlusion is followed by esthetic improvement and also by a good recovery of frontal postural symmetry in conformity with the reduced frequency and intensity of symptoms classified as craniomandibular disorders.

  6. Does increased postural threat lead to more conscious control of posture?

    Science.gov (United States)

    Huffman, J L; Horslen, B C; Carpenter, M G; Adkin, A L

    2009-11-01

    Although it is well established that postural threat modifies postural control, little is known regarding the underlying mechanism(s) responsible for these changes. It is possible that changes in postural control under conditions of elevated postural threat result from a shift to a more conscious control of posture. The purpose of this study was to determine the influence of elevated postural threat on conscious control of posture and to determine the relationship between conscious control and postural control measures. Forty-eight healthy young adults stood on a force plate at two different surface heights: ground level (LOW) and 3.2-m above ground level (HIGH). Centre of pressure measures calculated in the anterior-posterior (AP) direction were mean position (AP-MP), root mean square (AP-RMS) and mean power frequency (AP-MPF). A modified state-specific version of the Movement Specific Reinvestment Scale was used to measure conscious motor processing (CMP) and movement self-consciousness (MSC). Balance confidence, fear of falling, perceived stability, and perceived and actual anxiety indicators were also collected. A significant effect of postural threat was found for movement reinvestment as participants reported more conscious control and a greater concern about their posture at the HIGH height. Significant correlations between CMP and MSC with AP-MP were observed as participants who consciously controlled and were more concerned for their posture leaned further away from the platform edge. It is possible that changes in movement reinvestment can influence specific aspects of posture (leaning) but other aspects may be immune to these changes (amplitude and frequency).

  7. Classifying Transition Behaviour in Postural Activity Monitoring

    Directory of Open Access Journals (Sweden)

    James BRUSEY

    2009-10-01

    Full Text Available A few accelerometers positioned on different parts of the body can be used to accurately classify steady state behaviour, such as walking, running, or sitting. Such systems are usually built using supervised learning approaches. Transitions between postures are, however, difficult to deal with using posture classification systems proposed to date, since there is no label set for intermediary postures and also the exact point at which the transition occurs can sometimes be hard to pinpoint. The usual bypass when using supervised learning to train such systems is to discard a section of the dataset around each transition. This leads to poorer classification performance when the systems are deployed out of the laboratory and used on-line, particularly if the regimes monitored involve fast paced activity changes. Time-based filtering that takes advantage of sequential patterns is a potential mechanism to improve posture classification accuracy in such real-life applications. Also, such filtering should reduce the number of event messages needed to be sent across a wireless network to track posture remotely, hence extending the system’s life. To support time-based filtering, understanding transitions, which are the major event generators in a classification system, is a key. This work examines three approaches to post-process the output of a posture classifier using time-based filtering: a naïve voting scheme, an exponentially weighted voting scheme, and a Bayes filter. Best performance is obtained from the exponentially weighted voting scheme although it is suspected that a more sophisticated treatment of the Bayes filter might yield better results.

  8. Do children perceive postural constraints when estimating reach or action planning?

    Science.gov (United States)

    Gabbard, Carl; Cordova, Alberto; Lee, Sunghan

    2009-03-01

    Estimation of whether an object is reachable from a specific body position constitutes an important aspect in effective motor planning. Researchers who estimate reachability by way of motor imagery with adults consistently report the tendency to overestimate, with some evidence of a postural effect (postural stability hypothesis). This idea suggests that perceived reaching limits depend on an individual's perceived postural constraints. Based on previous work with adults, the authors expected a significant postural effect with the Reach 2 condition, as evidenced by reduced overestimation. Furthermore, the authors hypothesized that the postural effect would be greater in younger children. They then tested these propositions among children aged 7, 9, and 11 years by asking them to estimate reach while seated (Reach 1) and in the more demanding posture of standing on 1 foot and leaning forward (Reach 2). Results indicated no age or condition difference, therefore providing no support for a postural effect. When the authors compared these data to a published report of adults, a developmental difference emerged. That is, adults recognize the perceived postural constraint of the standing position resulting in under- rather than overestimation, as displayed in the seated condition. Although preliminary, these observations suggest that estimates of reach (action planning) continue to be refined between late childhood and young adulthood.

  9. Effect of posture on hip joint moment during pregnancy, while performing a standing task.

    Science.gov (United States)

    Paul, J A; Sallé, H; Frings-Dresen, M H W

    1996-03-01

    In this paper the combined effect on reactive hip joint moment due to changes in (1) segment mass, (2) trunk centre of mass, and (3) working posture during pregnancy was estimated, and the relative contributions of these three changes to the change in the moment were assessed. The situation studied concerned standing work at a table. Sixteen women were studied monthly during pregnancy. The working posture was assessed by two-dimensional photographic posture recording and description. Body dimensions were measured to assess segment characteristics. A two-dimensional static model was used to estimate the reactive hip joint moment at 10, 20, 30 and 40 weeks of pregnancy. Between 10 and 40 weeks of pregnancy the moment increase was 52 Nm, i.e. the load at 40 weeks of pregnancy is 2.8 times the load at 10 weeks of pregnancy. On average half of this increase was due to postural changes. Changes in segment mass, trunk centre of mass, and the interaction between the three changes accounted for rougly 10, 20 and 15% of the load increase respectively. The increase in reactive hip joint moment may be minimized by preventing adverse postural changes, and optimizing the posture to reduce the contribution of changes in body weight (distribution).

  10. Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait.

    Science.gov (United States)

    Daley, Monica A; Birn-Jeffery, Aleksandra

    2018-05-22

    Birds provide an interesting opportunity to study the relationships between body size, limb morphology and bipedal locomotor function. Birds are ecologically diverse and span a large range of body size and limb proportions, yet all use their hindlimbs for bipedal terrestrial locomotion, for at least some part of their life history. Here, we review the scaling of avian striding bipedal gaits to explore how body mass and leg morphology influence walking and running. We collate literature data from 21 species, spanning a 2500× range in body mass from painted quail to ostriches. Using dynamic similarity theory to interpret scaling trends, we find evidence for independent effects of body mass, leg length and leg posture on gait. We find no evidence for scaling of duty factor with body size, suggesting that vertical forces scale with dynamic similarity. However, at dynamically similar speeds, large birds use relatively shorter stride lengths and higher stride frequencies compared with small birds. We also find that birds with long legs for their mass, such as the white stork and red-legged seriema, use longer strides and lower swing frequencies, consistent with the influence of high limb inertia on gait. We discuss the observed scaling of avian bipedal gait in relation to mechanical demands for force, work and power relative to muscle actuator capacity, muscle activation costs related to leg cycling frequency, and considerations of stability and agility. Many opportunities remain for future work to investigate how morphology influences gait dynamics among birds specialized for different habitats and locomotor behaviors. © 2018. Published by The Company of Biologists Ltd.

  11. Determining postural stability

    Science.gov (United States)

    Lieberman, Erez (Inventor); Forth, Katharine E. (Inventor); Paloski, William H. (Inventor)

    2011-01-01

    A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.

  12. Study I: effects of 0.06% and 0.10% blood alcohol concentration on human postural control.

    Science.gov (United States)

    Modig, F; Patel, M; Magnusson, M; Fransson, P A

    2012-03-01

    Alcohol intoxication causes many accidental falls presented at emergency departments, with the injury severity often related to level of blood alcohol concentration (BAC). One way to evaluate the decline in postural control and the fall risk is to assess standing stability when challenged. The study objective was to comprehensively investigate alcohol-related impairments on postural control and adaptive motor learning at specific BAC levels. Effects of alcohol intoxication at 0.06% and 0.10% BAC were examined with posturography when unperturbed or perturbed by calf vibration. Twenty-five participants (mean age 25.1 years) were investigated standing with either eyes open or closed. Our results revealed several significant findings: (1) stability declined much faster from alcohol intoxication between 0.06% and 0.10% BAC (60-140%) compared with between 0.0% and 0.06% BAC (30%); (2) sustained exposure to repeated balance perturbations augmented the alcohol-related destabilization; (3) there were stronger effects of alcohol intoxication on stability in lateral direction than in anteroposterior direction; and (4) there was a gradual degradation of postural control particularly in lateral direction when the balance perturbations were repeated at 0.06% and 0.10% BAC, indicating adaptation deficits when intoxicated. To summarize, alcohol has profound deteriorating effects on human postural control, which are dose dependent, time dependent and direction specific. The maximal effects of alcohol intoxication on physiological performance might not be evident initially, but may be revealed first when under sustained sensory-motor challenges. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Interest of active posturography to detect age-related and early Parkinson's disease-related impairments in mediolateral postural control.

    Science.gov (United States)

    Bonnet, Cédrick T; Delval, Arnaud; Defebvre, Luc

    2014-11-15

    Patients with Parkinson's disease display impairments of postural control most particularly in active, challenging conditions. The objective of the present study was to analyze early signs of disease-related and also age-related impairments in mediolateral body extension and postural control. Fifty-five participants (18 Hoehn and Yahr stage 2 patients in the off-drug condition, 18 healthy elderly control subjects, and 19 young adults) were included in the study. The participants performed a quiet stance task and two active tasks that analyzed the performance in mediolateral body motion: a limit of stability and a rhythmic weight shift task. As expected, the patients displayed significantly lower and slower body displacement (head, neck, lower back, center of pressure) than elderly control subjects when performing the two body excursion tasks. However, the behavioral variability in both tasks was similar between the groups. Under these active conditions, the patients showed significantly lower contribution of the hip postural control mechanisms compared with the elderly control subjects. Overall, the patients seemed to lower their performance in order to prevent a mediolateral postural instability. However, these patients, at an early stage of their disease, were not unstable in quiet stance. Complementarily, elderly control subjects displayed slower body performance than young adults, which therefore showed an additional age-related impairment in mediolateral postural control. Overall, the study illustrated markers of age-related and Parkinson's disease impairments in mediolateral postural control that may constrain everyday activities in elderly adults and even more in patients with Parkinson's disease. Copyright © 2014 the American Physiological Society.

  14. Postural Stability Evaluation of Patients Undergoing Vestibular Schwannoma Microsurgery Employing the Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Patrik Kutilek

    2018-01-01

    Full Text Available The article focuses on a noninvasive method and system of quantifying postural stability of patients undergoing vestibular schwannoma microsurgery. Recent alternatives quantifying human postural stability are rather limited. The major drawback is that the posturography system can evaluate only two physical quantities of body movement and can be measured only on a transverse plane. A complex movement pattern can be, however, described more precisely while using three physical quantities of 3-D movement. This is the reason why an inertial measurement unit (Xsens MTx unit, through which we obtained 3-D data (three Euler angles or three orthogonal accelerations, was placed on the patient’s trunk. Having employed this novel method based on the volume of irregular polyhedron of 3-D body movement during quiet standing, it was possible to evaluate postural stability. To identify and evaluate pathological balance control of patients undergoing vestibular schwannoma microsurgery, it was necessary to calculate the volume polyhedron using the 3-D Leibniz method and to plot three variables against each other. For the needs of this study, measurements and statistical analysis were made on nine patients. The results obtained by the inertial measurement unit showed no evidence of improvement in postural stability shortly after surgery (4 days. The results were consistent with the results obtained by the posturography system. The evaluated translation variables (acceleration and rotary variables (angles measured by the inertial measurement unit correlate strongly with the results of the posturography system. The proposed method and application of the inertial measurement unit for the purpose of measuring patients with vestibular schwannoma appear to be suitable for medical practice. Moreover, the inertial measurement unit is portable and, when compared to other traditional posturography systems, economically affordable. Inertial measurement units can

  15. Considerations on the correlation between real body and body image

    Directory of Open Access Journals (Sweden)

    Beatrice ABALAȘEI

    2017-03-01

    Full Text Available very individual in the society has a representation of it’s own body in relation to the spatial cues, postural cues, time cues, etc., considered by specialists the body scheme. Throughout its development, the human being goes through different stages of organization of both the image the and body scheme. We start carrying out this study from the idea that there could be, in male individuals, a link between body representation (own image projected outwardly apparent by reference to an image presented through a questionnaire and anthropological parameters, such as body fat and body mass index. The study was conducted on a total of 28 subjects, aged 22.71 ± 2.62 years, height of 177.11 ± 6.76 cm and body weight of 73.56 ± 12.60 kg. For these subjects the body composition has been determined by electromagnetic bioimpendance technique and projection of the self was assesed through a questionnaire. After analyzing statistical data, our hypothesis was refuted by the lack of mathematical connections between the variables analyzed.

  16. Physics of the human body

    CERN Document Server

    Herman, Irving P

    2016-01-01

    This book comprehensively addresses the physics and engineering aspects of human physiology by using and building on first-year college physics and mathematics. Topics include the mechanics of the static body and the body in motion, the mechanical properties of the body, muscles in the body, the energetics of body metabolism, fluid flow in the cardiovascular and respiratory systems, the acoustics of sound waves in speaking and hearing, vision and the optics of the eye, the electrical properties of the body, and the basic engineering principles of feedback and control in regulating all aspects of function. The goal of this text is to clearly explain the physics issues concerning the human body, in part by developing and then using simple and subsequently more refined models of the macrophysics of the human body. Many chapters include a brief review of the underlying physics. There are problems at the end of each chapter; solutions to selected problems are also provided. This second edition enhances the treat...

  17. Human-Derived Disturbance Estimation and Compensation (DEC) Method Lends Itself to a Modular Sensorimotor Control in a Humanoid Robot.

    Science.gov (United States)

    Lippi, Vittorio; Mergner, Thomas

    2017-01-01

    The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter

  18. Prevalence of postural alterations in students of Basic Education in the city of Vila Velha, Espírito Santo state, Brazil

    Directory of Open Access Journals (Sweden)

    Paula Lopes Rodrigues

    Full Text Available Introduction Human posture goes through a series of changes in the course of body growth and development, i.e., in childhood and adolescence. Moreover, during these phases, individuals are subject to risk behaviors for spinal problems, especially those related to the use of backpacks and to poor sitting posture. Objective This study aimed to detect the prevalence of postural alterations in school children enrolled in the UMEF Vila Olímpica, Vila Velha, Espírito Santo. Methods We evaluated 513 schoolchildren in the orthostatic position and in the anterior, posterior and side view. The following structures were analyzed: head, shoulder, the cervical, thoracic and lumbar spine, pelvis and lower limbs. Results There was a high prevalence of postural deviations: rotated or tilted head, elevated shoulder and pelvis, valgus or varus knee, head protraction, alterations of the thoracic spine, anteriorized shoulders, pelvis in anteversion, knees semiflexion or hyperextension and cavus or planus feet. Conclusion Our results suggest that there is a high prevalence of postural alterations in students in the school network of Vila Velha (ES. This could be detected through public health policies, such as the federal government´s Health at School Program (PSE.

  19. [A case with apraxia of tool use: selective inability to form a hand posture for a tool].

    Science.gov (United States)

    Hayakawa, Yuko; Fujii, Toshikatsu; Yamadori, Atsushi; Meguro, Kenichi; Suzuki, Kyoko

    2015-03-01

    Impaired tool use is recognized as a symptom of ideational apraxia. While many studies have focused on difficulties in producing gestures as a whole, using tools involves several steps; these include forming hand postures appropriate for the use of certain tool, selecting objects or body parts to act on, and producing gestures. In previously reported cases, both producing and recognizing hand postures were impaired. Here we report the first case showing a selective impairment of forming hand postures appropriate for tools with preserved recognition of the required hand postures. A 24-year-old, right-handed man was admitted to hospital because of sensory impairment of the right side of the body, mild aphasia, and impaired tool use due to left parietal subcortical hemorrhage. His ability to make symbolic gestures, copy finger postures, and orient his hand to pass a slit was well preserved. Semantic knowledge for tools and hand postures was also intact. He could flawlessly select the correct hand postures in recognition tasks. He only demonstrated difficulties in forming a hand posture appropriate for a tool. Once he properly grasped a tool by trial and error, he could use it without hesitation. These observations suggest that each step of tool use should be thoroughly examined in patients with ideational apraxia.

  20. Influence on Calculated Blood Pressure of Measurement Posture for the Development of Wearable Vital Sign Sensors

    Directory of Open Access Journals (Sweden)

    Shouhei Koyama

    2017-01-01

    Full Text Available We studied a wearable blood pressure sensor using a fiber Bragg grating (FBG sensor, which is a highly accurate strain sensor. This sensor is installed at the pulsation point of the human body to measure the pulse wave signal. A calibration curve is built that calculates the blood pressure by multivariate analysis using the pulse wave signal and a reference blood pressure measurement. However, if the measurement height of the FBG sensor is different from the reference measurement height, an error is included in the reference blood pressure. We verified the accuracy of the blood pressure calculation with respect to the measurement height difference and the posture of the subject. As the difference between the measurement height of the FBG sensor and the reference blood pressure measurement increased, the accuracy of the blood pressure calculation decreased. When the measurement height was identical and only posture was changed, good accuracy was achieved. In addition, when calibration curves were built using data measured in multiple postures, the blood pressure of each posture could be calculated from a single calibration curve. This will allow miniaturization of the necessary electronics of the sensor system, which is important for a wearable sensor.

  1. The effects of foot morphology and anthropometry on unipodal postural control

    Directory of Open Access Journals (Sweden)

    Angelica C. Alonso

    2016-03-01

    Full Text Available Abstract The maintenance of posture is a constant challenge for the body, as it requires rapid and accurate responses to unforeseen disturbances, which are needed to prevent falls and maintain balance. The purpose of the present study was to compare different types of plantar arch in relation to postural balance, and analyze the relationships between variations the plantar arch and anthropometric characteristics of the feet with unipedal static balance. We evaluated 100 men and women between the ages of 20 and 40 years old, to determine anthropometry and posturography with a force platform. There was a weak correlation between plantar arches and anthropometric measurements and postural balance, except for the length of the male foot, which showed a correlation between increased size and poorer static balance. We conclude that the type of plantar arch does not influence postural balance, and of the anthropometric factors, only foot length was related to postural balance.

  2. Effects of affective picture viewing on postural control

    NARCIS (Netherlands)

    Stins, J.F.; Beek, P.J.

    2007-01-01

    Background: Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of

  3. Postural Consequences of Cervical Sagittal Imbalance: A Novel Laboratory Model.

    Science.gov (United States)

    Patwardhan, Avinash G; Havey, Robert M; Khayatzadeh, Saeed; Muriuki, Muturi G; Voronov, Leonard I; Carandang, Gerard; Nguyen, Ngoc-Lam; Ghanayem, Alexander J; Schuit, Dale; Patel, Alpesh A; Smith, Zachary A; Sears, William

    2015-06-01

    A biomechanical study using human spine specimens. To study postural compensations in lordosis angles that are necessary to maintain horizontal gaze in the presence of forward head posture and increasing T1 sagittal tilt. Forward head posture relative to the shoulders, assessed radiographically using the horizontal offset distance between the C2 and C7 vertebral bodies (C2-C7 [sagittal vertical alignment] SVA), is a measure of global cervical imbalance. This may result from kyphotic alignment of cervical segments, muscle imbalance, as well as malalignment of thoracolumbar spine. Ten cadaveric cervical spines (occiput-T1) were tested. The T1 vertebra was anchored to a tilting and translating base. The occiput was free to move vertically but its angular orientation was constrained to ensure horizontal gaze regardless of sagittal imbalance. A 5-kg mass was attached to the occiput to mimic head weight. Forward head posture magnitude and T1 tilt were varied and motions of individual vertebrae were measured to calculate C2-C7 SVA and lordosis across C0-C2 and C2-C7. Increasing C2-C7 SVA caused flexion of lower cervical (C2-C7) segments and hyperextension of suboccipital (C0-C1-C2) segments to maintain horizontal gaze. Increasing kyphotic T1 tilt primarily increased lordosis across the C2-C7 segments. Regression models were developed to predict the compensatory C0-C2 and C2-C7 angulation needed to maintain horizontal gaze given values of C2-C7 SVA and T1 tilt. This study established predictive relationships between radiographical measures of forward head posture, T1 tilt, and postural compensations in the cervical lordosis angles needed to maintain horizontal gaze. The laboratory model predicted that normalization of C2-C7 SVA will reduce suboccipital (C0-C2) hyperextension, whereas T1 tilt reduction will reduce the hyperextension in the C2-C7 segments. The predictive relationships may help in planning corrective strategy in patients experiencing neck pain, which may be

  4. Take a stand on your decisions, or take a sit: posture does not affect risk preferences in an economic task.

    Science.gov (United States)

    O'Brien, Megan K; Ahmed, Alaa A

    2014-01-01

    Physiological and emotional states can affect our decision-making processes, even when these states are seemingly insignificant to the decision at hand. We examined whether posture and postural threat affect decisions in a non-related economic domain. Healthy young adults made a series of choices between economic lotteries in various conditions, including changes in body posture (sitting vs. standing) and changes in elevation (ground level vs. atop a 0.8-meter-high platform). We compared three metrics between conditions to assess changes in risk-sensitivity: frequency of risky choices, and parameter fits of both utility and probability weighting parameters using cumulative prospect theory. We also measured skin conductance level to evaluate physiological response to the postural threat. Our results demonstrate that body posture does not significantly affect decision making. Secondly, despite increased skin conductance level, economic risk-sensitivity was unaffected by increased threat. Our findings indicate that economic choices are fairly robust to the physiological and emotional changes that result from posture or postural threat.

  5. Effects of whole-body vibration training on explosive strength and postural control in young female athletes.

    Science.gov (United States)

    Fort, Azahara; Romero, Daniel; Bagur, Caritat; Guerra, Myriam

    2012-04-01

    This study aimed to evaluate the effectiveness of a whole-body vibration training program to improve neuromuscular performance in young elite female athletes. Twenty-three women basketball players (14-18 years old) were randomly assigned to a control group (CG, n = 11) or to a whole-body vibration group (WBVG, n = 12). During the study period, both groups continued their usual training program, but the WBVG also underwent a 15-week vibration training program. We analyzed the countermovement jump test (CMJ), the 1-leg hop test for the right leg and for the left leg, and the single-limb standing balance for both legs and with eyes open and closed at 3 time points: before training (T1), after an 8-week training period (T2), and after a further 7-week training period (T3). Compared with the CG, CMJ increased significantly in the WBVG from T1 to T2 (6.47%, p training program improves explosive strength and postural stability in adolescent female basketball players.

  6. Postural stability in patients with knee osteoarthritis: comparison with controls and evaluation of relationships between postural stability scores and International Classification of Functioning, Disability and Health components.

    Science.gov (United States)

    Hsieh, Ru-Lan; Lee, Wen-Chung; Lo, Min-Tzu; Liao, Wei-Cheng

    2013-02-01

    To assess the differences in postural stability between patients with knee osteoarthritis and controls without knee osteoarthritis, and to evaluate possible relations between postural stability scores and International Classification of Functioning, Disability and Health (ICF) components. An age-matched, case-controlled trial with a cross-sectional design. A teaching hospital. Patients with knee osteoarthritis (n=73) and age-matched controls (n=60). Data on patients' postural stability and additional health-related variables were collected using various instruments. These included the Hospital Anxiety and Depression Scale, the Multidimensional Fatigue Inventory, the World Health Organization Quality of Life Brief Version, the physical function test (chair-rising time), the Chinese version of the Western Ontario and McMaster Universities Osteoarthritis Index, the Chinese version of the Knee Injury and Osteoarthritis Outcome Score, and the Biodex Stability System. A comparison of postural stability in patients with knee osteoarthritis versus that of controls was performed. The relation between postural stability scores for patients with knee osteoarthritis and ICF components was evaluated. Pearson correlation tests were used to determine the variables that correlated with postural stability among these patients. Patients with knee osteoarthritis displayed lower overall postural stability than controls (scores of 0.7 vs. 0.5, P=.006) and scored lower on the environmental domain of the World Health Organization Quality of Life Brief Version (62.2 vs 66.8, P=.014). For patients with knee osteoarthritis, postural stability was weakly associated with the ICF components of body functions and structures, including pain (r=.33-.34, P=.004), physical fatigue (r=.28, P=.016), and reduced motivation (r=.30, P=.011). Weak to moderate associations between postural stability and the ICF components of activities and participation were found; the relevant ICF variables included

  7. Video Analysis of Human Gait and Posture to Determine Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Ivan Lee

    2008-08-01

    Full Text Available This paper investigates the application of digital image processing techniques to the detection of neurological disorder. Visual information extracted from the postures and movements of a human gait cycle can be used by an experienced neurologist to determine the mental health of the person. However, the current visual assessment of diagnosing neurological disorder is based very much on subjective observation, and hence the accuracy of diagnosis heavily relies on experience. Other diagnostic techniques employed involve the use of imaging systems which can only be operated under highly constructed environment. A prototype has been developed in this work that is able to capture the subject's gait on video in a relatively simple setup, and from which to process the selected frames of the gait in a computer. Based on the static visual features such as swing distances and joint angles of human limbs, the system identifies patients with Parkinsonism from the test subjects. To our knowledge, it is the first time swing distances are utilized and identified as an effective means for characterizing human gait. The experimental results have shown a promising potential in medical application to assist the clinicians in diagnosing Parkinsonism.

  8. Origins and early development of human body knowledge.

    Science.gov (United States)

    Slaughter, Virginia; Heron, Michelle

    2004-01-01

    As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensorimotor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuo-spatial body knowledge in infancy. Our technique is to compare infants'responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body picture sat 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial

  9. Human cerebral venous outflow pathway depends on posture and central venous pressure

    DEFF Research Database (Denmark)

    Gisolf, J; van Lieshout, J J; van Heusden, K

    2004-01-01

    and central venous pressure (CVP) on the distribution of cerebral outflow over the internal jugular veins and the vertebral plexus, using a mathematical model. Input to the model was a data set of beat-to-beat cerebral blood flow velocity and CVP measurements in 10 healthy subjects, during baseline rest......Internal jugular veins are the major cerebral venous outflow pathway in supine humans. In upright humans the positioning of these veins above heart level causes them to collapse. An alternative cerebral outflow pathway is the vertebral venous plexus. We set out to determine the effect of posture...... and a Valsalva manoeuvre in the supine and standing position. The model, consisting of 2 jugular veins, each a chain of 10 units containing nonlinear resistances and capacitors, and a vertebral plexus containing a resistance, showed blood flow mainly through the internal jugular veins in the supine position...

  10. Phages in the Human Body.

    Science.gov (United States)

    Navarro, Ferran; Muniesa, Maite

    2017-01-01

    Bacteriophages, viruses that infect bacteria, have re-emerged as powerful regulators of bacterial populations in natural ecosystems. Phages invade the human body, just as they do other natural environments, to such an extent that they are the most numerous group in the human virome. This was only revealed in recent metagenomic studies, despite the fact that the presence of phages in the human body was reported decades ago. The influence of the presence of phages in humans has yet to be evaluated; but as in marine environments, a clear role in the regulation of bacterial populations could be envisaged, that might have an impact on human health. Moreover, phages are excellent vehicles of genetic transfer, and they contribute to the evolution of bacterial cells in the human body by spreading and acquiring DNA horizontally. The abundance of phages in the human body does not pass unnoticed and the immune system reacts to them, although it is not clear to what extent. Finally, the presence of phages in human samples, which most of the time is not considered, can influence and bias microbiological and molecular results; and, in view of the evidences, some studies suggest that more attention needs to be paid to their interference.

  11. Ontogenetic scaling of fore- and hind limb posture in wild chacma baboons (Papio hamadryas ursinus.

    Directory of Open Access Journals (Sweden)

    Biren A Patel

    Full Text Available Large-scale interspecific studies of mammals ranging between 0.04-280 kg have shown that larger animals walk with more extended limb joints. Within a taxon or clade, however, the relationship between body size and joint posture is less straightforward. Factors that may affect the lack of congruence between broad and narrow phylogenetic analyses of limb kinematics include limited sampling of (1 ranges of body size, and/or (2 numbers of individuals. Unfortunately, both issues are inherent in laboratory-based or zoo locomotion research. In this study, we examined the relationship between body mass and elbow and knee joint angles (our proxies of fore- and hind limb posture, respectively in a cross-sectional ontogenetic sample of wild chacma baboons (Papio hamadryas ursinus habituated in the De Hoop Nature Reserve, South Africa. Videos were obtained from 33 individuals of known age (12 to ≥ 108 months and body mass (2-29.5 kg during walking trials. Results show that older, heavier baboons walk with significantly more extended knee joints but not elbow joints. This pattern is consistent when examining only males, but not within the female sample. Heavier, older baboons also display significantly less variation in their hind limb posture compared to lighter, young animals. Thus, within this ontogenetic sample of a single primate species spanning an order of magnitude in body mass, hind limb posture exhibited a postural scaling phenomenon while the forelimbs did not. These findings may further help explain 1 why younger mammals (including baboons tend to have relatively stronger bones than adults, and 2 why humeri appear relatively weaker than femora (in at least baboons. Finally, this study demonstrates how field-acquired kinematics can help answer fundamental biomechanical questions usually addressed only in animal gait laboratories.

  12. Static and dynamic posture control in postlingual cochlear implanted patients: effects of dual-tasking, visual and auditory inputs suppression.

    Science.gov (United States)

    Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel

    2013-01-01

    Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well

  13. Postural sway and gaze can track the complex motion of a visual target.

    Directory of Open Access Journals (Sweden)

    Vassilia Hatzitaki

    Full Text Available Variability is an inherent and important feature of human movement. This variability has form exhibiting a chaotic structure. Visual feedback training using regular predictive visual target motions does not take into account this essential characteristic of the human movement, and may result in task specific learning and loss of visuo-motor adaptability. In this study, we asked how well healthy young adults can track visual target cues of varying degree of complexity during whole-body swaying in the Anterior-Posterior (AP and Medio-Lateral (ML direction. Participants were asked to track three visual target motions: a complex (Lorenz attractor, a noise (brown and a periodic (sine moving target while receiving online visual feedback about their performance. Postural sway, gaze and target motion were synchronously recorded and the degree of force-target and gaze-target coupling was quantified using spectral coherence and Cross-Approximate entropy. Analysis revealed that both force-target and gaze-target coupling was sensitive to the complexity of the visual stimuli motions. Postural sway showed a higher degree of coherence with the Lorenz attractor than the brown noise or sinusoidal stimulus motion. Similarly, gaze was more synchronous with the Lorenz attractor than the brown noise and sinusoidal stimulus motion. These results were similar regardless of whether tracking was performed in the AP or ML direction. Based on the theoretical model of optimal movement variability tracking of a complex signal may provide a better stimulus to improve visuo-motor adaptation and learning in postural control.

  14. Holistic processing for bodies and body parts: New evidence from stereoscopic depth manipulations.

    Science.gov (United States)

    Harris, Alison; Vyas, Daivik B; Reed, Catherine L

    2016-10-01

    Although holistic processing has been documented extensively for upright faces, it is unclear whether it occurs for other visual categories with more extensive substructure, such as body postures. Like faces, body postures have high social relevance, but they differ in having fine-grain organization not only of basic parts (e.g., arm) but also subparts (e.g., elbow, wrist, hand). To compare holistic processing for whole bodies and body parts, we employed a novel stereoscopic depth manipulation that creates either the percept of a whole body occluded by a set of bars, or of segments of a body floating in front of a background. Despite sharing low-level visual properties, only the stimulus perceived as being behind bars should be holistically "filled in" via amodal completion. In two experiments, we tested for better identification of individual body parts within the context of a body versus in isolation. Consistent with previous findings, recognition of body parts was better in the context of a whole body when the body was amodally completed behind occluders. However, when the same bodies were perceived as floating in strips, performance was significantly worse, and not significantly different, from that for amodally completed parts, supporting holistic processing of body postures. Intriguingly, performance was worst for parts in the frontal depth condition, suggesting that these effects may extend from gross body organization to a more local level. These results provide suggestive evidence that holistic representations may not be "all-or-none," but rather also operate on body regions of more limited spatial extent.

  15. Advantages and disadvantages of stiffness instructions when studying postural control.

    Science.gov (United States)

    Bonnet, Cédrick T

    2016-05-01

    To understand the maintenance of upright stance, researchers try to discover the fundamental mechanisms and attentional resources devoted to postural control and eventually to the performance of other tasks (e.g., counting in the head). During their studies, some researchers require participants to stand as steady as possible and other simply ask participants to stand naturally. Surprisingly, a clear and direct explanation of the usefulness of the steadiness requirement seems to be lacking, both in experimental and methodological discussions. Hence, the objective of the present note was to provide advantages and disadvantages of this steadiness requirement in studies of postural control. The advantages may be to study fundamental postural control, to eliminate useless postural variability, to control spurious body motions and to control the participants' thoughts. As disadvantages, this steadiness requirement only leads to study postural control in unnatural upright stance, it changes the focus of attention (internal vs. external) and the nature of postural control (unconscious vs. conscious), it increases the difficulty of a supposedly easy control task and it eliminates or reduces the opportunity to record exploratory behaviors. When looking carefully at the four advantages of the steadiness requirement, one can believe that they are, in fact, more disadvantageous than advantageous. Overall therefore, this requirement seems illegitimate and it is proposed that researchers should not use it in the study of postural control. They may use this requirement only if they search to know the limit until which participants can consciously reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The Throw-and-Catch Model of Human Gait: Evidence from Coupling of Pre-Step Postural Activity and Step Location

    Science.gov (United States)

    Bancroft, Matthew J.; Day, Brian L.

    2016-01-01

    Postural activity normally precedes the lift of a foot from the ground when taking a step, but its function is unclear. The throw-and-catch hypothesis of human gait proposes that the pre-step activity is organized to generate momentum for the body to fall ballistically along a specific trajectory during the step. The trajectory is appropriate for the stepping foot to land at its intended location while at the same time being optimally placed to catch the body and regain balance. The hypothesis therefore predicts a strong coupling between the pre-step activity and step location. Here we examine this coupling when stepping to visually-presented targets at different locations. Ten healthy, young subjects were instructed to step as accurately as possible onto targets placed in five locations that required either different step directions or different step lengths. In 75% of trials, the target location remained constant throughout the step. In the remaining 25% of trials, the intended step location was changed by making the target jump to a new location 96 ms ± 43 ms after initiation of the pre-step activity, long before foot lift. As predicted by the throw-and-catch hypothesis, when the target location remained constant, the pre-step activity led to body momentum at foot lift that was coupled to the intended step location. When the target location jumped, the pre-step activity was adjusted (median latency 223 ms) and prolonged (on average by 69 ms), which altered the body’s momentum at foot lift according to where the target had moved. We conclude that whenever possible the coupling between the pre-step activity and the step location is maintained. This provides further support for the throw-and-catch hypothesis of human gait. PMID:28066208

  17. The properties of human body phantoms used in calculations of electromagnetic fields exposure by wireless communication handsets or hand-operated industrial devices.

    Science.gov (United States)

    Zradziński, Patryk

    2013-06-01

    According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E(in)) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E(in) and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E(in) and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.

  18. Overweight, obesity and foot posture in children: A cross-sectional study.

    Science.gov (United States)

    Gijon-Nogueron, Gabriel; Montes-Alguacil, Jesus; Martinez-Nova, Alfonso; Alfageme-Garcia, Pilar; Cervera-Marin, Jose A; Morales-Asencio, Jose M

    2017-01-01

    The aim of this study is to examine the relationship between obesity and foot posture in children. This cross-sectional study is based on a sample population of 1798 schoolchildren (873 boys and 925 girls) aged between 6 and 12 years. The height and weight of each subject was measured and the body mass index (BMI) was calculated. Foot posture was described by means of the foot posture index (FPI). The differences among various foot postures in relation to BMI, for the total sample, were tested using the Games-Howell test. In addition, cross tabulation for different gender groups and BMI categories was applied and tested using χ 2 . The mean BMI was 18.94 (standard deviation (SD) 3.65 kg/m 2 ) in the boys and 18.90 (SD 3.64 kg/m 2 ) in the girls, and the FPI was 3.97 (SD 2.98) in the boys and 3.68 (SD 2.86) in the girls. The FPI results show that among the boys aged 6 years, the right foot was more pronated than among the girls (FPI 4.8-4.1, P = 0.034), while among the boys aged 7 years, this was true for the left foot (4.4-3.7, P = 0.049). For the other ages, there were no significant differences in the FPI between the sexes. There were no significant differences between the value, or categories, of BMI and the FPI in the different age groups. In children aged between 6 and 12 years, body mass does not appear to have an important bearing on static foot posture. Furthermore, the variables gender and age are of scant importance in determining foot posture in children. © 2016 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  19. Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning

    Directory of Open Access Journals (Sweden)

    Jongryun Roh

    2018-01-01

    Full Text Available Sitting posture monitoring systems (SPMSs help assess the posture of a seated person in real-time and improve sitting posture. To date, SPMS studies reported have required many sensors mounted on the backrest plate and seat plate of a chair. The present study, therefore, developed a system that measures a total of six sitting postures including the posture that applied a load to the backrest plate, with four load cells mounted only on the seat plate. Various machine learning algorithms were applied to the body weight ratio measured by the developed SPMS to identify the method that most accurately classified the actual sitting posture of the seated person. After classifying the sitting postures using several classifiers, average and maximum classification rates of 97.20% and 97.94%, respectively, were obtained from nine subjects with a support vector machine using the radial basis function kernel; the results obtained by this classifier showed a statistically significant difference from the results of multiple classifications using other classifiers. The proposed SPMS was able to classify six sitting postures including the posture with loading on the backrest and showed the possibility of classifying the sitting posture even though the number of sensors is reduced.

  20. Postural loading assessment in assembly workers of an Iranian telecommunication manufacturing company.

    Science.gov (United States)

    Kamalinia, Mojtaba; Nasl Saraji, Gebreal; Kee, Dohyung; Hosseini, Mostafa; Choobineh, Alireza

    2013-01-01

    Changes in industries and work practices have coincided with work-related musculoskeletal disorders (MSDs). This study was conducted to determine the prevalence of MSDs and to assess postural loading in assembly workers of an Iranian telecommunication manufacturing company. Data were collected from 193 randomly selected workers in 4 units of the company. The Nordic musculoskeletal disorders questionnaire and the UBC ergonomic checklist were used as data collection tools. Loading on the upper body assessment (LUBA) was used to assess postural loading. Lower back symptoms were the most prevalent problems among the workers (67.9%). LUBA showed that most assembly workers (94.3%) had experienced considerable and high postural loading (postural load index, PLI > 5). Regression analyses revealed that lighting, rotation, contact stress, repetition, gender and age were factors associated with symptoms. Work-related MSDs occurred at a high rate among workers. Postural loading requires consideration. Any ergonomic intervention should focus on eliminating ergonomic factors associated with symptoms.

  1. Postural activity monitoring for increasing safety in bomb disposal missions

    International Nuclear Information System (INIS)

    Brusey, James; Rednic, Ramona; Gaura, Elena I; Kemp, John; Poole, Nigel

    2009-01-01

    In enclosed suits, such as those worn by explosive ordnance disposal (EOD) experts, evaporative cooling through perspiration is less effective and, particularly in hot environments, uncompensable heat stress (UHS) may occur. Although some suits have cooling systems, their effectiveness during missions is dependent on the operative's posture. In order to properly assess thermal state, temperature-based assessment systems need to take posture into account. This paper builds on previous work for instrumenting EOD suits with regard to temperature monitoring and proposes to also monitor operative posture with MEMS accelerometers. Posture is a key factor in predicting how body temperature will change and is therefore important in providing local or remote warning of the onset of UHS. In this work, the C4.5 decision tree algorithm is used to produce an on-line classifier that can differentiate between nine key postures from current acceleration readings. Additional features that summarize how acceleration is changing over time are used to improve average classification accuracy to around 97.2%. Without such temporal feature extraction, dynamic postures are difficult to classify accurately. Experimental results show that training over a variety of subjects, and in particular, mixing gender, improves results on unseen subjects. The main advantages of the on-line posture classification system described here are that it is accurate, does not require integration of acceleration over time, and is computationally lightweight, allowing it to be easily supported on wearable microprocessors

  2. Take a stand on your decisions, or take a sit: posture does not affect risk preferences in an economic task

    Directory of Open Access Journals (Sweden)

    Megan K. O’Brien

    2014-07-01

    Full Text Available Physiological and emotional states can affect our decision-making processes, even when these states are seemingly insignificant to the decision at hand. We examined whether posture and postural threat affect decisions in a non-related economic domain. Healthy young adults made a series of choices between economic lotteries in various conditions, including changes in body posture (sitting vs. standing and changes in elevation (ground level vs. atop a 0.8-meter-high platform. We compared three metrics between conditions to assess changes in risk-sensitivity: frequency of risky choices, and parameter fits of both utility and probability weighting parameters using cumulative prospect theory. We also measured skin conductance level to evaluate physiological response to the postural threat. Our results demonstrate that body posture does not significantly affect decision making. Secondly, despite increased skin conductance level, economic risk-sensitivity was unaffected by increased threat. Our findings indicate that economic choices are fairly robust to the physiological and emotional changes that result from posture or postural threat.

  3. Motor mapping of implied actions during perception of emotional body language.

    Science.gov (United States)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2012-04-01

    Perceiving and understanding emotional cues is critical for survival. Using the International Affective Picture System (IAPS) previous TMS studies have found that watching humans in emotional pictures increases motor excitability relative to seeing landscapes or household objects, suggesting that emotional cues may prime the body for action. Here we tested whether motor facilitation to emotional pictures may reflect the simulation of the human motor behavior implied in the pictures occurring independently of its emotional valence. Motor-evoked potentials (MEPs) to single-pulse TMS of the left motor cortex were recorded from hand muscles during observation and categorization of emotional and neutral pictures. In experiment 1 participants watched neutral, positive and negative IAPS stimuli, while in experiment 2, they watched pictures depicting human emotional (joyful, fearful), neutral body movements and neutral static postures. Experiment 1 confirms the increase in excitability for emotional IAPS stimuli found in previous research and shows, however, that more implied motion is perceived in emotional relative to neutral scenes. Experiment 2 shows that motor excitability and implied motion scores for emotional and neutral body actions were comparable and greater than for static body postures. In keeping with embodied simulation theories, motor response to emotional pictures may reflect the simulation of the action implied in the emotional scenes. Action simulation may occur independently of whether the observed implied action carries emotional or neutral meanings. Our study suggests the need of controlling implied motion when exploring motor response to emotional pictures of humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Postural stability is compromised by fatiguing overhead work.

    Science.gov (United States)

    Nussbaum, Maury A

    2003-01-01

    In a laboratory setting, 16 participants performed a repetitive overhead tapping task for 3 hours or until self-terminated due to substantial shoulder discomfort. Several measures of postural sway and stability were obtained using a force plate, both during quiet standing and during performance of the tapping task. Sway area and peak sway velocity showed consistent increases with time, whereas changes in average velocity and peak whole-body center-of-mass acceleration were either small or nonsignificant. Although relatively insensitive to several task variables, changes in sway areas and peak velocities were substantially larger in trials terminated by the participants. It is argued that fatigue plays a more important role than simple task duration in causing the observed increases in sway, and hence decreases in postural stability. Potential whole-body consequences of localized musculoskeletal stresses appear supported by the results, and implications for safety, risks of falls, and work scheduling are discussed.

  5. [Survival Strategies of Aspergillus in the Human Body].

    Science.gov (United States)

    Tashiro, Masato; Izumikawa, Koichi

    2017-01-01

     The human body is a hostile environment for Aspergillus species, which originally live outside the human body. There are lots of elimination mechanisms against Aspergillus inhaled into the human body, such as high body temperature, soluble lung components, mucociliary clearance mechanism, or responses of phagocytes. Aspergillus fumigatus, which is the primary causative agent of human infections among the human pathogenic species of Aspergillus, defend itself from the hostile human body environment by various mechanisms, such as thermotolerance, mycotoxin production, and characteristic morphological features. Here we review mechanisms of defense in Aspergillus against elimination from the human body.

  6. Time course analysis of baroreflex sensitivity during postural stress

    NARCIS (Netherlands)

    Westerhof, Berend E.; Gisolf, Janneke; Karemaker, John M.; Wesseling, Karel H.; Secher, Niels H.; van Lieshout, Johannes J.

    2006-01-01

    Postural stress requires immediate autonomic nervous action to maintain blood pressure. We determined time-domain cardiac baroreflex sensitivity (BRS) and time delay (tau) between systolic blood pressure and interbeat interval variations during stepwise changes in the angle of vertical body axis

  7. Acute Cutaneous Microvascular Flow Responses to Whole-Body Tilting in Humans

    Science.gov (United States)

    Breit, Gregory A.; Watenpaugh, Donald E.; Ballard, Richard E.; Hargens, Alan R.

    1993-01-01

    The transition from upright to head-down tilt (HDT) posture in humans increases blood pressure superior to the heart and decreases pressure inferior to the heart. Consequently, above heart level, myogenic arteriolar tone probably increases with HDT, in opposition to the withdrawal of baroreceptor-mediated sympathetic tone. We hypothesized that due to antagonism between central and local controls, the response of the facial cutaneous microcirculation to acute postural change will be weaker than that in the leg, where these two mechanisms reinforce each other. Cutaneous microvascular flow was measured by laser Doppler flowmetry simultaneously at the shin and the neck of 7 male and 3 female subjects. Subjects underwent a stepwise tilt protocol from standing control to 54 deg head-up tilt (HUT), 30 deg, 12 deg, O deg, -6 deg (HDT), -12 deg, -6 deg, O deg, 12 deg, 30 deg, 54 deg, and standing, for 30-sec periods with 10-sec transitions between postures. Flows at the shin and the neck increased significantly (P less than 0.05) from standing baseline to 12 deg HUT (252 +/- 55 and 126 +/- 9% (bar X +/- SE) of baseline, respectively). From 12 deg to -12 deg tilt, flows continued to increase at the shin (509 +/- 71% of baseline) but decreased at the neck to baseline levels (100 +/- 15% of baseline). Cutaneous microvascular flow recovered at both sites during the return to standing posture with significant hysteresis. Flow increases from standing to near-supine posture are attributed at both sites to baroreceptor-mediated vasodilation. The great dissimilarity in flow response magnitudes at the two measurement sites may be indicative of central/local regulatory antagonism above heart level and reinforcement below heart level.

  8. Two stages and three components of the postural preparation to action.

    Science.gov (United States)

    Krishnan, Vennila; Aruin, Alexander S; Latash, Mark L

    2011-07-01

    of the postural preparation to action/perturbation. This is the first study to document anticipatory synergy adjustments in whole-body tasks. We interpret the results within the referent configuration hypothesis (an extension of the equilibrium-point hypothesis): The early postural adjustment is based primarily on changes in the coactivation command, while the APAs involve changes in the reciprocal command. The results fit an earlier hypothesis that whole-body movements are controlled by a neuromotor hierarchy where each level involves a few-to-many mappings organized to stabilize its overall output.

  9. Investigation of a Switchable Textile Communication System on the Human Body

    Directory of Open Access Journals (Sweden)

    Qiang Bai

    2014-08-01

    Full Text Available In this paper, a switchable textile communication system working at 2.45 GHz ISM band is presented and studied for different locations within a realistic on-body environment. A 3D laser scanner is used to generate a numerical phantom of the measured subject to improve the accuracy of the simulations which are carried out for different body postures. For the off-body communications, the system is acting as an aperture coupled microstrip patch antenna with a boresight gain of 1.48 dBi. On-body communication is achieved by using a textile stripline, which gives approximately 5 dB transmission loss over 600 mm distance. The system is switched between on and off-body modes by PIN diodes. Common issues, such as shape distortion and body detuning effects which the textile antenna may experience in realistic use are fully discussed. Robust antenna performance is noted in the on-body tests, and an additional 3 dB transmission coefficient deduction was noticed in the most severe shape distortion case.

  10. A postura corporal e as funções estomatognáticas em crianças respiradoras orais: uma revisão de literatura Body posture and the stomatognathic functions in mouth breathing children: a literature review

    Directory of Open Access Journals (Sweden)

    Patricia Girarde Machado

    2012-06-01

    Full Text Available A postura corporal das crianças é objeto de crescente estudo na fisioterapia, assim como as crianças respiradoras orais o são na fonoaudiologia. Este estudo tem por objetivo verificar, na literatura científica, as funções estomatognáticas, a postura corporal e suas relações, em crianças respiradoras orais. Trata-se de uma revisão da literatura sobre a postura corporal, e o sistema estomatognático e suas relações em respiradores orais obstrutivos e funcionais. Buscou-se nas bases de dados eletrônicos MEDLINE, SCIELO e LILACS, e Googlecientífico, artigos que relacionassem esses temas nos últimos 10 anos. Os artigos selecionados foram organizados de acordo com os autores, o título, a origem, a faixa etária e o ano de publicação. Após a seleção dos textos, foram identificados apenas quatro trabalhos que relacionam postura, sistema estomatognático e respiração oral; dois que relacionam sistema estomatognático e postura; e a maioria, treze que estudam sistema estomatognático e respiração oral; dentre outros. Notou-se que há uma escassez de informações sobre a relação da postura corporal com o sistema estomatognático em respiradores orais. A escassez é ainda maior quando se compara o grupo de respiradores orais obstrutivos e respiradores orais funcionais relacionando a postura corporal com o sistema estomatognático.Children's body posture has been studied more and more by physical therapy, as well as mouth breather children have been studied by speech-language-hearing therapy. This study tries to check, through scientific literature, the relationship between stomatognathic functions and body posture in mouth breather children. This is a review of literature on body posture and the stomatognathic system in obstructive and functional mouth breathers. We searched, in electronic data basis such as MEDLINE, SCIELO and LILACS, and Google Scientific, articles related to these topics, published in the last 10. The

  11. Effect of body posture on chewing behaviours in healthy volunteers.

    Science.gov (United States)

    Iizumi, T; Magara, J; Tsujimura, T; Inoue, M

    2017-11-01

    Mastication is essential to the eating process and forms an important part of feeding behaviour. Many factors related to the food bolus, such as bolus texture and size, are known to influence mastication. The aim of this study was to determine the effects of body posture on (i) chewing duration prior to the first swallow and (ii) patterns of mastication-related EMG activity. We asked 10 healthy adults to chew 8 g of steamed rice with barium sulphate while we recorded masseter, suprahyoid and infrahyoid muscle activity and simultaneously collected videofluorographic images. Participants chewed in either an upright or reclining position. Chewing duration, which was defined as the time from the start of mastication to the first swallow, was not different between the positions. However, the variability of chewing duration was larger in the upright versus reclining position, and the chewing duration in the reclining position was distributed around 15 s. Masseter activity gradually decreased in a time-dependent manner and was significantly larger at the early versus late stage of mastication. Suprahyoid activity was significantly larger at the early versus middle stage of mastication in the upright position only. Finally, masseter activity per second was negatively correlated with changes in chewing duration, that is, the larger the increase in chewing duration in the reclining position, the more the decrease in masseter activity per second. These results suggest that position-dependent changes in chewing behaviours, as described by chewing duration and EMG activity, may vary among participants. © 2017 John Wiley & Sons Ltd.

  12. Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation

    Science.gov (United States)

    Cortés, Camilo; Ardanza, Aitor; Molina-Rueda, F.; Cuesta-Gómez, A.; Ruiz, Oscar E.

    2014-01-01

    New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation. PMID:25110698

  13. Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation

    Directory of Open Access Journals (Sweden)

    Camilo Cortés

    2014-01-01

    Full Text Available New motor rehabilitation therapies include virtual reality (VR and robotic technologies. In limb rehabilitation, limb posture is required to (1 provide a limb realistic representation in VR games and (2 assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a the mathematical formulation and solution to the problem, (b the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c its integration into a rehabilitation VR game platform, and (d the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i animate avatars that represent the patient in VR games and (ii obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation.

  14. Interactive effect of body posture on exercise-induced atrial natriuretic peptide release.

    Science.gov (United States)

    Ray, C A; Delp, M D; Hartle, D K

    1990-05-01

    The purpose of this investigation was to test the hypothesis that supine exercise elicits a greater atrial natriuretic peptide (ANP) response than upright exercise because of higher atrial filling pressure attained in the supine posture. Plasma ANP concentration ([ANP]) was measured during continuous graded supine and upright exercise in eight healthy men at rest after 4 min of cycling exercise at 31, 51, and 79% of posture-specific peak oxygen uptake (VO2 peak), after 2 min of cycling at posture-specific VO2 peak, and 5 and 15 min postexercise. [ANP] was significantly increased (P less than 0.05) above rest by 64, 140, and 228% during supine cycling at 51 and 79% and VO2 peak, respectively. During upright cycling, [ANP] was significantly increased (P less than 0.05) at 79% (60%) and VO2 peak (125%). After 15 min of postexercise rest, [ANP] remained elevated (P less than 0.05) only in the supine subjects. [ANP] was 63, 79, and 75% higher (P less than 0.05) in the supine than in the upright position during cycling at 51 and 79% and VO2 peak. Systolic, diastolic, and mean blood pressures were not significantly (P greater than 0.05) different between positions in all measurement periods. Heart rates were lower (P less than 0.05) in the supine position compared with the upright position. In conclusion, these results suggest that supine exercise elicits greater ANP release independent of blood pressure and heart rate but presumably caused by greater venous return, central blood volume, and concomitant atrial filling pressure and stretch.

  15. Hand posture effects on handedness recognition as revealed by the Simon effect

    Directory of Open Access Journals (Sweden)

    Allan P Lameira

    2009-11-01

    Full Text Available We investigated the influence of hand posture in handedness recognition, while varying the spatial correspondence between stimulus and response in a modified Simon task. Drawings of the left and right hands were displayed either in a back or palm view while participants discriminated stimulus handedness by pressing left/right keys with their hands resting either in a prone or supine posture. As a control, subjects performed a regular Simon task using simple geometric shapes as stimuli. Results showed that when hands were in a prone posture, the spatially corresponding trials (i.e., stimulus and response located on the same side were faster than the non-corresponding trials (i.e., stimulus and response on opposite sides. In contrast, for the supine posture, there was no difference between corresponding and non-corresponding trials. The control experiment with the regular Simon task showed that the posture of the responding hand had no influence on performance. When the stimulus is the drawing of a hand, however, the posture of the responding hand affects the spatial correspondence effect because response location is coded based on multiple reference points, including the body of the hand.

  16. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.

    Science.gov (United States)

    Capela, N A; Lemaire, E D; Baddour, N; Rudolf, M; Goljar, N; Burger, H

    2016-01-20

    Mobile health monitoring using wearable sensors is a growing area of interest. As the world's population ages and locomotor capabilities decrease, the ability to report on a person's mobility activities outside a hospital setting becomes a valuable tool for clinical decision-making and evaluating healthcare interventions. Smartphones are omnipresent in society and offer convenient and suitable sensors for mobility monitoring applications. To enhance our understanding of human activity recognition (HAR) system performance for able-bodied and populations with gait deviations, this research evaluated a custom smartphone-based HAR classifier on fifteen able-bodied participants and fifteen participants who suffered a stroke. Participants performed a consecutive series of mobility tasks and daily living activities while wearing a BlackBerry Z10 smartphone on their waist to collect accelerometer and gyroscope data. Five features were derived from the sensor data and used to classify participant activities (decision tree). Sensitivity, specificity and F-scores were calculated to evaluate HAR classifier performance. The classifier performed well for both populations when differentiating mobile from immobile states (F-score > 94 %). As activity recognition complexity increased, HAR system sensitivity and specificity decreased for the stroke population, particularly when using information derived from participant posture to make classification decisions. Human activity recognition using a smartphone based system can be accomplished for both able-bodied and stroke populations; however, an increase in activity classification complexity leads to a decrease in HAR performance with a stroke population. The study results can be used to guide smartphone HAR system development for populations with differing movement characteristics.

  17. Beyond deficit or compensation: new insights on postural control after long-term total visual loss.

    Science.gov (United States)

    Russo, Maitê M; Lemos, Thiago; Imbiriba, Luís A; Ribeiro, Nathalia L; Vargas, Claudia D

    2017-02-01

    Loss of vision is well known to affect postural control in blind subjects. This effect has classically been framed in terms of deficit or compensation depending on whether body sway increases or decreases in comparison with that of sighted subjects with the eyes open. However, studies have shown that postural responses can be modulated by the context and that changes in postural sway may not necessarily mean a worsened or improved postural control. The goal of our study was to test whether balance is affected by the context in blind subjects. Additional to the quantification of center of pressure (COP) displacement, measurements of body motion (COG) and the correspondent net neuromuscular response (COP-COG) were evaluated in anterior-posterior and medial-lateral directions. Thirty-eight completely blind and thirty-two sighted subjects participated of this study. The volunteers were asked to stand barefoot on a force platform for 60 s in two different conditions: feet apart and feet together. Sighted participants performed the tests with both the eyes open and eyes closed. Results showed that the COP-COG displacements in the blind group were greater than those of the sighted group with eyes open in almost all conditions tested, but not in eyes closed condition. However, the COP and COG results confirmed that the postural responses were context dependent. Together these results suggest that total visual loss does not just lead to a balance deficit or compensation, but to a specific postural signature that might imply in enhancing COP, COG and/or COP-COG in specific postural conditions.

  18. What is a Human Body?

    DEFF Research Database (Denmark)

    Nissen, Ulrik Becker

    2017-01-01

    The essay offers an overview of different understandings of what a body is. As such, it can be read as an overview of what we mean, when we speak of a “human body”. However, the article also goes a step further; in the last section, a responsive understanding of the human body is outlined....... This is understood as responsiveness in three ways: viz an embodied self that responds to natural life, other human beings and, ultimately, to God....

  19. [Brief on the standardization of the practitioner's posture in acupuncture operation].

    Science.gov (United States)

    Lu, Yonghui

    2015-07-01

    To discuss the standardization of the practitioner's posture in acupuncture operation. Based on the relevant discussion on 'way to holding needle' recorded in Lingshu (Miraculous Pivot) and in association with the clinical acupuncture practice, it was required to standardize the practitioner's posture in acupuncture operation in reference to Lingshu (Miraculous Pivot). The standard standing posture of the practitioner is the precondition of acupuncture operation; the standard holding needle with the puncture hand is the key to the exercise of acupuncture technique and the regular standing orientation is the need of acupuncture operation. The three aspects are complemented each other, which is the coordinative procedure in acupuncture operation and enable the practitioner's high concentration with the body, qi and mind involved.

  20. Effects of the anchor system on postural control in older Adults

    Directory of Open Access Journals (Sweden)

    Eliane Mauerberg de Castro

    2012-03-01

    Full Text Available Falls are common during aging, and can have drastic consequences. Within this context, maintaining the ability to balance plays an essential role in enabling older adults to continue to perform their daily activities. Therefore, the use of interventional and treatment tools for development of balance becomes essential. The objective of this study was to analyze the anchor system as a potential tool for decreasing body sway in older and young adults. Older adults had more postural sway than their young counterparts. The absence of visual information led to larger instability in both groups. The anchor system improved postural stability of both groups. Thus, it may be a useful tool for posture stabilization in old and young adults.

  1. Human Body Exergy Metabolism

    OpenAIRE

    Mady, Carlos Eduardo Keutenedjian

    2013-01-01

    The exergy analysis of the human body is a tool that can provide indicators of health and life quality. To perform the exergy balance it is necessary to calculate the metabolism on an exergy basis, or metabolic exergy, although there is not yet consensus in its calculation procedure. Hence, the aim of this work is to provide a general method to evaluate this physical quantity for human body based on indirect calorimetry data. To calculate the metabolism on an exergy basis it is necessary to d...

  2. Adaptation of sensorimotor coupling in postural control is impaired by sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Stefane A Aguiar

    Full Text Available The purpose of the study was to investigate the effects of sleep deprivation (SD in adaptation of the coupling between visual information and body sway in young adults' postural control due to changes in optic flow characteristics. Fifteen young adults were kept awake for approximately 25 hours and formed the SD group, while fifteen adults who slept normally the night before the experiment participated as part of the control group. All participants stood as still as possible in a moving room before and after being exposed to one trial with higher amplitude and velocity of room movement. Postural performance and the coupling between visual information, provided by a moving room, and body sway were examined. Results showed that after an abrupt change in visual cues, larger amplitude, and higher velocity of the room, the influence of room motion on body sway was decreased in both groups. However, such a decrease was less pronounced in sleep deprived as compared to control subjects. Sleep deprived adults were able to adapt motor responses to the environmental change provided by the increase in room motion amplitude. Nevertheless, they were not as efficient as control subjects in doing so, which demonstrates that SD impairs the ability to adapt sensorimotor coupling while controlling posture when a perturbation occurs.

  3. Postural control during the Stroop test in dyslexic and non dyslexic teenagers.

    Directory of Open Access Journals (Sweden)

    Zoï Kapoula

    Full Text Available Postural control in quiet stance although simple still requires some cognitive resources; dual cognitive tasks influence further postural control. The present study examines whether or not dyslexic teenagers experience postural instability when performing a Stroop dual task for which their performances are known to be poor. Fifteen dyslexics and twelve non-dyslexics (14 to 17 years old were recruited from the same school. They were asked to perform three tasks: (1 fixate a target, (2 perform an interference Stroop test (naming the colour or the word rather than reading the word, (3 performing flexibility Stroop task: the subject performed the interference task as in (2 except when the word was in a box, in which case he had to read the word. Postural performances were measured with a force platform. The results showed a main task effect on the variance of speed of body sway only: such variance was higher in the flexibility task than for the other two tasks. No group effect was found for any of the parameters of posture (surface, mediolateral and anteroposterior sway, variance of speed. Further wavelet analysis in the time-frequency domain revealed an increase in the spectral power of the medium frequency range believed to be related to cerebellum control; an accompanying increase in the cancellation time of the high frequency band related to reflexive loops occurred for non-dyslexics only. These effects occurred for the flexibility task and could be due to its high cognitive difficulty. Dyslexics displayed shorter cancellation time for the medium frequency band for all tasks, suggesting less efficient cerebellar control, perhaps of eye fixation and attention influencing body sway. We conclude that there is no evidence for a primary posture deficit in 15 year old teenagers who come from the general population and who were recruited in schools.

  4. A Computational Approach for Automated Posturing of a Human Finite Element Model

    Science.gov (United States)

    2016-07-01

    any bone to be used as the anchor . The foot contains the location of the tibia’s coordinate system that was saved during the ankle function. This is...3.1 Ankle 8 3.2 Knee 10 3.3 Hip 14 3.4 Spine 16 4. Posture Assembly 17 5. Developing Load Curves for Prescribed Postures 19 6. FE Simulations 21 7...system. ................................................6 Fig. 3 The ankle is defined as a ball and socket joint. The tibia coordinate system rotates

  5. Constrained posture in dentistry - a kinematic analysis of dentists.

    Science.gov (United States)

    Ohlendorf, Daniela; Erbe, Christina; Nowak, Jennifer; Hauck, Imke; Hermanns, Ingo; Ditchen, Dirk; Ellegast, Rolf; Groneberg, David A

    2017-07-05

    How a dentist works, such as the patterns of movements performed daily, is also largely affected by the workstation Dental tasks are often executed in awkward body positions, thereby causing a very high degree of strain on the corresponding muscles. The objective of this study is to detect those dental tasks, during which awkward postures occur most frequently. The isolated analysis of static postures will examine the duration for which these postures are maintained during the corresponding dental, respectively non-dental, activities. 21 (11f/10 m) dentists (age: 40.1 ± 10.4 years) participated in this study. An average dental workday was collected for every subject. To collect kinematic data of all activities, the CUELA system was used. Parallel to the kinematic examination, a detailed computer-based task analysis was conducted. Afterwards, both data sets were synchronized based on the chronological order of the postures assumed in the trunk and the head region. All tasks performed were assigned to the categories "treatment" (I), "office" (II) and "other activities" (III). The angle values of each body region (evaluation parameter) were examined and assessed corresponding to ergonomic standards. Moreover, this study placed a particular focus on static positions, which are held statically for 4 s and longer. For "treatment" (I), the entire head and trunk area is anteriorly tilted while the back is twisted to the right, in (II) and (III) the back is anteriorly tilted and twisted to the right (non-neutral position). Static positions in (I) last for 4-10s, static postures (approx. 60%) can be observed while in (II) and (III) in the back area static positions for more than 30 s are most common. Moreover, in (II) the back is twisted to the right for more than 60 s in 26.8%. Awkward positions are a major part of a dentists' work. This mainly pertains to static positions of the trunk and head in contrast to "office work." These insights facilitate the quantitative

  6. Increased dynamic regulation of postural tone through Alexander Technique training.

    Science.gov (United States)

    Cacciatore, T W; Gurfinkel, V S; Horak, F B; Cordo, P J; Ames, K E

    2011-02-01

    Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo "long-term" (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of "short-term" (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (∼50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. A relação da postura corporal com a prosódia na doença de parkinson: estudo de caso The relations between body posture and prosody in Parkinson's disease: case study

    Directory of Open Access Journals (Sweden)

    Fernanda Vargas Ferreira

    2007-09-01

    Full Text Available OBJETIVO: investigar a associação entre a postura corporal e a prosódia em indivíduos com Doença de Parkinson. MÉTODOS: estudo de corte transversal realizado com cinco sujeitos com Doença de Parkinson da cidade de Santa Maria, Estado do Rio Grande do Sul, em 2006. Utilizaram-se avaliações da prosódia lingüística e emocional bem como da postura corporal. A análise estatística utilizada foi descritiva. RESULTADOS: foram estudados quatro sujeitos do sexo masculino e um sujeito do sexo feminino com idades entre 37 e 53 anos. Três sujeitos encontravam-se no estágio I, um sujeito no estágio III e um sujeito no estágio IV da doença conforme a escala de classificação da função motora Hohen &Yahr, todos sob o uso de medicação e apresentando os sinais da tríade característica da patologia (rigidez, tremor, bradicinesia bem como as alterações posturais típicas. Na comparação entre prosódia emocional e prosódia lingüística, encontrou-se melhor desempenho na prosódia emocional e não se evidenciou associação entre os estágios da patologia e alterações na postura corporal e prosódia. CONCLUSÃO: as alterações posturais são sinais característicos da Doença de Parkinson, assim como alterações na prosódia lingüística e emocional. A ocorrência de alterações posturais foi elevada entre os parkinsonianos. Os sujeitos apresentaram melhor performance na prosódia emocional. Não houve evidências de que os estágios da doença estivessem associados às alterações da prosódia e da postura corporal.PORPOSE: to investigate the relationship between body posture and prosody in patients with Parkinson Disease. METHODS: the study was carried out with five patients (four males and one female from Santa Maria, Rio Grande do Sul, Brazil, by means of cross-section study, in 2006. Evaluations of linguistic and emotional prosody as well as analysis of body posture were carried out. The statistical analysis was descriptive

  8. Effect of forward/backward standing posture on foot shape

    NARCIS (Netherlands)

    Daanen, H.A.M.; Tan, T.K.; Punte, P.A.J.

    2000-01-01

    Foot length and breadth are generally used to determine the correct shoe size. An important question is whether foot length and foot breadth are dependent upon body posture. Therefore, the effect of leaning forward/backward on foot length and breadth is investigated in this study. Seven subjects

  9. Human body segmentation via data-driven graph cut.

    Science.gov (United States)

    Li, Shifeng; Lu, Huchuan; Shao, Xingqing

    2014-11-01

    Human body segmentation is a challenging and important problem in computer vision. Existing methods usually entail a time-consuming training phase for prior knowledge learning with complex shape matching for body segmentation. In this paper, we propose a data-driven method that integrates top-down body pose information and bottom-up low-level visual cues for segmenting humans in static images within the graph cut framework. The key idea of our approach is first to exploit human kinematics to search for body part candidates via dynamic programming for high-level evidence. Then, by using the body parts classifiers, obtaining bottom-up cues of human body distribution for low-level evidence. All the evidence collected from top-down and bottom-up procedures are integrated in a graph cut framework for human body segmentation. Qualitative and quantitative experiment results demonstrate the merits of the proposed method in segmenting human bodies with arbitrary poses from cluttered backgrounds.

  10. THE EFFECTS OF NINTENDO WII® ON THE POSTURAL CONTROL OF PATIENTS AFFECTED BY ACQUIRED BRAIN INJURY: A PILOT STUDY

    Directory of Open Access Journals (Sweden)

    Ana Vicario Mendez

    2013-11-01

    Full Text Available Scientific literature demonstrates that postural control after suffering a brain injury can actually relate to its functional prognosis. Postural control is a result of complex interactions of different body systems that co-operate in order to control the position of the body in the space and is determined by the functional task as well as by the environment in which it is developed. The use in rehabilitation of Nintendo's Wii® gives some results on motor functions. This study analyses the effects of the Nintendo Wii® console on postural control during the execution of an everyday life task consisting of getting up and walking three meters.

  11. Effects of affective picture viewing on postural control.

    Science.gov (United States)

    Stins, John F; Beek, Peter J

    2007-10-04

    Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS). We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the neuroanatomical organization of the emotion system and

  12. The Improvement of Dental Posture Using Personalized Biofeedback.

    Science.gov (United States)

    Thanathornwong, Bhornsawan; Suebnukarn, Siriwan

    2015-01-01

    Dentists are subject to staying in static or awkward postures for long periods due to their highly concentrated work. This study describes a real-time personalized biofeedback system developed for dental posture training with the use of vibrotactile biofeedback. The real-time personalized biofeedback system was an integrated solution that comprised of two components: 1) a wearable device that contained an accelerometer sensor for measuring the tilt angle of the body (input) and provided real-time vibrotactile biofeedback (output); and 2) software for data capturing, processing, and personalized biofeedback generation. The implementation of real-time personalized vibrotactile feedback was computed using Hidden Markov Models (HMMs). For the test case, we calculated the probability and log-likelihood of the test movements under the Work related Musculoskeletal Disorders (WMSD) and non-WMSD HMMs. The vibrotactile biofeedback was provided to the user via a wearable device for a WMSD-predicted case. In the system evaluation, a randomized crossover trial was conducted to compare dental posture measure using tilt angles of the upper back and muscle activities of those dental students that received vibrotactile biofeedback from the system with the control group against the dental students who received no feedback. The participants who received feedback from the system had a lower tilt angle at 10th, 50th, and 90th percentiles of Backx and Backy, as well as muscular load, which were statistically different (pbiofeedback system for posture training in dental students is feasible and associated with quantitative improvements of the dental posture.

  13. Muscle function and postural balance in lifelong trained male footballers compared with sedentary elderly men and youngsters

    DEFF Research Database (Denmark)

    Sundstrup, Emil; Jakobsen, Markus D.; Andersen, Lars Juel

    2010-01-01

    The present study investigated whether elderly subjects exposed to lifelong football training have better rapid muscle force characteristics, body composition and postural stability in comparison with untrained elderly. Ten elderly men exposed to lifelong football training (FTE; 69.6 ± 1.4 years....../s), higher total lean body mass (56.9 ± 0.8 vs 52.7 ± 2.2 kg) and better postural stability (Flamingo test: 15 ± 1 vs 33 ± 2 falls) compared with UE (P... in UE (Ppostural stability were consistently higher in elderly subjects exposed to lifelong football training, providing an enhanced ability to counteract unexpected perturbations in postural balance. The superior RFD and balance in elderly footballers were...

  14. Prevalence of postural deviations and associated factors in children and adolescents: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Mariana Vieira Batistão

    Full Text Available Abstract Introduction: Postural deviations are frequent in childhood and may cause pain and functional impairment. Previously, only a few studies have examined the association between body posture and intrinsic and extrinsic factors. Objective: To assess the prevalence of postural changes in school children, and to determine, using multiple logistic regression analysis, whether factors such as age, gender, BMI, handedness and physical activity might explain these deviations. Methods: The posture of 288 students was assessed by observation. Subjects were aged between 6 and 15 years, 59.4% (n = 171 of which were female. The mean age was 10.6 (± 2.4 years. Mean body weight was 38.6 (± 12.7 kg and mean height was 1.5 (± 0.1 m. A digital scale, a tapeline, a plumb line and standardized forms were used to collect data. The data were analyzed descriptively using the chi-square test and logistic regression analysis (significance level of 5%. Results: We found the following deviations to be prevalent among schoolchildren: forward head posture, 53.5%, shoulder elevation, 74.3%, asymmetry of the iliac crests, 51.7%, valgus knees, 43.1%, thoracic hyperkyphosis, 30.2%, lumbar hyperlordosis, 37.2% and winged shoulder blades, 66.3%. The associated factors were age, gender, BMI and physical activity. Discussion: There was a high prevalence of postural deviations and the intrinsic and extrinsic factors partially explain the postural deviations. Conclusion: These findings contribute to the understanding of how and why these deviations develop, and to the implementation of preventive and rehabilitation programs, given that some of the associated factors are modifiable.

  15. Slice-based supine-to-standing posture deformation for chinese anatomical models and the dosimetric results with wide band frequency electromagnetic field exposure: Simulation

    International Nuclear Information System (INIS)

    Wu, T.; Tan, L.; Shao, Q.; Li, Y.; Yang, L.; Zhao, C.; Xie, Y.; Zhang, S.

    2013-01-01

    Standing Chinese adult anatomical models are obtained from supine-postured cadaver slices. This paper presents the dosimetric differences between the supine and the standing postures over wide band frequencies and various incident configurations. Both the body level and the tissue/organ level differences are reported for plane wave and the 3T magnetic resonance imaging radiofrequency electromagnetic field exposure. The influence of posture on the whole body specific absorption rate and tissue specified specific absorption rate values is discussed. . (authors)

  16. Auditory white noise reduces postural fluctuations even in the absence of vision.

    Science.gov (United States)

    Ross, Jessica Marie; Balasubramaniam, Ramesh

    2015-08-01

    The contributions of somatosensory, vestibular, and visual feedback to balance control are well documented, but the influence of auditory information, especially acoustic noise, on balance is less clear. Because somatosensory noise has been shown to reduce postural sway, we hypothesized that noise from the auditory modality might have a similar effect. Given that the nervous system uses noise to optimize signal transfer, adding mechanical or auditory noise should lead to increased feedback about sensory frames of reference used in balance control. In the present experiment, postural sway was analyzed in healthy young adults where they were presented with continuous white noise, in the presence and absence of visual information. Our results show reduced postural sway variability (as indexed by the body's center of pressure) in the presence of auditory noise, even when visual information was not present. Nonlinear time series analysis revealed that auditory noise has an additive effect, independent of vision, on postural stability. Further analysis revealed that auditory noise reduced postural sway variability in both low- and high-frequency regimes (> or noise. Our results support the idea that auditory white noise reduces postural sway, suggesting that auditory noise might be used for therapeutic and rehabilitation purposes in older individuals and those with balance disorders.

  17. Human body may produce bacteria.

    Science.gov (United States)

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Posture-Motor and Posture-Ideomotor Dual-Tasking: A Putative Marker of Psychomotor Retardation and Depressive Rumination in Patients With Major Depressive Disorder.

    Science.gov (United States)

    Aftanas, Lyubomir I; Bazanova, Olga M; Novozhilova, Nataliya V

    2018-01-01

    Background: Recent studies have demonstrated that the assessment of postural performance may be a potentially reliable and objective marker of the psychomotor retardation (PMR) in the major depressive disorder (MDD). One of the important facets of MDD-related PMR is reflected in disrupted central mechanisms of psychomotor control, heavily influenced by compelling maladaptive depressive rumination. In view of this we designed a research paradigm that included sequential execution of simple single-posture task followed by more challenging divided attention posture tasks, involving concurring motor and ideomotor workloads. Another difficulty dimension assumed executing of all the tasks with eyes open (EO) (easy) and closed (EC) (difficult) conditions. We aimed at investigating the interplay between the severity of MDD, depressive rumination, and efficiency of postural performance. Methods: Compared with 24 age- and body mass index-matched healthy controls (HCs), 26 patients with MDD sequentially executed three experimental tasks: (1) single-posture task of maintaining a quiet stance (ST), (2) actual posture-motor dual task (AMT); and (3) mental/imaginary posture-motor dual task (MMT). All the tasks were performed in the EO and the EC conditions. The primary dependent variable was the amount of kinetic energy ( E ) expended for the center of pressure deviations (CoPDs), whereas the absolute divided attention cost index showed energy cost to the dual-tasking vs. the single-posture task according to the formula: Δ E = ( E Dual-task - E Single-task ). Results: The signs of PMR in the MDD group were objectively indexed by deficient posture control in the EC condition along with overall slowness of fine motor and ideomotor activity. Another important and probably more challenging feature of the findings was that the posture deficit manifested in the ST condition was substantially and significantly attenuated in the MMT and AMT performance dual-tasking activity. A multiple

  19. How do visual and postural cues combine for self-tilt perception during slow pitch rotations?

    Science.gov (United States)

    Scotto Di Cesare, C; Buloup, F; Mestre, D R; Bringoux, L

    2014-11-01

    Self-orientation perception relies on the integration of multiple sensory inputs which convey spatially-related visual and postural cues. In the present study, an experimental set-up was used to tilt the body and/or the visual scene to investigate how these postural and visual cues are integrated for self-tilt perception (the subjective sensation of being tilted). Participants were required to repeatedly rate a confidence level for self-tilt perception during slow (0.05°·s(-1)) body and/or visual scene pitch tilts up to 19° relative to vertical. Concurrently, subjects also had to perform arm reaching movements toward a body-fixed target at certain specific angles of tilt. While performance of a concurrent motor task did not influence the main perceptual task, self-tilt detection did vary according to the visuo-postural stimuli. Slow forward or backward tilts of the visual scene alone did not induce a marked sensation of self-tilt contrary to actual body tilt. However, combined body and visual scene tilt influenced self-tilt perception more strongly, although this effect was dependent on the direction of visual scene tilt: only a forward visual scene tilt combined with a forward body tilt facilitated self-tilt detection. In such a case, visual scene tilt did not seem to induce vection but rather may have produced a deviation of the perceived orientation of the longitudinal body axis in the forward direction, which may have lowered the self-tilt detection threshold during actual forward body tilt. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Do Equilibrium Constraints Modulate Postural Reaction when Viewing Imbalance?

    Science.gov (United States)

    Tia, Banty; Paizis, Christos; Mourey, France; Pozzo, Thierry

    2012-01-01

    Action observation and action execution are tightly coupled on a neurophysiological and a behavioral level, such that visually perceiving an action can contaminate simultaneous and subsequent action execution. More specifically, observing a model in postural disequilibrium was shown to induce an increase in observers' body sway. Here we…

  1. Postural threat differentially affects the feedforward and feedback components of the vestibular-evoked balance response.

    Science.gov (United States)

    Osler, Callum J; Tersteeg, M C A; Reynolds, Raymond F; Loram, Ian D

    2013-10-01

    Circumstances may render the consequence of falling quite severe, thus maximising the motivation to control postural sway. This commonly occurs when exposed to height and may result from the interaction of many factors, including fear, arousal, sensory information and perception. Here, we examined human vestibular-evoked balance responses during exposure to a highly threatening postural context. Nine subjects stood with eyes closed on a narrow walkway elevated 3.85 m above ground level. This evoked an altered psycho-physiological state, demonstrated by a twofold increase in skin conductance. Balance responses were then evoked by galvanic vestibular stimulation. The sway response, which comprised a whole-body lean in the direction of the edge of the walkway, was significantly and substantially attenuated after ~800 ms. This demonstrates that a strong reason to modify the balance control strategy was created and subjects were highly motivated to minimise sway. Despite this, the initial response remained unchanged. This suggests little effect on the feedforward settings of the nervous system responsible for coupling pure vestibular input to functional motor output. The much stronger, later effect can be attributed to an integration of balance-relevant sensory feedback once the body was in motion. These results demonstrate that the feedforward and feedback components of a vestibular-evoked balance response are differently affected by postural threat. Although a fear of falling has previously been linked with instability and even falling itself, our findings suggest that this relationship is not attributable to changes in the feedforward vestibular control of balance. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. The Comparison of Postural Control Ability in Children with/without Dyslexia

    Directory of Open Access Journals (Sweden)

    Morteza Arghiani

    2013-04-01

    Full Text Available Objective: In some reviewed studies on children with dyslexia it is observed that there is a significant relationship between the ability of postural control and dyslexia. In this study, by controlling the interfering factors, we have reviewed this relation by comparing postural control and balance ability in normal and dyslexic children. Materials & Methods: This case-control study is done on 19 boys with dyslexia (112.90±13.78 and 19 Normal boys (118.42±15.62. Normal children and children with dyslexia were matched in age, height and weight. Positioning duties included standing with adjacent feet on firm surface with open and closed eyes, and with close eyes on the foam and with internal perturbation on firm surface. Duration of each assignment was 35 seconds and the force plate device was used to evaluate the condition performance. Balances component of Bruininks Oseretsky test were take from all of the samples and correlation between functional and laboratory test were examined. Results: The results showed that the area on firm surface with open eyes, internal perturbation dependency rate in the standard deviations of the lateral body sways (SDX and of the antero-posterior body sways (SDY and the surface area, there were significant differences between normal and dyslexic children, but there was not any significant difference between the two groups in path length and mean velocity in different postural control modes (foam, firm surface, open and close eyes and visual dependence in all parameters (path length, velocity and surface area. We did not find significant correlation between Center of Pressure (COP and the balance part of Bruininks Oseretsky test in children with dyslexia. Conclusion: In spite of differences in some postural control parameters between normal group and children with dyslexia, it was not found significant relationship between postural control and dyslexia.

  3. FRPR-4 Is a G-Protein Coupled Neuropeptide Receptor That Regulates Behavioral Quiescence and Posture in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Matthew D Nelson

    Full Text Available Neuropeptides signal through G-protein coupled receptors (GPCRs to regulate a broad array of animal behaviors and physiological processes. The Caenorhabditis elegans genome encodes approximately 100 predicted neuropeptide receptor GPCRs, but in vivo roles for only a few have been identified. We describe here a role for the GPCR FRPR-4 in the regulation of behavioral quiescence and locomotive posture. FRPR-4 is activated in cell culture by several neuropeptides with an amidated isoleucine-arginine-phenylalanine (IRF motif or an amidated valine-arginine-phenylalanine (VRF motif at their carboxy termini, including those encoded by the gene flp-13. Loss of frpr-4 function results in a minor feeding quiescence defect after heat-induced cellular stress. Overexpression of frpr-4 induces quiescence of locomotion and feeding as well as an exaggerated body bend posture. The exaggerated body bend posture requires the gene flp-13. While frpr-4 is expressed broadly, selective overexpression of frpr-4 in the proprioceptive DVA neurons results in exaggerated body bends that require flp-13 in the ALA neuron. Our results suggest that FLP-13 and other neuropeptides signal through FRPR-4 and other receptors to regulate locomotion posture and behavioral quiescence.

  4. STATIC AND DYNAMIC POSTURE CONTROL IN POSTLINGUAL COCHLEAR IMPLANTED PATIENTS: Effects of dual-tasking, visual and auditory inputs suppression

    Directory of Open Access Journals (Sweden)

    BERNARD DEMANZE eLaurence

    2014-01-01

    Full Text Available Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body’s position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of post-lingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static and dynamic conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO and eyes closed (EC conditions, with the cochlear implant activated (ON or not (OFF. Results showed that the CI patients significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk while the controls showed a whole body rigidification strategy. Hearing (prosthesis on as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions.

  5. Medio-lateral postural instability in subjects with tinnitus

    Directory of Open Access Journals (Sweden)

    Zoi eKapoula

    2011-05-01

    Full Text Available Background: Many patients show modulation of tinnitus by gaze, jaw or neck movements, reflecting abnormal sensorimotor integration and interaction between various inputs. Postural control is based on multi-sensory integration (visual, vestibular, somatosensory, and oculomotor and indeed there is now evidence that posture can also be influenced by sound. Perhaps tinnitus influences posture similarly to external sound. This study examines the quality of postural performance in quiet stance in patients with modulated tinnitus.Methods: Twenty-three patients with highly modulated tinnitus were selected in the ENT service. Twelve reported exclusively or predominately left tinnitus, eight right and three bilateral. Eighteen control subjects were also tested. Subjects were asked to fixate a target at 40cm for 51s; posturography was performed with the platform (Technoconcept, 40Hz for both the eyes open and eyes closed conditions.Results: For both conditions, tinnitus subjects showed abnormally high lateral body sway (SDx. This was corroborated by fast Fourrier Transformation (FFTx and wavelet analysis. For patients with left tinnitus only, medio-lateral sway increased significantly when looking away from the center. Conclusions: Similarly to external sound stimulation, tinnitus could influence lateral sway by activating attention shift, and perhaps vestibular responses. Poor integration of sensorimotor signals is another possibility. Such abnormalities would be accentuated in left tinnitus because of the importance of the right cerebral cortex in processing both auditory-tinnitus and attention.

  6. Frontal and oblique crash tests of HIII 6-year-old child ATD using real-world, observed child passenger postures.

    Science.gov (United States)

    Bohman, Katarina; Arbogast, Kristy B; Loeb, Helen; Charlton, Judith L; Koppel, Sjaan; Cross, Suzanne L

    2018-02-28

    ATD is limited in its ability to mimic real-world child passenger postures. There is a need to develop child human body models that may offer greater flexibility for these types of crash evaluations.

  7. On scaling of human body models

    Directory of Open Access Journals (Sweden)

    Hynčík L.

    2007-10-01

    Full Text Available Human body is not an unique being, everyone is another from the point of view of anthropometry and mechanical characteristics which means that division of the human body population to categories like 5%-tile, 50%-tile and 95%-tile from the application point of view is not enough. On the other hand, the development of a particular human body model for all of us is not possible. That is why scaling and morphing algorithms has started to be developed. The current work describes the development of a tool for scaling of the human models. The idea is to have one (or couple of standard model(s as a base and to create other models based on these basic models. One has to choose adequate anthropometrical and biomechanical parameters that describe given group of humans to be scaled and morphed among.

  8. Anticipatory postural adjustments in the back and leg lift

    NARCIS (Netherlands)

    Toussaint, H.M.; Commissaris, D.A.C.M.; Beek, P.J.

    1997-01-01

    This study examined anticipatory postural adjustments in a dynamic multi-joint action in which a relatively fast voluntary movement is being executed while balance is maintained in the field of gravity. In a bi-manual whole body lifting task, the pickup of the load induces a forward shift in the

  9. Light bodies in human pituitary adenomas

    DEFF Research Database (Denmark)

    Holck, S; Wewer, U M; Albrechtsen, R

    1987-01-01

    Light bodies are large cytoplasmic granules originally described in the gonadotrophic cells of the rat pituitary gland. In order to determine whether similar bodies occur in the human anterior pituitary gland, 89 pituitary adenomas and periadenomatous tissue from 20 cases were examined...... cells in periadenomatous tissue from 20 cases. These results show that some human pituitary adenomas may contain light bodies identical to those seen in gonadotrophs of rat pituitary....... by transmission electron microscopy. Double membrane bound bodies with filamentous internal structure identical to rodent light bodies were identified in 10 hormone-producing adenomas: 5 PRL, 1 PRL-GH, 2 GH, and 2 ACTH-producing tumours. No light bodies were found in the remaining 79 tumours nor in the pituitary...

  10. Contribution of Head Position, Standing Surface, and Vision to Postural Control in Community-Dwelling Older Adults.

    Science.gov (United States)

    Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E

    2016-01-01

    Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  11. STEADFAST: Psychotherapeutic Intervention Improves Postural Strategy of Somatoform Vertigo and Dizziness

    Directory of Open Access Journals (Sweden)

    Christoph Best

    2015-01-01

    Full Text Available Patients with somatoform vertigo and dizziness (SVD disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (QH/V, reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n=28; baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ. Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: QH/V=0.31 versus controls: QH/V=0.38; p=0.022. After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles.

  12. The Importance of Postural Control in Relation to Technical Abilities in Small-Sided Soccer Games.

    Science.gov (United States)

    Edis, Çağlar; Vural, Faik; Vurgun, Hikmet

    2016-12-01

    Making assessments regarding postural control and balance is very important for injury prevention in soccer. However, there has been no study that has associated postural control variables with branch-specific technical properties in a game. The aim of the present study was to determine the relationships between variables designating postural control levels and technical performance variables in different (1:1, 2:2 and 3:3) small-sided games (SSGs). Sixteen trained male amateur soccer players volunteered to take part in the study (age 17.2 ± 1.02 years, body height 176.25 ± 0.07 m, body mass 67.67 ± 13.27 kg). Following familiarization sessions, postural control was evaluated using one-leg and both-leg quiet-stance positions by measuring postural sway with a Tekscan HR Mat™ in anterior-posterior and medial-lateral directions. Later, 1:1, 2:2 and 3:3 SSGs were performed at two-day intervals and the technical variables specified for each game were analyzed. A Spearman's rank-order correlation analysis demonstrated the relationship between postural control and soccer-specific technical variables in 1:1 (r-values ranging from 0.582 to 0.776), 2:2 (rvalues ranging from 0.511 to 0.740) and 3:3 (r-values ranging from 0.502 to 0.834) SSGs. In addition, a Wilcoxon signed rank test revealed differences between SSGs in terms of several variables. The results of the study showed that higher postural control levels are among the important variables that affect success in the performance of technical skills under rival pressure and suddenly changing conditions. Therefore, it is recommended that in addition to its use for injury prevention purposes, balance training should be conducted to improve branch-specific technical skills and to increase the levels of their successful performance in a game.

  13. A modular approach to numerical human body modeling

    NARCIS (Netherlands)

    Forbes, P.A.; Griotto, G.; Rooij, L. van

    2007-01-01

    The choice of a human body model for a simulated automotive impact scenario must take into account both accurate model response and computational efficiency as key factors. This study presents a "modular numerical human body modeling" approach which allows the creation of a customized human body

  14. [Research progress on free radicals in human body].

    Science.gov (United States)

    Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D

    2016-08-10

    Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.

  15. Postura da mão e imagética motora: um estudo sobre reconhecimento de partes do corpo Hand posture and motor imagery: a body-part recognition study

    Directory of Open Access Journals (Sweden)

    AP Lameira

    2008-10-01

    Full Text Available OBJETIVOS: Assim como a imagética motora, o reconhecimento de partes do corpo aciona representações somatosensoriais específicas. Essas representações são ativadas implicitamente para comparar o corpo com o estímulo. No presente estudo, investigou-se a influência da informação proprioceptiva da postura no reconhecimento de partes do corpo (mãos e propõe-se a utilização dessa tarefa na reabilitação de pacientes neurológicos. MATERIAIS E MÉTODOS: Dez voluntários destros participaram do experimento. A tarefa era reconhecer a lateralidade de figuras da mão apresentada, em várias perspectivas e em vários ângulos de orientação. Para a figura da mão direita, o voluntário pressionava a tecla direita e para a figura da mão esquerda, a tecla esquerda. Os voluntários realizavam duas sessões: uma com as mãos na postura prona e outra com as mãos na postura supina. RESULTADOS: Os tempos de reação manual (TRM eram maiores para as vistas e orientações, nas quais é difícil realizar o movimento real, mostrando que durante a tarefa, existe um acionamento de representações motoras para comparar o corpo com o estímulo. Além disso, existe uma influência da postura do sujeito em vistas e ângulos específicos. CONCLUSÕES: Estes resultados mostram que representações motoras são ativadas para comparar o corpo com o estímulo e que a postura da mão influencia esta ressonância entre estímulo e parte do corpo.OBJECTIVE: Recognition of body parts activates specific somatosensory representations in a way that is similar to motor imagery. These representations are implicitly activated to compare the body with the stimulus. In the present study, we investigate the influence of proprioceptive information relating to body posture on the recognition of body parts (hands. It proposes that this task could be used for rehabilitation of neurological patients. METHODS: Ten right-handed volunteers participated in this experiment. The

  16. Sandwich-type enzyme immunoassay for big endothelin-I in plasma: concentrations in healthy human subjects unaffected by sex or posture.

    Science.gov (United States)

    Aubin, P; Le Brun, G; Moldovan, F; Villette, J M; Créminon, C; Dumas, J; Homyrda, L; Soliman, H; Azizi, M; Fiet, J

    1997-01-01

    A sandwich-type enzyme immunoassay has been developed for measuring human big endothelin-1 (big ET-1) in human plasma and supernatant fluids from human cell cultures. Big ET-1 is the precursor of endothelin 1 (ET-1), the most potent vasoconstrictor known. A rabbit antibody raised against the big ET-1 COOH-terminus fragment was used as an immobilized antibody (anti-P16). The Fab' fragment of a monoclonal antibody (1B3) raised against the ET-1 loop fragment was used as the enzyme-labeled antibody, after being coupled to acetylcholinesterase. The lowest detectable value in the assay was 1.2 pg/mL (0.12 pg/well). The assay was highly specific for big ET-1, demonstrating no cross-reactivity with ET-1, big endothelin-2 (big ET-2), and big endothelin-3 (big ET-3). We used this assay to evaluate the effect of two different postural positions (supine and standing) on plasma big ET-1 concentrations in 11 male and 11 female healthy subjects. Data analysis revealed that neither sex nor body position influenced plasma big ET-1 concentrations. This assay should thus permit the detection of possible variations in plasma concentrations of big ET-1 in certain pathologies and, in association with ET-1 assay, make possible in vitro study of endothelin-converting enzyme activity in cell models. Such studies could clarify the physiological and clinical roles of this family of peptides.

  17. Spherical Lenses and Prisms Lead to Postural Instability in Both Dyslexic and Non Dyslexic Adolescents

    Science.gov (United States)

    Kapoula, Zoi; Gaertner, Chrystal; Matheron, Eric

    2012-01-01

    There is controversy as to whether dyslexic children present systematic postural deficiency. Clinicians use a combination of ophthalmic prisms and proprioceptive soles to improve postural performances. This study examines the effects of convergent prisms and spherical lenses on posture. Fourteen dyslexics (13–17 years-old) and 11 non dyslexics (13–16 years-old) participated in the study. Quiet stance posturography was performed with the TechnoConcept device while subjects fixated a target at eye-level from a distance of 1_m. Four conditions were run: normal viewing; viewing the target with spherical lenses of −1 diopter (ACCOM1) over each eye; viewing with −3 diopters over each eye (ACCOM3); viewing with a convergent prism of 8 diopters per eye. Relative to normal viewing, the −1 lenses increased the surface of body sway significantly whereas the −3 diopter lenses only resulted in a significant increase of antero-posterior body sway. Thus, adolescents would appear to cope more effectively with stronger conflicts rather than subtle ones. The prism condition resulted in a significant increase in both the surface and the antero-posterior body sway. Importantly, all of these effects were similar for the two groups. Wavelet analysis (time frequency domain) revealed high spectral power of antero-posterior sway for the prism condition in both groups. In the ACCOM3 condition, the spectral power of antero-posterior sway decreased for non dyslexics but increased for dyslexics suggesting that dyslexics encounter more difficulty with accommodation. The cancelling time for medium range frequency (believed to be controlled by the cerebellum), was shorter in dyslexics, suggesting fewer instances of optimal control. We conclude that dyslexics achieve similar postural performances albeit less efficiently. Prisms and lenses destabilize posture for all teenagers. Thus, contrary to adults, adolescents do not seem to use efferent, proprioceptive ocular motor signals to

  18. Spherical lenses and prisms lead to postural instability in both dyslexic and non dyslexic adolescents.

    Directory of Open Access Journals (Sweden)

    Zoi Kapoula

    Full Text Available There is controversy as to whether dyslexic children present systematic postural deficiency. Clinicians use a combination of ophthalmic prisms and proprioceptive soles to improve postural performances. This study examines the effects of convergent prisms and spherical lenses on posture. Fourteen dyslexics (13-17 years-old and 11 non dyslexics (13-16 years-old participated in the study. Quiet stance posturography was performed with the TechnoConcept device while subjects fixated a target at eye-level from a distance of 1_m. Four conditions were run: normal viewing; viewing the target with spherical lenses of -1 diopter (ACCOM1 over each eye; viewing with -3 diopters over each eye (ACCOM3; viewing with a convergent prism of 8 diopters per eye. Relative to normal viewing, the -1 lenses increased the surface of body sway significantly whereas the -3 diopter lenses only resulted in a significant increase of antero-posterior body sway. Thus, adolescents would appear to cope more effectively with stronger conflicts rather than subtle ones. The prism condition resulted in a significant increase in both the surface and the antero-posterior body sway. Importantly, all of these effects were similar for the two groups. Wavelet analysis (time frequency domain revealed high spectral power of antero-posterior sway for the prism condition in both groups. In the ACCOM3 condition, the spectral power of antero-posterior sway decreased for non dyslexics but increased for dyslexics suggesting that dyslexics encounter more difficulty with accommodation. The cancelling time for medium range frequency (believed to be controlled by the cerebellum, was shorter in dyslexics, suggesting fewer instances of optimal control. We conclude that dyslexics achieve similar postural performances albeit less efficiently. Prisms and lenses destabilize posture for all teenagers. Thus, contrary to adults, adolescents do not seem to use efferent, proprioceptive ocular motor signals to

  19. Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture

    Directory of Open Access Journals (Sweden)

    Zhiquan Gao

    2015-09-01

    Full Text Available Accurate motion capture plays an important role in sports analysis, the medical field and virtual reality. Current methods for motion capture often suffer from occlusions, which limits the accuracy of their pose estimation. In this paper, we propose a complete system to measure the pose parameters of the human body accurately. Different from previous monocular depth camera systems, we leverage two Kinect sensors to acquire more information about human movements, which ensures that we can still get an accurate estimation even when significant occlusion occurs. Because human motion is temporally constant, we adopt a learning analysis to mine the temporal information across the posture variations. Using this information, we estimate human pose parameters accurately, regardless of rapid movement. Our experimental results show that our system can perform an accurate pose estimation of the human body with the constraint of information from the temporal domain.

  20. POSTURAL CONTROL IN HEALTHY YOUNG ADULTS WITH AND WITHOUT CHRONIC MOTION SENSITIVITY

    Directory of Open Access Journals (Sweden)

    Alyahya D

    2016-02-01

    Full Text Available Background: Postural control requires complex processing of peripheral sensory inputs from the visual, somatosensory and vestibular systems. Motion sensitivity and decreased postural control are influenced by visual-vestibular conflicts.The purpose of this study was to measure the difference between the postural control of healthy adults with and without history of sub-clinical chronic motion sensitivity using a computerized dynamic posturography in a virtual reality environment. Sub-clinical chronic motion sensitivity was operationally defined as a history of avoiding activities causing dizziness, nausea, imbalance, and/or blurred vision without having a related medical diagnosis. Methods: Twenty healthy adults between 22 and 33 years of age participated in the study. Eleven subjects had sub-clinical chronic motion sensitivity and 9 subjects did not. Postural control was measured in both groups using the Bertec Balance Advantage-Dynamic Computerized Dynamic Posturography with Immersion Virtual Reality (CDP-IVR. The CDP-IVR reports an over-all equilibrium score based on subjects’ center of gravity displacement and postural sway while immersed in a virtual reality environment. Subjects were tested on stable (condition 1 and unstable (condition2 platform conditions. Results: There was no significant difference between the two groups in terms of mean age, height, weight, body mass index in kg/m2, postural control scores for conditions 2, and average (p>0.05. However, significant differences were observed in mean postural control for condition 1 between groups (p=0.03. Conclusions: Results of this study suggest that healthy young adults without chronic sub-clinical motion sensitivity have better postural control than those with chronic sub-clinical motion sensitivity. Further investigation is warranted to explore wider age ranges with larger samples sizes as well as intervention strategies to improve postural control.

  1. Examination of postures and frequency of musculoskeletal disorders among manual workers in Calcutta, India.

    Science.gov (United States)

    Sarkar, Krishnendu; Dev, Samrat; Das, Tamal; Chakrabarty, Sabarni; Gangopadhyay, Somnath

    2016-04-01

    Manual material handling (MMH) activities require workers to adopt various awkward postures leading to the development of musculoskeletal disorders (MSD). To investigate the postures adopted during heavy load handling and the frequency of MSDs among MMH workers in Calcutta, India. We conducted a cross-sectional study with 100 MMH workers. MSD frequency was assessed via the Standardized Nordic Questionnaire. The Ovako Working Posture Assessment System (OWAS) was used to analyze working posture. We used logistic regression to predict MSD risk factors. Ninety five percent of workers reported a MSD in at least one body part in the past 12 months. According to OWAS results, 83% of the analysed work postures require immediate corrective measures for worker safety. The most harmful posture was carrying a heavy load overhead. Carrying more than 120 kg increased the odds of low back and neck pain by 4.527 and 4.555, respectively. This sample had a high frequency of reported MSDs, likely attributed to physiologically strenuous occupational activities repeated on average of 30-40 times daily. Ergonomic interventions, such as the use of handcarts, and occupational training are urgently needed.

  2. Design and validation of a morphing myoelectric hand posture controller based on principal component analysis of human grasping.

    Science.gov (United States)

    Segil, Jacob L; Weir, Richard F ff

    2014-03-01

    An ideal myoelectric prosthetic hand should have the ability to continuously morph between any posture like an anatomical hand. This paper describes the design and validation of a morphing myoelectric hand controller based on principal component analysis of human grasping. The controller commands continuously morphing hand postures including functional grasps using between two and four surface electromyography (EMG) electrodes pairs. Four unique maps were developed to transform the EMG control signals in the principal component domain. A preliminary validation experiment was performed by 10 nonamputee subjects to determine the map with highest performance. The subjects used the myoelectric controller to morph a virtual hand between functional grasps in a series of randomized trials. The number of joints controlled accurately was evaluated to characterize the performance of each map. Additional metrics were studied including completion rate, time to completion, and path efficiency. The highest performing map controlled over 13 out of 15 joints accurately.

  3. Dynamical Properties of Postural Control in Obese Community-Dwelling Older Adults

    Directory of Open Access Journals (Sweden)

    Christopher W. Frames

    2018-05-01

    Full Text Available Postural control is a key aspect in preventing falls. The aim of this study was to determine if obesity affected balance in community-dwelling older adults and serve as an indicator of fall risk. The participants were randomly assigned to receive a comprehensive geriatric assessment followed by a longitudinal assessment of their fall history. The standing postural balance was measured for 98 participants with a Body Mass Index (BMI ranging from 18 to 63 kg/m2, using a force plate and an inertial measurement unit affixed at the sternum. Participants’ fall history was recorded over 2 years and participants with at least one fall in the prior year were classified as fallers. The results suggest that body weight/BMI is an additional risk factor for falling in elderly persons and may be an important marker for fall risk. The linear variables of postural analysis suggest that the obese fallers have significantly higher sway area and sway ranges, along with higher root mean square and standard deviation of time series. Additionally, it was found that obese fallers have lower complexity of anterior-posterior center of pressure time series. Future studies should examine more closely the combined effect of aging and obesity on dynamic balance.

  4. A bacteriophages journey through the human body.

    Science.gov (United States)

    Barr, Jeremy J

    2017-09-01

    The human body is colonized by a diverse collective of microorganisms, including bacteria, fungi, protozoa and viruses. The smallest entity of this microbial conglomerate are the bacterial viruses. Bacteriophages, or phages for short, exert significant selective pressure on their bacterial hosts, undoubtedly influencing the human microbiome and its impact on our health and well-being. Phages colonize all niches of the body, including the skin, oral cavity, lungs, gut, and urinary tract. As such our bodies are frequently and continuously exposed to diverse collections of phages. Despite the prevalence of phages throughout our bodies, the extent of their interactions with human cells, organs, and immune system is still largely unknown. Phages physically interact with our mucosal surfaces, are capable of bypassing epithelial cell layers, disseminate throughout the body and may manipulate our immune system. Here, I establish the novel concept of an "intra-body phageome," which encompasses the collection of phages residing within the classically "sterile" regions of the body. This review will take a phage-centric view of the microbiota, human body, and immune system with the ultimate goal of inspiring a greater appreciation for both the indirect and direct interactions between bacteriophages and their mammalian hosts. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Putting the face in context: Body expressions impact facial emotion processing in human infants

    Directory of Open Access Journals (Sweden)

    Purva Rajhans

    2016-06-01

    Full Text Available Body expressions exert strong contextual effects on facial emotion perception in adults. Specifically, conflicting body cues hamper the recognition of emotion from faces, as evident on both the behavioral and neural level. We examined the developmental origins of the neural processes involved in emotion perception across body and face in 8-month-old infants by measuring event-related brain potentials (ERPs. We primed infants with body postures (fearful, happy that were followed by either congruent or incongruent facial expressions. Our results revealed that body expressions impact facial emotion processing and that incongruent body cues impair the neural discrimination of emotional facial expressions. Priming effects were associated with attentional and recognition memory processes, as reflected in a modulation of the Nc and Pc evoked at anterior electrodes. These findings demonstrate that 8-month-old infants possess neural mechanisms that allow for the integration of emotion across body and face, providing evidence for the early developmental emergence of context-sensitive facial emotion perception.

  6. Functional neuronal processing of human body odors.

    Science.gov (United States)

    Lundström, Johan N; Olsson, Mats J

    2010-01-01

    Body odors carry informational cues of great importance for individuals across a wide range of species, and signals hidden within the body odor cocktail are known to regulate several key behaviors in animals. For a long time, the notion that humans may be among these species has been dismissed. We now know, however, that each human has a unique odor signature that carries information related to his or her genetic makeup, as well as information about personal environmental variables, such as diet and hygiene. Although a substantial number of studies have investigated the behavioral effects of body odors, only a handful have studied central processing. Recent studies have, however, demonstrated that the human brain responds to fear signals hidden within the body odor cocktail, is able to extract kin specific signals, and processes body odors differently than other perceptually similar odors. In this chapter, we provide an overview of the current knowledge of how the human brain processes body odors and the potential importance these signals have for us in everyday life. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Lewy Body Disease

    Science.gov (United States)

    ... range of symptoms, including Changes in alertness and attention Hallucinations Problems with movement and posture Muscle stiffness Confusion Loss of memory Lewy body disease can be hard to diagnose, ...

  8. Sensing Movement: Microsensors for Body Motion Measurement

    Directory of Open Access Journals (Sweden)

    Hansong Zeng

    2011-01-01

    Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.

  9. Audio-Visual Feedback for Self-monitoring Posture in Ballet Training

    DEFF Research Database (Denmark)

    Knudsen, Esben Winther; Hølledig, Malte Lindholm; Bach-Nielsen, Sebastian Siem

    2017-01-01

    An application for ballet training is presented that monitors the posture position (straightness of the spine and rotation of the pelvis) deviation from the ideal position in real-time. The human skeletal data is acquired through a Microsoft Kinect v2. The movement of the student is mirrored......-coded. In an experiment with 9-12 year-old dance students from a ballet school, comparing the audio-visual feedback modality with no feedback leads to an increase in posture accuracy (p

  10. Comprehensive Group Therapy of Obesity and Its Impact on Selected Anthropometric and Postural Parameters.

    Science.gov (United States)

    Horák, Stanislav; Sovová, Eliška; Pastucha, Dalibor; Konečný, Petr; Radová, Lenka; Calabová, Naděžda; Janoutová, Jana; Janout, Vladimír

    2017-12-01

    Obesity is a multifactorial disease. This non-infectious epidemic has reached pandemic proportions in the 21 century. Posture is a dynamic process referring to an active maintenance of body movement segments against the action of external forces. The aim of the study was to investigate the effect of comprehensive group therapy for obese persons on selected anthropometric and postural parameters. The study comprised 53 females with a mean age of 44.5 years (range 29–65 years, standard deviation 9.42 years, median 44 years), who completed a controlled weight loss programme. At the beginning and at the end of the programme, anthropometric parameters (Body Mass Index (BMI), weight and waist circumference) were measured and the posturography tests Limits of Stability (LOS) and Motor Control Test (MCT) were performed using the NeuroCom's SMART EquiTest system. The data were statistically analyzed using R software at a level of significance of 0.05. There were positive changes after the controlled weight loss programme in anthropometric parameters (BMI reduction, with pobesity in terms of reductions in waist circumference, body weight and BMI, and thus the overall reduction of both cardiovascular and metabolic risks, as well as improved postural skills (activity and reactions). Copyright© by the National Institute of Public Health, Prague 2017

  11. Kinematics in newly walking toddlers does not depend upon postural stability

    NARCIS (Netherlands)

    Ivanenko, Yuri P; Dominici, Nadia; Cappellini, Germana; Lacquaniti, Francesco

    When a toddler starts to walk without support, gait kinematics and electromyographic (EMG) activity differ from those of older children and the body displays considerable oscillations due to poor equilibrium. Postural instability clearly affects motor patterns in adults, but does instability explain

  12. Postural Stabilization Differences in Idiopathic Parkinson’s Disease and Progressive Supranuclear Palsy during Self-Triggered Fast Forward Weight Lifting

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2018-01-01

    Full Text Available Progressive supranuclear palsy (PSP and late-stage idiopathic Parkinson’s disease (IPD are neurodegenerative movement disorders resulting in different postural instability and falling symptoms. IPD falls occur usually forward in late stage, whereas PSP falls happen in early stages, mostly backward, unprovoked, and with high morbidity. Self-triggered, weighted movements appear to provoke falls in IPD, but not in PSP. Repeated self-triggered lifting of a 0.5–1-kg weight (<2% of body weight with the dominant hand was performed in 17 PSP, 15 IPD with falling history, and 16 controls on a posturography platform. PSP showed excessive force scaling of weight and body motion with high-frequency multiaxial body sway, whereas IPD presented a delayed-onset forward body displacement. Differences in center of mass displacement apparent at very small weights indicate that both syndromes decompensate postural control already within stability limits. PSP may be subject to specific postural system devolution. IPD are susceptible to delayed forward falling. Differential physiotherapy strategies are suggested.

  13. Postural control of elderly: moving to predictable and unpredictable targets.

    NARCIS (Netherlands)

    Jongman, Vera; Lamoth, Claudine J C; van Keeken, Helco; Caljouw, Simone R

    2012-01-01

    Impaired postural control with muscle weakness is an important predictor of falls within the elderly population.Particular daily activities that require weight shifting in order to be able to reach a specific target (a cup on a table) require continuous adjustments to keep the body's center of mass

  14. ANALISIS KETIGGIAN MEJA KERJA YANG IDEAL TERHADAP POSTUR PEKERJA DIVISI CUTTING INDUSTRI GARMEN DENGAN POSTURE EVALUATION (PEI PADA VIRTUAL ENVIROMENT

    Directory of Open Access Journals (Sweden)

    Boy Nurtjahyo

    2012-02-01

    Full Text Available Penelitian ini mencoba untuk mengimplementasikan suatu metodologi untuk mempelajari, dalam lingkungan virtual, aspek ergonomi dari suatu tempat kerja di industri garmen. Variabel tempat kerja yang diteliti dalam penelitian ini adalah ketinggian meja kerja. Tujuan penelitian ini adalah mendapatkan konfigurasi ketinggian meja yang ideal bagi pekerja divisi cutting industri garmen. Tool yang digunakan dalam menyelesaikan skripsi ini adalah Posture Evaluation Index yang mengintegrasikan skor Low Back Analysis (LBA, Ovako Working Posture (OWAS, dan Rapid Upper Limb Assessment (RULA. Penentuan konfigurasi yang ideal dilakukan dengan mempertimbangkan jenis pekerjaan dan posisi kerja ketika melakukan pekerjaan tersebut, apakah dalam posisi duduk atau berdiri. Analisis dilakukan dengan menggunakan model manusia digital yang disediakan software Jack pada virtual environment. Hasil penelitian dapat digunakan sebagai referensi dalam merancang tempat kerja yang lebih baik secara ergonomis. Kata kunci : Ergonomi, Virtual Environment, Divisi Cutting  Industri Garmen, Posture Evaluation Index   Abstract   The research deals with the implementation of a methodology in order to study, in a virtual environment, the ergonomics of a work cell in garment industry. The work cell’s variable studied in this research is table height. The goal of this research is to determine an ideal table height for the workers of cutting division in garment industry. The tool to conduct this research is called Posture Evaluation Index (PEI which integrates the score of Low Back Analysis (LBA, Ovako Working Posture (OWAS, dan Rapid Upper Limb Assessment (RULA. The Determination of table height configuration is based on type of work and work position (standing or sitting. The research uses digital human model form Jack software in a virtual environment. The result from this research can be a reference for future work cell design. Keywords: Ergonomics, Virtual Environment, Cutting

  15. Evaluation of the kinematic structure of indicators key elements of sports equipment exercise by postural orientation movements

    Directory of Open Access Journals (Sweden)

    Y.V. Litvinenko

    2014-12-01

    Full Text Available Purpose : Examine the kinematic structure of indicators key elements of sports equipment exercise (difficult to coordinate. The method of postural orientation movements. Material : The study involved acrobats jumpers on the path of high qualification (n = 7. The method used video - computer recording the movements of the athlete. Results : Identified nodal elements of sports equipment double back somersault tuck. Exercise performed after rondat and double back flip and stretch after rondat - flick (coup ago. In the preparatory phase of motor actions acrobatic exercises isolated and studied central element of sports equipment - starting posture of the body; in the phase of the main motor action - animation poses of the body; in the final phase - the final body posture (stable landing. Conclusions : The method of video - computer registration allowed to perform a biomechanical analysis and evaluation of key elements of sports equipment double back somersault tuck and a double back flip and stretch. Also gain new knowledge about the mechanism of the phase structure of movements when performing double somersaults.

  16. Comparison of Machine Learning Methods for the Purpose Of Human Fall Detection

    Directory of Open Access Journals (Sweden)

    Strémy Maximilián

    2014-12-01

    Full Text Available According to several studies, the European population is rapidly aging far over last years. It is therefore important to ensure that aging population is able to live independently without the support of working-age population. In accordance with the studies, fall is the most dangerous and frequent accident in the everyday life of aging population. In our paper, we present a system to track the human fall by a visual detection, i.e. using no wearable equipment. For this purpose, we used a Kinect sensor, which provides the human body position in the Cartesian coordinates. It is possible to directly capture a human body because the Kinect sensor has a depth and also an infrared camera. The first step in our research was to detect postures and classify the fall accident. We experimented and compared the selected machine learning methods including Naive Bayes, decision trees and SVM method to compare the performance in recognizing the human postures (standing, sitting and lying. The highest classification accuracy of over 93.3% was achieved by the decision tree method.

  17. Biodynamics of deformable human body motion

    Science.gov (United States)

    Strauss, A. M.; Huston, R. L.

    1976-01-01

    The objective is to construct a framework wherein the various models of human biomaterials fit in order to describe the biodynamic response of the human body. The behavior of the human body in various situations, from low frequency, low amplitude vibrations to impact loadings in automobile and aircraft crashes, is very complicated with respect to all aspects of the problem: materials, geometry and dynamics. The materials problem is the primary concern, but the materials problem is intimately connected with geometry and dynamics.

  18. Human body capacitance: static or dynamic concept? [ESD

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1998-01-01

    A standing human body insulated from ground by footwear and/or floor covering is in principle an insulated conductor and has, as such, a capacitance, i.e. the ability to store a charge and possibly discharge the stored energy in a spark discharge. In the human body, the human body capacitance (HBC...... when a substantial part of the flux extends itself through badly defined stray fields. Since the concept of human body capacitance is normally used in a static (electric) context, it is suggested that the HBC be determined by a static method. No theoretical explanation of the observed differences...

  19. Intermittent use of an "anchor system" improves postural control in healthy older adults.

    Science.gov (United States)

    Freitas, Milena de Bem Zavanella; Mauerberg-deCastro, Eliane; Moraes, Renato

    2013-07-01

    Haptic information, provided by a non-rigid tool (i.e., an "anchor system"), can reduce body sway in individuals who perform a standing postural task. However, it was not known whether or not continuous use of the anchor system would improve postural control after its removal. Additionally, it was unclear as to whether or not frequency of use of the anchor system is related to improved control in older adults. The present study evaluated the effect of the prolonged use of the anchor system on postural control in healthy older individuals, at different frequencies of use, while they performed a postural control task (semi-tandem position). Participants were divided into three groups according to the frequency of the anchor system's use (0%, 50%, and 100%). Pre-practice phase (without anchor) was followed by a practice phase (they used the anchor system at the predefined frequency), and a post-practice phase (immediate and late-without anchor). All three groups showed a persistent effect 15min after the end of the practice phase (immediate post-practice phase). However, only the 50% group showed a persistent effect in the late post-practice phase (24h after finishing the practice phase). Older adults can improve their postural control by practicing the standing postural task, and use of the anchor system limited to half of their practice time can provide additional improvement in their postural control. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Modeling the exergy behavior of human body

    International Nuclear Information System (INIS)

    Keutenedjian Mady, Carlos Eduardo; Silva Ferreira, Maurício; Itizo Yanagihara, Jurandir; Hilário Nascimento Saldiva, Paulo; Oliveira Junior, Silvio de

    2012-01-01

    Exergy analysis is applied to assess the energy conversion processes that take place in the human body, aiming at developing indicators of health and performance based on the concepts of exergy destroyed rate and exergy efficiency. The thermal behavior of the human body is simulated by a model composed of 15 cylinders with elliptical cross section representing: head, neck, trunk, arms, forearms, hands, thighs, legs, and feet. For each, a combination of tissues is considered. The energy equation is solved for each cylinder, being possible to obtain transitory response from the body due to a variation in environmental conditions. With this model, it is possible to obtain heat and mass flow rates to the environment due to radiation, convection, evaporation and respiration. The exergy balances provide the exergy variation due to heat and mass exchange over the body, and the exergy variation over time for each compartments tissue and blood, the sum of which leads to the total variation of the body. Results indicate that exergy destroyed and exergy efficiency decrease over lifespan and the human body is more efficient and destroys less exergy in lower relative humidities and higher temperatures. -- Highlights: ► In this article it is indicated an overview of the human thermal model. ► It is performed the energy and exergy analysis of the human body. ► Exergy destruction and exergy efficiency decreases with lifespan. ► Exergy destruction and exergy efficiency are a function of environmental conditions.

  1. Electro-tactile stimulation of the posterior neck induces body anteropulsion during upright stance.

    Science.gov (United States)

    De Nunzio, A M; Yavuz, U S; Martinez-Valdes, E; Farina, D; Falla, D

    2018-05-01

    Sensory information conveyed along afferent fibers from muscle and joint proprioceptors play an important role in the control of posture and gait in humans. In particular, proprioceptive information from the neck is fundamental in supplying the central nervous system with information about the orientation and movement of the head relative to the rest of the body. The previous studies have confirmed that proprioceptive afferences originating from the neck region, evoked via muscle vibration, lead to strong body-orienting effects during static conditions (e.g., leaning of the body forwards or backwards, depending on location of vibration). However, it is not yet certain in humans, whether the somatosensory receptors located in the deep skin (cutaneous mechanoreceptors) have a substantive contribution to postural control, as vibratory stimulation encompasses the receptive field of all the somatosensory receptors from the skin to the muscles. The aim of this study was to investigate the postural effect of cutaneous mechanoreceptor afferences using electro-tactile stimulation applied to the neck. Ten healthy volunteers (8M, 2F) were evaluated. The average position of their centre of foot pressure (CoP) was acquired before, during, and after a subtle electro-tactile stimulation over their posterior neck (mean ± SD = 5.1 ± 2.3 mA at 100 Hz-140% of the perception threshold) during upright stance with their eyes closed. The electro-tactile stimulation led to a body-orienting effect with the subjects consistently leaning forward. An average shift of the CoP of 12.1 ± 11.9 mm (mean ± SD) was reported, which significantly (p < 0.05) differed from its average position under a control condition (no stimulation). These results indicate that cutaneous mechanoreceptive inflow from the neck is integrated to control stance. The findings are relevant for the exploitation of electro-tactile stimulation for rehabilitation interventions where induced

  2. STEADFAST: Psychotherapeutic Intervention Improves Postural Strategy of Somatoform Vertigo and Dizziness

    Science.gov (United States)

    Best, Christoph; Tschan, Regine; Stieber, Nikola; Beutel, Manfred E.; Eckhardt-Henn, Annegret; Dieterich, Marianne

    2015-01-01

    Patients with somatoform vertigo and dizziness (SVD) disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI) using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (Q H/V), reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n = 28); baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ). Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: Q H/V = 0.31 versus controls: Q H/V = 0.38; p = 0.022). After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles. PMID:26843786

  3. Motor planning is facilitated by adopting an action's goal posture: An fMRI study

    NARCIS (Netherlands)

    Zimmermann, M.; Meulenbroek, R.G.J.; Lange, F.P. de

    2012-01-01

    Abstract: Motor planning is a hierarchical process that is typically organized around an action's goal (e.g., drinking from a cup). However, the motor plan depends not only on the goal but also on the current body state. Here, we investigated how one's own body posture interacts with planning of

  4. Comparison between a Computational Seated Human Model and Experimental Verification Data

    Directory of Open Access Journals (Sweden)

    Christian G. Olesen

    2014-01-01

    Full Text Available Sitting-acquired deep tissue injuries (SADTI are the most serious type of pressure ulcers. In order to investigate the aetiology of SADTI a new approach is under development: a musculo-skeletal model which can predict forces between the chair and the human body at different seated postures. This study focuses on comparing results from a model developed in the AnyBody Modeling System, with data collected from an experimental setup. A chair with force-measuring equipment was developed, an experiment was conducted with three subjects, and the experimental results were compared with the predictions of the computational model. The results show that the model predicted the reaction forces for different chair postures well. The correlation coefficients of how well the experiment and model correlate for the seat angle, backrest angle and footrest height was 0.93, 0.96, and 0.95. The study show a good agreement between experimental data and model prediction of forces between a human body and a chair. The model can in the future be used in designing wheelchairs or automotive seats.

  5. Warm-up Optimizes Postural Control but Requires Some Minutes of Recovery.

    Science.gov (United States)

    Paillard, Thierry; Kadri, Mohamed Abdelhafid; Nouar, Merbouha Boulahbel; Noé, Frederic

    2018-05-02

    Paillard, T, Kadri, MA, Nouar, MB, and Noé, F. Warm-up optimizes postural control but requires some minutes of recovery. J Strength Cond Res XX(X): 000-000, 2018-The aim was to compare monopedal postural control between the dominant leg (D-Leg) and the nondominant leg (ND-Leg) in pre- and post-warm-up conditions. Thirty healthy male sports science students were evaluated before and after a warm-up exercise (12 minutes of pedaling with an incremental effort on a cycle ergometer with a controlled workload). Monopodal postural control was assessed for the D- and ND-Legs before and immediately, 2, 5, 10, and 15 minutes after the warm-up exercise, using a force platform and calculating the displacement velocity of the center of foot pressure on the mediolateral (COPML velocity) and anteroposterior (COPAP velocity) axes. No significant difference was observed between the D-Leg and ND-Leg for both COPML and COPAP velocity in all the periods. In comparison with pre-warm-up, COPML decreased after 15-minute and 10-minute recovery periods for the D-Leg and the ND-Leg, respectively (p warm-up optimized monopedal postural control but did not make it possible to distinguish a difference between the D-Leg and the ND-Leg. Some minutes of recovery are required between the end of the whole-body warm-up exercise and the beginning of the postural test to optimize postural control. The optimal duration of recovery turns out to be about 10-15 minutes.

  6. Effects of affective picture viewing on postural control

    Directory of Open Access Journals (Sweden)

    Beek Peter J

    2007-10-01

    Full Text Available Abstract Background Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS. We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. Results The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Conclusion Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the

  7. Perinatal Development of the Motor Systems Involved in Postural Control

    Directory of Open Access Journals (Sweden)

    Laurent Vinay

    2005-01-01

    Full Text Available Motor behaviors of some species, such as the rat and the human baby, are quite immature at birth. Here we review recent data on some of the mechanisms underlying the postnatal maturation of posture in the rat, in particular the development of pathways descending from the brain stem and projecting onto the lumbar enlargement of the spinal cord. A short-lasting depletion in serotonin affects both posture and the excitability of motoneurons. Here we try to extrapolate to human development and suggest that the abnormalities in motor control observed in childhood—e.g, deficits in motor coordination—might have their roots in the prenatal period, in particular serotonin depletion due to exposure to several environmental and toxicological factors during pregnancy.

  8. Neck pain and postural balance among workers with high postural demands - a cross-sectional study

    DEFF Research Database (Denmark)

    Jørgensen, Marie B.; Skotte, Jørgen H.; Holtermann, Andreas

    2011-01-01

    Neck pain is related to impaired postural balance among patients and is highly prevalent among workers with high postural demands, for example, cleaners. We therefore hypothesised, that cleaners with neck pain suffer from postural dysfunction. This cross-sectional study tested if cleaners with neck...... pain have an impaired postural balance compared with cleaners without neck pain. Postural balance of 194 cleaners with (n = 85) and without (N = 109) neck pain was studied using three different tests. Success or failure to maintain the standing position for 30 s in unilateral stance was recorded...... to cleaners without neck/low back pain (p balance, measured as CEA (p

  9. Musculoskeletal Disorders Assessment and Posture Analysis by LUBA among Female Hairdressers in Tehran, 2015

    Directory of Open Access Journals (Sweden)

    Mohammad Khandan

    2017-01-01

    Full Text Available Background & Aims of the Study: Musculoskeletal disorders (MSDs are part of the main occupational diseases in the workplace. Occupations such as hairdressers are exposed to multiple risk factors of these problems. The study was conducted to assess MSDs and posture analysis among female hairdressers in Tehran, 2015. Materials and Methods: In this cross-sectional research, 114 participants were studied. To collect data, demographic questionnaire, body map for assessment of MSDs and Postural Loading on the Upper Body Assessment (LUBA method to evaluate postures was used. Also, data were analyzed by Mann-Whitney, Kruskal Wallis and Spearman correlation tests through SPSS-V20. Results: The mean and standard deviation of age and experience of the participants were5.34±8.9 and 10±8 years, respectively. In addition, they worked 9.8 hours per day on average. One hundred and thirteen (99.12% persons have experienced the pain at least in one member of their musculoskeletal system. Most of hairdressers had reported leg, lower back, as well as neck and shoulder pain. According to the posture assessment, 94.2% of people experienced high risk of exposure to risk factors for MSDs. Conclusion: Findings showed MSDs are high among barbers. Also, the work situations require immediate correction. Correction of workstations and tools design, work rest cycle and reduction in repetitive motions can help to improve working conditions.

  10. Velocity dependence of vestibular information for postural control on tilting surfaces

    Science.gov (United States)

    Kluzik, JoAnn; Hlavacka, Frantisek

    2016-01-01

    Vestibular information is known to be important for postural stability on tilting surfaces, but the relative importance of vestibular information across a wide range of surface tilt velocities is less clear. We compared how tilt velocity influences postural orientation and stability in nine subjects with bilateral vestibular loss and nine age-matched, control subjects. Subjects stood on a force platform that tilted 6 deg, toes-up at eight velocities (0.25 to 32 deg/s), with and without vision. Results showed that visual information effectively compensated for lack of vestibular information at all tilt velocities. However, with eyes closed, subjects with vestibular loss were most unstable within a critical tilt velocity range of 2 to 8 deg/s. Subjects with vestibular deficiency lost their balance in more than 90% of trials during the 4 deg/s condition, but never fell during slower tilts (0.25–1 deg/s) and fell only very rarely during faster tilts (16–32 deg/s). At the critical velocity range in which falls occurred, the body center of mass stayed aligned with respect to the surface, onset of ankle dorsiflexion was delayed, and there was delayed or absent gastrocnemius inhibition, suggesting that subjects were attempting to actively align their upper bodies with respect to the moving surface instead of to gravity. Vestibular information may be critical for stability at velocities of 2 to 8 deg/s because postural sway above 2 deg/s may be too fast to elicit stabilizing responses through the graviceptive somatosensory system, and postural sway below 8 deg/s may be too slow for somatosensory-triggered responses or passive stabilization from trunk inertia. PMID:27486101

  11. Measuring postural control during mini-squat posture in men with early knee osteoarthritis.

    Science.gov (United States)

    Petrella, M; Gramani-Say, K; Serrão, P R M S; Lessi, G C; Barela, J A; Carvalho, R P; Mattiello, S M

    2017-04-01

    Studies have suggested a compromised postural control in individuals with knee osteoarthritis (OA) evidenced by larger and faster displacement of center of pressure (COP). However, quantification of postural control in the mini-squat posture performed by patients with early knee OA and its relation to muscle strength and self-reported symptoms have not been investigated. The main aim of this cross-sectional, observational, controlled study was to determine whether postural control in the mini-squat posture differs between individuals with early knee OA and a control group (CG) and verify the relation among knee extensor torque (KET) and self-reported physical function, stiffness and pain. Twenty four individuals with knee OA grades I and II (OAG) (mean age: 52.35±5.00) and twenty subjects without knee injuries (CG) (mean age: 51.40±8.07) participated in this study. Participants were assessed in postural control through a force plate (Bertec Mod. USA), which provided information about the anterior-posterior (AP) and medial-lateral (ML) COP displacement during the mini-squat, in isometric, concentric and eccentric knee extensor torque (KET) (90°/s) through an isokinetic dynamometer (BiodexMulti-Joint System3, Biodex Medical Incorporation, New York, NY, USA), and in self-reported symptoms through the WOMAC questionnaire. The main outcomes measured were the AP and ML COP amplitude and velocity of displacement; isometric, concentric, and eccentric KET and self-reported physical function, stiffness and pain. No significant differences were found between groups for postural control (p>0.05). Significant lower eccentric KET (p=0.01) and higher scores for the WOMAC subscales of pain (p=postural instability and the need to include quadriceps muscle strengthening, especially by eccentric contractions. The relationship between the self-reported symptoms and a lower and slower COP displacement suggest that the postural control strategy during tasks with a semi-flexed knee

  12. Determining the influence of Korean population variation on whole-body average SAR.

    Science.gov (United States)

    Lee, Ae-Kyoung; Choi, Hyung-Do

    2012-05-07

    Compliance of the ICNIRP reference and IEEE action levels with the basic restrictions on whole-body average (WBA) SAR was investigated based on age, physique, and posture under isolated and grounded conditions. First, Korean male models 1, 3, 5, 7, and 20 years of age with body sizes in the 50th percentile were developed and used as the test subjects: 1y(50th), 3y(50th), 5y(50th), 7y(50th), and 20y(50th). The effects of age-dependent dielectric properties due to the water content of the tissue on WBA SAR were analysed, and showed that the changes in WBA SAR are marginal. At the ages of 1, 5, and 20, thin models 1y(10th), 5y(10th), and 20y(10th) with body sizes in the 10th percentile for the horizontal plane were added in order to determine the influence of physical variations of the population. We considered standing postures with arms up and arms down. The WBA SAR for each human model was calculated when exposed to a vertically polarized plane wave in the frequency range of 10 MHz-3 GHz using the finite-difference time-domain method. The evaluated WBA SAR-based safety factor of each model is discussed for exposure to the ICNIRP reference and IEEE action levels. Finally, the lowest external electric field strength required to produce the basic restrictions on the WBA SAR, 0.08 W kg(-1), was obtained. The results showed that the ICNIRP public reference level is not conservative in the frequency range of 20-200 MHz for an arms-up posture, in the range of 40-200 MHz for an arms-down posture, and above 1 GHz for both postures. The IEEE action level is different from the ICNIRP reference level below 30 MHz, where most cases showed a safety factor of less than 50, which is the minimum value compliant with the basic restrictions for exposure to the general public.

  13. Neural basis of postural focus effect on concurrent postural and motor tasks: phase-locked electroencephalogram responses.

    Science.gov (United States)

    Huang, Cheng-Ya; Zhao, Chen-Guang; Hwang, Ing-Shiou

    2014-11-01

    Dual-task performance is strongly affected by the direction of attentional focus. This study investigated neural control of a postural-suprapostural procedure when postural focus strategy varied. Twelve adults concurrently conducted force-matching and maintained stabilometer stance with visual feedback on ankle movement (visual internal focus, VIF) and on stabilometer movement (visual external focus, VEF). Force-matching error, dynamics of ankle and stabilometer movements, and event-related potentials (ERPs) were registered. Postural control with VEF caused superior force-matching performance, more complex ankle movement, and stronger kinematic coupling between the ankle and stabilometer movements than postural control with VIF. The postural focus strategy also altered ERP temporal-spatial patterns. Postural control with VEF resulted in later N1 with less negativity around the bilateral fronto-central and contralateral sensorimotor areas, earlier P2 deflection with more positivity around the bilateral fronto-central and ipsilateral temporal areas, and late movement-related potential commencing in the left frontal-central area, as compared with postural control with VIF. The time-frequency distribution of the ERP principal component revealed phase-locked neural oscillations in the delta (1-4Hz), theta (4-7Hz), and beta (13-35Hz) rhythms. The delta and theta rhythms were more pronounced prior to the timing of P2 positive deflection, and beta rebound was greater after the completion of force-matching in VEF condition than VIF condition. This study is the first to reveal the neural correlation of postural focusing effect on a postural-suprapostural task. Postural control with VEF takes advantage of efficient task-switching to facilitate autonomous postural response, in agreement with the "constrained-action" hypothesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?

    Science.gov (United States)

    Horak, Fay B

    2006-09-01

    Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.

  15. Experimental Quasi-Microwave Whole-Body Averaged SAR Estimation Method Using Cylindrical-External Field Scanning

    OpenAIRE

    Kawamura, Yoshifumi; Hikage, Takashi; Nojima, Toshio

    2010-01-01

    The aim of this study is to develop a new whole-body averaged specific absorption rate (SAR) estimation method based on the external-cylindrical field scanning technique. This technique is adopted with the goal of simplifying the dosimetry estimation of human phantoms that have different postures or sizes. An experimental scaled model system is constructed. In order to examine the validity of the proposed method for realistic human models, we discuss the pros and cons of measurements and nume...

  16. Postural instability in subjects with parkinson’s disease undergoing different sensory pitfalls

    Directory of Open Access Journals (Sweden)

    Silva Thaís Cardoso Da

    2017-12-01

    Full Text Available Purpose. Previous research has reported postural instability in subjects with Parkinson’s disease (PD. However, there are still doubts about the effect of sensory stimuli on one’s balance. In this study, we further investigated the stabilometric measures of individuals with PD, analysing the impact of different sensory stimuli on the outcomes. Methods. The total of 26 participants (13 with PD and 13 matched control peers were submitted to 8 sensorimotor dynamics differing in relation to support base (30 cm vs. 10 cm, feet in parallel vs. feet in semi-tandem position, contact surface (foam vs. no foam, and visual conditions (eyes open vs. eyes closed. The measures used to assess one’s balance were body position in space, area of support base, and velocity of postural control. The variables involved the anterior-posterior and the mediolateral axes. Participants with PD were evaluated during the off medication state. Mann-Whitney U test and Friedman’s test were applied to carry out inter- and intra-group comparisons. Significance was set at 5%. Results. Cross-sectional analyses illustrated that tasks with sensory pitfalls impacted postural stability to a larger extent in PD subjects. The differences were found in anterior-posterior body position, area of support base, anterior-posterior velocity, and mediolateral velocity. Complementary analyses confirmed considerable instability on balance when support bases were small and visual information was absent (p < 0.05. Conclusions. The current results confirm worse postural stability response in subjects with PD and highlight that the interference of the sensory pitfalls is notable when individuals are off medication.

  17. Ergonomic analysis of construction worker's body postures using wearable mobile sensors.

    Science.gov (United States)

    Nath, Nipun D; Akhavian, Reza; Behzadan, Amir H

    2017-07-01

    Construction jobs are more labor-intensive compared to other industries. As such, construction workers are often required to exceed their natural physical capability to cope with the increasing complexity and challenges in this industry. Over long periods of time, this sustained physical labor causes bodily injuries to the workers which in turn, conveys huge losses to the industry in terms of money, time, and productivity. Various safety and health organizations have established rules and regulations that limit the amount and intensity of workers' physical movements to mitigate work-related bodily injuries. A precursor to enforcing and implementing such regulations and improving the ergonomics conditions on the jobsite is to identify physical risks associated with a particular task. Manually assessing a field activity to identify the ergonomic risks is not trivial and often requires extra effort which may render it to be challenging if not impossible. In this paper, a low-cost ubiquitous approach is presented and validated which deploys built-in smartphone sensors to unobtrusively monitor workers' bodily postures and autonomously identify potential work-related ergonomic risks. Results indicates that measurements of trunk and shoulder flexions of a worker by smartphone sensory data are very close to corresponding measurements by observation. The proposed method is applicable for workers in various occupations who are exposed to WMSDs due to awkward postures. Examples include, but are not limited to industry laborers, carpenters, welders, farmers, health assistants, teachers, and office workers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Postural adjustments and reaching in 4-and 6-month-old infants : an EMG and kinematical study

    NARCIS (Netherlands)

    de Graaf-Peters, Victorine B.; Bakker, Hanneke; van Eykern, Leo A.; Otten, Bert; Hadders-Algra, Mijna

    Adequate postural control is a prerequisite for daily activities such as reaching for an object. However, knowledge on the relationship between postural adjustments and the quality of reaching movements during human ontogeny is scarce. Therefore we evaluated the development of the relationship

  19. Postural adjustments associated with voluntary contraction of leg muscles in standing man.

    Science.gov (United States)

    Nardone, A; Schieppati, M

    1988-01-01

    The postural adjustments associated with a voluntary contraction of the postural muscles themselves have been studied in the legs of normal standing men. We focussed on the following questions. Do postural adjustments precede the focal movement as in the case of movements of the upper limb? Which muscle(s) are involved in the task of stabilizing posture? Can the same postural muscle be activated in postural stabilization and in voluntary movement at the same time, in spite of the opposite changes in activity possibly required by these conditions? Six subjects standing on a dynamometric platform were asked to rise onto the tips their toes by contracting their soleus muscles, or to rock on their heels by contracting their tibialis anterior muscles. The tasks were made in a reaction time (RT) situation or in a self-paced mode, standing either freely or holding onto a stable structure. Surface EMGs of leg and thigh muscles, and the foot-floor reaction forces were recorded. The following results were obtained in the RT mode, standing freely. 1. Rising onto toe tips: a striking silent period in soleus preceded its voluntary activation; during this silent period, a tibialis anterior burst could be observed in three subjects; these anticipatory activities induced a forward sway, as monitored by a change in the force exerted along the x axis of the platform. 2. Rocking on heels: an enhancement in tonic EMG of soleus was observed before tibialis anterior voluntary burst, at a mean latency from the go-signal similar to that of the silent period; this anticipatory activity induced a backward body sway. 3. Choice RT conditions showed that the above anticipatory patterns in muscle activity were pre-programmed, specific for the intended tasks, and closely associated with the focal movement. When both tasks were performed in a self-paced mode, all the above EMG and mechanical features were more pronounced and unfolded in time. If the subjects held onto the frame, the early

  20. Human body region enhancement method based on Kinect infrared imaging

    Science.gov (United States)

    Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing

    2016-10-01

    To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.

  1. Análise comparativa entre avaliação postural visual e por fotogrametria computadorizada Comparative analysis between visual and computerized photogrammetry postural assessment

    Directory of Open Access Journals (Sweden)

    DH Iunes

    2009-08-01

    agreement between visual and photogrammetry postural assessment and to determine whether the quantitative photogrammetry results correspond to the symmetries and asymmetries detected through qualitative visual postural assessment. METHODS: Twenty-one volunteers (mean age 24±1.9 years were visually evaluated by three experienced physical therapists, who completed a postural assessment form. The participants' face and whole body were then photographed in the anterior and posterior frontal and sagittal planes. The photographs were used to draw angles from markers fixed to the skin at various anatomical points that are frequent references in traditional postural assessment. These photographs were analyzed by three examiners (other than the ones who performed the visual assessment. The agreement in each postural assessment method was determined using Cramer's V or the Phi coefficient, with the significance level set at 5%. RESULTS: There was agreement between the examiners who used photogrammetry, for all segments analyzed. No agreement was found for the labial commissure (p=0.00, acromioclavicular joint (p=0.01, sternoclavicular joint (p=0.00, anterior and posterior iliac spines (p=0.00 and p=0.01 or inferior angle of the scapula (p=0.00 when assessed visually. The comparison between photogrammetry and visual postural assessment showed that the agreement level between the two assessment methods was poor for some segments of the lower limb and pelvis. CONCLUSIONS: Under these experimental conditions, the photogrammetry data were not correlated with the results from the visual postural assessment. The visual postural assessment produced data that were in less agreement than the photogrammetry data, and its use as a gold standard must be questioned.

  2. Dynamical Properties of Postural Control in Obese Community-Dwelling Older Adults †.

    Science.gov (United States)

    Frames, Christopher W; Soangra, Rahul; Lockhart, Thurmon E; Lach, John; Ha, Dong Sam; Roberto, Karen A; Lieberman, Abraham

    2018-05-24

    Postural control is a key aspect in preventing falls. The aim of this study was to determine if obesity affected balance in community-dwelling older adults and serve as an indicator of fall risk. The participants were randomly assigned to receive a comprehensive geriatric assessment followed by a longitudinal assessment of their fall history. The standing postural balance was measured for 98 participants with a Body Mass Index (BMI) ranging from 18 to 63 kg/m², using a force plate and an inertial measurement unit affixed at the sternum. Participants' fall history was recorded over 2 years and participants with at least one fall in the prior year were classified as fallers. The results suggest that body weight/BMI is an additional risk factor for falling in elderly persons and may be an important marker for fall risk. The linear variables of postural analysis suggest that the obese fallers have significantly higher sway area and sway ranges, along with higher root mean square and standard deviation of time series. Additionally, it was found that obese fallers have lower complexity of anterior-posterior center of pressure time series. Future studies should examine more closely the combined effect of aging and obesity on dynamic balance.

  3. Assisting People with Multiple Disabilities Actively Correct Abnormal Standing Posture with a Nintendo Wii Balance Board through Controlling Environmental Stimulation

    Science.gov (United States)

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling

    2010-01-01

    The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board…

  4. Postural stability changes in the elderly with cataract simulation and refractive blur.

    Science.gov (United States)

    Anand, Vijay; Buckley, John G; Scally, Andy; Elliott, David B

    2003-11-01

    To determine the influence of cataractous and refractive blur on postural stability and limb-load asymmetry (LLA) and to establish how postural stability changes with the spatial frequency and contrast of the visual stimulus. Thirteen elderly subjects (mean age, 70.76 +/- 4.14 [SD] years) with no history of falls and normal vision were recruited. Postural stability was determined as the root mean square [RMS] of the center of pressure (COP) signal in the anterior-posterior (A-P) and medial-lateral directions and LLA was determined as the ratio of the average body weight placed on the more-loaded limb to the less-loaded limb, recorded during a 30-second period. Data were collected under normal standing conditions and with somatosensory system input disrupted. Measurements were repeated with four visual targets with high (8 cyc/deg) or low (2 cyc/deg) spatial frequency and high (Weber contrast, approximately 95%) or low (Weber contrast, approximately 25%) contrast. Postural stability was measured under conditions of binocular refractive blur of 0, 1, 2, 4, and 8 D and with cataract simulation. The data were analyzed in a population-averaged linear model. The cataract simulation caused significant increases in postural instability equivalent to that caused by 8-D blur conditions, and its effect was greater when the input from the somatosensory system was disrupted. High spatial frequency targets increased postural instability. Refractive blur, cataract simulation, or eye closure had no effect on LLA. Findings indicate that cataractous and refractive blur increase postural instability, and show why the elderly, many of whom have poor vision along with musculoskeletal and central nervous system degeneration, are at greater risk of falling. Findings also highlight that changes in contrast sensitivity rather than resolution changes are responsible for increasing postural instability. Providing low spatial frequency information in certain environments may be useful in

  5. EFFECT OF POSTURAL DRAINAGE POSITIONS ON VITAL PARAMETERS IN ASYMPTOMATIC HEALTHY INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Animesh Hazari

    2017-09-01

    Full Text Available Background: Postural drainage is used exclusively or in combination with other airway clearance techniques in the management of chronic pulmonary diseases. Postural drainage therapy helps to prevent accumulation of secretions in patients who are at high risk for pulmonary complications. It also helps to remove accumulated secretions from the lungs.The role of body positioning on lung function and the clinical implications of postural drainage has been identified in a variety of settings including intensive care units. There is dearth in literature on effects on postural drainage on vital parameters. Thus the objective of the study was to measure the vital parameters at different postural drainage positions in healthy asymptomatic adults. Methods: Twenty healthy subjects participated in the study. The instruments used in the current study included a Pulse oximeter, Sphygmomanometer, Stethoscope, Postural drainage table.The outcome measures of interest were heart rate, respiratoryrate, oxygen saturation, blood pressure and Borg’s scale of rate of perceived exertion. The changes in the vital signs were recorded at different head down titling position of 0°, 15° & 30° in both supine and prone lying positions Results: Statistical significant difference was found for Systolic Blood Pressure in prone lying at different degrees of tilt (p=0.001 and Diastolic Blood Pressure in prone lying (p=0.000. Conclusion: Postural drainage positioning should be given with caution and under proper monitoring as there is a risk of change in the blood pressure even in asymptomatic elderly population. The monitoring of vital signs should be done during the therapy to decrease the risk of complications.

  6. Take a stand on your decisions, or take a sit: posture does not affect risk preferences in an economic task

    OpenAIRE

    O’Brien, Megan K.; Ahmed, Alaa A.

    2014-01-01

    Physiological and emotional states can affect our decision-making processes, even when these states are seemingly insignificant to the decision at hand. We examined whether posture and postural threat affect decisions in a non-related economic domain. Healthy young adults made a series of choices between economic lotteries in various conditions, including changes in body posture (sitting vs. standing) and changes in elevation (ground level vs. atop a 0.8-meter-high platform). We compared thre...

  7. Effects of body lean and visual information on the equilibrium maintenance during stance.

    Science.gov (United States)

    Duarte, Marcos; Zatsiorsky, Vladimir M

    2002-09-01

    Maintenance of equilibrium was tested in conditions when humans assume different leaning postures during upright standing. Subjects ( n=11) stood in 13 different body postures specified by visual center of pressure (COP) targets within their base of support (BOS). Different types of visual information were tested: continuous presentation of visual target, no vision after target presentation, and with simultaneous visual feedback of the COP. The following variables were used to describe the equilibrium maintenance: the mean of the COP position, the area of the ellipse covering the COP sway, and the resultant median frequency of the power spectral density of the COP displacement. The variability of the COP displacement, quantified by the COP area variable, increased when subjects occupied leaning postures, irrespective of the kind of visual information provided. This variability also increased when vision was removed in relation to when vision was present. Without vision, drifts in the COP data were observed which were larger for COP targets farther away from the neutral position. When COP feedback was given in addition to the visual target, the postural control system did not control stance better than in the condition with only visual information. These results indicate that the visual information is used by the postural control system at both short and long time scales.

  8. Ehlers-Danlos Syndrome, Hypermobility Type: Impact of Somatosensory Orthoses on Postural Control (A Pilot Study

    Directory of Open Access Journals (Sweden)

    Emma G. Dupuy

    2017-06-01

    Full Text Available Elhers-Danlos syndrome (EDS is the clinical manifestation of connective tissue disorders, and comprises several clinical forms with no specific symptoms and selective medical examinations which result in a delay in diagnosis of about 10 years. The EDS hypermobility type (hEDS is characterized by generalized joint hypermobility, variable skin hyperextensibility and impaired proprioception. Since somatosensory processing and multisensory integration are crucial for both perception and action, we put forth the hypothesis that somatosensory deficits in hEDS patients may lead, among other clinical symptoms, to misperception of verticality and postural instability. Therefore, the purpose of this study was twofold: (i to assess the impact of somatosensory deficit on subjective visual vertical (SVV and postural stability; and (ii to quantify the effect of wearing somatosensory orthoses (i.e., compressive garments and insoles on postural stability. Six hEDS patients and six age- and gender-matched controls underwent a SVV (sitting, standing, lying on the right side evaluation and a postural control evaluation on a force platform (Synapsys, with or without visual information (eyes open (EO/eyes closed (EC. These two latter conditions performed either without orthoses, or with compression garments (CG, or insoles, or both. Results showed that patients did not exhibit a substantial perceived tilt of the visual vertical in the direction of the body tilt (Aubert effect as did the control subjects. Interestingly, such differential effects were only apparent when the rod was initially positioned to the left of the vertical axis (opposite the longitudinal body axis. In addition, patients showed greater postural instability (sway area than the controls. The removal of vision exacerbated this instability, especially in the mediolateral (ML direction. The wearing of orthoses improved postural stability, especially in the eyes-closed condition, with a particularly

  9. The relationship between foot posture and lower limb kinematics during walking: A systematic review.

    Science.gov (United States)

    Buldt, Andrew K; Murley, George S; Butterworth, Paul; Levinger, Pazit; Menz, Hylton B; Landorf, Karl B

    2013-07-01

    Variations in foot posture, such as pes planus (low-arched foot) or pes cavus (high-arched foot), are thought to be an intrinsic risk factor for injury due to altered motion of the lower extremity. Hence, the aim of this systematic review was to investigate the relationship between foot posture and lower limb kinematics during walking. A systematic database search of MEDLINE, CINAHL, SPORTDiscus, Embase and Inspec was undertaken in March 2012. Two independent reviewers applied predetermined inclusion criteria to selected articles for review and selected articles were assessed for quality. Articles were then grouped into two broad categories: (i) those comparing mean kinematic parameters between different foot postures, and (ii) those examining associations between foot posture and kinematics using correlation analysis. A final selection of 12 articles was reviewed. Meta-analysis was not conducted due to heterogeneity between studies. Selected articles primarily focused on comparing planus and normal foot postures. Five articles compared kinematic parameters between different foot postures - there was some evidence for increased motion in planus feet, but this was limited by small effect sizes. Seven articles investigated associations between foot posture and kinematics - there was evidence that increasing planus foot posture was positively associated with increased frontal plane motion of the rearfoot. The body of literature provides some evidence of a relationship between pes planus and increased lower limb motion during gait, however this was not conclusive due to heterogeneity between studies and small effect sizes. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Characteristic of bio-geometric profile of students’ posture and physical fitness in process of physical education

    Directory of Open Access Journals (Sweden)

    M.V. Dudko

    2015-08-01

    Full Text Available Purpose: to determine specific features of bio-geometric profile of posture and physical fitness of students in process of physical education. Material: 250 students were tested. Video-recording and analysis of bio-geometric profile of human posture were fulfilled. Program Torso was used for this purpose. Results: it was found out that only 15.2% of students had correct posture. The most quantity of posture abnormalities was detected in 36.4% of the tested. In sagittal plane we observed the following types of abnormalities: round back - in 24.4% of students, slouching back - in 24% of students. We found that 63.3% of students with normal posture are in zone of risk. Low backbone flexibility, mobility of hip joints and elasticity of hamstrings was detected on students. Conclusions: students with unsatisfactory bio-geometric profile of posture (scoliosis posture - 43.33%; round back - 23. 33%; slouching back - 22. 73% are in the called pre-morbid state of muscular-skeletal apparatus.

  11. Diurnal changes in postural control in normal children: Computerized static and dynamic assessments.

    Science.gov (United States)

    Bourelle, Sophie; Taiar, Redha; Berge, Benoit; Gautheron, Vincent; Cottalorda, Jerome

    2014-01-01

    Mild traumatic brain injury (mTBI) causes postural control deficits and accordingly comparison of aberrant postural control against normal postural control may help diagnose mTBI. However, in the current literature, little is known regarding the normal pattern of postural control in young children. This study was therefore conducted as an effort to fill this knowledge gap. Eight normal school-aged children participated. Posture assessment was conducted before (7-8 a.m. in the morning) and after (4-7 p.m. in the afternoon) school on regular school days using the Balance Master® evaluation system composed of 3 static tests and 2 dynamic balance tests. A significant difference in the weight-bearing squats was detected between morning hours and afternoon hours (P control of the lateral rhythmic weight shifts was observed at the end of the afternoon than at morning hours (P posture control in humans. On a regular school day, the capacity of postural control and laterality or medio-lateral balance in children varies between morning and afternoon hours. We suggest that posturographic assessment in children, either in normal (e.g., physical education and sports training) or in abnormal conditions (e.g., mTBI-associated balance disorders), be better performed late in the afternoon.

  12. Posture and Locomotion Coupling: A Target for Rehabilitation Interventions in Persons with Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Marie-Laure Mille

    2012-01-01

    Full Text Available Disorders of posture, balance, and gait are debilitating motor manifestations of advancing Parkinson's disease requiring rehabilitation intervention. These problems often reflect difficulties with coupling or sequencing posture and locomotion during complex whole body movements linked with falls. Considerable progress has been made with demonstrating the effectiveness of exercise interventions for individuals with Parkinson's disease. However, gaps remain in the evidence base for specific interventions and the optimal content of exercise interventions. Using a conceptual theoretical framework and experimental findings, this perspective and review advances the viewpoint that rehabilitation interventions focused on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices. It is argued that treatment effectiveness may be improved by directly targeting posture and locomotion coupling problems as causal factors contributing to balance and gait dysfunction. This approach may help advance current clinical practice and improve outcomes in rehabilitation for persons with Parkinson's disease.

  13. Anticipatory and Compensatory Postural Adjustments in Response to External Lateral Shoulder Perturbations in Subjects with Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Alexandre Kretzer E Castro de Azevedo

    Full Text Available The purpose of this study was to investigate the anticipatory (APA and compensatory (CPA postural adjustments in individuals with Parkinson's disease (PD during lateral instability of posture. Twenty-six subjects (13 individuals with PD and 13 healthy matched controls were exposed to predictable lateral postural perturbations. The electromyographic (EMG activity of the lateral muscles and the displacement of the center of pressure (COP were recorded during four time intervals that are typical for postural adjustments, i.e., immediately before (APA1, APA2 and after (CPA1 and CPA2 the postural disturbances. The magnitude of the activity of the lateral muscles in the group with PD was lower only during the CPA time intervals and not during the anticipatory adjustments (APAs. Despite this finding, subjects with PD exhibit smaller COP excursions before and after the disturbance, probably due to lack of flexibility and proprioceptive impairments. The results of this study suggest that postural instability in subjects with PD can be partially explained by decreased postural sway, before and after perturbations, and reduced muscular activity after body disturbances. Our findings can motivate new studies to investigate therapeutic interventions that optimize the use of postural adjustment strategies in subjects with PD.

  14. Vestibular and Somatosensory Covergence in Postural Equilibrium Control: Insights from Spaceflight and Bed Rest Studies

    Science.gov (United States)

    Mulavara, A. P.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Peters, B. T.; Phillips, T.; Platts, S. H.; hide

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. We are currently conducting studies on both International Space Station (ISS) astronauts experiencing up to 6 months of microgravity and subjects experiencing 70 days of 6??head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading somatosensory component on functional performance. Both ISS crewmembers and bed-rest subjects were tested using a protocol that evaluated functional performance along with tests of postural and locomotor control before and after space flight and bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Astronauts were tested three times before flight, and on 1, 6, and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6, and 12 days after re-ambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability showed less reduction in performance. Results indicate that body unloading

  15. Should Ballet Dancers Vary Postures and Underfoot Surfaces When Practicing Postural Balance?

    Science.gov (United States)

    Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren

    2018-01-01

    Postural balance (PB) is an important component skill for professional dancers. However, the effects of different types of postures and different underfoot surfaces on PB have not adequately been addressed. The main aim of this study was to investigate the effect of different conditions of footwear, surfaces, and standing positions on static and dynamic PB ability of young ballet dancers. A total of 36 male and female young professional ballet dancers (aged 14-19 years) completed static and dynamic balance testing, measured by head and lumbar accelerometers, while standing on one leg in the turnout position, under six different conditions: (1) "relaxed" posture; (2) "ballet" posture; (3) barefoot; (4) ballet shoes with textured insoles; (5) barefoot on a textured mat; and (6) barefoot on a spiky mat. A condition effect was found for static and dynamic PB. Static PB was reduced when dancers stood in the ballet posture compared with standing in the relaxed posture and when standing on a textured mat and on a spiky mat (p ballet shoes with textured insoles and when standing on a spiky mat compared with all other conditions (p ballet aligned position, including dance practice on different types of floors and on different types of textured/spiky materials may result in skill transfer to practice on normal floor surfaces, and both static and dynamic PB exercises should be assessed and generalized into practical dance routines.

  16. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training.

    Science.gov (United States)

    Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-10-01

    Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Putting the face in context: Body expressions impact facial emotion processing in human infants.

    Science.gov (United States)

    Rajhans, Purva; Jessen, Sarah; Missana, Manuela; Grossmann, Tobias

    2016-06-01

    Body expressions exert strong contextual effects on facial emotion perception in adults. Specifically, conflicting body cues hamper the recognition of emotion from faces, as evident on both the behavioral and neural level. We examined the developmental origins of the neural processes involved in emotion perception across body and face in 8-month-old infants by measuring event-related brain potentials (ERPs). We primed infants with body postures (fearful, happy) that were followed by either congruent or incongruent facial expressions. Our results revealed that body expressions impact facial emotion processing and that incongruent body cues impair the neural discrimination of emotional facial expressions. Priming effects were associated with attentional and recognition memory processes, as reflected in a modulation of the Nc and Pc evoked at anterior electrodes. These findings demonstrate that 8-month-old infants possess neural mechanisms that allow for the integration of emotion across body and face, providing evidence for the early developmental emergence of context-sensitive facial emotion perception. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Human Body Image Edge Detection Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    李勇; 付小莉

    2003-01-01

    Human dresses are different in thousands way.Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to tte peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.

  19. Human papillomavirus vaccines, complex regional pain syndrome, postural orthostatic tachycardia syndrome, and autonomic dysfunction - a review of the regulatory evidence from the European Medicines Agency

    DEFF Research Database (Denmark)

    Jefferson, Tom; Jørgensen, Lars

    2017-01-01

    Recent concerns about a possible association between exposure of young women to human papillomavirus (HPV) vaccines and two "dysautonomic syndromes" (a collection of signs and symptoms thought to be caused by autoimmunity) - complex regional pain syndrome (CRPS) and postural orthostatic tachycardia...

  20. Monosynaptic Stretch Reflex Fails to Explain the Initial Postural Response to Sudden Lateral Perturbations

    Directory of Open Access Journals (Sweden)

    Andreas Mühlbeier

    2017-06-01

    Full Text Available Postural reflexes are essential for locomotion and postural stability, and may play an important role in the etiology of chronic back pain. It has recently been theoretically predicted, and with the help of unilateral perturbations of the trunk experimentally confirmed that the sensorimotor control must lower the reflex amplitude for increasing reflex delays to maintain spinal stability. The underlying neuromuscular mechanism for the compensation of postural perturbations, however, is not yet fully understood. In this study, we applied unilateral and bilateral sudden external perturbations to the trunk of healthy subjects and measured the muscular activity and the movement onset of the trunk. We found that the onset of the trunk muscle activity is prior to, or coincident with, the onset of the trunk movement. Additionally, the results of our experiments imply that the muscular response mechanism integrates distant sensory information from both sides of the body. These findings rule out a simple monosynaptic stretch reflex in favor of a more complex polysynaptic postural reflex mechanism to compensate postural perturbations. Moreover, the previously predicted negative correlation between reflex delay and reflex gain was also confirmed for bilateral perturbations.

  1. Thermoregulatory postures limit antipredator responses in peafowl.

    Science.gov (United States)

    Yorzinski, Jessica L; Lam, Jennifer; Schultz, Rachel; Davis, Melissa

    2018-01-05

    Many animals inhabit environments where they experience temperature fluctuations. One way in which animals can adjust to these temperature changes is through behavioral thermoregulation. However, we know little about the thermal benefits of postural changes and the costs they may incur. In this study, we examined the thermoregulatory role of two postures, the head-tuck and leg-tuck posture, in peafowl ( Pavo cristatus ) and evaluated whether the head-tuck posture imposes a predation cost. The heads and legs of peafowl are significantly warmer when the birds exhibit these postures, demonstrating that these postures serve an important thermoregulatory role. In addition, the birds are slower to respond to an approaching threat when they display the head-tuck posture, suggesting that a thermoregulatory posture can limit antipredator behavior. © 2018. Published by The Company of Biologists Ltd.

  2. Thermoregulatory postures limit antipredator responses in peafowl

    Directory of Open Access Journals (Sweden)

    Jessica L. Yorzinski

    2018-01-01

    Full Text Available Many animals inhabit environments where they experience temperature fluctuations. One way in which animals can adjust to these temperature changes is through behavioral thermoregulation. However, we know little about the thermal benefits of postural changes and the costs they may incur. In this study, we examined the thermoregulatory role of two postures, the head-tuck and leg-tuck posture, in peafowl (Pavo cristatus and evaluated whether the head-tuck posture imposes a predation cost. The heads and legs of peafowl are significantly warmer when the birds exhibit these postures, demonstrating that these postures serve an important thermoregulatory role. In addition, the birds are slower to respond to an approaching threat when they display the head-tuck posture, suggesting that a thermoregulatory posture can limit antipredator behavior.

  3. Postural control and cognitive task performance in healthy participants while balancing on different support-surface configurations

    NARCIS (Netherlands)

    Dault, MC; Mulder, TW; Duysens, J

    2001-01-01

    Postural control during normal upright stance in humans is a well-learned task. Hence, it has often been argued that it requires very little attention. However, many studies have recently shown that postural control is modified when a cognitive task is executed simultaneously especially in the

  4. Arterial Pressure Gradients during Upright Posture and 30 deg Head Down Tilt

    Science.gov (United States)

    Sanchez, E. R; William, J. M.; Ueno, T.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)

    1997-01-01

    Gravity alters local blood pressure within the body so that arterial pressures in the head and foot are lower and higher, respectively, than that at heart level. Furthermore, vascular responses to local alterations of arterial pressure are probably important to maintain orthostatic tolerance upon return to the Earth after space flight. However, it has been difficult to evaluate the body's arterial pressure gradient due to the lack of noninvasive technology. This study was therefore designed to investigate whether finger arterial pressure (FAP), measured noninvasively, follows a normal hydrostatic pressure gradient above and below heart level during upright posture and 30 deg head down tilt (HDT). Seven healthy subjects gave informed consent and were 19 to 52 years old with a height range of 158 to 181 cm. A Finapres device measured arterial pressure at different levels of the body by moving the hand from 36 cm below heart level (BH) to 72 cm above heart level (AH) in upright posture and from 36 cm BH to 48 cm AH during HDT in increments of 12 cm. Mean FAP creased by 85 mmHg transitioning from BH to AH in upright posture, and the pressure gradient calculated from hydrostatic pressure difference (rho(gh)) was 84 mmHg. In HDT, mean FAP decreased by 65 mmHg from BH to AH, and the calculated pressure gradient was also 65 mmHg. There was no significant difference between the measured FAP gradient and the calculated pressure gradient, although a significant (p = 0.023) offset was seen for absolute arterial pressure in upright posture. These results indicate that arterial pressure at various levels can be obtained from the blood pressure at heart level by calculating rho(gh) + an offset. The offset equals the difference between heart level and the site of measurement. In summary, we conclude that local blood pressure gradients can be measured by noninvasive studies of FAP.

  5. A Cross-Sectional Study for Screening of Postural Deficits among University Students

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelmoniem Ibrahim

    2017-09-01

    Full Text Available Background: Postural deviations are frequent in university students and may cause pain and functional impairment. Few studies have examined the association between body posture and intrinsic and extrinsic factors. Objective: To assess the prevalence of postural changes in university students, and to determine whether factors such as age, gender, BMI, and physical activity might explain these deviations, this study helping in preventing aggravation of postural deviations and providing the young adolescent students with exercises and help tips for correcting these problems. Design: Cross sectional study. Subjects and Methods: The posture of 48 students in Hail University was assessed by DIER formetric 4D. Their mean age was 20.35 ± 2.678, height was 185.56 ± 7.128 and weight was 54.19 ± 7.085. Results: results revealed positive correlation between height and weight, height and self-image, weight and surface rotation, self-image and pelvic tilting, kyphotic angle and lordotic angle, pelvic tilt and trunk imbalance, lateral deviation and trunk imbalance. Conclusion: high prevalence of abnormalities among students, so it is recommended that all instructors place more emphasis on training and using corrective actions in course one of general physical education. Furthermore, teaching the correct sleeping, sitting and carrying ways will stop high expenses and devoting long times for clinical remedies.

  6. Gender differences in body-sway factors of center of foot pressure in a static upright posture and under the influence of alcohol intake.

    Science.gov (United States)

    Kitabayashi, Tamotsu; Demura, Shinichi; Noda, Masahiro; Yamada, Takayoshi

    2004-07-01

    This study aimed to examine gender differences in 4 body-sway factors of the center of foot pressure (CFP) during a static upright posture and the influence of alcohol intake on them. Four body-sway factors were interpreted in previous studies using factor analysis (the principal factor method and oblique solution by promax-rotation) on 220 healthy young males and females as follows; unit time sway, front-back sway, left-right sway and high frequency band power. The CFP measurement for 1 min was carried out twice with 1 min rest. The measurements of blood pressure, heart rate, whole body reaction time, standing on one leg with eyes closed, and CFP were carried out before and after the alcohol intake using 11 healthy young males and females. The measurement device used was an Anima's stabilometer G5500. The data sampling frequency was 20 Hz. Reliability of 4 body-sway factors was very high. Significant gender differences were found in the left-right sway and the high frequency band power factors, but the influence on body-sway is, as a whole, can be disregarded. These four sway factors can determine the influence of alcohol intake as efficient as 32 sway parameters.

  7. Multichannel Human Body Communication

    International Nuclear Information System (INIS)

    Przystup, Piotr; Bujnowski, Adam; Wtorek, Jerzy

    2016-01-01

    Human Body Communication is an attractive alternative for traditional wireless communication (Bluetooth, ZigBee) in case of Body Sensor Networks. Low power, high data rates and data security makes it ideal solution for medical applications. In this paper, signal attenuation for different frequencies, using FR4 electrodes, has been investigated. Performance of single and multichannel transmission with frequency modulation of analog signal has been tested. Experiment results show that HBC is a feasible solution for transmitting data between BSN nodes

  8. Evaluation of postural control in unilateral vestibular hypofunction

    Directory of Open Access Journals (Sweden)

    Rafaela Maia Quitschal

    2014-07-01

    Full Text Available INTRODUCTION: Patients with vestibular hypofunction, a typical finding in peripheral vestibular disorders, show body balance alterations. OBJECTIVE: To evaluate the postural control of patients with vertigo and unilateral vestibular hypofunction. METHOD: This is a clinical cross-sectional study. Twenty-five patients with vertigo and unilateral vestibular hypofunction and a homogeneous control group consisting of 32 healthy individuals were submitted to a neurotological evaluation including the Tetrax Interactive Balance System posturography in eight different sensory conditions. RESULTS: For different positions, vertiginous patients with unilateral vestibular hypofunction showed significantly higher values of general stability index, weight distribution index, right/left and tool/heel synchronizations, Fourier transformation index and fall index than controls. CONCLUSION: Increased values in the indices of weight distribution, right/left and tool/heel synchronizations, Fourier transformation and fall risk characterize the impairment of postural control in patients with vertigo and unilateral vestibular hypofunction.

  9. Optimal coordination and control of posture and movements.

    Science.gov (United States)

    Johansson, Rolf; Fransson, Per-Anders; Magnusson, Måns

    2009-01-01

    This paper presents a theoretical model of stability and coordination of posture and locomotion, together with algorithms for continuous-time quadratic optimization of motion control. Explicit solutions to the Hamilton-Jacobi equation for optimal control of rigid-body motion are obtained by solving an algebraic matrix equation. The stability is investigated with Lyapunov function theory and it is shown that global asymptotic stability holds. It is also shown how optimal control and adaptive control may act in concert in the case of unknown or uncertain system parameters. The solution describes motion strategies of minimum effort and variance. The proposed optimal control is formulated to be suitable as a posture and movement model for experimental validation and verification. The combination of adaptive and optimal control makes this algorithm a candidate for coordination and control of functional neuromuscular stimulation as well as of prostheses. Validation examples with experimental data are provided.

  10. Detecting altered postural control after cerebral concussion in athletes with normal postural stability

    OpenAIRE

    Cavanaugh, J; Guskiewicz, K; Giuliani, C; Marshall, S; Mercer, V; Stergiou, N

    2005-01-01

    Objective: To determine if approximate entropy (ApEn), a regularity statistic from non-linear dynamics, could detect changes in postural control during quiet standing in athletes with normal postural stability after cerebral concussion.

  11. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults.

    Science.gov (United States)

    Manor, Brad; Costa, Madalena D; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C K; Novak, Vera; Lipsitz, Lewis A

    2010-12-01

    The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.

  12. Human Identification at a Distance Using Body Shape Information

    International Nuclear Information System (INIS)

    Rashid, N K A M; Yahya, M F; Shafie, A A

    2013-01-01

    Shape of human body is unique from one person to another. This paper presents an intelligent system approach for human identification at a distance using human body shape information. The body features used are the head, shoulder, and trunk. Image processing techniques for detection of these body features were developed in this work. Then, the features are recognized using fuzzy logic approach and used as inputs to a recognition system based on a multilayer neural network. The developed system is only applicable for recognizing a person from its frontal view and specifically constrained to male gender to simplify the algorithm. In this research, the accuracy for human identification using the proposed method is 77.5%. Thus, it is proved that human can be identified at a distance using body shape information

  13. Changes in postural control in patients with Parkinson's disease: a posturographic study.

    Science.gov (United States)

    Doná, F; Aquino, C C; Gazzola, J M; Borges, V; Silva, S M C A; Ganança, F F; Caovilla, H H; Ferraz, H B

    2016-09-01

    Postural instability is one of the most disabling features in Parkinson's disease (PD), and often leads to falls that reduce mobility and functional capacity. The objectives of this study were to analyse the limit of stability (LOS) and influence of the manipulation of visual, somatosensorial and visual-vestibular information on postural control in patients with PD and healthy subjects. Cross-sectional. Movement Disorders Unit, university setting. Eighty-two subjects aged between 37 and 83 years: 41 with Parkinson's disease in the 'on' state and 41 healthy subjects with no neurological disorders. Both groups were matched in terms of sex and age. Unified Parkinson's Disease Rating Scale (UPDRS)-motor score, modified Hoehn and Yahr staging, Dynamic Gait Index (DGI) and posturography with integrated virtual reality. The parameters analysed by posturography were LOS area, area of body centre of pressure excursion and balance functional reserve in the standing position in 10 conditions (open and closed eyes, unstable surface with eyes closed, saccadic and optokinetic stimuli, and visual-vestibular interaction). The mean UPDRS motor score and DGI score were 27 [standard deviation (SD) 14] and 21 (SD 3), respectively. Thirteen participants scored between 0 and 19 points, indicating major risk of falls. Posturographic assessment showed that patients with PD had significantly lower LOS area and balance functional reserve values, and greater body sway area in all posturographic conditions compared with healthy subjects. Patients with PD have reduced LOS area and greater postural sway compared with healthy subjects. The deterioration in postural control was significantly associated with major risk of falls. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  14. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  15. Development of posture-specific computational phantoms using motion capture technology and application to radiation dose-reconstruction for the 1999 Tokai-Mura nuclear criticality accident

    International Nuclear Information System (INIS)

    Vazquez, Justin A; Caracappa, Peter F; Xu, X George

    2014-01-01

    The majority of existing computational phantoms are designed to represent workers in typical standing anatomical postures with fixed arm and leg positions. However, workers found in accident-related scenarios often assume varied postures. This paper describes the development and application of two phantoms with adjusted postures specified by data acquired from a motion capture system to simulate unique human postures found in a 1999 criticality accident that took place at a JCO facility in Tokai-Mura, Japan. In the course of this accident, two workers were fatally exposed to extremely high levels of radiation. Implementation of the emergent techniques discussed produced more accurate and more detailed dose estimates for the two workers than were reported in previous studies. A total-body dose of 6.43 and 26.38 Gy was estimated for the two workers, who assumed a crouching and a standing posture, respectively. Additionally, organ-specific dose estimates were determined, including a 7.93 Gy dose to the thyroid and 6.11 Gy dose to the stomach for the crouching worker and a 41.71 Gy dose to the liver and a 37.26 Gy dose to the stomach for the standing worker. Implications for the medical prognosis of the workers are discussed, and the results of this study were found to correlate better with the patient outcome than previous estimates, suggesting potential future applications of such methods for improved epidemiological studies involving next-generation computational phantom tools. (paper)

  16. Postural strategies and sensory integration: no turning point between childhood and adolescence.

    Directory of Open Access Journals (Sweden)

    Sophie Mallau

    Full Text Available In this study, we investigated the sensory integration to postural control in children and adolescents from 5 to 15 years of age. We adopted the working hypothesis that considerable body changes occurring during these periods may lead subjects to under-use the information provided by the proprioceptive pathway and over-use other sensory systems such as vision to control their orientation and stabilize their body. It was proposed to determine which maturational differences may exist between the sensory integration used by children and adolescents in order to test the hypothesis that adolescence may constitute a specific phase in the development of postural control. This hypothesis was tested by applying an original protocol of slow oscillations below the detection threshold of the vestibular canal system, which mainly serves to mediate proprioceptive information, to the platform on which the subjects were standing. We highlighted the process of acquiring an accurate sensory and anatomical reference frame for functional movement. We asked children and adolescents to maintain a vertical stance while slow sinusoidal oscillations in the frontal plane were applied to the support at 0.01 Hz (below the detection threshold of the semicircular canal system and at 0.06 Hz (above the detection threshold of the semicircular canal system with their eyes either open or closed. This developmental study provided evidence that there are mild differences in the quality of sensory integration relative to postural control in children and adolescents. The results reported here confirmed the predominance of vision and the gradual mastery of somatosensory integration in postural control during a large period of ontogenesis including childhood and adolescence. The youngest as well as the oldest subjects adopted similar qualitative damping and segmental stabilization strategies that gradually improved with age without reaching an adult's level. Lastly, sensory

  17. THE IMPACT OF PILATES EXERCISES ON THE POSTURAL ALIGNMENT OF HEALTHY ADULTS

    Directory of Open Access Journals (Sweden)

    Bruna Krawczky

    Full Text Available ABSTRACT Introduction: Exercises of Pilates method have been widely used to improve postural alignment. There is strong evidence favoring their use in improving flexibility and balance, as well as some evidence of improvement in muscle strength. However, the benefits related to posture are not well established. Objective: To investigate in healthy adults, the impact of the Pilates method in the postural alignment through some angles in the sagittal plane and the occurrence of pain before and after an exercise session, and after the completion of a 16-session program. Methods: This is a quasi-experimental study of pre and post-intervention type. Healthy adults (n = 37 interested in starting Pilates were evaluated for acute effects on posture after a Pilates session (n = 37 and after a 16-session program, for a period of 10 weeks (n = 13. Using the postural assessment software (SAPO, six angles were analyzed: head horizontal alignment (HHA, pelvis horizontal alignment (PHA, hip angle (HA, vertical alignment of the body (VAB, thoracic kyphosis (TK, and lumbar lordosis (LL. The occurrence of pain was investigated to control adverse effects. Results: Statistically significant (p<0.05 differences found after one session include increased HHA (left view, decreased VAB (left view and TK (both side views. After 16 sessions, we observed an increase of HHA, and a decrease of TK, LL (both side views and HA (right view. All the differences point to an improvement of postural alignment. A significant reduction of prevalence of pain was verified after the first session (40.5% vs. 13.5%; p=0.004 and after the full program (30.8% vs. 15.3%; p=0.02. Conclusions: Our results suggest that the Pilates method has a positive impact on postural alignment in healthy adults, besides being a safe exercise.

  18. The Association between Hearing Loss, Postural Control, and Mobility in Older Adults: A Systematic Review.

    Science.gov (United States)

    Agmon, Maayan; Lavie, Limor; Doumas, Michail

    2017-06-01

    Degraded hearing in older adults has been associated with reduced postural control and higher risk of falls. Both hearing loss (HL) and falls have dramatic effects on older persons' quality of life (QoL). A large body of research explored the comorbidity between the two domains. The aim of the current review is to describe the comorbidity between HL and objective measures of postural control, to offer potential mechanisms underlying this relationship, and to discuss the clinical implications of this comorbidity. PubMed and Google Scholar were systematically searched for articles published in English up until October 15, 2015, using combinations of the following strings and search words: for hearing: Hearing loss, "Hearing loss," hearing, presbycusis; for postural control: postural control, gait, postural balance, fall, walking; and for age: elderly, older adults. Of 211 screened articles, 7 were included in the systematic review. A significant, positive association between HL and several objective measures of postural control was found in all seven studies, even after controlling for major covariates. Severity of hearing impairment was connected to higher prevalence of difficulties in walking and falls. Physiological, cognitive, and behavioral processes that may influence auditory system and postural control were suggested as potential explanations for the association between HL and postural control. There is evidence for the independent relationship between HL and objective measures of postural control in the elderly. However, a more comprehensive understanding of the mechanisms underlying this relationship is yet to be elucidated. Concurrent diagnosis, treatment, and rehabilitation of these two modalities may reduce falls and increase QoL in older adults. American Academy of Audiology

  19. Associations of anthropometry since birth with sagittal posture at age 7 in a prospective birth cohort: the Generation XXI Study.

    Science.gov (United States)

    Araújo, Fábio A; Lucas, Raquel; Simpkin, Andrew J; Heron, Jon; Alegrete, Nuno; Tilling, Kate; Howe, Laura D; Barros, Henrique

    2017-07-26

    Adult sagittal posture is established during childhood and adolescence. A flattened or hypercurved spine is associated with poorer musculoskeletal health in adulthood. Although anthropometry from birth onwards is expected to be a key influence on sagittal posture design, this has never been assessed during childhood. Our aim was to estimate the association between body size throughout childhood with sagittal postural patterns at age 7. Prospective cohort study. A subsample of 1029 girls and 1101 boys taking part in the 7-year-old follow-up of the birth cohort Generation XXI (Porto, Portugal) was included. We assessed the associations between anthropometric measurements (weight, height and body mass index) at birth, 4 and 7 years of age and postural patterns at age 7. Postural patterns were defined using latent profile analysis, a probabilistic model-based technique which allows for simultaneously including anthropometrics as predictors of latent profiles by means of logistic regression. Postural patterns identified were sway, flat and "neutral to hyperlordotic"in girls, and "sway to neutral", flat and hyperlordotic in boys; with flat and hyperlordotic postures representing a straightened and a rounded spine, respectively. In both girls and boys, higher weight was associated with lower odds of a flat pattern compared with a sway/"sway to neutral"pattern, with stronger associations at older ages: for example, ORs were 0.68 (95% CI 0.53 to 0.88) per SD increase in birth weight and 0.36 (95% CI 0.19 to 0.68) per SD increase in weight at age 7 in girls, with similar findings in boys. Boys with higher ponderal index at birth were more frequently assigned to the hyperlordotic pattern (OR=1.44 per SD; p=0.043). Our findings support a prospective sculpting role of body size and therefore of load on musculoskeletal spinopelvic structures, with stronger associations as children get older. © Article author(s) (or their employer(s) unless otherwise stated in the text of the

  20. Ergonomic Analysis of Garment Industry using Posture Evaluation Index (PEI in Virtual Environment

    Directory of Open Access Journals (Sweden)

    Erlinda Muslim

    2011-09-01

    Full Text Available This research tried to study, in a virtual environment, the ergonomics of four divisions in garment industry: cutting division, sewing division, button division, and finishing division. Variables that influence the working conditions in each division are different; depend on the real situations that happened. The purpose is to assess the real working conditions based on ergonomics  study  using Posture Evaluation Index (PEI. PEI integrates  the scores of  low back analysis (LBA, ovako working  posture  (OWAS,  and  rapid  upper  limb assessment  (RULA.  Analysis  phase  was  done  using  digital  human model  in  virtual  environment  that  available  on  Jack  6.0.  The  results show  that  the  working  conditions  in  garment industry had enough amount of risk that can injured the musculoskeletal system of the workers. This research enriches the  body  of  ergonomics  knowledge  in Indonesia  because  it  is  the  first  research  in  Indonesia that  applied  virtual environment approach to ergonomics analysis in industry.