WorldWideScience

Sample records for human bocavirus dna

  1. Detection of head-to-tail DNA sequences of human bocavirus in clinical samples.

    Directory of Open Access Journals (Sweden)

    Jessica Lüsebrink

    Full Text Available Parvoviruses are single stranded DNA viruses that replicate in a so called "rolling-hairpin" mechanism, a variant of the rolling circle replication known for bacteriophages like φX174. The replication intermediates of parvoviruses thus are concatemers of head-to-head or tail-to-tail structure. Surprisingly, in case of the novel human bocavirus, neither head-to-head nor tail-to-tail DNA sequences were detected in clinical isolates; in contrast head-to-tail DNA sequences were identified by PCR and sequencing. Thereby, the head-to-tail sequences were linked by a novel sequence of 54 bp of which 20 bp also occur as conserved structures of the palindromic ends of parvovirus MVC which in turn is a close relative to human bocavirus.

  2. Human bocavirus and acute wheezing in children.

    Science.gov (United States)

    Allander, Tobias; Jartti, Tuomas; Gupta, Shawon; Niesters, Hubert G M; Lehtinen, Pasi; Osterback, Riikka; Vuorinen, Tytti; Waris, Matti; Bjerkner, Annelie; Tiveljung-Lindell, Annika; van den Hoogen, Bernadette G; Hyypiä, Timo; Ruuskanen, Olli

    2007-04-01

    Human bocavirus is a newly discovered parvovirus. It has been detected primarily in children with acute lower respiratory tract infection, but its occurrence, clinical profile, and role as a causative agent of respiratory tract disease are not clear. We investigated the presence of human bocavirus by quantitative polymerase chain reaction of nasopharyngeal aspirate specimens and selected serum samples obtained from 259 children (median age, 1.6 years) who had been hospitalized for acute expiratory wheezing. The samples were analyzed for 16 respiratory viruses by polymerase chain reaction, virus culture, antigen detection, and serological assays. At least 1 potential etiologic agent was detected in 95% of children, and >1 agent was detected in 34% of children. Human bocavirus was detected in 49 children (19%). A large proportion of the cases were mixed infections with other viruses, but human bocavirus was the only virus detected in 12 children (5%). High viral loads of human bocavirus were noted mainly in the absence of other viral agents, suggesting a causative role for acute wheezing. In addition, infections that had uncertain clinical relevance and low viral loads were prevalent. Human bocavirus DNA was frequently detected in serum specimens obtained from patients with acute wheezing, suggesting systemic infection. Human bocavirus is prevalent among children with acute wheezing and can cause systemic infection. Results suggest a model for bocavirus infection in which high viral loads are potentially associated with respiratory symptoms and low viral loads indicate asymptomatic shedding. Therefore, quantitative polymerase chain reaction analysis may be important for additional studies of human bocavirus.

  3. DNA Damage Signaling Is Required for Replication of Human Bocavirus 1 DNA in Dividing HEK293 Cells.

    Science.gov (United States)

    Deng, Xuefeng; Xu, Peng; Zou, Wei; Shen, Weiran; Peng, Jianxin; Liu, Kaiyu; Engelhardt, John F; Yan, Ziying; Qiu, Jianming

    2017-01-01

    Human bocavirus 1 (HBoV1), an emerging human-pathogenic respiratory virus, is a member of the genus Bocaparvovirus of the Parvoviridae family. In human airway epithelium air-liquid interface (HAE-ALI) cultures, HBoV1 infection initiates a DNA damage response (DDR), activating all three phosphatidylinositol 3-kinase-related kinases (PI3KKs): ATM, ATR, and DNA-PKcs. In this context, activation of PI3KKs is a requirement for amplification of the HBoV1 genome (X. Deng, Z. Yan, F. Cheng, J. F. Engelhardt, and J. Qiu, PLoS Pathog, 12:e1005399, 2016, https://doi.org/10.1371/journal.ppat.1005399), and HBoV1 replicates only in terminally differentiated, nondividing cells. This report builds on the previous discovery that the replication of HBoV1 DNA can also occur in dividing HEK293 cells, demonstrating that such replication is likewise dependent on a DDR. Transfection of HEK293 cells with the duplex DNA genome of HBoV1 induces hallmarks of DDR, including phosphorylation of H2AX and RPA32, as well as activation of all three PI3KKs. The large viral nonstructural protein NS1 is sufficient to induce the DDR and the activation of the three PI3KKs. Pharmacological inhibition or knockdown of any one of the PI3KKs significantly decreases both the replication of HBoV1 DNA and the downstream production of progeny virions. The DDR induced by the HBoV1 NS1 protein does not cause obvious damage to cellular DNA or arrest of the cell cycle. Notably, key DNA replication factors and major DNA repair DNA polymerases (polymerase η [Pol η] and polymerase κ [Pol κ]) are recruited to the viral DNA replication centers and facilitate HBoV1 DNA replication. Our study provides the first evidence of the DDR-dependent parvovirus DNA replication that occurs in dividing cells and is independent of cell cycle arrest.

  4. Human bocavirus and acute wheezing in children

    NARCIS (Netherlands)

    Allander, Tobias; Jartti, Tuomas; Gupta, Shawon; Niesters, Hubert G M; Lehtinen, Pasi; Osterback, Riikka; Vuorinen, Tytti; Waris, Matti; Bjerkner, Annelie; Tiveljung-Lindell, Annika; van den Hoogen, Bernadette G; Hyypiä, Timo; Ruuskanen, Olli

    2007-01-01

    BACKGROUND: Human bocavirus is a newly discovered parvovirus. It has been detected primarily in children with acute lower respiratory tract infection, but its occurrence, clinical profile, and role as a causative agent of respiratory tract disease are not clear. METHODS: We investigated the presence

  5. Human bocavirus: Current knowledge and future challenges

    Science.gov (United States)

    Guido, Marcello; Tumolo, Maria Rosaria; Verri, Tiziano; Romano, Alessandro; Serio, Francesca; De Giorgi, Mattia; De Donno, Antonella; Bagordo, Francesco; Zizza, Antonella

    2016-01-01

    Human bocavirus (HBoV) is a parvovirus isolated about a decade ago and found worldwide in both respiratory samples, mainly from early life and children of 6-24 mo of age with acute respiratory infection, and in stool samples, from patients with gastroenteritis. Since then, other viruses related to the first HBoV isolate (HBoV1), namely HBoV2, HBoV3 and HBoV4, have been detected principally in human faeces. HBoVs are small non-enveloped single-stranded DNA viruses of about 5300 nucleotides, consisting of three open reading frames encoding the first two the non-structural protein 1 (NS1) and nuclear phosphoprotein (NP1) and the third the viral capsid proteins 1 and 2 (VP1 and VP2). HBoV pathogenicity remains to be fully clarified mainly due to the lack of animal models for the difficulties in replicating the virus in in vitro cell cultures, and the fact that HBoV infection is frequently accompanied by at least another viral and/or bacterial respiratory and/or gastroenteric pathogen infection. Current diagnostic methods to support HBoV detection include polymerase chain reaction, real-time PCR, enzyme-linked immunosorbent assay and enzyme immunoassay using recombinant VP2 or virus-like particle capsid proteins, although sequence-independent amplification techniques combined with next-generation sequencing platforms promise rapid and simultaneous detection of the pathogens in the future. This review presents the current knowledge on HBoV genotypes with emphasis on taxonomy, phylogenetic relationship and genomic analysis, biology, epidemiology, pathogenesis and diagnostic methods. The emerging discussion on HBoVs as true pathogen or innocent bystander is also emphasized.

  6. Comparative Diagnosis of Human Bocavirus 1 Respiratory Infection With Messenger RNA Reverse-Transcription Polymerase Chain Reaction (PCR), DNA Quantitative PCR, and Serology.

    Science.gov (United States)

    Xu, Man; Arku, Benedict; Jartti, Tuomas; Koskinen, Janne; Peltola, Ville; Hedman, Klaus; Söderlund-Venermo, Maria

    2017-05-15

    Human bocavirus (HBoV) 1 can cause life-threatening respiratory tract infection in children. Diagnosing acute HBoV1 infection is challenging owing to long-term airway persistence. We assessed whether messenger RNA (mRNA) detection would correlate better than DNA detection with acute HBoV1 infection. Paired serum samples from 121 children with acute wheezing were analyzed by means of serology. Quantitative polymerase chain reaction (PCR) and reverse-transcription (RT) PCR were applied to nasopharyngeal swab (NPS) samples from all acutely HBoV1-infected children and from controls with nonacute infection. By serology, 16 of 121 children (13.2%) had acute HBoV1 infection, all of whom had HBoV1 DNA in NPS samples, and 12 of 16 (75%) had HBoV1 mRNA. Among 25 children with nondiagnostic results, 6 had HBoV1 DNA in NPS samples, and 1 had mRNA. All 13 mRNA-positive samples exhibited high DNA loads (≥106 copies/mL). No mRNA persisted for 2 weeks, whereas HBoV1 DNA persisted for 2 months in 4 children; 1 year later all 15 samples were DNA negative. Compared with serology, DNA PCR had high clinical sensitivity (100%) but, because of viral persistence, low specificity (76%). In contrast, mRNA RT-PCR had low clinical sensitivity (75%) but high specificity (96%). A combination of HBoV1 serology and nasopharyngeal DNA quantitative PCR and mRNA RT-PCR should be used for accurate diagnosis of HBoV1 infection.

  7. Human Bocavirus in an Immunocompromised Child Presenting with Severe Diarrhea

    NARCIS (Netherlands)

    de Vries, Jutte J. C.; Bredius, Robbert G. M.; van Rheenen, Patrick F.; Smiers, Frans J. W.; Scholvinck, Elizabeth H.; Vossen, Ann C. T. M.; Claas, Eric C. J.; Niesters, Hubert G. M.

    Human bocavirus (HBoV) is frequently detected in young children with respiratory symptoms. However, the prevalence and pathogenicity of HBoV in immunocompromised patients are largely unknown. This report describes a case of life-threatening hypovolemic shock due to diarrhea associated with

  8. Impact of human bocavirus on children and their families

    NARCIS (Netherlands)

    Esposito, Susanna; Bosis, Samantha; Niesters, Hubert G M; Tremolati, Elena; Sabatini, Caterina; Porta, Alessandro; Fossali, Emilio; Osterhaus, Albert D M E; Principi, Nicola

    2008-01-01

    This study was planned to investigate the prevalence and clinical features of the illnesses associated with human bocavirus (hBoV) in children with acute disease. We prospectively enrolled all subjects aged less than 15 years attending an emergency room in Milan, Italy, on Wednesdays and Sundays bet

  9. Impact of human bocavirus on children and their families

    NARCIS (Netherlands)

    S. Esposito (Susanna); S. Bosis (Samantha); H.G.M. Niesters (Bert); E. Tremolati (Elena); C. Sabatini (Caterina); A. Porta (Alessandro); E. Fossali (Emilio); A.D.M.E. Osterhaus (Albert); N. Principi (Nicola)

    2008-01-01

    textabstractThis study was planned to investigate the prevalence and clinical features of the illnesses associated with human bocavirus (hBoV) in children with acute disease. We prospectively enrolled all subjects aged less than 15 years attending an emergency room in Milan, Italy, on Wednesdays and

  10. Human Bocavirus in an Immunocompromised Child Presenting with Severe Diarrhea

    NARCIS (Netherlands)

    de Vries, Jutte J. C.; Bredius, Robbert G. M.; van Rheenen, Patrick F.; Smiers, Frans J. W.; Scholvinck, Elizabeth H.; Vossen, Ann C. T. M.; Claas, Eric C. J.; Niesters, Hubert G. M.

    2009-01-01

    Human bocavirus (HBoV) is frequently detected in young children with respiratory symptoms. However, the prevalence and pathogenicity of HBoV in immunocompromised patients are largely unknown. This report describes a case of life-threatening hypovolemic shock due to diarrhea associated with dissemina

  11. Occurrence of human bocaviruses and parvovirus 4 in solid tissues.

    Science.gov (United States)

    Norja, Päivi; Hedman, Lea; Kantola, Kalle; Kemppainen, Kaisa; Suvilehto, Jari; Pitkäranta, Anne; Aaltonen, Leena-Maija; Seppänen, Mikko; Hedman, Klaus; Söderlund-Venermo, Maria

    2012-08-01

    Human bocaviruses 1-4 (HBoV1-4) and parvovirus 4 (PARV4) are recently discovered human parvoviruses. HBoV1 is associated with respiratory infections of young children, while HBoV2-4 are enteric viruses. The clinical manifestations of PARV4 remain unknown. The objective of this study was to determine whether the DNAs of HBoV1-4 and PARV4 persist in human tissues long after primary infection. Biopsies of tonsillar tissue, skin, and synovia were examined for HBoV1-4 DNA and PARV4 DNA by PCR. Serum samples from the tissue donors were assayed for HBoV1 and PARV4 IgG and IgM antibodies. To obtain species-specific seroprevalences for HBoV1 and for HBoV2/3 combined, the sera were analyzed after virus-like particle (VLP) competition. While HBoV1 DNA was detected exclusively in the tonsillar tissues of 16/438 individuals (3.7%), all of them ≤8 years of age. HBoV2-4 and PARV4 DNAs were absent from all tissue types. HBoV1 IgG seroprevalence was 94.9%. No subject had HBoV1 or PARV4 IgM, nor did they have PARV4 IgG. The results indicate that HBoV1 DNA occurred in a small proportion of tonsils of young children after recent primary HBoV1 infection, but did not persist long in the other tissue types studied, unlike parvovirus B19 DNA. The results obtained by the PARV4 assays are in line with previous results on PARV4 epidemiology. Copyright © 2012 Wiley Periodicals, Inc.

  12. El Bocavirus humano: un nuevo virus respiratorio Human bocavirus: a new respiratory virus

    Directory of Open Access Journals (Sweden)

    Carlos Aguirre Muñoz

    2006-01-01

    Full Text Available Las infecciones respiratorias agudas son una causa muy importante de morbilidad y mortalidad, especialmente en los niños y en los países en desarrollo. Con los métodos de laboratorio actuales, aproximadamente una tercera parte de estas infecciones se queda sin diagnóstico etiológico. Se acepta que los virus juegan un papel cardinal y que más de 200 virus, pertenecientes a seis familias virales están implicados en la génesis de este problema. La familia Parvoviridae se conoce desde mediados del siglo XX. El Parvovirus humano B19, identificado en 1980 y causante de enfermedades febriles y exantemáticas, fue considerado por muchos años como el único miembro de esta familia capaz de afectar a la especie humana. Sin embargo, un grupo de investigadores suecos comandado por Tobías Allander informó en agosto de 2005 el hallazgo de un nuevo Parvovirus, denominado provisionalmente Bocavirus humano, relacionado con infección respiratoria aguda en niños. En este artículo se resumen las características de este nuevo agente, se resalta la importancia de su hallazgo y de la técnica de investigación empleada. Respiratory tract infections are a leading cause of morbidity and mortality, mainly in children and also in developing countries. The aethiology of approximately 30% of these infections remains obscure, using current laboratory methods. It has been accepted that viruses play an important role and more than 200 viruses, belonging to 6 viral families are implied in the pathogenesis of this problem. Parvoviridae family has been known since the middle of the XX century. Human Parvovirus B19 was identified in 1980; it causes rashes and febrile diseases and it was considered for many years as the only member of this family able to affect humans. However, Dr. Tobias Allander and colleagues, at Karolinska Institut, have discovered a previously unknown parvovirus, called Human Bocavirus, that has been found to affect children, causing lower

  13. Human bocavirus in acute gastroenteritis in children in Brazil.

    Science.gov (United States)

    Campos, Gubio Soares; Silva Sampaio, Madina Lyve; Menezes, Aline Dorea Luz; Tigre, Dellane Martins; Moura Costa, Lilia Ferreira; Chinalia, Fabio Alexandre; Sardi, Silvia Ines

    2016-01-01

    Epidemiological surveillance for Human Bocavirus (HBoV) was conducted on 105 fecal specimens from children with acute gastroenteritis in Bahia, Brazil. Among of a total 105 stool samples, 44 samples were positive for HBoV as detected by nested-PCR. Of the 44 positive samples, co-infections with other enteric viruses (Norovirus, Adenovirus, and Rotavirus) were found in 12 pediatric patients. Mixed infections among HBoV with Norovirus were frequently observed in this population. The phylogenetic analysis identified the presence of HBoV-1, and HBoV 2A species. This study shows that HBoV is another viral pathogen in the etiology of acute gastroenteritis in children in Bahia, Brazil.

  14. Does human bocavirus infection depend on helper viruses? A challenging case report

    Directory of Open Access Journals (Sweden)

    Brockmann Michael

    2011-08-01

    Full Text Available Abstract A case of severe diarrhoea associated with synergistic human bocavirus type 1 (HBoV and human herpes virus type 6 (HHV6 is reported. The case supports the hypotheses that HBoV infection under clinical conditions may depend on helper viruses, or that HBoV replicates by a mechanism that is atypical for parvoviruses, or that HBoV infection can be specifically treated with cidofovir.

  15. Viral load of human bocavirus-1 in stools from children with viral diarrhoea in Paraguay.

    Science.gov (United States)

    Proenca-Modena, J L; Martinez, M; Amarilla, A A; Espínola, E E; Galeano, M E; Fariña, N; Russomando, G; Aquino, V H; Parra, G I; Arruda, E

    2013-12-01

    Since their discovery, four species of human bocavirus (HBoV) have been described in patients with respiratory and gastrointestinal diseases. However, a clear causal association between HBoV-1 and gastroenteritis has not been demonstrated. In this study, we describe the detection and quantification of HBoV-1 in stools from children with acute non-bacterial gastroenteritis using quantitative polymerase chain reaction. HBoV-1 genome was detected in 10.6% of stools with frequent association with rotavirus and norovirus. The median of HBoV-1 viral load was 1.88 × 104 genome/ml, lower than previously shown in secretions of patients with respiratory infections, without any obvious association between high viral load and presence of HBoV as single agent. Thus, although HBoV-1 was frequently detected in these patients, there is no clear causal association of this agent with diarrhoea. Indeed, HBoV-1 DNA in stools of patients with gastroenteritis without respiratory symptoms may be a remnant of previous infections or associated with prolonged shedding of virus in the respiratory or digestive tracts.

  16. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bin; Cai, Yingyue; Li, Yongshu [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Li, Jingjing [College of Life Science, Hubei Normal University, Huangshi 435002, Hubei (China); Liu, Kaiyu [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Li, Yi, E-mail: johnli2668@hotmail.com [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Bioengineering Department, Wuhan Bioengineering Institute, Wuhan 430415, Hubei (China); Yang, Yongbo, E-mail: yongboyang@mail.ccnu.edu.cn [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China)

    2013-05-25

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization.

  17. Recombination analysis based on the complete genome of bocavirus

    Directory of Open Access Journals (Sweden)

    Chen Shengxia

    2011-04-01

    Full Text Available Abstract Bocavirus include bovine parvovirus, minute virus of canine, porcine bocavirus, gorilla bocavirus, and Human bocaviruses 1-4 (HBoVs. Although recent reports showed that recombination happened in bocavirus, no systematical study investigated the recombination of bocavirus. The present study performed the phylogenetic and recombination analysis of bocavirus over the complete genomes available in GenBank. Results confirmed that recombination existed among bocavirus, including the likely inter-genotype recombination between HBoV1 and HBoV4, and intra-genotype recombination among HBoV2 variants. Moreover, it is the first report revealing the recombination that occurred between minute viruses of canine.

  18. Hypertrophic adenoid is a major infection site of human bocavirus 1.

    Science.gov (United States)

    Proenca-Modena, J L; Paula, F E; Buzatto, G P; Carenzi, L R; Saturno, T H; Prates, M C; Silva, M L; Delcaro, L S; Valera, F C P; Tamashiro, E; Anselmo-Lima, W T; Arruda, E

    2014-08-01

    Human bocavirus 1 (HBoV1) is associated with respiratory infections worldwide, mainly in children. Similar to other parvoviruses, it is believed that HBoV1 can persist for long periods of time in humans, probably through maintaining concatemers of the virus single-stranded DNA genome in the nuclei of infected cells. Recently, HBoV-1 was detected in high rates in adenoid and palatine tonsils samples from patients with chronic adenotonsillar diseases, but nothing is known about the virus replication levels in those tissues. A 3-year prospective hospital-based study was conducted to detect and quantify HBoV1 DNA and mRNAs in samples of the adenoids (AD), palatine tonsils (PT), nasopharyngeal secretions (NPS), and peripheral blood (PB) from patients undergoing tonsillectomy for tonsillar hypertrophy or recurrent tonsillitis. HBoV1 was detected in 25.3% of the AD samples, while the rates of detection in the PT, NPS, and PB samples were 7.2%, 10.5%, and 1.7%, respectively. The viral loads were higher in AD samples, and 27.3% of the patients with HBoV had mRNA detectable in this tissue. High viral loads and detectable mRNA in the AD were associated with HBoV1 detection in the other sample sites. The adenoids are an important site of HBoV1 replication and persistence in children with tonsillar hypertrophy. The adenoids contain high HBoV1 loads and are frequently positive for HBoV mRNA, and this is associated with the detection of HBoV1 in secretions.

  19. High prevalence of antibodies against polyomavirus WU, polyomavirus KI, and human bocavirus in German blood donors

    Directory of Open Access Journals (Sweden)

    Opitz Andreas

    2010-07-01

    Full Text Available Abstract Background DNA of the polyomaviruses WU (WUPyV and KI (KIPyV and of human bocavirus (HBoV has been detected with varying frequency in respiratory tract samples of children. However, only little is known about the humoral immune response against these viruses. Our aim was to establish virus-specific serological assays and to determine the prevalence of immunoglobulin G (IgG against these three viruses in the general population. Methods The capsid proteins VP1 of WUPyV and KIPyV and VP2 of HBoV were cloned into baculovirus vectors and expressed in Sf9 insect cells. IgG antibodies against WUPyV VP1, KIPyV VP1, and HBoV VP2 were determined by immunofluorescence assays in 100 plasma samples of blood donors. Results The median age of the blood donors was 31 years (range 20 - 66 yrs, 52% were male. 89% of the samples were positive for WUPyV IgG (median age 31 yrs, 49.4% male, 67% were positive for KIPyV IgG (median age 32 yrs, 46.3% male, and 76% were positive for HBoV IgG (median age 32 yrs, 51.3% male. For WUPyV and HBoV, there were no significant differences of the seropositivity rates with respect to age groups or gender. For KIPyV, the seropositivity rate increased significantly from 59% in the age group 20 - 29 years to 100% in the age group > 50 years. Conclusions High prevalences of antibodies against WUPyV, KIPyV, and HBoV were found in plasma samples of healthy adults. The results indicate that primary infection with these viruses occurs during childhood or youth. For KIPyV, the seropositivity appears to increase further during adulthood.

  20. Clinical description of human bocavirus viremia in children with LRTI, Eastern Province, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Dalal K Bubshait

    2015-01-01

    Full Text Available Human bocavirus (HBoV is a major etiology of lower respiratory tract infection (LRTI in young children. We tested 149 patients admitted to King Fahd Hospital of the University with diagnosis of LRTI. Viremia caused by the different studied viruses was detected in 31.5% of the total cases by Real-time Polymerase chain reaction. We report five patients who were positive for HBoV in serum samples. Clinical presentation ranged from mild to severe disease as one of them required admission to intensive care unit. Wheezing was a striking feature in most of our patients, but fever was not a consistent finding.

  1. Detection and monitoring of human bocavirus 1 infection by a new rapid antigen test

    Science.gov (United States)

    Bruning, A.H.L.; Susi, P.; Toivola, H.; Christensen, A.; Söderlund-Venermo, M.; Hedman, K.; Aatola, H.; Zvirbliene, A.; Koskinen, J.O.

    2016-01-01

    Clinically relevant diagnosis of human bocavirus 1 (HBoV1) is challenging, as the virus is frequently detected in asymptomatic patients, and cofindings with other respiratory viruses are common. The clinical value of current diagnostic methods, such as PCR, is therefore low, and alternative diagnostic strategies are needed. We describe for the first time the use of an antigen detection assay for the rapid identification of HBoV1 in a paediatric patient with respiratory tract infection symptoms. We estimate the duration of active HBoV1 infection to be 6 days. PMID:27014463

  2. Detection and monitoring of human bocavirus 1 infection by a new rapid antigen test

    Directory of Open Access Journals (Sweden)

    A.H.L. Bruning

    2016-05-01

    Full Text Available Clinically relevant diagnosis of human bocavirus 1 (HBoV1 is challenging, as the virus is frequently detected in asymptomatic patients, and cofindings with other respiratory viruses are common. The clinical value of current diagnostic methods, such as PCR, is therefore low, and alternative diagnostic strategies are needed. We describe for the first time the use of an antigen detection assay for the rapid identification of HBoV1 in a paediatric patient with respiratory tract infection symptoms. We estimate the duration of active HBoV1 infection to be 6 days.

  3. Clinical and epidemiologic characteristics of human bocavirus in Danish infants: results from a prospective birth cohort study

    DEFF Research Database (Denmark)

    von Linstow, Marie-Louise; Høgh, Mette; Høgh, Birthe

    2008-01-01

    BACKGROUND: Human bocavirus (HBoV) is a recently discovered parvovirus that has been detected in respiratory samples from children with acute respiratory tract infection (ARTI) and in feces from children with gastroenteritis. However, its role as a causative agent of respiratory disease is not de......BACKGROUND: Human bocavirus (HBoV) is a recently discovered parvovirus that has been detected in respiratory samples from children with acute respiratory tract infection (ARTI) and in feces from children with gastroenteritis. However, its role as a causative agent of respiratory disease...

  4. Simultaneous atelectasis in human bocavirus infected monozygotic twins: was it plastic bronchitis?

    Science.gov (United States)

    Rüegger, Christoph M; Bär, Walter; Iseli, Peter

    2013-12-18

    Plastic bronchitis is an extremely rare disease characterized by the formation of tracheobronchial airway casts, which are composed of a fibrinous exudate with rubber-like consistency and cause respiratory distress as a result of severe airflow obstruction. Bronchial casts may be associated with congenital and acquired cardiopathies, bronchopulmonary diseases leading to mucus hypersecretion, and pulmonary lymphatic abnormalities. In recent years, however, there is growing evidence that plastic bronchitis can also be triggered by common respiratory tract infections and thereby cause atelectasis even in otherwise healthy children. We report on 22-month-old monozygotic twins presenting with atelectasis triggered by a simple respiratory tract infection. The clinical, laboratory, and radiographic findings given, bronchial cast formation was suspected in both infants but could only be confirmed after bronchoscopy in the first case. Real-time polymerase chain reaction of the removed cast as well as nasal lavage fluid of both infants demonstrated strong positivity for human bocavirus. Our case report is the first to describe two simultaneously affected monozygotic twins and substantiates the hypothesis of a contributing genetic factor in the pathophysiology of this disease. In this second report related to human bocavirus, we show additional evidence that this condition can be triggered by a simple respiratory tract infection in previously healthy infants.

  5. [Detection of human parvovirus B19, human bocavirus and human parvovirus 4 infections in blood samples among 95 patients with liver disease in Nanjing by nested PCR].

    Science.gov (United States)

    Tong, Rui; Zhou, Wei-Min; Liu, Xi-Jun; Wang, Yue; Lou, Yong-Liang; Tan, Wen-Jie

    2013-04-01

    To analyze the infection of human parvovirus B19, human bocavirus (HBoV) and human parvovirus 4 (PARV4) in blood samples among patients with liver disease in Nanjing by molecular detection. Nested PCR assays were designed and validated to detect B19, HBoV and PARV4, respectively. The assays were used to screen three parvoviruses in blood samples from 95 patients with different liver disease in Nanjing. The parvovirus infection was analyzed statistically. The detection limits were 10 copies of genomic DNA equivalents per reaction for each assays and the good specificity were observed. The frequency of B19 and HBoV were 2/95 (2.1%) and 9/95 (9.5%) in blood samples respectively. No PARV4 was detected. HBoV was detected in 3/5 patients with drug-induced hepatitis. Both B19 and HBoV infection were detected in blood from patients with liver disease.

  6. Human bocavirus in hospitalized children with acute gastroenteritis in Russia from 2010 to 2012.

    Science.gov (United States)

    Tymentsev, Alexander; Tikunov, Artem; Zhirakovskaia, Elena; Kurilschikov, Alexander; Babkin, Igor; Klemesheva, Vera; Netesov, Sergei; Tikunova, Nina

    2016-01-01

    Human bocavirus (HBoV) can cause respiratory diseases and is detectable in the stool samples of patients with gastroenteritis. To assess the prevalence of HBoV in children hospitalized with acute gastroenteritis in Novosibirsk, Russia, as well as its genetic diversity and the potential role in the etiology of gastroenteritis in this region, a total of 5502 stool samples from children hospitalized with gastroenteritis from 2010 to 2012, n=5250, and healthy children, n=252, were assayed for the presence of HBoV DNA by semi-nested PCR. The HBoV DNA was found in 1.2% of stool samples from children, with gastroenteritis varying from 0.5% in 2012 to 1.7% in 2011. The prevalence of HBoV in healthy children was 0.3%. HBoV strains were detected throughout the year with an increase in the fall-winter season. In 87% of cases, HBoV was detected in children before 1 year of age. All known HBoV genetic variants have been detected in Novosibirsk, although with different prevalences: HBoV2>HBoV1>HBoV4>HBoV3. At the beginning of 2011, HBoV2 replaced HBoV1 as the most prevalent variant. The median age of children with detected HBoV1 was 8.3months, and that with HBoV2 was 8.0 months. All HBoV-positive samples were assayed for the presence of the rotaviruses A and C, norovirus GII, astrovirus, enterovirus, adenovirus F, Salmonella spp., Campylobacter spp., Shigella spp., and EIEC. HBoV1 and HBoV2 as single agents were found in 45.8% and 60% samples, respectively, although this difference was not statistically significant. In the case of co-infections, HBoV was most frequently recorded with rotavirus A and norovirus GII. This study demonstrated that the detection rate of HBoV in stool samples from children with gastroenteritis was low, although both HBoV1 and HBoV2 could be found as the sole agents in children with gastroenteritis in Novosibirsk.

  7. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruoxi [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Fang, Liurong, E-mail: fanglr@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Wang, Dang; Cai, Kaimei; Zhang, Huan [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Xie, Lilan; Li, Yi [College of Life Science and Technology, Wuhan Institute of Bioengineering, Wuhan 430415 (China); Chen, Huanchun; Xiao, Shaobo [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China)

    2015-11-15

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses. - Highlights: • Porcine bocavirus (PBoV) NP1 interferes with the IFN α/β signaling pathway. • PBoV NP1 does not prevent STAT1/STAT2 phosphorylation and nuclear translocation. • PBoV NP1 inhibits the DNA-binding activity of ISGF3. • PBoV NP1 interacts with the DNA-binding domain of IRF9.

  8. A novel integrated strategy for detection of human bocavirus based on a heminested PCR assay combined with boiling lysis method of samples in human specimens.

    Science.gov (United States)

    Chen, Long; Yao, Qing; Ma, Jing; Li, Jianning; Zhang, Qian; Yang, Yi; Li, Fang; Sun, Yuning

    2014-07-01

    Human bocavirus (HBoV) has been shown to be associated with acute respiratory tract infection in children. The aim of the work was to develop a novel integrated strategy for human bocavirus detection: heminested PCR assay combined with boiling lysis method of samples. The detection limit of the heminested PCR assay was 1.2 copies of a recombinant DNA plasmid, and no cross-reaction with other respiratory viruses or bacteria was observed. By using the integrated strategy, a total of 202 secretions of the lower respiratory tract of children with acute respiratory diseases were collected and tested. The samples were treated and lysed in boiling lysis buffer rather than extracting viral DNA from secretions, then these sample lysates could be templates and tested by heminested PCR assay, and the amplification of HBoV DNA was detected by using agarose gel electrophoresis. The results showed that, only 7 samples were found to be positive by conventional single-round PCR; importantly, the other new 41 samples were positive by heminested PCR assay. Additionally, the genomic viral DNA was extracted from all positive and some negative specimens, amplified, and sequenced. The results were perfectly consistent with those of the integrated strategy. Taken together, these results suggest that the novel integrated strategy (heminested PCR assay combined with boiling lysis method of samples) is a convenient, sensitive, cost-effective and reliable detective method for HBoV detection and will have broad application prospects in clinical diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Novel canine bocavirus strain associated with severe enteritis in a dog litter.

    Science.gov (United States)

    Bodewes, Rogier; Lapp, Stefanie; Hahn, Kerstin; Habierski, André; Förster, Christine; König, Matthias; Wohlsein, Peter; Osterhaus, Albert D M E; Baumgärtner, Wolfgang

    2014-11-07

    Bocaviruses are small non-enveloped viruses with a linear ssDNA genome, that belong to the genus Bocaparvovirus of the subfamiliy Parvovirinae. Bocavirus infections are associated with a wide spectrum of disease in humans and various mammalian species. Here we describe a fatal enteritis associated with infection with a novel strain of canine bocavirus 2 (CaBoV-2), that occurred in a litter of German wirehaired pointers. Necropsy performed on three puppies revealed an enteritis reminiscent of canine parvovirus associated enteritis, accompanied with signs of lymphocytolytic disease in bone marrow, spleen, lymph nodes and thymus. While other major causes of enteritis of young dogs, including canine parvovirus, were excluded, by random PCR in combination with next-generation sequencing, a novel CaBoV-2 strain was detected. Phylogenetic analysis of the genome of this novel canine bocavirus strain indicated that this virus was indeed most closely related to group 2 canine bocaviruses. Infection with canine bocavirus was confirmed by in situ hybridization, which revealed the presence of CaBoV-2 nucleic acid in the intestinal tract and lymphoid tissues of the dogs. In a small-scale retrospective analysis concerning the role of CaBoV-2 no additional cases were identified. The findings of this study provide novel insights into the pathogenicity of canine bocaviruses.

  10. Conserved B-cell epitopes among human bocavirus species indicate potential diagnostic targets.

    Directory of Open Access Journals (Sweden)

    Zhuo Zhou

    Full Text Available BACKGROUND: Human bocavirus species 1-4 (HBoV1-4 have been associated with respiratory and enteric infections in children. However, the immunological mechanisms in response to HBoV infections are not fully understood. Though previous studies have shown cross-reactivities between HBoV species, the epitopes responsible for this phenomenon remain unknown. In this study, we used genomic and immunologic approaches to identify the reactive epitopes conserved across multiple HBoV species and explored their potential as the basis of a novel diagnostic test for HBoVs. METHODOLOGY/PRINCIPAL FINDINGS: We generated HBoV1-3 VP2 gene fragment phage display libraries (GFPDLs and used these libraries to analyze mouse antisera against VP2 protein of HBoV1, 2, and 3, and human sera positive for HBoVs. Using this approach, we mapped four epitope clusters of HBoVs and identified two immunodominant peptides--P1 (¹MSDTDIQDQQPDTVDAPQNT²⁰, and P2 (¹⁶²EHAYPNASHPWDEDVMPDL¹⁸⁰--that are conserved among HBoV1-4. To confirm epitope immunogenicity, we immunized mice with the immunodominant P1 and P2 peptides identified in our screen and found that they elicited high titer antibodies in mice. These two antibodies could only recognize the VP2 of HBoV 1-4 in Western blot assays, rather than those of the two other parvoviruses human parvovirus B19 and human parvovirus 4 (PARV4. Based on our findings, we evaluated epitope-based peptide-IgM ELISAs as potential diagnostic tools for HBoVs IgM antibodies. We found that the P1+P2-IgM ELISA showed a higher sensitivity and specificity in HBoVs IgM detection than the assays using a single peptide. CONCLUSIONS/SIGNIFICANCE: The identification of the conserved B-cell epitopes among human bocavirus species contributes to our understanding of immunological cross-reactivities of HBoVs, and provides important insights for the development of HBoV diagnostic tools.

  11. Detection of human bocavirus from children and adults with acute respiratory tract illness in Guangzhou, southern China

    Directory of Open Access Journals (Sweden)

    Liu Wen-Kuan

    2011-12-01

    Full Text Available Abstract Background Human bocavirus (HBoV is a newly discovered parvovirus associated with acute respiratory tract illness (ARTI and gastrointestinal illness. Our study is the first to analyze the characteristics of HBoV-positive samples from ARTI patients with a wide age distribution from Guangzhou, southern China. Methods Throat swabs (n=2811 were collected and analyzed from children and adults with ARTI over a 13-month period. The HBoV complete genome from a 60 year-old female patient isolate was also determined. Results HBoV DNA was detected in 65/2811 (2.3% samples, of which 61/1797 were from children (Mycoplasma pneumoniae had the highest frequency of 16.9% (11/65. Upper and lower respiratory tract illness were common symptoms, with 19/65 (29.2% patients diagnosed with pneumonia by chest radiography. All four adult patients had systemic influenza-like symptoms. Phylogenetic analysis of the complete genome revealed a close relationship with other HBoVs, and a more distant relationship with HBoV2 and HBoV3. Conclusions HBoV was detected from children and adults with ARTI from Guangzhou, southern China. Elderly people were also susceptive to HBoV. A single lineage of HBoV was detected among a wide age distribution of patients with ARTI.

  12. Human bocavirus infections are common in Beijing population indicated by sero-antibody prevalence analysis

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lin-qing; QIAN Yuan; ZHU Ru-nan; DENG Jie; WANG Fang; DONG Hui-jin; SUN Yu; LI Yan

    2009-01-01

    Background Human bocavirus (HBoV) is a newly identified human parvovirus that was originally detected in the respiratory secretions of children with respiratory infections. This study aimed to learn about the importance of HBoV infections by revealing the prevalence of serum antibodies against HBoV in Beijing population.Methods Two batches of serum specimens collected in different periods were tested by Western blotting for specific IgG against HBoV using recombinant VP2 as antigen.Results Out of 677 serum specimens collected during April 1996 to March 1997, 400 (59.1%) were positive and antibody positive rate for another batch of 141 serum specimens collected in August, 2005 from adults aged from 20 years to over 60 years was 78.7% (111/141). Comparison of the sero-prevalence profiles for serum specimens collected during 1996-1997 to those collected in 2005 indicated that the antibody positive rate for specimens collected in 2005 was higher than that of the corresponding age groups collected during 1996-1997.Conclusions The data suggest that HBoV has been circulating in Beijing population for at least over 10 years, and most of children had been exposed to HBoV by age of 7 years. Higher HBoV antibody positive rate shown in the serum specimens collected in 2005 suggested that infections by HBoV have been increased in Beijing population in recent years.

  13. Markers of a recent bocavirus infection in children with Kawasaki disease: "a year prospective study".

    Science.gov (United States)

    Bajolle, F; Meritet, J-F; Rozenberg, F; Chalumeau, M; Bonnet, D; Gendrel, D; Lebon, P

    2014-12-01

    Retrospective studies and case-reports have suggested the possible role of various viruses in the pathogenesis of the Kawasaki disease. To determine prospectively the incidence of Kawasaki diseases associated with a recent bocavirus infection in the course of a year. Thirty-two children with Kawasaki disease were enrolled in a 13 months prospective study to assess the frequency of human bocavirus type 1 infections. Seasonal shedding of virus, markers of recent infection such as viraemia, viral load, and serum interferon alpha were analyzed. Three of 32 (9%) children had HBoV-DNA in the serum suggesting a recent infection. HBoV-DNA was detected in naso-pharyngeal aspiration of 7/32 (21.8%) children with Kawasaki Disease and six of them (18%) had an increased viral load. No common respiratory viruses were isolated from the 32 patients with the exception of one adenovirus. The seven bocaviruses were identified during the winter-spring season. In addition, 4 of 7 of Kawasaki disease patients shedding bocavirus had detectable interferon alpha in the blood, indicating a possible active or recent viral infection. This study shows that a recent bocavirus infection is concomitant with the onset of some cases of Kawasaki disease. Bocavirus may be a cofactor in the pathogenesis of this disease as previously reported for other infectious agents. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Clinical and microbiological impact of human bocavirus on children with acute otitis media.

    Science.gov (United States)

    Beder, Levent Bekir; Hotomi, Muneki; Ogami, Masashi; Yamauchi, Kazuma; Shimada, Jun; Billal, Dewan Sakhawat; Ishiguro, Nobuhisa; Yamanaka, Noboru

    2009-11-01

    Human Bocavirus (HBoV) as a newly discovered parvovirus has been commonly detected in respiratory tract infections. However, its role in acute otitis media (AOM) has not been well studied. We examined HBoV in Japanese children with AOM and evaluated the virus prevalence together with clinical manifestations and bacterial findings. Overall, 222 nasopharyngeal swabs and 176 middle ear fluids (MEF) samples were collected from 222 children with AOM (median age, 19 months) between May 2006 and April 2007. HBoV detection was performed by PCR and bacterial isolation by standard culture methods. HBoV was found in the nasopharyngeal aspirates of 14 children (6.3%) and in the MEF of six children (2.7%). When HBoV detection results were evaluated with clinical characteristics of children, resolution time of AOM was significantly longer (p=0.04), and rate of fever symptom was also higher in HBoV-positive group (p=0.04). Furthermore, we found positive correlation between detection of HBoV and Streptococcus pneumoniae in the MEF (p=0.004). Nevertheless, nasopharyngeal proportion of S. pneumoniae was similar between virus positive and negative groups. Furthermore, S. pneumoniae was detected as a single pathogen in all MEF of HBoV-positive cases but one, while it presents mixed with other pathogenic bacteria in nasopharynx. In conclusion, HBoV may worsen the clinical symptoms and prolong the clinical outcome of AOM in pediatric population. Finally, HBoV may prime the secondary bacterial infection in the middle ear in favor of S. pneumoniae.

  15. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9.

    Science.gov (United States)

    Zhang, Ruoxi; Fang, Liurong; Wang, Dang; Cai, Kaimei; Zhang, Huan; Xie, Lilan; Li, Yi; Chen, Huanchun; Xiao, Shaobo

    2015-11-01

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses.

  16. A novel bocavirus in canine liver

    Directory of Open Access Journals (Sweden)

    Li Linlin

    2013-02-01

    Full Text Available Abstract Background Bocaviruses are classified as a genus within the Parvoviridae family of single-stranded DNA viruses and are pathogenic in some mammalian species. Two species have been previously reported in dogs, minute virus of canines (MVC, associated with neonatal diseases and fertility disorders; and Canine bocavirus (CBoV, associated with respiratory disease. Findings In this study using deep sequencing of enriched viral particles from the liver of a dog with severe hemorrhagic gastroenteritis, necrotizing vasculitis, granulomatous lymphadenitis and anuric renal failure, we identified and characterized a novel bocavirus we named Canine bocavirus 3 (CnBoV3. The three major ORFs of CnBoV3 (NS1, NP1 and VP1 shared less than 60% aa identity with those of other bocaviruses qualifying it as a novel species based on ICTV criteria. Inverse PCR showed the presence of concatemerized or circular forms of the genome in liver. Conclusions We genetically characterized a bocavirus in a dog liver that is highly distinct from prior canine bocaviruses found in respiratory and fecal samples. Its role in this animal’s complex disease remains to be determined.

  17. Detection of human bocavirus and human metapneumovirus by real-time PCR from patients with respiratory symptoms in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Diogo André Pilger

    2011-02-01

    Full Text Available The introduction of newer molecular methods has led to the discovery of new respiratory viruses, such as human metapneumovirus (hMPV and human bocavirus (hBoV, in respiratory tract specimens. We have studied the occurrence of hMPV and hBoV in the Porto Alegre (PA metropolitan area, one of the southernmost cities of Brazil, evaluating children with suspected lower respiratory tract infection from May 2007-June 2008. A real-time polymerase chain reaction method was used for amplification and detection of hMPV and hBoV and to evaluate coinfections with respiratory syncytial virus (RSV, influenza A and B, parainfluenza 1, 2 and 3, human rhinovirus and human adenovirus. Of the 455 nasopharyngeal aspirates tested, hMPV was detected in 14.5% of samples and hBoV in 13.2%. A unique causative viral agent was identified in 46.2% samples and the coinfection rate was 43.7%. For hBoV, 98.3% of all positive samples were from patients with mixed infections. Similarly, 84.8% of all hMPV-positive results were also observed in mixed infections. Both hBoV and hMPV usually appeared with RSV. In summary, this is the first confirmation that hMPV and hBoV circulate in PA; this provides evidence of frequent involvement of both viruses in children with clinical signs of acute viral respiratory tract infection, although they mainly appeared as coinfection agents.

  18. Alternative Polyadenylation of Human Bocavirus at Its 3′ End Is Regulated by Multiple Elements and Affects Capsid Expression

    Science.gov (United States)

    Hao, Sujuan; Zhang, Junmei; Chen, Zhen; Xu, Huanzhou; Wang, Hanzhong

    2016-01-01

    ABSTRACT Alternative processing of human bocavirus (HBoV) P5 promoter-transcribed RNA is critical for generating the structural and nonstructural protein-encoding mRNA transcripts. The regulatory mechanism by which HBoV RNA transcripts are polyadenylated at proximal [(pA)p] or distal [(pA)d] polyadenylation sites is still unclear. We constructed a recombinant HBoV infectious clone to study the alternative polyadenylation regulation of HBoV. Surprisingly, in addition to the reported distal polyadenylation site, (pA)d, a novel distal polyadenylation site, (pA)d2, which is located in the right-end hairpin (REH), was identified during infectious clone transfection or recombinant virus infection. (pA)d2 does not contain typical hexanucleotide polyadenylation signal, upstream elements (USE), or downstream elements (DSE) according to sequence analysis. Further study showed that HBoV nonstructural protein NS1, REH, and cis elements of (pA)d were necessary and sufficient for efficient polyadenylation at (pA)d2. The distance and sequences between (pA)d and (pA)d2 also played a key role in the regulation of polyadenylation at (pA)d2. Finally, we demonstrated that efficient polyadenylation at (pA)d2 resulted in increased HBoV capsid mRNA transcripts and protein translation. Thus, our study revealed that all the bocaviruses have distal poly(A) signals on the right-end palindromic terminus, and alternative polyadenylation at the HBoV 3′ end regulates its capsid expression. IMPORTANCE The distal polyadenylation site, (pA)d, of HBoV is located about 400 nucleotides (nt) from the right-end palindromic terminus, which is different from those of bovine parvovirus (BPV) and canine minute virus (MVC) in the same genus whose distal polyadenylation is located in the right-end stem-loop structure. A novel polyadenylation site, (pA)d2, was identified in the right-end hairpin of HBoV during infectious clone transfection or recombinant virus infection. Sequence analysis showed that (pA)d2

  19. [First report of complete genome sequence and phylogenetic analysis of Human Bocavirus 1 isolated in Argentina].

    Science.gov (United States)

    Cardozo Tomas, Agustina; Ghietto, Lucia Maria; Insfran, Constanza; Wasinger, Nicolas; Marchesi, Ariana; Adamo, Maria Pilar

    2015-01-01

    Antecedentes. El Bocavirus humano (HBoV) es un parvovirus descripto por primera vez en 2005, asociado a cuadros leves y graves de infección respiratoria aguda (IRA), una de las principales causas de morbimortalidad en la población infantil en todo el mundo. Al presente se han identificado 4 genotipos, nombradas HBoV1 a 4, de los cuales el primero es el que se asocia a IRA con predominancia. Objetivo. Obtener el genoma completo de HBoV respiratorio aislado localmente. Métodos. Se diseñaron primers para fragmentos superpuestos del genoma completo de HBoV, empleando las herramientas informáticas ClustalW y NCBI Primer-Blast. Los fragmentos se amplificaron por PCR convencional y se secuenciaron mediante tecnología capilar BigDye Terminator. La edición de las secuencias y análisis filogenético se realizó con el programa MEGA v6. Resultados. Se obtuvo la secuencia genómica completa de HBoV1 cepa 307AR09, aislada de secreción respiratoria de paciente pediátrico con bronquiolitis. La misma fue depositada en la base de datos GenBank con número de acceso KJ634207. El análisis filogenético con secuencias genómicas completas de los 4 genotipos obtenidas en distintas regiones del mundo muestra similitud cercana al 100% con la secuencia original descubierta en Suecia (DQ000495), así como el agrupamiento de los 4 genotipos en 2 clusters de alta homología interna: HBoV1-HBoV3 y HBoV2-HBoV4. Conclusiones. Se aportan datos locales para futuros desarrollos tecnológicos destinados tanto a la investigación como al diseño de métodos diagnósticos para la práctica médica. Por otra parte, los resultados sustentan la propuesta de redistribución taxonómica de los 4 genotipos en 2 especies.

  20. Genomic characterization and high prevalence of bocaviruses in swine.

    Directory of Open Access Journals (Sweden)

    Tongling Shan

    Full Text Available Using random PCR amplification followed by plasmid subcloning and DNA sequencing, we detected bocavirus related sequences in 9 out of 17 porcine stool samples. Using primer walking, we sequenced the nearly complete genomes of two highly divergent bocaviruses we provisionally named porcine bocavirus 1 isolate H18 (PBoV1-H18 and porcine bocavirus 2 isolate A6 (PBoV2-A6 which differed by 51.8% in their NS1 protein. Phylogenetic analysis indicated that PBoV1-H18 was very closely related to a ∼2 Kb central region of a porcine bocavirus-like virus (PBo-LikeV from Sweden described in 2009. PBoV2-A6 was very closely related to the porcine bocavirus genomes PBoV-1 and PBoV2 from China described in 2010. Among 340 fecal samples collected from different age, asymptomatic swine in five Chinese provinces, the prevalence of PBoV1-H18 and PBoV2-A6 related viruses were 45-75% and 55-70% respectively, with 30-47% of pigs co-infected. PBoV1-A6 related strains were highly conserved, while PBoV2-H18 related strains were more diverse, grouping into two genotypes corresponding to the previously described PBoV1 and PBoV2. Together with the recently described partial bocavirus genomes labeled V6 and V7, a total of three major porcine bocavirus clades have therefore been described to date. Further studies will be required to elucidate the possible pathogenic impact of these diverse bocaviruses either alone or in combination with other porcine viruses.

  1. Detection of Human Bocavirus in Children with Acute Respiratory Tract Infections in Lanzhou and Nanjing, China

    Institute of Scientific and Technical Information of China (English)

    WU Jian Jun; ZHANG Jing; ZHAO Yang; GAO Xiao Qian; DUAN Zhao Jun; JIN Yu; LIN Na; XIE Zhi Ping; YU Jie Mei; LI Jin Song; CAO Chang Qing; YUAN Xin Hui; SONG Jin Rong

    2014-01-01

    Objective The aim of this study was to explore the prevalent characteristics of HBoV1 and its co-infection. Methods PCR was used to detect HBoV1-DNA (HBoV1) and other viruses. A multivariate logistic regression model was used to explore possibility of co-detected for related viruses. Results The positivity rates in Nanjing and Lanzhou were 9.38% (74/789) and 11.62% (161/1386), respectively (P>0.05). The HBoV1 positive group was younger than negative group (P Conclusions Presence of HBoV1 in nasopharyngeal aspirates did not correlate with region or gender, although the prevalence of HBoV1 was higher in younger children. There were no correlations between HBoV1 and other variables, except for the season and ADV, RSV, or IFVA infections.

  2. Porcine Bocavirus: Achievements in the Past Five Years

    Directory of Open Access Journals (Sweden)

    Feng Zhou

    2014-12-01

    Full Text Available Porcine bocavirus is a recently discovered virus that infects pigs and is classified within the Bocavirus genus (family Parvoviridae, subfamily Parvovirinae. The viral genome constitutes linear single-stranded DNA and has three open reading frames that encode four proteins: NS1, NP1, VP1, and VP2. There have been more than seven genotypes discovered to date. These genotypes have been classified into three groups based on VP1 sequence. Porcine bocavirus is much more prevalent in piglets that are co-infected with other pathogens than in healthy piglets. The virus can be detected using PCR, loop-mediated isothermal amplification, cell cultures, indirect immunofluorescence, and other molecular virology techniques. Porcine bocavirus has been detected in various samples, including stool, serum, lymph nodes, and tonsils. Because this virus was discovered only five years ago, there are still many unanswered questions that require further research. This review summarizes the current state of knowledge and primary research achievements regarding porcine bocavirus.

  3. Identification and characterization of a new bocavirus species in gorillas.

    Directory of Open Access Journals (Sweden)

    Amit Kapoor

    Full Text Available A novel parvovirus, provisionally named Gorilla Bocavirus species 1 (GBoV1, was identified in four stool samples from Western gorillas (Gorilla gorilla with acute enteritis. The complete genomic sequence of the new parvovirus revealed three open reading frames (ORFs with an organization similar to that of known bocaviruses. Phylogenetic analysis using complete capsid and non structural (NS gene sequence suggested that the new parvovirus is most closely related to human bocaviruses (HBoV. However, the NS ORF is more similar in length to the NS ORF found in canine minute virus and bovine parvovirus than in HBoV. Comparative genetic analysis using GBoV and HBoV genomes enabled characterization of unique splice donor and acceptor sites that appear to be highly conserved among all four HBoV species, and provided evidence for expression of two different NS proteins in all primate bocaviruses. GBoV is the first non-human primate bocavirus identified and provides new insights into the genetic diversity and evolution of this highly prevalent and recently discovered group of parvoviruses.

  4. [Research advances in porcine bocavirus].

    Science.gov (United States)

    Zhai, Shao-Lun; Chen, Sheng-Nan; Wei, Wen-Kang

    2012-03-01

    Porcine bocavirus (PBoV) was considered as a new member of the genus Bocavirus of the subfamily Parvovirinae of the family Parvoviridae, which was discovered in Swedish swine herds with postweaning multisystemic wasting syndrome (PMWS) in 2009. At present, as an emerging pathogen, it was paid great attention by researchers at home and abroad. This paper referred to some published literatures and reviewed several aspects of PBoV including its finding, classification, genome structure and replication, epidemiology, associativity with diseases, cultural and diagnostic methods.

  5. Molecular epidemiology and clinical severity of Human Bocavirus (HBoV) 1-4 in children with acute gastroenteritis from Pune, Western India.

    Science.gov (United States)

    Lasure, Neha; Gopalkrishna, Varanasi

    2017-01-01

    Although acute gastroenteritis is a major public health problem worldwide, ∼40% of the cases remain undiagnosed for any etiological agent. Human Bocavirus (HBoV) has been detected frequently in feces of diarrhoeic children suggesting its possible etiological involvement in the disease. HBoV has not been reported in association with acute gastroenteritis from India. Fecal samples (n = 418) collected from children (age ≤5 years) hospitalized with acute gastroenteritis, between January 2009 and December 2011, from three local hospitals were examined for presence of HBoV using PCR targeting the partial VP1/VP2 capsid region (∼575 bp) followed by phylogenetic analysis. HBoV was detected in 24/418 (5.7%) cases. Co-infection was observed in 5/24 (21%) cases. HBoV infections occurred in children ≤12 months of age. Peak HBoV activity was observed in monsoon and post monsoon season. All four HBoV genotypes were detected in the study region. Major clinical symptoms of HBoV mono infections included diarrhoea (100%), fever (90%), dehydration (74%), and vomiting (58%). Dehydration was observed in all of the HBoV2-4 cases and in 50% of the HBoV1 cases. Clinical severity varied with genotype (HBoV2 > HBoV1 > HBoV3 > HBoV4). HBoV2 cases recorded severe and very severe infections. The study illustrates prevalence and vast genetic diversity of HBoVs in acute gastroenteritis. It highlights the clinical features of HBoV1-4 infections and sheds light on clinical impact of HBoV genotypes in gastroenteritis. J. Med. Virol. 89:17-23, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. A Summary of Researches on Porcine Bocavirus%猪博卡病毒的研究概况

    Institute of Scientific and Technical Information of China (English)

    蔡扩军; 陈发喜; 李爱巧; 杨启元; 韩涌; 李建玲; 范玉娟

    2015-01-01

    博卡病毒是近几年被发现的一种人、猪、牛、犬、猩猩等多种哺乳动物共患的新型DNA病毒,本文概述了博卡病毒的生物学特性,从流行病学的角度介绍了猪博卡病在国内外流行情况及对猪博卡病毒的检测方法,为猪博卡病毒的深入研究、防控及做好公共卫生安全提供参考。%Bocavirus is a newly discovered DNA virus infecting human,swine,bovine,canine,gorilla and other mammal species in recent years. In this paper,studies on porcine Bocavirus were summarized with regard to its biological characteristics,epidemiology and distribution both at home and abroad,so as to provide reference for further study on porcine Bocavirus and its effective prevention and control.

  7. Seroprevalence of antibody against human bocavirus in Beijing, China%北京地区人群中人Boca病毒血清抗体的分析

    Institute of Scientific and Technical Information of China (English)

    赵林清; 钱渊; 朱汝南; 邓洁; 王芳; 董慧瑾

    2008-01-01

    Objective To find out the importance of human bocavirus (HBoV) as an infectious agent for population in Beijing, China. Seroprevalence study was conducted by using expressed recombinant major capsid VP2 protein as an antigen.Methods Serum specimens collected from infants and children who visited the Children's Hospital Affiliated to the Capital Institute of Pediatrics for health check-up and adults visiting the Xuanwu Hospital, Beijing for diseases other than respiratory infections from April 1996 to March 1997 were used for the investigation. The major capsid protein VP2 from HBoV was expressed in E. coli strain BL21 (DE3) with the transformed PET30b vector inserted with full-length VP2 gene of HBoV and the specific antigenicity of this expressed protein was validated by previous study. Western blotting was used to detect specific IgG antibody against HBoV in collected serum specimens diluted to 1:200. Mock expressed protein was E. coli cells strain BL21 (DE3) with the transformed PET30b vector without insert. Anti-His monoclonal antibody and rabbit anti-HBoV VP2 polypeptides hyper-immune serum were used as positive control for antibody detection.Results Out of 677 serum specimens tested, 400 (59.1% ) were positive for HBoV by Western blotting. About 45.3% (34/75) of the newborns under 1 month of age had anti-HBoV antibodies, and antibody positive rates were decreased in age groups of 1 and 2 months (41.4% and 31.3%, respectively) then increased in the following ages from 6 months to 7 years old ( from 45.6% to 69.7% ). The antibody positive rates were maintained at a relatively constant level ( about 70% ) in the age groups from 7 years to 40 years of age and became lower ( 61.8% - 62. 8% ) in those over 50 years.Conclusions The high seroprevalence of antibody against recombinant HBoV VP2 protein and early age antibody acquisition indicate that HBoV has been circulating in population of Beijing, China as early as in 1996 and most of children had been exposed to

  8. Seroprevalence of antibody against human bocavirus in Beijing, China%北京地区人群中人Boca病毒血清抗体的分析

    Institute of Scientific and Technical Information of China (English)

    赵林清; 钱渊; 朱汝南; 邓洁; 王芳; 董慧瑾; Li Yan

    2008-01-01

    Objective To find out the importance of human bocavirus(HBoV)as an infectious agent for population in Beijing,China,seroprevalence study was conducted by using expressed recombinant major capsid VP2 protein as an antigen.Methods Serum specimens collected from infants and children who visited the Children's Hospital Affiliated to the Capital Institute of Pediatrics for health check up and adults visited the Xuanwu Hospital,Beijing for diseases other than respiratory infections from April 1996 to March 1997 were used for investigation.The major capsid protein VP2 from HBoV was expressed in E.coli strain BL21(DE3)with the transformed PET30b vector inserted with full-length VP2 gene of HBo V and the specific antigenicity of this expressed protein was validated by previous study.Western blot was used to detect specific IgG antibody against HBoV in collected serum specimens diluted to 1:200.Mock expressed protein was E.coli cells strain B121(DE3)with the transformed PET30b vector without insert.Anti-His monoclonal antibody and rabbit anti-HBoV VP2 polypeptides hyper-immune serum were used as positive control for antibody detection.Results Out of 677 serum specimens tested,400(59.1%)were positive by Western blot.About 45.3%(34/75)of the newborns under 1 month of age had anti-HBoV antibodies,and antibody positive rates were lower in the age groups of 1 and 2 months(41.4% and 31.3%,respectively)and were higher in the following ages from 6 months to 7 years(from 45.6% to 69.7%).The antibody positive rates were at a relatively constant level(about 70%)in the age groups from 7 years to 40 years and became lower(61.8%-62.8%)in groups of age over 50 years.Conclusion The high seroprevalence against recombinant HBoV VP2 protein and early age antibody acquisition indicate that HBoV has been circulating in Beijing,China as early as in 1996 and most of children had been exposed to HBoV by the age of 7 years.Infants under the age of 6 months were susceptible to infection with this

  9. Molecular epidemiology of human Bocavirus infection in childhood diarrhea in Urumqi area%乌鲁木齐地区腹泻患儿中人博卡病毒感染分子流行病学调查

    Institute of Scientific and Technical Information of China (English)

    李奇凤; 张斌; 贾娜尔; 余亮; 柳彩霞; 段招军; 孙荷

    2012-01-01

    目的 了解新疆乌鲁木齐地区腹泻患儿中人博卡病毒1~4型(HBoV1 ~4)感染的分子流行情况.方法 收集新疆维吾尔自治区人民医院2011年1月至12月住院及门诊腹泻患儿粪便标本315例,用巢氏PCR扩增入博卡病毒(HBoV) NS1片段(518 bp),检测HBoV1~4型.结果 315份标本中,HBoV总阳性检出率为8.57% (27/315),其中HBoV1、2、3、4型分别为2例、22例、3例、0例.除XJ1378外,其他26例HBoV均与参考株的核苷酸同源性达到98% ~ 100%,但其中3例HBoV3型与大猩猩GBoV1型(HM145750.1)核苷酸同源性为92%,且系统进化显示HBoV3型NS1片段更接近于HBoV1型.HBoV感染呈全年散发,并无明显季节性.在性别、年龄及民族间均无差异.结论 本地区腹泻患儿中HBoV1 ~3型均有流行,且以HBoV2型为主要流行株.%Objective To analysis the molecular epidemiology characteristics of human Bocavirus1-4 ( HBoV 1-4) in children for diarrhea in Urumqi area.Methods Feces samples were collected from 315 in-patient and out-patient children with diarrhea at People's Hospital of Xinjiang Uygur Autonomous Region,Xinjiang Province,China,all through the year of 2011.Using nested PCR,which amplified NS1(518 bp) fragments.Human Bocavirus1-4 were screened. Results The overall frequency of HBoVs was 8.57% (27/315),of which 2 were HBoV1,22 were HBoV2,and 3 were HBoV3.HBoV4 was not detected.Except XJ1378,the rest of 26 strains shared 98%-100% nucleotide sequence identity with different reference strains,but 3 HBoV3 all shared 92% nucleotide sequence identity with gorilla BGoV12009( HM145750.1 ).Phylogeny showed that NS1 fragments of HBoV3 were closer to that of HBoV1.HBoV infection was distributing throughout the year,there was no significant seasonal.There was no difference in gender,age and ethnic.Conclusion HBoV1-3 were detected throughout the year in Urumqi area,Xinjiang,HBoV2 was dominant.

  10. [Very rare and life-threatening complications of bocavirus bronchiolitis: pneumomediastinum and bilateral pneumothorax].

    Science.gov (United States)

    Yeşilbaş, Osman; Kıhtır, Hasan Serdar; Talip Petmezci, Mey; Balkaya, Seda; Hatipoğlu, Nevin; Meşe, Sevim; Şevketoğlu, Esra

    2016-01-01

    Human bocavirus (HBoV), that was first identified in 2005 and classified in Parvoviridae family, is a small, non-enveloped, single-stranded DNA virus, responsible for upper and lower respiratory tract infections, especially in young children. Although HBoV generally causes self-limited influenza-like illness, it may also lead to pneumonia, bronchiolitis, croup and asthma attacks. In this report, a case of acute bronchiolitis complicated with pneumomediastinum and bilateral pneumothorax caused by HBoV has been presented. A three-year-old boy was referred to our pediatric intensive care unit with a two day history of fever, tachypnea, hypoxia and respiratory failure. On auscultation, there were widespread expiratory wheezing and inspiratory crackles. The chest radiography yielded paracardiac infiltration and air trapping on the right lung and infiltration on the left lung. The patient had leukocytosis and elevated C-reactive protein level. On the second day of admission, respiratory distress worsened and chest radiography revealed right pneumothorax and subcutaneous emphysema in bilateral cervical region and left chest wall. He was intubated because of respiratory failure. In the thorax computed tomography, pneumomediastinum and bilateral pneumothorax were detected and right chest tube was inserted. Repetitive blood and tracheal aspirate cultures were negative. A nasopharyngeal swab sample was analyzed by multiplex real-time polymerase chain reaction method with the use of viral respiratory panel (FTD(®) Respiratory Pathogens 21 Kit, Fast-Track Diagnostics), and positive result was detected for only HBoV. On the ninth day of admission, pneumomediastinum and bilateral pneumothorax improved completely and he was discharged with cure. In conclusion, HBoV bronchiolitis may progress rare but severe complications, it should be kept in mind as an etiological agent of the respiratory tract infections especially children younger than five years old.

  11. The future of human DNA vaccines.

    Science.gov (United States)

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-12-31

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans.

  12. Genetic characterization of feline bocavirus detected in cats in Japan.

    Science.gov (United States)

    Takano, Tomomi; Takadate, Yoshihiro; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2016-10-01

    Feline bocavirus (FBoV) has been classified into three genotypes (FBoV1-FBoV3). FBoVs are mainly detected in feces. In the present study, we collected rectal swabs from cats in Japan and examined the samples for the presence of FBoV. The FBoV infection rate was 9.9 % in 101 cats. No significant association was observed between FBoV infection and clinical symptoms. Based on the full-length NS1 protein, the three strains of FBoVs detected in the present study shared high homologies with the genotype 2 FBoV POR1 strain. This is the first study to report FBoV in Japan.

  13. 不同载量人博卡病毒肺炎患儿临床特征及肺功能分析%Analysis of Clinical Characteristics and Pulmonary Function of Children with Human Bocavirus Pneumonia

    Institute of Scientific and Technical Information of China (English)

    陈营; 刘伟东; 张桂芹; 尹芳; 李玲; 王美娟; 严永东; 徐宏; 顾国英

    2016-01-01

    目的:比较不同载量人博卡病毒(HBoV)肺炎患儿的临床特征及肺功能指标,了解HBoV载量与肺炎的关系,探讨HBoV致病机制.方法:选取2013年1-11月因支气管肺炎在苏州大学附属儿童医院呼吸科住院治疗的婴幼儿1 653例,应用荧光定量PCR法检测患儿痰液中HBoV-DNA,检出HBoV阳性患儿122例,其中高病毒载量组(HBoV-DNA≥1×104 copies/mL) 65例,低病毒载量组(HBoV-DNA<1×104 copies/mL)57例,比较两组患儿的临床特征;高载量组36例、低载量组28例进行肺功能检测,观测患儿潮气呼吸流速-容量环(TBFV环)形态及其各项指标变化.结果:不同HBoV载量感染组间临床症状比较,除喘息外,其他症状发生率差异均无统计学意义.但肺功能比较,高病毒载量组与低病毒载量组到达峰流速时间(TPTEF)、到达峰流速时呼出气量(VPTEF)及反映小气道功能指标到达峰流速时间/呼气时间(TPTEF/TE)、到达峰流速时呼出气量/呼气容积(VPTEF/VE)、剩余25%潮气量时呼气流速(TEF 25%)及剩余25%潮气量时的呼气流速/呼气峰速(TEF 25%/PF)均明显降低,且高病毒载量组上述值下降更明显,差异均有统计学意义(P<0.05);高、低病毒载量组中代表大气道功能的指标平均呼气流速/平均吸气流速(ME/MI)与正常对照组比较差异均无统计学意义.从TBFV环形态上看,HBoV肺炎患儿呼气峰左移,呼气相降支呈波谷样凹陷,且高病毒载量组凹陷更加明显.结论:苏州地区HBoV肺炎住院患儿存在一定的肺功能损害,主要表现为小气道阻塞性功能障碍.病毒载量与临床症状及肺功能损害程度相关,高载量组喘息发作率高,小气道损害明显.

  14. DNA Methylation Landscapes of Human Fetal Development

    NARCIS (Netherlands)

    Slieker, Roderick C.; Roost, Matthias S.; van Iperen, Liesbeth; Suchiman, H. Eka D; Tobi, Elmar W.; Carlotti, Françoise; de Koning, Eelco J P; Slagboom, P. Eline; Heijmans, Bastiaan T.; Chuva de Sousa Lopes, Susana M.

    2015-01-01

    Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA

  15. [Bocavirus in infants under 5 years with acute respiratory infection. Chaco Province, Argentina, 2014].

    Science.gov (United States)

    Deluca, Gerardo D; Urquijo, María Cecilia; Passarella, Carolina; Picón, César; Picón, Dimas; Acosta, María; Rovira, Carina; Marín, Héctor M

    2016-01-01

    Acute respiratory infection (ARI) is the most frequent pathology along human life, being the most common cause of morbidity and mortality in children under 5 years. The aim of this study was to determine the frequency of bocavirus (BoV) in infants under 5 years with symptoms of ARI from north Argentina (Chaco province). The study was performed on nasopharyngeal aspirates from 488 patients, in the period of January-December 2014. The samples were tested by real time PCR and 36 positive BoV cases (7.4%) were detected. The period with the highest detection rate was June-September with 28 cases (77.8%), of which 26 (72.2%) were infants between 6-18 moths of life. In half of BoV positive cases this virus was detected as single infection of the upper respiratory tract, and in the remaining 50%, as concomitant infection with other microorganisms. To our knowledge, this would be the first study on molecular epidemiology of BoV in northern Argentina. We emphasize the importance of investigating these new viruses capable of generating acute respiratory disease and also to disseminate awareness on their circulation within the community.

  16. Human Insulin from Recombinant DNA Technology

    Science.gov (United States)

    Johnson, Irving S.

    1983-02-01

    Human insulin produced by recombinant DNA technology is the first commercial health care product derived from this technology. Work on this product was initiated before there were federal guidelines for large-scale recombinant DNA work or commercial development of recombinant DNA products. The steps taken to facilitate acceptance of large-scale work and proof of the identity and safety of such a product are described. While basic studies in recombinant DNA technology will continue to have a profound impact on research in the life sciences, commercial applications may well be controlled by economic conditions and the availability of investment capital.

  17. Apoptosis and DNA damage in human spermatozoa

    Institute of Scientific and Technical Information of China (English)

    R John Aitken; Adam J Koppers

    2011-01-01

    DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis,resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apoptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy.

  18. DNA repair responses in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  19. Perinatal transmission of human papilomavirus DNA.

    Science.gov (United States)

    Rombaldi, Renato L; Serafini, Eduardo P; Mandelli, Jovana; Zimmermann, Edineia; Losquiavo, Kamille P

    2009-06-21

    The purpose was to study the perinatal transmission of human papillomavirus DNA (HPV-DNA) in 63 mother-newborn pairs, besides looking at the epidemiological factors involved in the viral DNA transmission. The following sampling methods were used: (1) in the pregnant woman, when was recruited, in cervix and clinical lesions of the vagina, vulva and perineal region; (2) in the newborn, (a) buccal, axillary and inguinal regions; (b) nasopharyngeal aspirate, and (c) cord blood; (3) in the children, buccal was repeated in the 4th week and 6th and 12th month of life. HPV-DNA was identified using two methodologies: multiplex PCR (PGMY09 and MY11 primers) and nested-PCR (genotypes 6/11, 16, 18, 31, 33, 42, 52 and 58). Perinatal transmission was considered when concordance was found in type-specific HPV between mother/newborn or mother/child. HPV-DNA genital was detected in 49 pregnant women submitted to delivery. Eleven newborns (22.4%, n = 11/49) were HPV-DNA positive. In 8 cases (16.3%, n = 8/49) there was type specific HPV concordance between mother/newborn samples. At the end of the first month of life three children (6.1%, n = 3/49) became HPV-DNA positive, while two remained positive from birth. In 3 cases (100%, n = 3/3) there was type specific HPV concordance between mother/newborn samples. In the 6th month, a child (2%, n = 1/49) had become HPV-DNA positive between the 1st and 6th month of life, and there was type specific HPV concordance of mother/newborn samples. All the HPV-DNA positive children (22.4%, n = 11/49) at birth and at the end first month of life (6.1%, n = 3/49) became HPV-DNA negative at the age of 6 months. The HPV-DNA positive child (2%, n = 1/49) from 1st to the 6th month of life became HPV-DNA negative between the 6th and 12th month of life and one child had anogenital warts. In the twelfth month all (100%, n = 49/49) the children studied were HPV-DNA negative. A positive and significant correlation was observed between perinatal transmission

  20. Perinatal transmission of human papilomavirus DNA

    Directory of Open Access Journals (Sweden)

    Serafini Eduardo P

    2009-06-01

    Full Text Available Abstract The purpose was to study the perinatal transmission of human papillomavirus DNA (HPV-DNA in 63 mother-newborn pairs, besides looking at the epidemiological factors involved in the viral DNA transmission. The following sampling methods were used: (1 in the pregnant woman, when was recruited, in cervix and clinical lesions of the vagina, vulva and perineal region; (2 in the newborn, (a buccal, axillary and inguinal regions; (b nasopharyngeal aspirate, and (c cord blood; (3 in the children, buccal was repeated in the 4th week and 6th and 12th month of life. HPV-DNA was identified using two methodologies: multiplex PCR (PGMY09 and MY11 primers and nested-PCR (genotypes 6/11, 16, 18, 31, 33, 42, 52 and 58. Perinatal transmission was considered when concordance was found in type-specific HPV between mother/newborn or mother/child. HPV-DNA genital was detected in 49 pregnant women submitted to delivery. Eleven newborns (22.4%, n = 11/49 were HPV-DNA positive. In 8 cases (16.3%, n = 8/49 there was type specific HPV concordance between mother/newborn samples. At the end of the first month of life three children (6.1%, n = 3/49 became HPV-DNA positive, while two remained positive from birth. In 3 cases (100%, n = 3/3 there was type specific HPV concordance between mother/newborn samples. In the 6th month, a child (2%, n = 1/49 had become HPV-DNA positive between the 1st and 6th month of life, and there was type specific HPV concordance of mother/newborn samples. All the HPV-DNA positive children (22.4%, n = 11/49 at birth and at the end first month of life (6.1%, n = 3/49 became HPV-DNA negative at the age of 6 months. The HPV-DNA positive child (2%, n = 1/49 from 1st to the 6th month of life became HPV-DNA negative between the 6th and 12th month of life and one child had anogenital warts. In the twelfth month all (100%, n = 49/49 the children studied were HPV-DNA negative. A positive and significant correlation was observed between perinatal

  1. Human DNA Ligase III Recognizes DNA Ends by Dynamic Switching between Two DNA-Bound States

    Energy Technology Data Exchange (ETDEWEB)

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A.; Tomkinson, Alan E.; Ellenberger, Tom (Scripps); (Maryland-MED); (WU-MED); (LBNL)

    2010-09-13

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a 'jackknife model' in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.

  2. 昆明地区5岁以下儿童博卡病毒和偏肺病毒感染的临床流行病学调查%Clinical Epidemiology of Human Bocavirus and Metapneumovirus Infection among Children under 5 years in Kunming

    Institute of Scientific and Technical Information of China (English)

    李秀云; 孔艳; 马克玲; 郑文静; 尚晓丽; 符宗敏; 夏晓玲

    2012-01-01

    Objective To investigate the prevalence, epidemiology and clinical features of Human Bocavirus (HBoV) and Human Metapneumovirus (hMPV) infection in children with respiratory tract infection in Kunming. Methods From October 2009 to December 2010, 550 nasal swab samples were collected from children under 5 years with respiratory tract infection. Multiplex polymerase chain reaction was used to detect 21 common pathogens including HBoV and hMPV. At the same time, the baseline characteristics of children and clinical manifestation were recorded by researchers through structure questionnaire. SPSS software was used to analyze data. Results Out of 550 nasopharyngeal swab specimens, 18 specimens were detected with HBoV infection and 29 samples were detected with hMPV infection. The positive rate of HBoV and hMPV was 3.3% and 5.3%, respectively. Among 18 HBoV positive samples, there were 17 samples mixed other pathogen infection. The mixed infection rate of HBoV accounted for 94.4%. Meanwhile, among 29 hMPV positive specimens, the co-infection rate was 58.6%. The most common pathogens of mixed infection with HBoV and hMPV were respiratory syncytial virus, rhinovirus, influenzaA virus and Haemophilus influenza. Infant got higher HBoV infection. There was no significant difference between different age groups of hMPV infection. The peak of positive infection rate of HBoV and hMPV were both in autumn and winter. Fever, cough and wheezing were the major clinical manifestation of children with HBoV and hMPV infection. Conclusions HBoV and hMPV are important pathogens of acute respiratory tract infection in children in Kunming. The prevalent seasons are autumn and winter for the two virus infection.%目的 了解昆明地区5岁以下急性呼吸道感染患儿中人类博卡病毒(HBoV)和人类偏肺病毒(hMPV)的流行状况、混合感染情况以及主要的临床表现特点.方法 按照病例纳入标准,采集2009年9月至2010年9月在昆明地区6所不同区域医

  3. 人博卡病毒VP2病毒样颗粒诱导特异性细胞免疫反应的研究%Enzyme-linked immunospot test detected specific cellular immune response induced by human Bocavirus VP2 virus-like particles

    Institute of Scientific and Technical Information of China (English)

    邓中华; 谢志萍; 姚立红; 谢乐云; 李金松; 张兵; 段招军; 曹友德

    2013-01-01

    Objective To discuss the enzyme linked immune spot test (ELISPOT) detected the cellular immune response induced by human Bocavirus(HBoV) VP2 virus-like particles(VLPs).Methods After immunized by HBoV VP2 VLPs,the specific cellular immune response in mice were detected by ELISPOT assay,observe the ELISPOT results at the conditions of different polypeptide stimulate,different cell culture time,different cell concentration and different specific stimulus peptide concentration,then screening the right ELISPOT experimental conditions and establish the ELISPOT method.Results The spots induced by HBoV1 VLPs immunized mice spleen lymphocytes stimulate with polypeptide P3 (GYIPIENEL) and P5 (LYQMPFFLL)were 233 spots/10(6) cells and 157 spots/10(6) cells,spots induced by HBoV2 VLPs immunized mice spleen lymphocytes stimulate with polypeptide P8 (GYIPVIHEL)were 113 spots/10(6) cells; 24 hours is the best time for culture,at this time HBoV1 and HBoV2 groups specificity secretion IFN-gamma ratio were 232 spots/10(6) cells and 119/10(6) cells; Best concentration of mice spleen lymphocyte is 5 × 10(5),right now HBoV1 and HBoV2 group specificity secretion IFN-gamma ratio were 232 spots/10(6) cells and 108/10(6) cells; Best concentration of polypeptides is 10 μg/ml,HBoV1 and HBoV2 group specificity secretion IFN-gamma ratio were 233 spots/10(6) cells and 96/10(6) cells.Conclusions HBoV1 and HBoV2 specificT-cell epitope in BABL/c mice were P3,P5 (HBoV1)and P8 (HBoV2).The best experiment condition were:cell cultivated for 24 h,cells concentration for 5 × 10(5) cells/well,stimulating polyperides concentration for 10 μg/ml,it can use to study the cellular immune induced by HBoV in mice.%目的 探讨酶联免疫斑点试验(ELISPOT)检测人博卡病毒(HBoV) VP2病毒样颗粒(VLPs)诱导特异性细胞免疫反应的最佳条件.方法 HBoV VP2 VLPs免疫小鼠后,用ELISPOT方法检测小鼠的特异性细胞免疫反应,观察不同多肽刺激、不同细胞培养时间、不

  4. A minute virus of canines (MVC: canine bocavirus) isolated from an elderly dog with severe gastroenteritis, and phylogenetic analysis of MVC strains.

    Science.gov (United States)

    Ohshima, T; Kawakami, K; Abe, T; Mochizuki, M

    2010-10-26

    Two of the three adult dogs kept in a family developed severe gastroenteritis. From the feces of one of the affected dogs a minute virus of canines (MVC) was detected by PCR and virus isolation. That this virus had recently infected the dogs was indicated by high anti-MVC antibody titers of their sera. No other virus commonly associated with canine gastrointestinal disease was implicated. As no previous association of MVC infection and disease in aged dogs had been described, further characterization of the isolated virus was performed to determine if it had unique pathogenic or genetic properties. Experimental infection of adult dogs did not result in clinical disease and comparison of the viral genome with other MVCs did not reveal any novel elements. The American, Japanese and Korean MVC strains studied were closely related to bocaviruses of bovine and human origin, and appeared to have evolved uniquely in the dog population after dividing from the common ancestor of bocaviruses. Further detailed clinical and virological studies are warranted to define the role of MVCs in disease in adult dogs.

  5. Scientists Spot 15 Regions of Human DNA Linked to Depression

    Science.gov (United States)

    ... Spot 15 Regions of Human DNA Linked to Depression Many are located near genes involved in brain ... identified 15 regions of human DNA associated with depression. These regions may contain genes that increase the ...

  6. DNA methylation and healthy human aging.

    Science.gov (United States)

    Jones, Meaghan J; Goodman, Sarah J; Kobor, Michael S

    2015-12-01

    The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next-generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site-specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age-related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining 'epigenetic age' for human health and outline some important caveats to existing and future studies.

  7. Clinical and Epidemiological Features of Critical Human Bocavirus Pneumonia in Children from 2009 to 2010 in Suzhou Area%2009-2010年苏州地区儿童重症人类博卡病毒肺炎的流行病学及临床特点

    Institute of Scientific and Technical Information of China (English)

    顾凤珍; 柏振江; 谢敏慧; 李莺; 华军; 李晓忠

    2011-01-01

    Objective To study the epidemiological and clinical characteristics of critical human bocavirus ( HBoV) pneumonia in chil dren. Methods From Jan. 2009 to Dec. 2010, the epidemiological and clinical characteristics of 27 cases of critical HBoV pneumonia and 106 cases of critical RSV pneumonia in Pediatric Intensive Care Unit, Children's Hospital Affiliated to Soochow University, were analyzed. Results The average age of 27 critical HBoV pneumonia cases was (1. 26 ±0.58) years old,which was significantly higher than that of critical RSV pneumonia group[ (0.49 ±0.57) years old] (P <0.05) ;66. 7% (18/27) cases of critical HBoV pneumonia occurred in autumn or winter, which had no significant difference to critical RSV pneumonia group (88.7% ). Fever was found in 66.7% ( 18/27) cases in critical HBoV pneumonia group,which was significantly higher than that in RSV pneumonia group (36. 8% ) ; proportion of wheezing in critical HBoV pneumonia group (40.7% ) was significantly lower than that in RSV pneumonia group (92. 5% ). In RSV pneumonia group,coughs in 100% (27/27) cases,diarrhea in 11.1% (3/27) cases,but no cases had convulsion or gastrointestinal bleeding. Proportion of abnormal oxy-genation index in all the cases was 66. 7% , and 14. 8% (4/27) cases received mechanical ventilation, and the mean ventilated time was (3.93 ± 1. 56) d, and no acute respiratory distress syndrome (ARDS) cases or dead cases were found. Creatine kinase - MB (CK - MB) in creased in 48.1%(13/27) cases,cardiac troponin I (cTnl) increased in 7.4% (2/27) cases,aspartate aminotransferase( AST) and alanine aminotransferase (ALT) increased in 14.8%(4/27) cases, and C reactive protein(CRP) increased in 44.4% (12/27) cases. Image change in both lungs was detected in 77. 8% (21/72) cases,lung marking around the hilus increased in 63.0% (17/27) cases,pulmonary emphysema in 88.9% (24/27) cases,small spot shadow in 55. 6% (15/27) cases,big range lesions in 14.8% (4/27) cases,pulmonary atelectasis in 14

  8. Quantification of human mitochondrial DNA using synthesized DNA standards.

    Science.gov (United States)

    Kavlick, Mark F; Lawrence, Helen S; Merritt, R Travis; Fisher, Constance; Isenberg, Alice; Robertson, James M; Budowle, Bruce

    2011-11-01

    Successful mitochondrial DNA (mtDNA) forensic analysis depends on sufficient quantity and quality of mtDNA. A real-time quantitative PCR assay was developed to assess such characteristics in a DNA sample, which utilizes a duplex, synthetic DNA to ensure optimal quality assurance and quality control. The assay's 105-base pair target sequence facilitates amplification of degraded DNA and is minimally homologous to nonhuman mtDNA. The primers and probe hybridize to a region that has relatively few sequence polymorphisms. The assay can also identify the presence of PCR inhibitors and thus indicate the need for sample repurification. The results show that the assay provides information down to 10 copies and provides a dynamic range spanning seven orders of magnitude. Additional experiments demonstrated that as few as 300 mtDNA copies resulted in successful hypervariable region amplification, information that permits sample conservation and optimized downstream PCR testing. The assay described is rapid, reliable, and robust.

  9. Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair.

    Science.gov (United States)

    Chen, Xi; Zhong, Shijun; Zhu, Xiao; Dziegielewska, Barbara; Ellenberger, Tom; Wilson, Gerald M; MacKerell, Alexander D; Tomkinson, Alan E

    2008-05-01

    Based on the crystal structure of human DNA ligase I complexed with nicked DNA, computer-aided drug design was used to identify compounds in a database of 1.5 million commercially available low molecular weight chemicals that were predicted to bind to a DNA-binding pocket within the DNA-binding domain of DNA ligase I, thereby inhibiting DNA joining. Ten of 192 candidates specifically inhibited purified human DNA ligase I. Notably, a subset of these compounds was also active against the other human DNA ligases. Three compounds that differed in their specificity for the three human DNA ligases were analyzed further. L82 inhibited DNA ligase I, L67 inhibited DNA ligases I and III, and L189 inhibited DNA ligases I, III, and IV in DNA joining assays with purified proteins and in cell extract assays of DNA replication, base excision repair, and nonhomologous end-joining. L67 and L189 are simple competitive inhibitors with respect to nicked DNA, whereas L82 is an uncompetitive inhibitor that stabilized complex formation between DNA ligase I and nicked DNA. In cell culture assays, L82 was cytostatic whereas L67 and L189 were cytotoxic. Concordant with their ability to inhibit DNA repair in vitro, subtoxic concentrations of L67 and L189 significantly increased the cytotoxicity of DNA-damaging agents. Interestingly, the ligase inhibitors specifically sensitized cancer cells to DNA damage. Thus, these novel human DNA ligase inhibitors will not only provide insights into the cellular function of these enzymes but also serve as lead compounds for the development of anticancer agents.

  10. Two DNA-binding and Nick Recognition Modules in Human DNA Ligase III*

    OpenAIRE

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Tomkinson, Alan E.; Ellenberger, Tom

    2008-01-01

    Human DNA ligase III contains an N-terminal zinc finger domain that binds to nicks and gaps in DNA. This small domain has been described as a DNA nick sensor, but it is not required for DNA nick joining activity in vitro. In light of new structural information for mammalian ligases, we measured the DNA binding affinity and specificity of each domain of DNA ligase III. These studies identified two separate, independent DNA-binding modules in DNA ligase III that each bin...

  11. Investigation of DNA repair in human oocytes and preimplantation embryos

    OpenAIRE

    Jaroudi, S.

    2010-01-01

    DNA repair genes are expressed in mammalian embryos and in human germinal vesicles, however, little is known about DNA repair in human preimplantation embryos. This project had three aims: 1) to produce a DNA repair profile of human MII oocytes and blastocysts using expression arrays and identify repair pathways that may be active before and after embryonic genome activation; 2) to design an in vitro functional assay that targeted mismatch repair and which could be applied to human oocytes...

  12. Homologous DNA strand exchange activity of the human mitochondrial DNA helicase TWINKLE

    OpenAIRE

    Sen, Doyel; Patel, Gayatri; Smita S Patel

    2016-01-01

    A crucial component of the human mitochondrial DNA replisome is the ring-shaped helicase TWINKLE—a phage T7-gene 4-like protein expressed in the nucleus and localized in the human mitochondria. Our previous studies showed that despite being a helicase, TWINKLE has unique DNA annealing activity. At the time, the implications of DNA annealing by TWINKLE were unclear. Herein, we report that TWINKLE uses DNA annealing function to actively catalyze strand-exchange reaction between the unwinding su...

  13. Human identification & forensic analyses of degraded or low level DNA

    NARCIS (Netherlands)

    Westen, Antoinette-Andrea

    2013-01-01

    DNA-based human identification is employed in varying situations, such as disaster victim identification, relationship testing and forensic analyses. When DNA is of low quality and/or quantity, standard methods for DNA profiling may not suffice. The research described in this thesis is aimed at the

  14. Human identification & forensic analyses of degraded or low level DNA

    NARCIS (Netherlands)

    Westen, Antoinette-Andrea

    2013-01-01

    DNA-based human identification is employed in varying situations, such as disaster victim identification, relationship testing and forensic analyses. When DNA is of low quality and/or quantity, standard methods for DNA profiling may not suffice. The research described in this thesis is aimed at the

  15. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation

    NARCIS (Netherlands)

    Dungen, van den Myrthe; Murk, Tinka; Steegenga, Wilma; Gils-Kok, van Dieuwertje

    2016-01-01

    Genome-wide DNA methylation profiling was performed in human mesenchymal stem cells (hMSCs) differentiated into adipocytes (day 10) while being continuously exposed to either one of three different persistent organic pollutants (POPs), namely TCDD, PFOS, and TBT. The Illumina Infinium 450K Human DNA

  16. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng;

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold pe...

  17. Rapid Extraction of Human DNA Containing Humic Acid

    OpenAIRE

    Sutlović, Davorka; Definis Gojanović, Marija; Anđelinović, Šimun

    2007-01-01

    The identification process of dead bodies or human remains is nowadays conducted in numerous fields of forensic science, archeology and other judicial cases. A particular problem is the isolation and DNA typing of human remains found in mass graves, due to the degradation process, as well as post mortal DNA contamination with bacteria, fungi, humic acids, metals, etc. In this study, the influence of humic acid (HA) on the DNA extraction and typing is investigated. If present in...

  18. Structural basis of human PCNA sliding on DNA

    Science.gov (United States)

    de March, Matteo; Merino, Nekane; Barrera-Vilarmau, Susana; Crehuet, Ramon; Onesti, Silvia; Blanco, Francisco J.; de Biasio, Alfredo

    2017-01-01

    Sliding clamps encircle DNA and tether polymerases and other factors to the genomic template. However, the molecular mechanism of clamp sliding on DNA is unknown. Using crystallography, NMR and molecular dynamics simulations, here we show that the human clamp PCNA recognizes DNA through a double patch of basic residues within the ring channel, arranged in a right-hand spiral that matches the pitch of B-DNA. We propose that PCNA slides by tracking the DNA backbone via a `cogwheel' mechanism based on short-lived polar interactions, which keep the orientation of the clamp invariant relative to DNA. Mutation of residues at the PCNA-DNA interface has been shown to impair the initiation of DNA synthesis by polymerase δ (pol δ). Therefore, our findings suggest that a clamp correctly oriented on DNA is necessary for the assembly of a replication-competent PCNA-pol δ holoenzyme.

  19. Human DNA ligase and DNA polymerase as molecular targets for heavy metals and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.

    1992-01-01

    DNA ligase and DNA polymerase play important roles in DNA replication, repair, and recombination. Frequencies of spontaneous and chemical- and physical-induced mutations are correlated to the fidelity of DNA replication. This dissertation elucidates the mechanisms of the DNA ligation reaction by DNA ligases and demonstrates that human DNA ligase I and DNA polymerase [alpha] are the molecular targets for two metal ions, Zn[sup 2+] and Cd[sup 2+], and an anticancer drug, F-ara-ATP. The formation of the AMP-DNA intermediate and the successive ligation reaction by human DNA ligases were analyzed. Both reactions showed their substrate specificity for ligases I and II, required Mg2+, and were inhibited by ATP. A protein inhibitor from HeLa cells and specific for human DNA ligase I but not ligase II and T4 ligase was discovered. It reversibly inhibited DNA ligation activity but not the AMP-binding activity due to the formation of a reversible ligase I-inhibitor complex. F-ara-ATP inhibited human DNA ligase I activity by competing with ATP for the AMP-binding site of DNA ligase I, forming a ligase I-F-ara-AMP complex, as well as when it was incorporated at 3[prime]-terminus of DNA nick by DNA polymerase [alpha]. All steps of the DNA ligation reaction were inhibited by Zn[sup 2+] and Cd[sup 2+] in a concentration-dependent manner. Both ions did not show the ability to change the fidelity of DNA ligation reaction catalyzed by human DNA ligase I. However, Zn[sup 2+] and Cd[sup 2+] showed their contradictory effects on the fidelity of the reaction by human DNA polymerase [alpha]. Zn[sup 2+] decreased the frequency of misinsertion but less affected that of mispair extension. On the contrary, Cd[sup 2+] increased the frequencies of both misinsertion and mispair extension at very low concentration. The data provided strong evidence in the molecular mechanisms for the mutagenicity of zinc and cadmium, and were comparable with the results previously reported.

  20. Oxidized Extracellular DNA as a Stress Signal in Human Cells

    Directory of Open Access Journals (Sweden)

    Aleksei V. Ermakov

    2013-01-01

    Full Text Available The term “cell-free DNA” (cfDNA was recently coined for DNA fragments from plasma/serum, while DNA present in in vitro cell culture media is known as extracellular DNA (ecDNA. Under oxidative stress conditions, the levels of oxidative modification of cellular DNA and the rate of cell death increase. Dying cells release their damaged DNA, thus, contributing oxidized DNA fragments to the pool of cfDNA/ecDNA. Oxidized cell-free DNA could serve as a stress signal that promotes irradiation-induced bystander effect. Evidence points to TLR9 as a possible candidate for oxidized DNA sensor. An exposure to oxidized ecDNA stimulates a synthesis of reactive oxygen species (ROS that evokes an adaptive response that includes transposition of the homologous loci within the nucleus, polymerization and the formation of the stress fibers of the actin, as well as activation of the ribosomal gene expression, and nuclear translocation of NF-E2 related factor-2 (NRF2 that, in turn, mediates induction of phase II detoxifying and antioxidant enzymes. In conclusion, the oxidized DNA is a stress signal released in response to oxidative stress in the cultured cells and, possibly, in the human body; in particular, it might contribute to systemic abscopal effects of localized irradiation treatments.

  1. Oxidized DNA induces an adaptive response in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V., E-mail: svet.kostyuk@gmail.com [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Tabakov, Viacheslav J.; Chestkov, Valerij V.; Konkova, Marina S.; Glebova, Kristina V.; Baydakova, Galina V.; Ershova, Elizaveta S.; Izhevskaya, Vera L. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha, E-mail: abaranov@gmu.edu [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2013-07-15

    Highlights: • We describe the effects of gDNAOX on human fibroblasts cultivated in serum withdrawal conditions. • gDNAOX evokes an adaptive response in human fibroblasts. • gDNAOX increases the survival rates in serum starving cell populations. • gDNAOX enhances the survival rates in cell populations irradiated at 1.2 Gy dose. • gDNAOX up-regulates NRF2 and inhibits NF-kappaB-signaling. - Abstract: Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA{sup OX}. The levels of cfDNA{sup OX} are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by H{sub 2}O{sub 2}in vitro (gDNA{sup OX}) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA{sup OX} on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA{sup OX} evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2 Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA{sup OX} leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of PSNA, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA{sup OX} and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA{sup OX} inhibits NF-κB signaling. gDNA{sup OX} is a model for oxidized cfDNA{sup OX} that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA

  2. DNA Aptamers in the Diagnosis and Treatment of Human Diseases

    Directory of Open Access Journals (Sweden)

    Qinchang Zhu

    2015-11-01

    Full Text Available Aptamers have a promising role in the field of life science and have been extensively researched for application as analytical tools, therapeutic agents and as vehicles for targeted drug delivery. Compared with RNA aptamers, DNA aptamers have inherent advantages in stability and facility of generation and synthesis. To better understand the specific potential of DNA aptamers, an overview of the progress in the generation and application of DNA aptamers in human disease diagnosis and therapy are presented in this review. Special attention is given to researches that are relatively close to practical application. DNA aptamers are expected to have great potential in the diagnosis and treatment of human diseases.

  3. Sperm DNA fragmentation affects epigenetic feature in human male pronucleus.

    Science.gov (United States)

    Rajabi, H; Mohseni-Kouchesfehani, H; Eslami-Arshaghi, T; Salehi, M

    2017-03-06

    To evaluate whether the sperm DNA fragmentation affects male pronucleus epigenetic factors, semen analysis was performed and DNA fragmentation was assessed by the method of sperm chromatin structure assay (SCSA). Human-mouse interspecies fertilisation was used to create human male pronucleus. Male pronucleus DNA methylation and H4K12 acetylation were evaluated by immunostaining. Results showed a significant positive correlation between the level of sperm DNA fragmentation and DNA methylation in male pronuclei. In other words, an increase in DNA damage caused an upsurge in DNA methylation. In the case of H4K12 acetylation, no correlation was detected between DNA damage and the level of histone acetylation in the normal group, but results for the group in which male pronuclei were derived from sperm cells with DNA fragmentation, increased DNA damage led to a decreased acetylation level. Sperm DNA fragmentation interferes with the active demethylation process and disrupts the insertion of histones into the male chromatin in the male pronucleus, following fertilisation. © 2017 Blackwell Verlag GmbH.

  4. Human RAD52 Captures and Holds DNA Strands, Increases DNA Flexibility, and Prevents Melting of Duplex DNA: Implications for DNA Recombination

    Directory of Open Access Journals (Sweden)

    Ineke Brouwer

    2017-03-01

    Full Text Available Human RAD52 promotes annealing of complementary single-stranded DNA (ssDNA. In-depth knowledge of RAD52-DNA interaction is required to understand how its activity is integrated in DNA repair processes. Here, we visualize individual fluorescent RAD52 complexes interacting with single DNA molecules. The interaction with ssDNA is rapid, static, and tight, where ssDNA appears to wrap around RAD52 complexes that promote intra-molecular bridging. With double-stranded DNA (dsDNA, interaction is slower, weaker, and often diffusive. Interestingly, force spectroscopy experiments show that RAD52 alters the mechanics dsDNA by enhancing DNA flexibility and increasing DNA contour length, suggesting intercalation. RAD52 binding changes the nature of the overstretching transition of dsDNA and prevents DNA melting, which is advantageous for strand clamping during or after annealing. DNA-bound RAD52 is efficient at capturing ssDNA in trans. Together, these effects may help key steps in DNA repair, such as second-end capture during homologous recombination or strand annealing during RAD51-independent recombination reactions.

  5. Association of Global DNA Methylation and Global DNA Hydroxymethylation with Metals and Other Exposures in Human Blood DNA Samples

    Science.gov (United States)

    Tang, Wan-yee; Shang, Yan; Umans, Jason G.; Francesconi, Kevin A.; Goessler, Walter; Ledesma, Marta; Leon, Montserrat; Laclaustra, Martin; Pollak, Jonathan; Guallar, Eliseo; Cole, Shelley A.; Fallin, M. Dani; Navas-Acien, Ana

    2014-01-01

    Background: The association between human blood DNA global methylation and global hydroxymethylation has not been evaluated in population-based studies. No studies have evaluated environmental determinants of global DNA hydroxymethylation, including exposure to metals. Objective: We evaluated the association between global DNA methylation and global DNA hydroxymethylation in 48 Strong Heart Study participants for which selected metals had been measured in urine at baseline and DNA was available from 1989–1991 (visit 1) and 1998–1999 (visit 3). Methods: We measured the percentage of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in samples using capture and detection antibodies followed by colorimetric quantification. We explored the association of participant characteristics (i.e., age, adiposity, smoking, and metal exposure) with both global DNA methylation and global DNA hydroxymethylation. Results: The Spearman’s correlation coefficient for 5-mC and 5-hmC levels was 0.32 (p = 0.03) at visit 1 and 0.54 (p Ledesma M, Leon M, Laclaustra M, Pollak J, Guallar E, Cole SA, Fallin MD, Navas-Acien A. 2014. Association of global DNA methylation and global DNA hydroxymethylation with metals and other exposures in human blood DNA samples. Environ Health Perspect 122:946–954; http://dx.doi.org/10.1289/ehp.1306674 PMID:24769358

  6. [DNA image-fluorimetry of individual human chromosomes].

    Science.gov (United States)

    Agafonova, N A; Sakuta, G A; Rozanov, Iu M; Shteĭn, G I; Kudriavtsev, B N

    2013-01-01

    Mucrofluorimetric method for the determination of DNA content in individual human chromosomes has been developed. The method is based on a preliminary identification of chromosomes with Hoechst 33258, followed by staining of the chromosomes with Feulgen reaction using Schiffs reagent type ethidium bromide-SO2, then measuring the fluorescence intensity of the chromosomes using an image analyzer. The method allows to determine the DNA content of individual chromosomes with accuracy up to 4.5 fg. DNA content of individual human chromosomes, their p-and q-arms as well as homologous chromosomes were measured using the developed method. It has been shown that the DNA content in the chromosomes of normal human karyotype is unstable. Fluctuations in the DNA content in some chromosomes can vary 35-40 fg.

  7. DNA methylation profiling of human chromosomes 6, 20 and 22

    OpenAIRE

    Eckhardt, Florian; Lewin, Joern; Cortese, Rene; Rakyan, Vardhman K.; Attwood, John; Burger, Matthias; Burton, John; Cox, Tony V.; Davies, Rob; Down, Thomas A; Haefliger, Carolina; Horton, Roger; Howe, Kevin; Jackson, David K.; Kunde, Jan

    2006-01-01

    DNA methylation constitutes the most stable type of epigenetic modifications modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation reference profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of 6 annotation categories, revealed evolutionary conserved regions to be the predominant sites for differential DNA methyl...

  8. DNA and bone structure preservation in medieval human skeletons.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B

    2015-06-01

    Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified.

  9. Markov chain for estimating human mitochondrial DNA mutation pattern

    Science.gov (United States)

    Vantika, Sandy; Pasaribu, Udjianna S.

    2015-12-01

    The Markov chain was proposed to estimate the human mitochondrial DNA mutation pattern. One DNA sequence was taken randomly from 100 sequences in Genbank. The nucleotide transition matrix and mutation transition matrix were estimated from this sequence. We determined whether the states (mutation/normal) are recurrent or transient. The results showed that both of them are recurrent.

  10. Effects of Captan on DNA and DNA metabolic processes in human diploid fibroblasts.

    Science.gov (United States)

    Snyder, R D

    1992-01-01

    The fungicide Captan has been examined for its effects on DNA and DNA processing in order to better understand the genotoxicity associated with this agent. Captan treatment resulted in production of DNA single strand breaks and DNA-protein cross-links and elicited an excision repair response in human diploid fibroblasts. Captan was also shown to inhibit cellular DNA synthesis and to form stable adducts in herring sperm and human cellular DNA. Misincorporation of nucleotides into Captan-treated synthetic DNA templates was significantly elevated in an in vitro assay using E. coli DNA polymerase I, suggesting that DNA adduct formation by Captan could have mutagenic consequences. In sum, these studies demonstrate that Captan is capable of interacting with DNA at a number of levels and that these interactions could provide the basis for Captan's genotoxicity. The extreme cytotoxicity of this fungicide, however, could be due to other cellular effects since at the IC50 for cell killing, approximately 0.8 microM, none of the above genotoxic events could be detected by the methods employed.

  11. Expression of DNA-dependent protein kinase in human granulocytes

    Institute of Scientific and Technical Information of China (English)

    Annahita SALLMYR; Anna MILLER; Aida GABDOULKHAKOVA; Valentina SAFRONOVA; Gunnel HENRIKSSON; Anders BREDBERG

    2004-01-01

    Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNAPK in P MN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration.In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.

  12. Human papillomavirus DNA in plasma of patients with cervical cancer

    Directory of Open Access Journals (Sweden)

    Voravud Narin

    2001-03-01

    Full Text Available Abstract Background Human papillomavirus (HPV is a crucial etiological factor for cervical cancer (CC development. From a diagnostic view-point, the consistent presence of HPV in CC allows the viral DNA to be used as a genetic marker. The aims of this study were to evaluate the presence, physical status and clinical significant of HPV DNA in circulation of CC patients. Results Whereas 6 out of 50 (12% HPV positive CC patients revealed plasma HPV DNA, it was detected in none of 20 normal controls or 13 HPV negative CC cases. The plasma DNA exhibited an HPV type identical to the HPV in the primary tumors and the DNA from both sources was integrated into host genome. Interestingly, several findings suggested an association between plasma HPV DNA and metastasis. First, three of the HPV DNA positive cases were CC patients with clinical stage IVB or recurrence with distance metastases (P = 0.001, RR = 15.67. Second, the amount of plasma HPV DNA from metastatic patients to be three times more than three other patients without metastases. Finally, the later cases had tendency to develop recurrence distant metastases within one year after complete treatment when compared with other HPV associated CC patients with the same stage but without the present of plasma HPV DNA. Conclusions The plasma HPV DNA originated from the CC, was associated with metastasis and could be used as a marker representing the circulating free CC DNA.

  13. Human papillomavirus DNA in plasma of patients with HPV16 DNA-positive uterine cervical cancer.

    OpenAIRE

    Shimada, Takako; Yamaguchi, Naohiro; Nishida, Noriyuki; Yamasaki, Kentaro; Miura, Kiyonori; Katamine, Shigeru; Masuzaki, Hideaki

    2010-01-01

    OBJECTIVES: The squamous cell carcinoma antigen is considered the most accurate serologic tumor marker for uterine cervical carcinoma. However, serum squamous cell carcinoma antigen levels were found to correlate significantly with clinical severity of atopic dermatitis and chronic renal failure. The present study was conducted in patients with human papillomavirus 16 DNA-positive uterine cervical cancer to determine the plasma level of human papillomavirus 16 DNA and the diagnostic values of...

  14. A DNA methylation fingerprint of 1628 human samples

    Science.gov (United States)

    Fernandez, Agustin F.; Assenov, Yassen; Martin-Subero, Jose Ignacio; Balint, Balazs; Siebert, Reiner; Taniguchi, Hiroaki; Yamamoto, Hiroyuki; Hidalgo, Manuel; Tan, Aik-Choon; Galm, Oliver; Ferrer, Isidre; Sanchez-Cespedes, Montse; Villanueva, Alberto; Carmona, Javier; Sanchez-Mut, Jose V.; Berdasco, Maria; Moreno, Victor; Capella, Gabriel; Monk, David; Ballestar, Esteban; Ropero, Santiago; Martinez, Ramon; Sanchez-Carbayo, Marta; Prosper, Felipe; Agirre, Xabier; Fraga, Mario F.; Graña, Osvaldo; Perez-Jurado, Luis; Mora, Jaume; Puig, Susana; Prat, Jaime; Badimon, Lina; Puca, Annibale A.; Meltzer, Stephen J.; Lengauer, Thomas; Bridgewater, John; Bock, Christoph; Esteller, Manel

    2012-01-01

    Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited number of human samples and pathological conditions. Herein, we present a compromise between an extremely comprehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA methylation patterns revealed show this epigenetic mark to be critical in tissue-type definition and stemness, particularly around transcription start sites that are not within a CpG island. For disease, the generated DNA methylation fingerprints show that, during tumorigenesis, human cancer cells underwent a progressive gain of promoter CpG-island hypermethylation and a loss of CpG methylation in non-CpG-island promoters. Although transformed cells are those in which DNA methylation disruption is more obvious, we observed that other common human diseases, such as neurological and autoimmune disorders, had their own distinct DNA methylation profiles. Most importantly, we provide proof of principle that the DNA methylation fingerprints obtained might be useful for translational purposes by showing that we are able to identify the tumor type origin of cancers of unknown primary origin (CUPs). Thus, the DNA methylation patterns identified across the largest spectrum of samples, tissues, and diseases reported to date constitute a baseline for developing higher-resolution DNA methylation maps and provide important clues concerning the contribution of CpG methylation to tissue identity and its changes in the most prevalent human diseases. PMID:21613409

  15. Dental DNA fingerprinting in identification of human remains

    Directory of Open Access Journals (Sweden)

    K L Girish

    2010-01-01

    Full Text Available The recent advances in molecular biology have revolutionized all aspects of dentistry. DNA, the language of life yields information beyond our imagination, both in health or disease. DNA fingerprinting is a tool used to unravel all the mysteries associated with the oral cavity and its manifestations during diseased conditions. It is being increasingly used in analyzing various scenarios related to forensic science. The technical advances in molecular biology have propelled the analysis of the DNA into routine usage in crime laboratories for rapid and early diagnosis. DNA is an excellent means for identification of unidentified human remains. As dental pulp is surrounded by dentin and enamel, which forms dental armor, it offers the best source of DNA for reliable genetic type in forensic science. This paper summarizes the recent literature on use of this technique in identification of unidentified human remains.

  16. Rapid extraction and preservation of genomic DNA from human samples.

    Science.gov (United States)

    Kalyanasundaram, D; Kim, J-H; Yeo, W-H; Oh, K; Lee, K-H; Kim, M-H; Ryew, S-M; Ahn, S-G; Gao, D; Cangelosi, G A; Chung, J-H

    2013-02-01

    Simple and rapid extraction of human genomic DNA remains a bottleneck for genome analysis and disease diagnosis. Current methods using microfilters require cumbersome, multiple handling steps in part because salt conditions must be controlled for attraction and elution of DNA in porous silica. We report a novel extraction method of human genomic DNA from buccal swab and saliva samples. DNA is attracted onto a gold-coated microchip by an electric field and capillary action while the captured DNA is eluted by thermal heating at 70 °C. A prototype device was designed to handle four microchips, and a compatible protocol was developed. The extracted DNA using microchips was characterized by qPCR for different sample volumes, using different lengths of PCR amplicon, and nuclear and mitochondrial genes. In comparison with a commercial kit, an equivalent yield of DNA extraction was achieved with fewer steps. Room-temperature preservation for 1 month was demonstrated for captured DNA, facilitating straightforward collection, delivery, and handling of genomic DNA in an environment-friendly protocol.

  17. Princess takamatsu symposium on DNA repair and human cancers.

    Science.gov (United States)

    Loeb, Lawrence A; Nishimura, Susumu

    2010-06-01

    The 40th International Symposium of the Princess Takamatsu Cancer Research Fund, entitled "DNA Repair and Human Cancers," was held on November 10-12, 2009 at Hotel Grand Palace, Tokyo, Japan. The meeting focused on the role of DNA repair in preventing mutations by endogenous and exogenous DNA damage and increasing the efficacy of chemotherapeutic agents by interfering with DNA repair. The 14 presentations by the speakers from the United States, four from the United Kingdom, one each from Italy, The Netherlands, and France, and 13 from Japan, covered most aspects of DNA repair, spanning DNA damage, molecular structures of repair enzymes, and clinical studies on inhibition of DNA repair processes. Extensive time was reserved for discussions with the active participation of the 150 invited Japanese scientists. The choice of a symposium on DNA repair in human cancers resulted in part from the excellent basic and clinical studies that have been carried out for many years in Japan, and the general lack of recognition versus the importance of DNA repair in understanding carcinogenesis. Copyright 2010 AACR.

  18. The linguistics of DNA. [HUMAN GENOME PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Searls, D.B. (Univ. of Pennsylvania, Philadelphia (United States))

    Discusses the structure of DNA and RNA and the mechanisms of transcription and translation in relation to the grammatical rules of language. The ultimate purpose is to design a grammar which can be used to write flexible, adaptive computer programs for searching nucleotide sequences, with the goal of being able to search large sequences for gene-coding regions. 11 refs., 16 figs.

  19. The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer

    Science.gov (United States)

    Fernandez, Agustin F.; Rosales, Cecilia; Lopez-Nieva, Pilar; Graña, Osvaldo; Ballestar, Esteban; Ropero, Santiago; Espada, Jesus; Melo, Sonia A.; Lujambio, Amaia; Fraga, Mario F.; Pino, Irene; Javierre, Biola; Carmona, Francisco J.; Acquadro, Francesco; Steenbergen, Renske D.M.; Snijders, Peter J.F.; Meijer, Chris J.; Pineau, Pascal; Dejean, Anne; Lloveras, Belen; Capella, Gabriel; Quer, Josep; Buti, Maria; Esteban, Juan-Ignacio; Allende, Helena; Rodriguez-Frias, Francisco; Castellsague, Xavier; Minarovits, Janos; Ponce, Jordi; Capello, Daniela; Gaidano, Gianluca; Cigudosa, Juan Cruz; Gomez-Lopez, Gonzalo; Pisano, David G.; Valencia, Alfonso; Piris, Miguel Angel; Bosch, Francesc X.; Cahir-McFarland, Ellen; Kieff, Elliott; Esteller, Manel

    2009-01-01

    The natural history of cancers associated with virus exposure is intriguing, since only a minority of human tissues infected with these viruses inevitably progress to cancer. However, the molecular reasons why the infection is controlled or instead progresses to subsequent stages of tumorigenesis are largely unknown. In this article, we provide the first complete DNA methylomes of double-stranded DNA viruses associated with human cancer that might provide important clues to help us understand the described process. Using bisulfite genomic sequencing of multiple clones, we have obtained the DNA methylation status of every CpG dinucleotide in the genome of the Human Papilloma Viruses 16 and 18 and Human Hepatitis B Virus, and in all the transcription start sites of the Epstein-Barr Virus. These viruses are associated with infectious diseases (such as hepatitis B and infectious mononucleosis) and the development of human tumors (cervical, hepatic, and nasopharyngeal cancers, and lymphoma), and are responsible for 1 million deaths worldwide every year. The DNA methylomes presented provide evidence of the dynamic nature of the epigenome in contrast to the genome. We observed that the DNA methylome of these viruses evolves from an unmethylated to a highly methylated genome in association with the progression of the disease, from asymptomatic healthy carriers, through chronically infected tissues and pre-malignant lesions, to the full-blown invasive tumor. The observed DNA methylation changes have a major functional impact on the biological behavior of the viruses. PMID:19208682

  20. Nonneutral mitochondrial DNA variation in humans and chimpanzees

    Energy Technology Data Exchange (ETDEWEB)

    Nachman, M.W.; Aquadro, C.F. [Cornell Univ., Ithaca, NY (United States); Brown, W.M. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others

    1996-03-01

    We sequenced the NADH dehydrogenase subunit 3 (ND3) gene from a sample of 61 humans, five common chimpanzees, and one gorilla to test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution. Within humans and within chimpanzees, the ratio of replacement to silent nucleotide substitutions was higher than observed in comparisons between species, contrary to neutral expectations. To test the generality of this result, we reanalyzed published human RFLP data from the entire mitochondrial genome. Gains of restriction sites relative to a known human mtDNA sequence were used to infer unambiguous nucleotide substitutions. We also compared the complete mtDNA sequences of three humans. Both the RFLP data and the sequence data reveal a higher ratio of replacement to silent nucleotide substitutions within humans than is seen between species. This pattern is observed at most or all human mitochondrial genes and is inconsistent with a strictly neutral model. These data suggest that many mitochondrial protein polymorphisms are slightly deleterious, consistent with studies of human mitochondrial diseases. 59 refs., 2 figs., 8 tabs.

  1. Effects of incense smoke on human lymphocyte DNA.

    Science.gov (United States)

    Szeto, Yim Tong; Sok Wa Leong, Kosca; Keong Lam, Kason; Min Min Hong, Cynthia; Kai Mui Lee, Daphne; Teng Fun Chan, Yui; Benzie, Iris F F

    2009-01-01

    Incense burning is common in Southeast Asia, where it is a traditional and ceremonial practice in deity worship and paying respect to ancestors. However, incense emissions are an important source of indoor air pollution in Asia, and may induce health problems to those exposed. In this in vitro study the effects of incense emissions on human DNA were investigated using the comet assay. Particulates in smoke from six kinds of incense were trapped in saline or ethanol and human lymphocytes were exposed under controlled conditions. Results showed that DNA damage, including strand breaks, was induced by both aqueous and ethanolic extracts of two samples. The ethanolic extract of one sample induced DNA damage, while no significant DNA damage was found in the remaining three samples. The mechanisms underlying DNA damage induced by incense emissions were also investigated. Catalase (CAT), sodium azide, and superoxide dismutase (SOD) were co-incubated with extract, which exerted significant DNA damaging effects. Results showed that CAT with or without SOD diminished DNA damage, whereas sodium azide did not seem able to reduce DNA damage. Data indicate there are potential adverse health effects of such exposure, particularly for temple workers.

  2. Structural and functional interaction between the human DNA repair proteins DNA ligase IV and XRCC4.

    Science.gov (United States)

    Wu, Peï-Yu; Frit, Philippe; Meesala, SriLakshmi; Dauvillier, Stéphanie; Modesti, Mauro; Andres, Sara N; Huang, Ying; Sekiguchi, JoAnn; Calsou, Patrick; Salles, Bernard; Junop, Murray S

    2009-06-01

    Nonhomologous end-joining represents the major pathway used by human cells to repair DNA double-strand breaks. It relies on the XRCC4/DNA ligase IV complex to reseal DNA strands. Here we report the high-resolution crystal structure of human XRCC4 bound to the carboxy-terminal tandem BRCT repeat of DNA ligase IV. The structure differs from the homologous Saccharomyces cerevisiae complex and reveals an extensive DNA ligase IV binding interface formed by a helix-loop-helix structure within the inter-BRCT linker region, as well as significant interactions involving the second BRCT domain, which induces a kink in the tail region of XRCC4. We further demonstrate that interaction with the second BRCT domain of DNA ligase IV is necessary for stable binding to XRCC4 in cells, as well as to achieve efficient dominant-negative effects resulting in radiosensitization after ectopic overexpression of DNA ligase IV fragments in human fibroblasts. Together our findings provide unanticipated insight for understanding the physical and functional architecture of the nonhomologous end-joining ligation complex.

  3. Structural and Functional Interaction Between the Human DNA Repair Proteins DNA ligase IV and XRCC4

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P.; Meesala, S; Dauvillier, S; Modesti, M; Andres, S; Huang, Y; Sekiguchi, J; Calsou, P; Salles, B; Junop, M

    2009-01-01

    Nonhomologous end-joining represents the major pathway used by human cells to repair DNA double-strand breaks. It relies on the XRCC4/DNA ligase IV complex to reseal DNA strands. Here we report the high-resolution crystal structure of human XRCC4 bound to the carboxy-terminal tandem BRCT repeat of DNA ligase IV. The structure differs from the homologous Saccharomyces cerevisiae complex and reveals an extensive DNA ligase IV binding interface formed by a helix-loop-helix structure within the inter-BRCT linker region, as well as significant interactions involving the second BRCT domain, which induces a kink in the tail region of XRCC4. We further demonstrate that interaction with the second BRCT domain of DNA ligase IV is necessary for stable binding to XRCC4 in cells, as well as to achieve efficient dominant-negative effects resulting in radiosensitization after ectopic overexpression of DNA ligase IV fragments in human fibroblasts. Together our findings provide unanticipated insight for understanding the physical and functional architecture of the nonhomologous end-joining ligation complex.

  4. Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA

    DEFF Research Database (Denmark)

    Boessenkool, Sanne; Epp, Laura S.; Haile, James Seymour

    2012-01-01

    , or bias, during the PCR. In this study, we test the utility of human-specific blocking primers in mammal diversity analyses of ancient permafrost samples from Siberia. Using quantitative PCR (qPCR) on human and mammoth DNA, we first optimized the design and concentration of blocking primer in the PCR...

  5. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining.

    Science.gov (United States)

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L; Tomkinson, Alan E; Tainer, John A; Ellenberger, Tom

    2015-08-18

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.

  6. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    Science.gov (United States)

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  7. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation.

    Science.gov (United States)

    van den Dungen, Myrthe W; Murk, Albertinka J; Kok, Dieuwertje E; Steegenga, Wilma T

    2017-04-01

    Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what extent DNA methylation can be related to gene transcription. Adipocyte differentiation was induced in two human cell models with continuous exposure to different POPs throughout differentiation. From the seven tested POPs, perfluorooctanesulfonic acid (PFOS) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) decreased lipid accumulation, while tributyltin (TBT) increased lipid accumulation. In human mesenchymal stem cells (hMSCs), TCDD and TBT induced opposite gene expression profiles, whereas after PFOS exposure gene expression remained relatively stable. Genome-wide DNA methylation analysis showed that all three POPs affected DNA methylation patterns in adipogenic and other genes, possibly related to the phenotypic outcome, but without concomitant gene expression changes. Differential methylation was predominantly detected in intergenic regions, where the biological relevance of alterations in DNA methylation is unclear. This study demonstrates that POPs, at environmentally relevant levels, are able to induce differential DNA methylation in human differentiating adipocytes. Copyright © 2017 Wageningen University. Published by Elsevier Ltd.. All rights reserved.

  8. Pitfalls in the analysis of ancient human mtDNA

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The retrieval of DNA from ancient human specimens is not always successful owing to DNA deterioration and contamination although it is vital to provide new insights into the genetic structure of ancient people and to reconstruct the past history. Normally, only short DNA fragments can be retrieved from the ancient specimens. How to identify the authenticity of DNA obtained and to uncover the information it contained are difficult. We employed the ancient mtDNAs reported from Central Asia (including Xinjiang, China) as an example to discern potentially extraneous DNA contamination based on the updated mtDNA phylogeny derived from mtDNA control region, coding region, as well as complete sequence information. Our results demonstrated that many mtDNAs reported are more or less problematic. Starting from a reliable mtDNA phylogeney and combining the available modern data into analysis, one can ascertain the authenticity of the ancient DNA, distinguish the potential errors in a data set, and efficiently decipher the meager information it harbored. The reappraisal of the mtDNAs with the age of more than 2000 years from Central Asia gave support to the suggestion of extensively (pre)historical gene admixture in this region.

  9. D-ribose inhibits DNA repair synthesis in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zunica, G.; Marini, M.; Brunelli, M.A.; Chiricolo, M.; Franceschi, C.

    1986-07-31

    D-ribose is cytotoxic for quiescent human lymphocytes and severely inhibits their PHA-induced proliferation at concentrations (25-50 mM) at which other simple sugars are ineffective. In order to explain these effects, DNA repair synthesis was evaluated in PHA-stimulated human lymphocytes treated with hydroxyurea and irradiated. D-ribose, in contrast to other reducing sugars, did not induce repair synthesis and therefore did not apparently damage DNA in a direct way, although it markedly inhibited gamma ray-induced repair. Taking into account that lymphocytes must rejoin physiologically-formed DNA strand breaks in order to enter the cell cycle, we suggest that D-ribose exerts its cytotoxic activity by interfering with metabolic pathways critical for the repair of DNA breaks.

  10. Isolation and characterization of DNA probes for human chromosome 21.

    Science.gov (United States)

    Watkins, P C

    1990-01-01

    A coordinated effort to map and sequence the human genome has recently become a national priority. Chromosome 21, the smallest human chromosome accounting for less than 2% of the human genome, is an attractive model system for developing and evaluating genome mapping technology. Several strategies are currently being explored including the development of chromosome 21 libraries from somatic cell hybrids as reported here, the cloning of chromosome 21 in yeast artificial chromosomes (McCormick et al., 1989b), and the construction of chromosome 21 libraries using chromosome flow-sorting techniques (Fuscoe et al., 1989). This report describes the approaches used to identify DNA probes that are useful for mapping chromosome 21. Probes were successfully isolated from both phage and cosmid libraries made from two somatic cell hybrids that contain human chromosome 21 as the only human chromosome. The 15 cosmid clones from the WA17 library, reduced to cloned DNA sequences of an average size of 3 kb, total 525 kb of DNA which is approximately 1% of chromosome 21. From these clones, a set of polymorphic DNA markers that span the length of the long arm of chromosome 21 has been generated. All of the probes thus far analyzed from the WA17 libraries have been mapped to chromosome 21 both by physical and genetic mapping methods. It is therefore likely that the WA17 hybrid cell line contains human chromosome 21 as the only human component, in agreement with cytogenetic observation. The 153E7b cosmid libraries will provide an alternative source of cloned chromosome 21 DNA. Library screening techniques can be employed to obtain cloned DNA sequences from the same genetic loci of the two different chromosome 21s. Comparative analysis will allow direct estimation of DNA sequence variation for different regions of chromosome 21. Mapped DNA probes make possible the molecular analysis of chromosome 21 at a level of resolution not achievable by classical cytogenetic techniques (Graw et al

  11. Functional interactions of DNA topoisomerases with a human replication origin.

    Science.gov (United States)

    Abdurashidova, Gulnara; Radulescu, Sorina; Sandoval, Oscar; Zahariev, Sotir; Danailov, Miltcho B; Demidovich, Alexander; Santamaria, Laura; Biamonti, Giuseppe; Riva, Silvano; Falaschi, Arturo

    2007-02-21

    The human DNA replication origin, located in the lamin B2 gene, interacts with the DNA topoisomerases I and II in a cell cycle-modulated manner. The topoisomerases interact in vivo and in vitro with precise bonds ahead of the start sites of bidirectional replication, within the pre-replicative complex region; topoisomerase I is bound in M, early G1 and G1/S border and topoisomerase II in M and the middle of G1. The Orc2 protein competes for the same sites of the origin bound by either topoisomerase in different moments of the cell cycle; furthermore, it interacts on the DNA with topoisomerase II during the assembly of the pre-replicative complex and with DNA-bound topoisomerase I at the G1/S border. Inhibition of topoisomerase I activity abolishes origin firing. Thus, the two topoisomerases are closely associated with the replicative complexes, and DNA topology plays an essential functional role in origin activation.

  12. Purification of human leucocyte DNA: proteinase K is not necessary.

    Science.gov (United States)

    Douglas, A M; Georgalis, A M; Benton, L R; Canavan, K L; Atchison, B A

    1992-03-01

    A rapid nontoxic method for the purification of DNA from human leucocytes is described. Preliminary experiments which tested different methods of DNA purification indicated that digestion of proteins with proteinase K was unnecessary. This led to the development of a simple procedure involving lysis of the cells in SDS followed by extraction with 6 M NaCl. The method described overcomes the requirement for lengthy incubations in the presence of expensive proteinase K and subsequent extraction with toxic chemicals.

  13. Human neuronal tau promoting the melting temperature of DNA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The hyperchromic effect of ultraviolet spectroscopy shows that adding recombinant human neuronal tau to the solution of calf thymus DNA will promote the melting temperature (Tm) from 67℃ to 81℃. Similar result has been detected when adding tau to plasmid pBluescript-Ⅱ SK, by raising Tm from 75℃ to 85℃. The kinetics of thermal denaturation of DNA with tau is much slower than that of control. It suggests that tau may stabilize the double helix conformation of DNA.

  14. Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood

    Science.gov (United States)

    Vieira, Alexandre R.; Deeley, Kathleen B.; Callahan, Nicholas F.; Noel, Jacqueline B.; Anjomshoaa, Ida; Carricato, Wendy M.; Schulhof, Louise P.; DeSensi, Rebecca S.; Gandhi, Pooja; Resick, Judith M.; Brandon, Carla A.; Rozhon, Christopher; Patir, Asli; Yildirim, Mine; Poletta, Fernando A.; Mereb, Juan C.; Letra, Ariadne; Menezes, Renato; Wendell, Steven; Lopez-Camelo, Jorge S.; Castilla, Eduardo E.; Orioli, Iêda M.; Seymen, Figen; Weyant, Robert J.; Crout, Richard; McNeil, Daniel W.; Modesto, Adriana; Marazita, Mary L.

    2011-01-01

    Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults. PMID:21731912

  15. Finding human promoter groups based on DNA physical properties

    Science.gov (United States)

    Zeng, Jia; Cao, Xiao-Qin; Zhao, Hongya; Yan, Hong

    2009-10-01

    DNA rigidity is an important physical property originating from the DNA three-dimensional structure. Although the general DNA rigidity patterns in human promoters have been investigated, their distinct roles in transcription are largely unknown. In this paper, we discover four highly distinct human promoter groups based on similarity of their rigidity profiles. First, we find that all promoter groups conserve relatively rigid DNAs at the canonical TATA box [a consensus TATA(A/T)A(A/T) sequence] position, which are important physical signals in binding transcription factors. Second, we find that the genes activated by each group of promoters share significant biological functions based on their gene ontology annotations. Finally, we find that these human promoter groups correlate with the tissue-specific gene expression.

  16. Finding human promoter groups based on DNA physical properties.

    Science.gov (United States)

    Zeng, Jia; Cao, Xiao-Qin; Zhao, Hongya; Yan, Hong

    2009-10-01

    DNA rigidity is an important physical property originating from the DNA three-dimensional structure. Although the general DNA rigidity patterns in human promoters have been investigated, their distinct roles in transcription are largely unknown. In this paper, we discover four highly distinct human promoter groups based on similarity of their rigidity profiles. First, we find that all promoter groups conserve relatively rigid DNAs at the canonical TATA box [a consensus TATA(A/T)A(A/T) sequence] position, which are important physical signals in binding transcription factors. Second, we find that the genes activated by each group of promoters share significant biological functions based on their gene ontology annotations. Finally, we find that these human promoter groups correlate with the tissue-specific gene expression.

  17. Extracellular DNA affects NO content in human endothelial cells.

    Science.gov (United States)

    Efremova, L V; Alekseeva, A Yu; Konkova, M S; Kostyuk, S V; Ershova, E S; Smirnova, T D; Konorova, I L; Veiko, N N

    2010-08-01

    Fragments of extracellular DNA are permanently released into the blood flow due to cell apoptosis and possible de novo DNA synthesis. To find out whether extracellular DNA can affect the synthesis of nitric oxide (NO), one of key vascular tone regulators, we studied in vitro effects of three artificial DNA probes with different sequences and 10 samples of extracellular DNA (obtained from healthy people and patients with hypertension and atherosclerosis) on NO synthesis in endothelial cell culture (HUVEC). For detection of NO in live cells and culture medium, we used a NO-specific agent CuFL penetrating into the cells and forming a fluorescent product FL-NO upon interaction with NO. Human genome DNA fragments affected the content of NO in endothelial cells; this effect depended on both the base sequence and concentration of DNA fragments. Addition of artificial DNA and extracellular DNA from healthy people into the cell culture in a low concentration (5 ng/ml) increased the detected NO concentration by 4-fold at most. Cytosine-guanine (CG)-rich fragment of the transcribed sequence of ribosomal repeat was the most powerful NO-inductor. The effect of DNA fragments on NO synthesis was comparable with that of low doses of oxidizing agents, H(2)O(2) and 17β-estradiol. Extracellular DNA samples obtained from patients with hypertension and atherosclerosis decreased NO content in cells and medium by 1.3-28 times compared to the control; the effect correlated with the content of CG-rich sequences.

  18. The mutation rate of the human mtDNA deletion mtDNA4977.

    Science.gov (United States)

    Shenkar, R; Navidi, W; Tavaré, S; Dang, M H; Chomyn, A; Attardi, G; Cortopassi, G; Arnheim, N

    1996-10-01

    The human mitochondrial mutation mtDNA4977 is a 4,977-bp deletion that originates between two 13-bp direct repeats. We grew 220 colonies of cells, each from a single human cell. For each colony, we counted the number of cells and amplified the DNA by PCR to test for the presence of a deletion. To estimate the mutation fate, we used a model that describes the relationship between the mutation rate and the probability that a colony of a given size will contain no mutants, taking into account such factors as possible mitochondrial turnover and mistyping due to PCR error. We estimate that the mutation rate for mtDNA4977 in cultured human cells is 5.95 x 10(-8) per mitochondrial genome replication. This method can be applied to specific chromosomal, as well as mitochondrial, mutations.

  19. The mutation rate of the human mtDNA deletion mtDNA{sup 4977}

    Energy Technology Data Exchange (ETDEWEB)

    Shenkar, R. [Univ. of Colorado Health Science Center, Denver, CO (United States); Navidi, W. [Colorado School of Mines, Golden, CO (United States); Tavare, S. [Univ. of California, Los Angeles, CA (United States)] [and others

    1996-10-01

    The human mitochondrial mutation mtDNA{sup 4977} is a 4,977-bp deletion that originates between two 13-bp direct repeats. We grew 220 colonies of cells, each from a single human cell. For each colony, we counted the number of cells and amplified the DNA by PCR to test for the presence of a deletion. To estimate the mutation rate, we used a model that describes the relationship between the mutation rate and the probability that a colony of a given size will contain no mutants, taking into account such factors as possible mitochondrial turnover and mistyping due to PCR error. We estimate that the mutation rate for mtDNA{sup 4977} in cultured human cells is 5.95 x 10{sup {minus}8} per mitochondrial genome replication. This method can be applied to specific chromosomal, as well as mitochondrial, mutations. 17 refs., 1 fig., 1 tab.

  20. The human DNA-activated protein kinase, DNA-PK: Substrate specificity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.W.; Connelly, M.A.; Zhang, H.; Sipley, J.A. [Brookhaven National Lab., Upton, NY (United States). Biology Dept.; Lees-Miller, S.P.; Lintott, L.G. [Univ. of Calgary, Alberta (Canada). Dept. of Biological Sciences; Sakaguchi, Kazuyasu; Appella, E. [National Institutes of Health, Bethesda, MD (United States). Lab. of Cell Biology

    1994-11-05

    Although much has been learned about the structure and function of p53 and the probable sequence of subsequent events that lead to cell cycle arrest, little is known about how DNA damage is detected and the nature of the signal that is generated by DNA damage. Circumstantial evidence suggests that protein kinases may be involved. In vitro, human DNA-PK phosphorylates a variety of nuclear DNA-binding, regulatory proteins including the tumor suppressor protein p53, the single-stranded DNA binding protein RPA, the heat shock protein hsp90, the large tumor antigen (TAg) of simian virus 40, a variety of transcription factors including Fos, Jun, serum response factor (SRF), Myc, Sp1, Oct-1, TFIID, E2F, the estrogen receptor, and the large subunit of RNA polymerase II (reviewed in Anderson, 1993; Jackson et al., 1993). However, for most of these proteins, the sites that are phosphorylated by DNA-PK are not known. To determine if the sites that were phosphorylated in vitro also were phosphorylated in vivo and if DNA-PK recognized a preferred protein sequence, the authors identified the sites phosphorylated by DNA-PK in several substrates by direct protein sequence analysis. Each phosphorylated serine or threonine is followed immediately by glutamine in the polypeptide chain; at no other positions are the amino acid residues obviously constrained.

  1. The human DNA-activated protein kinase, DNA-PK: Substrate specificity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.W.; Connelly, M.A.; Zhang, H.; Sipley, J.A. [Brookhaven National Lab., Upton, NY (United States). Biology Dept.; Lees-Miller, S.P.; Lintott, L.G. [Univ. of Calgary, Alberta (Canada). Dept. of Biological Sciences; Sakaguchi, Kazuyasu; Appella, E. [National Institutes of Health, Bethesda, MD (United States). Lab. of Cell Biology

    1994-11-05

    Although much has been learned about the structure and function of p53 and the probable sequence of subsequent events that lead to cell cycle arrest, little is known about how DNA damage is detected and the nature of the signal that is generated by DNA damage. Circumstantial evidence suggests that protein kinases may be involved. In vitro, human DNA-PK phosphorylates a variety of nuclear DNA-binding, regulatory proteins including the tumor suppressor protein p53, the single-stranded DNA binding protein RPA, the heat shock protein hsp90, the large tumor antigen (TAg) of simian virus 40, a variety of transcription factors including Fos, Jun, serum response factor (SRF), Myc, Sp1, Oct-1, TFIID, E2F, the estrogen receptor, and the large subunit of RNA polymerase II (reviewed in Anderson, 1993; Jackson et al., 1993). However, for most of these proteins, the sites that are phosphorylated by DNA-PK are not known. To determine if the sites that were phosphorylated in vitro also were phosphorylated in vivo and if DNA-PK recognized a preferred protein sequence, the authors identified the sites phosphorylated by DNA-PK in several substrates by direct protein sequence analysis. Each phosphorylated serine or threonine is followed immediately by glutamine in the polypeptide chain; at no other positions are the amino acid residues obviously constrained.

  2. Coal tar residues produce both DNA adducts and oxidative DNA damage in human mammary epithelial cells.

    Science.gov (United States)

    Leadon, S A; Sumerel, J; Minton, T A; Tischler, A

    1995-12-01

    In the present study we compare the metabolic activation of coal tar, as measured by the production of both DNA adducts and oxidative DNA damage, with that of a single carcinogen that is a constituent of this complex mixture in human mammary epithelial cells (HMEC). We find that a significant level of DNA adducts, detected by 32P-postlabeling, are formed in HMEC following exposure to coal tar residues. This treatment also results in the generation of high levels of oxidative DNA damage, as measured by the production of one type of oxidative base modification, thymine glycols. The amounts of both DNA adducts and thymine varied considerably between the various coal tar residues and did not correlate with either the total amount of polycyclic aromatic hydrocarbons (PAH) or the amount of benzo[a]pyrene (B[a]P) present in the residue. Fractionating the residue from one of the sites by sequential extraction with organic solvents indicated that while the ability to produce both types of DNA damage was contained mostly in a hexane-soluble fraction, a benzene-soluble fraction produced high levels of reactive oxygens relative to the number of total DNA adducts. We find that the total amount of PAH or B[a]P present in the coal tars from the various sites was not a predictor of the level of total DNA damage formed.

  3. Prospects for DNA methods to measure human heritable mutation rates

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.L.

    1985-06-14

    A workshop cosponsored by ICPEMC and the US Department of Energy was held in Alta, Utah, December 9-13, 1984 to examine the extent to which DNA-oriented methods might provide new approaches to the important but intractable problem of measuring mutation rates in control and exposed human populations. The workshop identified and analyzed six DNA methods for detection of human heritable mutation, including several created at the meeting, and concluded that none of the methods combine sufficient feasibility and efficiency to be recommended for general application. 8 refs.

  4. Distribution patterns of postmortem damage in human mitochondrial DNA

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Willerslev, Eske; Hansen, Anders J

    2002-01-01

    The distribution of postmortem damage in mitochondrial DNA retrieved from 37 ancient human DNA samples was analyzed by cloning and was compared with a selection of published animal data. A relative rate of damage (rho(v)) was calculated for nucleotide positions within the human hypervariable region......, such as MT5, have lower in vivo mutation rates and lower postmortem-damage rates. The postmortem data also identify a possible functional subregion of the HVR1, termed "low-diversity 1," through the lack of sequence damage. The amount of postmortem damage observed in mitochondrial coding regions...

  5. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  6. DNA methylation-based variation between human populations.

    Science.gov (United States)

    Kader, Farzeen; Ghai, Meenu

    2017-02-01

    Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.

  7. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  8. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η.

    Science.gov (United States)

    Su, Yan; Egli, Martin; Guengerich, F Peter

    2016-02-19

    Ribonucleotides and 2'-deoxyribonucleotides are the basic units for RNA and DNA, respectively, and the only difference is the extra 2'-OH group on the ribonucleotide sugar. Cellular rNTP concentrations are much higher than those of dNTP. When copying DNA, DNA polymerases not only select the base of the incoming dNTP to form a Watson-Crick pair with the template base but also distinguish the sugar moiety. Some DNA polymerases use a steric gate residue to prevent rNTP incorporation by creating a clash with the 2'-OH group. Y-family human DNA polymerase η (hpol η) is of interest because of its spacious active site (especially in the major groove) and tolerance of DNA lesions. Here, we show that hpol η maintains base selectivity when incorporating rNTPs opposite undamaged DNA and the DNA lesions 7,8-dihydro-8-oxo-2'-deoxyguanosine and cyclobutane pyrimidine dimer but with rates that are 10(3)-fold lower than for inserting the corresponding dNTPs. X-ray crystal structures show that the hpol η scaffolds the incoming rNTP to pair with the template base (dG) or 7,8-dihydro-8-oxo-2'-deoxyguanosine with a significant propeller twist. As a result, the 2'-OH group avoids a clash with the steric gate, Phe-18, but the distance between primer end and Pα of the incoming rNTP increases by 1 Å, elevating the energy barrier and slowing polymerization compared with dNTP. In addition, Tyr-92 was identified as a second line of defense to maintain the position of Phe-18. This is the first crystal structure of a DNA polymerase with an incoming rNTP opposite a DNA lesion.

  9. Retrieval of human DNA from rodent-human genomic libraries by a recombination process.

    Science.gov (United States)

    Neve, R L; Bruns, G A; Dryja, T P; Kurnit, D M

    1983-09-01

    Human Alu repeat ("BLUR") sequences have been cloned into the mini-plasmid vector piVX. The resulting piBLUR clones have been used to rescue selectively, by recombination, bacteriophage carrying human DNA sequences from genomic libraries constructed using DNA from rodent-human somatic cell hybrids. piBLUR clones are able to retrieve human clones from such libraries because at least one Alu family repeat is present on most 15 to 20 kb fragments of human DNA and because of the relative species-specificity of the sequences comprising the Alu family. The rapid, selective plaque purification achieved results in the construction of a collection of recombinant phage carrying diverse human DNA inserts from a specific subset of the human karyotype. Subfragments of two recombinants rescued from a mouse-human somatic cell hybrid containing human chromosomes X, 10, 13, and 22 were mapped to human chromosomes X and 13, respectively, demonstrating the utility of this protocol for the isolation of human chromosome-specific DNA sequences from appropriate somatic cell hybrids.

  10. Assessment of Human DNA Repair (NER) Capacity With DNA Repair Rate (DRR) by Comet Assay

    Institute of Scientific and Technical Information of China (English)

    WEI ZHENG; JI-LIANG HE; LI-FEN JIN; JIAN-LIN LOU; BAO-HONG WANG

    2005-01-01

    Objective Alkaline comet assay was used to evaluate DNA repair (nucleotide excision repair, NER) capacity of human fresh lymphocytes from 12 young healthy non-smokers (6 males and 6 females). Methods Lymphocytes were exposed to UV-C (254 nm) at the dose rate of 1.5 J/m2/sec. Novobiocin (NOV) and aphidicolin (APC), DNA repair inhibitors, were utilized to imitate the deficiency of DNA repair capacity at the incision and ligation steps of NER. Lymphocytes from each donor were divided into three grougs: UVC group, UVC plus NOV group, and UVC plus APC group. DNA single strand breaks were detected in UVC irradiated cells incubated for 0, 30, 60, 90, 120, 180, and 240 min after UVC irradiation. DNA repair rate (DRR) served as an indicator of DNA repair capacity. Results The results indicated that the maximum DNA damage (i.e. maximum tail length) in the UVC group mainly appeared at 90 min. The ranges of DRRs in the UVC group were 62.84%-98.71%. Average DRR value was 81.84%. The DRR difference between males and females was not significant (P<0.05). However, the average DRR value in the UVC plus NOV group and the UVC plus APC group was 52.98% and 39.57% respectively, which were significantly lower than that in the UVC group (P<0.01). Conclusion The comet assay is a rapid, simple and sensitive screening test to assess individual DNA repair (NER) capacity. It is suggested that the time to detect DNA single strand breaks in comet assay should include 0 (before UV irradiation), 90 and 240 min after exposure to 1.5 J·m-2 UVC at least. The DRR, as an indicator, can represent the individual DNA repair capacity in comet assay.

  11. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per...... strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found...... that 68.4% of CpG sites and 80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic...

  12. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human

    Science.gov (United States)

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-01-01

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation. PMID:28212312

  13. Detection and Genetic Analysis of Porcine Bocavirus in Different Swine Herds in North Central China

    Directory of Open Access Journals (Sweden)

    Mengmeng Liu

    2014-01-01

    Full Text Available Porcine Bocavirus (PBoV has been reported to be associated with postweaning multisystemic wasting syndrome and pneumonia in pigs. In this study, a survey was conducted to evaluate the prevalence of PBoV in slaughter pigs, sick pigs, asymptomatic pigs and classical swine fever virus (CSFV eradication plan herds in five provinces of China (Henan, Liaoning, Shandong, Hebei and Tianjin by means of PCR targeting NS1 gene of PBoV. Among the total of 403 tissue samples, 11.41% were positive for PBoV. The positive rates of spleen (20.75% and inguinal lymph node (27.18% are higher than those of other organs. PCR products of twenty PBoV positive samples from slaughter pigs were sequenced for phylogenetic analysis. The result revealed that PBoV could be divided into 6 groups (PBoV-a~PBoV-f. All PBoV sequenced in this study belong to PBoV-a–PBoV-d with 90.1% to 99% nucleotide identities. Our results exhibited significant genetic diversity of PBoV and suggested a complex prevalence of PBoV in Chinese swine herds. Whether this diversity of PBoV has a significance to pig production or even public health remains to be further studied.

  14. Involvement of DNA ligase III and ribonuclease H1 in mitochondrial DNA replication in cultured human cells.

    Science.gov (United States)

    Ruhanen, Heini; Ushakov, Kathy; Yasukawa, Takehiro

    2011-12-01

    Recent evidence suggests that coupled leading and lagging strand DNA synthesis operates in mammalian mitochondrial DNA (mtDNA) replication, but the factors involved in lagging strand synthesis are largely uncharacterised. We investigated the effect of knockdown of the candidate proteins in cultured human cells under conditions where mtDNA appears to replicate chiefly via coupled leading and lagging strand DNA synthesis to restore the copy number of mtDNA to normal levels after transient mtDNA depletion. DNA ligase III knockdown attenuated the recovery of mtDNA copy number and appeared to cause single strand nicks in replicating mtDNA molecules, suggesting the involvement of DNA ligase III in Okazaki fragment ligation in human mitochondria. Knockdown of ribonuclease (RNase) H1 completely prevented the mtDNA copy number restoration, and replication intermediates with increased single strand nicks were readily observed. On the other hand, knockdown of neither flap endonuclease 1 (FEN1) nor DNA2 affected mtDNA replication. These findings imply that RNase H1 is indispensable for the progression of mtDNA synthesis through removing RNA primers from Okazaki fragments. In the nucleus, Okazaki fragments are ligated by DNA ligase I, and the RNase H2 is involved in Okazaki fragment processing. This study thus proposes that the mitochondrial replication system utilises distinct proteins, DNA ligase III and RNase H1, for Okazaki fragment maturation.

  15. Sulforaphane induces DNA single strand breaks in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sestili, Piero, E-mail: piero.sestili@uniurb.it [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Paolillo, Marco [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Lenzi, Monia [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy); Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Fimognari, Carmela [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-07-07

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 {mu}M SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value

  16. Destabilization of the human epigenome: consequences of foreign DNA insertions.

    Science.gov (United States)

    Weber, Stefanie; Hofmann, Andrea; Herms, Stefan; Hoffmann, Per; Doerfler, Walter

    2015-08-01

    We previously reported changes of DNA methylation and transcription patterns in mammalian cells that carry integrated foreign DNA. Experiments were now designed to assess the epigenetic consequences of inserting a 5.6 kbp plasmid into the human genome. Differential transcription and CpG methylation patterns were compared between transgenomic and nontransgenomic cell clones by using gene chip microarray systems. In 4.7% of the 28.869 gene segments analyzed, transcriptional activities were up- or downregulated in the transgenomic cell clones. Genome-wide profiling revealed differential methylation in 3791 of > 480,000 CpG's examined in transgenomic versus nontransgenomic clones. The data document genome-wide effects of foreign DNA insertions on the epigenetic stability of human cells. Many fields in experimental biology and medicine employ transgenomic or otherwise genome-manipulated cells or organisms without considering the epigenetic consequences for the recipient genomes.

  17. The DNA-damage response in human biology and disease

    DEFF Research Database (Denmark)

    Jackson, Stephen P; Bartek, Jiri

    2009-01-01

    , signal its presence and mediate its repair. Such responses, which have an impact on a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management....

  18. False-positive Human Papillomavirus DNA tests in cervical screening

    DEFF Research Database (Denmark)

    Rebolj, Matejka; Pribac, Igor; Lynge, Elsebeth

    2011-01-01

    Based on data from randomised controlled trials (RCT) on primary cervical screening, it has been reported that the problem of more frequent false-positive tests in Human Papillomavirus (HPV) DNA screening compared to cytology could be overcome. However, these reports predominantly operated...

  19. Ancient DNA in human bone remains from Pompeii archaeological site.

    Science.gov (United States)

    Cipollaro, M; Di Bernardo, G; Galano, G; Galderisi, U; Guarino, F; Angelini, F; Cascino, A

    1998-06-29

    aDNA extraction and amplification procedures have been optimized for Pompeian human bone remains whose diagenesis has been determined by histological analysis. Single copy genes amplification (X and Y amelogenin loci and Y specific alphoid repeat sequences) have been performed and compared with anthropometric data on sexing.

  20. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ.

    Science.gov (United States)

    Kasiviswanathan, Rajesh; Minko, Irina G; Lloyd, R Stephen; Copeland, William C

    2013-05-17

    Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates.

  1. Traumatic stress and human DNA methylation: a critical review.

    Science.gov (United States)

    Vinkers, Christiaan H; Kalafateli, Aimilia Lydia; Rutten, Bart P F; Kas, Martien J; Kaminsky, Zachary; Turner, Jonathan D; Boks, Marco P M

    2015-01-01

    Animal studies have identified persistent and functional effects of traumatic stress on the epigenome. This review discusses the clinical evidence for trauma-induced changes in DNA methylation across the life span in humans. Studies are reviewed based on reports of trauma exposure during the prenatal period (13 studies), early life (20 studies), and adulthood (ten studies). Even though it is apparent that traumatic stress influences the human epigenome, there are significant drawbacks in the existing human literature. These include a lack of longitudinal studies, methodological heterogeneity, selection of tissue type, and the influence of developmental stage and trauma type on methylation outcomes. These issues are discussed in order to present a way in which future studies can gain more insight into the functional relevance of trauma-related DNA methylation changes. Epigenetic studies investigating the detrimental effects of traumatic stress have great potential for an improved detection and treatment of trauma-related psychiatric disorders.

  2. DNA integrity of human leukocytes after magnetic resonance imaging.

    Science.gov (United States)

    Szerencsi, Ágnes; Kubinyi, Györgyi; Váliczkó, Éva; Juhász, Péter; Rudas, Gábor; Mester, Ádám; Jánossy, Gábor; Bakos, József; Thuróczy, György

    2013-10-01

    This study focuses on the effects of high-field (3T) magnetic resonance imaging (MRI) scans on the DNA integrity of human leukocytes in vitro in order to validate the study where genotoxic effects were obtained and published by Lee et al. The scanning protocol and exposure situation were the same as those used under routine clinical brain MRI scan. Peripheral blood samples from healthy non-smoking male donors were exposed to electromagnetic fields (EMF) produced by 3T magnetic resonance imaging equipment for 0, 22, 45, 67, and 89 min during the scanning procedure. Samples of positive control were exposed to ionizing radiation (4 Gy of (60)Co-γ). Single breaks of DNA in leukocytes were detected by single-cell gel electrophoresis (Comet assay). Chromosome breakage, chromosome loss and micronuclei formations were detected by a micronucleus test (MN). Three independent experiments were performed. The data of comet tail DNA%, olive tail moment and micronucleus frequency showed no DNA damages due to MRI exposure. The results of the Comet assay and the micronucleus test indicate that the applied exposure of MRI does not appear to produce breaks in the DNA and has no significant effect on DNA integrity.

  3. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells.

    Science.gov (United States)

    Valdiglesias, Vanessa; Méndez, Josefina; Pásaro, Eduardo; Cemeli, Eduardo; Anderson, Diana; Laffon, Blanca

    2010-07-07

    Okadaic acid (OA) is a phycotoxin produced by several types of dinoflagellates causing diarrheic shellfish poisoning (DSP) in humans. Symptoms induced by DSP toxins are mainly gastrointestinal, but the intoxication does not appear to be fatal. Despite this, this toxin presents a potential threat to human health even at concentrations too low to induce acute toxicity, since previous animal studies have shown that OA has very potent tumour promoting activity. However, its concrete action mechanism has not been described yet and the results reported with regard to OA cytotoxicity and genotoxicity are often contradictory. In the present study, the genotoxic and cytotoxic effects of OA on three different types of human cells (peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y neuroblastoma cells) were evaluated. Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction, and MTT test and Comet assay were performed in order to evaluate cytotoxicity and genotoxicity, respectively. The possible effects of OA on DNA repair were also studied by means of the DNA repair competence assay, using bleomycin as DNA damage inductor. Treatment with OA in absence of S9 fraction induced not statistically significant decrease in cell viability and significant increase in DNA damage in all cell types at the highest concentrations investigated. However, only SHSY5Y cells showed OA induced genotoxic and cytotoxic effects in presence of S9 fraction. Furthermore, we found that OA can induce modulations in DNA repair processes when exposure was performed prior to BLM treatment, in co-exposure, or during the subsequent DNA repair process. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Detecting multiple DNA human profile from a mosquito blood meal.

    Science.gov (United States)

    Rabêlo, K C N; Albuquerque, C M R; Tavares, V B; Santos, S M; Souza, C A; Oliveira, T C; Moura, R R; Brandão, L A C; Crovella, S

    2016-08-26

    Criminal traces commonly found at crime scenes may present mixtures from two or more individuals. The scene of the crime is important for the collection of various types of traces in order to find the perpetrator of the crime. Thus, we propose that hematophagous mosquitoes found at crime scenes can be used to perform genetic testing of human blood and aid in suspect investigation. The aim of the study was to obtain a single Aedes aegypti mosquito profile from a human DNA mixture containing genetic materials of four individuals. We also determined the effect of blood acquisition time by setting time intervals of 24, 48, and 72 h after the blood meal. STR loci and amelogenin were analyzed, and the results showed that human DNA profiles could be obtained from hematophagous mosquitos at 24 h following the blood meal. It is possible that hematophagous mosquitoes can be used as biological remains at the scene of the crime, and can be used to detect human DNA profiles of up to four individuals.

  5. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin.

    Science.gov (United States)

    Takenaka, Musashi; Okumura, Yuzo; Amino, Tomokazu; Miyachi, Yusuke; Ogino, Chiaki; Kondo, Akihiko

    2017-02-15

    DNA-duplex interactions in thymines and adenins are used as a linker for the novel methodology of Atomic Force Microscope-Systematic Evolution of Ligands by EXpotential enrichment (AFM-SELEX). This study used the hydrogen bonds in 10 mer of both thymines (T10) and adenines (A10). Initially, the interactive force in T10-A10 was measured by AFM, which returned an average interactive force of approximately 350pN. Based on this result, DNA aptamers against human serum albumin could be selected in the 4th round, and 15 different clones could be sequenced. The lowest dissociation constant of the selected aptamer was identified via surface plasmon resonance, and it proved to be identical to that of the commercial aptamer. Therefore, specific hydrogen bonds in DNA can be useful linkers for AFM-SELEX. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Analysis of Human Accelerated DNA Regions Using Archaic Hominin Genomes

    Science.gov (United States)

    Burbano, Hernán A.; Green, Richard E.; Maricic, Tomislav; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Kelso, Janet; Pollard, Katherine S.; Lachmann, Michael; Pääbo, Svante

    2012-01-01

    Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. We captured and sequenced DNA from a collection of previously published HARs using DNA from an Iberian Neandertal. Combining these new data with shotgun sequence from the Neandertal and Denisova draft genomes, we determine at least one archaic hominin allele for 84% of all positions within HARs. We find that 8% of HAR substitutions are not observed in the archaic hominins and are thus recent in the sense that the derived allele had not come to fixation in the common ancestor of modern humans and archaic hominins. Further, we find that recent substitutions in HARs tend to have come to fixation faster than substitutions elsewhere in the genome and that substitutions in HARs tend to cluster in time, consistent with an episodic rather than a clock-like process underlying HAR evolution. Our catalog of sequence changes in HARs will help prioritize them for functional studies of genomic elements potentially responsible for modern human adaptations. PMID:22412940

  7. Androgen receptor function links human sexual dimorphism to DNA methylation.

    Directory of Open Access Journals (Sweden)

    Ole Ammerpohl

    Full Text Available Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.

  8. A promoter DNA demethylation landscape of human hematopoietic differentiation.

    Science.gov (United States)

    Calvanese, Vincenzo; Fernández, Agustín F; Urdinguio, Rocío G; Suárez-Alvarez, Beatriz; Mangas, Cristina; Pérez-García, Vicente; Bueno, Clara; Montes, Rosa; Ramos-Mejía, Verónica; Martínez-Camblor, Pablo; Ferrero, Cecilia; Assenov, Yassen; Bock, Christoph; Menendez, Pablo; Carrera, Ana Clara; Lopez-Larrea, Carlos; Fraga, Mario F

    2012-01-01

    Global mechanisms defining the gene expression programs specific for hematopoiesis are still not fully understood. Here, we show that promoter DNA demethylation is associated with the activation of hematopoietic-specific genes. Using genome-wide promoter methylation arrays, we identified 694 hematopoietic-specific genes repressed by promoter DNA methylation in human embryonic stem cells and whose loss of methylation in hematopoietic can be associated with gene expression. The association between promoter methylation and gene expression was studied for many hematopoietic-specific genes including CD45, CD34, CD28, CD19, the T cell receptor (TCR), the MHC class II gene HLA-DR, perforin 1 and the phosphoinositide 3-kinase (PI3K) and results indicated that DNA demethylation was not always sufficient for gene activation. Promoter demethylation occurred either early during embryonic development or later on during hematopoietic differentiation. Analysis of the genome-wide promoter methylation status of induced pluripotent stem cells (iPSCs) generated from somatic CD34(+) HSPCs and differentiated derivatives from CD34(+) HSPCs confirmed the role of DNA methylation in regulating the expression of genes of the hemato-immune system, and indicated that promoter methylation of these genes may be associated to stemness. Together, these data suggest that promoter DNA demethylation might play a role in the tissue/cell-specific genome-wide gene regulation within the hematopoietic compartment.

  9. Recovery of latent fingerprints and DNA on human skin.

    Science.gov (United States)

    Färber, Doris; Seul, Andrea; Weisser, Hans-Joachim; Bohnert, Michael

    2010-11-01

    The project "Latent Fingerprints and DNA on Human Skin" was the first systematic research in Europe dealing with detection of fingerprints and DNA left by offenders on the skin of corpses. One thousand samples gave results that allow general statements on the materials and methods used. The tests were carried out according to a uniform trial structure. Fingerprints were deposited by natural donors on corpses. The latent fingerprints were treated with magnetic powder or black fingerprint powder. Afterward, they were lifted with silicone casting material (Isomark(®)) or gelatine foil. All lifts were swabbed to recover DNA. It was possible to visualize comparable and identifiable fingerprints on the skin of corpses (16%). In the same categories, magnetic powder (18.4%) yielded better results than black fingerprint powder (13.6%). The number of comparable and identifiable fingerprints decreased on the lifts (12.7%). Isomark(®) (14.9%) was the better lifting material in comparison with gelatine foil (10.1%). In one-third of the samples, DNA could be extracted from the powdered and lifted latents. Black fingerprint powder delivered the better result with a rate of 2.2% for full DNA profiles and profiles useful for exclusion in comparison with 1.8% for the magnetic powder traces. Isomark(®) (3.1%) yielded better results than gelatine foil (0.6%).

  10. Nuclear responses to depletion of mitochondrial DNA in human cells.

    Science.gov (United States)

    Li, K; Neufer, P D; Williams, R S

    1995-11-01

    The derivation of human cell lines devoid of mitochondrial (mt) DNA (rho 0) provides an opportunity to study nuclear responses to a chronic impairment of mitochondrial oxidative phosphorylation. Expression of several nuclear genes is induced in human rho 0 cells, including those encoding integral proteins of the mitochondrial inner membrane, intermediate filaments, and ribosomes. In contrast to conditions in which mitochondrial respiration is altered acutely, expression of heat shock proteins and immediate early genes is not induced. Mitochondria from rho 0 cells maintain a transmembrane electrochemical potential and are distributed within the cytoplasm of these cells in a manner indistinguishable from that of wild-type cells. We conclude that a chronic deficiency of mitochondrial oxidative phosphorylation produced by elimination of mtDNA is associated with a different pattern of gene induction than that provoked by other acute or subacute conditions that impair mitochondrial respiration or create energy demands in excess of mitochondrial respiratory capacity.

  11. DNA-binding specificities of human transcription factors.

    Science.gov (United States)

    Jolma, Arttu; Yan, Jian; Whitington, Thomas; Toivonen, Jarkko; Nitta, Kazuhiro R; Rastas, Pasi; Morgunova, Ekaterina; Enge, Martin; Taipale, Mikko; Wei, Gonghong; Palin, Kimmo; Vaquerizas, Juan M; Vincentelli, Renaud; Luscombe, Nicholas M; Hughes, Timothy R; Lemaire, Patrick; Ukkonen, Esko; Kivioja, Teemu; Taipale, Jussi

    2013-01-17

    Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.

  12. DNA barcoding of fungi causing infections in humans and animals.

    Science.gov (United States)

    Irinyi, Laszlo; Lackner, Michaela; de Hoog, G Sybren; Meyer, Wieland

    2016-02-01

    Correct species identification is becoming increasingly important in clinical diagnostics. Till now, many mycological laboratories rely on conventional phenotypic identification. But this is slow and strongly operator-dependent. Therefore, to improve the quality of pathogen identification, rapid, reliable, and objective identification methods are essential. One of the most encouraging approaches is molecular barcoding using the internal transcribed spacer (ITS) of the rDNA, which is rapid, easily achievable, accurate, and applicable directly from clinical specimens. It relies on the comparison of a single ITS sequence with a curated reference database. The International Society for Human and Animal Mycology (ISHAM) working group for DNA barcoding has recently established such a database, focusing on the majority of human and animal pathogenic fungi (ISHAM-ITS, freely accessible at http://www.isham.org/ or directly from http://its.mycologylab.org). For some fungi the use of secondary barcodes may be necessary.

  13. Recurrent DNA inversion rearrangements in the human genome

    DEFF Research Database (Denmark)

    Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia

    2007-01-01

    Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome...... on chromosomes 3, 15, and 19, were analyzed. The relative proportion of wild-type to rearranged structures was determined in DNA samples from blood obtained from different, unrelated individuals. The results obtained indicate that recurrent genomic rearrangements occur at relatively high frequency in somatic...... cells. Interestingly, the rearrangements studied were significantly more abundant in adults than in newborn individuals, suggesting that such DNA rearrangements might start to appear during embryogenesis or fetal life and continue to accumulate after birth. The relevance of our results in regard...

  14. Detection of extracellular genomic DNA scaffold in human thrombus

    DEFF Research Database (Denmark)

    Oklu, Rahmi; Albadawi, Hassan; Watkins, Michael T

    2012-01-01

    PURPOSE: Mechanisms underlying transition of a thrombus susceptible to tissue plasminogen activator (TPA) fibrinolysis to one that is resistant is unclear. Demonstration of a new possible thrombus scaffold may open new avenues of research in thrombolysis and may provide mechanistic insight...... thrombi. CONCLUSIONS: Extensive detection of genomic DNA associated with histones in the extracellular matrix of human and mouse thrombi suggest the presence of a new thrombus-associated scaffold....

  15. DNA typing of Calliphorids collected from human corpses in Malaysia.

    Science.gov (United States)

    Kavitha, R; Tan, T C; Lee, H L; Nazni, W A; Sofian-Azirun, M

    2013-03-01

    Estimation of post-mortem interval (PMI) is crucial for time of death determination. The advent of DNA-based identification techniques forensic entomology saw the beginning of a proliferation of molecular studies into forensically important Calliphoridae (Diptera). The use of DNA to characterise morphologically indistinguishable immature calliphorids was recognised as a valuable molecular tool with enormous practical utility. The local entomofauna in most cases is important for the examination of entomological evidences. The survey of the local entomofauna has become a fundamental first step in forensic entomological studies, because different geographical distributions, seasonal and environmental factors may influence the decomposition process and the occurrence of different insect species on corpses. In this study, calliphorids were collected from 13 human corpses recovered from indoors, outdoors and aquatic conditions during the post-mortem examination by pathologists from the government hospitals in Malaysia. Only two species, Chrysomya megacephala and Chrysomya rufifacies were recovered from human corpses. DNA sequencing was performed to study the mitochondrial encoded COI gene and to evaluate the suitability of the 1300 base pairs of COI fragments for identification of blow fly species collected from real crime scene. The COI gene from blow fly specimens were sequenced and deposited in GenBank to expand local databases. The sequenced COI gene was useful in identifying calliphorids retrieved from human corpses.

  16. Defining functional DNA elements in the human genome.

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P; Bernstein, Bradley E; Kundaje, Anshul; Marinov, Georgi K; Ward, Lucas D; Birney, Ewan; Crawford, Gregory E; Dekker, Job; Dunham, Ian; Elnitski, Laura L; Farnham, Peggy J; Feingold, Elise A; Gerstein, Mark; Giddings, Morgan C; Gilbert, David M; Gingeras, Thomas R; Green, Eric D; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D; Myers, Richard M; Pazin, Michael J; Ren, Bing; Stamatoyannopoulos, John A; Weng, Zhiping; White, Kevin P; Hardison, Ross C

    2014-04-29

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.

  17. Trapping DNA replication origins from the human genome.

    Science.gov (United States)

    Eki, Toshihiko; Murakami, Yasufumi; Hanaoka, Fumio

    2013-04-17

    Synthesis of chromosomal DNA is initiated from multiple origins of replication in higher eukaryotes; however, little is known about these origins' structures. We isolated the origin-derived nascent DNAs from a human repair-deficient cell line by blocking the replication forks near the origins using two different origin-trapping methods (i.e., UV- or chemical crosslinker-treatment and cell synchronization in early S phase using DNA replication inhibitors). Single-stranded DNAs (of 0.5-3 kb) that accumulated after such treatments were labeled with bromodeoxyuridine (BrdU). BrdU-labeled DNA was immunopurified after fractionation by alkaline sucrose density gradient centrifugation and cloned by complementary-strand synthesis and PCR amplification. Competitive PCR revealed an increased abundance of DNA derived from known replication origins (c-myc and lamin B2 genes) in the nascent DNA fractions from the UV-treated or crosslinked cells. Nucleotide sequences of 85 and 208 kb were obtained from the two libraries (I and II) prepared from the UV-treated log-phase cells and early S phase arrested cells, respectively. The libraries differed from each other in their G+C composition and replication-related motif contents, suggesting that differences existed between the origin fragments isolated by the two different origin-trapping methods. The replication activities for seven out of 12 putative origin loci from the early-S phase cells were shown by competitive PCR. We mapped 117 (library I) and 172 (library II) putative origin loci to the human genome; approximately 60% and 50% of these loci were assigned to the G-band and intragenic regions, respectively. Analyses of the flanking sequences of the mapped loci suggested that the putative origin loci tended to associate with genes (including conserved sites) and DNase I hypersensitive sites; however, poor correlations were found between such loci and the CpG islands, transcription start sites, and K27-acetylated histone H3 peaks.

  18. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Science.gov (United States)

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research.

  19. Human DNA quantification and sample quality assessment: Developmental validation of the PowerQuant(®) system.

    Science.gov (United States)

    Ewing, Margaret M; Thompson, Jonelle M; McLaren, Robert S; Purpero, Vincent M; Thomas, Kelli J; Dobrowski, Patricia A; DeGroot, Gretchen A; Romsos, Erica L; Storts, Douglas R

    2016-07-01

    Quantification of the total amount of human DNA isolated from a forensic evidence item is crucial for DNA normalization prior to short tandem repeat (STR) DNA analysis and a federal quality assurance standard requirement. Previous commercial quantification methods determine the total human DNA and total human male DNA concentrations, but provide limited information about the condition of the DNA sample. The PowerQuant(®) System includes targets for quantification of total human and total human male DNA as well as targets for evaluating whether the human DNA is degraded and/or PCR inhibitors are present in the sample. A developmental validation of the PowerQuant(®) System was completed, following SWGDAM Validation Guidelines, to evaluate the assay's specificity, sensitivity, precision and accuracy, as well as the ability to detect degraded DNA or PCR inhibitors. In addition to the total human DNA and total human male DNA concentrations in a sample, data from the degradation target and internal PCR control (IPC) provide a forensic DNA analyst meaningful information about the quality of the isolated human DNA and the presence of PCR inhibitors in the sample that can be used to determine the most effective workflow and assist downstream interpretation.

  20. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Nikita A Kuznetsov

    Full Text Available Human 8-oxoguanine DNA glycosylase (hOGG1 is a key enzyme responsible for initiating the base excision repair of 7,8-dihydro-8-oxoguanosine (oxoG. In this study a thermodynamic analysis of the interaction of hOGG1 with specific and non-specific DNA-substrates is performed based on stopped-flow kinetic data. The standard Gibbs energies, enthalpies and entropies of specific stages of the repair process were determined via kinetic measurements over a temperature range using the van't Hoff approach. The three steps which are accompanied with changes in the DNA conformations were detected via 2-aminopurine fluorescence in the process of binding and recognition of damaged oxoG base by hOGG1. The thermodynamic analysis has demonstrated that the initial step of the DNA substrates binding is mainly governed by energy due to favorable interactions in the process of formation of the recognition contacts, which results in negative enthalpy change, as well as due to partial desolvation of the surface between the DNA and enzyme, which results in positive entropy change. Discrimination of non-specific G base versus specific oxoG base is occurring in the second step of the oxoG-substrate binding. This step requires energy consumption which is compensated by the positive entropy contribution. The third binding step is the final adjustment of the enzyme/substrate complex to achieve the catalytically competent state which is characterized by large endothermicity compensated by a significant increase of entropy originated from the dehydration of the DNA grooves.

  1. The DNA methylome of human peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Yingrui Li

    Full Text Available DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand, we report a comprehensive (92.62% methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and 80% displayed allele-specific expression (ASE. These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.

  2. Holes influence the mutation spectrum of human mitochondrial DNA

    Science.gov (United States)

    Villagran, Martha; Miller, John

    Mutations drive evolution and disease, showing highly non-random patterns of variant frequency vs. nucleotide position. We use computational DNA hole spectroscopy [M.Y. Suarez-Villagran & J.H. Miller, Sci. Rep. 5, 13571 (2015)] to reveal sites of enhanced hole probability in selected regions of human mitochondrial DNA. A hole is a mobile site of positive charge created when an electron is removed, for example by radiation or contact with a mutagenic agent. The hole spectra are quantum mechanically computed using a two-stranded tight binding model of DNA. We observe significant correlation between spectra of hole probabilities and of genetic variation frequencies from the MITOMAP database. These results suggest that hole-enhanced mutation mechanisms exert a substantial, perhaps dominant, influence on mutation patterns in DNA. One example is where a trapped hole induces a hydrogen bond shift, known as tautomerization, which then triggers a base-pair mismatch during replication. Our results deepen overall understanding of sequence specific mutation rates, encompassing both hotspots and cold spots, which drive molecular evolution.

  3. Environmental car exhaust pollution damages human sperm chromatin and DNA.

    Science.gov (United States)

    Calogero, A E; La Vignera, S; Condorelli, R A; Perdichizzi, A; Valenti, D; Asero, P; Carbone, U; Boggia, B; De Rosa, N; Lombardi, G; D'Agata, R; Vicari, L O; Vicari, E; De Rosa, M

    2011-06-01

    The adverse role of traffic pollutants on male fertility is well known. Aim of this study was to evaluate their effects on sperm chromatin/DNA integrity. To accomplish this, 36 men working at motorway tollgates and 32 unexposed healthy men (controls) were enrolled. All of them were interviewed about their lifestyle. Hormone, semen samples, and environmental and biological markers of pollution were evaluated. Sperm chromatin and DNA integrity were evaluated by flow cytometry following propidium iodide staining and TUNEL assay, respectively. LH, FSH, and testosterone serum levels were within the normal range in tollgate workers. Sperm concentration, total sperm count, total and progressive motility, and normal forms were significantly lower in these men compared with controls. Motorway tollgate workers had a significantly higher percentage of spermatozoa with damaged chromatin and DNA fragmentation, a late sign of apoptosis, compared with controls. A significant direct correlation was found between spermatozoa with damaged chromatin or fragmented DNA and the length of occupational exposure, suggesting a time-dependent relationship. This study showed that car exhaust exposure has a genotoxic effect on human spermatozoa. This may be of relevant importance not only for the reproductive performance of the men exposed, but also for the offspring health.

  4. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Directory of Open Access Journals (Sweden)

    Jinsil Kim

    2013-01-01

    Full Text Available The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3 gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies.

  5. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Science.gov (United States)

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  6. Exploring the utility of human DNA methylation arrays for profiling mouse genomic DNA.

    Science.gov (United States)

    Wong, Nicholas C; Ng, Jane; Hall, Nathan E; Lunke, Sebastian; Salmanidis, Marika; Brumatti, Gabriela; Ekert, Paul G; Craig, Jeffrey M; Saffery, Richard

    2013-07-01

    Illumina Infinium Human Methylation (HM) BeadChips are widely used for measuring genome-scale DNA methylation, particularly in relation to epigenome-wide association studies (EWAS) studies. The methylation profile of human samples can be assessed accurately and reproducibly using the HM27 BeadChip (27,578 CpG sites) or its successor, the HM450 BeadChip (482,421 CpG sites). To date no mouse equivalent has been developed, greatly hindering the application of this methodology to the wide range of valuable murine models of disease and development currently in existence. We found 1308 and 13,715 probes from HM27 and HM450 BeadChip respectively, uniquely matched the bisulfite converted reference mouse genome (mm9). We demonstrate reproducible measurements of DNA methylation at these probes in a range of mouse tissue samples and in a murine cell line model of acute myeloid leukaemia. In the absence of a mouse counterpart, the Infinium Human Methylation BeadChip arrays have utility for methylation profiling in non-human species.

  7. Human Rad51 mediated DNA unwinding is facilitated by conditions that favour Rad51-dsDNA aggregation

    Directory of Open Access Journals (Sweden)

    Kulkarni Anagha

    2009-01-01

    Full Text Available Abstract Background Human Rad51 (RAD51, analogous to its bacterial homolog, RecA, binds and unwinds double stranded DNA (dsDNA in the presence of certain nucleotide cofactors. ATP hydrolysis is not required for this process, because even ATP non hydrolysable analogs like AMP-PNP and ATPγS, support DNA unwinding. Even ADP, the product of ATP hydrolysis, feebly supports DNA unwinding. Results We find that human Rad52 (RAD52 stimulates RAD51 mediated DNA unwinding in the presence of all Adenine nucleotide cofactors, (except in AMP and no nucleotide conditions that intrinsically fail to support unwinding reaction while enhancing aggregation of RAD51-dsDNA complexes in parallel. Interestingly, salt at low concentration can substitute the role of RAD52, in facilitating aggregation of RAD51-dsDNA complexes, that concomitantly also leads to better unwinding. Conclusion RAD52 itself being a highly aggregated protein perhaps acts as scaffold to bring together RAD51 and DNA molecules into large co-aggregates of RAD52-RAD51-DNA complexes to promote RAD51 mediated DNA unwinding reaction, when appropriate nucleotide cofactors are available, presumably through macromolecular crowding effects. Our work highlights the functional link between aggregation of protein-DNA complexes and DNA unwinding in RAD51 system.

  8. Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee.

    OpenAIRE

    Jørgensen, A L; Laursen, H B; Jones, C; Bak, A L

    1992-01-01

    Centromeric alphoid DNA in primates represents a class of evolving repeat DNA. In humans, chromosomes 13 and 21 share one subfamily of alphoid DNA while chromosomes 14 and 22 share another subfamily. We show that similar pairwise homogenizations occur in the chimpanzee (Pan troglodytes), where chromosomes 14 and 22, homologous to human chromosomes 13 and 21, share one partially homogenized alphoid DNA subfamily and chromosomes 15 and 23, homologous to human chromosomes 14 and 22, share anothe...

  9. [Detection of DNA human cytomegalovirus of a molecular methods: hybrid capture DNA CMV by immunocompromised].

    Science.gov (United States)

    Mhiri, Leila; Arrouji, Zakia; Slim, Amine; Ben Redjeb, Saida

    2006-10-01

    Human cytomegalovirus (HCMV), a member of the beta-virus herpes family, is a ubiquitous human pathogen. After a primary infection, HCMV establishes life latency. HCMV rarely causes symptomatic disease in an immunocompetent host, however, it is a major cause of infectious morbidity and mortality in immunocompromised individuals and developing fetuses. The HCMV genome consists of 240 kbp of double stranded DNA. Early diagnosis molecular of CMV infection is important. The objective of this study was to develop a molecular methods: Quantitative Hybrid capture for the detection of DNA CMV. We present results for 200 immunocompromised collected from 1999 to 2003 (122 men and 78 women, whom mean age was 35 years). Our results showed that 25% of women and 36% of men were positif for hybrid capture DNA CMV. This simple test (cold probe) provide quantitative and fast results. Also the efficacity of anti-CMV therapy can be followed. More over, in contrary with pp65-antigenemia assay and CMV PCR, this test can be managed on biopsy sample.

  10. The use of dimorphic Alu insertions in human DNA fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Novick, G.E.; Gonzalez, T.; Garrison, J.; Novick, C.C.; Herrera, R.J. [Florida International Univ., Miami, FL (United States). Dept. of Biological Sciences; Batzer, M.A. [Lawrence Livermore National Lab., CA (United States); Deininger, P.L. [Louisiana State Univ., New Orleans, LA (United States). Medical Center

    1992-12-04

    We have characterized certain Human Specific Alu Insertions as either dimorphic (TPA25, PV92, APO), sightly dimorphic (C2N4 and C4N4) or monomorphic (C3N1, C4N6, C4N2, C4N5, C4N8), based on studies of Caucasian, Asian, American Black and African Black populations. Our approach is based upon: (1) PCR amplification using primers directed to the sequences that flank the site of insertion of the different Alu elements studied; (2) gel electrophoresis and scoring according to the presence or absence of an Alu insertion in one or both homologous chromosomes; (3) allelic frequencies calculated and compared according to Hardy-Weinberg equilibrium. Our DNA fingerprinting procedure using PCR amplification of dimorphic Human Specific Alu insertions, is stable enough to be used not only as a tool for genetic mapping but also to characterize populations, study migrational patterns and track the inheritance of human genetic disorders.

  11. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    the high-bendability regions position nucleosomes at the downstream end of the transcriptional start point, and consider the possibility of interaction between histone-like TAFs and this area. We also propose the use of this structural signature in computational promoter-finding algorithms.......The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...... with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...

  12. Robotics for recombinant DNA and human genetics research

    Energy Technology Data Exchange (ETDEWEB)

    Beugelsdijk, T.J.

    1990-01-01

    In October of 1989, molecular biologists throughout the world formally embarked on ultimately determining the set of genetic instructions for a human being. Called by some the Manhattan Project'' a molecular biology, pursuit of this goal is projected to require approximately 3000 man years of effort over a 15-year period. The Humane Genome Initiative is a worldwide research effort that has the goal of analyzing the structure of human deoxyribonucleic acid (DNA) and determining the location of all human genes. The Department of Energy (DOE) has designated three of its national laboratories as centers for the Human Genome Project. These are Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Lawrence Berkeley Laboratory (LBL). These laboratories are currently working on different, but complementary technology development areas in support of the Human Genome Project. The robotics group at LANL is currently working at developing the technologies that address the problems associated with physical mapping. This article describes some of these problems and discusses some of the robotics approaches and engineering tolls applicable to their solution. 7 refs., 8 figs., 1 tab.

  13. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  14. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    Science.gov (United States)

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  15. Base composition at mtDNA boundaries suggests a DNA triple helix model for human mitochondrial DNA large-scale rearrangements.

    Science.gov (United States)

    Rocher, Christophe; Letellier, Thierry; Copeland, William C; Lestienne, Patrick

    2002-06-01

    Different mechanisms have been proposed to account for mitochondrial DNA (mtDNA) instability based on the presence of short homologous sequences (direct repeats, DR) at the potential boundaries of mtDNA rearrangements. Among them, slippage-mispairing of the replication complex during the asymmetric replication cycle of the mammalian mitochondrial DNA has been proposed to account for the preferential localization of deletions. This mechanism involves a transfer of the replication complex from the first neo-synthesized heavy (H) strand of the DR1, to the DR2, thus bypassing the intervening sequence and producing a deleted molecule. Nevertheless, the nature of the bonds between the DNA strands remains unknown as the forward sequence of DR2, beyond the replication complex, stays double-stranded. Here, we have analyzed the base composition of the DR at the boundaries of mtDNA deletions and duplications and found a skewed pyrimidine content of about 75% in the light-strand DNA template. This suggests the possible building of a DNA triple helix between the G-rich neo-synthesized DR1 and the base-paired homologous G.C-rich DR2. In vitro experiments with the purified human DNA polymerase gamma subunits enabled us to show that the third DNA strand may be used as a primer for DNA replication, using a template with the direct repeat forming a hairpin, with which the primer could initiate DNA replication. These data suggest a novel molecular basis for mitochondrial DNA rearrangements through the distributive nature of the DNA polymerase gamma, at the level of the direct repeats. A general model accounting for large-scale mitochondrial DNA deletion and duplication is proposed. These experiments extend to a DNA polymerase from an eucaryote source the use of a DNA triple helix strand as a primer, like other DNA polymerases from phage and bacterial origins.

  16. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase

    NARCIS (Netherlands)

    Bharti, S.K.; Sommers, J.A.; Zhou, J.; Kaplan, D.L.; Spelbrink, J.N.; Mergny, J.L.; Brosh, R.M., Jr.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective

  17. An integrated encyclopedia of DNA elements in the human genome.

    Science.gov (United States)

    2012-09-01

    The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

  18. The Three Genetics (Nuclear DNA, Mitochondrial DNA, and Gut Microbiome) of Longevity in Humans Considered as Metaorganisms

    Science.gov (United States)

    Candela, Marco; Brigidi, Patrizia; Luiselli, Donata; Bacalini, Maria Giulia; Salvioli, Stefano; Capri, Miriam; Collino, Sebastiano; Franceschi, Claudio

    2014-01-01

    Usually the genetics of human longevity is restricted to the nuclear genome (nDNA). However it is well known that the nDNA interacts with a physically and functionally separated genome, the mitochondrial DNA (mtDNA) that, even if limited in length and number of genes encoded, plays a major role in the ageing process. The complex interplay between nDNA/mtDNA and the environment is most likely involved in phenomena such as ageing and longevity. To this scenario we have to add another level of complexity represented by the microbiota, that is, the whole set of bacteria present in the different part of our body with their whole set of genes. In particular, several studies investigated the role of gut microbiota (GM) modifications in ageing and longevity and an age-related GM signature was found. In this view, human being must be considered as “metaorganism” and a more holistic approach is necessary to grasp the complex dynamics of the interaction between the environment and nDNA-mtDNA-GM of the host during ageing. In this review, the relationship between the three genetics and human longevity is addressed to point out that a comprehensive view will allow the researchers to properly address the complex interactions that occur during human lifespan. PMID:24868529

  19. Gypenosides causes DNA damage and inhibits expression of DNA repair genes of human oral cancer SAS cells.

    Science.gov (United States)

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Lu, Pei-Jung; Weng, Jing-Ru; Chung, Jing-Gung

    2010-01-01

    Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.

  20. The human Bloom syndrome gene suppresses the DNA replication and repair defects of yeast dna2 mutants.

    Science.gov (United States)

    Imamura, Osamu; Campbell, Judith L

    2003-07-08

    Bloom syndrome is a disorder of profound and early cancer predisposition in which cells become hypermutable, exhibit high frequency of sister chromatid exchanges, and show increased micronuclei. BLM, the gene mutated in Bloom syndrome, has been cloned previously, and the BLM protein is a member of the RecQ family of DNA helicases. Many lines of evidence suggest that BLM is involved either directly in DNA replication or in surveillance during DNA replication, but its specific roles remain unknown. Here we show that hBLM can suppress both the temperature-sensitive growth defect and the DNA damage sensitivity of the yeast DNA replication mutant dna2-1. The dna2-1 mutant is defective in a helicase-nuclease that is required either to coordinate with the crucial Saccharomyces cerevisiae (sc) FEN1 nuclease in Okazaki fragment maturation or to compensate for scFEN1 when its activity is impaired. We show that human BLM interacts with both scDna2 and scFEN1 by using coimmunoprecipitation from yeast extracts, suggesting that human BLM participates in the same steps of DNA replication or repair as scFEN1 and scDna2.

  1. Infecções respiratórias por bocavirus humano: aspectos clínicos e moleculares

    OpenAIRE

    José Luiz Proença Modena

    2009-01-01

    O bocavirus humano (HBoV) é um parvovirus recentemente identificado em associação com a presença de sintomas de infecção do trato respiratório. Esse vírus possui um genoma de aproximadamente 5217 nucleotídeos que contém 3 open reading frames que codificam 4 proteínas (NS1, NP-1, VP-1 e VP-2). HBoV tem sido detectado em amostras respiratórias de diversas partes do mundo, incluindo Austrália, América do Norte, Europa, Ásia e África, o que sugere uma distribuição global desse vírus. Entretanto, ...

  2. The single-strand DNA binding activity of human PC4 preventsmutagenesis and killing by oxidative DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jen-Yeu; Sarker, Altaf Hossain; Cooper, Priscilla K.; Volkert, Michael R.

    2004-02-01

    Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Yeast mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub l{Delta} mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide-resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show XPG recruits PC4 to a bubble-containing DNA substrate with resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.

  3. ISFG: Recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations

    DEFF Research Database (Denmark)

    Linacre, A.; Gusmão, L.; Hecht, W.;

    2010-01-01

    The use of non-human DNA typing in forensic science investigations, and specifically that from animal DNA, is ever increasing. The term animal DNA in this document refers to animal species encountered in a forensic science examination but does not include human DNA. Non-human DNA may either be......: the trade and possession of a species, or products derived from a species, which is contrary to legislation; as evidence where the crime is against a person or property; instances of animal cruelty; or where the animal is the offender. The first instance is addressed by determining the species present......, and the other scenarios can often be addressed by assigning a DNA sample to a particular individual organism. Currently there is little standardization of methodologies used in the forensic analysis of animal DNA or in reporting styles. The recommendations in this document relate specifically to animal DNA...

  4. A preliminary analysis of the DNA and diet of the extinct Beothuk: a systematic approach to ancient human DNA

    DEFF Research Database (Denmark)

    Kuch, Melanie; Gröcke, Darren R; Knyf, Martin C

    2007-01-01

    We have used a systematic protocol for extracting, quantitating, sexing and validating ancient human mitochondrial and nuclear DNA of one male and one female Beothuk, a Native American population from Newfoundland, which became extinct approximately 180 years ago. They carried mtDNA haplotypes......, and that their water sources were pooled or stored water. Both mtDNA sequence data and Y SNP data hint at possible gene flow or a common ancestral population for both the Beothuk and the current day Mikmaq, but more importantly the data do not lend credence to the proposed idea that the Beothuk (specifically......, Nonosabasut) were of admixed (European-Native American) descent. We also analyzed patterns of DNA damage in the clones of authentic mtDNA sequences; there is no tendency for DNA damage to occur preferentially at previously defined mutational hotspots, suggesting that such mutational hotspots...

  5. The Cloning of the Human Tumor Supressor Gene INGI: DNA Cloning into Plasmid Vector and DNA Analysis by Restriction Enzymes

    Directory of Open Access Journals (Sweden)

    Elza Ibrahim Auerkari

    2015-11-01

    Full Text Available DNA cloning is one of the most important techniques In the field of molecular biology, with a critical role in analyzing the structure and function of genes and their adjacent regulatory regions. DNA cloning is helpful in learning fundamental molecular biological techniques, since DNA cloning involves a series of them, such as polymerase chain reaction (PCR, DNA ligation, bacterial transformation, bacterial culture, plasmid DNA extraction, DNA digestion with restriction enzymes and agarose gel electrophoresis. In this paper the cloning of the human tumor suppressor gene INGI has been used to illustrate the methodology. The gene was amplified by PCR, cloned into a TA-cloning vectore, and restriction enzyme mapping was used to distinguish the sense INGI construct from the antisense INGI construct.

  6. Direct visual detection of DNA based on the light scattering of silica nanoparticles on a human papillomavirus DNA chip.

    Science.gov (United States)

    Piao, Jing Yu; Park, Eun Hee; Choi, Kihwan; Quan, Bo; Kang, Dong Ho; Park, Pan Yun; Kim, Dai Sik; Chung, Doo Soo

    2009-12-15

    A detection system for a human papillomavirus (HPV) DNA chip based on the light scattering of aggregated silica nanoparticle probes is presented. In the assay, a target HPV DNA is sandwiched between the capture DNA immobilized on the chip and the probe DNA immobilized on the plain silica nanoparticle. The spot where the sandwich reaction occurs appears bright white and is readily distinguishable to the naked eye. Scanning electron microscopy images clearly show the aggregation of the silica nanoparticle probes. When three different sized (55 nm, 137 nm, 286 nm) plain silica nanoparticles were compared, probes of the larger silica nanoparticles showed a higher scattering intensity. Using 286-nm silica nanoparticles, the spots obtained with 200 pM of target DNA were visually detectable. The demonstrated capability to detect a disease related target DNA with direct visualization without using a complex detection instrument provides the prerequisite for the development of portable testing kits for genotyping.

  7. New spiro-acridines: DNA interaction, antiproliferative activity and inhibition of human DNA topoisomerases.

    Science.gov (United States)

    Almeida, Sinara Mônica Vitalino de; Lafayette, Elizabeth Almeida; Silva, Willams Leal; Lima Serafim, Vanessa de; Menezes, Thais Meira; Neves, Jorge Luiz; Ruiz, Ana Lucia Tasca Gois; Carvalho, João Ernesto de; Moura, Ricardo Olímpio de; Beltrão, Eduardo Isidoro Carneiro; Carvalho Júnior, Luiz Bezerra de; Lima, Maria do Carmo Alves de

    2016-11-01

    Two new spiro-acridines were synthesized by introducing cyano-N-acylhydrazone between the acridine and phenyl rings followed by spontaneous cyclization. The final compounds (E)-1'-(benzylideneamino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-01) and (E)-1'-((4-methoxybenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-02) were evaluated for their interactions with calf thymus DNA, antiproliferative and human topoisomerase I and IIα inhibitory activities. Both compounds presented ability to bind DNA. The binding constant determined by UV-vis spectroscopy was found to be 10(4)M(-1). Antiproliferative assay demonstrated that AMTAC-01 and AMTAC-02 were most active against prostate and melanoma tumor cell lines, respectively. The compound did not present Topo I inhibitory activity. However, both derivatives displayed topoisomerase IIα inhibitory activity comparable to amsacrine, and AMTAC-02 was more potent than AMTAC-01 with methoxy substituent group on phenyl ring. This study demonstrates that the new derivatives are promising molecules with topoisomerase IIα inhibitory and antiproliferative activities.

  8. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  9. DNA damage in human cells. Progress report, August 1983-August 1984

    Energy Technology Data Exchange (ETDEWEB)

    Loeb, L.A.

    1986-08-01

    Studies reported center on the relationship between DNA damage and mutagenesis. The mutagenic potential of apurinic sites was documented in a variety of systems. Studies on the enhancement of depurination by metal ions was continued. Recombiant DNA techniques were used for measuring nucleotide substitution in human mitochondrial DNA.

  10. Respiratory DNA viruses are undetectable in nasopharyngeal secretions from adenotonsillectomized children

    Science.gov (United States)

    Prates, Mirela Moreira; Gagliardi, Talita Bianca; Biasoli, Balduino; Leite, Marcelo Junqueira; Buzatto, Guilherme; Hyppolito, Miguel Angelo; Aragon, Davi Casale; Tamashiro, Edwin; Valera, Fabiana Cardoso Pereira

    2017-01-01

    Respiratory viruses are frequently detected in association with chronic tonsillar hypertrophy in the absence of symptoms of acute respiratory infection (ARI). The present analysis was done in follow-up to a previous clinical study done by this same group. Nasopharyngeal washes (NPWs) were obtained from 83 of 120 individuals at variable times post adenotonsillectomy, in the absence of ARI symptoms. A look back at virus detection results in NPWs from the same 83 individuals at the time of tonsillectomy revealed that 73.5% (61/83) were positive for one or more viruses. The overall frequency of respiratory virus detection in post-tonsillectomy NPWs was 58.8%. Rhinovirus (RV) was the agent most frequently detected, in 38 of 83 subjects (45.8%), followed by enterovirus in 7 (8.4%), human metapneumovirus in 6 (7.2%), human respiratory syncytial virus in 3 (3.6%) and human coronavirus in 1 (1.2%). Remarkably, there was no detection of adenovirus (HAdV) or human bocavirus (HBoV) in asymptomatic individuals in follow-up of adenotonsillectomy. In keeping with persistence of respiratory DNA viruses in human tonsils, tonsillectomy significantly reduces asymptomatic shedding of HAdV and HBoV in NPWs. PMID:28306724

  11. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    Science.gov (United States)

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITINABSTRACT Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  12. Methods for the identification of mutations in the human phenylalanine hydroxylase gene using DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Woo, S.L.C.; Dilella, A.G.

    1990-10-23

    This patent describes a method of detecting a mutation in a phenylalanine hydroxylase gene of human genomic DNA. Also described is an automated method of detecting PKU affected, PKU helerozgotes and normals in fetal to adult human samples.

  13. Characterization of the human HOX 7 cDNA and identification of polymorphic markers.

    Science.gov (United States)

    Padanilam, B J; Stadler, H S; Mills, K A; McLeod, L B; Solursh, M; Lee, B; Ramirez, F; Buetow, K H; Murray, J C

    1992-09-01

    cDNA clones for a human HOX 7 gene obtained with homologous clones of Drosophila were used in human gene mapping studies. The human cDNA clone was isolated from a library constructed from human embryonic craniofacial material. The sequence of the cDNA demonstrates significant homology with mouse HOX 7. A search for RFLPs identified MboII and BstEII variants. A CA dinucleotide repeat with 5 alleles was also identified and allowed placement of HOX 7 into a defined linkage map. Evidence for linkage disequilibrium was found with markers tested. These results place the human HOX 7 gene in a defined position on 4p.

  14. GHK and DNA: Resetting the Human Genome to Health

    Directory of Open Access Journals (Sweden)

    Loren Pickart

    2014-01-01

    Full Text Available During human aging there is an increase in the activity of inflammatory, cancer promoting, and tissue destructive genes plus a decrease in the activity of regenerative and reparative genes. The human blood tripeptide GHK possesses many positive effects but declines with age. It improves wound healing and tissue regeneration (skin, hair follicles, stomach and intestinal linings, and boney tissue, increases collagen and glycosaminoglycans, stimulates synthesis of decorin, increases angiogenesis, and nerve outgrowth, possesses antioxidant and anti-inflammatory effects, and increases cellular stemness and the secretion of trophic factors by mesenchymal stem cells. Recently, GHK has been found to reset genes of diseased cells from patients with cancer or COPD to a more healthy state. Cancer cells reset their programmed cell death system while COPD patients’ cells shut down tissue destructive genes and stimulate repair and remodeling activities. In this paper, we discuss GHK’s effect on genes that suppress fibrinogen synthesis, the insulin/insulin-like system, and cancer growth plus activation of genes that increase the ubiquitin-proteasome system, DNA repair, antioxidant systems, and healing by the TGF beta superfamily. A variety of methods and dosages to effectively use GHK to reset genes to a healthier state are also discussed.

  15. More on contamination: the use of asymmetric molecular behavior to identify authentic ancient human DNA

    DEFF Research Database (Denmark)

    Malmström, Helena; Svensson, Emma M; Gilbert, M Thomas P;

    2007-01-01

    the reliability of one of the proposed criteria, that of appropriate molecular behavior. Using real-time polymerase chain reaction (PCR) and pyrosequencing, we have quantified the relative levels of authentic aDNA and contaminant human DNA sequences recovered from archaeological dog and cattle remains. In doing....... Furthermore, we find that there is a substantial increase in the relative proportions of authentic DNA to contaminant DNA as the PCR target fragment size is decreased. We therefore conclude that the degradation pattern in aDNA provides a quantifiable difference between authentic aDNA and modern contamination...

  16. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  17. Conservation of DNA Methylation Programming Between Mouse and Human Gametes and Preimplantation Embryos.

    Science.gov (United States)

    White, Carlee R; MacDonald, William A; Mann, Mellissa R W

    2016-09-01

    In mice, assisted reproductive technologies (ARTs) applied during gametogenesis and preimplantation development can result in disruption of genomic imprinting. In humans, these technologies and/or subfertility have been linked to perturbations in genomic imprinting. To understand how ARTs and infertility affect DNA methylation, it is important to understand DNA methylation dynamics and the role of regulatory factors at these critical stages. Recent genome studies performed using mouse and human gametes and preimplantation embryos have shed light onto these processes. Here, we comprehensively review the current state of knowledge regarding global and imprinted DNA methylation programming in the mouse and human. Available data highlight striking similarities in mouse and human DNA methylation dynamics during gamete and preimplantation development. Just as fascinating, these studies have revealed sex-, gene-, and allele-specific differences in DNA methylation programming, warranting future investigation to untangle the complex regulation of DNA methylation dynamics during gamete and preimplantation development.

  18. Fine resolution mapping of double-strand break sites for human ribosomal DNA units

    OpenAIRE

    Pope, Bernard J; Khalid Mahmood; Chol-hee Jung; Park, Daniel J

    2016-01-01

    DNA breakage arises during a variety of biological processes, including transcription, replication and genome rearrangements. In the context of disease, extensive fragmentation of DNA has been described in cancer cells and during early stages of neurodegeneration (Stephens et al., 2011 Stephens et al. (2011) [5]; Blondet et al., 2001 Blondet et al. (2001) [1]). Stults et al. (2009) Stults et al. (2009) [6] reported that human rDNA gene clusters are hotspots for recombination and that rDNA res...

  19. Human POLD1 modulates cell cycle progression and DNA damage repair

    OpenAIRE

    Song, Jing; Hong, Ping; Liu, Chengeng; Zhang, Yueqi; Wang, Jinling; Wang, Peichang

    2015-01-01

    Background The activity of eukaryotic DNA polymerase delta (Pol ?) plays an essential role in genome stability through its effects on DNA replication and repair. The p125 catalytic subunit of Pol ? is encoded by POLD1 gene in human cells. To clarify biological functions of POLD1, we investigated the effects of POLD1 overexpression or downregulation on cell proliferation, cell cycle progression, DNA synthesis and oxidative DNA damage induced by H2O2. Methods HEK293 cells were transfected with ...

  20. Human Papilloma Viral DNA Replicates as a Stable Episome in Cultured Epidermal Keratinocytes

    Science.gov (United States)

    Laporta, Robert F.; Taichman, Lorne B.

    1982-06-01

    Human papilloma virus (HPV) is poorly understood because systems for its growth in tissue culture have not been developed. We report here that cultured human epidermal keratinocytes could be infected with HPV from plantar warts and that the viral DNA persisted and replicated as a stable episome. There were 50-200 copies of viral DNA per cell and there was no evidence to indicate integration of viral DNA into the cellular genome. There was also no evidence to suggest that viral DNA underwent productive replication. We conclude that cultured human epidermal keratinocytes may be a model for the study of certain aspects of HPV biology.

  1. Capacitive DNA sensor for rapid and sensitive detection of whole genome human herpesvirus-1 dsDNA in serum.

    Science.gov (United States)

    Cheng, Cheng; Oueslati, Rania; Wu, Jayne; Chen, Jiangang; Eda, Shigetoshi

    2017-06-01

    This work presents a rapid, highly sensitive, low-cost, and specific capacitive DNA sensor for detection of whole genome human herpesvirus-1 DNA. This sensor is capable of direct DNA detection with a response time of 30 s, and it can be used to test standard buffer or serum samples. The sensing approach for DNA detection is based on alternating current (AC) electrokinetics. By applying an inhomogeneous AC electric field on sensor electrodes, positive dielectrophoresis is induced to accelerate DNA hybridization. The same applied AC signal also directly measures the hybridization of target with the probe on the sensor surface. Experiments are conducted to optimize the AC signal, as well as the buffers for probe immobilization and target DNA hybridization. The assay is highly sensitive and specific, with no response to human herpesvirus-2 DNA at 5 ng/mL and a LOD of 1.0 pg/mL (6.5 copies/μL or 10.7 aM) in standard buffer. When testing the double stranded (ds) DNA spiked in human serum samples, the sensor yields a LOD of 20.0 pg/mL (129.5 copies/μL or 0.21 femtomolar (fM)) in neat serum. In this work, the target is whole genome dsDNA, consequently the test can be performed without the use of enzyme or amplification, which considerably simplifies the sensor operation and is highly suitable for point of care disease diagnosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. No evidence of Neandertal mtDNA contribution to early modern humans.

    Directory of Open Access Journals (Sweden)

    David Serre

    2004-03-01

    Full Text Available The retrieval of mitochondrial DNA (mtDNA sequences from four Neandertal fossils from Germany, Russia, and Croatia has demonstrated that these individuals carried closely related mtDNAs that are not found among current humans. However, these results do not definitively resolve the question of a possible Neandertal contribution to the gene pool of modern humans since such a contribution might have been erased by genetic drift or by the continuous influx of modern human DNA into the Neandertal gene pool. A further concern is that if some Neandertals carried mtDNA sequences similar to contemporaneous humans, such sequences may be erroneously regarded as modern contaminations when retrieved from fossils. Here we address these issues by the analysis of 24 Neandertal and 40 early modern human remains. The biomolecular preservation of four Neandertals and of five early modern humans was good enough to suggest the preservation of DNA. All four Neandertals yielded mtDNA sequences similar to those previously determined from Neandertal individuals, whereas none of the five early modern humans contained such mtDNA sequences. In combination with current mtDNA data, this excludes any large genetic contribution by Neandertals to early modern humans, but does not rule out the possibility of a smaller contribution.

  3. Detection of human papillomavirus DNA by the hybrid capture assay

    Directory of Open Access Journals (Sweden)

    Carvalho Maria Odete O.

    2003-01-01

    Full Text Available Human Papillomavirus (HPV infection is the main cause of cervical cancers and cervical intraepithelial neoplasias (CIN worldwide. Consequently, it would be useful to evaluate HPV testing to screen for cervical cancer. Recently developed, the second-generation Hybrid Capture (HCA II test is a non-radioactive, relatively rapid, liquid hybridization assay designed to detect 18 HPV types, divided into high and low-risk groups. We evaluated 1055 women for HPV infection with the HCA II test. Five hundred and ten (48.3% of these women had HPV infection; 60 (11.8% had low cancer-risk HPV DNA; 269 (52.7% had high-risk HPV types and 181 (35.5% had both groups. Hence, 450 women (88.2% in this HPV-infected group had at least one high risk HPV type, and were therefore considered to be at high risk for cancer. Among the group with Papanicolaou (Pap test results, the overall prevalence of HPV DNA was 58.4%. Significant differences in HPV infection of the cervix were detected between Pap I (normal smears and Pap IV (carcinomas (p<0.0001. Values of HPV viral load obtained for Pap I and SILs were significantly different, with an upward trend (p<0.0001, suggesting a positive correlation between high viral load values and risk of SIL. Because of the high costs of the HCA II test, its use for routine cervical mass screening cannot be recommended in poor countries. Nevertheless, it is a useful tool when combined with cytology, diagnosing high-risk infections in apparently normal tissues. Use of this technique could help reduce the risk of cancer.

  4. The DNA-binding box of human SPARTAN contributes to the targeting of Polη to DNA damage sites.

    Science.gov (United States)

    Toth, Agnes; Hegedus, Lili; Juhasz, Szilvia; Haracska, Lajos; Burkovics, Peter

    2017-01-01

    Inappropriate repair of UV-induced DNA damage results in human diseases such as Xeroderma pigmentosum (XP), which is associated with an extremely high risk of skin cancer. A variant form of XP is caused by the absence of Polη, which is normally able to bypass UV-induced DNA lesions in an error-free manner. However, Polη is highly error prone when replicating undamaged DNA and, thus, the regulation of the proper targeting of Polη is crucial for the prevention of mutagenesis and UV-induced cancer formation. Spartan is a novel regulator of the damage tolerance pathway, and its association with Ub-PCNA has a role in Polη targeting; however, our knowledge about its function is only rudimentary. Here, we describe a new biochemical property of purified human SPARTAN by showing that it is a DNA-binding protein. Using a DNA binding mutant, we provide in vivo evidence that DNA binding by SPARTAN regulates the targeting of Polη to damage sites after UV exposure, and this function contributes highly to its DNA-damage tolerance function. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The architecture of the human Rad54-DNA complex provides evidence for protein translocation along DNA.

    NARCIS (Netherlands)

    D. Ristic (Dejan); C. Wyman (Claire); C. Paulusma (Coen); R. Kanaar (Roland)

    2001-01-01

    textabstractProper maintenance and duplication of the genome require accurate recombination between homologous DNA molecules. In eukaryotic cells, the Rad51 protein mediates pairing between homologous DNA molecules. This reaction is assisted by the Rad54 protein. To gai

  6. Cloning of human brevican cDNA and expression of its mRNA in human glioma

    Institute of Scientific and Technical Information of China (English)

    韩唏; 董艳; 由振东; 何成; 卢亦成

    2003-01-01

    Objective:To clone the cDNA of human brevican secreting isoform and to investigate its mRNA expression in human glioma.Methods:The full-length cDNA of human brevican secreted isoform was cloned from a human ahaplastic astrocytoma by RT-PCR,and the expression of human brevican mRNA in 22 cases of human glioma and 13 cases of non-glial brain tumors were investigated by in situ hybridization.Results:The cDNA which including the whole open reading frame of human brevican secreted isoform was obtained.In situ hybridization showed that brevican positive cells were present in all of the 22 cases of gliomas(100%),whereas none were found in the 13 cases of non-glial and metastasis brain tumors examined.Conclusion:The results suggest that brevican mRNA is highly and specifically expressed in human glioma.

  7. DNA replication, repair, and repair tests. [Rat; human leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, B.

    1980-09-01

    The rate of inhibition and recovery of DNA synthesis can be used in a rapid assay system to detect genotoxic potentials of chemicals. Also, the observation that an agent stimulates DNA repair in a test system indicates its ability to cause damage in DNA. Different experimental approaches to the study of repair synthesis are discussed.

  8. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  9. Structural basis of human transcription factor Sry-related box 17 binding to DNA.

    Science.gov (United States)

    Gao, Nana; Jiang, Wei; Gao, Hai; Cheng, Zhong; Qian, Huolian; Si, Shuyi; Xie, Yong

    2013-04-01

    Sry-related box (Sox) transcription factors share a conserved high-mobility-group box domain (HMG-domain) that binds DNA in the minor groove and bends DNA for further assembly of transcriptional machineries. During organogenesis, each member of the Sox family triggers a specific cell lineage differentiation, indicating that their interactions with DNA are different from each other. Therefore, investigating structural rearrangement of each Sox transcription factor HMG-domain upon binding to DNA would help to elucidate the distinctive molecular mechanism by which they interact with DNA. Previous studies have determined the crystal structures of Sox2 HMG-domain/DNA, Sox4 HMGdomain/ DNA, Sox9 HMG-domain/DNA and Sox17 HMG-domain/DNA complexes. However, major gaps remain in the structural information on the Sox transcription factor HMG-domains. Here, we report the crystal structure of the human Sox17 HMG-domain alone at 2.4 A resolution. Comparing this structure and the structure of the mouse Sox17 HMGdomain/ DNA complex provides structural understanding of the mechanism of Sox17 binding to DNA. Specifically, after electrostatic interactions attract Sox17 to DNA, Asn73, Ser99, and Trp106 form hydrogen bonds with DNA, Arg70, Lys80, Arg83, His94, and Asn95 on Sox17 undergo conformational changes and form hydrogen bonds with DNA, contributing to the electrostatic interaction between Sox17 and DNA.

  10. Collaborating functions of BLM and DNA topoisomerase I in regulating human rDNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Grierson, Patrick M. [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Acharya, Samir, E-mail: samir.acharya@osumc.edu [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Groden, Joanna [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States)

    2013-03-15

    Bloom's syndrome (BS) is an inherited disorder caused by loss of function of the recQ-like BLM helicase. It is characterized clinically by severe growth retardation and cancer predisposition. BLM localizes to PML nuclear bodies and to the nucleolus; its deficiency results in increased intra- and inter-chromosomal recombination, including hyper-recombination of rDNA repeats. Our previous work has shown that BLM facilitates RNA polymerase I-mediated rRNA transcription in the nucleolus (Grierson et al., 2012 [18]). This study uses protein co-immunoprecipitation and in vitro transcription/translation (IVTT) to identify a direct interaction of DNA topoisomerase I with the C-terminus of BLM in the nucleolus. In vitro helicase assays demonstrate that DNA topoisomerase I stimulates BLM helicase activity on a nucleolar-relevant RNA:DNA hybrid, but has an insignificant effect on BLM helicase activity on a control DNA:DNA duplex substrate. Reciprocally, BLM enhances the DNA relaxation activity of DNA topoisomerase I on supercoiled DNA substrates. Our study suggests that BLM and DNA topoisomerase I function coordinately to modulate RNA:DNA hybrid formation as well as relaxation of DNA supercoils in the context of nucleolar transcription.

  11. Human cultured cells are capable to incorporate isolated plant mitochondria loaded with exogenous DNA

    Directory of Open Access Journals (Sweden)

    Laktionov P. P.

    2012-07-01

    Full Text Available Aim. To investigate the possibility of human cultured cells to incorporate isolated mitochondria together with exogenous DNA introduced into organelles. Methods. Two approaches were used for this purpose, fluorescent labelling of mitochondria and/or DNA with subsequent analysis of the cells subjected to incubation by microscopy or by quantitative PCR. Results. We have shown that human cultured cells lines, HeLa and HUVEC, are capable to uptake isolated plant mitochondria and that this process depends on the incubation time and concentration of organelles present in medium. The incorporated mitochondria can serve as vehicles to deliver exogenous DNA into human cells, this DNA is then distributed in different cell compartments. Conclusions. These results are preliminary and need further investigations, including testing the possibility of human cells to incorporate the mitochondria of human or animal origin and creating genetic construction which could provide certain selectivity or stability of the transferred exogenous DNA upon cell uptake of the mitochondria as vectors.

  12. Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available With a draft genome-sequence assembly for the chimpanzee available, it is now possible to perform genome-wide analyses to identify, at a submicroscopic level, structural rearrangements that have occurred between chimpanzees and humans. The goal of this study was to investigate chromosomal regions that are inverted between the chimpanzee and human genomes. Using the net alignments for the builds of the human and chimpanzee genome assemblies, we identified a total of 1,576 putative regions of inverted orientation, covering more than 154 mega-bases of DNA. The DNA segments are distributed throughout the genome and range from 23 base pairs to 62 mega-bases in length. For the 66 inversions more than 25 kilobases (kb in length, 75% were flanked on one or both sides by (often unrelated segmental duplications. Using PCR and fluorescence in situ hybridization we experimentally validated 23 of 27 (85% semi-randomly chosen regions; the largest novel inversion confirmed was 4.3 mega-bases at human Chromosome 7p14. Gorilla was used as an out-group to assign ancestral status to the variants. All experimentally validated inversion regions were then assayed against a panel of human samples and three of the 23 (13% regions were found to be polymorphic in the human genome. These polymorphic inversions include 730 kb (at 7p22, 13 kb (at 7q11, and 1 kb (at 16q24 fragments with a 5%, 30%, and 48% minor allele frequency, respectively. Our results suggest that inversions are an important source of variation in primate genome evolution. The finding of at least three novel inversion polymorphisms in humans indicates this type of structural variation may be a more common feature of our genome than previously realized.

  13. Comparative Study on the Immunogenicity between Hsp70 DNA Vaccine and Hsp65 DNA Vaccine in Human Mycobacterium Tuberculosis

    Institute of Scientific and Technical Information of China (English)

    DAI; Wuxing; HUANG; Hailang; YUAN; Ye; HU; Jiajie; HUANGFU; Yongmu

    2001-01-01

    The BALB/c mice were immunized with Hsp70 DNA and Hsp65 DNA vaccines in human Mycobacterium tuberculosis. Eight weeks after immunization, the eyeballs were removed, blood and spleen taken, and intraperitoneal macrophages were harvested. The lymphocytic stimulating index(SI) was used to measure the cellular proliferating ability and NO release to measure the phagocytic activity of the macrophages. With ELISA kit, the levels of interleukin-2 (IL-2) and interferon-γ(IFN-γ) in serum and the splenic lymphocytic cultured supernatant were detected. The results showed that after the mice were immunized with 100 μg/mouse of Hsp70 DNA vaccine intramuscularly, the splenic lymphocytic proliferating ability in the mice was significantly increased as compared with that in the control group, vector group and Hsp65 DNA vaccine group (P<0. 01); The contents of NO in the intraperitoneal macrophages of the mice were significantly lower than in the control group and Hsp65 DNA vaccine group (P<0. 01); The levels of serum IL-2 in the mice were significantly higher than in the control group, but there was no statistical difference between Hsp65 DNA group and vector group (P>0. 05); The contents of serum IFN-γ in the mice were significantly higher than in the control group, but significantly lower than in the Hsp65 DNA vaccine group (P<0. 05). It was indicated that immunization with Hsp70 DNA vaccine could obviously enhance the immune response, but its intensity seemed inferior to Hsp65 DNA vaccine. The anti-infection mechanisms and clinical use in the future of the vaccines of Hsp70 DNA and Hsp65 DNA are worth further studying.

  14. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    ; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage....... Urinary excretion of 8-oxodG increased during the first day in altitude hypoxia, and there were more endonuclease III-sensitive sites on day 3 at high altitude. The subjects had more DNA strand breaks in altitude hypoxia than at sea level. The level of DNA strand breaks further increased immediately after...... exercise in altitude hypoxia. Exercise-induced generation of DNA strand breaks was not seen at sea level. In both environments, the level of FPG and endonuclease III-sensitive sites remained unchanged immediately after exercise. DNA strand breaks and oxidative DNA damage are probably produced by reactive...

  15. The effects of different maceration techniques on nuclear DNA amplification using human bone.

    Science.gov (United States)

    Lee, Esther J; Luedtke, Jennifer G; Allison, Jamie L; Arber, Carolyn E; Merriwether, D Andrew; Steadman, Dawnie Wolfe

    2010-07-01

    Forensic anthropologists routinely macerate human bone for the purposes of identity and trauma analysis, but the heat and chemical treatments used can destroy genetic evidence. As a follow-up to a previous study on nuclear DNA recovery that used pig ribs, this study utilizes human skeletal remains treated with various bone maceration techniques for nuclear DNA amplification using the standard Combined DNA Index System (CODIS) markers. DNA was extracted from 18 samples of human lower leg bones subjected to nine chemical and heat maceration techniques. Genotyping was carried out using the AmpFlSTR COfiler and AmpFlSTR Profiler Plus ID kits. Results showed that heat treatments via microwave or Biz/Na(2)CO(3) in sub-boiling water efficiently macerate bone and produce amplifiable nuclear DNA for genetic analysis. Long-term use of chemicals such as hydrogen peroxide is discouraged as it results in poor bone quality and has deleterious effects on DNA amplification.

  16. Vertically integrated analysis of human DNA. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, M.

    1997-10-01

    This project has been oriented toward improving the vertical integration of the sequential steps associated with the large-scale analysis of human DNA. The central focus has been on an approach to the preparation of {open_quotes}sequence-ready{close_quotes} maps, which is referred to as multiple-complete-digest (MCD) mapping, primarily directed at cosmid clones. MCD mapping relies on simple experimental steps, supported by advanced image-analysis and map-assembly software, to produce extremely accurate restriction-site and clone-overlap maps. We believe that MCD mapping is one of the few high-resolution mapping systems that has the potential for high-level automation. Successful automation of this process would be a landmark event in genome analysis. Once other higher organisms, paving the way for cost-effective sequencing of these genomes. Critically, MCD mapping has the potential to provide built-in quality control for sequencing accuracy and to make possible a highly integrated end product even if there are large numbers of discontinuities in the actual sequence.

  17. The DNA sequence and biology of human chromosome 19.

    Science.gov (United States)

    Grimwood, Jane; Gordon, Laurie A; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Isaac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E; Pennacchio, Len A; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S; Myers, Richard M; Rubin, Edward M; Lucas, Susan M

    2004-04-01

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  18. The DNA sequence of the human X chromosome.

    Science.gov (United States)

    Ross, Mark T; Grafham, Darren V; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R; Burrows, Christine; Bird, Christine P; Frankish, Adam; Lovell, Frances L; Howe, Kevin L; Ashurst, Jennifer L; Fulton, Robert S; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C; Hurles, Matthew E; Andrews, T Daniel; Scott, Carol E; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P; Hunt, Sarah E; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Ainscough, Rachael; Ambrose, Kerrie D; Ansari-Lari, M Ali; Aradhya, Swaroop; Ashwell, Robert I S; Babbage, Anne K; Bagguley, Claire L; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E; Barlow, Karen F; Barrett, Ian P; Bates, Karen N; Beare, David M; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M; Brown, Andrew J; Brown, Mary J; Bonnin, David; Bruford, Elspeth A; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y; Clarke, Graham; Clee, Chris M; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G; Conquer, Jen S; Corby, Nicole; Connor, Richard E; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; Deshazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A; Hawes, Alicia; Heath, Paul D; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J; Huckle, Elizabeth J; Hume, Jennifer; Hunt, Paul J; Hunt, Adrienne R; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J; Joseph, Shirin S; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M; Loulseged, Hermela; Loveland, Jane E; Lovell, Jamieson D; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O'Dell, Christopher N; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V; Pearson, Danita M; Pelan, Sarah E; Perez, Lesette; Porter, Keith M; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A; Schlessinger, David; Schueler, Mary G; Sehra, Harminder K; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M; Shownkeen, Ratna; Skuce, Carl D; Smith, Michelle L; Sotheran, Elizabeth C; Steingruber, Helen E; Steward, Charles A; Storey, Roy; Swann, R Mark; Swarbreck, David; Tabor, Paul E; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C; d'Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L; Whiteley, Mathew N; Wilkinson, Jane E; Willey, David L; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L; Wray, Paul W; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J; Hillier, Ladeana W; Willard, Huntington F; Wilson, Richard K; Waterston, Robert H; Rice, Catherine M; Vaudin, Mark; Coulson, Alan; Nelson, David L; Weinstock, George; Sulston, John E; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A; Beck, Stephan; Rogers, Jane; Bentley, David R

    2005-03-17

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.

  19. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  20. Absolute quantification of somatic DNA alterations in human cancer.

    Science.gov (United States)

    Carter, Scott L; Cibulskis, Kristian; Helman, Elena; McKenna, Aaron; Shen, Hui; Zack, Travis; Laird, Peter W; Onofrio, Robert C; Winckler, Wendy; Weir, Barbara A; Beroukhim, Rameen; Pellman, David; Levine, Douglas A; Lander, Eric S; Meyerson, Matthew; Getz, Gad

    2012-05-01

    We describe a computational method that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. The method, named ABSOLUTE, can detect subclonal heterogeneity and somatic homozygosity, and it can calculate statistical sensitivity for detection of specific aberrations. We used ABSOLUTE to analyze exome sequencing data from 214 ovarian carcinoma tumor-normal pairs. This analysis identified both pervasive subclonal somatic point-mutations and a small subset of predominantly clonal and homozygous mutations, which were overrepresented in the tumor suppressor genes TP53 and NF1 and in a candidate tumor suppressor gene CDK12. We also used ABSOLUTE to infer absolute allelic copy-number profiles from 3,155 diverse cancer specimens, revealing that genome-doubling events are common in human cancer, likely occur in cells that are already aneuploid, and influence pathways of tumor progression (for example, with recessive inactivation of NF1 being less common after genome doubling). ABSOLUTE will facilitate the design of clinical sequencing studies and studies of cancer genome evolution and intra-tumor heterogeneity.

  1. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, Jane; Gordon, Laurie A.; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A.; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M.; Glavina, Tijana; Gomez, Maria; Gonzales, Eldelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Issac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P.; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S.; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E.; Pennacchio, Len A.; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S.; Myers, Richard M.; Rubin, Edward M.; Lucas, Susan M.

    2003-09-15

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G1C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9 percent of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25 percent of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, a nd segments of coding and non-coding conservation with the distant fish species Takifugu.

  2. Light chain editors of anti-DNA receptors in human B cells.

    Science.gov (United States)

    Kalinina, Olga; Wang, Yue; Sia, Kevin; Radic, Marko; Cazenave, Pierre-André; Weigert, Martin

    2014-02-10

    Receptor editing is a mechanism of self-tolerance used in newly generated B cells. The expressed heavy (H) or light (L) chain of an autoreactive receptor is replaced by upstream V genes which eliminate or modify autoreactivity. Editing of anti-DNA receptors has been characterized in anti-DNA transgenic mouse models including 3H9, 3H9/56R, and their revertant 3H9GL. Certain L chains, termed editors, rescue anti-DNA B cells by neutralizing or modifying DNA binding of the H chain. This editing mechanism acts on the natural H chain repertoire; endogenous H chains with anti-DNA features are expressed primarily in combination with editor L chains. We ask whether a similar set of L chains exists in the human repertoire, and if so, do they edit H chains with anti-DNA signatures? We compared the protein sequences of mouse editors to all human L chains and found several human L chains similar to mouse editors. These L chains diminish or veto anti-DNA binding when expressed with anti-DNA H chains. The human H chains expressed with these L chains also have relatively high arginine (Arg) content in the H chain complementarity determining region (H3), suggesting that receptor editing plays a role in establishing tolerance to DNA in humans.

  3. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.

    Science.gov (United States)

    Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi

    2016-07-15

    Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria.

  4. Nuclear Localization and DNA Binding Properties of a Protein Expressed by Human c-myc Oncogene

    Science.gov (United States)

    Persson, Hakan; Leder, Philip

    1984-08-01

    Antisera to the human cellular myc oncogene product were used to identify a human c-myc specific protein with a molecular weight of 65,000. Subcellular fractionation showed that the human c-myc protein is predominantly found in the cell nucleus. The p65 Kc-myc protein binds to double- and single-stranded DNA as measured by a DNA affinity chromatography assay.

  5. No increased sperm DNA fragmentation index in semen containing human papillomavirus or herpesvirus

    DEFF Research Database (Denmark)

    Kaspersen, Maja Døvling; Bungum, Mona; Fedder, Jens

    2013-01-01

    -based hybridization array that identifies all HHVs and 35 of the most common HPVs. Sperm DNA integrity was determined by the sperm chromatin structure assay. HPVs or HHVs, or both, were found in 57% of semen samples; however, sperm DNA fragmentation index was not increased in semen containing these viruses.......It remains unknown whether human papillomaviruses (HPVs) or human herpesviruses (HHVs) in semen affect sperm DNA integrity. We investigated whether the presence of these viruses in semen was associated with an elevated sperm DNA fragmentation index. Semen from 76 sperm donors was examined by a PCR...

  6. Extraction of high quality genomic DNA from microsamples of human blood.

    Science.gov (United States)

    Ma, H W; Cheng, J; Caddy, B

    1994-01-01

    A simple and efficient method for extracting human genomic DNA from microsamples of blood has been developed. This method used sodium perchlorate, chloroform, polymerised silica gel and a dumbbell-shape tube, instead of proteinase K and phenol. The entire process took less than two hours, and high molecular weight DNA, in high yield and purity, was obtained from a few microlitres of human blood. DNA prepared in this way can be easily digested with restriction endonucleases and has been employed for DNA profiling and the polymerase chain reaction.

  7. A DNA methylation signature associated with aberrant promoter DNA hypermethylation of DNMT3B in human colorectal cancer.

    Science.gov (United States)

    Huidobro, Covadonga; Urdinguio, Rocío G; Rodríguez, Ramón María; Mangas, Cristina; Calvanese, Vincenzo; Martínez-Camblor, Pablo; Ferrero, Cecilia; Parra-Blanco, Adolfo; Rodrigo, Luis; Obaya, Alvaro J; Suárez-Fernández, Laura; Astudillo, Aurora; Hernando, Henar; Ballestar, Esteban; Fernández, Agustín F; Fraga, Mario F

    2012-09-01

    Altered promoter DNA methylation, one of the most important molecular alterations in cancer, is proposed to correlate with deregulation of DNA methyltransferases, although the molecular mechanisms implicated are still poorly understood. Here we show that the de novo DNA methyltransferase DNMT3B is frequently repressed in human colorectal cancer cell lines (CCL) and primary tumours by aberrant DNA hypermethylation of its distal promoter. At the epigenome level, DNMT3B promoter hypermethylation was associated with the hypomethylation of gene promoters usually hypermethylated in the healthy colon. Forced DNMT3B overexpression in cancer cells restored the methylation levels of these promoters in the healthy colon. Our results show a new molecular mechanism of aberrant DNMT3B regulation in colon cancer and suggest that its expression is associated with the methylation of constitutively hypermethylated promoters in the healthy colon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Induction of a mutant phenotype in human repair proficient cells after overexpression of a mutated human DNA repair gene.

    NARCIS (Netherlands)

    P.B.G.M. Belt; M.F. van Oostenrijk; H. Odijk (Hanny); J.H.J. Hoeijmakers (Jan); C.M.P. Backendorf (Claude)

    1991-01-01

    textabstractAntisense and mutated cDNA of the human excision repair gene ERCC-1 were overexpressed in repair efficient HeLa cells by means of an Epstein-Barr-virus derived CDNA expression vector. Whereas antisense RNA did not influence the survival of the transfected cells, a mutated cDNA generating

  9. Gap-directed translesion DNA synthesis of an abasic site on circular DNA templates by a human replication complex.

    Directory of Open Access Journals (Sweden)

    Giuseppe Villani

    Full Text Available DNA polymerase ε (pol ε is believed to be the leading strand replicase in eukaryotes whereas pols λ and β are thought to be mainly involved in re-synthesis steps of DNA repair. DNA elongation by the human pol ε is halted by an abasic site (apurinic/apyrimidinic (AP site. We have previously reported that human pols λ, β and η can perform translesion synthesis (TLS of an AP site in the presence of pol ε. In the case of pol λ and β, this TLS requires the presence of a gap downstream from the product synthetized by the ε replicase. However, since these studies were conducted exclusively with a linear DNA template, we decided to test whether the structure of the template could influence the capacity of the pols ε, λ, β and η to perform TLS of an AP site. Therefore, we have investigated the replication of damaged "minicircle" DNA templates. In addition, replication of circular DNA requires, beyond DNA pols, the processivity clamp PCNA, the clamp loader replication factor C (RFC, and the accessory proteins replication protein A (RPA. Finally we have compared the capacity of unmodified versus monoubiquitinated PCNA in sustaining TLS by pols λ and η on a circular template. Our results indicate that in vitro gap-directed TLS synthesis by pols λ and β in the presence of pol ε, RPA and PCNA is unaffected by the structure of the DNA template. Moreover, monoubiquitination of PCNA does not affect TLS by pol λ while it appears to slightly stimulate TLS by pol η.

  10. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Finocchiaro, G.; Taroni, F.; Martin, A.L.; Colombo, I.; Tarelli, G.T.; DiDonato, S. (Istituto Nazionale Neurologico C. Besta, Milan (Italy)); Rocchi, M. (Istituto G. Gaslini, Genoa (Italy))

    1991-01-15

    The authors have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH{sub 2}-terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH{sub 2}-terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hanster somatic cell hybrids.

  11. Isolation of 24 novel cDNA fragments from microdis—sected human chromosome band

    Institute of Scientific and Technical Information of China (English)

    ZHANGMIN; LONGYU; 等

    1998-01-01

    The strategy of isolating the band0specific expression fragments from a probe pool generated by human chromosome microdissection was reported.A chromosome 14q 24.3 band-specific single copy DNA pool was constructed based on this probe pool.Using total DNA of the pool as probe to hybridize the human marrow cDNA library,68 primary positive clones were selected from 5×105 cDNA clones.Among these primary clones,32 secondary clones were obtained after second-round screening and designed as cFD14-1-32.Finally,24 band-specific expression fragments were identified from these 32 positive clones by DNA hybridization.Those band-specific clones can hybridize to both 14q24.3 DNA and human genomic DNA but cann't hybridize to 17q11-12 DNA,Partial sequences of 13 fragments of them were sequenced and idenfified as novel cDNA sequences,and these sequences were proved to have some homology with known genes in NCBI database.Analysis of expression spectrum of cFD 14-1 suggested that the cDNA fragments thus obtained should be used to isolate the genes can not been cloned in 14q24.3 region.

  12. HUMAN DNA QUANTIFICATION IN THE STOOLS OF PATIENTS WITH COLORECTAL CANCER

    Directory of Open Access Journals (Sweden)

    Yolanda TEIXEIRA

    2015-12-01

    Full Text Available Background - Colorectal cancer is one of the main cause of cancer in the world. Colonoscopy is the best screen method, however the compliance is less than 50%. Quantification of human DNA (hDNA in the feces may be a possible screen non-invasive method that is a consequence of the high proliferation and exfoliation of cancer cells. Objective - To quantify the human DNA in the stools of patients with colorectal cancer or polyps. Methods - Fifty patients with CRC, 26 polyps and 53 with normal colonoscopy were included. Total and human DNA were analyzed from the frozen stools. Results - An increased concentration of hDNA in the stools was observed in colorectal cancer patients compared to controls and polyps. Tumors localized in the left side of the colon had higher concentrations of hDNA. There were no difference between polyps and controls. A cut off of 0.87 ng/mL of human DNA was determined for colorectal cancer patients by the ROC curve, with a sensitivity of 66% and a specificity of 86.8%. For polyps the cut off was 0.41, the sensitivity was 41% and the specificity 77.4%. Conclusion - A higher concentration of hDNA had been found in colorectal cancer patients The quantification of hDNA from the stools can be a trial method for the diagnosis of colorectal cancer.

  13. mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory.

    Science.gov (United States)

    Atkinson, Quentin D; Gray, Russell D; Drummond, Alexei J

    2008-02-01

    The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.

  14. Microbial DNA fingerprinting of human fingerprints: dynamic colonization of fingertip microflora challenges human host inferences for forensic purposes

    OpenAIRE

    Tims, S.; Wamel, van, JJ Jos; Endtz, H. P.; Belkum, van, A.; Kayser, M

    2009-01-01

    Human fingertip microflora is transferred to touched objects and may provide forensically relevant information on individual hosts, such as on geographic origins, if endogenous microbial skin species/strains would be retrievable from physical fingerprints and would carry geographically restricted DNA diversity. We tested the suitability of physical fingerprints for revealing human host information, with geographic inference as example, via microbial DNA fingerprinting. We showed that the tran...

  15. Inhibiting DNA-PKCS radiosensitizes human osteosarcoma cells.

    Science.gov (United States)

    Mamo, Tewodros; Mladek, Ann C; Shogren, Kris L; Gustafson, Carl; Gupta, Shiv K; Riester, Scott M; Maran, Avudaiappan; Galindo, Mario; van Wijnen, Andre J; Sarkaria, Jann N; Yaszemski, Michael J

    2017-04-29

    Osteosarcoma survival rate has not improved over the past three decades, and the debilitating side effects of the surgical treatment suggest the need for alternative local control approaches. Radiotherapy is largely ineffective in osteosarcoma, indicating a potential role for radiosensitizers. Blocking DNA repair, particularly by inhibiting the catalytic subunit of DNA-dependent protein kinase (DNA-PKCS), is an attractive option for the radiosensitization of osteosarcoma. In this study, the expression of DNA-PKCS in osteosarcoma tissue specimens and cell lines was examined. Moreover, the small molecule DNA-PKCS inhibitor, KU60648, was investigated as a radiosensitizing strategy for osteosarcoma cells in vitro. DNA-PKCS was consistently expressed in the osteosarcoma tissue specimens and cell lines studied. Additionally, KU60648 effectively sensitized two of those osteosarcoma cell lines (143B cells by 1.5-fold and U2OS cells by 2.5-fold). KU60648 co-treatment also altered cell cycle distribution and enhanced DNA damage. Cell accumulation at the G2/M transition point increased by 55% and 45%, while the percentage of cells with >20 γH2AX foci were enhanced by 59% and 107% for 143B and U2OS cells, respectively. These results indicate that the DNA-PKCS inhibitor, KU60648, is a promising radiosensitizing agent for osteosarcoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Analysis of epigenetic modifications of DNA in human cells

    DEFF Research Database (Denmark)

    Kristensen, Lasse Sommer; Treppendahl, Marianne Bach; Grønbæk, Kirsten

    2013-01-01

    Epigenetics, the study of somatically heritable changes in gene expression not related to changes in the DNA sequence, is a rapidly expanding research field that plays important roles in healthy as well as in diseased cells. DNA methylation and hydroxymethylation are epigenetic modifications found...

  17. Extraction of human genomic DNA from whole blood using a magnetic microsphere method.

    Science.gov (United States)

    Gong, Rui; Li, Shengying

    2014-01-01

    With the rapid development of molecular biology and the life sciences, magnetic extraction is a simple, automatic, and highly efficient method for separating biological molecules, performing immunoassays, and other applications. Human blood is an ideal source of human genomic DNA. Extracting genomic DNA by traditional methods is time-consuming, and phenol and chloroform are toxic reagents that endanger health. Therefore, it is necessary to find a more convenient and efficient method for obtaining human genomic DNA. In this study, we developed urea-formaldehyde resin magnetic microspheres and magnetic silica microspheres for extraction of human genomic DNA. First, a magnetic microsphere suspension was prepared and used to extract genomic DNA from fresh whole blood, frozen blood, dried blood, and trace blood. Second, DNA content and purity were measured by agarose electrophoresis and ultraviolet spectrophotometry. The human genomic DNA extracted from whole blood was then subjected to polymerase chain reaction analysis to further confirm its quality. The results of this study lay a good foundation for future research and development of a high-throughput and rapid extraction method for extracting genomic DNA from various types of blood samples.

  18. Polycyclic Aromatic Hydrocarbon (PAH Exposure and DNA Adduct Semi-Quantitation in Archived Human Tissues

    Directory of Open Access Journals (Sweden)

    M. Margaret Pratt

    2011-06-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are combustion products of organic materials, mixtures of which contain multiple known and probable human carcinogens. PAHs occur in indoor and outdoor air, as well as in char-broiled meats and fish. Human exposure to PAHs occurs by inhalation, ingestion and topical absorption, and subsequently formed metabolites are either rendered hydrophilic and excreted, or bioactivated and bound to cellular macromolecules. The formation of PAH-DNA adducts (DNA binding products, considered a necessary step in PAH-initiated carcinogenesis, has been widely studied in experimental models and has been documented in human tissues. This review describes immunohistochemistry (IHC studies, which reveal localization of PAH-DNA adducts in human tissues, and semi-quantify PAH-DNA adduct levels using the Automated Cellular Imaging System (ACIS. These studies have shown that PAH-DNA adducts concentrate in: basal and supra-basal epithelium of the esophagus, cervix and vulva; glandular epithelium of the prostate; and cytotrophoblast cells and syncitiotrophoblast knots of the placenta. The IHC photomicrographs reveal the ubiquitous nature of PAH-DNA adduct formation in human tissues as well as PAH-DNA adduct accumulation in specific, vulnerable, cell types. This semi-quantative method for PAH-DNA adduct measurement could potentially see widespread use in molecular epidemiology studies.

  19. Sunlight-induced DNA damage in human mononuclear cells

    DEFF Research Database (Denmark)

    Møller, Peter; Wallin, Hakan; Holst, Erik

    2002-01-01

    of sunlight was comparable to the interindividual variation, indicating that sunlight exposure and the individual's background were the two most important determinants for the basal level of DNA damage. Influence of other lifestyle factors such as exercise, intake of foods, infections, and age could......In this study of 301 blood samples from 21 subjects, we found markedly higher levels of DNA damage (nonpyrimidine dimer types) in the summer than in the winter detected by single-cell gel electrophoresis. The level of DNA damage was influenced by the average daily influx of sunlight ... to blood sampling. The 3 and 6 day periods before sampling influenced DNA damage the most. The importance of sunlight was further emphasized by a positive association of the DNA damage level to the amount of time the subjects had spent in the sun over a 3 day period prior to the sampling. The effect...

  20. A comparative study of two methods for the isolation of human leucocytes for DNA extraction.

    Science.gov (United States)

    Lim, L H; Ton, S H; Cheong, S K

    1990-06-01

    The 'Dextran' and the 'Buffy-coat' methods for isolation of human leucocytes for DNA extraction were compared on the basis of DNA yield from the same amounts (10 ml) of blood. Human leucocytes from a total of 11 samples were isolated using both methods for each sample after which DNA was extracted. Extracted DNA samples were treated with ribonucleases and proteinase K after which the yields were quantitated by measuring absorbance at 260 nm. The 'Buffy-coat' method yielded a mean concentration of DNA of 476.7 micrograms/ml (range: 212 to 700 micrograms/ml) while the 'Dextran' method yielded 188.4 micrograms/ml (range: 64 to 340 micrograms/ml). The difference was confirmed by subjecting the extracted DNA samples to agarose gel electrophoresis.

  1. Ancient DNA analysis of human remains from the Upper Capital City of Kublai Khan.

    Science.gov (United States)

    Fu, Yuqin; Xie, Chengzhi; Xu, Xuelian; Li, Chunxiang; Zhang, Quanchao; Zhou, Hui; Zhu, Hong

    2009-01-01

    Analysis of DNA from human archaeological remains is a powerful tool for reconstructing ancient events in human history. To help understand the origin of the inhabitants of Kublai Khan's Upper Capital in Inner Mongolia, we analyzed mitochondrial DNA (mtDNA) polymorphisms in 21 ancient individuals buried in the Zhenzishan cemetery of the Upper Capital. MtDNA coding and noncoding region polymorphisms identified in the ancient individuals were characteristic of the Asian mtDNA haplogroups A, B, N9a, C, D, Z, M7b, and M. Phylogenetic analysis of the ancient mtDNA sequences, and comparison with extant reference populations, revealed that the maternal lineages of the population buried in the Zhenzishan cemetery are of Asian origin and typical of present-day Han Chinese, despite the presence of typical European morphological features in several of the skeletons.

  2. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Aurélie [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Sarasin, Alain, E-mail: alain.sarasin@gustaveroussy.fr [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Service de Génétique, Institut Gustave Roussy (France)

    2015-06-15

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  3. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    Science.gov (United States)

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  4. Human papillomavirus DNA from warts for typing by endonuclease restriction patterns: purification by alkaline plasmid methods.

    Science.gov (United States)

    Chinami, M; Tanikawa, E; Hachisuka, H; Sasai, Y; Shingu, M

    1990-01-01

    The alkaline plasmid DNA extraction method of Birnboim and Doly was applied for the isolation of human papillomavirus (HPV) from warts. Tissue from common and plantar warts was digested with proteinase K, and the extrachromosomal circular covalently-closed form of HPV-DNA was rapidly extracted by alkaline sodium dodecyl sulphate and phenol-chloroform treatment. Recovery of HPV-DNA from the tissue was sufficient for determination of endonuclease restriction patterns by agarose gel electrophoresis.

  5. Carriers of human mitochondrial DNA macrohaplogroup M colonized India from southeastern Asia

    OpenAIRE

    Marrero, Patricia; Abu-Amero, Khaled K.; Larruga, Jose M; Cabrera, Vicente M

    2016-01-01

    Background From a mtDNA dominant perspective, the exit from Africa of modern humans to colonize Eurasia occurred once, around 60 kya, following a southern coastal route across Arabia and India to reach Australia short after. These pioneers carried with them the currently dominant Eurasian lineages M and N. Based also on mtDNA phylogenetic and phylogeographic grounds, some authors have proposed the coeval existence of a northern route across the Levant that brought mtDNA macrohaplogroup N to A...

  6. Extensive sequence-influenced DNA methylation polymorphism in the human genome

    OpenAIRE

    Hellman Asaf; Chess Andrew

    2010-01-01

    Abstract Background Epigenetic polymorphisms are a potential source of human diversity, but their frequency and relationship to genetic polymorphisms are unclear. DNA methylation, an epigenetic mark that is a covalent modification of the DNA itself, plays an important role in the regulation of gene expression. Most studies of DNA methylation in mammalian cells have focused on CpG methylation present in CpG islands (areas of concentrated CpGs often found near promoters), but there are also int...

  7. Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat.

    Science.gov (United States)

    Jiménez-Menéndez, Nereida; Fernández-Millán, Pablo; Rubio-Cosials, Anna; Arnan, Carme; Montoya, Julio; Jacobs, Howard T; Bernadó, Pau; Coll, Miquel; Usón, Isabel; Solà, Maria

    2010-07-01

    The regulation of mitochondrial DNA (mtDNA) processes is slowly being characterized at a structural level. We present here crystal structures of human mitochondrial regulator mTERF, a transcription termination factor also implicated in replication pausing, in complex with double-stranded DNA oligonucleotides containing the tRNA(Leu)(UUR) gene sequence. mTERF comprises nine left-handed helical tandem repeats that form a left-handed superhelix, the Zurdo domain.

  8. The DNA sequence, annotation and analysis of human chromosome 3

    DEFF Research Database (Denmark)

    Muzny, Donna M; Scherer, Steven E; Kaul, Rajinder

    2006-01-01

    After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chr...

  9. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes.

    Science.gov (United States)

    Kayser, Manfred

    2015-09-01

    Forensic DNA Phenotyping refers to the prediction of appearance traits of unknown sample donors, or unknown deceased (missing) persons, directly from biological materials found at the scene. "Biological witness" outcomes of Forensic DNA Phenotyping can provide investigative leads to trace unknown persons, who are unidentifiable with current comparative DNA profiling. This intelligence application of DNA marks a substantially different forensic use of genetic material rather than that of current DNA profiling presented in the courtroom. Currently, group-specific pigmentation traits are already predictable from DNA with reasonably high accuracies, while several other externally visible characteristics are under genetic investigation. Until individual-specific appearance becomes accurately predictable from DNA, conventional DNA profiling needs to be performed subsequent to appearance DNA prediction. Notably, and where Forensic DNA Phenotyping shows great promise, this is on a (much) smaller group of potential suspects, who match the appearance characteristics DNA-predicted from the crime scene stain or from the deceased person's remains. Provided sufficient funding being made available, future research to better understand the genetic basis of human appearance will expectedly lead to a substantially more detailed description of an unknown person's appearance from DNA, delivering increased value for police investigations in criminal and missing person cases involving unknowns. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Elimination of bioweapons agents from forensic samples during extraction of human DNA.

    Science.gov (United States)

    Timbers, Jason; Wilkinson, Della; Hause, Christine C; Smith, Myron L; Zaidi, Mohsin A; Laframboise, Denis; Wright, Kathryn E

    2014-11-01

    Collection of DNA for genetic profiling is a powerful means for the identification of individuals responsible for crimes and terrorist acts. Biologic hazards, such as bacteria, endospores, toxins, and viruses, could contaminate sites of terrorist activities and thus could be present in samples collected for profiling. The fate of these hazards during DNA isolation has not been thoroughly examined. Our goals were to determine whether the DNA extraction process used by the Royal Canadian Mounted Police eliminates or neutralizes these agents and if not, to establish methods that render samples safe without compromising the human DNA. Our results show that bacteria, viruses, and toxins were reduced to undetectable levels during DNA extraction, but endospores remained viable. Filtration of samples after DNA isolation eliminated viable spores from the samples but left DNA intact. We also demonstrated that contamination of samples with some bacteria, endospores, and toxins for longer than 1 h compromised the ability to complete genetic profiling.

  11. Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks

    DEFF Research Database (Denmark)

    Liberti, Sascha E; Andersen, Sofie Dabros; Wang, Jing

    2011-01-01

    Human exonuclease 1 (hEXO1) is implicated in DNA metabolism, including replication, recombination and repair, substantiated by its interactions with PCNA, DNA helicases BLM and WRN, and several DNA mismatch repair (MMR) proteins. We investigated the sub-nuclear localization of hEXO1 during S......-phase progression and in response to laser-induced DNA double strand breaks (DSBs). We show that hEXO1 and PCNA co-localize in replication foci. This apparent interaction is sustained throughout S-phase. We also demonstrate that hEXO1 is rapidly recruited to DNA DSBs. We have identified a PCNA interacting protein...... (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues...

  12. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase

    NARCIS (Netherlands)

    Bharti, S.K.; Sommers, J.A.; Zhou, J.; Kaplan, D.L.; Spelbrink, J.N.; Mergny, J.L.; Brosh, R.M., Jr.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mit

  13. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Korzeneva, Inna B., E-mail: inna.korzeneva@molgen.vniief.ru [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Kostuyk, Svetlana V.; Ershova, Liza S. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); Osipov, Andrian N. [Federal Medial and Biological Center named after Burnazyan of the Federal Medical and Biological Agency (FMBTz named after Burnazyan of FMBA), Moscow (Russian Federation); State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya, 46, Moscow, 123098 (Russian Federation); Zhuravleva, Veronika F.; Pankratova, Galina V. [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Porokhovnik, Lev N.; Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str. (Russian Federation)

    2015-09-15

    Highlights: • The chronic exposure to low-dose IR induces DSBs in human lymphocytes (TM index). • Exposure to IR decreases the level of human circulating DNA (cfDNA index). • IR induces an increase of DNase1 activity (DNase1 index) in plasma. • IR induces an increase of the level of antibodies to DNA (Ab DNA index) in plasma. • The ratio cfDNA/(DNase 1 × Ab DNA × TM) is a potential marker of human exposure to IR. - Abstract: The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism’s cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1 × Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab

  14. Assessing DNA methylation in the developing human intestinal epithelium: potential link to inflammatory bowel disease.

    Science.gov (United States)

    Kraiczy, J; Nayak, K; Ross, A; Raine, T; Mak, T N; Gasparetto, M; Cario, E; Rakyan, V; Heuschkel, R; Zilbauer, M

    2016-05-01

    DNA methylation is one of the major epigenetic mechanisms implicated in regulating cellular development and cell-type-specific gene expression. Here we performed simultaneous genome-wide DNA methylation and gene expression analysis on purified intestinal epithelial cells derived from human fetal gut, healthy pediatric biopsies, and children newly diagnosed with inflammatory bowel disease (IBD). Results were validated using pyrosequencing, real-time PCR, and immunostaining. The functional impact of DNA methylation changes on gene expression was assessed by employing in-vitro assays in intestinal cell lines. DNA methylation analyses allowed identification of 214 genes for which expression is regulated via DNA methylation, i.e. regulatory differentially methylated regions (rDMRs). Pathway and functional analysis of rDMRs suggested a critical role for DNA methylation in regulating gene expression and functional development of the human intestinal epithelium. Moreover, analysis performed on intestinal epithelium of children newly diagnosed with IBD revealed alterations in DNA methylation within genomic loci, which were found to overlap significantly with those undergoing methylation changes during intestinal development. Our study provides novel insights into the physiological role of DNA methylation in regulating functional maturation of the human intestinal epithelium. Moreover, we provide data linking developmentally acquired alterations in the DNA methylation profile to changes seen in pediatric IBD.

  15. Mutation dependance of the mitochondrial DNA copy number in the first stages of human embryogenesis.

    Science.gov (United States)

    Monnot, Sophie; Samuels, David C; Hesters, Laetitia; Frydman, Nelly; Gigarel, Nadine; Burlet, Philippe; Kerbrat, Violaine; Lamazou, Frédéric; Frydman, René; Benachi, Alexandra; Feingold, Josué; Rotig, Agnes; Munnich, Arnold; Bonnefont, Jean-Paul; Steffann, Julie

    2013-05-01

    Mitochondrial DNA (mtDNA) content is thought to remain stable over the preimplantation period of human embryogenesis that is, therefore, suggested to be entirely dependent on ooplasm mtDNA capital. We have explored the impact of two disease-causing mutations [m.3243A>G myopathy, encephalopathy, lactic acidosis and stroke-like syndrome (MELAS) and m.8344A>G myoclonic epilepsy associated with ragged-red fibers (MERRF)] on mtDNA amounts in human oocytes and day 4-5 preimplantation embryos. The mtDNA amount was stable in MERRF and control materials, whereas gradually increasing from the germinal vesicle of oogenesis to the blastocyst stage of embryogenesis in MELAS cells, MELAS embryos carrying ∼3-fold higher mtDNA amount than control embryos (P = 0.0003). A correlation between mtDNA copy numbers and mutant loads was observed in MELAS embryos (R(2) = 0.42, P < 0.0013), suggestive of a compensation for the respiratory chain defect resulting from high mutation levels. These results suggest that mtDNA can replicate in early embryos and emphasize the need for sufficient amount of wild-type mtDNA to sustain embryonic development in humans.

  16. Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1) in human type 2 diabetes

    OpenAIRE

    Yoon Kun-Ho; Wang-Rodriguez Jessica; Dib Sergio A.; Anachkov Kamen A; Tyrberg Björn; Levine Fred

    2002-01-01

    Abstract Background It has become increasingly clear that β-cell failure plays a critical role in the pathogenesis of type 2 diabetes. Free-radical mediated β-cell damage has been intensively studied in type 1 diabetes, but not in human type 2 diabetes. Therefore, we studied the protein expression of the DNA repair enzyme Ogg1 in pancreases from type 2 diabetics. Ogg1 was studied because it is the major enzyme involved in repairing 7,8-dihydro-8-oxoguanosine DNA adducts, a lesion previously o...

  17. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise;

    2015-01-01

    18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency...

  18. Problem-Solving Test: Analysis of DNA Damage Recognizing Proteins in Yeast and Human Cells

    Science.gov (United States)

    Szeberenyi, Jozsef

    2013-01-01

    The experiment described in this test was aimed at identifying DNA repair proteins in human and yeast cells. Terms to be familiar with before you start to solve the test: DNA repair, germline mutation, somatic mutation, inherited disease, cancer, restriction endonuclease, radioactive labeling, [alpha-[superscript 32]P]ATP, [gamma-[superscript…

  19. Role of extracellular DNA oxidative modification in radiation induced bystander effects in human endotheliocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Ermakov, Aleksei V., E-mail: avePlato@mail.ru [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Alekseeva, Anna Yu.; Smirnova, Tatiana D.; Glebova, Kristina V.; Efremova, Liudmila V. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalya N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2012-01-03

    The development of the bystander effect induced by low doses of irradiation in human umbilical vein endothelial cells (HUVECs) depends on extracellular DNA (ecDNA) signaling pathway. We found that the changes in the levels of ROS and NO production by human endothelial cells are components of the radiation induced bystander effect that can be registered at a low dose. We exposed HUVECs to X-ray radiation and studied effects of ecDNA{sup R} isolated from the culture media conditioned by the short-term incubation of irradiated cells on intact HUVECs. Effects of ecDNA{sup R} produced by irradiated cells on ROS and NO production in non-irradiated HUVECs are similar to bystander effect. These effects at least partially depend on TLR9 signaling. We compared the production of the nitric oxide and the ROS in human endothelial cells that were (1) irradiated at a low dose; (2) exposed to the ecDNA{sup R} extracted from the media conditioned by irradiated cells; and (3) exposed to human DNA oxidized in vitro. We found that the cellular responses to all three stimuli described above are essentially similar. We conclude that irradiation-related oxidation of the ecDNA is an important component of the ecDNA-mediated bystander effect.

  20. Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules

    NARCIS (Netherlands)

    Van der Heijden, T.; Seidel, R.; Modesti, M.; Kanaar, R.; Wyman, C.; Dekker, C.

    2007-01-01

    The human DNA repair protein RAD51 is the crucial component of helical nucleoprotein filaments that drive homologous recombination. The molecular mechanistic details of how this structure facilitates the requisite DNA strand rearrangements are not known but must involve dynamic interactions between

  1. Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules

    NARCIS (Netherlands)

    T. van der Heijden (Thijn); R. Seidel (Ralf); M. Modesti (Mauro); R. Kanaar (Roland); C. Wyman (Claire); C. Dekker (Cees)

    2007-01-01

    textabstractThe human DNA repair protein RAD51 is the crucial component of helical nucleoprotein filaments that drive homologous recombination. The molecular mechanistic details of how this structure facilitates the requisite DNA strand rearrangements are not known but must involve dynamic

  2. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery.

    Science.gov (United States)

    O'Driscoll, Mark

    2017-01-01

    Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  3. Interindividual variation in binding of benzo[a]pyrene to DNA in cultured human Bronchi

    DEFF Research Database (Denmark)

    Harris, C.C.; Autrup, Herman; Connor, R.

    1976-01-01

    The binding of benzo[a]pyrene to DNA in cultured human bronchus was measured in specimens from 37 patients. The binding values ranged from 2 to 151 picomoles of benzo[a]pyrene per milligram of DNA with an overall mean +/- standard error of 34.2 +/- 5.2. This 75-fold interindividual variation in t...

  4. Radiation induced DNA damage and damage repair in three human tumour cell lines

    NARCIS (Netherlands)

    Woudstra, EC; Brunsting, JF; Roesink, JM; Konings, AWT; Kampinga, HH

    1996-01-01

    Three human tumour cell lines (HX142, RT112 and MGH-U1) with different radiosensitivities were tested for differences in the rate and/or extent of DNA unwinding in alkali as well as for differences in the induction of DNA double strand breaks by means of the pulsed field gel electrophoresis, after

  5. Quantum dot based DNA nanosensors for amplification-free detection of human topoisomerase I

    DEFF Research Database (Denmark)

    Jepsen, Morten Leth; Ottaviani, Alessio; Knudsen, Birgitta R.;

    2014-01-01

    We develop a quantum dot based DNA nanosensor specifically targeting the cleavage–religation activity of an essential DNA-modifying enzyme, human topoisomerase I. The assay has shown great promise in biological crude samples and thus is expected to contribute to clinical diagnostics and anti...

  6. Isolation of DNA from bacterial samples of the human gastrointestinal tract

    NARCIS (Netherlands)

    Zoetendal, E.G.; Heilig, G.H.J.; Klaassens, E.S.; Booijink, C.C.G.M.; Kleerebezem, M.; Smidt, H.; Vos, de W.M.

    2006-01-01

    The human gastrointestinal (GI) tract contains a complex microbial community that develops in time and space. The most widely used approaches to study microbial diversity and activity are all based on the analysis of nucleic acids, DNA, rRNA and mRNA. Here, we present a DNA isolation protocol that i

  7. A Mini-Library of Sequenced Human DNA Fragments: Linking Bench Experiments with Informatics

    Science.gov (United States)

    Dalgleish, Raymond; Shanks, Morag E.; Monger, Karen; Butler, Nicola J.

    2012-01-01

    We describe the development of a mini-library of human DNA fragments for use in an enquiry-based learning (EBL) undergraduate practical incorporating "wet-lab" and bioinformatics tasks. In spite of the widespread emergence of the polymerase chain reaction (PCR), the cloning and analysis of DNA fragments in "Escherichia coli"…

  8. A Mini-Library of Sequenced Human DNA Fragments: Linking Bench Experiments with Informatics

    Science.gov (United States)

    Dalgleish, Raymond; Shanks, Morag E.; Monger, Karen; Butler, Nicola J.

    2012-01-01

    We describe the development of a mini-library of human DNA fragments for use in an enquiry-based learning (EBL) undergraduate practical incorporating "wet-lab" and bioinformatics tasks. In spite of the widespread emergence of the polymerase chain reaction (PCR), the cloning and analysis of DNA fragments in "Escherichia coli"…

  9. Problem-Solving Test: Analysis of DNA Damage Recognizing Proteins in Yeast and Human Cells

    Science.gov (United States)

    Szeberenyi, Jozsef

    2013-01-01

    The experiment described in this test was aimed at identifying DNA repair proteins in human and yeast cells. Terms to be familiar with before you start to solve the test: DNA repair, germline mutation, somatic mutation, inherited disease, cancer, restriction endonuclease, radioactive labeling, [alpha-[superscript 32]P]ATP, [gamma-[superscript…

  10. Genotoxic effect of N-hydroxy-4-acetylaminobiphenyl on human DNA: implications in bladder cancer.

    Directory of Open Access Journals (Sweden)

    Uzma Shahab

    Full Text Available BACKGROUND: The interaction of environmental chemicals and their metabolites with biological macromolecules can result in cytotoxic and genotoxic effects. 4-Aminobiphenyl (4-ABP and several other related arylamines have been shown to be causally involved in the induction of human urinary bladder cancers. The genotoxic and the carcinogenic effects of 4-ABP are exhibited only when it is metabolically converted to a reactive electrophile, the aryl nitrenium ions, which subsequently binds to DNA and induce lesions. Although several studies have reported the formation of 4-ABP-DNA adducts, no extensive work has been done to investigate the immunogenicity of 4-ABP-modified DNA and its possible involvement in the generation of antibodies in bladder cancer patients. METHODOLOGY/PRINCIPAL FINDINGS: Human DNA was modified by N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP, a reactive metabolite of 4-ABP. Structural perturbations in the N-OH-AABP modified DNA were assessed by ultraviolet, fluorescence, and circular dichroic spectroscopy as well as by agarose gel electrophoresis. Genotoxicity of N-OH-AABP modified DNA was ascertained by comet assay. High performance liquid chromatography (HPLC analysis of native and modified DNA samples confirmed the formation of N-(deoxyguanosine-8-yl-4-aminobiphenyl (dG-C8-4ABP in the N-OH-AABP damaged DNA. The experimentally induced antibodies against N-OH-AABP-modified DNA exhibited much better recognition of the DNA isolated from bladder cancer patients as compared to the DNA obtained from healthy individuals in competitive binding ELISA. CONCLUSIONS/SIGNIFICANCE: This work shows epitope sharing between the DNA isolated from bladder cancer patients and the N-OH-AABP-modified DNA implicating the role of 4-ABP metabolites in the DNA damage and neo-antigenic epitope generation that could lead to the induction of antibodies in bladder cancer patients.

  11. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: Evidence that DNA polymerases. delta. and. beta. are involved in DNA repair synthesis induced by N-methyl-N prime -nitro-N-nitrosoguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, R.A.; Miller, M.R. (West Virginia Univ. Health Sciences Center, Morgantown (USA)); McClung, J.K. (Samuel Roberts Noble Foundation, Inc., East Ardmore, OK (USA))

    1990-01-09

    The involvement of DNA polymerases {alpha}, {beta}, and {delta} in DNA repair synthesis induced by N-methyl-N{prime}-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase {alpha}) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors of MNNG-induced DNA repair synthesis in intact cells by measuring the amount of ({sup 3}H)thymidine incorporated into repair DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 {mu}g of aphidicolin/mL, 6% by 10 {mu}M BuPdGTP, 13% by anti-(DNA polymerse {alpha}) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 {mu}g of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase {alpha}) antibodies into HF nuclei. These results indicate that both DNA polymerase {delta} and {beta} are involved in repairing DNA damage caused by MNNG.

  12. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns

    Science.gov (United States)

    Sanchez-Mut, J V; Heyn, H; Vidal, E; Moran, S; Sayols, S; Delgado-Morales, R; Schultz, M D; Ansoleaga, B; Garcia-Esparcia, P; Pons-Espinal, M; de Lagran, M M; Dopazo, J; Rabano, A; Avila, J; Dierssen, M; Lott, I; Ferrer, I; Ecker, J R; Esteller, M

    2016-01-01

    Different neurodegenerative disorders often show similar lesions, such as the presence of amyloid plaques, TAU-neurotangles and synuclein inclusions. The genetically inherited forms are rare, so we wondered whether shared epigenetic aberrations, such as those affecting DNA methylation, might also exist. The studied samples were gray matter samples from the prefrontal cortex of control and neurodegenerative disease-associated cases. We performed the DNA methylation analyses of Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Alzheimer-like neurodegenerative profile associated with Down's syndrome samples. The DNA methylation landscapes obtained show that neurodegenerative diseases share similar aberrant CpG methylation shifts targeting a defined gene set. Our findings suggest that neurodegenerative disorders might have similar pathogenetic mechanisms that subsequently evolve into different clinical entities. The identified aberrant DNA methylation changes can be used as biomarkers of the disorders and as potential new targets for the development of new therapies. PMID:26784972

  13. An Improved Methodology to Overcome Key Issues in Human Fecal Metagenomic DNA Extraction

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    2016-12-01

    Full Text Available Microbes are ubiquitously distributed in nature, and recent culture-independent studies have highlighted the significance of gut microbiota in human health and disease. Fecal DNA is the primary source for the majority of human gut microbiome studies. However, further improvement is needed to obtain fecal metagenomic DNA with sufficient amount and good quality but low host genomic DNA contamination. In the current study, we demonstrate a quick, robust, unbiased, and cost-effective method for the isolation of high molecular weight (>23 kb metagenomic DNA (260/280 ratio >1.8 with a good yield (55.8 ± 3.8 ng/mg of feces. We also confirm that there is very low human genomic DNA contamination (eubacterial: human genomic DNA marker genes = 227.9:1 in the human feces. The newly-developed method robustly performs for fresh as well as stored fecal samples as demonstrated by 16S rRNA gene sequencing using 454 FLX+. Moreover, 16S rRNA gene analysis indicated that compared to other DNA extraction methods tested, the fecal metagenomic DNA isolated with current methodology retains species richness and does not show microbial diversity biases, which is further confirmed by qPCR with a known quantity of spike-in genomes. Overall, our data highlight a protocol with a balance between quality, amount, user-friendliness, and cost effectiveness for its suitability toward usage for culture-independent analysis of the human gut microbiome, which provides a robust solution to overcome key issues associated with fecal metagenomic DNA isolation in human gut microbiome studies.

  14. An Improved Methodology to Overcome Key Issues in Human Fecal Metagenomic DNA Extraction.

    Science.gov (United States)

    Kumar, Jitendra; Kumar, Manoj; Gupta, Shashank; Ahmed, Vasim; Bhambi, Manu; Pandey, Rajesh; Chauhan, Nar Singh

    2016-12-01

    Microbes are ubiquitously distributed in nature, and recent culture-independent studies have highlighted the significance of gut microbiota in human health and disease. Fecal DNA is the primary source for the majority of human gut microbiome studies. However, further improvement is needed to obtain fecal metagenomic DNA with sufficient amount and good quality but low host genomic DNA contamination. In the current study, we demonstrate a quick, robust, unbiased, and cost-effective method for the isolation of high molecular weight (>23kb) metagenomic DNA (260/280 ratio >1.8) with a good yield (55.8±3.8ng/mg of feces). We also confirm that there is very low human genomic DNA contamination (eubacterial: human genomic DNA marker genes=2(27.9):1) in the human feces. The newly-developed method robustly performs for fresh as well as stored fecal samples as demonstrated by 16S rRNA gene sequencing using 454 FLX+. Moreover, 16S rRNA gene analysis indicated that compared to other DNA extraction methods tested, the fecal metagenomic DNA isolated with current methodology retains species richness and does not show microbial diversity biases, which is further confirmed by qPCR with a known quantity of spike-in genomes. Overall, our data highlight a protocol with a balance between quality, amount, user-friendliness, and cost effectiveness for its suitability toward usage for culture-independent analysis of the human gut microbiome, which provides a robust solution to overcome key issues associated with fecal metagenomic DNA isolation in human gut microbiome studies. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  15. Prolonged incubation of processed human spermatozoa will increase DNA fragmentation.

    Science.gov (United States)

    Nabi, A; Khalili, M A; Halvaei, I; Roodbari, F

    2014-05-01

    One of the causes of failure in ART is sperm DNA fragmentation which may be associated with long period of spermatozoa incubation at 37 °C. The objective was to evaluate the rate of sperm DNA fragmentation using the sperm chromatin dispersion (SCD) test after swim-up at different time intervals prior to use. In this prospective study, 21 normozoospermic specimens were analysed. The samples were incubated at 37 °C after preparation by direct swim-up. DNA fragmentation was assessed at different time intervals (0, 1, 2 and 3 h) using SCD test. Spermatozoa with no DNA fragmentation showed large- or medium-sized halos, and sperm cells with DNA fragmentation showed either a small halo or no halo. The rates of normal morphology and progressive motility after sperm processing were 72.33 ± 2.53% and 90 ± 1.02%, respectively. The rate of sperm DNA fragmentation was significantly higher after 2 h (8.81 ± 0.93%, P = 0.004) and 3 h (10.76 ± 0.89%, P fragmentation. Therefore, sperm samples intended for ART procedures should be used within 2 h of incubation at 37 °C. © 2013 Blackwell Verlag GmbH.

  16. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA

    Indian Academy of Sciences (India)

    Richard R Sinden; Vladimir N Potaman; Elena A Oussatcheva; Christopher E Pearson; Yuri L Lyubchenko; Luda S Shlyakhtenko

    2002-02-01

    Fourteen genetic neurodegenerative diseases and three fragile sites have been associated with the expansion of (CTG)n•(CAG)n, (CGG)n•(CCG)n, or (GAA)n•(TTC)n repeat tracts. Different models have been proposed for the expansion of triplet repeats, most of which presume the formation of alternative DNA structures in repeat tracts. One of the most likely structures, slipped strand DNA, may stably and reproducibly form within triplet repeat sequences. The propensity to form slipped strand DNA is proportional to the length and homogeneity of the repeat tract. The remarkable stability of slipped strand DNA may, in part, be due to loop-loop interactions facilitated by the sequence complementarity of the loops and the dynamic structure of three-way junctions formed at the loop-outs.

  17. Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes

    NARCIS (Netherlands)

    Wilms, L.C.; Hollman, P.C.H.; Boots, A.W.; Kleinjans, J.C.S.

    2005-01-01

    Flavonoids are claimed to protect against cardiovascular disease, certain forms of cancer and ageing, possibly by preventing initial DNA damage. Therefore, we investigated the protective effects of the flavonoid quercetin against the formation of oxidative DNA damage and bulky DNA adducts in human l

  18. Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes

    NARCIS (Netherlands)

    Wilms, L.C.; Hollman, P.C.H.; Boots, A.W.; Kleinjans, J.C.S.

    2005-01-01

    Flavonoids are claimed to protect against cardiovascular disease, certain forms of cancer and ageing, possibly by preventing initial DNA damage. Therefore, we investigated the protective effects of the flavonoid quercetin against the formation of oxidative DNA damage and bulky DNA adducts in human

  19. The prevalence of human cytomegalovirus DNA in gliomas of Brazilian patients

    Directory of Open Access Journals (Sweden)

    Renata Fragelli Fonseca

    2012-11-01

    Full Text Available Members of the Herpesviridae family have been implicated in a number of tumours in humans. At least 75% of the human population has had contact with cytomegalovirus (HCMV. In this work, we screened 75 Brazilian glioma biopsies for the presence of HCMV DNA sequences. HCMV DNA was detected in 36% (27/75 of the biopsies. It is possible that HCMV could be a co-factor in the evolution of brain tumours.

  20. DNA ligase III and DNA ligase IV carry out genetically distinct forms of end joining in human somatic cells.

    Science.gov (United States)

    Oh, Sehyun; Harvey, Adam; Zimbric, Jacob; Wang, Yongbao; Nguyen, Thanh; Jackson, Pauline J; Hendrickson, Eric A

    2014-09-01

    Ku-dependent C-NHEJ (classic non-homologous end joining) is the primary DNA EJing (end joining) repair pathway in mammals. Recently, an additional EJing repair pathway (A-NHEJ; alternative-NHEJ) has been described. Currently, the mechanism of A-NHEJ is obscure although a dependency on LIGIII (DNA ligase III) is often implicated. To test the requirement for LIGIII in A-NHEJ we constructed a LIGIII conditionally-null human cell line using gene targeting. Nuclear EJing activity appeared unaffected by a deficiency in LIGIII as, surprisingly, so were random gene targeting integration events. In contrast, LIGIII was required for mitochondrial function and this defined the gene's essential activity. Human Ku:LIGIII and Ku:LIGIV (DNA ligase IV) double knockout cell lines, however, demonstrated that LIGIII is required for the enhanced A-NHEJ activity that is observed in Ku-deficient cells. Most unexpectedly, however, the majority of EJing events remained LIGIV-dependent. In conclusion, although human LIGIII has an essential function in mitochondrial maintenance, it is dispensable for most types of nuclear DSB repair, except for the A-NHEJ events that are normally suppressed by Ku. Moreover, we describe that a robust Ku-independent, LIGIV-dependent repair pathway exists in human somatic cells.

  1. DNA damage by carbonyl stress in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L

    2003-01-28

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the {alpha}-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N{sup {epsilon}}-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.

  2. Identification of person and quantification of human DNA recovered from mosquitoes (Culicidae).

    Science.gov (United States)

    Curic, Goran; Hercog, Rajna; Vrselja, Zvonimir; Wagner, Jasenka

    2014-01-01

    Mosquitoes (Culicidae) are widespread insects and can be important in forensic context as a source of human DNA. In order to establish the quantity of human DNA in mosquitoes' gut after different post-feeding interval and for how long after taking a bloodmeal the human donor could be identified, 174 blood-engorged mosquitoes (subfamily Anophelinae and Culicinae) were captured, kept alive and sacrificed at 8h intervals. Human DNA was amplified using forensic PCR kits (Identifiler, MiniFiler, and Quantifiler). A full DNA profiles were obtained from all Culicinae mosquitoes (74/74) up to 48 h and profiling was successful up to 88 h after a bloodmeal. Duration of post-feeding interval had a significant negative effect on the possibility of obtaining a full profile (pmosquitoes are a suitable source of human DNA for forensic STR kits more than three days after a bloodmeal. Human DNA recovered from mosquito can be used for matching purposes and could be useful in revealing spatial and temporal relation of events that took place at the crime scene. Therefore, mosquitoes at the crime scene, dead or alive, could be a valuable piece of forensic evidence.

  3. Development of a traceable molecular hygiene control method (TMHCM) for human DNA content in foods.

    Science.gov (United States)

    Şakalar, Ergün; Ergün, Şeyma Özçirak; Pala, Çiğdem; Akar, Emine; Ataşoğlu, Cengiz

    2017-06-15

    The aim of this study was to develop a molecular technique to determine the level of human originated DNA contamination in unhygienic food products. In the study, four model foods were prepared under both hygienic (H) and non-hygienic (NH) conditions and the human originated microbial loads of these products were determined. DNA was extracted from the model foods and human buccal samples by GIDAGEN Multi-fast DNA isolation kit. A primer specific region of human mitochondrial D-Loop was designed. The level of human DNA contamination in the model foods was determined by real-time PCR. The sensitivity of the technique developed here was 0.00001ng DNA/PCR. In addition, the applicability of the traceable molecular hygiene control method (TMHCM) was tested in 60 food samples from the market. The results of this study demonstrate that DNA based TMHCM can be used to predict to what extent foods meet the human oriented hygienic conditions. Copyright © 2016. Published by Elsevier Ltd.

  4. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency...... was observed for the level of hOGG1-sensitive sites, whereas there was no association with the level of strand breaks. The effect of age on oxidatively damaged DNA in women disappeared in multivariate models, which showed robust positive associations between DNA damage and plasma levels of triglycerides...

  5. Purification of human genomic DNA from whole blood using sodium perchlorate in place of phenol.

    Science.gov (United States)

    Johns, M B; Paulus-Thomas, J E

    1989-08-01

    We have developed a new, rapid method for the extraction of human genomic DNA from whole blood samples. Traditionally, genomic DNA has been extracted from blood by overnight proteinase K digestion of lysed peripheral lymphocytes followed by phenol/chloroform extraction. In addition to being time consuming, the use of phenol involves inherent risks due to the toxic nature of the reagent. Our method for the extraction of DNA from whole blood uses sodium perchlorate and chloroform instead of phenol with a significant time savings realized as well as fewer hazards to the technician. Furthermore, DNA prepared by this new method is an excellent substrate for restriction endonuclease digestion and Southern hybridization analysis.

  6. Human POLD1 modulates cell cycle progression and DNA damage repair

    OpenAIRE

    Song, Jing; Hong, Ping; Liu, Chengeng; Zhang, Yueqi; Wang, Jinling; Wang, Peichang

    2015-01-01

    Background The activity of eukaryotic DNA polymerase delta (Pol δ) plays an essential role in genome stability through its effects on DNA replication and repair. The p125 catalytic subunit of Pol δ is encoded by POLD1 gene in human cells. To clarify biological functions of POLD1, we investigated the effects of POLD1 overexpression or downregulation on cell proliferation, cell cycle progression, DNA synthesis and oxidative DNA damage induced by H2O2. Methods HEK293 cells were transfected with ...

  7. The effect of polyamines on the binding of anti-DNA antibodies from patients with SLE and normal human subjects.

    Science.gov (United States)

    Wang, Xiao; Stearns, Nancy A; Li, Xingfu; Pisetsky, David S

    2014-07-01

    Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus (SLE). To elucidate specificity further, the effect of polyamines on the binding of anti-DNA antibodies from patients with lupus was tested by ELISA to calf thymus (CT) DNA; we also assessed the binding of plasmas of patients and normal human subjects (NHS) to Micrococcus luteus (MC) DNA. As these studies showed, spermine can dose-dependently inhibit SLE anti-DNA binding to CT DNA and can promote dissociation of preformed immune complexes. With MC DNA as antigen, spermine failed to inhibit the NHS anti-DNA binding. Studies using plasmas adsorbed to a CT DNA cellulose affinity indicated that SLE plasmas are mixtures of anti-DNA that differ in inhibition by spermine and binding to conserved and non-conserved determinants. Together, these studies demonstrate that spermine can influence the binding of anti-DNA autoantibodies and may contribute to the antigenicity of DNA.

  8. Fecal collection, ambient preservation, and DNA extraction for PCR amplification of bacterial and human markers from human feces.

    Science.gov (United States)

    Nechvatal, Jordan M; Ram, Jeffrey L; Basson, Marc D; Namprachan, Phanramphoei; Niec, Stephanie R; Badsha, Kawsar Z; Matherly, Larry H; Majumdar, Adhip P N; Kato, Ikuko

    2008-02-01

    Feces contain intestinal bacteria and exfoliated epithelial cells that may provide useful information concerning gastrointestinal tract health. Intestinal bacteria that synthesize or metabolize potential carcinogens and produce anti-tumorigenic products may have relevance to colorectal cancer, the second most common cause of cancer deaths in the USA. To facilitate epidemiological studies relating bacterial and epithelial cell DNA and RNA markers, preservative/extraction methods suitable for self-collection and shipping of fecal samples at room temperature were tested. Purification and PCR amplification of fecal DNA were compared after preservation of stool samples in RNAlater (R) or Paxgene (P), or after drying over silica gel (S) or on Whatman FTA cards (W). Comparisons were made to samples frozen in liquid nitrogen (N2). DNA purification methods included Whatman (accompanying FTA cards), Mo-Bio Fecal (MB), Qiagen Stool (QS), and others. Extraction methods were compared for amount of DNA extracted, DNA amplifiable in a real-time SYBR-Green quantitative PCR format, and the presence of PCR inhibitors. DNA can be extracted after room temperature storage for five days from W, R, S and P, and from N2 frozen samples. High amounts of total DNA and PCR-amplifiable Bacteroides spp. DNA (34%+/-9% of total DNA) with relatively little PCR inhibition were especially obtained with QS extraction applied to R preserved samples (method QS-R). DNA for human reduced folate carrier (SLC19A1) genomic sequence was also detected in 90% of the QS-R extracts. Thus, fecal DNA is well preserved by methods suitable for self-collection that may be useful in future molecular epidemiological studies of intestinal bacteria and human cancer markers.

  9. A human cellular sequence implicated in trk oncogene activation is DNA damage inducible

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishai, R.; Scharf, R.; Sharon, R.; Kapten, I. (Technion-Israel Institute of Technology, Haifa (Israel))

    1990-08-01

    Xeroderma pigmentosum cells, which are deficient in the repair of UV light-induced DNA damage, have been used to clone DNA-damage-inducible transcripts in human cells. The cDNA clone designated pC-5 hybridizes on RNA gel blots to a 1-kilobase transcript, which is moderately abundant in nontreated cells and whose synthesis is enhanced in human cells following UV irradiation or treatment with several other DNA-damaging agents. UV-enhanced transcription of C-5 RNA is transient and occurs at lower fluences and to a greater extent in DNA-repair-deficient than in DNA-repair-proficient cells. Southern blot analysis indicates that the C-5 gene belongs to a multigene family. A cDNA clone containing the complete coding sequence of C-5 was isolated. Sequence analysis revealed that it is homologous to a human cellular sequence encoding the amino-terminal activating sequence of the trk-2h chimeric oncogene. The presence of DNA-damage-responsive sequences at the 5' end of a chimeric oncogene could result in enhanced expression of the oncogene in response to carcinogens.

  10. Possible Role of DNA Polymerase beta in Protecting Human Bronchial Epithelial Cells Against Cytotoxicity of Hydroquinone

    Institute of Scientific and Technical Information of China (English)

    DA-LIN HU; JIAN-PING YANG; DAO-KUI FANG; YAN SHA; XIAO-ZHI TU; ZHI-XIONG ZHUANG; HUAN-WEN TANG; HAI-RONG LIANG; DONG-SHENG TANG; YI-MING LIU; WEI-DONG JI; JIAN-HUI YUAN; YUN HE; ZHENG-YU ZHU

    2007-01-01

    Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. Methods DNA polymerase beta knock-down cell line was established via RNA interference as an experimental group. Normal human bronchial epithelial cells and cells transfected with the empty vector of pEGFP-Cl were used as controls. Cells were treated with different concentrations of hydroquinone (ranged from 10 μmol/L to 120 μmol/L) for 4 hours. MTT assay and Comet assay [single-cell gel electrophoresis (SCGE)] were performed respectively to detect the toxicity of hydroquinone. Results MTT assay showed that DNA polymerase beta knock-down cells treated with different concentrations of hydroquinone had a lower absorbance value at 490 nm than the control cells in a dose-dependant manner. Comet assay revealed that different concentrations of hydroquinone caused more severe DNA damage in DNA polymerase beta knock-down cell line than in control cells and there was no significant difference in the two control groups. Conclusions Hydroquinone has significant toxicity to human bronchial epithelial cells and causes DNA damage. DNA polymerase beta knock-down cell line appears more sensitive to hydroquinone than the control cells. The results suggest that DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone.

  11. Inhibition of RNA Polymerase II Transcription in Human Cells by Synthetic DNA-Binding Ligands

    Science.gov (United States)

    Dickinson, Liliane A.; Gulizia, Richard J.; Trauger, John W.; Baird, Eldon E.; Mosier, Donald E.; Gottesfeld, Joel M.; Dervan, Peter B.

    1998-10-01

    Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole--imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located with RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

  12. [Influence of Storage Temperature and Cryopreservation Conditions on the Extent of Human Sperm DNA Fragmentation].

    Science.gov (United States)

    Simonenko, E Yu; Garmaeva, S B; Yakovenko, S A; Grigorieva, A A; Tverdislov, V A; Mironova, A G; Aprishko, V P

    2016-01-01

    With the direct labeling procedure for detecting DNA fragmentation we explored the influence of the different storage temperature conditions as well as different methods of cryopreservation on the structure of DNA organization in the human sperm. 19 sperm samples obtained from healthy men with normozoospermia (according to the criteria of the World Health Organization) were used for investigation. A significant increase of human sperm DNA-fragmentation was observed after 8 hours of incubation at +39 degrees C (by 76.7%) and at +37 degrees C (by 68.9%). It was found that sperm cooling with the use of a cryoprotectant immediately after thawing did not produce significant differences in the extent of DNA fragmentation, although samples, containing cryoprotectants, showed a sharp increase of DNA fragmentation after 24 hours of incubation, that could suggest cryoprotectant cytotoxicity.

  13. DNA extraction from fresh-frozen and formalin-fixed, paraffin-embedded human brain tissue.

    Science.gov (United States)

    Wang, Jian-Hua; Gouda-Vossos, Amany; Dzamko, Nicolas; Halliday, Glenda; Huang, Yue

    2013-10-01

    Both fresh-frozen and formalin-fixed, paraffin-embedded (FFPE) human brain tissues are invaluable resources for molecular genetic studies of central nervous system diseases, especially neurodegenerative disorders. To identify the optimal method for DNA extraction from human brain tissue, we compared methods on differently-processed tissues. Fragments of LRRK2 and MAPT (257 bp and 483 bp/245 bp) were amplified for evaluation. We found that for FFPE samples, the success rate of DNA extraction was greater when using a commercial kit than a laboratory-based method (successful DNA extraction from 76% versus 33% of samples). PCR amplicon size and storage period were key factors influencing the success rate of DNA extraction from FFPE samples. In the fresh-frozen samples, the DNA extraction success rate was 100% using either a commercial kit (QIAamp DNA Micro) or a laboratory-based method (sample boiling in 0.1 mol/L NaOH, followed by proteinase K digestion, and then DNA extraction using Chelex-100) regardless of PCR amplicon length or tissue storage time. Although the present results demonstrate that PCR-amplifiable genomic DNA can be extracted from both fresh-frozen and FFPE samples, fresh brain tissue is recommended for DNA extraction in future neuropathological studies.

  14. DNA Damage Reduces the Quality, but Not the Quantity of Human Papillomavirus 16 E1 and E2 DNA Replication

    Directory of Open Access Journals (Sweden)

    Molly L. Bristol

    2016-06-01

    Full Text Available Human papillomaviruses (HPVs are causative agents in almost all cervical carcinomas. HPVs are also causative agents in head and neck cancer, the cases of which are increasing rapidly. Viral replication activates the DNA damage response (DDR pathway; associated proteins are recruited to replication foci, and this pathway may serve to allow for viral genome amplification. Likewise, HPV genome double-strand breaks (DSBs could be produced during replication and could lead to linearization and viral integration. Many studies have shown that viral integration into the host genome results in unregulated expression of the viral oncogenes, E6 and E7, promoting HPV-induced carcinogenesis. Previously, we have demonstrated that DNA-damaging agents, such as etoposide, or knocking down viral replication partner proteins, such as topoisomerase II β binding protein I (TopBP1, does not reduce the level of DNA replication. Here, we investigated whether these treatments alter the quality of DNA replication by HPV16 E1 and E2. We confirm that knockdown of TopBP1 or treatment with etoposide does not reduce total levels of E1/E2-mediated DNA replication; however, the quality of replication is significantly reduced. The results demonstrate that E1 and E2 continue to replicate under genomically-stressed conditions and that this replication is mutagenic. This mutagenesis would promote the formation of substrates for integration of the viral genome into that of the host, a hallmark of cervical cancer.

  15. Human longevity and variation in DNA damage response and repair

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike

    2014-01-01

    others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning...... and mitochondrial DNA processes. The study population was 1089 long-lived and 736 middle-aged Danes. A self-contained set-based test of all SNPs displayed association with longevity (P-value=9.9 × 10-5), supporting that the overall pathway could affect longevity. Investigation of the nine sub-processes using...

  16. Linkage of DNA Methylation Quantitative Trait Loci to Human Cancer Risk

    Directory of Open Access Journals (Sweden)

    Holger Heyn

    2014-04-01

    Full Text Available Epigenetic regulation and, in particular, DNA methylation have been linked to the underlying genetic sequence. DNA methylation quantitative trait loci (meQTL have been identified through significant associations between the genetic and epigenetic codes in physiological and pathological contexts. We propose that interrogating the interplay between polymorphic alleles and DNA methylation is a powerful method for improving our interpretation of risk alleles identified in genome-wide association studies that otherwise lack mechanistic explanation. We integrated patient cancer risk genotype data and genome-scale DNA methylation profiles of 3,649 primary human tumors, representing 13 solid cancer types. We provide a comprehensive meQTL catalog containing DNA methylation associations for 21% of interrogated cancer risk polymorphisms. Differentially methylated loci harbor previously reported and as-yet-unidentified cancer genes. We suggest that such regulation at the DNA level can provide a considerable amount of new information about the biology of cancer-risk alleles.

  17. Human PSF concentrates DNA and stimulates duplex capture in DMC1-mediated homologous pairing

    Science.gov (United States)

    Morozumi, Yuichi; Ino, Ryohei; Takaku, Motoki; Hosokawa, Mihoko; Chuma, Shinichiro; Kurumizaka, Hitoshi

    2012-01-01

    PSF is considered to have multiple functions in RNA processing, transcription and DNA repair by mitotic recombination. In the present study, we found that PSF is produced in spermatogonia, spermatocytes and spermatids, suggesting that PSF may also function in meiotic recombination. We tested the effect of PSF on homologous pairing by the meiosis-specific recombinase DMC1, and found that human PSF robustly stimulated it. PSF synergistically enhanced the formation of a synaptic complex containing DMC1, ssDNA and dsDNA during homologous pairing. The PSF-mediated DMC1 stimulation may be promoted by its DNA aggregation activity, which increases the local concentrations of ssDNA and dsDNA for homologous pairing by DMC1. These results suggested that PSF may function as an activator for the meiosis-specific recombinase DMC1 in higher eukaryotes. PMID:22156371

  18. Seasonal variations of DNA damage in human lymphocytes: Correlation with different environmental variables

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisa.giovannelli@unifi.it; Pitozzi, Vanessa [Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Florence (Italy); Boddi, Vieri [Department of Public Health, University of Florence, Florence (Italy); Dolara, Piero [Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Viale Pieraccini 6, 50139 Florence (Italy)

    2006-01-29

    Several types of DNA damage, including DNA breaks and DNA base oxidation, display a seasonal trend. In the present work, a sample of 79 healthy subjects living in the city of Florence, Italy, was used to analyse this effect. Three possible causative agents were taken into consideration: solar radiation, air temperature and air ozone level. DNA damage was measured in isolated human lymphocytes at different times during the year and the observed damage was correlated with the levels of these three agents in the days preceding blood sampling. Three time windows were chosen: 3, 7 and 30 days before blood sampling. DNA strand breaks and the oxidized purinic bases cleaved by the formamidopyrimidine glycosylase (FPG sites) were measured by means of the comet assay. The results of multivariate regression analysis showed a positive correlation between lymphocyte DNA damage and air temperature, and a less strong correlation with global solar radiation and air ozone levels.

  19. Preliminary perspectives on DNA collection in anti-human trafficking efforts.

    Science.gov (United States)

    Katsanis, Sara H; Kim, Joyce; Minear, Mollie A; Chandrasekharan, Subhashini; Wagner, Jennifer K

    2014-01-01

    Forensic DNA methodologies have potential applications in the investigation of human trafficking cases. DNA and relationship testing may be useful for confirmation of biological relationship claims in immigration, identification of trafficked individuals who are missing persons, and family reunification of displaced individuals after mass disasters and conflicts. As these applications rely on the collection of DNA from non-criminals and potentially vulnerable individuals, questions arise as to how to address the ethical challenges of collection, security, and privacy of collected samples and DNA profiles. We administered a survey targeted to victims' advocates to gain preliminary understanding of perspectives regarding human trafficking definitions, DNA and sex workers, and perceived trust of authorities potentially involved in DNA collection. We asked respondents to consider the use of DNA for investigating adoption fraud, sex trafficking, and post-conflict child soldier cases. We found some key differences in perspectives on defining what qualifies as "trafficking." When we varied terminology between "sex worker" and "sex trafficking victim" we detected differences in perception on which authorities can be trusted. Respondents were supportive of the hypothetical models proposed to collect DNA. Most were favorable of DNA specimens being controlled by an authority outside of law enforcement. Participants voiced concerns focused on privacy, misuse of DNA samples and data, unintentional harms, data security, and infrastructure. These preliminary data indicate that while there is perceived value in programs to use DNA for investigating cases of human trafficking, these programs may need to consider levels of trust in authorities as their logistics are developed and implemented.

  20. SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV.

    Science.gov (United States)

    Greco, George E; Matsumoto, Yoshihiro; Brooks, Rhys C; Lu, Zhengfei; Lieber, Michael R; Tomkinson, Alan E

    2016-07-01

    DNA ligases are attractive therapeutics because of their involvement in completing the repair of almost all types of DNA damage. A series of DNA ligase inhibitors with differing selectivity for the three human DNA ligases were identified using a structure-based approach with one of these inhibitors being used to inhibit abnormal DNA ligase IIIα-dependent repair of DNA double-strand breaks (DSB)s in breast cancer, neuroblastoma and leukemia cell lines. Raghavan and colleagues reported the characterization of a derivative of one of the previously identified DNA ligase inhibitors, which they called SCR7 (designated SCR7-R in our experiments using SCR7). SCR7 appeared to show increased selectivity for DNA ligase IV, inhibit the repair of DSBs by the DNA ligase IV-dependent non-homologous end-joining (NHEJ) pathway, reduce tumor growth, and increase the efficacy of DSB-inducing therapeutic modalities in mouse xenografts. In attempting to synthesize SCR7, we encountered problems with the synthesis procedures and discovered discrepancies in its reported structure. We determined the structure of a sample of SCR7 and a related compound, SCR7-G, that is the major product generated by the published synthesis procedure for SCR7. We also found that SCR7-G has the same structure as the compound (SCR7-X) available from a commercial vendor (XcessBio). The various SCR7 preparations had similar activity in DNA ligation assay assays, exhibiting greater activity against DNA ligases I and III than DNA ligase IV. Furthermore, SCR7-R failed to inhibit DNA ligase IV-dependent V(D)J recombination in a cell-based assay. Based on our results, we conclude that SCR7 and the SCR7 derivatives are neither selective nor potent inhibitors of DNA ligase IV.

  1. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    Science.gov (United States)

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-09-05

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  2. Efficient cDNA cloning by direct phenotypic correction of a mutant human cell line (HPRT-) using an Epstein-Barr virus derived cDNA expression vector.

    NARCIS (Netherlands)

    P.B.G.M. Belt; W. Jongmans; J. de Wit (Jan); J.H.J. Hoeijmakers (Jan); C.M.P. Backendorf (Claude); P. van de Putte (Pieter)

    1991-01-01

    textabstractHuman cells are, in general, poor recipients of foreign DNA, which has severely hampered the cloning of genes by direct phenotypic correction of deficient human cell lines after DNA mediated gene transfer. In this communication a methodology is presented which largely circumvents this pr

  3. Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis

    OpenAIRE

    Saito, Yoshimasa; Kanai, Yae; Sakamoto, Michiie; Saito, Hidetsugu; Ishii, Hiromasa; Hirohashi, Setsuo

    2002-01-01

    DNA hypomethylation on pericentromeric satellite regions is an early and frequent event associated with heterochromatin instability during human hepatocarcinogenesis. A DNA methyltransferase, DNMT3b, is required for methylation on pericentromeric satellite regions during mouse development. To clarify the molecular mechanism underlying DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis, we examined mutations of the DNMT3b gene and mRNA expression levels ...

  4. Tamoxifen-DNA adduct formation in monkey and human reproductive organs.

    Science.gov (United States)

    Hernandez-Ramon, Elena E; Sandoval, Nicole A; John, Kaarthik; Cline, J Mark; Wood, Charles E; Woodward, Ruth A; Poirier, Miriam C

    2014-05-01

    The estrogen analog tamoxifen (TAM), used for adjuvant therapy of breast cancer, induces endometrial and uterine tumors in breast cancer patients. Proliferation stimulus of the uterine endometrium is likely involved in tumor induction, but genotoxicity may also play a role. Formation of TAM-DNA adducts in human tissues has been reported but remains controversial. To address this issue, we examined TAM-DNA adducts in uteri from two species of monkeys, Erythrocebus patas (patas) and Macaca fascicularis (macaque), and in human endometrium and myometrium. Monkeys were given 3-4 months of chronic TAM dosing scaled to be equivalent to the daily human dose. In the uteri, livers and brains from the patas (n = 3), and endometrium from the macaques (n = 4), TAM-DNA adducts were measurable by TAM-DNA chemiluminescence immunoassay. Average TAM-DNA adduct values for the patas uteri (23 adducts/10(8) nucleotides) were similar to those found in endometrium of the macaques (19 adducts/10(8) nucleotides). Endometrium of macaques exposed to both TAM and low-dose estradiol (n = 5) averaged 34 adducts/10(8) nucleotides. To examine TAM-DNA persistence in the patas, females (n = 3) were exposed to TAM for 3 months and to no drug for an additional month, resulting in low or non-detectable TAM-DNA in livers and uteri. Human endometrial and myometrial samples from women receiving (n = 8) and not receiving (n = 8) TAM therapy were also evaluated. Women receiving TAM therapy averaged 10.3 TAM-DNA adducts/10(8) nucleotides, whereas unexposed women showed no detectable TAM-DNA. The data indicate that genotoxicity, in addition to estrogen agonist effects, may contribute to TAM-induced human endometrial cancer.

  5. Testing the feasibility of DNA typing for human identification by PCR and an oligonucleotide ligation assay

    Energy Technology Data Exchange (ETDEWEB)

    Delahunty, C.; Ankener, W.; Deng, Qiang [Univ. of Washington, Seattle, WA (United States)] [and others

    1996-06-01

    The use of DNA typing in human genome analysis is increasing and finding widespread application in the area of forensic and paternity testing. In this report, we explore the feasibility of typing single nucleotide polymorphisms (SNPs) by using a semiautomated method for analyzing human DNA samples. In this approach, PCR is used to amplify segments of human DNA containing a common SNP. Allelic nucleotides in the amplified product are then typed by a calorimetric implementation of the oligonucleotide ligation assay (OLA). The results of the combined assay, PCR/OLA, are read directly by a spectrophotometer; the absorbances are compiled and the genotypes are automatically determined. A panel of 20 markers has been developed for DNA typing and has been tested using a sample panel from the CEPH pedigrees (CEPH parents). The results of this typing, as well as the potential to apply this method to larger populations, are discussed. 62 refs., 2 figs., 4 tabs.

  6. [Correlation between PMI and DNA degradation of costicartilage and dental pulp cells in human being].

    Science.gov (United States)

    Long, Ren; Wang, Wei-ping; Xiong, Ping

    2005-08-01

    To probe the correlation between the postmortem interval (PMI) and the DNA degradation of costicartilage and dental pulp cells in human being after death, and to seek a new method for estimating PMI. The image cytometry was used to measure the DNA degradation under different ambient temperatures (30-35 degrees C, 15-20 degrees C) in 0-15 days after death. The average DNA content of two kinds of tissue was degradated with the prolongation of PMI. But there was a plateau period of 0-4 days for dental pulp cells of human being in 15-20 degrees C. There was a high negative correlativity PPMI. PMI could be estimated accurately according to the DNA degradation of costicartilage and dental pulp cells in human being after death.

  7. High Throughput Measurement of Extracellular DNA Release and Quantitative NET Formation in Human Neutrophils In Vitro.

    Science.gov (United States)

    Sil, Payel; Yoo, Dae-Goon; Floyd, Madison; Gingerich, Aaron; Rada, Balazs

    2016-06-18

    Neutrophil granulocytes are the most abundant leukocytes in the human blood. Neutrophils are the first to arrive at the site of infection. Neutrophils developed several antimicrobial mechanisms including phagocytosis, degranulation and formation of neutrophil extracellular traps (NETs). NETs consist of a DNA scaffold decorated with histones and several granule markers including myeloperoxidase (MPO) and human neutrophil elastase (HNE). NET release is an active process involving characteristic morphological changes of neutrophils leading to expulsion of their DNA into the extracellular space. NETs are essential to fight microbes, but uncontrolled release of NETs has been associated with several disorders. To learn more about the clinical relevance and the mechanism of NET formation, there is a need to have reliable tools capable of NET quantitation. Here three methods are presented that can assess NET release from human neutrophils in vitro. The first one is a high throughput assay to measure extracellular DNA release from human neutrophils using a membrane impermeable DNA-binding dye. In addition, two other methods are described capable of quantitating NET formation by measuring levels of NET-specific MPO-DNA and HNE-DNA complexes. These microplate-based methods in combination provide great tools to efficiently study the mechanism and regulation of NET formation of human neutrophils.

  8. Human mitochondrial DNA complete amplification and sequencing: a new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification.

    Science.gov (United States)

    Ramos, Amanda; Santos, Cristina; Alvarez, Luis; Nogués, Ramon; Aluja, Maria Pilar

    2009-05-01

    To date, there are no published primers to amplify the entire mitochondrial DNA (mtDNA) that completely prevent the amplification of nuclear DNA (nDNA) sequences of mitochondrial origin. The main goal of this work was to design, validate and describe a set of primers, to specifically amplify and sequence the complete human mtDNA, allowing the correct interpretation of mtDNA heteroplasmy in healthy and pathological samples. Validation was performed using two different approaches: (i) Basic Local Alignment Search Tool and (ii) amplification using isolated nDNA obtained from sperm cells by differential lyses. During the validation process, two mtDNA regions, with high similarity with nDNA, represent the major problematic areas for primer design. One of these could represent a non-published nuclear DNA sequence of mitochondrial origin. For two of the initially designed fragments, the amplification results reveal PCR artifacts that can be attributed to the poor quality of the DNA. After the validation, nine overlapping primer pairs to perform mtDNA amplification and 22 additional internal primers for mtDNA sequencing were obtained. These primers could be a useful tool in future projects that deal with mtDNA complete sequencing and heteroplasmy detection, since they represent a set of primers that have been tested for the non-amplification of nDNA.

  9. A high volume extraction and purification method for recovering DNA from human bone.

    Science.gov (United States)

    Marshall, Pamela L; Stoljarova, Monika; Schmedes, Sarah E; King, Jonathan L; Budowle, Bruce

    2014-09-01

    DNA recovery, purity and overall extraction efficiency of a protocol employing a novel silica-based column, Hi-Flow(®) (Generon Ltd., Maidenhead, UK), were compared with that of a standard organic DNA extraction methodology. The quantities of DNA recovered by each method were compared by real-time PCR and quality of DNA by STR typing using the PowerPlex(®) ESI 17 Pro System (Promega Corporation, Madison, WI) on DNA from 10 human bone samples. Overall, the Hi-Flow method recovered comparable quantities of DNA ranging from 0.8ng±1 to 900ng±159 of DNA compared with the organic method ranging from 0.5ng±0.9 to 855ng±156 of DNA. Complete profiles (17/17 loci tested) were obtained for at least one of three replicates for 3/10 samples using the Hi-Flow method and from 2/10 samples with the organic method. All remaining bone samples yielded partial profiles for all replicates with both methods. Compared with a standard organic DNA isolation method, the results indicated that the Hi-Flow method provided equal or improved recovery and quality of DNA without the harmful effects of organic extraction. Moreover, larger extraction volumes (up to 20mL) can be employed with the Hi-Flow method which enabled more bone sample to be extracted at one time. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Thermodynamics of Damaged DNA Binding and Catalysis by Human AP Endonuclease 1.

    Science.gov (United States)

    Miroshnikova, A D; Kuznetsova, A A; Kuznetsov, N A; Fedorova, O S

    2016-01-01

    Apurinic/apyrimidinic (AP) endonucleases play an important role in DNA repair and initiation of AP site elimination. One of the most topical problems in the field of DNA repair is to understand the mechanism of the enzymatic process involving the human enzyme APE1 that provides recognition of AP sites and efficient cleavage of the 5'-phosphodiester bond. In this study, a thermodynamic analysis of the interaction between APE1 and a DNA substrate containing a stable AP site analog lacking the C1' hydroxyl group (F site) was performed. Based on stopped-flow kinetic data at different temperatures, the steps of DNA binding, catalysis, and DNA product release were characterized. The changes in the standard Gibbs energy, enthalpy, and entropy of sequential specific steps of the repair process were determined. The thermodynamic analysis of the data suggests that the initial step of the DNA substrate binding includes formation of non-specific contacts between the enzyme binding surface and DNA, as well as insertion of the amino acid residues Arg177 and Met270 into the duplex, which results in the removal of "crystalline" water molecules from DNA grooves. The second binding step involves the F site flipping-out process and formation of specific contacts between the enzyme active site and the everted 5'-phosphate-2'-deoxyribose residue. It was shown that non-specific interactions between the binding surfaces of the enzyme and DNA provide the main contribution into the thermodynamic parameters of the DNA product release step.

  11. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Science.gov (United States)

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  12. DNA Catenation Maintains Structure of Human Metaphase Chromosomes

    DEFF Research Database (Denmark)

    L. V. Bauer, David; Marie, Rodolphe; Rasmussen, Kristian Hagsted

    2012-01-01

    Mitotic chromosome structure is pivotal to cell division but difficult to observe in fine detail using conventional methods. DNA catenation has been implicated in both sister chromatid cohesion and chromosome condensation, but has never been observed directly. We have used a lab-on-a-chip...

  13. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project.

    OpenAIRE

    Rakyan, Vardhman K.; Thomas Hildmann; Novik, Karen L; Jörn Lewin; Jörg Tost; Antony V Cox; T Dan Andrews; Howe, Kevin L.; Thomas Otto; Alexander Olek; Judith Fischer; Gut, Ivo G.; Kurt Berlin; Stephan Beck

    2004-01-01

    The Human Epigenome Project aims to identify, catalogue, and interpret genome-wide DNA methylation phenomena. Occurring naturally on cytosine bases at cytosine–guanine dinucleotides, DNA methylation is intimately involved in diverse biological processes and the aetiology of many diseases. Differentially methylated cytosines give rise to distinct profiles, thought to be specific for gene activity, tissue type, and disease state. The identification of such methylation variable positions will si...

  14. Aspects of Ancient Mitochondrial DNA Analysis in Different Populations for Understanding Human Evolution

    Directory of Open Access Journals (Sweden)

    D.V. Nesheva

    2014-06-01

    Full Text Available The evolution of modern humans is a long and difficult process which started from their first appearance and continues to the present day. The study of the genetic origin of populations can help to determine population kinship and to better understand the gradual changes of the gene pool in space and time. Mitochondrial DNA (mtDNA is a proper tool for the determination of the origin of populations due to its high evolutionary importance. Ancient mitochondrial DNA retrieved from museum specimens, archaeological finds and fossil remains can provide direct evidence for population origins and migration processes. Despite the problems with contaminations and authenticity of ancient mitochondrial DNA, there is a developed set of criteria and platforms for obtaining authentic ancient DNA. During the last two decades, the application of different methods and techniques for analysis of ancient mitochondrial DNA gave promising results. Still, the literature is relatively poor with information for the origin of human populations. Using comprehensive phylogeographic and population analyses we can observe the development and formation of the contemporary populations. The aim of this study was to shed light on human migratory processes and the formation of populations based on available ancient mtDNA data.

  15. Extraction of DNA from human embryos after long-term preservation in formalin and Bouin's solutions.

    Science.gov (United States)

    Nagai, Momoko; Minegishi, Katsura; Komada, Munekazu; Tsuchiya, Maiko; Kameda, Tomomi; Yamada, Shigehito

    2016-05-01

    The "Kyoto Collection of Human Embryos" at Kyoto University was begun in 1961. Although morphological analyses of samples in the Kyoto Collection have been performed, these embryos have been considered difficult to genetically analyze because they have been preserved in formalin or Bouin's solution for 20-50 years. Owing to the recent advances in molecular biology, it has become possible to extract DNA from long-term fixed tissues. The purpose of this study was to extract DNA from wet preparations of human embryo samples after long-term preservation in fixing solution. We optimized the DNA extraction protocol to be suitable for tissues that have been damaged by long-term fixation, including DNA-protein crosslinking damage. Diluting Li2 CO3 with 70% ethanol effectively removed picric acid from samples fixed in Bouin's solution. Additionally, 20.0 mg/mL proteinase was valuable to lyse the long-term fixed samples. The extracted DNA was checked with PCR amplification using several sets of primers and sequence analysis. The PCR products included at least 295- and 838-bp amplicons. These results show that the extracted DNA is applicable for genetic analyses, and indicate that old embryos in the Kyoto Collection should be made available for future studies. The protocol described in this study can successfully extract DNA from old specimens and, with improvements, should be applicable in research aiming to understand the molecular mechanisms of human congenital anomalies. © 2015 Japanese Teratology Society.

  16. Evaluation of methods for the extraction and purification of DNA from the human microbiome.

    Directory of Open Access Journals (Sweden)

    Sanqing Yuan

    Full Text Available BACKGROUND: DNA extraction is an essential step in all cultivation-independent approaches to characterize microbial diversity, including that associated with the human body. A fundamental challenge in using these approaches has been to isolate DNA that is representative of the microbial community sampled. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we statistically evaluated six commonly used DNA extraction procedures using eleven human-associated bacterial species and a mock community that contained equal numbers of those eleven species. These methods were compared on the basis of DNA yield, DNA shearing, reproducibility, and most importantly representation of microbial diversity. The analysis of 16S rRNA gene sequences from a mock community showed that the observed species abundances were significantly different from the expected species abundances for all six DNA extraction methods used. CONCLUSIONS/SIGNIFICANCE: Protocols that included bead beating and/or mutanolysin produced significantly better bacterial community structure representation than methods without both of them. The reproducibility of all six methods was similar, and results from different experimenters and different times were in good agreement. Based on the evaluations done it appears that DNA extraction procedures for bacterial community analysis of human associated samples should include bead beating and/or mutanolysin to effectively lyse cells.

  17. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6.

    NARCIS (Netherlands)

    M.H.M. Koken (Marcel); P. Reynolds (Paul); I. Jaspers-Dekker (Iris); L. Prakash; S. Prakash; D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1991-01-01

    textabstractThe RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme (E2) that is required for DNA repair, damage-induced mutagenesis, and sporulation. We have cloned the two human RAD6 homologs, designated HHR6A and HHR6B. The two 152-amino acid human proteins share 95% sequ

  18. (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes

    NARCIS (Netherlands)

    Wenczl, E.; Schans, G.P. van der; Roza, L.; Kolb, R.M.; Timmerman, A.J.; Smit, N.P.M.; Pavel, S.; Schothorst, A.A.

    1998-01-01

    The question of whether melanins are photoprotecting and/or photosensitizing in human skin cells continues to be debated. To evaluate the role of melanin upon UVA irradiation, DNA single-strand breaks (ssb) were measured in human melanocytes differing only in the amount of pigment produced by

  19. Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease

    NARCIS (Netherlands)

    Jiang, Hong; Schiffer, Eric; Song, Zhangfa; Wang, Jianwei; Zürbig, Petra; Thedieck, Kathrin; Moes, Suzette; Bantel, Heike; Saal, Nadja; Jantos, Justyna; Brecht, Meiken; Jenö, Paul; Hall, Michael N; Hager, Klaus; Manns, Michael P; Hecker, Hartmut; Ganser, Arnold; Döhner, Konstanze; Bartke, Andrzej; Meissner, Christoph; Mischak, Harald; Ju, Zhenyu; Rudolph, K Lenhard

    2008-01-01

    Telomere dysfunction limits the proliferative capacity of human cells by activation of DNA damage responses, inducing senescence or apoptosis. In humans, telomere shortening occurs in the vast majority of tissues during aging, and telomere shortening is accelerated in chronic diseases that increase

  20. (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes

    NARCIS (Netherlands)

    Wenczl, E.; Schans, G.P. van der; Roza, L.; Kolb, R.M.; Timmerman, A.J.; Smit, N.P.M.; Pavel, S.; Schothorst, A.A.

    1998-01-01

    The question of whether melanins are photoprotecting and/or photosensitizing in human skin cells continues to be debated. To evaluate the role of melanin upon UVA irradiation, DNA single-strand breaks (ssb) were measured in human melanocytes differing only in the amount of pigment produced by cultur

  1. Inhibition of human DNA ligase I activity by zinc and cadmium and the fidelity of ligation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shu Wei; Becker, F.F. [Univ. of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Chan, J.Y.H. [Chinese Univ. of Hong Kong, New Territories (Hong Kong)

    1996-12-31

    Heavy metals, including zinc (Zn) and cadmium (Cd), are potentially important genotoxic agents in our environment. Here we report that human DNA ligase I, the major form of the enzyme in replicative cells, is a target for Zn and Cd ions. ZnCl{sub 2} at 0.8 mM caused complete inhibition of DNA ligase I activity, whereas only 0.04 mM CdCl{sub 2} was required to achieve a similar effect. Both metals affected all three steps of the reaction, namely, the formation of ligase-AMP intermediate, the transfer of the AMP to DNA and the ligation reaction that succeeds the formation of the AMP-DNA complex. Unlike F-ara-ATP and the natural protein inhibitor of DNA ligase-I, these metals may affect different domains of the enzyme. Moreover, these metal ions did not increase that rate of misligation of F-ara-A-modified DNA or mismatched DNA substrates, but considerable misligation was observed for the T:C mispairing. These data support the notion of high fidelity of the human DNA ligases and that the major action of these metal ions on the enzyme is their inhibitory function. 31 refs., 6 figs.

  2. Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases.

    Directory of Open Access Journals (Sweden)

    Gavin Hudson

    2014-05-01

    Full Text Available Mitochondrial DNA (mtDNA is highly polymorphic at the population level, and specific mtDNA variants affect mitochondrial function. With emerging evidence that mitochondrial mechanisms are central to common human diseases, it is plausible that mtDNA variants contribute to the "missing heritability" of several complex traits. Given the central role of mtDNA genes in oxidative phosphorylation, the same genetic variants would be expected to alter the risk of developing several different disorders, but this has not been shown to date. Here we studied 38,638 individuals with 11 major diseases, and 17,483 healthy controls. Imputing missing variants from 7,729 complete mitochondrial genomes, we captured 40.41% of European mtDNA variation. We show that mtDNA variants modifying the risk of developing one disease also modify the risk of developing other diseases, thus providing independent replication of a disease association in different case and control cohorts. High-risk alleles were more common than protective alleles, indicating that mtDNA is not at equilibrium in the human population, and that recent mutations interact with nuclear loci to modify the risk of developing multiple common diseases.

  3. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure.

    Science.gov (United States)

    Focke, Frauke; Schuermann, David; Kuster, Niels; Schär, Primo

    2010-01-01

    Extremely low frequency electromagnetic fields (ELF-EMFs) were reported to affect DNA integrity in human cells with evidence based on the Comet assay. These findings were heavily debated for two main reasons; the lack of reproducibility, and the absence of a plausible scientific rationale for how EMFs could damage DNA. Starting out from a replication of the relevant experiments, we performed this study to clarify the existence and explore origin and nature of ELF-EMF induced DNA effects. Our data confirm that intermittent (but not continuous) exposure of human primary fibroblasts to a 50 Hz EMF at a flux density of 1 mT induces a slight but significant increase of DNA fragmentation in the Comet assay, and we provide first evidence for this to be caused by the magnetic rather than the electric field. Moreover, we show that EMF-induced responses in the Comet assay are dependent on cell proliferation, suggesting that processes of DNA replication rather than the DNA itself may be affected. Consistently, the Comet effects correlated with a reduction of actively replicating cells and a concomitant increase of apoptotic cells in exposed cultures, whereas a combined Fpg-Comet test failed to produce evidence for a notable contribution of oxidative DNA base damage. Hence, ELF-EMF induced effects in the Comet assay are reproducible under specific conditions and can be explained by minor disturbances in S-phase processes and occasional triggering of apoptosis rather than by the generation of DNA damage.

  4. DNA Methylation Profiling Reveals Correlation of Differential Methylation Patterns with Gene Expression in Human Epilepsy.

    Science.gov (United States)

    Wang, Liang; Fu, Xinwei; Peng, Xi; Xiao, Zheng; Li, Zhonggui; Chen, Guojun; Wang, Xuefeng

    2016-05-01

    DNA methylation plays important roles in regulating gene expression and has been reported to be related with epilepsy. This study aimed to define differential DNA methylation patterns in drug-refractory epilepsy patients and to investigate the role of DNA methylation in human epilepsy. We performed DNA methylation profiling in brain tissues from epileptic and control patients via methylated-cytosine DNA immunoprecipitation microarray chip. Differentially methylated loci were validated by bisulfite sequencing PCR, and the messenger RNA (mRNA) levels of candidate genes were evaluated by reverse transcriptase PCR. We found 224 genes that showed differential DNA methylation between epileptic patients and controls. Among the seven candidate genes, three genes (TUBB2B, ATPGD1, and HTR6) showed relative transcriptional regulation by DNA methylation. TUBB2B and ATPGD1 exhibited hypermethylation and decreased mRNA levels, whereas HTR6 displayed hypomethylation and increased mRNA levels in the epileptic samples. Our findings suggest that certain genes become differentially regulated by DNA methylation in human epilepsy.

  5. Inhibition of human DNA ligase I activity by zinc and cadmium and the fidelity of ligation.

    Science.gov (United States)

    Yang, S W; Becker, F F; Chan, J Y

    1996-01-01

    Heavy metals, including zinc (Zn) and cadmium (Cd), are potentially important genotoxic agents in our environment. Here we report that human DNA ligase I, the major form of the enzyme in replicative cells, is a target for Zn and Cd ions. ZnCl2 at 0.8 mM caused complete inhibition of DNA ligase I activity, whereas only 0.04 mM CdCl2 was required to achieve a similar effect. Both metals affected all three steps of the reaction, namely, the formation of ligase-AMP intermediate, the transfer of the AMP to DNA and the ligation reaction that succeeds the formation of the AMP-DNA complex. Unlike F-ara-ATP and the natural protein inhibitor of DNA ligase-I, these metals may affect different domains of the enzyme. Moreover, these metal ions did not increase the rate of misligation of F-ara-A-modified DNA or mismatched DNA substrates, but considerable misligation was observed for the T:C mispairing. These data support the notion of high fidelity of the human DNA ligases and that the major action of these metal ions on the enzyme is their inhibitory function.

  6. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure

    Energy Technology Data Exchange (ETDEWEB)

    Focke, Frauke; Schuermann, David [Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel (Switzerland); Kuster, Niels [IT' IS Foundation, Zeughausstrasse 43, CH-8004 Zurich (Switzerland); Schaer, Primo, E-mail: primo.schaer@unibas.ch [Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel (Switzerland)

    2010-01-05

    Extremely low frequency electromagnetic fields (ELF-EMFs) were reported to affect DNA integrity in human cells with evidence based on the Comet assay. These findings were heavily debated for two main reasons; the lack of reproducibility, and the absence of a plausible scientific rationale for how EMFs could damage DNA. Starting out from a replication of the relevant experiments, we performed this study to clarify the existence and explore origin and nature of ELF-EMF induced DNA effects. Our data confirm that intermittent (but not continuous) exposure of human primary fibroblasts to a 50 Hz EMF at a flux density of 1 mT induces a slight but significant increase of DNA fragmentation in the Comet assay, and we provide first evidence for this to be caused by the magnetic rather than the electric field. Moreover, we show that EMF-induced responses in the Comet assay are dependent on cell proliferation, suggesting that processes of DNA replication rather than the DNA itself may be affected. Consistently, the Comet effects correlated with a reduction of actively replicating cells and a concomitant increase of apoptotic cells in exposed cultures, whereas a combined Fpg-Comet test failed to produce evidence for a notable contribution of oxidative DNA base damage. Hence, ELF-EMF induced effects in the Comet assay are reproducible under specific conditions and can be explained by minor disturbances in S-phase processes and occasional triggering of apoptosis rather than by the generation of DNA damage.

  7. Quantitative evaluation of p53 as a new indicator of DNA damage in human spermatozoa

    Directory of Open Access Journals (Sweden)

    Salvatore Raimondo

    2014-01-01

    The aim of this study was to assess if a p53 ELISA assay could be a new indicator of DNA damage in human spermatozoa. Materials and Methods: 103 human semen samples were evaluated using both Acridine Orange test and p53 ELISA and results were compared. Results: A clear correlation between the values measured by two methods was obtained. Conclusions: If this hypothesis will be confirmed by further studies, the p53 ELISA assay could become a new and more precise indicator of DNA damage in human spermatozoa.

  8. Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1 in human type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Yoon Kun-Ho

    2002-04-01

    Full Text Available Abstract Background It has become increasingly clear that β-cell failure plays a critical role in the pathogenesis of type 2 diabetes. Free-radical mediated β-cell damage has been intensively studied in type 1 diabetes, but not in human type 2 diabetes. Therefore, we studied the protein expression of the DNA repair enzyme Ogg1 in pancreases from type 2 diabetics. Ogg1 was studied because it is the major enzyme involved in repairing 7,8-dihydro-8-oxoguanosine DNA adducts, a lesion previously observed in a rat model of type 2 diabetes. Moreover, in a gene expression screen, Ogg1 was over-expressed in islets from a human type 2 diabetic. Methods Immunofluorescent staining of Ogg1 was performed on pancreatic specimens from healthy controls and patients with diabetes for 2–23 years. The intensity and islet area stained for Ogg1 was evaluated by semi-quantitative scoring. Results Both the intensity and the area of islet Ogg1 staining were significantly increased in islets from the type 2 diabetic subjects compared to the healthy controls. A correlation between increased Ogg1 fluorescent staining intensity and duration of diabetes was also found. Most of the staining observed was cytoplasmic, suggesting that mitochondrial Ogg1 accounts primarily for the increased Ogg1 expression. Conclusion We conclude that oxidative stress related DNA damage may be a novel important factor in the pathogenesis of human type 2 diabetes. An increase of Ogg1 in islet cell mitochondria is consistent with a model in which hyperglycemia and consequent increased β-cell oxidative metabolism lead to DNA damage and the induction of Ogg1 expression.

  9. The finished DNA sequence of human chromosome 12.

    Science.gov (United States)

    Scherer, Steven E; Muzny, Donna M; Buhay, Christian J; Chen, Rui; Cree, Andrew; Ding, Yan; Dugan-Rocha, Shannon; Gill, Rachel; Gunaratne, Preethi; Harris, R Alan; Hawes, Alicia C; Hernandez, Judith; Hodgson, Anne V; Hume, Jennifer; Jackson, Andrew; Khan, Ziad Mohid; Kovar-Smith, Christie; Lewis, Lora R; Lozado, Ryan J; Metzker, Michael L; Milosavljevic, Aleksandar; Miner, George R; Montgomery, Kate T; Morgan, Margaret B; Nazareth, Lynne V; Scott, Graham; Sodergren, Erica; Song, Xing-Zhi; Steffen, David; Lovering, Ruth C; Wheeler, David A; Worley, Kim C; Yuan, Yi; Zhang, Zhengdong; Adams, Charles Q; Ansari-Lari, M Ali; Ayele, Mulu; Brown, Mary J; Chen, Guan; Chen, Zhijian; Clerc-Blankenburg, Kerstin P; Davis, Clay; Delgado, Oliver; Dinh, Huyen H; Draper, Heather; Gonzalez-Garay, Manuel L; Havlak, Paul; Jackson, Laronda R; Jacob, Leni S; Kelly, Susan H; Li, Li; Li, Zhangwan; Liu, Jing; Liu, Wen; Lu, Jing; Maheshwari, Manjula; Nguyen, Bao-Viet; Okwuonu, Geoffrey O; Pasternak, Shiran; Perez, Lesette M; Plopper, Farah J H; Santibanez, Jireh; Shen, Hua; Tabor, Paul E; Verduzco, Daniel; Waldron, Lenee; Wang, Qiaoyan; Williams, Gabrielle A; Zhang, Jingkun; Zhou, Jianling; Allen, Carlana C; Amin, Anita G; Anyalebechi, Vivian; Bailey, Michael; Barbaria, Joseph A; Bimage, Kesha E; Bryant, Nathaniel P; Burch, Paula E; Burkett, Carrie E; Burrell, Kevin L; Calderon, Eliana; Cardenas, Veronica; Carter, Kelvin; Casias, Kristal; Cavazos, Iracema; Cavazos, Sandra R; Ceasar, Heather; Chacko, Joseph; Chan, Sheryl N; Chavez, Dean; Christopoulos, Constantine; Chu, Joseph; Cockrell, Raynard; Cox, Caroline D; Dang, Michelle; Dathorne, Stephanie R; David, Robert; Davis, Candi Mon'Et; Davy-Carroll, Latarsha; Deshazo, Denise R; Donlin, Jeremy E; D'Souza, Lisa; Eaves, Kristy A; Egan, Amy; Emery-Cohen, Alexandra J; Escotto, Michael; Flagg, Nicole; Forbes, Lisa D; Gabisi, Abdul M; Garza, Melissa; Hamilton, Cerissa; Henderson, Nicholas; Hernandez, Omar; Hines, Sandra; Hogues, Marilyn E; Huang, Mei; Idlebird, DeVincent G; Johnson, Rudy; Jolivet, Angela; Jones, Sally; Kagan, Ryan; King, Laquisha M; Leal, Belita; Lebow, Heather; Lee, Sandra; LeVan, Jaclyn M; Lewis, Lakeshia C; London, Pamela; Lorensuhewa, Lorna M; Loulseged, Hermela; Lovett, Demetria A; Lucier, Alice; Lucier, Raymond L; Ma, Jie; Madu, Renita C; Mapua, Patricia; Martindale, Ashley D; Martinez, Evangelina; Massey, Elizabeth; Mawhiney, Samantha; Meador, Michael G; Mendez, Sylvia; Mercado, Christian; Mercado, Iracema C; Merritt, Christina E; Miner, Zachary L; Minja, Emmanuel; Mitchell, Teresa; Mohabbat, Farida; Mohabbat, Khatera; Montgomery, Baize; Moore, Niki; Morris, Sidney; Munidasa, Mala; Ngo, Robin N; Nguyen, Ngoc B; Nickerson, Elizabeth; Nwaokelemeh, Ogechi O; Nwokenkwo, Stanley; Obregon, Melissa; Oguh, Maryann; Oragunye, Njideka; Oviedo, Rodolfo J; Parish, Bridgette J; Parker, David N; Parrish, Julia; Parks, Kenya L; Paul, Heidie A; Payton, Brett A; Perez, Agapito; Perrin, William; Pickens, Adam; Primus, Eltrick L; Pu, Ling-Ling; Puazo, Maria; Quiles, Miyo M; Quiroz, Juana B; Rabata, Dina; Reeves, Kacy; Ruiz, San Juana; Shao, Hongmei; Sisson, Ida; Sonaike, Titilola; Sorelle, Richard P; Sutton, Angelica E; Svatek, Amanda F; Svetz, Leah Anne; Tamerisa, Kavitha S; Taylor, Tineace R; Teague, Brian; Thomas, Nicole; Thorn, Rachel D; Trejos, Zulma Y; Trevino, Brenda K; Ukegbu, Ogechi N; Urban, Jeremy B; Vasquez, Lydia I; Vera, Virginia A; Villasana, Donna M; Wang, Ling; Ward-Moore, Stephanie; Warren, James T; Wei, Xuehong; White, Flower; Williamson, Angela L; Wleczyk, Regina; Wooden, Hailey S; Wooden, Steven H; Yen, Jennifer; Yoon, Lillienne; Yoon, Vivienne; Zorrilla, Sara E; Nelson, David; Kucherlapati, Raju; Weinstock, George; Gibbs, Richard A

    2006-03-16

    Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.

  10. Construction and analysis of SSH cDNA library of human vascular endothelial cells related to gastrocarcinoma

    OpenAIRE

    2003-01-01

    AIM: To construct subtracted cDNA libraries of human vascular endothelial cells (VECs) related to gastrocarcinoma using suppression substractive hybridization (SSH) and to analyze cDNA libraries of gastrocarcinoma and VECs in Cancer Gene Anatomy Project (CGAP) database.

  11. A “Copernican” Reassessment of the Human Mitochondrial DNA Tree from its Root

    Science.gov (United States)

    Behar, Doron M.; van Oven, Mannis; Rosset, Saharon; Metspalu, Mait; Loogväli, Eva-Liis; Silva, Nuno M.; Kivisild, Toomas; Torroni, Antonio; Villems, Richard

    2012-01-01

    Mutational events along the human mtDNA phylogeny are traditionally identified relative to the revised Cambridge Reference Sequence, a contemporary European sequence published in 1981. This historical choice is a continuous source of inconsistencies, misinterpretations, and errors in medical, forensic, and population genetic studies. Here, after having refined the human mtDNA phylogeny to an unprecedented level by adding information from 8,216 modern mitogenomes, we propose switching the reference to a Reconstructed Sapiens Reference Sequence, which was identified by considering all available mitogenomes from Homo neanderthalensis. This “Copernican” reassessment of the human mtDNA tree from its deepest root should resolve previous problems and will have a substantial practical and educational influence on the scientific and public perception of human evolution by clarifying the core principles of common ancestry for extant descendants. PMID:22482806

  12. Genetic identification of missing persons: DNA analysis of human remains and compromised samples.

    Science.gov (United States)

    Alvarez-Cubero, M J; Saiz, M; Martinez-Gonzalez, L J; Alvarez, J C; Eisenberg, A J; Budowle, B; Lorente, J A

    2012-01-01

    Human identification has made great strides over the past 2 decades due to the advent of DNA typing. Forensic DNA typing provides genetic data from a variety of materials and individuals, and is applied to many important issues that confront society. Part of the success of DNA typing is the generation of DNA databases to help identify missing persons and to develop investigative leads to assist law enforcement. DNA databases house DNA profiles from convicted felons (and in some jurisdictions arrestees), forensic evidence, human remains, and direct and family reference samples of missing persons. These databases are essential tools, which are becoming quite large (for example the US Database contains 10 million profiles). The scientific, governmental and private communities continue to work together to standardize genetic markers for more effective worldwide data sharing, to develop and validate robust DNA typing kits that contain the reagents necessary to type core identity genetic markers, to develop technologies that facilitate a number of analytical processes and to develop policies to make human identity testing more effective. Indeed, DNA typing is integral to resolving a number of serious criminal and civil concerns, such as solving missing person cases and identifying victims of mass disasters and children who may have been victims of human trafficking, and provides information for historical studies. As more refined capabilities are still required, novel approaches are being sought, such as genetic testing by next-generation sequencing, mass spectrometry, chip arrays and pyrosequencing. Single nucleotide polymorphisms offer the potential to analyze severely compromised biological samples, to determine the facial phenotype of decomposed human remains and to predict the bioancestry of individuals, a new focus in analyzing this type of markers.

  13. Absolute quantification of somatic DNA alterations in human cancer

    OpenAIRE

    Carter, Scott L.; Cibulskis, Kristian; Helman, Elena; McKenna, Aaron; Shen, Hui; Zack, Travis; Laird, Peter W.; Onofrio, Robert C.; Winckler, Wendy; Weir, Barbara A; Beroukhim, Rameen; Pellman, David; Levine, Douglas A.; Lander, Eric S.; Meyerson, Matthew

    2012-01-01

    We developed a computational method (ABSOLUTE) that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. ABSOLUTE can detect subclonal heterogeneity, somatic homozygosity, and calculate statistical sensitivity to detect specific aberrations. We used ABSOLUTE to analyze ovarian cancer data and identified pervasive subclonal somatic point mutations. In contrast, mutations occurring in key tumor suppressor genes, TP53 and NF1 were predominantly clonal ...

  14. Absolute quantification of somatic DNA alterations in human cancer

    OpenAIRE

    Carter, Scott L.; Cibulskis, Kristian; Helman, Elena; McKenna, Aaron; Shen, Hui; Zack, Travis; Laird, Peter W.; Onofrio, Robert C.; Winckler, Wendy; Weir, Barbara A; Beroukhim, Rameen; Pellman, David; Levine, Douglas A.; Lander, Eric S.; Meyerson, Matthew

    2015-01-01

    We developed a computational method (ABSOLUTE) that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. ABSOLUTE can detect subclonal heterogeneity, somatic homozygosity, and calculate statistical sensitivity to detect specific aberrations. We used ABSOLUTE to analyze ovarian cancer data and identified pervasive subclonal somatic point mutations. In contrast, mutations occurring in key tumor suppressor genes, TP53 and NF1 were predominantly clonal ...

  15. Similar patterns of clonally expanded somatic mtDNA mutations in the colon of heterozygous mtDNA mutator mice and ageing humans

    Science.gov (United States)

    Baines, Holly L.; Stewart, James B.; Stamp, Craig; Zupanic, Anze; Kirkwood, Thomas B.L.; Larsson, Nils-Göran; Turnbull, Douglass M.; Greaves, Laura C.

    2014-01-01

    Clonally expanded mitochondrial DNA (mtDNA) mutations resulting in focal respiratory chain deficiency in individual cells are proposed to contribute to the ageing of human tissues that depend on adult stem cells for self-renewal; however, the consequences of these mutations remain unclear. A good animal model is required to investigate this further; but it is unknown whether mechanisms for clonal expansion of mtDNA mutations, and the mutational spectra, are similar between species. Here we show that mice, heterozygous for a mutation disrupting the proof-reading activity of mtDNA polymerase (PolgA+/mut) resulting in an increased mtDNA mutation rate, accumulate clonally expanded mtDNA point mutations in their colonic crypts with age. This results in focal respiratory chain deficiency, and by 81 weeks of age these animals exhibit a similar level and pattern of respiratory chain deficiency to 70-year-old human subjects. Furthermore, like in humans, the mtDNA mutation spectrum appears random and there is an absence of selective constraints. Computer simulations show that a random genetic drift model of mtDNA clonal expansion can accurately model the data from the colonic crypts of wild-type, PolgA+/mut animals, and humans, providing evidence for a similar mechanism for clonal expansion of mtDNA point mutations between these mice and humans. PMID:24915468

  16. Isolation, Mapping, DNA Sequence and RFLPs Studies of Random Single-Copy DNA Segments on Human X Chromosome

    Institute of Scientific and Technical Information of China (English)

    谭骏; 邱信芳; 薛京伦; 朱锡华; 纪贤文; 张冬梅; 秦世真

    1994-01-01

    Using the total human/mouse DNA as the probe, screening has been carried out three times with in situ plaque hybridization to obtain the single-copy DNA sequence from the human X chromosome genomic library. The effective rate of screening is 1. 45%. DNAs from clones containing single-copy inserts have been analyzed by a panel of hybrid cells with or without human X chromosome. Three segments, designated by DXFD52,73,75, are mapped to the X chromosome. DXFD52 has been precisely localized on Xq12-q13 with in situ chromosomal hybridization. DXFD52 has been partially sequenced. The results indicate that DXFD52 is a new isolated single-copy segment on the X chromosome. Great progress in the RFLPs study with DXFD52 has been achieved in the population of Chongqing, Sichuan Province. The results show that the DXFD52 can be used to detect the RFLP with Hind Ⅲ, Bgl Ⅱ, and Hinf Ⅰ. DXFD52 will be a potential "landmark" for the construction of the complete linkage map of human genome and the analysis of genomic s

  17. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in lambda gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated lambda hARG6 and lambda hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying lambda hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes.

  18. A quantitative and high-throughput assay of human papillomavirus DNA replication.

    Science.gov (United States)

    Gagnon, David; Fradet-Turcotte, Amélie; Archambault, Jacques

    2015-01-01

    Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof.

  19. Targeting of the human coagulation factor IX gene at rDNA locus of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Xionghao Liu

    Full Text Available BACKGROUND: Genetic modification is a prerequisite to realizing the full potential of human embryonic stem cells (hESCs in human genetic research and regenerative medicine. Unfortunately, the random integration methods that have been the primary techniques used keep creating problems, and the primary alternative method, gene targeting, has been effective in manipulating mouse embryonic stem cells (mESCs but poorly in hESCs. METHODOLOGY/PRINCIPAL FINDINGS: Human ribosomal DNA (rDNA repeats are clustered on the short arm of acrocentric chromosomes. They consist of approximately 400 copies of the 45S pre-RNA (rRNA gene per haploid. In the present study, we targeted a physiological gene, human coagulation factor IX, into the rDNA locus of hESCs via homologous recombination. The relative gene targeting efficiency (>50% and homologous recombination frequency (>10(-5 were more than 10-fold higher than those of loci targeted in previous reports. Meanwhile, the targeted clones retained both a normal karyotype and the main characteristics of ES cells. The transgene was found to be stably and ectopically expressed in targeted hESCs. CONCLUSION/SIGNIFICANCE: This is the first targeting of a human physiological gene at a defined locus on the hESC genome. Our findings indicate that the rDNA locus may serve as an ideal harbor for transgenes in hESCs.

  20. Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome.

    Science.gov (United States)

    Baranovskiy, Andrey G; Babayeva, Nigar D; Zhang, Yinbo; Gu, Jianyou; Suwa, Yoshiaki; Pavlov, Youri I; Tahirov, Tahir H

    2016-05-06

    The human primosome, a 340-kilodalton complex of primase and DNA polymerase α (Polα), synthesizes chimeric RNA-DNA primers to be extended by replicative DNA polymerases δ and ϵ. The intricate mechanism of concerted primer synthesis by two catalytic centers was an enigma for over three decades. Here we report the crystal structures of two key complexes, the human primosome and the C-terminal domain of the primase large subunit (p58C) with bound DNA/RNA duplex. These structures, along with analysis of primase/polymerase activities, provide a plausible mechanism for all transactions of the primosome including initiation, elongation, accurate counting of RNA primer length, primer transfer to Polα, and concerted autoregulation of alternate activation/inhibition of the catalytic centers. Our findings reveal a central role of p58C in the coordinated actions of two catalytic domains in the primosome and ultimately could impact the design of anticancer drugs.

  1. Nuclear pseudogenes of mitochondrial DNA as a variable part of the human genome

    Institute of Scientific and Technical Information of China (English)

    YUANJINDUO; JINXIUSHI; 等

    1999-01-01

    Novel pseudogenes homologous to the mitochondrial (mt) 16S rRNA gene were detected via different approaches.Eight preudogenes were sequenced.Copy number polymorphism of the mtDNA pseudogenes was observed among randomly chosen individuals,and even among siblings.A mtDNA pseudogene in the Ychromosome was observed in a YAC clone carrying only repetitive sequence tag site(STS).PCR screening of human yeast artificial chromosome (YAC)libraries showed that there were at least 5.7×105 bp of the mtDNA pseudogenes in each haploid nuclear genome.Possible involvement of the mtDNA pseudogenes in the variable part of the human nuclear genome is discussed.

  2. DNA induces conformational changes in a recombinant human minichromosome maintenance complex.

    Science.gov (United States)

    Hesketh, Emma L; Parker-Manuel, Richard P; Chaban, Yuriy; Satti, Rabab; Coverley, Dawn; Orlova, Elena V; Chong, James P J

    2015-03-20

    ATP-dependent DNA unwinding activity has been demonstrated for recombinant archaeal homohexameric minichromosome maintenance (MCM) complexes and their yeast heterohexameric counterparts, but in higher eukaryotes such as Drosophila, MCM-associated DNA helicase activity has been observed only in the context of a co-purified Cdc45-MCM-GINS complex. Here, we describe the production of the recombinant human MCM (hMCM) complex in Escherichia coli. This protein displays ATP hydrolysis activity and is capable of unwinding duplex DNA. Using single-particle asymmetric EM reconstruction, we demonstrate that recombinant hMCM forms a hexamer that undergoes a conformational change when bound to DNA. Recombinant hMCM produced without post-translational modifications is functional in vitro and provides an important tool for biochemical reconstitution of the human replicative helicase.

  3. Bocavirus infection in children: what should be the next to do?

    Institute of Scientific and Technical Information of China (English)

    ZHAORI Ge-tu

    2008-01-01

    @@ Since human bocavims(HBoV)was first described in 2005 by Allander et al,1 a considerable number(at least nine)of original articles on this virus were published by authors from China.including two from the Hong Kong Special Administrative Region,within a relatively short period of time.These studies conducted in China cover basically the clinical aspects of children infected with the vires and genomic characteristics.

  4. CASA derived human sperm abnormalities: correlation with chromatin packing and DNA fragmentation.

    Science.gov (United States)

    Sivanarayana, T; Krishna, Ch Ravi; Prakash, G Jaya; Krishna, K Murali; Madan, K; Rani, B Sireesha; Sudhakar, G; Raju, G A Rama

    2012-12-01

    The present study was undertaken to evaluate the effects of morphokinetic abnormalities of human spermatozoa on chromatin packing and DNA integrity and possible beneficial effects of sperm selection in ICSI. Semen samples from 1002 patients were analysed for morphology and motility using CASA. Protamine status and DNA fragmentation were analysed by chromomycin A3 staining and sperm chromatin dispersion assay respectively. Sperms with elongated, thin, round, pyri, amorphous, micro and macro forms were significantly higher in teratozoospermic and oligoasthenoteratozoospermic groups. Significant difference in chromatin packing and DNA fragmentation index was observed in these abnormal groups compared with normal. Similarly significant correlation was also seen between abnormal motility parameters and DNA fragmentation index in asthenozoospermic group compared with normal. Specific abnormal morphological forms have higher incidence of chromatin packing abnormalities and DNA fragmentation. Using these sperms in ICSI might have an impact on fertilization, embryo development and abortion rates. These can be selectively avoided during ICSI procedure to improve ART outcome.

  5. DNA and Law Enforcement in the European Union: Tools and Human Rights Protection

    Directory of Open Access Journals (Sweden)

    Helena Soleto Muñoz

    2014-01-01

    Full Text Available Since its first successful use in criminal investigations in the 1980s, DNA has become a widely used and valuable tool to identify offenders and to acquit innocent persons. For a more beneficial use of the DNA-related data possessed, the Council of the European Union adopted Council Decisions 2008/615 and 2008/616 establishing a mechanism for a direct automated search in national EU Member States’ DNA databases. The article reveals the complications associated with the regulation on the use of DNA for criminal investigations as it is regulated by both EU and national legislation which results in a great deal of variations. It also analyses possible violations of and limitations to human rights when collecting DNA samples, as well as their analysis, use and storage.

  6. Molecular cloning and mammalian expression of human beta 2-glycoprotein I cDNA

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Schousboe, Inger; Boel, Espen

    1991-01-01

    Human β2-glycoprotein (β2gpI) cDNA was isolated from a liver cDNA library and sequenced. The cDNA encoded a 19-residue hydrophobic signal peptide followed by the mature β2gpI of 326 amino acid residues. In liver and in the hepatoma cell line HepG2 there are two mRNA species of about 1.4 and 4.3 k......, respectively, hybridizing specifically with the β2gpI cDNA. Upon isoelectric focusing, recombinant β2gpI obtained from expression of β2gpI cDNA in baby hamster kidney cells showed the same pattern of bands as β2gpI isolated from plasma, and at least 5 polypeptides were visible...

  7. DNA and Law Enforcement in the European Union: Tools and Human Rights Protection

    Directory of Open Access Journals (Sweden)

    Helena Soleto Muñoz

    2014-01-01

    Full Text Available Since its first successful use in criminal investigations in the 1980s, DNA has become a widely used and valuable tool to identify offenders and to acquit innocent persons. For a more beneficial use of the DNA-related data possessed, the Council of the European Union adopted Council Decisions 2008/615 and 2008/616 establishing a mechanism for a direct automated search in national EU Member States’ DNA databases. The article reveals the complications associated with the regulation on the use of DNA for criminal investigations as it is regulated by both EU and national legislation which results in a great deal of variations. It also analyses possible violations of and limitations to human rights when collecting DNA samples, as well as their analysis, use and storage.

  8. Nondestructive sampling of human skeletal remains yields ancient nuclear and mitochondrial DNA.

    Science.gov (United States)

    Bolnick, Deborah A; Bonine, Holly M; Mata-Míguez, Jaime; Kemp, Brian M; Snow, Meradeth H; LeBlanc, Steven A

    2012-02-01

    Museum curators and living communities are sometimes reluctant to permit ancient DNA (aDNA) studies of human skeletal remains because the extraction of aDNA usually requires the destruction of at least some skeletal material. Whether these views stem from a desire to conserve precious materials or an objection to destroying ancestral remains, they limit the potential of aDNA research. To help address concerns about destructive analysis and to minimize damage to valuable specimens, we describe a nondestructive method for extracting DNA from ancient human remains. This method can be used with both teeth and bone, but it preserves the structural integrity of teeth much more effectively than that of bone. Using this method, we demonstrate that it is possible to extract both mitochondrial and nuclear DNA from human remains dating between 300 BC and 1600 AD. Importantly, the method does not expose the remains to hazardous chemicals, allowing them to be safely returned to curators, custodians, and/or owners of the samples. We successfully amplified mitochondrial DNA from 90% of the individuals tested, and we were able to analyze 1-9 nuclear loci in 70% of individuals. We also show that repeated nondestructive extractions from the same tooth can yield amplifiable mitochondrial and nuclear DNA. The high success rate of this method and its ability to yield DNA from samples spanning a wide geographic and temporal range without destroying the structural integrity of the sampled material may make possible the genetic study of skeletal collections that are not available for destructive analysis. Copyright © 2011 Wiley Periodicals, Inc.

  9. Comment on "DNA from pre-Clovis human coprolites in Oregon, North America".

    Science.gov (United States)

    Poinar, Hendrik; Fiedel, Stuart; King, Christine E; Devault, Alison M; Bos, Kirsti; Kuch, Melanie; Debruyne, Regis

    2009-07-10

    Gilbert et al. (Reports, 9 May 2008, p. 786) analyzed DNA from radiocarbon-dated paleofecal remains from Paisley Cave, Oregon, which ostensibly demonstrate a human presence in North America predating the well-established Clovis complex. We question the authenticity of their DNA results and argue that in the absence of intact stratigraphy and diagnostic artifacts, and in view of carbon isotope anomalies, the radiocarbon dates of the oldest specimens are unreliable.

  10. Human papillomavirus DNA and p16 expression in Japanese patients with oropharyngeal squamous cell carcinoma

    OpenAIRE

    Kawakami, Hisato; Okamoto, Isamu; Terao, Kyoichi; Sakai, Kazuko; SUZUKI, MINORU; Ueda, Shinya; Tanaka, Kaoru; Kuwata, Kiyoko; Morita, Yume; Ono, Koji; Nishio, Kazuto; Nishimura, Yasumasa; Doi, Katsumi; Nakagawa, Kazuhiko

    2013-01-01

    Human papillomavirus (HPV) is a major etiologic factor for oropharyngeal squamous cell carcinoma (OPSCC). However, little is known about HPV-related OPSCC in Japan. During the study, formalin-fixed, paraffin-embedded OPSCC specimens from Japanese patients were analyzed for HPV DNA by the polymerase chain reaction (PCR) and for the surrogate marker p16 by immuno-histochemistry. For HPV DNA-positive, p16-negative specimens, the methylation status of the p16 gene promoter was examined by methyla...

  11. DNA damage in human skin fibroblasts exposed to UVA light used in clinical PUVA treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bredberg, A.

    1981-06-01

    Human skin fibroblasts were irradiated with a clinically used UVA light source. The doses (1.1 and 3 J/cm2) were similar to those reaching the dermis during clinical PUVA treatment of psoriasis. DNA strand breaks, as determined by alkaline elution, were formed in a dose-dependent way and disappeared within 1 hr of postincubation at 37 degrees C. These findings have clinical implications since UVA-induced DNA damage may be accompanied by mutagenic and tumor promoting effects.

  12. Human evolution in Siberia: from frozen bodies to ancient DNA

    Directory of Open Access Journals (Sweden)

    Bouakaze Caroline

    2010-01-01

    Full Text Available Abstract Background The Yakuts contrast strikingly with other populations from Siberia due to their cattle- and horse-breeding economy as well as their Turkic language. On the basis of ethnological and linguistic criteria as well as population genetic studies, it has been assumed that they originated from South Siberian populations. However, many questions regarding the origins of this intriguing population still need to be clarified (e.g. the precise origin of paternal lineages and the admixture rate with indigenous populations. This study attempts to better understand the origins of the Yakuts by performing genetic analyses on 58 mummified frozen bodies dated from the 15th to the 19th century, excavated from Yakutia (Eastern Siberia. Results High quality data were obtained for the autosomal STRs, Y-chromosomal STRs and SNPs and mtDNA due to exceptional sample preservation. A comparison with the same markers on seven museum specimens excavated 3 to 15 years ago showed significant differences in DNA quantity and quality. Direct access to ancient genetic data from these molecular markers combined with the archaeological evidence, demographical studies and comparisons with 166 contemporary individuals from the same location as the frozen bodies helped us to clarify the microevolution of this intriguing population. Conclusion We were able to trace the origins of the male lineages to a small group of horse-riders from the Cis-Baïkal area. Furthermore, mtDNA data showed that intermarriages between the first settlers with Evenks women led to the establishment of genetic characteristics during the 15th century that are still observed today.

  13. DNA from Porphyromonas gingivalis and Tannerella forsythia induce cytokine production in human monocytic cell lines.

    Science.gov (United States)

    Sahingur, S E; Xia, X-J; Alamgir, S; Honma, K; Sharma, A; Schenkein, H A

    2010-04-01

    Toll-like receptor 9 (TLR9) expression is increased in periodontally diseased tissues compared with healthy sites indicating a possible role of TLR9 and its ligand, bacterial DNA (bDNA), in periodontal disease pathology. Here, we determine the immunostimulatory effects of periodontal bDNA in human monocytic cells (THP-1). THP-1 cells were stimulated with DNA of two putative periodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia. The role of TLR9 in periodontal bDNA-initiated cytokine production was determined either by blocking TLR9 signaling in THP-1 cells with chloroquine or by measuring IL-8 production and nuclear factor-kappaB (NF-kappaB) activation in HEK293 cells stably transfected with human TLR9. Cytokine production (IL-1beta, IL-6, and TNF-alpha) was increased significantly in bDNA-stimulated cells compared with controls. Chloroquine treatment of THP-1 cells decreased cytokine production, suggesting that TLR9-mediated signaling pathways are operant in the recognition of DNA from periodontal pathogens. Compared with native HEK293 cells, TLR9-transfected cells demonstrated significantly increased IL-8 production (P < 0.001) and NF-kappaB activation in response to bDNA, further confirming the role of TLR9 in periodontal bDNA recognition. The results of PCR arrays demonstrated upregulation of proinflammatory cytokine and NF-kappaB genes in response to periodontal bDNA in THP-1 cells, suggesting that cytokine induction is through NF-kappaB activation. Hence, immune responses triggered by periodontal bacterial nucleic acids may contribute to periodontal disease pathology by inducing proinflammatory cytokine production through the TLR9 signaling pathway.

  14. An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples

    DEFF Research Database (Denmark)

    Bag, Satyabrata; Saha, Bipasa; Mehta, Ojasvi

    2016-01-01

    and human origin samples. We introduced a combination of physical, chemical and mechanical lysis methods for proper lysis of microbial inhabitants. The community microbial DNA was precipitated by using salt and organic solvent. Both the quality and quantity of isolated DNA was compared with the existing...... methodologies and the supremacy of our method was confirmed. Maximum recovery of genomic DNA in the absence of substantial amount of impurities made the method convenient for nucleic acid extraction. The nucleic acids obtained using this method are suitable for different downstream applications. This improved...

  15. Pleiotropic expression of Epstein--Barr virus DNA in human epithelial cells.

    OpenAIRE

    1981-01-01

    We have attempted to establish a system that can be used to study the association of Epstein--Barr virus (EBV) with epithelial cells. Attempts were made to transfect human carcinoma cells with EBV DNA. Successful transfection was confirmed by the expression of EBV-specific early antigen (EA), virus capsid antigen, and the presence of virus DNA. The transfecting preparation contained a mixture of EBV and cellular DNA extracted from two producer cell lines, P3HR-1 and AG-876. Our data suggest t...

  16. Molecular cloning of complementary DNA for human medullasin: an inflammatory serine protease in bone marrow cells.

    Science.gov (United States)

    Okano, K; Aoki, Y; Sakurai, T; Kajitani, M; Kanai, S; Shimazu, T; Shimizu, H; Naruto, M

    1987-07-01

    Medullasin, an inflammatory serine protease in bone marrow cells, modifies the functions of natural killer cells, monocytes, and granulocytes. We have cloned a medullasin cDNA from a human acute promyelocytic cell (ML3) cDNA library using oligonucleotide probes synthesized from the information of N-terminal amino acid sequence of natural medullasin. The cDNA contained a long open reading frame encoding 237 amino acid residues beginning from the second amino acid of natural meduallasin. The deduced amino acid sequence of medullasin shows a typical serine protease structure, with 41% homology with pig elastase 1.

  17. The RNA splicing factor ASF/SF2 inhibits human topoisomerase I mediated DNA relaxation

    DEFF Research Database (Denmark)

    Andersen, Félicie Faucon; Tange, Thomas Ø.; Sinnathamby, Thayaline

    2002-01-01

    with the SR-proteins controlling topoisomerase I DNA activity. We demonstrate that the splicing factor ASF/SF2 inhibits relaxation by interfering with the DNA cleavage and/or DNA binding steps of human topoisomerase I catalysis. The inhibition of relaxation correlated with the ability of various deletion...... extract reduced the inhibition of relaxation activity. Taken together with the previously published studies of the topoisomerase I kinase activity, these observations suggest that topoisomerase I activity is shifted from relaxation to kinasing by specific interaction with SR-splicing factors....

  18. Extensive sequence-influenced DNA methylation polymorphism in the human genome

    Directory of Open Access Journals (Sweden)

    Hellman Asaf

    2010-05-01

    Full Text Available Abstract Background Epigenetic polymorphisms are a potential source of human diversity, but their frequency and relationship to genetic polymorphisms are unclear. DNA methylation, an epigenetic mark that is a covalent modification of the DNA itself, plays an important role in the regulation of gene expression. Most studies of DNA methylation in mammalian cells have focused on CpG methylation present in CpG islands (areas of concentrated CpGs often found near promoters, but there are also interesting patterns of CpG methylation found outside of CpG islands. Results We compared DNA methylation patterns on both alleles between many pairs (and larger groups of related and unrelated individuals. Direct observation and simulation experiments revealed that around 10% of common single nucleotide polymorphisms (SNPs reside in regions with differences in the propensity for local DNA methylation between the two alleles. We further showed that for the most common form of SNP, a polymorphism at a CpG dinucleotide, the presence of the CpG at the SNP positively affected local DNA methylation in cis. Conclusions Taken together with the known effect of DNA methylation on mutation rate, our results suggest an interesting interdependence between genetics and epigenetics underlying diversity in the human genome.

  19. Recent progress towards understanding the role of DNA methylation in human placental development

    Science.gov (United States)

    Mayne, Benjamin T; Buckberry, Sam; Breen, James; Rodriguez Lopez, Carlos M; Roberts, Claire T

    2016-01-01

    Epigenetic modifications, and particularly DNA methylation, have been studied in many tissues, both healthy and diseased, and across numerous developmental stages. The placenta is the only organ that has a transient life of 9 months and undergoes rapid growth and dynamic structural and functional changes across gestation. Additionally, the placenta is unique because although developing within the mother, its genome is identical to that of the foetus. Given these distinctive characteristics, it is not surprising that the epigenetic landscape affecting placental gene expression may be different to that in other healthy tissues. However, the role of epigenetic modifications, and particularly DNA methylation, in placental development remains largely unknown. Of particular interest is the fact that the placenta is the most hypomethylated human tissue and is characterized by the presence of large partially methylated domains (PMDs) containing silenced genes. Moreover, how and why the placenta is hypomethylated and what role DNA methylation plays in regulating placental gene expression across gestation are poorly understood. We review genome-wide DNA methylation studies in the human placenta and highlight that the different cell types that make up the placenta have very different DNA methylation profiles. Summarizing studies on DNA methylation in the placenta and its relationship with pregnancy complications are difficult due to the limited number of studies available for comparison. To understand the key steps in placental development and hence what may be perturbed in pregnancy complications requires large-scale genome-wide DNA methylation studies coupled with transcriptome analyses. PMID:27026712

  20. Human DNA topoisomerase inhibitors from Potentilla argentea and their cytotoxic effect against MCF-7.

    Science.gov (United States)

    Tomczyk, M; Drozdowska, D; Bielawska, A; Bielawski, K; Gudej, J

    2008-05-01

    Two polyphenolics, kaempferol 3-O-beta-D-(6"-E-p-coumaroyl)-glucopyranoside (tiliroside) (1) and methyl brevifolincarboxylate (2) isolated from aerial parts of Potentilla argentea L. (Rosaceae) were evaluated for their cytotoxicities against human breast carcionoma cell line (MCF-7) and their DNA-binding ability. The DNA-binding ability of these compounds was studied by means of the human DNA topoisomerase I and II inhibition assay and ethidium displacement assay using calf thymus DNA, poly(dA-dT)2 and poly(dG-dC)2. Compound 2 was much more active and showed a higher level of cytotoxic potency than compound 1, with IC50 values of 1.11 +/- 2 microM and 21.60 +/- 2 microM, respectively. In DNA topoisomerase I and II inhibition in vitro assays both investigated compounds 1 and 2 were more effective against topoisomerase II than I. The results of DNA binding studies reveal that methyl brevifolincarboxylate had a greater DNA binding affinity that tiliroside, which correlates with its greater potency as a topoisomerase I/II inhibitor.

  1. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure.

    Directory of Open Access Journals (Sweden)

    Mehregan Movassagh

    Full Text Available Epigenetic mechanisms such as microRNA and histone modification are crucially responsible for dysregulated gene expression in heart failure. In contrast, the role of DNA methylation, another well-characterized epigenetic mark, is unknown. In order to examine whether human cardiomyopathy of different etiologies are connected by a unifying pattern of DNA methylation pattern, we undertook profiling with ischaemic and idiopathic end-stage cardiomyopathic left ventricular (LV explants from patients who had undergone cardiac transplantation compared to normal control. We performed a preliminary analysis using methylated-DNA immunoprecipitation-chip (MeDIP-chip, validated differential methylation loci by bisulfite-(BS PCR and high throughput sequencing, and identified 3 angiogenesis-related genetic loci that were differentially methylated. Using quantitative RT-PCR, we found that the expression of these genes differed significantly between CM hearts and normal control (p<0.01. Moreover, for each individual LV tissue, differential methylation showed a predicted correlation to differential expression of the corresponding gene. Thus, differential DNA methylation exists in human cardiomyopathy. In this series of heterogeneous cardiomyopathic LV explants, differential DNA methylation was found in at least 3 angiogenesis-related genes. While in other systems, changes in DNA methylation at specific genomic loci usually precede changes in the expression of corresponding genes, our current findings in cardiomyopathy merit further investigation to determine whether DNA methylation changes play a causative role in the progression of heart failure.

  2. Human single-stranded DNA binding proteins: guardians of genome stability

    Institute of Scientific and Technical Information of China (English)

    Yuanzhong Wu; Jinping Lu; Tiebang Kang

    2016-01-01

    Single-stranded DNA-binding proteins (SSBs) are essential for maintaining the integrity of the genome in all organisms.All processes related to DNA,such as replication,excision,repair,and recombination,require the participation of SSBs whose oligonucleotideaoligosaccharide-binding (OB)-fold domain is responsible for the interaction with single-stranded DNA (ssDNA).For a long time,the heterotrimeric replication protein A (RPA) complex was believed to be the only nuclear SSB in eukanyotes to participate in ssDNA processing,while mitochondrial SSBs that are consewed with prokaryotic SSBs were shown to be essential for maintaining genome stability in eukaryotic mitochondria.In recent years,two new proteins,hSSB1 and hSSB2 (human SSBs 1/2),were identified and have better sequence similarity to bacterial and archaeal SSBs than RPA.This review summarizes the current understanding of these human SSBs in DNA damage repair and in cell-cycle checkpoint activation following DNA damage,as well as their relationships with cancer.

  3. Genome-Wide Analysis of DNA Methylation in Human Amnion

    National Research Council Canada - National Science Library

    Kim, Jinsil; Pitlick, Mitchell M; Christine, Paul J; Schaefer, Amanda R; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C

    2013-01-01

    ... (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth...

  4. Carriers of human mitochondrial DNA macrohaplogroup M colonized India from southeastern Asia.

    Science.gov (United States)

    Marrero, Patricia; Abu-Amero, Khaled K; Larruga, Jose M; Cabrera, Vicente M

    2016-11-10

    From a mtDNA dominant perspective, the exit from Africa of modern humans to colonize Eurasia occurred once, around 60 kya, following a southern coastal route across Arabia and India to reach Australia short after. These pioneers carried with them the currently dominant Eurasian lineages M and N. Based also on mtDNA phylogenetic and phylogeographic grounds, some authors have proposed the coeval existence of a northern route across the Levant that brought mtDNA macrohaplogroup N to Australia. To contrast both hypothesis, here we reanalyzed the phylogeography and respective ages of mtDNA haplogroups belonging to macrohaplogroup M in different regions of Eurasia and Australasia. The macrohaplogroup M has a historical implantation in West Eurasia, including the Arabian Peninsula. Founder ages of M lineages in India are significantly younger than those in East Asia, Southeast Asia and Near Oceania. Moreover, there is a significant positive correlation between the age of the M haplogroups and its longitudinal geographical distribution. These results point to a colonization of the Indian subcontinent by modern humans carrying M lineages from the east instead the west side. The existence of a northern route, previously proposed for the mtDNA macrohaplogroup N, is confirmed here for the macrohaplogroup M. Both mtDNA macrolineages seem to have differentiated in South East Asia from ancestral L3 lineages. Taking this genetic evidence and those reported by other disciplines we have constructed a new and more conciliatory model to explain the history of modern humans out of Africa.

  5. DNA from pre-Clovis human coprolites in Oregon, North America.

    Science.gov (United States)

    Gilbert, M Thomas P; Jenkins, Dennis L; Götherstrom, Anders; Naveran, Nuria; Sanchez, Juan J; Hofreiter, Michael; Thomsen, Philip Francis; Binladen, Jonas; Higham, Thomas F G; Yohe, Robert M; Parr, Robert; Cummings, Linda Scott; Willerslev, Eske

    2008-05-09

    The timing of the first human migration into the Americas and its relation to the appearance of the Clovis technological complex in North America at about 11,000 to 10,800 radiocarbon years before the present (14C years B.P.) remains contentious. We establish that humans were present at Paisley 5 Mile Point Caves, in south-central Oregon, by 12,300 14C years B.P., through the recovery of human mitochondrial DNA (mtDNA) from coprolites, directly dated by accelerator mass spectrometry. The mtDNA corresponds to Native American founding haplogroups A2 and B2. The dates of the coprolites are >1000 14C years earlier than currently accepted dates for the Clovis complex.

  6. Selection for the G4 DNA motif at the 5' end of human genes.

    Science.gov (United States)

    Eddy, Johanna; Maizels, Nancy

    2009-04-01

    Formation of G4 DNA may occur in the course of replication and transcription, and contribute to genomic instability. We have quantitated abundance of G4 motifs and potential for G4 DNA formation of the nontemplate strand of 5' exons and introns of transcripts of human genes. We find that, for all human genes, G4 motifs are enriched in 5' regions of transcripts relative to downstream regions; and in 5' regulatory regions relative to coding regions. Notably, although tumor suppressor genes are depleted and proto-oncogenes enriched in G4 motifs, abundance of G4 motifs in the 5' regions of transcripts of genes in these categories does not differ. These results support the hypothesis that G4 motifs are under selection in the human genome. They further show that for tumor suppressor genes and proto-oncogenes, independent selection determines potential for G4 DNA formation of 5' regulatory regions of transcripts and downstream coding regions.

  7. Enhanced genetic analysis of single human bioparticles recovered by simplified micromanipulation from forensic 'touch DNA' evidence.

    Science.gov (United States)

    Farash, Katherine; Hanson, Erin K; Ballantyne, Jack

    2015-03-09

    DNA profiles can be obtained from 'touch DNA' evidence, which comprises microscopic traces of human biological material. Current methods for the recovery of trace DNA employ cotton swabs or adhesive tape to sample an area of interest. However, such a 'blind-swabbing' approach will co-sample cellular material from the different individuals, even if the individuals' cells are located in geographically distinct locations on the item. Thus, some of the DNA mixtures encountered in touch DNA samples are artificially created by the swabbing itself. In some instances, a victim's DNA may be found in significant excess thus masking any potential perpetrator's DNA. In order to circumvent the challenges with standard recovery and analysis methods, we have developed a lower cost, 'smart analysis' method that results in enhanced genetic analysis of touch DNA evidence. We describe an optimized and efficient micromanipulation recovery strategy for the collection of bio-particles present in touch DNA samples, as well as an enhanced amplification strategy involving a one-step 5 µl microvolume lysis/STR amplification to permit the recovery of STR profiles from the bio-particle donor(s). The use of individual or few (i.e., "clumps") bioparticles results in the ability to obtain single source profiles. These procedures represent alternative enhanced techniques for the isolation and analysis of single bioparticles from forensic touch DNA evidence. While not necessary in every forensic investigation, the method could be highly beneficial for the recovery of a single source perpetrator DNA profile in cases involving physical assault (e.g., strangulation) that may not be possible using standard analysis techniques. Additionally, the strategies developed here offer an opportunity to obtain genetic information at the single cell level from a variety of other non-forensic trace biological material.

  8. Human papillomavirus DNA and p16 expression in Japanese patients with oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Kawakami, Hisato; Okamoto, Isamu; Terao, Kyoichi; Sakai, Kazuko; Suzuki, Minoru; Ueda, Shinya; Tanaka, Kaoru; Kuwata, Kiyoko; Morita, Yume; Ono, Koji; Nishio, Kazuto; Nishimura, Yasumasa; Doi, Katsumi; Nakagawa, Kazuhiko

    2013-12-01

    Human papillomavirus (HPV) is a major etiologic factor for oropharyngeal squamous cell carcinoma (OPSCC). However, little is known about HPV-related OPSCC in Japan. During the study, formalin-fixed, paraffin-embedded OPSCC specimens from Japanese patients were analyzed for HPV DNA by the polymerase chain reaction (PCR) and for the surrogate marker p16 by immuno-histochemistry. For HPV DNA-positive, p16-negative specimens, the methylation status of the p16 gene promoter was examined by methylation-specific PCR. Overall survival was calculated in relation to HPV DNA and p16 status and was subjected to multivariate analysis. OPSCC cell lines were examined for sensitivity to radiation or cisplatin in vitro. The study results showed that tumor specimens from 40 (38%) of the 104 study patients contained HPV DNA, with such positivity being associated with tumors of the tonsils, lymph node metastasis, and nonsmoking. Overall survival was better for OPSCC patients with HPV DNA than for those without it (hazard ratio, 0.214; 95% confidence interval, 0.074-0.614; P = 0.002). Multivariate analysis revealed HPV DNA to be an independent prognostic factor for overall survival (P = 0.015). Expression of p16 was associated with HPV DNA positivity. However, 20% of HPV DNA-positive tumors were negative for p16, with most of these tumors manifesting DNA methylation at the p16 gene promoter. Radiation or cisplatin sensitivity did not differ between OPSCC cell lines positive or negative for HPV DNA. Thus, positivity for HPV DNA identifies a distinct clinical subset of OPSCC with a more favorable outcome in Japanese.

  9. A Novel Self-Assembling DNA Nano Chip for Rapid Detection of Human Papillomavirus Genes

    Science.gov (United States)

    Li, Xin; Li, Yanbo; Hong, Li

    2016-01-01

    Rapid detection of tumor-associated DNA such as Human Papillomavirus (HPV) has important clinical value for the early screening of tumors. By attaching oligonucleotides or cDNA onto the chip surface, DNA chip technology provides a rapid method to analyze gene expression. However, challenges remain regarding increasing probe density and improving detection time. To address these challenges, we proposed a DNA chip that was self-assembled from single stranded DNA in combination with high probe density and a rapid detection method. Over 200 probes could be attached to the surface of this 100-nm diameter DNA chip. For detection, the chips were adsorbed onto a mica surface and then incubated for ten minutes with HPV-DNA; the results were directly observable using atomic force microscopy (AFM). This bottom-up fabricated DNA nano chip combined with high probe density and direct AFM detection at the single molecule level will likely have numerous potential clinical applications for gene screening and the early diagnosis of cancer. PMID:27706184

  10. A Novel Self-Assembling DNA Nano Chip for Rapid Detection of Human Papillomavirus Genes.

    Science.gov (United States)

    Li, Xin; Li, Yanbo; Hong, Li

    2016-01-01

    Rapid detection of tumor-associated DNA such as Human Papillomavirus (HPV) has important clinical value for the early screening of tumors. By attaching oligonucleotides or cDNA onto the chip surface, DNA chip technology provides a rapid method to analyze gene expression. However, challenges remain regarding increasing probe density and improving detection time. To address these challenges, we proposed a DNA chip that was self-assembled from single stranded DNA in combination with high probe density and a rapid detection method. Over 200 probes could be attached to the surface of this 100-nm diameter DNA chip. For detection, the chips were adsorbed onto a mica surface and then incubated for ten minutes with HPV-DNA; the results were directly observable using atomic force microscopy (AFM). This bottom-up fabricated DNA nano chip combined with high probe density and direct AFM detection at the single molecule level will likely have numerous potential clinical applications for gene screening and the early diagnosis of cancer.

  11. Quantitation of the residual DNA from rice-derived recombinant human serum albumin.

    Science.gov (United States)

    Chen, Zhen; Dai, Huixia; Liu, Zhenwei; Zhang, Liping; Pang, Jianlei; Ou, Jiquan; Yang, Daichang

    2014-04-01

    Residual DNA in recombinant protein pharmaceuticals can potentially cause safety issues in clinical applications; thus, maximum residual limit has been established by drug safety authorities. Assays for residual DNA in Escherichia coli, yeast, and Chinese hamster ovary (CHO) cell expression systems have been established, but no rice residual DNA assay for rice expression systems has been designed. To develop an assay for the quantification of residual DNA that is produced from rice seed, we established a sensitive assay using quantitative real-time polymerase chain reaction (qPCR) based on the 5S ribosomal RNA (rRNA) genes. We found that a 40-cycle qPCR exhibited a linear response when the template concentration was in the range of 2×10(4) to 0.2pg of DNA per reaction in TaqMan and SYBR Green I assays. The amplification efficiency was 103 to 104%, and the amount of residual DNA from recombinant human serum albumin from Oryza sativa (OsrHSA) was less than 3.8ng per dosage, which was lower than that recommended by the World Health Organization (WHO). Our results indicate that the current purification protocol could efficiently remove residual DNA during manufacturing and processing. Furthermore, this protocol could be viable in other cereal crop endosperm expression systems for developing a residual DNA quantitation assay using the highly conserved 5S rRNA gene of the crops.

  12. A salting out and resin procedure for extracting Schistosoma mansoni DNA from human urine samples

    Directory of Open Access Journals (Sweden)

    Rodrigues Nilton B

    2010-04-01

    Full Text Available Abstract Background In this paper a simple and cheap salting out and resin (InstaGene matrix® resin - BioRad DNA extraction method from urine for PCR assays is introduced. The DNA of the fluke Schistosoma mansoni was chosen as the target since schistosomiasis lacks a suitable diagnostic tool which is sensitive enough to detect low worm burden. It is well known that the PCR technique provides high sensitivity and specificity in detecting parasite DNA. Therefore it is of paramount importance to take advantage of its excellent performance by providing a simple to handle and reliable DNA extraction procedure, which permits the diagnosis of the disease in easily obtainable urine samples. Findings The description of the extraction procedure is given. This extraction procedure was tested for reproducibility and efficiency in artificially contaminated human urine samples. The reproducibility reached 100%, showing positive results in 5 assay repetitions of 5 tested samples each containing 20 ng DNA/5 ml. The efficiency of the extraction procedure was also evaluated in a serial dilution of the original 20 ng DNA/5 ml sample. Detectable DNA was extracted when it was at a concentration of 1.28 pg DNA/mL, revealing the high efficiency of this procedure. Conclusions This methodology represents a promising tool for schistosomiasis diagnosis utilizing a bio-molecular technique in urine samples which is now ready to be tested under field conditions and may be applicable to the diagnosis of other parasitic diseases.

  13. Specificity-Determining DNA Triplet Code for Positioning of Human Preinitiation Complex.

    Science.gov (United States)

    Goldshtein, Matan; Lukatsky, David B

    2017-05-23

    The notion that transcription factors bind DNA only through specific, consensus binding sites has been recently questioned. No specific consensus motif for the positioning of the human preinitiation complex (PIC) has been identified. Here, we reveal that nonconsensus, statistical, DNA triplet code provides specificity for the positioning of the human PIC. In particular, we reveal a highly nonrandom, statistical pattern of repetitive nucleotide triplets that correlates with the genomewide binding preferences of PIC measured by Chip-exo. We analyze the triplet enrichment and depletion near the transcription start site and identify triplets that have the strongest effect on PIC-DNA nonconsensus binding. Using statistical mechanics, a random-binder model without fitting parameters, with genomic DNA sequence being the only input, we further validate that the nonconsensus nucleotide triplet code constitutes a key signature providing PIC binding specificity in the human genome. Our results constitute a proof-of-concept for, to our knowledge, a new design principle for protein-DNA recognition in the human genome, which can lead to a better mechanistic understanding of transcriptional regulation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Cloning and characterization of a cDNA encoding human differentiation antigen 5D4

    Institute of Scientific and Technical Information of China (English)

    马凤蓉; 朱立平; 汪燚; 赵方萄; 史耕先; 李波; 李国燕; 张淑珍; 王讯

    2000-01-01

    A 1 846 bp cDNA is isolated from a human tonsil cell λgt 11 cDNA library (ATCC No. 37546) with mAb 5D4 reactive strongly with human B cell line 3D5, but weakly with human B cell line Daudi and human T cell line Jurkat as a probe. RT-PCR also shows a strong reaction in 3D5 cell and a weak reaction in Daudi and Jurkat cell for 5D4 mRNA. There is an open reading frame from 88 to 1 209 bp in 5D4 cDNA encoding a 374 AA protein. Both the Northern blot analysis and the two consecutive stop codens before start coden demonstrate that the cDNA is a full-length cDNA. Secondary structure prediction suggests that there are a region from 295 to 334 AA in the protein with strong hydrophobicity and a transmembrane helix region with high score from 313 to 334 AA with an orientation from the inside to the outside of the cell.

  15. Cell-free DNA in human follicular fluid as a biomarker of embryo quality.

    Science.gov (United States)

    Scalici, E; Traver, S; Molinari, N; Mullet, T; Monforte, M; Vintejoux, E; Hamamah, S

    2014-12-01

    Could cell-free DNA (cfDNA) quantification in individual human follicular fluid (FF) samples become a new non-invasive predictive biomarker for in vitro fertilization (IVF) outcomes? CfDNA level in human follicular fluid samples was significantly correlated with embryo quality and could be used as an innovative non-invasive biomarker to improve IVF outcomes. CfDNA fragments, resulting from apoptotic or necrotic events, are present in the bloodstream and their quantification is already used as a biomarker for gynaecological and pregnancy disorders. Follicular fluid is important for oocyte development and contains plasma components and factors secreted by granulosa cells during folliculogenesis. CfDNA presence in follicular fluid and its potential use as an IVF outcome biomarker have never been investigated. One hundred individual follicular fluid samples were collected from 43 female patients undergoing conventional IVF (n = 26) or ICSI (n = 17). CfDNA level was quantified in each individual follicular fluid sample. At oocyte collection day, follicles were aspirated individually. Only blood-free follicular fluid samples were included in the study. Follicle size was calculated based on the follicular fluid volume. Each corresponding cumulus-oocyte complex was isolated for IVF or ICSI procedures. Follicular fluid cfDNA was measured by quantitative PCR with ALU-specific primers. Human follicular fluid samples from individual follicles contain measurable amounts of cfDNA (mean ± SD, 1.62 ± 2.08 ng/µl). CfDNA level was significantly higher in small follicles (8-12 mm in diameter) than in large ones (>18 mm) (mean ± SD, 2.54 ± 0.78 ng/µl versus 0.71 ± 0.44 ng/µl, respectively, P = 0.007). Moreover, cfDNA concentration was significantly and negatively correlated with follicle size (r = -0.34; P = 0.003). A weak significant negative correlation between DNA integrity and 17β-estradiol level in follicular fluid samples at oocyte collection day was observed (r = -0

  16. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Esaulkov, M N; Kosareva, O G; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Gapeyev, A B; Pashovkin, T N [Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region (Russian Federation); Matyunin, S N [Section of Applied Problems at the Presidium of the Russian Academy of Sciences, Moscow (Russian Federation); Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-03-28

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 – 200 μW cm{sup -2} within the frequency range of 0.1 – 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes. (biophotonics)

  17. Cloning and expression of a novel human HCUTA cDNA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Copper is one of the most important trace elements to life. Human HCUTA is a novel cDNA encoding a 156aa protein, which may participate in human copper tolerance system. The HCUTA protein is highly similar to protein CUT A1 of E. coli. The whole opening reading frame of HCUTA cDNA was amplified by PCR and cloned into pET28a + express vector, and the HCUTA protein was effectively expressed in E. coli BL21 (DE3).

  18. Human PIF1 helicase supports DNA replication and cell growth under oncogenic-stress

    OpenAIRE

    2014-01-01

    Unwinding duplex DNA is a critical processing step during replication, repair and transcription. Pif1 are highly conserved non-processive 5′->3′ DNA helicases with well-established roles in maintenance of yeast genome stability. However, the function of the sole member of Pif1 family in humans remains unclear. Human PIF1 is essential for tumour cell viability, particularly during replication stress, but is dispensable in non-cancerous cells and Pif1 deficient mice. Here we report that suppres...

  19. DNA and RNA profiling of excavated human remains with varying postmortem intervals.

    Science.gov (United States)

    van den Berge, M; Wiskerke, D; Gerretsen, R R R; Tabak, J; Sijen, T

    2016-11-01

    When postmortem intervals (PMIs) increase such as with longer burial times, human remains suffer increasingly from the taphonomic effects of decomposition processes such as autolysis and putrefaction. In this study, various DNA analysis techniques and a messenger RNA (mRNA) profiling method were applied to examine for trends in nucleic acid degradation and the postmortem interval. The DNA analysis techniques include highly sensitive DNA quantitation (with and without degradation index), standard and low template STR profiling, insertion and null alleles (INNUL) of retrotransposable elements typing and mitochondrial DNA profiling. The used mRNA profiling system targets genes with tissue specific expression for seven human organs as reported by Lindenbergh et al. (Int J Legal Med 127:891-900, 27) and has been applied to forensic evidentiary traces but not to excavated tissues. The techniques were applied to a total of 81 brain, lung, liver, skeletal muscle, heart, kidney and skin samples obtained from 19 excavated graves with burial times ranging from 4 to 42 years. Results show that brain and heart are the organs in which both DNA and RNA remain remarkably stable, notwithstanding long PMIs. The other organ tissues either show poor overall profiling results or vary for DNA and RNA profiling success, with sometimes DNA and other times RNA profiling being more successful. No straightforward relations were observed between nucleic acid profiling results and the PMI. This study shows that not only DNA but also RNA molecules can be remarkably stable and used for profiling of long-buried human remains, which corroborate forensic applications. The insight that the brain and heart tissues tend to provide the best profiling results may change sampling policies in identification cases of degrading cadavers.

  20. How do human cells react to the absence of mitochondrial DNA?

    Directory of Open Access Journals (Sweden)

    Rossana Mineri

    Full Text Available BACKGROUND: Mitochondrial biogenesis is under the control of two different genetic systems: the nuclear genome (nDNA and the mitochondrial genome (mtDNA. The mtDNA is a circular genome of 16.6 kb encoding 13 of the approximately 90 subunits that form the respiratory chain, the remaining ones being encoded by the nDNA. Eukaryotic cells are able to monitor and respond to changes in mitochondrial function through alterations in nuclear gene expression, a phenomenon first defined in yeast and known as retrograde regulation. To investigate how the cellular transcriptome is modified in response to the absence of mtDNA, we used Affymetrix HG-U133A GeneChip arrays to study the gene expression profile of two human cell lines, 143BTK(- and A549, which had been entirely depleted of mtDNA (rho(o cells, and compared it with that of corresponding undepleted parental cells (rho(+ cells. RESULTS: Our data indicate that absence of mtDNA is associated with: i a down-regulation of cell cycle control genes and a reduction of cell replication rate, ii a down-regulation of nuclear-encoded subunits of complex III of the respiratory chain and iii a down-regulation of a gene described as the human homolog of ELAC2 of E. coli, which encodes a protein that we show to also target to the mitochondrial compartment. CONCLUSIONS: Our results indicate a strong correlation between mitochondrial biogenesis and cell cycle control and suggest that some proteins could have a double role: for instance in controlling both cell cycle progression and mitochondrial functions. In addition, the finding that ELAC2 and maybe other transcripts that are located into mitochondria, are down-regulated in rho(o cells, make them good candidates for human disorders associated with defective replication and expression of mtDNA.

  1. A magnetic bead-based method for concentrating DNA from human urine for downstream detection.

    Science.gov (United States)

    Bordelon, Hali; Russ, Patricia K; Wright, David W; Haselton, Frederick R

    2013-01-01

    Due to the presence of PCR inhibitors, PCR cannot be used directly on most clinical samples, including human urine, without pre-treatment. A magnetic bead-based strategy is one potential method to collect biomarkers from urine samples and separate the biomarkers from PCR inhibitors. In this report, a 1 mL urine sample was mixed within the bulb of a transfer pipette containing lyophilized nucleic acid-silica adsorption buffer and silica-coated magnetic beads. After mixing, the sample was transferred from the pipette bulb to a small diameter tube, and captured biomarkers were concentrated using magnetic entrainment of beads through pre-arrayed wash solutions separated by small air gaps. Feasibility was tested using synthetic segments of the 140 bp tuberculosis IS6110 DNA sequence spiked into pooled human urine samples. DNA recovery was evaluated by qPCR. Despite the presence of spiked DNA, no DNA was detectable in unextracted urine samples, presumably due to the presence of PCR inhibitors. However, following extraction with the magnetic bead-based method, we found that ∼50% of spiked TB DNA was recovered from human urine containing roughly 5×10(3) to 5×10(8) copies of IS6110 DNA. In addition, the DNA was concentrated approximately ten-fold into water. The final concentration of DNA in the eluate was 5×10(6), 14×10(6), and 8×10(6) copies/µL for 1, 3, and 5 mL urine samples, respectively. Lyophilized and freshly prepared reagents within the transfer pipette produced similar results, suggesting that long-term storage without refrigeration is possible. DNA recovery increased with the length of the spiked DNA segments from 10±0.9% for a 75 bp DNA sequence to 42±4% for a 100 bp segment and 58±9% for a 140 bp segment. The estimated LOD was 77 copies of DNA/µL of urine. The strategy presented here provides a simple means to achieve high nucleic acid recovery from easily obtained urine samples, which does not contain inhibitors of PCR.

  2. A magnetic bead-based method for concentrating DNA from human urine for downstream detection.

    Directory of Open Access Journals (Sweden)

    Hali Bordelon

    Full Text Available Due to the presence of PCR inhibitors, PCR cannot be used directly on most clinical samples, including human urine, without pre-treatment. A magnetic bead-based strategy is one potential method to collect biomarkers from urine samples and separate the biomarkers from PCR inhibitors. In this report, a 1 mL urine sample was mixed within the bulb of a transfer pipette containing lyophilized nucleic acid-silica adsorption buffer and silica-coated magnetic beads. After mixing, the sample was transferred from the pipette bulb to a small diameter tube, and captured biomarkers were concentrated using magnetic entrainment of beads through pre-arrayed wash solutions separated by small air gaps. Feasibility was tested using synthetic segments of the 140 bp tuberculosis IS6110 DNA sequence spiked into pooled human urine samples. DNA recovery was evaluated by qPCR. Despite the presence of spiked DNA, no DNA was detectable in unextracted urine samples, presumably due to the presence of PCR inhibitors. However, following extraction with the magnetic bead-based method, we found that ∼50% of spiked TB DNA was recovered from human urine containing roughly 5×10(3 to 5×10(8 copies of IS6110 DNA. In addition, the DNA was concentrated approximately ten-fold into water. The final concentration of DNA in the eluate was 5×10(6, 14×10(6, and 8×10(6 copies/µL for 1, 3, and 5 mL urine samples, respectively. Lyophilized and freshly prepared reagents within the transfer pipette produced similar results, suggesting that long-term storage without refrigeration is possible. DNA recovery increased with the length of the spiked DNA segments from 10±0.9% for a 75 bp DNA sequence to 42±4% for a 100 bp segment and 58±9% for a 140 bp segment. The estimated LOD was 77 copies of DNA/µL of urine. The strategy presented here provides a simple means to achieve high nucleic acid recovery from easily obtained urine samples, which does not contain inhibitors of PCR.

  3. Detection of Human Papillomavirus DNA by AffiProbe HPV-DNA Test Kit in Cervical Scrapes or Biopsies-Histopathologic Correlates

    OpenAIRE

    Pekka Nieminen; Tarja Jalava; Arja Kallio; Marjut Ranki; Jorma Paavonen

    1994-01-01

    Objective: The aim of this study was to evaluate and compare the efficacy of punch biopsies and cervical scrapes in the detection of human papillomavirus (HPV) DNA from the cervix and compare the results with the histopathologic diagnosis. Methods: The specimens were collected simultaneously, and HPV DNA was detected using a liquid hybridization test. Results: Biopsies and scrapes were equally efficient, but each detected only two-thirds of all HPV-DNA-positive patients. Thus, the positivity ...

  4. Fine resolution mapping of double-strand break sites for human ribosomal DNA units

    Directory of Open Access Journals (Sweden)

    Bernard J. Pope

    2016-12-01

    Full Text Available DNA breakage arises during a variety of biological processes, including transcription, replication and genome rearrangements. In the context of disease, extensive fragmentation of DNA has been described in cancer cells and during early stages of neurodegeneration (Stephens et al., 2011 Stephens et al. (2011 [5]; Blondet et al., 2001 Blondet et al. (2001 [1]. Stults et al. (2009 Stults et al. (2009 [6] reported that human rDNA gene clusters are hotspots for recombination and that rDNA restructuring is among the most common chromosomal alterations in adult solid tumours. As such, analysis of rDNA regions is likely to have significant prognostic and predictive value, clinically. Tchurikov et al. (2015a, 2016 Tchurikov et al. (2015a, 2016 [7,9] have made major advances in this direction, reporting that sites of human genome double-strand breaks (DSBs occur frequently at sites in rDNA that are tightly linked with active transcription - the authors used a RAFT (rapid amplification of forum termini protocol that selects for blunt-ended sites. They reported the relative frequency of these rDNA DSBs within defined co-ordinate ‘windows’ of varying size and made these data (as well as the relevant ‘raw’ sequencing information available to the public (Tchurikov et al., 2015b. Assay designs targeting rDNA DSB hotspots will benefit greatly from the publication of break sites at greater resolution. Here, we re-analyse public RAFT data and make available rDNA DSB co-ordinates to the single-nucleotide level.

  5. Finding a human telomere DNA-RNA hybrid G-quadruplex formed by human telomeric 6-mer RNA and 16-mer DNA using click chemistry: a protective structure for telomere end.

    Science.gov (United States)

    Xu, Yan; Suzuki, Yuta; Ishizuka, Takumi; Xiao, Chao-Da; Liu, Xiao; Hayashi, Tetsuya; Komiyama, Makoto

    2014-08-15

    Telomeric repeat-containing RNA is a non-coding RNA molecule newly found in mammalian cells. The telomere RNA has been found to localize to the telomere DNA, but how the newly discovered RNA molecule interacts with telomere DNA is less known. In this study, using the click chemistry we successfully found that a 6-mer human telomere RNA and 16-mer human telomere DNA sequence can form a DNA-RNA hybrid type G-quadruplex structure. Detection of the click-reaction products directly probes DNA-RNA G-quadruplex structures in a complicated solution, whereas traditional methods such as NMR and crystallography may not be suitable. Importantly, we found that formation of DNA-RNA G-quadruplex induced an exonuclease resistance for telomere DNA, indicating that such structures might be important for protecting telomeric DNA from enzyme digestion to avoid telomere DNA shortening. These results provide the direct evidence for formation of DNA-RNA hybrid G-quadruplex structure by human telomere DNA and RNA sequence, suggesting DNA-RNA hybrid G-quadruplex structure associated between telomere DNA and RNA may respond to chromosome end protection and/or present a valuable target for drug design.

  6. HMGA1a recognition candidate DNA sequences in humans.

    Directory of Open Access Journals (Sweden)

    Takayuki Manabe

    Full Text Available High mobility group protein A1a (HMGA1a acts as an architectural transcription factor and influences a diverse array of normal biological processes. It binds AT-rich sequences, and previous reports have demonstrated HMGA1a binding to the authentic promoters of various genes. However, the precise sequences that HMGA1a binds to remain to be clarified. Therefore, in this study, we searched for the sequences with the highest affinity for human HMGA1a using an existing SELEX method, and then compared the identified sequences with known human promoter sequences. Based on our results, we propose the sequences "-(G/A-G-(A/T-(A/T-A-T-T-T-" as HMGA1a-binding candidate sequences. Furthermore, these candidate sequences bound native human HMGA1a from SK-N-SH cells. When candidate sequences were analyzed by performing FASTAs against all known human promoter sequences, 500-900 sequences were hit by each one. Some of the extracted genes have already been proven or suggested as HMGA1a-binding promoters. The candidate sequences presented here represent important information for research into the various roles of HMGA1a, including cell differentiation, death, growth, proliferation, and the pathogenesis of cancer.

  7. Anal human papillomavirus DNA in women at a colposcopy clinic.

    NARCIS (Netherlands)

    Hauwers, K.W.M. d'

    2012-01-01

    OBJECTIVES: To describe the type-specific prevalence of anal and cervical human papillomavirus (HPV) infections and the cytology in HIV-negative women without a history of cervical cancer, attending a colposcopy clinic. To examine if an HPV positive anal smear is related to anal pathology and

  8. Anal human papillomavirus DNA in women at a colposcopy clinic.

    NARCIS (Netherlands)

    Hauwers, K.W.M. d'

    2012-01-01

    OBJECTIVES: To describe the type-specific prevalence of anal and cervical human papillomavirus (HPV) infections and the cytology in HIV-negative women without a history of cervical cancer, attending a colposcopy clinic. To examine if an HPV positive anal smear is related to anal pathology and conseq

  9. A comprehensive assay for targeted multiplex amplification of human DNA sequences.

    Science.gov (United States)

    Krishnakumar, Sujatha; Zheng, Jianbiao; Wilhelmy, Julie; Faham, Malek; Mindrinos, Michael; Davis, Ronald

    2008-07-01

    We developed a robust and reproducible methodology to amplify human sequences in parallel for use in downstream multiplexed sequence analyses. We call the methodology SMART (Spacer Multiplex Amplification Reaction), and it is based, in part, on padlock probe technology. As a proof of principle, we used SMART technology to simultaneously amplify 485 human exons ranging from 100 to 500 bp from human genomic DNA. In multiple repetitions, >90% of the targets were successfully amplified with a high degree of uniformity, with 70% of targets falling within a 10-fold range and all products falling within a 100-fold range of each other in abundance. We used long padlock probes (LPPs) >300 bases in length for the assay, and the increased length of these probes allowed for the capture of human sequences up to 500 bp in length, which is optimal for capturing most human exons. To engineer the LPPs, we developed a method that generates ssDNA molecules with precise ends, using an appropriately designed dsDNA template. The template has appropriate restriction sites engineered into it that can be digested to generate nucleotide overhangs that are suitable for lambda exonuclease digestion, producing a single-stranded probe from dsDNA. The SMART technology is flexible and can be easily adapted to multiplex tens of thousands of target sequences in a single reaction.

  10. Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and aminoacid homology with the yeast DNA repair gene RAD10.

    NARCIS (Netherlands)

    M. van Duin (Mark); J. de Wit (Jan); H. Odijk (Hanny); A. Westerveld (Andries); A. Yasui (Akira); M.H.M. Koken (Marcel); J.H.J. Hoeijmakers (Jan); D. Bootsma (Dirk)

    1986-01-01

    textabstractThe human excision repair gene ERCC-7 was cloned after DNA mediated gene transfer to the CHO mutant 43-38, which is sensitive to ultraviolet light and mitomycin-C. We describe the cloning and sequence analysis of the ERCC-7 cDNA and partial characterization of the gene. ERCC.1 has a size

  11. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    Science.gov (United States)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  12. Genome-wide analysis of DNA methylation dynamics during early human development.

    Science.gov (United States)

    Okae, Hiroaki; Chiba, Hatsune; Hiura, Hitoshi; Hamada, Hirotaka; Sato, Akiko; Utsunomiya, Takafumi; Kikuchi, Hiroyuki; Yoshida, Hiroaki; Tanaka, Atsushi; Suyama, Mikita; Arima, Takahiro

    2014-12-01

    DNA methylation is globally reprogrammed during mammalian preimplantation development, which is critical for normal development. Recent reduced representation bisulfite sequencing (RRBS) studies suggest that the methylome dynamics are essentially conserved between human and mouse early embryos. RRBS is known to cover 5-10% of all genomic CpGs, favoring those contained within CpG-rich regions. To obtain an unbiased and more complete representation of the methylome during early human development, we performed whole genome bisulfite sequencing of human gametes and blastocysts that covered>70% of all genomic CpGs. We found that the maternal genome was demethylated to a much lesser extent in human blastocysts than in mouse blastocysts, which could contribute to an increased number of imprinted differentially methylated regions in the human genome. Global demethylation of the paternal genome was confirmed, but SINE-VNTR-Alu elements and some other tandem repeat-containing regions were found to be specifically protected from this global demethylation. Furthermore, centromeric satellite repeats were hypermethylated in human oocytes but not in mouse oocytes, which might be explained by differential expression of de novo DNA methyltransferases. These data highlight both conserved and species-specific regulation of DNA methylation during early mammalian development. Our work provides further information critical for understanding the epigenetic processes underlying differentiation and pluripotency during early human development.

  13. Cell-type specific DNA methylation patterns define human breast cellular identity.

    Directory of Open Access Journals (Sweden)

    Petr Novak

    Full Text Available DNA methylation plays a role in a variety of biological processes including embryonic development, imprinting, X-chromosome inactivation, and stem cell differentiation. Tissue specific differential methylation has also been well characterized. We sought to extend these studies to create a map of differential DNA methylation between different cell types derived from a single tissue. Using three pairs of isogenic human mammary epithelial and fibroblast cells, promoter region DNA methylation was characterized using MeDIP coupled to microarray analysis. Comparison of DNA methylation between these cell types revealed nearly three thousand cell-type specific differentially methylated regions (ctDMRs. MassARRAY was performed upon 87 ctDMRs to confirm and quantify differential DNA methylation. Each of the examined regions exhibited statistically significant differences ranging from 10-70%. Gene ontology analysis revealed the overrepresentation of many transcription factors involved in developmental processes. Additionally, we have shown that ctDMRs are associated with histone related epigenetic marks and are often aberrantly methylated in breast cancer. Overall, our data suggest that there are thousands of ctDMRs which consistently exhibit differential DNA methylation and may underlie cell type specificity in human breast tissue. In addition, we describe the pathways affected by these differences and provide insight into the molecular mechanisms and physiological overlap between normal cellular differentiation and breast carcinogenesis.

  14. Post mortem DNA degradation of human tissue experimentally mummified in salt.

    Science.gov (United States)

    Shved, Natallia; Haas, Cordula; Papageorgopoulou, Christina; Akguel, Guelfirde; Paulsen, Katja; Bouwman, Abigail; Warinner, Christina; Rühli, Frank

    2014-01-01

    Mummified human tissues are of great interest in forensics and biomolecular archaeology. The aim of this study was to analyse post mortem DNA alterations in soft tissues in order to improve our knowledge of the patterns of DNA degradation that occur during salt mummification. In this study, the lower limb of a female human donor was amputated within 24 h post mortem and mummified using a process designed to simulate the salt dehydration phase of natural or artificial mummification. Skin and skeletal muscle were sampled at multiple time points over a period of 322 days and subjected to genetic analysis. Patterns of genomic fragmentation, miscoding lesions, and overall DNA degradation in both nuclear and mitochondrial DNA was assessed by different methods: gel electrophoresis, multiplex comparative autosomal STR length amplification, cloning and sequence analysis, and PCR amplification of different fragment sizes using a damage sensitive recombinant polymerase. The study outcome reveals a very good level of DNA preservation in salt mummified tissues over the course of the experiment, with an overall slower rate of DNA fragmentation in skin compared to muscle.

  15. Complex forms of mitochondrial DNA in human B cells transformed by Epstein-Barr virus (EBV)

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C; Zeuthen, J

    1983-01-01

    Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed lymphoblast......Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed...... lymphoblastoid cell lines. These complex forms of mtDNA were present in much lower frequencies in lymphocytes isolated from donor blood (1.3%-4.6%). Similar low frequencies were found with primary fibroblasts (1.1%) or freshly isolated monkey liver cells (2.1%). Samples from cultures of Burkitt lymphoma (BL......) cell lines of EBV-positive or -negative origin contained intermediate (5%-7%) frequencies of complex forms of mtDNA....

  16. Evaluation of the DNA damaging effects of amitraz on human lymphocytes in the Comet assay.

    Science.gov (United States)

    Radakovic, Milena; Stevanovic, Jevrosima; Djelic, Ninoslav; Lakic, Nada; Knezevic-Vukcevic, Jelena; Vukovic-Gacic, Branka; Stanimirovic, Zoran

    2013-03-01

    Amitraz is formamidine pesticide widely used as insecticide and acaricide. In veterinary medicine, amitraz has important uses against ticks, mites and lice on animals. Also, amitraz is used in apiculture to control Varroa destructor. It this study, the alkaline Comet assay was used to evaluate DNA damaging effects of amitraz in human lymphocytes. Isolated human lymphocytes were incubated with varying concentrations of amitraz (0.035, 0.35, 3.5, 35 and 350 mu g/mL). The Comet assay demonstrated that all concentrations of amitraz caused statistically significant increase in the level of DNA damage, thus indicating that amitraz possesses genotoxic potential. The concentration of amitraz that produced the highest DNA damage (3.5 mu g/mL) was chosen for further analysis with the antioxidant catalase. The obtained results showed that co-treatment with antioxidant catalase (100 IU/mL or 500 IU/mL) significantly reduced the level of DNA damage, indicating the possible involvement of reactive oxygen species in DNA damaging effects of amitraz. Flow cytometric analysis revealed increase of the apoptotic index following treatment with amitraz. However, co-treatment with catalase reduced the apoptotic index, while treatment with catalase alone reduced the percentage of apoptotoc cells even in comparison with the negative control. Therefore, catalase had protective effects against ROS-mediated DNA damage and apoptosis.

  17. Evaluation of the DNA damaging effects of amitraz on human lymphocytes in the Comet assay

    Indian Academy of Sciences (India)

    Milena Radakovic; Jevrosima Stevanovic; Ninoslav Djelic; Nada Lakic; Jelena Knezevic-Vukcevic; Branka Vukovic-Gacic; Zoran Stanimirovic

    2013-03-01

    Amitraz is formamidine pesticide widely used as insecticide and acaricide. In veterinary medicine, amitraz has important uses against ticks, mites and lice on animals. Also, amitraz is used in apiculture to control Varroa destructor. It this study, the alkaline Comet assay was used to evaluate DNA damaging effects of amitraz in human lymphocytes. Isolated human lymphocytes were incubated with varying concentrations of amitraz (0.035, 0.35, 3.5, 35 and 350 g/mL). The Comet assay demonstrated that all concentrations of amitraz caused statistically significant increase in the level of DNA damage, thus indicating that amitraz possesses genotoxic potential. The concentration of amitraz that produced the highest DNA damage (3.5 g/mL) was chosen for further analysis with the antioxidant catalase. The obtained results showed that co-treatment with antioxidant catalase (100 IU/mL or 500 IU/mL) significantly reduced the level of DNA damage, indicating the possible involvement of reactive oxygen species in DNA damaging effects of amitraz. Flow cytometric analysis revealed increase of the apoptotic index following treatment with amitraz. However, co-treatment with catalase reduced the apoptotic index, while treatment with catalase alone reduced the percentage of apoptotoc cells even in comparison with the negative control. Therefore, catalase had protective effects against ROS-mediated DNA damage and apoptosis.

  18. Quantification of mitochondrial DNA in human blood cells using an automated detection system.

    Science.gov (United States)

    Meissner, C; Mohamed, S A; Klueter, H; Hamann, K; von Wurmb, N; Oehmichen, M

    2000-09-11

    The 4977 bp deletion of mitochondrial DNA (mtDNA) accumulates in postmitotic tissues with advancing age. The purpose of our study was to detect and quantify these deletion even in blood cells with a high turnover activity. Whole venous blood, isolated human platelets and peripheral blood mononuclear cells (PBMCs) were collected from 10 unrelated donors aged 20-71 years and total DNA was extracted. PCR was performed for total and mutated mtDNA using two different primer pairs and two fluorogenic probes labeled with the fluorescent dyes FAM and VIC. Specific PCR products were generated, detected and quantified in a real-time PCR. The amplification products of total and deleted mtDNA could be detected in each sample and did not exhibit any differences in the amount of the deleted mtDNA in whole blood, human platelets or PBMCs. Our data did not show any accumulation of the 4977 bp deletion with increasing age as it was observed for several other tissues.

  19. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis.

    Science.gov (United States)

    Kim, Jinsook; Song, Insil; Jo, Ara; Shin, Joo-Ho; Cho, Hana; Eoff, Robert L; Guengerich, F Peter; Choi, Jeong-Yun

    2014-10-20

    DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N(2)-ethyl(Et)G, O(6)-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1-445) proteins and DNA templates containing a G, N(2)-EtG, O(6)-MeG, 8-oxoG, or abasic site. The Δ1-25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg(2+) (but not with Mn(2+)), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg(2+)). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg(2+) or Mn(2+), except for that opposite N(2)-EtG with Mn(2+) (showing a 9-fold increase for dCTP incorporation). The Δ1-25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg(2+)), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1-25 variant, was ∼7-fold stronger with 0.15 mM Mn(2+) than with Mg(2+). The results indicate that the R96G variation severely impairs most of the Mg(2+)- and Mn(2+)-dependent TLS abilities of pol ι, whereas the Δ1-25 variation selectively and substantially enhances the Mg(2+)-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences

  20. Microbial DNA fingerprinting of human fingerprints: dynamic colonization of fingertip microflora challenges human host inferences for forensic purposes.

    Science.gov (United States)

    Tims, Sebastian; van Wamel, Willem; Endtz, Hubert P; van Belkum, Alex; Kayser, Manfred

    2010-09-01

    Human fingertip microflora is transferred to touched objects and may provide forensically relevant information on individual hosts, such as on geographic origins, if endogenous microbial skin species/strains would be retrievable from physical fingerprints and would carry geographically restricted DNA diversity. We tested the suitability of physical fingerprints for revealing human host information, with geographic inference as example, via microbial DNA fingerprinting. We showed that the transient exogenous fingertip microflora is frequently different from the resident endogenous bacteria of the same individuals. In only 54% of the experiments, the DNA analysis of the transient fingertip microflora allowed the detection of defined, but often not the major, elements of the resident microflora. Although we found microbial persistency in certain individuals, time-wise variation of transient and resident microflora within individuals was also observed when resampling fingerprints after 3 weeks. While microbial species differed considerably in their frequency spectrum between fingerprint samples from volunteers in Europe and southern Asia, there was no clear geographic distinction between Staphylococcus strains in a cluster analysis, although bacterial genotypes did not overlap between both continental regions. Our results, though limited in quantity, clearly demonstrate that the dynamic fingerprint microflora challenges human host inferences for forensic purposes including geographic ones. Overall, our results suggest that human fingerprint microflora is too dynamic to allow for forensic marker developments for retrieving human information.

  1. Non-B DNA-forming sequences and WRN deficiency independently increase the frequency of base substitution in human cells

    DEFF Research Database (Denmark)

    Bacolla, Albino; Wang, Guliang; Jain, Aklank

    2011-01-01

    determined non-B DNA-induced mutation frequencies and spectra in human U2OS osteosarcoma cells and assessed the role of WRN in isogenic knockdown (WRN-KD) cells using a supF gene mutation reporter system flanked by triplex- or Z-DNA-forming sequences. Although both non-B DNA and WRN-KD served to increase...

  2. The DNA Sequence And Comparative Analysis Of Human Chromosome5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, Steve; Gordon, Laurie A.; Scott, Duncan; Xie,Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black,Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan,Yee Man; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner,Kristen; Kimball, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou,Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar,Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Retterer, James; Rodriguez, Alex; Rogers,Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang,Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, SusanM.; Myers, Richard M.; Rubin, Edward M.

    2004-08-01

    Chromosome 5 is one of the largest human chromosomes and contains numerous intrachromosomal duplications, yet it has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding conservation with non-mammalian vertebrates, suggesting that they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-coding genes including the protocadherin and interleukin gene families. We also completely sequenced versions of the large chromosome-5-specific internal duplications. These duplications are very recent evolutionary events and probably have a mechanistic role in human physiological variation, as deletions in these regions are the cause of debilitating disorders including spinal muscular atrophy.

  3. DNA and other strands: the making of a human geneticist.

    Science.gov (United States)

    Rosenberg, Leon E

    2014-01-01

    This article--a mini-memoir--focuses on the first half of my half-century-long career as a human geneticist: its accidental beginnings; its early bad and then good fortunes at the National Institutes of Health; its serendipitous successes and career-making scientific productivity at Yale; and its incalculable fortuity in the form of the large number of talented and resourceful mentors, colleagues, postdoctoral fellows, graduate students, and technicians who worked with me. These years acted as a launchpad for positions of visibility and leadership that followed them. My personal odyssey, which began in Madison, Wisconsin, and meandered with no fixed plan to New York, Bethesda, New Haven, and Princeton, has offered me life views as a human and medical geneticist that are panoramic, splendid, and indelible. I doubt that many people have been as fortunate as I have been in the professional life I have lived--and continue to live.

  4. Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells

    Science.gov (United States)

    Quinet, Annabel; Martins, Davi Jardim; Vessoni, Alexandre Teixeira; Biard, Denis; Sarasin, Alain; Stary, Anne; Menck, Carlos Frederico Martins

    2016-01-01

    Ultraviolet-induced 6-4 photoproducts (6-4PP) and cyclobutane pyrimidine dimers (CPD) can be tolerated by translesion DNA polymerases (TLS Pols) at stalled replication forks or by gap-filling. Here, we investigated the involvement of Polη, Rev1 and Rev3L (Polζ catalytic subunit) in the specific bypass of 6-4PP and CPD in repair-deficient XP-C human cells. We combined DNA fiber assay and novel methodologies for detection and quantification of single-stranded DNA (ssDNA) gaps on ongoing replication forks and postreplication repair (PRR) tracts in the human genome. We demonstrated that Rev3L, but not Rev1, is required for postreplicative gap-filling, while Polη and Rev1 are responsible for TLS at stalled replication forks. Moreover, specific photolyases were employed to show that in XP-C cells, CPD arrest replication forks, while 6-4PP are responsible for the generation of ssDNA gaps and PRR tracts. On the other hand, in the absence of Polη or Rev1, both types of lesion block replication forks progression. Altogether, the data directly show that, in the human genome, Polη and Rev1 bypass CPD and 6-4PP at replication forks, while only 6-4PP are also tolerated by a Polζ-dependent gap-filling mechanism, independent of S phase. PMID:27095204

  5. Properties of human O/sup 6/-methylguanine-DNA methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Boulden, A.M.; Foote, R.S.; Mitra, S.

    1987-05-01

    The premutagenic base, O/sup 6/-methylguanine, is repaired in the DNA of both bacterial and mammalian cells by stoichiometric transfer of the methyl group to a protein cysteine residue. The human O/sup 6/-methylguanine-DNA methyltransferase has been extensively purified from placenta and partially characterized with respect to reaction kinetics, pH and temperature dependencies, and the effects of salt, metal ions, and DNA concentration. The methyl-transfer reaction has apparent second-order kinetics and an energy of activation, calculated from temperature-dependence studies, of approximately 18 kcal. The reaction rate is optimal at a pH of about 8.5. Chromatofocusing experiments indicate a pI of 6.2 for the methyltransferase. Like the E. coli and rodent methyltransferases, the human protein has no cofactor requirements. The reaction is significantly inhibited by physiological concentrations of NaCl. Both single- and double-stranded DNA also inhibit the reaction, presumably by nonspecific binding of the protein. Changes in the human methyltransferase due to its reaction with O/sup 6/-methylguanine were examined by chromatofocusing and binding to DNA-cellulose. The results were compared with those obtained in parallel experiments using purified methyltransferase from E. coli.

  6. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis.

    Science.gov (United States)

    Levring, Trine B; Kongsbak, Martin; Rode, Anna K O; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte Menné; Geisler, Carsten

    2015-09-08

    Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys2. Vice-versa, the GSH synthesis inhibitor L-buthionine-sulfoximine (BSO) and inhibition of Cys2 uptake with glutamate inhibited GSH and DNA synthesis in parallel. We further found that thioredoxin (Trx) can partly substitute for GSH during DNA synthesis. Finally, we show that GSH or Trx is required for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production of GSH, which in turn is required for optimal RNR-mediated deoxyribonucleotide synthesis and DNA replication.

  7. Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials.

    Science.gov (United States)

    Jin, Xia; Morgan, Cecilia; Yu, Xuesong; DeRosa, Stephen; Tomaras, Georgia D; Montefiori, David C; Kublin, James; Corey, Larry; Keefer, Michael C

    2015-05-11

    Plasmid DNA vaccines have been licensed for use in domesticated animals because of their excellent immunogenicity, but none have yet been licensed for use in humans. Here we report a retrospective analysis of 1218 healthy human volunteers enrolled in 10 phase I clinical trials in which DNA plasmids encoding HIV antigens were administered. Elicited T-cell immune responses were quantified by validated intracellular cytokine staining (ICS) stimulated with HIV peptide pools. HIV-specific binding and neutralizing antibody activities were also analyzed using validated assays. Results showed that, in the absence of adjuvants and boosting with alternative vaccines, DNA vaccines elicited CD8+ and CD4+ T-cell responses in an average of 13.3% (95% CI: 9.8-17.8%) and 37.7% (95% CI: 31.9-43.8%) of vaccine recipients, respectively. Three vaccinations (vs. 2) improved the proportion of subjects with antigen-specific CD8+ responses (p=0.02), as did increased DNA dosage (p=0.007). Furthermore, female gender and participants having a lower body mass index were independently associated with higher CD4+ T-cell response rate (p=0.001 and p=0.008, respectively). These vaccines elicited minimal neutralizing and binding antibody responses. These findings of the immunogenicity of HIV DNA vaccines in humans can provide guidance for future clinical trials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project.

    Directory of Open Access Journals (Sweden)

    Vardhman K Rakyan

    2004-12-01

    Full Text Available The Human Epigenome Project aims to identify, catalogue, and interpret genome-wide DNA methylation phenomena. Occurring naturally on cytosine bases at cytosine-guanine dinucleotides, DNA methylation is intimately involved in diverse biological processes and the aetiology of many diseases. Differentially methylated cytosines give rise to distinct profiles, thought to be specific for gene activity, tissue type, and disease state. The identification of such methylation variable positions will significantly improve our understanding of genome biology and our ability to diagnose disease. Here, we report the results of the pilot study for the Human Epigenome Project entailing the methylation analysis of the human major histocompatibility complex. This study involved the development of an integrated pipeline for high-throughput methylation analysis using bisulphite DNA sequencing, discovery of methylation variable positions, epigenotyping by matrix-assisted laser desorption/ionisation mass spectrometry, and development of an integrated public database available at http://www.epigenome.org. Our analysis of DNA methylation levels within the major histocompatibility complex, including regulatory exonic and intronic regions associated with 90 genes in multiple tissues and individuals, reveals a bimodal distribution of methylation profiles (i.e., the vast majority of the analysed regions were either hypo- or hypermethylated, tissue specificity, inter-individual variation, and correlation with independent gene expression data.

  9. Isolation of PCR ready-human DNA using copper nanoparticles from skeletal remains.

    Science.gov (United States)

    Lodha, Anand; Ansari, Niha; Shah, Shahil; Rao, M V; Menon, Shobhana K

    2017-01-01

    Present study represents a novel approach of PCR ready-human DNA extraction method from skeletal remains using copper nanoparticles (CuNPs) for personnel identification. To achieve rapid, cost effective, sensitive and non-hazardous method for DNA extraction we utilized CuNPs synthesized using microwave. The applicability of this approach was first tested in blood samples and afterwards, this system was extended to skeletal remains' samples also. This method yields good quality DNA that are ready for PCR reactions from small quantities of blood and skeletal remains. Consequently, even small quantities of nanoparticles could be potentially utilized for a highly efficient isolation of DNA from skeletal remains as well as from ancient archaeological samples. The present method has the advantages that it is quick with high yield, inexpensive, robust, environment friendly and does not require use of hazardous organic solvents. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Human leukocyte telomere length is associated with DNA methylation levels in multiple subtelomeric and imprinted loci.

    Science.gov (United States)

    Buxton, Jessica L; Suderman, Matthew; Pappas, Jane J; Borghol, Nada; McArdle, Wendy; Blakemore, Alexandra I F; Hertzman, Clyde; Power, Christine; Szyf, Moshe; Pembrey, Marcus

    2014-05-14

    In humans, leukocyte telomere length (LTL) is positively correlated with lifespan, and shorter LTL is associated with increased risk of age-related disease. In this study we tested for association between telomere length and methylated cytosine levels. Measurements of mean telomere length and DNA methylation at >450,000 CpG sites were obtained for both blood (N = 24) and EBV-transformed cell-line (N = 36) DNA samples from men aged 44-45 years. We identified 65 gene promoters enriched for CpG sites at which methylation levels are associated with leukocyte telomere length, and 36 gene promoters enriched for CpG sites at which methylation levels are associated with telomere length in DNA from EBV-transformed cell-lines. We observed significant enrichment of positively associated methylated CpG sites in subtelomeric loci (within 4 Mb of the telomere) (P telomere length, DNA methylation and gene expression in health and disease.

  11. Human transcriptional coactivator PC4 stimulates DNA end joining and activates DSB repair activity.

    Science.gov (United States)

    Batta, Kiran; Yokokawa, Masatoshi; Takeyasu, Kunio; Kundu, Tapas K

    2009-01-23

    Human transcriptional coactivator PC4 is a highly abundant nuclear protein that is involved in diverse cellular processes ranging from transcription to chromatin organization. Earlier, we have shown that PC4, a positive activator of p53, overexpresses upon genotoxic insult in a p53-dependent manner. In the present study, we show that PC4 stimulates ligase-mediated DNA end joining irrespective of the source of DNA ligase. Pull-down assays reveal that PC4 helps in the association of DNA ends through its C-terminal domain. In vitro nonhomologous end-joining assays with cell-free extracts show that PC4 enhances the joining of noncomplementary DNA ends. Interestingly, we found that PC4 activates double-strand break (DSB) repair activity through stimulation of DSB rejoining in vivo. Together, these findings demonstrate PC4 as an activator of nonhomologous end joining and DSB repair activity.

  12. Universal spectrum for DNA base C+G frequency distribution in Human chromosomes 1 to 24

    CERN Document Server

    Selvam, A M

    2007-01-01

    Power spectra of human DNA base C+G frequency distribution in all available contiguous sections exhibit the universal inverse power law form of the statistical normal distribution for the 24 chromosomes. Inverse power law form for power spectra of space-time fluctuations is generic to dynamical systems in nature and indicate long-range space-time correlations. A recently developed general systems theory predicts the observed non-local connections as intrinsic to quantumlike chaos governing space-time fluctuations of dynamical systems. The model predicts the following. (1) The quasiperiodic Penrose tiling pattern for the nested coiled structure of the DNA molecule in the chromosome resulting in maximum packing efficiency. (2) The DNA molecule functions as a unified whole fuzzy logic network with ordered two-way signal transmission between the coding and non-coding regions. Recent studies indicate influence of non-coding regions on functions of coding regions in the DNA molecule.

  13. Human SIRT6 promotes DNA end resection through CtIP deacetylation

    DEFF Research Database (Denmark)

    Kaidi, Abderrahmane; Weinert, Brian T; Choudhary, Chunaram

    2010-01-01

    SIRT6 belongs to the sirtuin family of protein lysine deacetylases, which regulate aging and genome stability. We found that human SIRT6 has a role in promoting DNA end resection, a crucial step in DNA double-strand break (DSB) repair by homologous recombination. SIRT6 depletion impaired...... the accumulation of replication protein A and single-stranded DNA at DNA damage sites, reduced rates of homologous recombination, and sensitized cells to DSB-inducing agents. We identified the DSB resection protein CtIP [C-terminal binding protein (CtBP) interacting protein] as a SIRT6 interaction partner...... and showed that SIRT6-dependent CtIP deacetylation promotes resection. A nonacetylatable CtIP mutant alleviated the effect of SIRT6 depletion on resection, thus identifying CtIP as a key substrate by which SIRT6 facilitates DSB processing and homologous recombination. These findings further clarify how SIRT6...

  14. In vitro incubation of human spermatozoa promotes reactive oxygen species generation and DNA fragmentation.

    Science.gov (United States)

    Cicaré, J; Caille, A; Zumoffen, C; Ghersevich, S; Bahamondes, L; Munuce, M J

    2015-10-01

    The aim of this study was to investigate the oxidative process associated with sperm capacitation and its impact on DNA fragmentation and sperm function. Redox activity and lipid peroxidation were analysed in human spermatozoa after 3, 6 and 22 h of incubation in Ham's F10 medium plus bovine albumin at 37° and 5% CO2 for capacitation. DNA status, tyrosine phosphorylation pattern and induced acrosome reaction were evaluated after capacitating conditions. At 22 h of incubation, there was a significant (P DNA fragmentation. These results indicate that when spermatozoa are incubated for several hours (22 h), a common practice in assisted reproductive techniques, an increase in oxidative sperm metabolism and in the proportion of fragmented DNA should be expected. However, there was no effect on any of the other functional parameters associated with sperm fertilising capacity. © 2014 Blackwell Verlag GmbH.

  15. DNA fragmentation induced by Fe ions in human cells: shielding influence on spatially correlated damage

    Science.gov (United States)

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M. A.

    2004-01-01

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  16. DNA repair enhancement of aqueous extracts of Uncaria tomentosa in a human volunteer study.

    Science.gov (United States)

    Sheng, Y; Li, L; Holmgren, K; Pero, R W

    2001-07-01

    The Uncaria tomentosa water extracts (C-Med-100) have been shown to enhance DNA repair, mitogenic response and leukocyte recovery after chemotherapy-induced DNA damage in vivo. In this study, the effect of C-Med-100 supplement was evaluated in a human volunteer study. Twelve apparently healthy adults working in the same environment were randomly assigned into 3 groups with age and gender matched. One group was daily supplemented with a 250 mg tablet containing an aqueous extract of Uncaria tomentosa of C-Med-100, and another group with a 350 mg tablet, for 8 consecutive weeks. DNA repair after induction of DNA damage by a standard dose of hydrogen peroxide was measured 3 times before supplement and 3 times after the supplement for the last 3 weeks of the 8 week-supplement period. There were no drug-related toxic responses to C-Med-100 supplement when judged in terms of clinical symptoms, serum clinical chemistry, whole blood analysis and leukocyte differential counts. There was a statistically significant decrease of DNA damage and a concomitant increase of DNA repair in the supplement groups (250 and 350 mg/day) when compared with non-supplemented controls (p < 0.05). There was also an increased tendency of PHA induced lymphocyte proliferation in the treatment groups. Taken together, this trial has confirmed the earlier results obtained in the rat model when estimating DNA repair enhancement by C-Med-100.

  17. Toenails as an alternative source material for the extraction of DNA from decomposed human remains.

    Science.gov (United States)

    Schlenker, Andrew; Grimble, Katelyn; Azim, Arani; Owen, Rebecca; Hartman, Dadna

    2016-01-01

    The DNA identification of decomposed human remains for coronial investigations at the Victorian Institute of Forensic Medicine routinely requires the retrieval and processing of a bone sample obtained from the deceased. Bone is a difficult sample type to work with as it requires surgical removal from the deceased, refrigerated storage, and additional processing steps prior to DNA analysis in comparison to other samples types such as buccal swabs or blood stains. In an attempt to overcome the issues posed by bone, a DNA extraction method utilising toenails as an alternate source material was optimised and trialled. Two DNA extraction methods were optimised for digestion of toenail material, with the method utilising the QIAGEN DNA Investigator Kit selected for a casework trial. Single source DNA profiles, matching those of the conventional samples taken, were obtained for toenail samples collected from 28 of 30 coronial cases available for this study. Of these, 26 toenail samples produced full profiles. Although the overall DNA profile quality from the toenails was less than that of the conventional sample, the profiles from toenails met the reporting requirements for identification. Based on the results obtained, the Victorian Institute of Forensic Medicine will be implementing toenails as the primary sample type for collection from decomposed remains when blood is not a suitable sample type. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  18. RESTRICTION ENDONUCLEASE ANALYSIS OF MITOCHONDRIAL DNA FROM HUMAN LUNG ADENOCARCINOMA CELL LINE SPC-A-1

    Institute of Scientific and Technical Information of China (English)

    HU Yide; QIAN Guisheng; CHEN Weizhong; LI Shuping; WANG Guansong; MAO Baoling

    1999-01-01

    Objective: To understand the role of mitochondrial DNA (mtDNA) in carcinogenesis. Methods: single-step method was used to isolate the mtDNA from human lung adenocarcinoma cell line SPC-A-1. The mtDNA was analyzed by restriction fragment length polymorphism (RFLP) with 11 kinds of restriction endonuclease, which were Pvu Ⅱ, Xho Ⅰ, Pst Ⅰ, EcoR Ⅰ,BstE Ⅱ, Hind Ⅲ, Hpa Ⅰ, Bcl Ⅰ, EcoR Ⅴ, Sca Ⅰ and Xba Ⅰ.Restriction map of mtDNA from SPC-A-1 cell was obtained by the single and double-digestion method.Results: It was found that no variation at 32 restrictionsites could be detected in the coding region of mtDNA from SPC-A-1 cell line. But a new site was found at nucleotide 16276 (EcoR Ⅴ) within the noncoding region.Conclusion: These results indicate that the primary structure of gene coding region of mtDNA isolated from SPC-A-1 cell is highly stable. While the major variation of nucleotide is probably located in the noncoding region.

  19. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene

    Energy Technology Data Exchange (ETDEWEB)

    Kouzarides, T.; Bankier, A.T.; Satchwell, S.C.; Weston, K.; Tomlinson, P.; Barrell, B.G.

    1987-01-01

    DNA sequence analysis has revealed that the gene coding for the human cytomegalovirus (HCMV) DNA polymerase is present within the long unique region of the virus genome. Identification is based on extensive amino acid homology between the predicted HCMV open reading frame HFLF2 and the DNA polymerase of herpes simplex virus type 1. The authors present here a 5280 base-pair DNA sequence containing the HCMV pol gene, along with the analysis of transcripts encoded within this region. Since HCMV pol also shows homology to the predicted Epstein-Barr virus pol, they were able to analyze the extent of homology between the DNA polymerases of three distantly related herpes viruses, HCMV, Epstein-Barr virus, and herpes simplex virus. The comparison shows that these DNA polymerases exhibit considerable amino acid homology and highlights a number of highly conserved regions; two such regions show homology to sequences within the adenovirus type 2 DNA polymerase. The HCMV pol gene is flanked by open reading frames with homology to those of other herpes viruses; upstream, there is a reading frame homologous to the glycoprotein B gene of herpes simplex virus type I and Epstein-Barr virus, and downstream there is a reading frame homologous to BFLF2 of Epstein-Barr virus.

  20. Human Holliday junction resolvase GEN1 uses a chromodomain for efficient DNA recognition and cleavage.

    Science.gov (United States)

    Lee, Shun-Hsiao; Princz, Lissa Nicola; Klügel, Maren Felizitas; Habermann, Bianca; Pfander, Boris; Biertümpfel, Christian

    2015-12-18

    Holliday junctions (HJs) are key DNA intermediates in homologous recombination. They link homologous DNA strands and have to be faithfully removed for proper DNA segregation and genome integrity. Here, we present the crystal structure of human HJ resolvase GEN1 complexed with DNA at 3.0 Å resolution. The GEN1 core is similar to other Rad2/XPG nucleases. However, unlike other members of the superfamily, GEN1 contains a chromodomain as an additional DNA interaction site. Chromodomains are known for their chromatin-targeting function in chromatin remodelers and histone(de)acetylases but they have not previously been found in nucleases. The GEN1 chromodomain directly contacts DNA and its truncation severely hampers GEN1's catalytic activity. Structure-guided mutations in vitro and in vivo in yeast validated our mechanistic findings. Our study provides the missing structure in the Rad2/XPG family and insights how a well-conserved nuclease core acquires versatility in recognizing diverse substrates for DNA repair and maintenance.

  1. Recombinant human MDM2 oncoprotein shows sequence composition selectivity for binding to both RNA and DNA.

    Science.gov (United States)

    Challen, Christine; Anderson, John J; Chrzanowska-Lightowlers, Zofia M A; Lightowlers, Robert N; Lunec, John

    2012-03-01

    MDM2 is a 90 kDa nucleo-phosphoprotein that binds p53 and other proteins contributing to its oncogenic properties. Its structure includes an amino proximal p53 binding site, a central acidic domain and a carboxy region which incorporates Zinc and Ring Finger domains suggestive of nucleic acid binding or transcription factor function. It has previously been reported that a bacculovirus expressed MDM2 protein binds RNA in a sequence-specific manner through the Ring Finger domain, however, its ability to bind DNA has yet to be examined. We report here that a bacterially expressed human MDM2 protein binds both DNA as well as the previously defined RNA consensus sequence. DNA binding appears selective and involves the carboxy-terminal domain of the molecule. RNA binding is inhibited by an MDM2 specific antibody, which recognises an epitope within the carboxy region of the protein. Selection cloning and sequence analysis of MDM2 DNA binding sequences, unlike RNA binding sequences, revealed no obvious DNA binding consensus sequence, but preferential binding to oligopurine:pyrimidine-rich stretches. Our results suggest that the observed preferential DNA binding may occur through the Zinc Finger or in a charge-charge interaction through the Ring Finger, thereby implying potentially different mechanisms for DNA and RNA MDM2 binding.

  2. Interaction study of ciprofloxacin with human telomeric DNA by spectroscopy and molecular docking

    Science.gov (United States)

    Li, Huihui; Bu, Xiaoyang; Lu, Jia; Xu, Chongzheng; Wang, Xianlong; Yang, Xiaodi

    2013-04-01

    The interaction of ciprofloxacin (CIP) with human telomeric DNA was studied in vitro using multi-spectroscopy and molecular modeling methods. The hypochromic effect with a red shift in ultraviolet (UV) absorption indicated the occurrence of the interaction between CIP and DNA. The fluorescence quenching of CIP was observed with the addition of DNA and was proved to be the static quenching. The binding constant was found to be 9.62 × 104 L mol-1. Electrospray ionization mass spectrometry (ESI-MS) result further confirmed the formation of 1:1 non-covalent complex between DNA and CIP. Combined with the UV melting results, circular dichroism (CD) results confirmed the existence of groove binding mode, as well as conformational changes of DNA. Molecular docking studies illustrated the visual display of the CIP binding to the GC region in the minor groove of DNA. Specific hydrogen bonds and van der Waals forces were demonstrated as main acting forces between CIP and guanine bases of DNA.

  3. A highly polymorphic locus in human DNA revealed by cosmid-derived probes.

    OpenAIRE

    Litt, M.; White, R. L.

    1985-01-01

    Human gene mapping would be greatly facilitated if marker loci with sufficient heterozygosity were generally available. As a source of such markers, we have used cosmids from a human genomic library. We have developed a rapid method for screening random cosmids to identify those that are homologous to genomic regions especially rich in restriction fragment length polymorphisms. This method allows whole cosmids to be used as probes against Southern transfers of genomic DNA; regions of cosmid p...

  4. Human Vascular Endothelial Growth Factor cDNA Cloning and Expression in Osteoblasts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Human vascular endothelial growth factor (VEGF) cDNA was amplified by nested polymerase chain reaction method from the HL60 cells. Then a pCD-hVEGF165 recombinant plasmid was constructed. Rabbit osteoblasts were transfected with pCD-hVEGF165 plasmid by lipofectin mediated gene transfer. The transient expressive results were detected by immunohistochemical method. It was observed that the expression of human VEGF gene was detected 72 h after transfecting distinctly.

  5. DNA adducts in human tissues:biomarkers of exposure to carcinogens in tobacco smoke

    OpenAIRE

    Phillips, D.H.

    1996-01-01

    Tobacco smoking causes millions of cancer deaths annually. Tobacco smoke is a complex mixture of thousands of chemicals including many known animal carcinogens. Because many carcinogens from DNA adducts in target animal or human tissues, the detection of the formation of adducts using such methods as postlabeling, immunoassay, fluorescence spectroscopy, and mass spectrometry is a means of monitoring human exposure to tobacco carcinogens. Smokers are at increased risk of cancer in many organs,...

  6. Structural Insight into Processive Human Mitochondrial DNA Synthesis and Disease-Related Polymerase Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Sam; Kennedy, W. Dexter; Yin, Y. Whitney; (Texas)

    2010-09-07

    Human mitochondrial DNA polymerase (Pol {gamma}) is the sole replicase in mitochondria. Pol {gamma} is vulnerable to nonselective antiretroviral drugs and is increasingly associated with mutations found in patients with mitochondriopathies. We determined crystal structures of the human heterotrimeric Pol {gamma} holoenzyme and, separately, a variant of its processivity factor, Pol {gamma}B. The holoenzyme structure reveals an unexpected assembly of the mitochondrial DNA replicase where the catalytic subunit Pol {gamma}A interacts with its processivity factor primarily via a domain that is absent in all other DNA polymerases. This domain provides a structural module for supporting both the intrinsic processivity of the catalytic subunit alone and the enhanced processivity of holoenzyme. The Pol {gamma} structure also provides a context for interpreting the phenotypes of disease-related mutations in the polymerase and establishes a foundation for understanding the molecular basis of toxicity of anti-retroviral drugs targeting HIV reverse transcriptase.

  7. Timing of human protein evolution as revealed by massively parallel capture of Neandertal nuclear DNA sequences

    Science.gov (United States)

    Burbano, Hernán A.; Hodges, Emily; Green, Richard E.; Briggs, Adrian W.; Krause, Johannes; Meyer, Matthias; Good, Jeffrey M.; Maricic, Tomislav; Johnson, Philipp L.F.; Xuan, Zhenyu; Rooks, Michelle; Bhattacharjee, Arindam; Brizuela, Leonardo; Albert, Frank W.; de la Rasilla, Marco; Fortea, Javier; Rosas, Antonio; Lachmann, Michael; Hannon, Gregory J.; Pääbo, Svante

    2010-01-01

    Whole genome shotgun sequencing is now possible for extinct organisms, as well as the targeted capture of specific regions. However, targeted resequencing of megabase sized parts of nuclear genomes has yet to be demonstrated for ancient DNA. Here we show that hybridization capture on microarrays can be used to generate large scale targeted data from Neandertal DNA even in the presence of ~99.8% microbial DNA. It is thus now possible to generate high quality data from large regions of the nuclear genome from Neandertals and other extinct organisms. Using this approach we have sequenced ~14,000 protein coding positions that have been inferred to have changed on the human lineage since the last common ancestor shared with chimpanzees. We identify 88 amino acid substitutions that have become fixed in all humans since the divergence from the Neandertals. PMID:20448179

  8. RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains

    DEFF Research Database (Denmark)

    Haas, Claus; Hanson, E; Anjos, M J;

    2014-01-01

    The European DNA Profiling Group (EDNAP) organized a fourth and fifth collaborative exercise on RNA/DNA co-analysis for body fluid identification and STR profiling. The task was to identify dried menstrual blood and vaginal secretion stains using specific RNA biomarkers, and additionally test 3...... housekeeping genes for their suitability as reference genes. Six menstrual blood and six vaginal secretion stains, two dilution series (1/4-1/64 pieces of a menstrual blood/vaginal swab) and, optionally, bona fide or mock casework samples of human or non-human origin were analyzed by 24 participating...... laboratories, using RNA extraction or RNA/DNA co-extraction methods. Two novel menstrual blood mRNA multiplexes were used: MMP triplex (MMP7, MMP10, MMP11) and MB triplex (MSX1, LEFTY2, SFRP4) in conjunction with a housekeeping gene triplex (B2M, UBC, UCE). Two novel mRNA multiplexes and a HBD1 singleplex were...

  9. Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, L.N.; Painter, R.B. (California Univ., San Francisco, CA (USA). Lab. of Radiobiology)

    1989-11-01

    SV40-transformed ataxia-telangiectasia (AT) cells were transfected with a cosmid containing a normal human DNA library and selectable marker, the neo gene, which endows successfully transformed mammalian cells with resistance to the antibiotic G418. Cells from this line were irradiated with 50 Gy of X-rays and fused with non-transfected AT cells. Among the G418-resistant colonies recovered was one stably resistant to radiation. Resistance to ionizing radiation of both primary transfectant line and its fusion derivative was intermediate between that of AT cells and normal cells, as assayed by colony-forming ability and measurement of radiation-induced G{sub 2} chromatic aberrations; both cell lines retained AT-like radioresistant DNA synthesis. Results suggest that, because radioresistance in transfected cells was not as great as in normal human cells, two hallmarks of AT, radiosensitivity and radioresistant DNA synthesis, may still be the result of a single defective AT gene. (author).

  10. Cloning and expression of full-length cDNA encoding human vitamin D receptor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, A.R.; McDonnell, D.P.; Hughes, M.; Crisp, T.M.; Mangelsdorf, D.J.; Haussler, M.R.; Pike, J.W.; Shine, J.; O' Malley, B.W. (California Biotechnology Inc., Mountain View (USA))

    1988-05-01

    Complementary DNA clones encoding the human vitamin D receptor have been isolated from human intestine and T47D cell cDNA libraries. The nucleotide sequence of the 4605-base pair (bp) cDNA includes a noncoding leader sequence of 115 bp, a 1281-bp open reading frame, and 3209 bp of 3{prime} noncoding sequence. Two polyadenylylation signals, AATAAA, are present 25 and 70 bp upstream of the poly(A) tail, respectively. RNA blot hybridization indicates a single mRNA species of {approx} 4600 bp. Transfection of the cloned sequences into COS-1 cells results in the production of a single receptor species indistinguishable from the native receptor. Sequence comparisons demonstrate that the vitamin D receptor belongs to the steroid-receptor gene family and is closest in size and sequence to another member of this family, the thyroid hormone receptor.

  11. Identification of putative human T cell receptor delta complementary DNA clones

    Energy Technology Data Exchange (ETDEWEB)

    Hata, S.; Brenner, M.B.; Krangel, M.S.

    1987-10-30

    A novel T cell receptor (TCR) subunit termed TCR delta, associated with TCY ..gamma.. and CD3 polypeptides, were recently found on a subpopulation of human T lymphocytes. T cell-specific complementary DNA clones present in a human TCR..gamma..delta T cell complementary DNA library were obtained and characterized in order to identify candidate clones encoding TCR delta. One cross-hybridizing group of clones detected transcripts that are expressed in lymphocytes bearing TCR ..gamma..delta but not in other T lymphocytes and are encoded by genes that are rearranged in TCR ..gamma..delta lymphocytes but deleted in other T lymphocytes. Their sequences indicate homology to the variable, joining, and constant elements of other TCR and immunoglobulin genes. These characteristics are strong evidence that the complementary DNA clones encode TCR delta.

  12. The RNA splicing factor ASF/SF2 inhibits human topoisomerase I mediated DNA relaxation

    DEFF Research Database (Denmark)

    Andersen, Félicie Faucon; Tange, Thomas Ø.; Sinnathamby, Thayaline;

    2002-01-01

    Human topoisomerase I interacts with and phosphorylates the SR-family of RNA splicing factors, including ASF/SF2, and has been suggested to play an important role in the regulation of RNA splicing. Here we present evidence to support the theory that the regulation can go the other way around...... with the SR-proteins controlling topoisomerase I DNA activity. We demonstrate that the splicing factor ASF/SF2 inhibits relaxation by interfering with the DNA cleavage and/or DNA binding steps of human topoisomerase I catalysis. The inhibition of relaxation correlated with the ability of various deletion...... extract reduced the inhibition of relaxation activity. Taken together with the previously published studies of the topoisomerase I kinase activity, these observations suggest that topoisomerase I activity is shifted from relaxation to kinasing by specific interaction with SR-splicing factors....

  13. Regulation of human clotting factor IX cDNA expression in transgenic mice

    Institute of Scientific and Technical Information of China (English)

    胡以平; 邱信芳; 薛京伦; 刘祖洞

    1995-01-01

    To study the expression of human dotting factor IX cDNA in transgenic mice,Which is an es-sential work on gene therapy for hemophilia B,3 recombinant constructions containing different lengths ofhuman dotting factor IX cDNA have been introduced into the cultured cells.All of the recombinant constructionswere found to he expressed well in vitro.They were then microinjected into the male pronudei of the fertilizedmouse eggs respectively for generating trahsgenic mice.Unfortunately,none of them was expressed in any transgenicmice.These results show that the expression of the human clotting factor IX cDNA in the transgenic mice canbe determined by cis regulatory element(s).As compared With the results from other related works,it is sug-gested that the cis regulatory element(s)is resided in the 5’-end non-coding region.

  14. Detection of acrolein-derived cyclic DNA adducts in human cells by monoclonal antibodies

    Science.gov (United States)

    Pan, Jishen; Awoyemi, Bisola; Xuan, Zhuoli; Vohra, Priya; Wang, Hsiang-Tsui; Dyba, Marcin; Greenspan, Emily; Fu, Ying; Creswell, Karen; Zhang, Lihua; Berry, Deborah; Tang, Moon-Shong; Chung, Fung-Lung

    2013-01-01

    Acrolein (Acr) is a ubiquitous environmental pollutant found in cigarette smoke and automobile exhaust. It can also be produced endogenously by oxidation of polyunsaturated fatty acids. The Acr-derived 1,N2-propanodeoxyguanosine (Acr-dG) adducts in DNA are mutagenic lesions that are potentially involved in human cancers. In this study, monoclonal antibodies were raised against Acr-dG adducts and characterized using ELISA. They showed strong reactivity and specificity towards Acr-dG, weaker reactivity towards crotonaldehyde- and trans-4-hydroxy-2-nonenal-derived 1,N2-propanodeoxyguanosines, and weak or no reactivity towards 1,N6-ethenodeoxyadenosine and 8-oxo-deoxyguanosine. Using these novel antibodies, we developed assays to detect Acr-dG in vivo: First, a simple and quick FACS-based assay for detecting these adducts directly in cells; Second, a highly sensitive direct ELISA assay for measuring Acr-dG in DNA of cells and tissues using only one μg DNA without DNA digestion and sample enrichment; And third, a competitive ELISA for better quantitative measurement of Acr-dG levels in DNA samples. The assays were validated using Acr-treated HT29 cell DNA samples or calf thymus DNA and the results were confirmed by LC-MS/MS-MRM. An immunohistochemical assay was also developed to detect and visualize Acr-dG in HT29 cells as well as in human oral cells. These antibody-based methods provide useful tools for the studies of Acr-dG as a cancer biomarker and of the molecular mechanisms by which cells respond to Acr-dG as a ubiquitous DNA lesion. PMID:23126278

  15. The novel quinolone CHM-1 induces DNA damage and inhibits DNA repair gene expressions in a human osterogenic sarcoma cell line.

    Science.gov (United States)

    Chen, Hung-Yi; Lu, Hsu-Feng; Yang, Jai-Sing; Kuo, Sheng-Chu; Lo, Chyi; Yang, Mei-Due; Chiu, Tsan-Hung; Chueh, Fu-Shin; Ho, Heng-Chien; Ko, Yang-Ching; Chung, Jing-Gung

    2010-10-01

    20-Fluoro-6,7-methylenedioxy-2-phenyl-4-quino-lone (CHM-1) has been reported to induce cell cycle arrest and apoptosis in many types of cancer cells. However, there is no available information to show CHM-1 affecting DNA damage and expression of associated repair genes. Herein, we investigated whether or not CHM-1 induced DNA damage and affected DNA repair gene expression in U-2 OS human osterogenic sarcoma cells. The comet assay showed that incubation of U-2 OS cells with 0, 0.75, 1.5, 3 and 6 μM of CHM-1 led to a longer DNA migration smear (comet tail). DNA gel electrophoresis showed that 3 μM of CHM-1 for 24 and 48 h treatment induced DNA fragmentation in U-2 OS cells. Real-time PCR analysis showed that treatment with 3 μM of CHM-1 for 24 h reduced the mRNA expression levels of ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR), breast cancer 1, early onset (BRCA1), 14-3-3sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK) and O(6)-methylguanine-DNA methyltransferase (MGMT) genes in a time-dependent manner. Taken together, the results indicate that CHM-1 caused DNA damage and reduced DNA repair genes in U-2 OS cells, which may be the mechanism for CHM-1-inhibited cell growth and induction of apoptosis.

  16. Construction of cDNA representational difference analysis based on two cDNA libraries and identification of garlic inducible expression genes in human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yong Li; Lin Yang; Jian-Tao Cui; Wen-Mei Li; Rui-Fang Guo; You-Yong Lu

    2002-01-01

    AIM: To elucidate molecular mechanism of chemopreventiveefficacies of garlic against human gastric cancer (HGC):METHODS: HGC cell line BGC823 was treated with Allitridi (akind of garlic extract) and Allitridi-treated and parentalBGC823 cDNA librarles were constructed respectively byusing λZAP Ⅱ vector. cDNA Representatinal DifferenceAnalysis (cDNA RDA) was perfonmed using BamH Ⅰ cutting-site and abundant ~DNA messages provided by the Iibrarles.Northern blot analysls was applied to identifythe obtaineddifference prnducts.RESULTS: Two specific cDNA fragments were obtained andcharacterized to be derived from homo sapiens folatereceptorα (FRα) gene and calcyclin gene respectively.Northern blot results showed a 4-fold increase in FRα geneexpression level and 9-fold increase in calcyclin mRNA levelin BGC823 cells after Allilridi treatment for 72 h.CONCLUSION: The method of cDNA RDA based on cDNAlibraries combines the high specificity of cDNA RDA withabundant cDNA messages in cDNA library; this expands theapplication of cDNA library and increases the specificity ofcDNA RDA. Up-regulstion of FRα gene and calcyclin geneexpressions induced by Allitridi provide valuable molecularevidence for theefficacy of garlic in treating HGC as well asother diseases.

  17. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation.

    Science.gov (United States)

    Korzeneva, Inna B; Kostuyk, Svetlana V; Ershova, Liza S; Osipov, Andrian N; Zhuravleva, Veronika F; Pankratova, Galina V; Porokhovnik, Lev N; Veiko, Natalia N

    2015-09-01

    The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism's cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1×Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab DNA and TM values may provide the information about the human organism's cell resistivity to chronic exposure to the low-dose IR and about the development of the adaptive response in the organism that is aimed, firstly, at the effective cfDNA elimination from the blood circulation, and, secondly - at survival of the cells, including the cells with the damaged DNA. Copyright © 2015. Published by Elsevier B.V.

  18. The DNA sequence of the human X chromosome

    OpenAIRE

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L; Jennifer L Ashurst; Fulton, Robert S.

    2005-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a...

  19. Human parvovirus B19: a mechanistic overview of infection and DNA replication

    Science.gov (United States)

    Luo, Yong; Qiu, Jianming

    2015-01-01

    Human parvovirus B19 (B19V) is a human pathogen that belongs to genus Erythroparvovirus of the Parvoviridae family, which is composed of a group of small DNA viruses with a linear single-stranded DNA genome. B19V mainly infects human erythroid progenitor cells and causes mild to severe hematological disorders in patients. However, recent clinical studies indicate that B19V also infects nonerythroid lineage cells, such as myocardial endothelial cells, and may be associated with other disease outcomes. Several cell culture systems, including permissive and semipermissive erythroid lineage cells, nonpermissive human embryonic kidney 293 cells and recently reported myocardial endothelial cells, have been used to study the mechanisms underlying B19V infection and B19V DNA replication. This review aims to summarize recent advances in B19V studies with a focus on the mechanisms of B19V tropism specific to different cell types and the cellular pathways involved in B19V DNA replication including cellular signaling transduction and cell cycle arrest. PMID:26097496

  20. CRITERIA FOR AN UPDATED CLASSIFICATION OF HUMAN TRANSCRIPTION FACTOR DNA-BINDING DOMAINS

    NARCIS (Netherlands)

    Wingender, Edgar

    2013-01-01

    By binding to cis-regulatory elements in a sequence-specific manner, transcription factors regulate the activity of nearby genes. Here, we discuss the criteria for a comprehensive classification of human TFs based on their DNA-binding domains. In particular, classification of basic leucine zipper (b

  1. CRITERIA FOR AN UPDATED CLASSIFICATION OF HUMAN TRANSCRIPTION FACTOR DNA-BINDING DOMAINS

    NARCIS (Netherlands)

    Wingender, Edgar

    By binding to cis-regulatory elements in a sequence-specific manner, transcription factors regulate the activity of nearby genes. Here, we discuss the criteria for a comprehensive classification of human TFs based on their DNA-binding domains. In particular, classification of basic leucine zipper

  2. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome.

    NARCIS (Netherlands)

    Weber, M.; Hellmann, I.; Stadler, M.B.; Ramos, L.; Paabo, S.; Rebhan, M.; Schubeler, D.

    2007-01-01

    To gain insight into the function of DNA methylation at cis-regulatory regions and its impact on gene expression, we measured methylation, RNA polymerase occupancy and histone modifications at 16,000 promoters in primary human somatic and germline cells. We find CpG-poor promoters hypermethylated in

  3. DNA double-strand break rejoining in human follicular lymphoma and glioblastoma tumor cells

    NARCIS (Netherlands)

    Macann, AMJ; Britten, RA; Poppema, S; Pearcey, R; Rosenberg, E; Allalunis-Turner, MJ; Murray, D

    2000-01-01

    Follicle center cell lymphoma is among the most radioresponsive of human cancers. To assess whether this radioresponsiveness might be a result of a compromised ability of the tumor cells to accomplish the biologically-effective repair of DNA double-strand breaks (DSBs), we have measured i) the exten

  4. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles.

    Directory of Open Access Journals (Sweden)

    Robert A Waterland

    Full Text Available Throughout most of the mammalian genome, genetically regulated developmental programming establishes diverse yet predictable epigenetic states across differentiated cells and tissues. At metastable epialleles (MEs, conversely, epigenotype is established stochastically in the early embryo then maintained in differentiated lineages, resulting in dramatic and systemic interindividual variation in epigenetic regulation. In the mouse, maternal nutrition affects this process, with permanent phenotypic consequences for the offspring. MEs have not previously been identified in humans. Here, using an innovative 2-tissue parallel epigenomic screen, we identified putative MEs in the human genome. In autopsy samples, we showed that DNA methylation at these loci is highly correlated across tissues representing all 3 embryonic germ layer lineages. Monozygotic twin pairs exhibited substantial discordance in DNA methylation at these loci, suggesting that their epigenetic state is established stochastically. We then tested for persistent epigenetic effects of periconceptional nutrition in rural Gambians, who experience dramatic seasonal fluctuations in nutritional status. DNA methylation at MEs was elevated in individuals conceived during the nutritionally challenged rainy season, providing the first evidence of a permanent, systemic effect of periconceptional environment on human epigenotype. At MEs, epigenetic regulation in internal organs and tissues varies among individuals and can be deduced from peripheral blood DNA. MEs should therefore facilitate an improved understanding of the role of interindividual epigenetic variation in human disease.

  5. Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA

    DEFF Research Database (Denmark)

    Cowell, G M; Kønigshøfer, E; Danielsen, E M

    1988-01-01

    The complete primary structure (967 amino acids) of an intestinal human aminopeptidase N (EC 3.4.11.2) was deduced from the sequence of a cDNA clone. Aminopeptidase N is anchored to the microvillar membrane via an uncleaved signal for membrane insertion. A domain constituting amino acid 250...

  6. Cloning and characterization of the human DNA-excision repair gene ERCC-1

    NARCIS (Netherlands)

    M. van Duin (Michel)

    1988-01-01

    textabstractIt is the aim of the work described in this thesis to isolate and characterize human genes involved DNA excision repair. This will facilitate the understanding of the mechanism of this repair process whereas it also provides an important step to better understand the relationship

  7. Localization of rDNA in small, nucleolus-like structures in human diplotene oocyte nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Wolgemuth-Jarashow, D.J.; Jagiello, G.M.; Henderson, A.S.

    1977-01-01

    Small, nucleolus-like structures were demonstrated in the nuclei of human diplotene oocytes. At least some of these bodies were shown to be true micronucleoli by virtue of their ability to bind rRNA during RNA-DNA hybridization in situ.

  8. ORGANIC AND INORGANIC ARSENICALS SENSITIZE HUMAN BRONCHIAL EPITHELIAL CELLS TO HYDROGEN PEROXIDE-INDUCED DNA DAMAGE

    Science.gov (United States)

    The lungs are a target organ for arsenic carcinogenesis, however, its mechanism of action remains unclear. Furthermore, it has been suggested that inorganic arsenic (iAs) can potentiate DNA damage induced by other agents. Once inside the human body iAs generally undergoes two ...

  9. Cloning and characterization of the human DNA-excision repair gene ERCC-1

    NARCIS (Netherlands)

    M. van Duin (Michel)

    1988-01-01

    textabstractIt is the aim of the work described in this thesis to isolate and characterize human genes involved DNA excision repair. This will facilitate the understanding of the mechanism of this repair process whereas it also provides an important step to better understand the relationship between

  10. UV-stimulation of DNA-mediated transformation of human cells.

    NARCIS (Netherlands)

    M. van Duin (Mark); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1985-01-01

    textabstractIrradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells (complementation groups A and F), which are defic

  11. Comparative DNA damage and transcriptomic effects of engineered nanoparticles in human lung cells in vitro

    Science.gov (United States)

    A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), various types of DNA damage, and transcriptional changes in human respiratory BEAS-2B cells exposed in vitro at se...

  12. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage

    DEFF Research Database (Denmark)

    Maynard, Scott; Swistowska, Anna Maria; Lee, Jae Wan

    2008-01-01

    fibroblasts (WI-38, hs27) and, with the exception of UV-C damage, HeLa cells. Microarray gene expression analysis showed that mRNA levels of several DNA repair genes are elevated in human embryonic stem cells compared with their differentiated forms (embryoid bodies). These data suggest that genomic...

  13. Northern and Southern blot analysis of human RNA and DNA in autopsy material

    DEFF Research Database (Denmark)

    Larsen, S; Rygaard, K; Asnaes, S

    1992-01-01

    Fresh biopsy material for molecular biological investigations is not obtainable from all relevant normal human tissues. We studied the feasibility of using RNA and DNA from autopsies for Northern and Southern blot analysis. Tissue samples from seven organs were obtained from 10 autopsies performed...

  14. Undetected human papillomavirus DNA and uterine cervical carcinoma. Association with cancer recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Okuma, Kae; Yamashita, Hideomi; Nakagawa, Keiichi [University of Tokyo Hospital, Departments of Radiology, Tokyo (Japan); Yokoyama, Terufumi; Kawana, Kei [University of Tokyo Hospital, Departments Obstetrics and Gynecology, Tokyo (Japan)

    2016-01-15

    The time course of human papillomavirus (HPV) DNA clearance was studied in patients with carcinoma of the cervix during follow-up after primary radical radiotherapy (RT). This study investigated the relationship between timing of HPV clearance and RT effectiveness. A total of 71 consecutive patients who were treated for cervical cancer with primary radical radiotherapy and high-dose rate intracavitary brachytherapy with or without chemotherapy were enrolled in the study. Samples for HPV DNA examination were taken before (1) treatment, (2) every brachytherapy, and (3) every follow-up examination. The times when HPV DNA was undetected were analyzed for association with recurrence-free survival. HPV DNA was not detected in 13 patients (18 %) before RT. Of the 58 patients with HPV DNA detected before treatment, HPV DNA was not detected in 34 % during treatment and in 66 % after the treatment. Within 6 months after RT, HPV DNA was detected in 0 % of all patients. The patients were followed up for a median period of 43 months (range 7-70 months). In all, 20 patients were found to develop recurrence. The 3-year cumulative disease-free survival (DFS) rate was 71 ± 5.4 % for all 71 patients. In multivariate analysis, DFS was significantly associated with HPV (detected vs. not detected) with a hazard ratio of 0.07 (95 % confidence interval 0.008-0.6, p = 0.009). In this study, patients in whom HPV was not detected had the worst prognosis. Six months after RT, HPV DNA was detected in 0 % of the patients. Patients in whom HPV DNA could not be detected before treatment need careful follow-up for recurrence and may be considered for additional, or alternative treatment. (orig.) [German] Gegenstand der Untersuchung war der Zeitverlauf der Eliminierung von humaner Papillomvirus-(HPV-)DNA bei Patienten mit Zervixkarzinomen waehrend der Nachfolgeuntersuchungen nach einer primaeren radikalen Strahlentherapie (RT). Diese Studie untersuchte den Zusammenhang zwischen dem Zeitpunkt der

  15. cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin (OPN)

    DEFF Research Database (Denmark)

    Young, M F; Kerr, J M; Termine, J D

    1990-01-01

    A human osteopontin (OP) cDNA was isolated from a library made from primary cultures of human bone cells. The distribution of osteopontin mRNA in human tissues was investigated by Northern analysis and showed that the human message was predominant in cultures of bone cells and in decidua cells...... osteopontin cDNA indicated that the gene is a single copy with an approximate length of 5.4-8.2 kb....

  16. DNA

    Science.gov (United States)

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  17. Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains

    NARCIS (Netherlands)

    J. Draus-Barini (Jolanta); S. Walsh (Susan); E. Pośpiech (Ewelina); T. Kupiec (Tomasz); H. Głab (Henryk); W. Branicki (Wojciech); M.H. Kayser (Manfred)

    2013-01-01

    textabstractBackground: DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing

  18. Characterization of human glioblastoma cell lines in vitro and their xenografts in nude mice by DNA fingerprinting

    DEFF Research Database (Denmark)

    Türeci, O; Fischer, H; Lagoda, P

    1990-01-01

    Human gliomas were grown as permanent tissue cultures and xenografts in nude mice. DNA fingerprint patterns from two human gliomas were established using two different hypervariable multilocus probes [( GTG]5 and 33.15). In general the cell lines investigated showed an overall stability in the DNA...

  19. Human topoisomerase IIIalpha is a single-stranded DNA decatenase that is stimulated by BLM and RMI1

    DEFF Research Database (Denmark)

    Yang, Jay; Bachrati, Csanad Z; Ou, Jiongwen

    2010-01-01

    Human topoisomerase IIIalpha is a type IA DNA topoisomerase that functions with BLM and RMI1 to resolve DNA replication and recombination intermediates. BLM, human topoisomerase IIIalpha, and RMI1 catalyze the dissolution of double Holliday junctions into noncrossover products via a strand...

  20. Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains

    NARCIS (Netherlands)

    J. Draus-Barini (Jolanta); S. Walsh (Susan); E. Pośpiech (Ewelina); T. Kupiec (Tomasz); H. Głab (Henryk); W. Branicki (Wojciech); M.H. Kayser (Manfred)

    2013-01-01

    textabstractBackground: DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing

  1. Characterization of human glioblastoma cell lines in vitro and their xenografts in nude mice by DNA fingerprinting

    DEFF Research Database (Denmark)

    Türeci, O; Fischer, H; Lagoda, P;

    1990-01-01

    Human gliomas were grown as permanent tissue cultures and xenografts in nude mice. DNA fingerprint patterns from two human gliomas were established using two different hypervariable multilocus probes [( GTG]5 and 33.15). In general the cell lines investigated showed an overall stability in the DNA...

  2. Cloning, expression and mapping of the full-length cDNA of human CCTβ subunit

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chaperonins assist the proper folding of target proteins without being a part of the substrates. The eukaryotic cytosolic chaperonin, CCT-Chaperonin Containing TCP-1 (tailless complex polypeptide-1), is mainly involved in the formation of cytoskeletal proteins and is essential for cell viability. Mammalian CCT is commonly a protein complex composed of 7-9 subunit species. We have isolated a novel full-length cDNA from human testis cDNA library. This cDNA of 1935 bp contains a 1605 bp open reading frame (ORF) encoding 535 amino acids (aa). The deduced protein of the cDNA is highly homologous to the CCTβ subunit of saccharomyces cerevisiae, schizosaccharomyces pombe, caenorhabditis elegans and mouse, etc. Especially high homology (97%) is found between the deduced protein and mouse CCTb. On the basis of such high homology, the protein encoded by the new gene was proposed to be a human CCTβ subunit. Northern hybridization showed that human CCTβ gene is expressed as a transcript of about 2.0 kb in various tissues. Overexpression was seen in testis with the expression level 3-24 times of those in other tissues. The CCTβ gene was mapped to human chromosome 12q14 by Radiation Hybrid Mapping. Through homologous search, the 5′-end of the cDNA sequence was found to share intermittent regional homology with the 3′-end of human genomic sequence (U91327). The genomic structure of the 5′-end of CCTβ was also described in detail through comparative analysis.

  3. Human cDNA mapping using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  4. Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis.

    Science.gov (United States)

    Saito, Yoshimasa; Kanai, Yae; Sakamoto, Michiie; Saito, Hidetsugu; Ishii, Hiromasa; Hirohashi, Setsuo

    2002-07-23

    DNA hypomethylation on pericentromeric satellite regions is an early and frequent event associated with heterochromatin instability during human hepatocarcinogenesis. A DNA methyltransferase, DNMT3b, is required for methylation on pericentromeric satellite regions during mouse development. To clarify the molecular mechanism underlying DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis, we examined mutations of the DNMT3b gene and mRNA expression levels of splice variants of DNMT3b in noncancerous liver tissues showing chronic hepatitis and cirrhosis, which are considered to be precancerous conditions, and in hepatocellular carcinomas (HCCs). Mutation of the DNMT3b gene was not found in HCCs. Overexpression of DNMT3b4, a splice variant of DNMT3b lacking conserved methyltransferase motifs IX and X, significantly correlated with DNA hypomethylation on pericentromeric satellite regions in precancerous conditions and HCCs (P = 0.0001). In particular, the ratio of expression of DNMT3b4 to that of DNMT3b3, which is the major splice variant in normal liver tissues and retains conserved methyltransferase motifs I, IV, VI, IX, and X, showed significant correlation with DNA hypomethylation (P = 0.009). Transfection of human epithelial 293 cells with DNMT3b4 cDNA induced DNA demethylation on satellite 2 in pericentromeric heterochromatin DNA. These results suggest that overexpression of DNMT3b4, which may lack DNA methyltransferase activity and compete with DNMT3b3 for targeting to pericentromeric satellite regions, results in DNA hypomethylation on these regions, even in precancerous stages, and plays a critical role in human hepatocarcinogenesis by inducing chromosomal instability.

  5. Tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can specifically target bacterial DNA ligases and can distinguish them from human DNA ligase I.

    Science.gov (United States)

    Yadav, Nisha; Khanam, Taran; Shukla, Ankita; Rai, Niyati; Hajela, Kanchan; Ramachandran, Ravishankar

    2015-05-21

    DNA ligases are critical components for DNA metabolism in all organisms. NAD(+)-dependent DNA ligases (LigA) found exclusively in bacteria and certain entomopoxviruses are drawing increasing attention as therapeutic targets as they differ in their cofactor requirement from ATP-dependent eukaryotic homologs. Due to the similarities in the cofactor binding sites of the two classes of DNA ligases, it is necessary to find determinants that can distinguish between them for the exploitation of LigA as an anti-bacterial target. In the present endeavour, we have synthesized and evaluated a series of tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives for their ability to distinguish between bacterial and human DNA ligases. The in vivo inhibition assays that employed LigA deficient E. coli GR501 and S. typhimurium LT2 bacterial strains, rescued by ATP-dependent T4 DNA ligase or Mycobacterium tuberculosis NAD(+)-dependent DNA ligase (Mtb LigA), respectively, showed that the compounds can specifically inhibit bacterial LigA. The in vitro enzyme inhibition assays using purified MtbLigA, human DNA ligase I & T4 DNA ligase showed specific inhibition of MtbLigA at low micromolar range. Our results demonstrate that tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can distinguish between bacterial and human DNA ligases by ∼5-folds. In silico docking and enzyme inhibition assays identified that the compounds bind to the cofactor binding site and compete with the cofactor. Ethidium bromide displacement and gel-shift assays showed that the inhibitors do not exhibit any unwanted general interactions with the substrate DNA. These results set the stage for the detailed exploration of this compound class for development as antibacterials.

  6. Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification.

    Science.gov (United States)

    Kanthaswamy, S; Premasuthan, A; Ng, J; Satkoski, J; Goyal, V

    2012-03-01

    In the United States, human forensic evidence collected from crime scenes is usually comingled with biomaterial of canine and feline origins. Knowledge of the concentration of nuclear DNA extracted from a crime scene biological sample and the species from which the sample originated is essential for DNA profiling. The ability to accurately detect and quantify target DNA in mixed-species samples is crucial when target DNA may be overwhelmed by non-target DNA. We have designed and evaluated a species-specific (human, dog and cat) nuclear DNA identification assay based on the TaqMan(®) quantitative real-time PCR (qPCR) technology that can simultaneously detect and measure minute quantities of DNA specific to either humans, dogs and/or cats. The fluorogenic triplex assay employs primers and hydrolysis probes that target the human TH01 locus as well as the dog and cat Melanocortin 1 Receptor (MC1R) sequences in a species-specific manner. We also demonstrate that the assay is a highly sensitive, reliable and robust method for identifying and quantifying mixed-species templates of human-dog-cat origin with as little as 0.4 pg of human and cat nuclear DNA, respectively, and 4.0 pg of dog nuclear DNA.

  7. Molecular cloning and expression of a novel human cDNA containing CAG repeats.

    Science.gov (United States)

    Takeuchi, T; Chen, B K; Qiu, Y; Sonobe, H; Ohtsuki, Y

    1997-12-19

    A novel human cDNA containing CAG repeats, designated B120, was cloned by PCR amplification. An approximately 300-bp 3' untranslated region in this cDNA was followed by a 3426-bp coding region containing the CAG repeats. A computer search failed to find any significant homology between this cDNA and previously reported genes. The number of CAG trinucleotide repeats appeared to vary from seven to 12 in analyses of genomic DNA from healthy volunteers. An approximately 8-kb band was detected in brain, skeletal muscle and thymus by Northern blot analysis. The deduced amino-acid sequence had a polyglutamine chain encoded by CAG repeats as well as glutamine- and tyrosine-rich repeats, which has also been reported for several RNA binding proteins. We immunized mice with recombinant gene product and established a monoclonal antibody to it. On Western immunoblotting, this antibody detected an approximately 120-kDa protein in human brain tissue. In addition, immunohistochemical staining showed that the cytoplasm of neural cells was stained with this antibody. These findings indicated that B120 is a novel cDNA with a CAG repeat length polymorphism and that its gene product is a cytoplasmic protein with a molecular mass of 120 kDa.

  8. Role of Human DNA Polymerase kappa in Extension Opposite from a cis-syn Thymine Dimer

    Energy Technology Data Exchange (ETDEWEB)

    R Vasquez-Del Carpio; T Silverstein; S Lone; R Johnson; L Prakash; S Prakash; A Aggarwal

    2011-12-31

    Exposure of DNA to UV radiation causes covalent linkages between adjacent pyrimidines. The most common lesion found in DNA from these UV-induced linkages is the cis-syn cyclobutane pyrimidine dimer. Human DNA polymerase {Kappa} (Pol{Kappa}), a member of the Y-family of DNA polymerases, is unable to insert nucleotides opposite the 3'T of a cis-syn T-T dimer, but it can efficiently extend from a nucleotide inserted opposite the 3'T of the dimer by another DNA polymerase. We present here the structure of human Pol{Kappa} in the act of inserting a nucleotide opposite the 5'T of the cis-syn T-T dimer. The structure reveals a constrained active-site cleft that is unable to accommodate the 3'T of a cis-syn T-T dimer but is remarkably well adapted to accommodate the 5'T via Watson-Crick base pairing, in accord with a proposed role for Pol{Kappa} in the extension reaction opposite from cyclobutane pyrimidine dimers in vivo.

  9. [Comparing and evaluating six methods of extracting human genomic DNA from whole blood].

    Science.gov (United States)

    Chang, Jing-Jing; Zhang, Su-Hua; Li, Li

    2009-04-01

    Comparing the differences in purity and yield among six methods of extracting human genomic DNA from whole blood, which included Classic Phenol-chloroform extraction, modified combined technique composed of improved Phenol-chloroform extraction and Chelex-100 extraction, Chelex-100 extraction, IQ, Qiagen and SP. Ten samples of intravenous whole blood (5 mL/sample) were collected and human genomic DNA was extracted with these six methods. The purity and concentration of the DNA products were detected by ultraviolet spectrophotometry and fluorescent quantitation technique, the yield was calculated and tested with statistical software. The Chelex-100 extraction was inferior in DNA purity to other methods while the other five methods showed no statistical difference. Modified combined technique was the poorest and IQ was the best in yield among the six methods of extraction. Statistical result showed that the extraction with high quality kits was better than that with classic Phenol-chloroform extraction, Chelex-100 extraction and modified combined technique composed of improved Phenol-chloroform. There was statistical difference between them. Comparing to Phenol-chloroform extraction and Chelex-100 extraction, high quality kits are more useful in DNA extraction from forensic materials.

  10. DNA purification from crude samples for human identification using gradient elution isotachophoresis.

    Science.gov (United States)

    Strychalski, Elizabeth A; Konek, Christopher; Butts, Erica L R; Vallone, Peter M; Henry, Alyssa C; Ross, David

    2013-09-01

    Gradient elution isotachophoresis (GEITP) was demonstrated for DNA purification, concentration, and quantification from crude samples, represented here by soiled buccal swabs, with minimal sample preparation prior to human identification using STR analysis. During GEITP, an electric field applied across leading and trailing electrolyte solutions resulted in isotachophoretic focusing of DNA at the interface between these solutions, while a pressure-driven counterflow controlled the movement of the interface from the sample reservoir into a microfluidic capillary. This counterflow also prevented particulates from fouling or clogging the capillary and reduced or eliminated contamination of the delivered DNA by PCR inhibitors. On-line DNA quantification using laser-induced fluorescence compared favorably with quantitative PCR measurements and potentially eliminates the need for quantitative PCR prior to STR analysis. GEITP promises to address the need for a rapid and robust method to deliver DNA from crude samples to aid the forensic community in human identification. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cryoprotective effect of L-carnitine on motility, vitality and DNA oxidation of human spermatozoa.

    Science.gov (United States)

    Banihani, S; Agarwal, A; Sharma, R; Bayachou, M

    2014-08-01

    Successful cryopreservation for human spermatozoa markedly influences the reproductive outcomes of assisted reproductive technologies. But in spite of its usefulness, cryopreservation significantly decreases sperm quality. l-carnitine has been found to improve the quality of spermatozoa in selected cases with male infertility. Here, we examined the efficacy of l-carnitine in improving sperm motility and vitality and reducing sperm DNA oxidation during cryopreservation. Semen samples from infertile patients (n = 22) were collected and analysed. Cryopreservation medium supplemented with l-carnitine was mixed with the semen at a ratio of 1 : 1 (v/v). The final l-carnitine concentration in each cryovial was 0.5 mg ml(-1) per 5 × 10(6) cell ml(-1) . Controls were cryopreserved without addition of l-carnitine. After 24 h of cryopreservation, thawed sperm samples were analysed for motility, vitality and DNA oxidation. Sperm vitality was assessed by the eosin-nigrosin test, while sperm DNA oxidation was measured by flow cytometry. Addition of l-carnitine significantly improved sperm motility and vitality (P 0.05) in the levels of DNA oxidation between samples and controls. In conclusion, l-carnitine improves human sperm motility and vitality, but has no effect on sperm DNA oxidation after cryopreservation.

  12. Study of microtip-based extraction and purification of DNA from human samples for portable devices

    Science.gov (United States)

    Fotouhi, Gareth

    DNA sample preparation is essential for genetic analysis. However, rapid and easy-to-use methods are a major challenge to obtaining genetic information. Furthermore, DNA sample preparation technology must follow the growing need for point-of-care (POC) diagnostics. The current use of centrifuges, large robots, and laboratory-intensive protocols has to be minimized to meet the global challenge of limited access healthcare by bringing the lab to patients through POC devices. To address these challenges, a novel extraction method of genomic DNA from human samples is presented by using heat-cured polyethyleneimine-coated microtips generating a high electric field. The microtip extraction method is based on recent work using an electric field and capillary action integrated into an automated device. The main challenges to the method are: (1) to obtain a stable microtip surface for the controlled capture and release of DNA and (2) to improve the recovery of DNA from samples with a high concentration of inhibitors, such as human samples. The present study addresses these challenges by investigating the heat curing of polyethyleneimine (PEI) coated on the surface of the microtip. Heat-cured PEI-coated microtips are shown to control the capture and release of DNA. Protocols are developed for the extraction and purification of DNA from human samples. Heat-cured PEI-coated microtip methods of DNA sample preparation are used to extract genomic DNA from human samples. It is discovered through experiment that heat curing of a PEI layer on a gold-coated surface below 150°C could inhibit the signal of polymerase chain reaction (PCR). Below 150°C, the PEI layer is not completely cured and dissolved off the gold-coated surface. Dissolved PEI binds with DNA to inhibit PCR. Heat curing of a PEI layer above 150°C on a gold-coated surface prevents inhibition to PCR and gel electrophoresis. In comparison to gold-coated microtips, the 225°C-cured PEI-coated microtips improve the

  13. Impact of DNA mismatch repair system alterations on human fertility and related treatments.

    Science.gov (United States)

    Hu, Min-hao; Liu, Shu-yuan; Wang, Ning; Wu, Yan; Jin, Fan

    2016-01-01

    DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation.

  14. Dimethylarsenic acid damages cellular DNA and inhibits gap junctional intercellular communication between human skin fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    GuoXB; DengFR

    2002-01-01

    Although arsenic is identified as a human carcinogen,there is currently no accepted mechanism for its action or an established animal model for evaluating the carcinogenic activity of arsenic.To elucidate the mechanism of arsenic arcinogenesis,we investigated the effect of dimethylarsenic acid(DMAA),the main metabolite of inorganic arsenic in humans,on the cellular DNA and gap junctional intercellular communication (GJIC) between human skin fibroblast cells.Single-cell gel electrophoresis (SCGE) assay was used to detect the DNA damage in human skin fibroblast cells exposed to DMAA,and the GJIC between cells was detected by the scrape loading/dye transfer assay.DMAA at concentrations of 0.01-1.0 mmol·L-1 induced DNA damage in a dose-dependent manner,and GJIC between human skin fibroblast cells was significantly inhibited by DMAA at 1.0 mmol·L-1.Our results suggest that both genotoxic and nongenotoxic mechanism are involved in the mechanism of DMAA-induced cellular toxicity.

  15. NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells.

    Directory of Open Access Journals (Sweden)

    Altaf H Sarker

    Full Text Available Secondhand smoke (SHS is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS, the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon-quantitative PCR (LA-QPCR assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer.

  16. Changes in neuronal DNA content variation in the human brain during aging.

    Science.gov (United States)

    Fischer, Hans-Georg; Morawski, Markus; Brückner, Martina K; Mittag, Anja; Tarnok, Attila; Arendt, Thomas

    2012-08-01

    The human brain has been proposed to represent a genetic mosaic, containing a small but constant number of neurons with an amount of DNA exceeding the diploid level that appear to be generated through various chromosome segregation defects initially. While a portion of these cells apparently die during development, neurons with abnormal chromosomal copy number have been identified in the mature brain. This genomic alteration might to lead to chromosomal instability affecting neuronal viability and could thus contribute to age-related mental disorders. Changes in the frequency of neurons with such structural genomic variation in the adult and aging brain, however, are unknown. Here, we quantified the frequency of neurons with a more than diploid DNA content in the cerebral cortex of normal human brain and analyzed its changes between the fourth and ninth decades of life. We applied a protocol of slide-based cytometry optimized for DNA quantification of single identified neurons, which allowed to analyze the DNA content of about 500 000 neurons for each brain. On average, 11.5% of cortical neurons showed DNA content above the diploid level. The frequency of neurons with this genomic alteration was highest at younger age and declined with age. Our results indicate that the genomic variation associated with DNA content exceeding the diploid level might compromise viability of these neurons in the aging brain and might thus contribute to susceptibilities for age-related CNS disorders. Alternatively, a potential selection bias of "healthy aging brains" needs to be considered, assuming that DNA content variation above a certain threshold associates with Alzheimer's disease.

  17. Detection of acrolein-derived cyclic DNA adducts in human cells by monoclonal antibodies.

    Science.gov (United States)

    Pan, Jishen; Awoyemi, Bisola; Xuan, Zhuoli; Vohra, Priya; Wang, Hsiang-Tsui; Dyba, Marcin; Greenspan, Emily; Fu, Ying; Creswell, Karen; Zhang, Lihua; Berry, Deborah; Tang, Moon-Shong; Chung, Fung-Lung

    2012-12-17

    Acrolein (Acr) is a ubiquitous environmental pollutant found in cigarette smoke and automobile exhaust. It can also be produced endogenously by oxidation of polyunsaturated fatty acids. The Acr-derived 1,N(2)-propanodeoxyguanosine (Acr-dG) adducts in DNA are mutagenic lesions that are potentially involved in human cancers. In this study, monoclonal antibodies were raised against Acr-dG adducts and characterized using ELISA. They showed strong reactivity and specificity toward Acr-dG, weaker reactivity toward crotonaldehyde- and trans-4-hydroxy-2-nonenal-derived 1,N(2)-propanodeoxyguanosines, and weak or no reactivity toward 1,N(6)-ethenodeoxyadenosine and 8-oxo-deoxyguanosine. Using these antibodies, we developed assays to detect Acr-dG in vivo: first, a simple and quick FACS-based assay for detecting these adducts directly in cells; second, a highly sensitive direct ELISA assay for measuring Acr-dG in cells and tissues using only 1 μg of DNA without DNA digestion and sample enrichment; and third, a competitive ELISA for better quantitative measurement of Acr-dG levels in DNA samples. The assays were validated using Acr-treated HT29 cell DNA samples or calf thymus DNA, and the results were confirmed by LC-MS/MS-MRM. An immunohistochemical assay was also developed to detect and visualize Acr-dG in HT29 cells as well as in human oral cells. These antibody-based methods provide useful tools for the studies of Acr-dG as a cancer biomarker and of the molecular mechanisms by which cells respond to Acr-dG as a ubiquitous DNA lesion.

  18. MtDNA mutation pattern in tumors and human evolution are shaped by similar selective constraints.

    Science.gov (United States)

    Zhidkov, Ilia; Livneh, Erez A; Rubin, Eitan; Mishmar, Dan

    2009-04-01

    Multiple human mutational landscapes of normal and cancer conditions are currently available. However, while the unique mutational patterns of tumors have been extensively studied, little attention has been paid to similarities between malignant and normal conditions. Here we compared the pattern of mutations in the mitochondrial genomes (mtDNAs) of cancer (98 sequences) and natural populations (2400 sequences). De novo mtDNA mutations in cancer preferentially colocalized with ancient variants in human phylogeny. A significant portion of the cancer mutations was organized in recurrent combinations (COMs), reaching a length of seven mutations, which also colocalized with ancient variants. Thus, by analyzing similarities rather than differences in patterns of mtDNA mutations in tumor and human evolution, we discovered evidence for similar selective constraints, suggesting a functional potential for these mutations.

  19. Application of the adductome approach to assess intertissue DNA damage variations in human lung and esophagus

    Energy Technology Data Exchange (ETDEWEB)

    Kanaly, Robert A. [Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan); Department of Environmental Biosciences, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama 236-0027 (Japan); Matsui, Saburo [Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan); Hanaoka, Tomoyuki [Epidemiology and Prevention Division, National Cancer Center Research Institute, Tokyo 104-0045 (Japan); Matsuda, Tomonari [Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan)], E-mail: matsuda@z05.mbox.media.kyoto-u.ac.jp

    2007-12-01

    Methods for determining the differential susceptibility of human organs to DNA damage have not yet been explored to any large extent due to technical constraints. The development of comprehensive analytical approaches by which to detect intertissue variations in DNA damage susceptibility may advance our understanding of the roles of DNA adducts in cancer etiology and as exposure biomarkers at least. A strategy designed for the detection and comparison of multiple DNA adducts from different tissue samples was applied to assess esophageal and peripherally- and centrally-located lung tissue DNA obtained from the same person. This adductome approach utilized LC/ESI-MS/MS analysis methods designed to detect the neutral loss of 2'-deoxyribose from positively ionized 2'-deoxynucleoside adducts transmitting the [M+H]{sup +} > [M+H-116]{sup +} transition over 374 transitions. In the final analyses, adductome maps were produced which facilitated the visualization of putative DNA adducts and their relative levels of occurrence and allowed for comprehensive comparisons between samples, including a calf thymus DNA negative control. The largest putative adducts were distributed similarly across the samples, however, differences in the relative amounts of putative adducts in lung and esophagus tissue were also revealed. The largest-occurring lung tissue DNA putative adducts were 90% similar (n = 50), while putative adducts in esophagus tissue DNA were shown to be 80 and 84% similar to central and peripheral lung tissue DNA respectively. Seven DNA adducts, N{sup 2}-ethyl-2'-deoxyguanosine (N{sup 2}-ethyl-dG), 1,N{sup 6}-etheno-2'-deoxyadenosine ({epsilon}dA), {alpha}-S- and {alpha}-R-methyl-{gamma}-hydroxy-1,N{sup 2}-propano-2'-deoxyguanosine (1,N{sup 2}-PdG{sub 1}, 1,N{sup 2}-PdG{sub 2}), 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-8-hydroxy-pyrimido[1,2-a] purine-(3H)-one (8-OH-PdG) and the two stereoisomers of 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro

  20. Detection of cancer clones in human gastric adenoma by increased DNA-instability and other biomarkers

    Directory of Open Access Journals (Sweden)

    A Sun

    2009-06-01

    Full Text Available An immunohistochemical differential staining of cancerous cells with anti-cytidine antibody after denaturation of nuclear DNA by acid hydrolysis with 2N HCl at 30°C for 20 min (DNA-instability test has been used as a marker of malignancy. The test was applied to bioptic tissues of human gastric polyp assessed histopathologically as foveolar hyperplastic polyp (13 cases, mild (58 cases, moderate (86 cases, and severe (20 cases dysplasia, and adenocarcinomas (14 cases. The serial sections of the same tissues were also subjected to immunohistochemical staining for Ki67, p53, DNA-fragmentation factor (DFF45, and basic fibroblast growth factor (bFGF. The DNA-instability test was positive in 14 (100% adenocarinoma cases, 20 (100% severe dysplasia cases, 52 (60.5% moderate dysplasia cases, and 12 (20.7% mild dysplasia cases, indicating malignancy. All foveolar hyperplastic polyps were negative to the DNA-instability testing. Furthermore, the percentage of glands positive in the DNA-instability test steadily increased in going from mild (10%, to moderate (40%, to severe (100% dysplasia, and adenocarcinoma (100%. All other biological markers tested in the present study showed significantly higher values in the adenoma glands, being positive to DNA-instability testing, irrespective of the dysplasia grade, as compared to those in the adenoma glands that were negative to DNA-instability testing. Furthermore, the former values were comparable to those in adenocarcinoma. These results indicate that cancer cell clones are already present at the adenoma stages showing a positive DNA-instability test, enhanced proliferative activity, p53 mutation, induction of DFF45 and bFGF. These factors allow cancer cell proliferation, producing heterogeneous subclones due to DNA-instability, enhancing their survival by escaping apoptosis, and providing abundant nutrients during the early-stage progression of gastric cancer. Based on these findings, we herein propose the

  1. High quality DNA from human papillomavirus (HPV for PCR/RFLPs

    Directory of Open Access Journals (Sweden)

    Denise Wanderlei-Silva

    2005-01-01

    Full Text Available The analysis of DNA in clinical samples for a secure diagnostic has become indispensable nowadays. Techniques approaching isolation of high molecular weigth DNA of HPV could lead to efficient amplification and early clinical diagnosis of the virus DNA by PCR (polymerase chain reaction. We describe a fast, non-toxical, efficient and cheap method for DNA isolation of human papilloma virus (HPV from cervical smears using guanidine (DNAzol solution. A 450 bp DNA band correponding to the late region (L1 of the virus genome was detected by PCR, showing that the DNAzol extraction soluction generated a good viral DNA yield. The electrophoretic pattern after digestion with restriction endonucleases (RFLPs/PCR revealed the predominance of HPV-16 and HPV-33 in the samples from the State of Alagoas, Brazil.A detecção de DNA em amostras clínicas visando um diagnóstico mais seguro vem se tornando uma prática comum em laboratórios de análise clínica. Metodologias que objetivem o isolamento de DNA de alto peso molecular de HPV podem levar a uma amplificação precisa e diagnose precoce do DNA do vírus por PCR (reação de polimerase em cadeia. Nós descrevemos um método para o isolamento do DNA do vírus do papiloma humano de amostras cervicais utilizando o detergente guanidina (solução DNAzol. O método foi rápido, não-tóxico e eficiente. Uma banda de DNA de 450 pb correspondente à região tardia (L1 do genoma viral foi detectada por PCR, mostrando que a extração com DNAzol gerou quantidade suficiente de DNA para análise. O padrão eletroforético, após digestão com endonucleases de restrição (RFLPs/PCR, revelou predominância de HPV 16 e HPV-33 nas amostras no Estado de Alagoas, Brasil.

  2. Crystal structure of the human NKX2.5 homeodomain in complex with DNA target.

    Science.gov (United States)

    Pradhan, Lagnajeet; Genis, Caroli; Scone, Peyton; Weinberg, Ellen O; Kasahara, Hideko; Nam, Hyun-Joo

    2012-08-14

    NKX2.5 is a homeodomain containing transcription factor regulating cardiac formation and function, and its mutations are linked to congenital heart disease. Here we provide the first report of the crystal structure of the NKX2.5 homeodomain in complex with double-stranded DNA of its endogenous target, locating within the proximal promoter -242 site of the atrial natriuretic factor gene. The crystal structure, determined at 1.8 Å resolution, demonstrates that NKX2.5 homeodomains occupy both DNA binding sites separated by five nucleotides without physical interaction between themselves. The two homeodomains show identical conformation despite the differences in the DNA sequences they bind, and no significant bending of the DNA was observed. Tyr54, absolutely conserved in NK2 family proteins, mediates sequence-specific interaction with the TAAG motif. This high resolution crystal structure of NKX2.5 protein provides a detailed picture of protein and DNA interactions, which allows us to predict DNA binding of mutants identified in human patients.

  3. Crystal Structure of the Human NKX2.5 Homeodomain in Complex with DNA Target

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Lagnajeet; Genis, Caroli; Scone, Peyton; Weinberg, Ellen O.; Kasahara, Hideko; Nam, Hyun-Joo (BU-M); (Florida); (Texas)

    2012-10-16

    NKX2.5 is a homeodomain containing transcription factor regulating cardiac formation and function, and its mutations are linked to congenital heart disease. Here we provide the first report of the crystal structure of the NKX2.5 homeodomain in complex with double-stranded DNA of its endogenous target, locating within the proximal promoter -242 site of the atrial natriuretic factor gene. The crystal structure, determined at 1.8 {angstrom} resolution, demonstrates that NKX2.5 homeodomains occupy both DNA binding sites separated by five nucleotides without physical interaction between themselves. The two homeodomains show identical conformation despite the differences in the DNA sequences they bind, and no significant bending of the DNA was observed. Tyr54, absolutely conserved in NK2 family proteins, mediates sequence-specific interaction with the TAAG motif. This high resolution crystal structure of NKX2.5 protein provides a detailed picture of protein and DNA interactions, which allows us to predict DNA binding of mutants identified in human patients.

  4. Easy and fast detection and genotyping of high-risk human papillomavirus by dedicated DNA microarrays.

    Science.gov (United States)

    Albrecht, Valérie; Chevallier, Anne; Magnone, Virginie; Barbry, Pascal; Vandenbos, Fanny; Bongain, André; Lefebvre, Jean-Claude; Giordanengo, Valérie

    2006-11-01

    Persistent cervical high-risk human papillomavirus (HPV) infection is correlated with an increased risk of developing a high-grade cervical intraepithelial lesion. A two-step method was developed for detection and genotyping of high-risk HPV. DNA was firstly amplified by asymmetrical PCR in the presence of Cy3-labelled primers and dUTP. Labelled DNA was then genotyped using DNA microarray hybridization. The current study evaluated the technical efficacy of laboratory-designed HPV DNA microarrays for high-risk HPV genotyping on 57 malignant and non-malignant cervical smears. The approach was evaluated for a broad range of cytological samples: high-grade squamous intraepithelial lesions (HSIL), low-grade squamous intraepithelial lesions (LSIL) and atypical squamous cells of high-grade (ASC-H). High-risk HPV was also detected in six atypical squamous cells of undetermined significance (ASC-US) samples; among them only one cervical specimen was found uninfected, associated with no histological lesion. The HPV oligonucleotide DNA microarray genotyping detected 36 infections with a single high-risk HPV type and 5 multiple infections with several high-risk types. Taken together, these results demonstrate the sensitivity and specificity of the HPV DNA microarray approach. This approach could improve clinical management of patients with cervical cytological abnormalities.

  5. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer.

    Science.gov (United States)

    Vrba, Lukas; Muñoz-Rodríguez, José L; Stampfer, Martha R; Futscher, Bernard W

    2013-01-01

    miRNAs are important regulators of gene expression that are frequently deregulated in cancer, with aberrant DNA methylation being an epigenetic mechanism involved in this process. We previously identified miRNA promoter regions active in normal mammary cell types and here we analyzed which of these promoters are targets of aberrant DNA methylation in human breast cancer cell lines and breast tumor specimens. Using 5-methylcytosine immunoprecipitation coupled to miRNA tiling microarray hybridization, we performed comprehensive evaluation of DNA methylation of miRNA gene promoters in breast cancer. We found almost one third (55/167) of miRNA promoters were targets for aberrant methylation in breast cancer cell lines. Breast tumor specimens displayed DNA methylation of majority of these miRNA promoters, indicating that these changes in DNA methylation might be clinically relevant. Aberrantly methylated miRNA promoters were, similar to protein coding genes, enriched for promoters targeted by polycomb in normal cells. Detailed analysis of selected miRNA promoters revealed decreased expression of miRNA linked to increased promoter methylation for mir-31, mir-130a, let-7a-3/let-7b, mir-155, mir-137 and mir-34b/mir-34c genes. The proportion of miRNA promoters we found aberrantly methylated in breast cancer is several fold larger than that observed for protein coding genes, indicating an important role of DNA methylation in miRNA deregulation in cancer.

  6. The detective, prognostic, and predictive value of DNA methylation in human esophageal squamous cell carcinoma.

    Science.gov (United States)

    Ma, Kai; Cao, Baoping; Guo, Mingzhou

    2016-01-01

    Esophageal cancer is one of the most common malignancies in the world. Squamous cell carcinoma accounts for approximately 90 % of esophageal cancer cases. Genetic and epigenetic changes have been found to accumulate during the development of various cancers, including esophageal squamous carcinoma (ESCC). Tobacco smoking and alcohol consumption are two major risk factors for ESCC, and both tobacco and alcohol were found to induce methylation changes in ESCC. Growing evidence demonstrates that aberrant epigenetic changes play important roles in the multiple-step processes of carcinogenesis and tumor progression. DNA methylation may occur in the key components of cancer-related signaling pathways. Aberrant DNA methylation affects genes involved in cell cycle, DNA damage repair, Wnt, TGF-β, and NF-κB signaling pathways, including P16, MGMT, SFRP2, DACH1, and ZNF382. Certain genes methylated in precursor lesions of the esophagus demonstrate that DNA methylation may serve as esophageal cancer early detection marker, such as methylation of HIN1, TFPI-2, DACH1, and SOX17. CHFR methylation is a late stage event in ESCC and is a sensitive marker for taxanes in human ESCC. FHIT methylation is associated with poor prognosis in ESCC. Aberrant DNA methylation changes may serve as diagnostic, prognostic, and chemo-sensitive markers. Characterization of the DNA methylome in ESCC will help to better understand its mechanisms and develop improved therapies.

  7. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    Directory of Open Access Journals (Sweden)

    Erhong Meng

    2015-07-01

    Full Text Available Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair. Aberrant activation of the Hedgehog (Hh signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.

  8. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Erhong; Hann