WorldWideScience

Sample records for human bipedal locomotion

  1. Fossils, feet and the evolution of human bipedal locomotion.

    Science.gov (United States)

    Harcourt-Smith, W E H; Aiello, L C

    2004-05-01

    We review the evolution of human bipedal locomotion with a particular emphasis on the evolution of the foot. We begin in the early twentieth century and focus particularly on hypotheses of an ape-like ancestor for humans and human bipedal locomotion put forward by a succession of Gregory, Keith, Morton and Schultz. We give consideration to Morton's (1935) synthesis of foot evolution, in which he argues that the foot of the common ancestor of modern humans and the African apes would be intermediate between the foot of Pan and Hylobates whereas the foot of a hypothetical early hominin would be intermediate between that of a gorilla and a modern human. From this base rooted in comparative anatomy of living primates we trace changing ideas about the evolution of human bipedalism as increasing amounts of postcranial fossil material were discovered. Attention is given to the work of John Napier and John Robinson who were pioneers in the interpretation of Plio-Pleistocene hominin skeletons in the 1960s. This is the period when the wealth of evidence from the southern African australopithecine sites was beginning to be appreciated and Olduvai Gorge was revealing its first evidence for Homo habilis. In more recent years, the discovery of the Laetoli footprint trail, the AL 288-1 (A. afarensis) skeleton, the wealth of postcranial material from Koobi Fora, the Nariokotome Homo ergaster skeleton, Little Foot (Stw 573) from Sterkfontein in South Africa, and more recently tantalizing material assigned to the new and very early taxa Orrorin tugenensis, Ardipithecus ramidus and Sahelanthropus tchadensis has fuelled debate and speculation. The varying interpretations based on this material, together with changing theoretical insights and analytical approaches, is discussed and assessed in the context of new three-dimensional morphometric analyses of australopithecine and Homo foot bones, suggesting that there may have been greater diversity in human bipedalism in the earlier phases

  2. A novel controller for bipedal locomotion integrating feed-forward and feedback mechanisms

    NARCIS (Netherlands)

    Xiong, Xiaofeng; Sartori, Massimo; Dosen, Strahinja; González-Vargas, José; Wörgötter, Florentin; Farina, Dario; Ibanez, J.; González-Vargas, J.; Azorin, J.M.; Akay, M.; Pons, J.L.

    2017-01-01

    It has been recognized that bipedal locomotion is controlled using feed-forward (e.g., patterned) and feedback (e.g., reflex) control schemes. However, most current controllers fail to integrate the two schemes to simplify speed control of bipedal locomotion. To solve this problem, we here propose a

  3. Skeletal adaptations to bipedalism

    Directory of Open Access Journals (Sweden)

    Vasiljević Perica

    2014-01-01

    Full Text Available Bipedalism is the main characteristic of humans. During evolutin bipedalism emerged probably as an adaptation to a changing environment. Major changes in skeletal system included femur, pelvis, skull and spine. The significance of bipedal locomotion: Bipedalism freed the forelimbs for carrying objects, creation and usage of tools. In the upright position animals have a broader view of the environment and the early detection of predators is crucial for survival. Bipedal locomotion makes larger distances easier to pass, which is very important in the migration of hominids.

  4. Bipedal locomotion of bonnet macaques after spinal cord injury.

    Science.gov (United States)

    Babu, Rangasamy Suresh; Anand, P; Jeraud, Mathew; Periasamy, P; Namasivayam, A

    2007-10-01

    Experimental studies concerning the analysis of locomotor behavior in spinal cord injury research are widely performed in rodent models. The purpose of this study was to quantitatively evaluate the degree of functional recovery in reflex components and bipedal locomotor behavior of bonnet macaques (Macaca radiata) after spinal contusive injury. Six monkeys were tested for various reflex components (grasping, righting, hopping, extension withdrawal) and were trained preoperatively to walk in bipedal fashion on the simple and complex locomotor runways (narrow beam, grid, inclined plane, treadmill) of this investigation. The overall performance of the animals'motor behavior and the functional status of limb movements during bipedal locomotion were graded by the Combined Behavioral Score (CBS) system. Using the simple Allen weight-drop technique, a contusive injury was produced by dropping a 13-g weight from a height of 30 cm to the exposed spinal cord at the T12-L1 vertebral level of the trained monkeys. All the monkeys showed significant impairments in every reflex activity and in walking behavior during the early part of the postoperative period. In subsequent periods, the animals displayed mild alterations in certain reflex responses, such as grasping, extension withdrawal, and placing reflexes, which persisted through a 1-year follow-up. The contused animals traversed locomotor runways--narrow beam, incline plane, and grid runways--with more steps and few errors, as evaluated with the CBS system. Eventually, the behavioral performance of all spinal-contused monkeys recovered to near-preoperative level by the fifth postoperative month. The findings of this study reveal the recovery time course of various reflex components and bipedal locomotor behavior of spinal-contused macaques on runways for a postoperative period of up to 1 year. Our spinal cord research in primates is advantageous in understanding the characteristics of hind limb functions only, which possibly

  5. Foramen magnum position in bipedal mammals.

    Science.gov (United States)

    Russo, Gabrielle A; Kirk, E Christopher

    2013-11-01

    The anterior position of the human foramen magnum is often explained as an adaptation for maintaining balance of the head atop the cervical vertebral column during bipedalism and the assumption of orthograde trunk postures. Accordingly, the relative placement of the foramen magnum on the basicranium has been used to infer bipedal locomotion and hominin status for a number of Mio-Pliocene fossil taxa. Nonetheless, previous studies have struggled to validate the functional link between foramen magnum position and bipedal locomotion. Here, we test the hypothesis that an anteriorly positioned foramen magnum is related to bipedalism through a comparison of basicranial anatomy between bipeds and quadrupeds from three mammalian clades: marsupials, rodents and primates. Additionally, we examine whether strepsirrhine primates that habitually assume orthograde trunk postures exhibit more anteriorly positioned foramina magna compared with non-orthograde strepsirrhines. Our comparative data reveal that bipedal marsupials and rodents have foramina magna that are more anteriorly located than those of quadrupedal close relatives. The foramen magnum is also situated more anteriorly in orthograde strepsirrhines than in pronograde or antipronograde strepsirrhines. Among the primates sampled, humans exhibit the most anteriorly positioned foramina magna. The results of this analysis support the utility of foramen magnum position as an indicator of bipedal locomotion in fossil hominins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A Combination of Central Pattern Generator-based and Reflex-based Neural Networks for Dynamic, Adaptive, Robust Bipedal Locomotion

    DEFF Research Database (Denmark)

    Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin

    2016-01-01

    Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior...

  7. Foot placement in robotic bipedal locomotion

    NARCIS (Netherlands)

    De Boer, T.

    2012-01-01

    Human walking is remarkably robust, versatile and energy-efficient: humans have the ability to handle large unexpected disturbances, perform a wide variety of gaits and consume little energy. A bipedal walking robot that performs well on all of these aspects has not yet been developed. Some robots

  8. Decoding bipedal locomotion from the rat sensorimotor cortex

    Science.gov (United States)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds

  9. The Human Central Pattern Generator for Locomotion.

    Science.gov (United States)

    Minassian, Karen; Hofstoetter, Ursula S; Dzeladini, Florin; Guertin, Pierre A; Ijspeert, Auke

    2017-03-01

    The ability of dedicated spinal circuits, referred to as central pattern generators (CPGs), to produce the basic rhythm and neural activation patterns underlying locomotion can be demonstrated under specific experimental conditions in reduced animal preparations. The existence of CPGs in humans is a matter of debate. Equally elusive is the contribution of CPGs to normal bipedal locomotion. To address these points, we focus on human studies that utilized spinal cord stimulation or pharmacological neuromodulation to generate rhythmic activity in individuals with spinal cord injury, and on neuromechanical modeling of human locomotion. In the absence of volitional motor control and step-specific sensory feedback, the human lumbar spinal cord can produce rhythmic muscle activation patterns that closely resemble CPG-induced neural activity of the isolated animal spinal cord. In this sense, CPGs in humans can be defined by the activity they produce. During normal locomotion, CPGs could contribute to the activation patterns during specific phases of the step cycle and simplify supraspinal control of step cycle frequency as a feedforward component to achieve a targeted speed. Determining how the human CPGs operate will be essential to advance the theory of neural control of locomotion and develop new locomotor neurorehabilitation paradigms.

  10. Advanced robot locomotion.

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  11. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism

    Science.gov (United States)

    Fernández, Peter J.; Holowka, Nicholas B.; Demes, Brigitte; Jungers, William L.

    2016-01-01

    During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as “dorsal doming” are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2–5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism. PMID:27464580

  12. Kinematically stable bipedal locomotion using ionic polymer–metal composite actuators

    International Nuclear Information System (INIS)

    Hosseinipour, Milad; Elahinia, Mohammad

    2013-01-01

    Ionic conducting polymer–metal composites (abbreviated as IPMCs) are interesting actuators that can act as artificial muscles in robotic and microelectromechanical systems. Various black or gray box models have modeled the electrochemical–mechanical behavior of these materials. In this study, the governing partial differential equation of the behavior of IPMCs is solved using finite element methods to find the critical actuation parameters, such as strain distribution, maximum strain, and response time. One-dimensional results of the FEM solution are then extended to 2D to find the tip displacement of a flap actuator and experimentally verified. A model of a seven-degree-of-freedom biped robot, actuated by IPMC flaps, is then introduced. The possibility of fast and stable bipedal locomotion using IPMC artificial muscles is the main motivation of this study. Considering the actuator limits, joint path trajectories are generated to achieve a fast and smooth motion. The stability of the proposed gait is then evaluated using the ZMP criterion and motion simulation. The fabrication parameters of each actuator, such as length, platinum plating thickness and installation angle, are then determined using the generated trajectories. A discussion on future studies on force–torque generation of IPMCs for biped locomotion concludes this paper. (paper)

  13. Using entropy measures to characterize human locomotion.

    Science.gov (United States)

    Leverick, Graham; Szturm, Tony; Wu, Christine Q

    2014-12-01

    Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.

  14. The cost of leg forces in bipedal locomotion: a simple optimization study.

    Directory of Open Access Journals (Sweden)

    John R Rebula

    Full Text Available Simple optimization models show that bipedal locomotion may largely be governed by the mechanical work performed by the legs, minimization of which can automatically discover walking and running gaits. Work minimization can reproduce broad aspects of human ground reaction forces, such as a double-peaked profile for walking and a single peak for running, but the predicted peaks are unrealistically high and impulsive compared to the much smoother forces produced by humans. The smoothness might be explained better by a cost for the force rather than work produced by the legs, but it is unclear what features of force might be most relevant. We therefore tested a generalized force cost that can penalize force amplitude or its n-th time derivative, raised to the p-th power (or p-norm, across a variety of combinations for n and p. A simple model shows that this generalized force cost only produces smoother, human-like forces if it penalizes the rate rather than amplitude of force production, and only in combination with a work cost. Such a combined objective reproduces the characteristic profiles of human walking (R² = 0.96 and running (R² = 0.92, more so than minimization of either work or force amplitude alone (R² = -0.79 and R² = 0.22, respectively, for walking. Humans might find it preferable to avoid rapid force production, which may be mechanically and physiologically costly.

  15. A bipedal mammalian model for spinal cord injury research: The tammar wallaby [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Norman R. Saunders

    2017-06-01

    Full Text Available Background: Most animal studies of spinal cord injury are conducted in quadrupeds, usually rodents. It is unclear to what extent functional results from such studies can be translated to bipedal species such as humans because bipedal and quadrupedal locomotion involve very different patterns of spinal control of muscle coordination. Bipedalism requires upright trunk stability and coordinated postural muscle control; it has been suggested that peripheral sensory input is less important in humans than quadrupeds for recovery of locomotion following spinal injury. Methods: We used an Australian macropod marsupial, the tammar wallaby (Macropus eugenii, because tammars exhibit an upright trunk posture, human-like alternating hindlimb movement when swimming and bipedal over-ground locomotion. Regulation of their muscle movements is more similar to humans than quadrupeds. At different postnatal (P days (P7–60 tammars received a complete mid-thoracic spinal cord transection. Morphological repair, as well as functional use of hind limbs, was studied up to the time of their pouch exit. Results: Growth of axons across the lesion restored supraspinal innervation in animals injured up to 3 weeks of age but not in animals injured after 6 weeks of age. At initial pouch exit (P180, the young injured at P7-21 were able to hop on their hind limbs similar to age-matched controls and to swim albeit with a different stroke. Those animals injured at P40-45 appeared to be incapable of normal use of hind limbs even while still in the pouch. Conclusions: Data indicate that the characteristic over-ground locomotion of tammars provides a model in which regrowth of supraspinal connections across the site of injury can be studied in a bipedal animal. Forelimb weight-bearing motion and peripheral sensory input appear not to compensate for lack of hindlimb control, as occurs in quadrupeds. Tammars may be a more appropriate model for studies of therapeutic interventions

  16. The origin of bipedality as the result of a developmental by-product: The case study of the olive baboon (Papio anubis).

    Science.gov (United States)

    Druelle, François; Aerts, Peter; Berillon, Gilles

    2017-12-01

    In this paper, we point to the importance of considering infancy in the emergence of new locomotor modes during evolution, and particularly when considering bipedal walking. Indeed, because infant primates commonly exhibit a more diverse posturo-locomotor repertoire than adults, the developmental processes of locomotion represent an important source of variation upon which natural selection may act. We have had the opportunity to follow the development of locomotion in captive individuals of a committed quadrupedal primate, the olive baboon (Papio anubis). We observed six infants at two different stages of their development. In total, we were able to analyze the temporal parameters of 65 bipedal steps, as well as their behavioral components. Our results show that while the basic temporal aspects of the bipedal walking gait (i.e., duty factor, dimensionless frequency, and hind lag) do not change during development, the baboon is able to significantly improve the coordination pattern between hind limbs. This probably influences the bout duration of spontaneous bipedal walking. During the same developmental stage, the interlimb coordination in quadrupedal walking is improved and the proportion of quadrupedal behaviors increases significantly. Therefore, the quadrupedal pattern of primates does not impede the developmental acquisition of bipedal behaviors. This may suggest that the same basic mechanism is responsible for controlling bipedal and quadrupedal locomotion, i.e., that in non-human primates, the neural networks for quadrupedal locomotion are also employed to perform (occasional) bipedal walking. In this context, a secondary locomotor mode (e.g., bipedalism) experienced during infancy as a by-product of locomotor development may lead to evolutionary novelties when under appropriate selective pressures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait.

    Science.gov (United States)

    Daley, Monica A; Birn-Jeffery, Aleksandra

    2018-05-22

    Birds provide an interesting opportunity to study the relationships between body size, limb morphology and bipedal locomotor function. Birds are ecologically diverse and span a large range of body size and limb proportions, yet all use their hindlimbs for bipedal terrestrial locomotion, for at least some part of their life history. Here, we review the scaling of avian striding bipedal gaits to explore how body mass and leg morphology influence walking and running. We collate literature data from 21 species, spanning a 2500× range in body mass from painted quail to ostriches. Using dynamic similarity theory to interpret scaling trends, we find evidence for independent effects of body mass, leg length and leg posture on gait. We find no evidence for scaling of duty factor with body size, suggesting that vertical forces scale with dynamic similarity. However, at dynamically similar speeds, large birds use relatively shorter stride lengths and higher stride frequencies compared with small birds. We also find that birds with long legs for their mass, such as the white stork and red-legged seriema, use longer strides and lower swing frequencies, consistent with the influence of high limb inertia on gait. We discuss the observed scaling of avian bipedal gait in relation to mechanical demands for force, work and power relative to muscle actuator capacity, muscle activation costs related to leg cycling frequency, and considerations of stability and agility. Many opportunities remain for future work to investigate how morphology influences gait dynamics among birds specialized for different habitats and locomotor behaviors. © 2018. Published by The Company of Biologists Ltd.

  18. Kinematics and ontogeny of locomotion in monkeys and human babies.

    Science.gov (United States)

    Niemitz, Carsten

    2002-03-01

    Early ontogenetic stages are often assumed to reflect or to be similar to past phylogenetic stages within the evolution of man. Therefore, as a first step, the quadrupedal crawling locomotion of human children was analysed and compared to the quadrupedal walk of Macaca fascicularis. The movements of the human child were not only more irregular, they differed from the walk of the monkey mainly through extraordinarily short swing phases, and also through strong scoliotic movements of the spine. There is a compulsory synchronisation in the hip and knee joint movements of the human crawling baby. We conclude that human crawling may be a behavioural recapitulation of a quadrupedal evolutionary stage. However, with reference to kinematics, man is not only characterised by his unique, habitually bipedal, upright gait but also by a second, equally unique locomotion, namely crawling, which he assumes for a short phase during his first year of life.--The walking movements of the limbs in toddling infants were mainly characterised by i) rather stiff, abducted arms, which were moved mostly by spine torsions (similar to those of bipedally walking Gorilla) and not as a suspensory pendulum. However, they rather work as levers for the elastic torsion pendulum of the spine. ii) They are also characterised by frequently lacking the minor knee flexion, which occurs at about the heel strike within each stride of the adult human. Besides many other details of the results, foot movements differed from adult ones mainly in that the whole plantar surface was placed flat on the ground within a few milliseconds.

  19. Laughter as an approach to vocal evolution: The bipedal theory.

    Science.gov (United States)

    Provine, Robert R

    2017-02-01

    Laughter is a simple, stereotyped, innate, human play vocalization that is ideal for the study of vocal evolution. The basic approach of describing the act of laughter and when we do it has revealed a variety of phenomena of social, linguistic, and neurological significance. Findings include the acoustic structure of laughter, the minimal voluntary control of laughter, the punctuation effect (which describes the placement of laughter in conversation and indicates the dominance of speech over laughter), and the role of laughter in human matching and mating. Especially notable is the use of laughter to discover why humans can speak and other apes cannot. Quadrupeds, including our primate ancestors, have a 1:1 relation between breathing and stride because their thorax must absorb forelimb impacts during running. The direct link between breathing and locomotion limits vocalizations to short, simple utterances, such as the characteristic panting chimpanzee laugh (one sound per inward or outward breath). The evolution of bipedal locomotion freed the respiration system of its support function during running, permitting greater breath control and the selection for human-type laughter (a parsed exhalation), and subsequently the virtuosic, sustained, expiratory vocalization of speech. This is the basis of the bipedal theory of speech evolution.

  20. Minimally Actuated Walking: Identifying Core Challenges to Economical Legged Locomotion Reveals Novel Solutions

    Directory of Open Access Journals (Sweden)

    Ryan T Schroeder

    2018-05-01

    Full Text Available Terrestrial organisms adept at locomotion employ strut-like legs for economical and robust movement across the substrate. Although it is relatively easy to observe and analyze details of the solutions these organic systems have arrived at, it is not as easy to identify the problems these movement strategies have solved. As such, it is useful to investigate fundamental challenges that effective legged locomotion overcomes in order to understand why the mechanisms employed by biological systems provide viable solutions to these challenges. Such insight can inform the design and development of legged robots that may eventually match or exceed animal performance. In the context of human walking, we apply control optimization as a design strategy for simple bipedal walking machines with minimal actuation. This approach is used to discuss key facilitators of energetically efficient locomotion in simple bipedal walkers. Furthermore, we extrapolate the approach to a novel application—a theoretical exoskeleton attached to the trunk of a human walker—to demonstrate how coordinated efforts between bipedal actuation and a machine oscillator can potentially alleviate a meaningful portion of energetic exertion associated with leg function during human walking.

  1. Decoding bipedal locomotion from the rat sensorimotor cortex

    NARCIS (Netherlands)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-01-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower

  2. Underwater bipedal locomotion by octopuses in disguise.

    Science.gov (United States)

    Huffard, Christine L; Boneka, Farnis; Full, Robert J

    2005-03-25

    Here we report bipedal movement with a hydrostatic skeleton. Two species of octopus walk on two alternating arms using a rolling gait and appear to use the remaining six arms for camouflage. Octopus marginatus resembles a coconut, and Octopus (Abdopus) aculeatus, a clump of floating algae. Using underwater video, we analyzed the kinematics of their strides. Each arm was on the sand for more than half of the stride, qualifying this behavior as a form of walking.

  3. Human balance, the evolution of bipedalism and dysequilibrium syndrome.

    Science.gov (United States)

    Skoyles, John R

    2006-01-01

    A new model of the uniqueness, nature and evolution of human bipedality is presented in the context of the etiology of the balance disorder of dysequilibrium syndrome. Human bipedality is biologically novel in several remarkable respects. Humans are (a) obligate, habitual and diverse in their bipedalism, (b) hold their body carriage spinally erect in a multisegmental "antigravity pole", (c) use their forelimbs exclusively for nonlocomotion, (d) support their body weight exclusively by vertical balance and normally never use prehensile holds. Further, human bipedalism is combined with (e) upper body actions that quickly shift the body's center of mass (e.g. tennis serves, piggy-back carrying of children), (f) use transient unstable erect positions (dance, kicking and fighting), (g) body height that makes falls injurious, (h) stiff gait walking, and (i) endurance running. Underlying these novelties, I conjecture, is a species specific human vertical balance faculty. This faculty synchronizes any action with a skeletomuscular adjustment that corrects its potential destabilizing impact upon the projection of the body's center of mass over its foot support. The balance faculty depends upon internal models of the erect vertical body's geometrical relationship (and its deviations) to its support base. Due to the situation that humans are obligate erect terrestrial animals, two frameworks - the body- and gravity-defined frameworks - are in constant alignment in the vertical z-axis. This alignment allows human balance to adapt egocentric body cognitions to detect body deviations from the gravitational vertical. This link between human balance and the processing of geometrical orientation, I propose, accounts for the close link between balance and spatial cognition found in the cerebral cortex. I argue that cortical areas processing the spatial and other cognitions needed to enable vertical balance was an important reason for brain size expansion of Homo erectus. A novel

  4. Bipedality and hair loss in human evolution revisited: The impact of altitude and activity scheduling.

    Science.gov (United States)

    Dávid-Barrett, Tamás; Dunbar, Robin I M

    2016-05-01

    Bipedality evolved early in hominin evolution, and at some point was associated with hair loss over most of the body. One classic explanation (Wheeler 1984: J. Hum. Evol. 13, 91-98) was that these traits evolved to reduce heat overload when australopiths were foraging in more open tropical habitats where they were exposed to the direct effects of sunlight at midday. A recent critique of this model (Ruxton & Wilkinson 2011a: Proc. Natl. Acad. Sci. USA 108, 20965-20969) argued that it ignored the endogenous costs of heat generated by locomotion, and concluded that only hair loss provided a significant reduction in heat load. We add two crucial corrections to this model (the altitude at which australopiths actually lived and activity scheduling) and show that when these are included there are substantial reductions in heat load for bipedal locomotion even for furred animals. In addition, we add one further consideration to the model: we extend the analysis across the full 24 h day, and show that fur loss could not have evolved until much later because of the thermoregulatory costs this would have incurred at the altitudes where australopiths actually lived. Fur loss is most likely associated with the exploitation of open habitats at much lower altitudes at a much later date by the genus Homo. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Influence of an infant walker on onset and quality of walking pattern of locomotion:an electromyographic investigation.

    Science.gov (United States)

    Kauffman, I B; Ridenour, M

    1977-12-01

    Acquisition of bipedal locomotor skill in human infants was studied electromyographically with regard to the deprivation or enrichment behavior resulting from the frequent and regular use of an infant walker. Subjects were six sets of male, fraternal twins. One randomly selected sibling from each set underwent a training program, commencing at the age of 300 days, spending a total of 2 hr. per day in a walker. Siblings not included in this group were subjected to no special training. EMG recordings were taken of all subjects at specified intervals in order to establish a model of the typical motor pattern at various stages of skill development. These data were then contrasted with EMG data similarly obtained from the walker-trained subjects. Use of an infant walker modified the mechanics of the infant's locomotion in a number of important ways. It was shown that use of the walker enables an infant to commit substantial mechanical errors yet succeed in bipedal locomotion. Inasmuch as the mechanics of walker-assisted and non-assisted bipedal locomotion are dissimilar in so many important ways, positive transfer from walker-training appears questionable.

  6. Lizard locomotion in heterogeneous granular media

    Science.gov (United States)

    Schiebel, Perrin; Goldman, Daniel

    2014-03-01

    Locomotion strategies in heterogeneous granular environments (common substrates in deserts), are relatively unexplored. The zebra-tailed lizard (C. draconoides) is a useful model organism for such studies owing to its exceptional ability to navigate a variety of desert habitats at impressive speed (up to 50 body-lengths per second) using both quadrapedal and bidepal gaits. In laboratory experiments, we challenge the lizards to run across a field of boulders (2.54 cm diameter glass spheres or 3.8 cm 3D printed spheres) placed in a lattice pattern and embedded in a loosely packed granular medium of 0.3 mm diameter glass particles. Locomotion kinematics of the lizard are recorded using high speed cameras, with and without the scatterers. The data reveals that unlike the lizard's typical quadrupedal locomotion using a diagonal gait, when scatterers are present the lizard is most successful when using a bipedal gait, with a raised center of mass (CoM). We propose that the kinematics of bipedal running in conjunction with the lizard's long toes and compliant hind foot are the keys to this lizard's successful locomotion in the presence of such obstacles. NSF PoLS

  7. Human and avian running on uneven ground: a model-based comparison

    OpenAIRE

    Müller, R.; Birn-Jeffery, A. V.; Blum, Y.

    2016-01-01

    Birds and humans are successful bipedal runners, who have individually evolved bipedalism, but the extent of the similarities and differences of their bipedal locomotion is unknown. In turn, the anatomical differences of their locomotor systems complicate direct comparisons. However, a simplifying mechanical model, such as the conservative spring–mass model, can be used to describe both avian and human running and thus, provides a way to compare the locomotor strategies that birds and humans ...

  8. Switching Adaptability in Human-Inspired Sidesteps: A Minimal Model.

    Science.gov (United States)

    Fujii, Keisuke; Yoshihara, Yuki; Tanabe, Hiroko; Yamamoto, Yuji

    2017-01-01

    Humans can adapt to abruptly changing situations by coordinating redundant components, even in bipedality. Conventional adaptability has been reproduced by various computational approaches, such as optimal control, neural oscillator, and reinforcement learning; however, the adaptability in bipedal locomotion necessary for biological and social activities, such as unpredicted direction change in chase-and-escape, is unknown due to the dynamically unstable multi-link closed-loop system. Here we propose a switching adaptation model for performing bipedal locomotion by improving autonomous distributed control, where autonomous actuators interact without central control and switch the roles for propulsion, balancing, and leg swing. Our switching mobility model achieved direction change at any time using only three actuators, although it showed higher motor costs than comparable models without direction change. Our method of evaluating such adaptation at any time should be utilized as a prerequisite for understanding universal motor control. The proposed algorithm may simply explain and predict the adaptation mechanism in human bipedality to coordinate the actuator functions within and between limbs.

  9. Assessing Brain–Muscle Connectivity in Human Locomotion through Mobile Brain/Body Imaging: Opportunities, Pitfalls, and Future Directions

    Directory of Open Access Journals (Sweden)

    Federico Gennaro

    2018-02-01

    Full Text Available Assessment of the cortical role during bipedalism has been a methodological challenge. While surface electroencephalography (EEG is capable of non-invasively measuring cortical activity during human locomotion, it is associated with movement artifacts obscuring cerebral sources of activity. Recently, statistical methods based on blind source separation revealed potential for resolving this issue, by segregating non-cerebral/artifactual from cerebral sources of activity. This step marked a new opportunity for the investigation of the brains’ role while moving and was tagged mobile brain/body imaging (MoBI. This methodology involves simultaneous mobile recording of brain activity with several other body behavioral variables (e.g., muscle activity and kinematics, through wireless recording wearable devices/sensors. Notably, several MoBI studies using EEG–EMG approaches recently showed that the brain is functionally connected to the muscles and active throughout the whole gait cycle and, thus, rejecting the long-lasting idea of a solely spinal-driven bipedalism. However, MoBI and brain/muscle connectivity assessments during human locomotion are still in their fledgling state of investigation. Mobile brain/body imaging approaches hint toward promising opportunities; however, there are some remaining pitfalls that need to be resolved before considering their routine clinical use. This article discusses several of these pitfalls and proposes research to address them. Examples relate to the validity, reliability, and reproducibility of this method in ecologically valid scenarios and in different populations. Furthermore, whether brain/muscle connectivity within the MoBI framework represents a potential biomarker in neuromuscular syndromes where gait disturbances are evident (e.g., age-related sarcopenia remains to be determined.

  10. Walking like dinosaurs: chickens with artificial tails provide clues about non-avian theropod locomotion.

    Science.gov (United States)

    Grossi, Bruno; Iriarte-Díaz, José; Larach, Omar; Canals, Mauricio; Vásquez, Rodrigo A

    2014-01-01

    Birds still share many traits with their dinosaur ancestors, making them the best living group to reconstruct certain aspects of non-avian theropod biology. Bipedal, digitigrade locomotion and parasagittal hindlimb movement are some of those inherited traits. Living birds, however, maintain an unusually crouched hindlimb posture and locomotion powered by knee flexion, in contrast to the inferred primitive condition of non-avian theropods: more upright posture and limb movement powered by femur retraction. Such functional differences, which are associated with a gradual, anterior shift of the centre of mass in theropods along the bird line, make the use of extant birds to study non-avian theropod locomotion problematic. Here we show that, by experimentally manipulating the location of the centre of mass in living birds, it is possible to recreate limb posture and kinematics inferred for extinct bipedal dinosaurs. Chickens raised wearing artificial tails, and consequently with more posteriorly located centre of mass, showed a more vertical orientation of the femur during standing and increased femoral displacement during locomotion. Our results support the hypothesis that gradual changes in the location of the centre of mass resulted in more crouched hindlimb postures and a shift from hip-driven to knee-driven limb movements through theropod evolution. This study suggests that, through careful experimental manipulations during the growth phase of ontogeny, extant birds can potentially be used to gain important insights into previously unexplored aspects of bipedal non-avian theropod locomotion.

  11. Walking like dinosaurs: chickens with artificial tails provide clues about non-avian theropod locomotion.

    Directory of Open Access Journals (Sweden)

    Bruno Grossi

    Full Text Available Birds still share many traits with their dinosaur ancestors, making them the best living group to reconstruct certain aspects of non-avian theropod biology. Bipedal, digitigrade locomotion and parasagittal hindlimb movement are some of those inherited traits. Living birds, however, maintain an unusually crouched hindlimb posture and locomotion powered by knee flexion, in contrast to the inferred primitive condition of non-avian theropods: more upright posture and limb movement powered by femur retraction. Such functional differences, which are associated with a gradual, anterior shift of the centre of mass in theropods along the bird line, make the use of extant birds to study non-avian theropod locomotion problematic. Here we show that, by experimentally manipulating the location of the centre of mass in living birds, it is possible to recreate limb posture and kinematics inferred for extinct bipedal dinosaurs. Chickens raised wearing artificial tails, and consequently with more posteriorly located centre of mass, showed a more vertical orientation of the femur during standing and increased femoral displacement during locomotion. Our results support the hypothesis that gradual changes in the location of the centre of mass resulted in more crouched hindlimb postures and a shift from hip-driven to knee-driven limb movements through theropod evolution. This study suggests that, through careful experimental manipulations during the growth phase of ontogeny, extant birds can potentially be used to gain important insights into previously unexplored aspects of bipedal non-avian theropod locomotion.

  12. Relationship between foramen magnum position and locomotion in extant and extinct hominoids.

    Science.gov (United States)

    Neaux, Dimitri; Bienvenu, Thibaut; Guy, Franck; Daver, Guillaume; Sansalone, Gabriele; Ledogar, Justin A; Rae, Todd C; Wroe, Stephen; Brunet, Michel

    2017-12-01

    From the Miocene Sahelanthropus tchadensis to Pleistocene Homo sapiens, hominins are characterized by a derived anterior position of the foramen magnum relative to basicranial structures. It has been previously suggested that the anterior position of the foramen magnum in hominins is related to bipedal locomotor behavior. Yet, the functional relationship between foramen magnum position and bipedal locomotion remains unclear. Recent studies, using ratios based on cranial linear measurements, have found a link between the anterior position of the foramen magnum and bipedalism in several mammalian clades: marsupials, rodents, and primates. In the present study, we compute these ratios in a sample including a more comprehensive dataset of extant hominoids and fossil hominins. First, we verify if the values of ratios can distinguish extant humans from apes. Then, we test whether extinct hominins can be distinguished from non-bipedal extant hominoids. Finally, we assess if the studied ratios are effective predictors of bipedal behavior by testing if they mainly relate to variation in foramen magnum position rather than changes in other cranial structures. Our results confirm that the ratios discriminate between extant bipeds and non-bipeds. However, the only ratio clearly discriminating between fossil hominins and other extant apes is that which only includes basicranial structures. We show that a large proportion of the interspecific variation in the other ratios relates to changes in facial, rather than basicranial, structures. In this context, we advocate the use of measurements based only on basicranial structures when assessing the relationship between foramen magnum position and bipedalism in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Human bipedalism and body-mass index.

    Science.gov (United States)

    Yi, Su Do; Noh, Jae Dong; Minnhagen, Petter; Song, Mi-Young; Chon, Tae-Soo; Kim, Beom Jun

    2017-06-16

    Body-mass index, abbreviated as BMI and given by M/H 2 with the mass M and the height H, has been widely used as a useful proxy to measure a general health status of a human individual. We generalise BMI in the form of M/H p and pursue to answer the question of the value of p for populations of animal species including human. We compare values of p for several different datasets for human populations with the ones obtained for other animal populations of fish, whales, and land mammals. All animal populations but humans analyzed in our work are shown to have p ≈ 3 unanimously. In contrast, human populations are different: As young infants grow to become toddlers and keep growing, the sudden change of p is observed at about one year after birth. Infants younger than one year old exhibit significantly larger value of p than two, while children between one and five years old show p ≈ 2, sharply different from other animal species. The observation implies the importance of the upright posture of human individuals. We also propose a simple mechanical model for a human body and suggest that standing and walking upright should put a clear division between bipedal human (p ≈ 2) and other animals (p ≈ 3).

  14. A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions

    Directory of Open Access Journals (Sweden)

    Jose eGonzalez-Vargas

    2015-09-01

    matched well the experimental excitation with a cross-correlation factor greater than 85% and a root mean square error less than 0.09. The ability of synthetizing the neuromuscular mechanisms underlying human locomotion across a variety of locomotion conditions will enable solutions in the field of neurorehabilitation technologies and control of bipedal artificial systems.

  15. The functional origin of dinosaur bipedalism: Cumulative evidence from bipedally inclined reptiles and disinclined mammals.

    Science.gov (United States)

    Persons, W Scott; Currie, Philip J

    2017-05-07

    Bipedalism is a trait basal to, and widespread among, dinosaurs. It has been previously argued that bipedalism arose in the ancestors of dinosaurs for the function of freeing the forelimbs to serve as predatory weapons. However, this argument does not explain why bipedalism was retained among numerous herbivorous groups of dinosaurs. We argue that bipedalism arose in the dinosaur line for the purpose of enhanced cursoriality. Modern facultatively bipedal lizards offer an analog for the first stages in the evolution of dinosaurian bipedalism. Many extant lizards assume a bipedal stance while attempting to flee predators at maximum speed. Bipedalism, when combined with a caudofemoralis musculature, has cursorial advantages because the caudofemoralis provides a greater source of propulsion to the hindlimbs than is generally available to the forelimbs. That cursorial advantage explains the relative abundance of cursorial facultative bipeds and obligate bipeds among fossil diapsids and the relative scarcity of either among mammals. Having lost their caudofemoralis in the Permian, perhaps in the context of adapting to a fossorial lifestyle, the mammalian line has been disinclined towards bipedalism, but, having never lost the caudofemoralis of their ancestors, cursorial avemetatarsalians (bird-line archosaurs) were naturally inclined towards bipedalism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Numerical simulation of human biped locomotion

    International Nuclear Information System (INIS)

    Ishiguro, Misako; Fujisaki, Masahide

    1988-04-01

    This report describes the numerical simulation of the motion of human-like robot which is one of the research theme of human acts simulation program (HASP) begun at the Computing Center of JAERI in 1987. The purpose of the theme is to model the human motion using robotics kinematic/kinetic equations and to get the joint angles as the solution. As the first trial, we treat the biped locomotion (walking) which is the most fundamental human motion. We implemented a computer program on FACOM M-780 computer, where the program is originated from the book of M. Vukobratovic in Yugoslavia, and made a graphic program to draw a walking shot sequence. Mainly described here are the mathematical model of the biped locomotion, implementation method of the computer program, input data for basic walking pattern, computed results and its validation, and graphic representation of human walking image. Literature survey on robotics equation and biped locomotion is also included. (author)

  17. Development of human locomotion.

    Science.gov (United States)

    Lacquaniti, Francesco; Ivanenko, Yuri P; Zago, Myrka

    2012-10-01

    Neural control of locomotion in human adults involves the generation of a small set of basic patterned commands directed to the leg muscles. The commands are generated sequentially in time during each step by neural networks located in the spinal cord, called Central Pattern Generators. This review outlines recent advances in understanding how motor commands are expressed at different stages of human development. Similar commands are found in several other vertebrates, indicating that locomotion development follows common principles of organization of the control networks. Movements show a high degree of flexibility at all stages of development, which is instrumental for learning and exploration of variable interactions with the environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Morphological self stabilization of locomotion gaits: illustration on a few examples from bio-inspired locomotion.

    Science.gov (United States)

    Chevallereau, Christine; Boyer, Frédéric; Porez, Mathieu; Mauny, Johan; Aoustin, Yannick

    2017-06-20

    To a large extent, robotics locomotion can be viewed as cyclic motions, named gaits. Due to the high complexity of the locomotion dynamics, to find the control laws that ensure an expected gait and its stability with respect to external perturbations, is a challenging issue for feedback control. To address this issue, a promising way is to take inspiration from animals that intensively exploit the interactions of the passive degrees of freedom of their body with their physical surroundings, to outsource the high-level exteroceptive feedback control to low-level proprioceptive ones. In this case, passive interactions can ensure most of the expected control goals. In this article, we propose a methodological framework to study the role of morphology in the design of locomotion gaits and their stability. This framework ranges from modelling to control aspects, and is illustrated through three examples from bio-inspired locomotion: a three-dimensional micro air vehicle in hovering flight, a pendular planar climber and a bipedal planar walker. In these three cases, we will see how simple considerations based on the morphology of the body can ensure the existence of passive stable gaits without requiring any high-level control.

  19. Modeling, simulation and optimization of bipedal walking

    CERN Document Server

    Berns, Karsten

    2013-01-01

    The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired con...

  20. Modular control of limb movements during human locomotion

    NARCIS (Netherlands)

    Ivanenko, Yuri P; Cappellini, Germana; Dominici, Nadia; Poppele, Richard E; Lacquaniti, Francesco

    2007-01-01

    The idea that the CNS may control complex interactions by modular decomposition has received considerable attention. We explored this idea for human locomotion by examining limb kinematics. The coordination of limb segments during human locomotion has been shown to follow a planar law for walking at

  1. A Novel Design for Adjustable Stiffness Artificial Tendon for the Ankle Joint of a Bipedal Robot: Modeling & Simulation

    Directory of Open Access Journals (Sweden)

    Aiman Omer

    2015-12-01

    Full Text Available Bipedal humanoid robots are expected to play a major role in the future. Performing bipedal locomotion requires high energy due to the high torque that needs to be provided by its legs’ joints. Taking the WABIAN-2R as an example, it uses harmonic gears in its joint to increase the torque. However, using such a mechanism increases the weight of the legs and therefore increases energy consumption. Therefore, the idea of developing a mechanism with adjustable stiffness to be connected to the leg joint is introduced here. The proposed mechanism would have the ability to provide passive and active motion. The mechanism would be attached to the ankle pitch joint as an artificial tendon. Using computer simulations, the dynamical performance of the mechanism is analytically evaluated.

  2. Bipedal tool use strengthens chimpanzee hand preferences

    DEFF Research Database (Denmark)

    Braccini, Stephanie; Lambeth, Susan; Schapiro, Steve

    2010-01-01

    The degree to which non-human primate behavior is lateralized, at either individual or population levels, remains controversial. We investigated the relationship between hand preference and posture during tool use in chimpanzees (Pan troglodytes) during bipedal tool use. We experimentally induced...

  3. Muscle Coordination and Locomotion in Humans.

    Science.gov (United States)

    Sylos-Labini, Francesca; Zago, Myrka; Guertin, Pierre A; Lacquaniti, Francesco; Ivanenko, Yury P

    2017-01-01

    Locomotion is a semi-automatic daily task. Several studies show that muscle activity is fairly stereotyped during normal walking. Nevertheless, each human leg contains over 50 muscles and locomotion requires flexibility in order to adapt to different conditions as, for instance, different speeds, gaits, turning, obstacle avoidance, altered gravity levels, etc. Therefore, locomotor control has to deal with a certain level of flexibility and non-linearity. In this review, we describe and discuss different findings dealing with both simplicity and variability of the muscular control, as well as with its maturation during development. Despite complexity and redundancy, muscle activity patterns and spatiotemporal maps of spinal motoneuron output during human locomotion show both stereotypical features as well as functional re-organization. Flexibility and different solutions to adjust motor patterns should be considered when considering new rehabilitation strategies to treat disorders involving deficits in gait. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Locomotion in ornithischian dinosaurs: an assessment using three-dimensional computational modelling.

    Science.gov (United States)

    Maidment, Susannah C R; Bates, Karl T; Falkingham, Peter L; VanBuren, Collin; Arbour, Victoria; Barrett, Paul M

    2014-08-01

    Ornithischian dinosaurs were primitively bipedal with forelimbs modified for grasping, but quadrupedalism evolved in the clade on at least three occasions independently. Outside of Ornithischia, quadrupedality from bipedal ancestors has only evolved on two other occasions, making this one of the rarest locomotory transitions in tetrapod evolutionary history. The osteological and myological changes associated with these transitions have only recently been documented, and the biomechanical consequences of these changes remain to be examined. Here, we review previous approaches to understanding locomotion in extinct animals, which can be broadly split into form-function approaches using analogy based on extant animals, limb-bone scaling, and computational approaches. We then carry out the first systematic attempt to quantify changes in locomotor muscle function in bipedal and quadrupedal ornithischian dinosaurs. Using three-dimensional computational modelling of the major pelvic locomotor muscle moment arms, we examine similarities and differences among individual taxa, between quadrupedal and bipedal taxa, and among taxa representing the three major ornithischian lineages (Thyreophora, Ornithopoda, Marginocephalia). Our results suggest that the ceratopsid Chasmosaurus and the ornithopod Hypsilophodon have relatively low moment arms for most muscles and most functions, perhaps suggesting poor locomotor performance in these taxa. Quadrupeds have higher abductor moment arms than bipeds, which we suggest is due to the overall wider bodies of the quadrupeds modelled. A peak in extensor moment arms at more extended hip angles and lower medial rotator moment arms in quadrupeds than in bipeds may be due to a more columnar hindlimb and loss of medial rotation as a form of lateral limb support in quadrupeds. We are not able to identify trends in moment arm evolution across Ornithischia as a whole, suggesting that the bipedal ancestry of ornithischians did not constrain the

  5. On the Role of the Pedunculopontine Nucleus and Mesencephalic Reticular Formation in Locomotion in Nonhuman Primates.

    Science.gov (United States)

    Goetz, Laurent; Piallat, Brigitte; Bhattacharjee, Manik; Mathieu, Hervé; David, Olivier; Chabardès, Stéphan

    2016-05-04

    The mesencephalic reticular formation (MRF) is formed by the pedunculopontine and cuneiform nuclei, two neuronal structures thought to be key elements in the supraspinal control of locomotion, muscle tone, waking, and REM sleep. The role of MRF has also been advocated in modulation of state of arousal leading to transition from wakefulness to sleep and it is further considered to be a main player in the pathophysiology of gait disorders seen in Parkinson's disease. However, the existence of a mesencephalic locomotor region and of an arousal center has not yet been demonstrated in primates. Here, we provide the first extensive electrophysiological mapping of the MRF using extracellular recordings at rest and during locomotion in a nonhuman primate (NHP) (Macaca fascicularis) model of bipedal locomotion. We found different neuronal populations that discharged according to a phasic or a tonic mode in response to locomotion, supporting the existence of a locomotor neuronal circuit within these MRF in behaving primates. Altogether, these data constitute the first electrophysiological characterization of a locomotor neuronal system present within the MRF in behaving NHPs under normal conditions, in accordance with several studies done in different experimental animal models. We provide the first extensive electrophysiological mapping of the two major components of the mesencephalic reticular formation (MRF), namely the pedunculopontine and cuneiform nuclei. We exploited a nonhuman primate (NHP) model of bipedal locomotion with extracellular recordings in behaving NHPs at rest and during locomotion. Different MRF neuronal groups were found to respond to locomotion, with phasic or tonic patterns of response. These data constitute the first electrophysiological evidences of a locomotor neuronal system within the MRF in behaving NHPs. Copyright © 2016 the authors 0270-6474/16/364917-13$15.00/0.

  6. [Evolution of the pelvis and hip throughout history: from primates to modern man].

    Science.gov (United States)

    Lapègue, F; Jirari, M; Sethoum, S; Faruch, M; Barcelo, C; Moskovitch, G; Ponsot, A; Rabat, M-C; Labarre, D; Vial, J; Chiavassa, H; Baunin, C; Railhac, J-J; Sans, N

    2011-06-01

    The evolution to a bipedal mode of locomotion was accompanied by a verticalization of the spine and a modification in the shape of the pelvis: horizontal curvature and sagittal rotation. Phylogenesis meets ontogenesis: flat bones in fetuses similar to the monkey, australopithecus features at birth and "human-like" features by 7 or 8years of age. These anatomical modifications explain the characteristics of human bipedalism: stable, economical, with hip and knee extension in the standing position with little lateral motion. Some pathologies induce a regression to a more archaic mode of bipedal locomotion. Copyright © 2011 Elsevier Masson SAS and Éditions françaises de radiologie. All rights reserved.

  7. Simulating an elastic bipedal robot based on musculoskeletal modeling

    NARCIS (Netherlands)

    Bortoletto, Roberto; Sartori, Massimo; He, Fuben; Pagello, Enrico

    2012-01-01

    Many of the processes involved into the synthesis of human motion have much in common with problems found in robotics research. This paper describes the modeling and the simulation of a novel bipedal robot based on series elastic actuators [1]. The robot model takes in- spiration from the human

  8. Neural Computation Scheme of Compound Control: Tacit Learning for Bipedal Locomotion

    Science.gov (United States)

    Shimoda, Shingo; Kimura, Hidenori

    The growing need for controlling complex behaviors of versatile robots working in unpredictable environment has revealed the fundamental limitation of model-based control strategy that requires precise models of robots and environments before their operations. This difficulty is fundamental and has the same root with the well-known frame problem in artificial intelligence. It has been a central long standing issue in advanced robotics, as well as machine intelligence, to find a prospective clue to attack this fundamental difficulty. The general consensus shared by many leading researchers in the related field is that the body plays an important role in acquiring intelligence that can conquer unknowns. In particular, purposeful behaviors emerge during body-environment interactions with the help of an appropriately organized neural computational scheme that can exploit what the environment can afford. Along this line, we propose a new scheme of neural computation based on compound control which represents a typical feature of biological controls. This scheme is based on classical neuron models with local rules that can create macroscopic purposeful behaviors. This scheme is applied to a bipedal robot and generates the rhythm of walking without any model of robot dynamics and environments.

  9. Exotendons for assistance of human locomotion

    Directory of Open Access Journals (Sweden)

    van den Bogert Antonie J

    2003-10-01

    Full Text Available Abstract Background Powered robotic exoskeletons for assistance of human locomotion are currently under development for military and medical applications. The energy requirements for such devices are excessive, and this has become a major obstacle for practical applications. Legged locomotion in many animals, however, is very energy efficient. We propose that poly-articular elastic mechanisms are a major contributor to the economy of locomotion in such specialized animals. Consequently, it should be possible to design unpowered assistive devices that make effective use of similar mechanisms. Methods A passive assistive technology is presented, based on long elastic cords attached to an exoskeleton and guided by pulleys placed at the joints. A general optimization procedure is described for finding the best geometrical arrangement of such "exotendons" for assisting a specific movement. Optimality is defined either as minimal residual joint moment or as minimal residual joint power. Four specific exotendon systems with increasing complexity are considered. Representative human gait data were used to optimize each of these four systems to achieve maximal assistance for normal walking. Results The most complex exotendon system, with twelve pulleys per limb, was able to reduce the joint moments required for normal walking by 71% and joint power by 74%. A simpler system, with only three pulleys per limb, could reduce joint moments by 46% and joint power by 47%. Conclusion It is concluded that unpowered passive elastic devices can substantially reduce the muscle forces and the metabolic energy needed for walking, without requiring a change in movement. When optimally designed, such devices may allow independent locomotion in patients with large deficits in muscle function.

  10. Towards a general neural controller for quadrupedal locomotion.

    Science.gov (United States)

    Maufroy, Christophe; Kimura, Hiroshi; Takase, Kunikatsu

    2008-05-01

    Our study aims at the design and implementation of a general controller for quadruped locomotion, allowing the robot to use the whole range of quadrupedal gaits (i.e. from low speed walking to fast running). A general legged locomotion controller must integrate both posture control and rhythmic motion control and have the ability to shift continuously from one control method to the other according to locomotion speed. We are developing such a general quadrupedal locomotion controller by using a neural model involving a CPG (Central Pattern Generator) utilizing ground reaction force sensory feedback. We used a biologically faithful musculoskeletal model with a spine and hind legs, and computationally simulated stable stepping motion at various speeds using the neuro-mechanical system combining the neural controller and the musculoskeletal model. We compared the changes of the most important locomotion characteristics (stepping period, duty ratio and support length) according to speed in our simulations with the data on real cat walking. We found similar tendencies for all of them. In particular, the swing period was approximately constant while the stance period decreased with speed, resulting in a decreasing stepping period and duty ratio. Moreover, the support length increased with speed due to the posterior extreme position that shifted progressively caudally, while the anterior extreme position was approximately constant. This indicates that we succeeded in reproducing to some extent the motion of a cat from the kinematical point of view, even though we used a 2D bipedal model. We expect that such computational models will become essential tools for legged locomotion neuroscience in the future.

  11. Another look at the foramen magnum in bipedal mammals.

    Science.gov (United States)

    Russo, Gabrielle A; Kirk, E Christopher

    2017-04-01

    A more anteriorly positioned foramen magnum evolved in concert with bipedalism at least four times within Mammalia: once in macropodid marsupials, once in heteromyid rodents, once in dipodid rodents, and once in hominoid primates. Here, we expand upon previous research on the factors influencing mammalian foramen magnum position (FMP) and angle with four new analyses. First, we quantify FMP using a metric (basioccipital ratio) not previously examined in a broad comparative sample of mammals. Second, we evaluate the potential influence of relative brain size on both FMP and foramen magnum angle (FMA). Third, we assess FMP in an additional rodent clade (Anomaluroidea) containing bipedal springhares (Pedetes spp.) and gliding/quadrupedal anomalures (Anomalurus spp.). Fourth, we determine the relationship between measures of FMP and FMA in extant hominoids and an expanded mammalian sample. Our results indicate that bipedal/orthograde mammals have shorter basioccipitals than their quadrupedal/non-orthograde relatives. Brain size alone has no discernible effect on FMP or FMA. Brain size relative to palate size has a weak influence on FMP in some clades, but effects are not evident in all metrics of FMP and are inconsistent among clades. Among anomaluroids, bipedal Pedetes exhibits a more anterior FMP than gliding/quadrupedal Anomalurus. The relationship between FMA and FMP in hominoids depends on the metric chosen for quantifying FMP, and if modern humans are included in the sample. However, the relationship between FMA and FMP is nonexistent or weak across rodents, marsupials, and, to a lesser extent, strepsirrhine primates. These results provide further evidence that bipedal mammals tend to have more anteriorly positioned foramina magna than their quadrupedal close relatives. Our findings also suggest that the evolution of FMP and FMA in hominins may not be closely coupled. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints

    Science.gov (United States)

    Huang, Yan; Wang, Qi-Ning; Gao, Yue; Xie, Guang-Ming

    2012-10-01

    Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of flat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.

  13. Relation between observed locomotion traits and locomotion score in dairy cows

    NARCIS (Netherlands)

    Schlageter Tello, A.A.; Bokkers, E.A.M.; Groot Koerkamp, P.W.G.; Hertem, van T.; Viazzi, S.; Lokhorst, Kees

    2015-01-01

    Lameness is still an important problem in modern dairy farming. Human observation of locomotion, by looking at different traits in one go, is used in practice to assess locomotion. The objectives of this article were to determine which individual locomotion traits are most related to locomotion

  14. Human Locomotion in Hypogravity: From Basic Research to Clinical Applications

    Directory of Open Access Journals (Sweden)

    Francesco Lacquaniti

    2017-11-01

    Full Text Available We have considerable knowledge about the mechanisms underlying compensation of Earth gravity during locomotion, a knowledge obtained from physiological, biomechanical, modeling, developmental, comparative, and paleoanthropological studies. By contrast, we know much less about locomotion and movement in general under sustained hypogravity. This lack of information poses a serious problem for human space exploration. In a near future humans will walk again on the Moon and for the first time on Mars. It would be important to predict how they will move around, since we know that locomotion and mobility in general may be jeopardized in hypogravity, especially when landing after a prolonged weightlessness of the space flight. The combination of muscle weakness, of wearing a cumbersome spacesuit, and of maladaptive patterns of locomotion in hypogravity significantly increase the risk of falls and injuries. Much of what we currently know about locomotion in hypogravity derives from the video archives of the Apollo missions on the Moon, the experiments performed with parabolic flight or with body weight support on Earth, and the theoretical models. These are the topics of our review, along with the issue of the application of simulated hypogravity in rehabilitation to help patients with deambulation problems. We consider several issues that are common to the field of space science and clinical rehabilitation: the general principles governing locomotion in hypogravity, the methods used to reduce gravity effects on locomotion, the extent to which the resulting behavior is comparable across different methods, the important non-linearities of several locomotor parameters as a function of the gravity reduction, the need to use multiple methods to obtain reliable results, and the need to tailor the methods individually based on the physiology and medical history of each person.

  15. Human Locomotion in Hypogravity: From Basic Research to Clinical Applications.

    Science.gov (United States)

    Lacquaniti, Francesco; Ivanenko, Yury P; Sylos-Labini, Francesca; La Scaleia, Valentina; La Scaleia, Barbara; Willems, Patrick A; Zago, Myrka

    2017-01-01

    We have considerable knowledge about the mechanisms underlying compensation of Earth gravity during locomotion, a knowledge obtained from physiological, biomechanical, modeling, developmental, comparative, and paleoanthropological studies. By contrast, we know much less about locomotion and movement in general under sustained hypogravity. This lack of information poses a serious problem for human space exploration. In a near future humans will walk again on the Moon and for the first time on Mars. It would be important to predict how they will move around, since we know that locomotion and mobility in general may be jeopardized in hypogravity, especially when landing after a prolonged weightlessness of the space flight. The combination of muscle weakness, of wearing a cumbersome spacesuit, and of maladaptive patterns of locomotion in hypogravity significantly increase the risk of falls and injuries. Much of what we currently know about locomotion in hypogravity derives from the video archives of the Apollo missions on the Moon, the experiments performed with parabolic flight or with body weight support on Earth, and the theoretical models. These are the topics of our review, along with the issue of the application of simulated hypogravity in rehabilitation to help patients with deambulation problems. We consider several issues that are common to the field of space science and clinical rehabilitation: the general principles governing locomotion in hypogravity, the methods used to reduce gravity effects on locomotion, the extent to which the resulting behavior is comparable across different methods, the important non-linearities of several locomotor parameters as a function of the gravity reduction, the need to use multiple methods to obtain reliable results, and the need to tailor the methods individually based on the physiology and medical history of each person.

  16. The use of pelvic fins for benthic locomotion during foraging behavior in Potamotrygon motoro (Chondrichthyes: Potamotrygonidae

    Directory of Open Access Journals (Sweden)

    Akemi Shibuya

    2015-06-01

    Full Text Available Synchronized bipedal movements of the pelvic fins provide propulsion (punting during displacement on the substrate in batoids with benthic locomotion. In skates (Rajidae this mechanism is mainly generated by the crural cartilages. Although lacking these anatomical structures, some stingray species show modifications of their pelvic fins to aid in benthic locomotion. This study describes the use of the pelvic fins for locomotory performance and body re-orientation in the freshwater stingray Potamotrygon motoro (Müller & Henle, 1841 during foraging. Pelvic fin movements of juvenile individuals of P. motoro were recorded in ventral view by a high-speed camera at 250-500 fields/s-1. Potamotrygon motoro presented synchronous, alternating and unilateral movements of the pelvic fins, similar to those reported in skates. Synchronous movements were employed during straightforward motion for pushing the body off the substrate as well as for strike feeding, whereas unilateral movements were used to maneuver the body to the right or left during both locomotion and prey capture. Alternating movements of the pelvic fins are similar to bipedal movements in terrestrial and semi-aquatic tetrapods. The pelvic fins showed coordinated movements during feeding even when stationary, indicating that they have an important function in maintaining body posture (station holding during prey capture and manipulation. The use of pelvic fins during prey stalking may be advantageous because it results in less substrate disturbance when compared to movements generated by pectoral fin undulation. The range of pelvic fin movements indicates more complex control and coordination of the pelvic radial muscles.

  17. Locomotion

    DEFF Research Database (Denmark)

    Kiehn, Ole; Dougherty, Kimberly

    2016-01-01

    Locomotion is a complex motor behavior needed by animals and humans to move through the environment. All forms of locomotion, including swimming, flying, walking, running, and hopping, are repetitive motor activities that require the activation of the limb and body muscles in an organized rhythm ...

  18. First Detailed Anatomical Study of Bonobos Reveals Intra-Specific Variations and Exposes Just-So Stories of Human Evolution, Bipedalism, and Tool Use

    Directory of Open Access Journals (Sweden)

    Rui Diogo

    2018-04-01

    Full Text Available Just-so stories are prominent in human evolution literature because of our tendency to create simple progressionist narratives about our “special” place in nature, despite the fact that these stories are almost exclusively based on hard tissue data. How can we be so certain about the evolution of human facial communication, bipedalism, tool use, or speech without detailed knowledge of the internal anatomy of for instance, one of the two extant species more closely related to us, the bonobos? Here I show how many of these stories now become obsolete, after such a comprehensive knowledge on the anatomy of bonobos and other primates is finally put together. Each and every muscle that has been long accepted to be “uniquely human” and to provide “crucial singular functional adaptations” for our bipedalism, tool use and/or vocal/facial communication, is actually present as an intra-specific variant or even as normal phenotype in bonobos and/or other apes.

  19. Human-robot interaction strategies for walker-assisted locomotion

    CERN Document Server

    Cifuentes, Carlos A

    2016-01-01

    This book presents the development of a new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation. The aim is to achieve a closer interaction between the robotic device and the individual, empowering the rehabilitation potential of such devices in clinical applications. A new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation is presented. Trends and opportunities for future advances in the field of assistive locomotion via the development of hybrid solutions based on the combination of smart walkers and biomechatronic exoskeletons are also discussed. .

  20. Body language: The interplay between positional behavior and gestural signaling in the genus Pan and its implications for language evolution.

    Science.gov (United States)

    Smith, Lindsey W; Delgado, Roberto A

    2015-08-01

    The gestural repertoires of bonobos and chimpanzees are well documented, but the relationship between gestural signaling and positional behavior (i.e., body postures and locomotion) has yet to be explored. Given that one theory for language evolution attributes the emergence of increased gestural communication to habitual bipedality, this relationship is important to investigate. In this study, we examined the interplay between gestures, body postures, and locomotion in four captive groups of bonobos and chimpanzees using ad libitum and focal video data. We recorded 43 distinct manual (involving upper limbs and/or hands) and bodily (involving postures, locomotion, head, lower limbs, or feet) gestures. In both species, actors used manual and bodily gestures significantly more when recipients were attentive to them, suggesting these movements are intentionally communicative. Adults of both species spent less than 1.0% of their observation time in bipedal postures or locomotion, yet 14.0% of all bonobo gestures and 14.7% of all chimpanzee gestures were produced when subjects were engaged in bipedal postures or locomotion. Among both bonobo groups and one chimpanzee group, these were mainly manual gestures produced by infants and juvenile females. Among the other chimpanzee group, however, these were mainly bodily gestures produced by adult males in which bipedal posture and locomotion were incorporated into communicative displays. Overall, our findings reveal that bipedality did not prompt an increase in manual gesturing in these study groups. Rather, body postures and locomotion are intimately tied to many gestures and certain modes of locomotion can be used as gestures themselves. © 2015 Wiley Periodicals, Inc.

  1. The hominins: a very conservative tribe? Last common ancestors, plasticity and ecomorphology in Hominidae. Or, What's in a name?

    Science.gov (United States)

    Crompton, Robin Huw

    2016-04-01

    In the early 20th century the dominant paradigm for the ecological context of the origins of human bipedalism was arboreal suspension. In the 1960s, however, with recognition of the close genetic relationship of humans, chimpanzees and bonobos, and with the first field studies of mountain gorillas and common chimpanzees, it was assumed that locomotion similar to that of common chimpanzees and mountain gorillas, which appeared to be dominated by terrestrial knuckle-walking, must have given rise to human bipedality. This paradigm has been popular, if not universally dominant, until very recently. However, evidence that neither the knuckle-walking or vertical climbing of these apes is mechanically similar to human bipedalism, as well as the hand-assisted bipedality and orthograde clambering of orang-utans, has cast doubt on this paradigm. It now appears that the dominance of terrestrial knuckle-walking in mountain gorillas is an artefact seen only in the extremes of their range, and that both mountain and lowland gorillas have a generalized orthogrady similar to that seen in orang-utans. These data, together with evidence for continued arboreal competence in humans, mesh well with an increasing weight of fossil evidence suggesting that a mix of orang-utan and gorilla-like arboreal locomotion and upright terrestrial bipedalism characterized most australopiths. The late split date of the panins, corresponding to dates for separation of Homo and Australopithecus, leads to the speculation that competition with chimpanzees, as appears to exist today with gorillas, may have driven ecological changes in hominins and perhaps cladogenesis. However, selection for ecological plasticity and morphological conservatism is a core characteristic of Hominidae as a whole, including Hominini. © 2015 Anatomical Society.

  2. Control strategy for energy-efficient bipedal walking with variable leg stiffness

    NARCIS (Netherlands)

    Visser, L.C.; Stramigioli, Stefano; Carloni, Raffaella

    In this work, we propose a hybrid model for a bipedal walker with controlled variable leg stiffness, and a control strategy for stable gait control. The control reference is a passive gait of the limit-case bipedal spring-loaded inverted pendulum model with massless feet, ensuring that the gait is

  3. Design, implementation and stabilization of a Bipedal robot

    Science.gov (United States)

    Nath, Alok; Das, Goutam; Mallick, Anik; Chowdhury, Shovan

    2017-12-01

    In this paper, we have presented the mechanical design and fabrication of a Bipedal walking robot as well as control strategies to be implemented for walking and balance recovery. For this robot, we considered Six Degree of Freedom (D.O.P) in the lower body one at each hip, one at each knee and one at each ankle. Each degree of freedom is powered by a RC servo motor and this robot is controlled by Arduino Mega 2560 micro controller. By balancing center of mass (C.O.M) it walks in rhythmic way as like as human one.

  4. Powered Lower Limb Prostheses

    OpenAIRE

    Grimmer, Martin

    2015-01-01

    Human upright locomotion emerged about 6 million years ago. It is achieved by a complex interaction of the biological infrastructure and the neural control. Bones, muscles, tendons, central nervous commands and reflex mechanisms interact to provide robust and efficient bipedal movement patterns like walking or running. Next to these locomotion tasks humans can also perform complex movements like climbing, dancing or jumping. Diseases or traumatic events may cause the loss of parts of the biol...

  5. Delegation to automaticity: the driving force for cognitive evolution?

    Science.gov (United States)

    Shine, J M; Shine, R

    2014-01-01

    The ability to delegate control over repetitive tasks from higher to lower neural centers may be a fundamental innovation in human cognition. Plausibly, the massive neurocomputational challenges associated with the mastery of balance during the evolution of bipedality in proto-humans provided a strong selective advantage to individuals with brains capable of efficiently transferring tasks in this way. Thus, the shift from quadrupedal to bipedal locomotion may have driven the rapid evolution of distinctive features of human neuronal functioning. We review recent studies of functional neuroanatomy that bear upon this hypothesis, and identify ways to test our ideas.

  6. The positions effect of biarticular muscles on the walking fatigue of bipedal robots

    Directory of Open Access Journals (Sweden)

    Brahim FERNINI

    2016-12-01

    Full Text Available The objective of this paper is to model a bipedal robot with springs like biarticular muscles and to study the positions effect of biarticular muscles on the walking fatigue of bipedal robots through the analysis of the works of the ground reaction force (GRF accumulated at joints and the analysis of the works done by biarticular muscles. We can define the walking fatigue in this paper by the fatigue of joints and muscles caused by the increment of the works accumulated at joints and the increment of the works done by biarticular muscles during the walk period of bipedal robots. It’s found from this study that the position of the muscle biceps femoris (BF has a strong impact on the fatigue of leg joints and the fatigue of the muscle itself during the walk period of bipedal robots.

  7. Does bipedality predict the group-level manual laterality in mammals?

    Science.gov (United States)

    Giljov, Andrey; Karenina, Karina; Malashichev, Yegor

    2012-01-01

    Factors determining patterns of laterality manifestation in mammals remain unclear. In primates, the upright posture favours the expression of manual laterality across species, but may have little influence within a species. Whether the bipedalism acts the same in non-primate mammals is unknown. Our recent findings in bipedal and quadrupedal marsupials suggested that differences in laterality pattern, as well as emergence of manual specialization in evolution might depend on species-specific body posture. Here, we evaluated the hypothesis that the postural characteristics are the key variable shaping the manual laterality expression across mammalian species. We studied forelimb preferences in a most bipedal marsupial, brush-tailed bettong, Bettongia penicillata in four different types of unimanual behavior. The significant left-forelimb preference at the group level was found in all behaviours studied. In unimanual feeding on non-living food, catching live prey and nest-material collecting, all or most subjects were lateralized, and among lateralized bettongs a significant majority displayed left-forelimb bias. Only in unimanual supporting of the body in the tripedal stance the distribution of lateralized and non-lateralized individuals did not differ from chance. Individual preferences were consistent across all types of behaviour. The direction or the strength of forelimb preferences were not affected by the animals' sex. Our findings support the hypothesis that the expression of manual laterality depends on the species-typical postural habit. The interspecies comparison illustrates that in marsupials the increase of bipedality corresponds with the increase of the degree of group-level forelimb preference in a species. Thus, bipedalism can predict pronounced manual laterality at both intra- and interspecific levels in mammals. We also conclude that quadrupedal position in biped species can slightly hinder the expression of manual laterality, but the evoked biped

  8. Analysis and Development of Walking Algorithm Kinematic Model for 5-Degree of Freedom Bipedal Robot

    Directory of Open Access Journals (Sweden)

    Gerald Wahyudi Setiono

    2012-12-01

    Full Text Available A design of walking diagram and the calculation of a bipedal robot have been developed. The bipedal robot was designed and constructed with several kinds of servo bracket for the legs, two feet and a hip. Each of the bipedal robot leg was 5-degrees of freedom, three pitches (hip joint, knee joint and ankle joint and two rolls (hip joint and ankle joint. The walking algorithm of this bipedal robot was based on the triangle formulation of cosine law to get the angle value at each joint. The hip height, height of the swinging leg and the step distance are derived based on linear equation. This paper discussed the kinematic model analysis and the development of the walking diagram of the bipedal robot. Kinematics equations were derived, the joint angles were simulated and coded into Arduino board to be executed to the robot.

  9. Mechanosensing Potentials Gate Fuel Consumption in a Bipedal DNA Nanowalker

    Science.gov (United States)

    Tee, Shern Ren; Hu, Xinpeng; Loh, Iong Ying; Wang, Zhisong

    2018-03-01

    A bipedal DNA nanowalker was recently reported to convert chemical energy into directional motion autonomously and efficiently. To elucidate its chemomechanical coupling mechanisms, three-dimensional molecular modeling is used to obtain coarse-grained foot-track binding potentials of the DNA nanowalker via unbiased and biased sampling techniques (for the potentials' basin and high-energy edges, respectively). The binding state that is protected against fuel-induced dissociation responds asymmetrically to forward versus backward forces, unlike the unprotected state, demonstrating a mechanosensing capability to gate fuel binding. Despite complex DNA mechanics, the foot-track potential exhibits a surprisingly neat three-part profile, offering some general guidelines to rationally design efficient nanowalkers. Subsequent modeling of the bipedal walker attached to the track gives estimates of the free energy for each bipedal state, showing how the mechanosensing foot-track binding breaks the symmetry between the rear and front feet, enabling the rear foot to be selectively dissociated by fuel and generating efficient chemomechanical coupling.

  10. Growth control of the cranial base. A study with experimentally bipedal male rats

    Energy Technology Data Exchange (ETDEWEB)

    Smit-Vis, J.H.

    1981-01-01

    In a cross-sectional study the postnatal development of the skull, particularly that of the cranial base, was studied in experimentally bipedal male rats, up to the age of 46 weeks. A total of 81 bipedal rats and a control group of 90 animals were studied. It was found that, as compared with control rats, the bipedal rats had a definitely more spherical skull. This was the result of an increased height and a stronger dorsal flexion of the anterior cranial base. As to the chondrocranial elements, the basi-occipital bone reached, on the average, the same length in bipedal rats as in controls. However, the basisphenoid bone was significantly shorter. Arguments are given to relate the latter phenomenon to the altered shape of the neurocranium. The conclusion is drawn that, in this experimental approach, chondrocranial growth at the intersphenoidal synchondrosis is controlled not only by intrinsic genetic factors but also by local epigenetic and/or environmental factors.

  11. Fundamentals of soft robot locomotion.

    Science.gov (United States)

    Calisti, M; Picardi, G; Laschi, C

    2017-05-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).

  12. Shared human-chimpanzee pattern of perinatal femoral shaft morphology and its implications for the evolution of hominin locomotor adaptations.

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    Full Text Available Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual's lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion.Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state.These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.

  13. Oreopithecus was a bipedal ape after all: Evidence from the iliac cancellous architecture

    Science.gov (United States)

    Rook, Lorenzo; Bondioli, Luca; Köhler, Meike; Moyà-Solà, Salvador; Macchiarelli, Roberto

    1999-01-01

    Textural properties and functional morphology of the hip bone cancellous network of Oreopithecus bambolii, a 9- to 7-million-year-old Late Miocene hominoid from Italy, provide insights into the postural and locomotor behavior of this fossil ape. Digital image processing of calibrated hip bone radiographs reveals the occurrence of trabecular features, which, in humans and fossil hominids, are related to vertical support of the body weight, i.e., to bipedality. PMID:10411955

  14. First Steps Towards Translating HZD Control of Bipedal Robots to Decentralized Control of Exoskeletons

    OpenAIRE

    Agrawal, Ayush; Harib, Omar; Hereid, Ayonga; Finet, Sylvain; Masselin, Matthieu; Praly, Laurent; Ames, Aaron D.; Sreenath, Koushil; Grizzle, Jessy W.

    2017-01-01

    This paper presents preliminary results toward translating gait and control design for bipedal robots to decentralized control of an exoskeleton aimed at restoring mobility to patients with lower limb paralysis, without the need for crutches. A mathematical hybrid dynamical model of the human-exoskeleton system is developed and a library of dynamically feasible periodic walking gaits for different walking speeds is found through nonlinear constrained optimization using the full-order dynamica...

  15. The role of series ankle elasticity in bipedal walking.

    Science.gov (United States)

    Zelik, Karl E; Huang, Tzu-Wei P; Adamczyk, Peter G; Kuo, Arthur D

    2014-04-07

    The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Complex and changing patterns of natural selection explain the evolution of the human hip.

    Science.gov (United States)

    Grabowski, Mark; Roseman, Charles C

    2015-08-01

    Causal explanations for the dramatic changes that occurred during the evolution of the human hip focus largely on selection for bipedal function and locomotor efficiency. These hypotheses rest on two critical assumptions. The first-that these anatomical changes served functional roles in bipedalism-has been supported in numerous analyses showing how postcranial changes likely affected locomotion. The second-that morphological changes that did play functional roles in bipedalism were the result of selection for that behavior-has not been previously explored and represents a major gap in our understanding of hominin hip evolution. Here we use evolutionary quantitative genetic models to test the hypothesis that strong directional selection on many individual aspects of morphology was responsible for the large differences observed across a sample of fossil hominin hips spanning the Plio-Pleistocene. Our approach uses covariance among traits and the differences between relatively complete fossils to estimate the net selection pressures that drove the major transitions in hominin hip evolution. Our findings show a complex and changing pattern of natural selection drove hominin hip evolution, and that many, but not all, traits hypothesized to play functional roles in bipedalism evolved as a direct result of natural selection. While the rate of evolutionary change for all transitions explored here does not exceed the amount expected if evolution was occurring solely through neutral processes, it was far above rates of evolution for morphological traits in other mammalian groups. Given that stasis is the norm in the mammalian fossil record, our results suggest that large shifts in the adaptive landscape drove hominin evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. GestuRe and ACtion Exemplar (GRACE) video database: stimuli for research on manners of human locomotion and iconic gestures.

    Science.gov (United States)

    Aussems, Suzanne; Kwok, Natasha; Kita, Sotaro

    2018-06-01

    Human locomotion is a fundamental class of events, and manners of locomotion (e.g., how the limbs are used to achieve a change of location) are commonly encoded in language and gesture. To our knowledge, there is no openly accessible database containing normed human locomotion stimuli. Therefore, we introduce the GestuRe and ACtion Exemplar (GRACE) video database, which contains 676 videos of actors performing novel manners of human locomotion (i.e., moving from one location to another in an unusual manner) and videos of a female actor producing iconic gestures that represent these actions. The usefulness of the database was demonstrated across four norming experiments. First, our database contains clear matches and mismatches between iconic gesture videos and action videos. Second, the male actors and female actors whose action videos matched the gestures in the best possible way, perform the same actions in very similar manners and different actions in highly distinct manners. Third, all the actions in the database are distinct from each other. Fourth, adult native English speakers were unable to describe the 26 different actions concisely, indicating that the actions are unusual. This normed stimuli set is useful for experimental psychologists working in the language, gesture, visual perception, categorization, memory, and other related domains.

  18. Patterned control of human locomotion

    Science.gov (United States)

    Lacquaniti, Francesco; Ivanenko, Yuri P; Zago, Myrka

    2012-01-01

    There is much experimental evidence for the existence of biomechanical constraints which simplify the problem of control of multi-segment movements. In addition, it has been hypothesized that movements are controlled using a small set of basic temporal components or activation patterns, shared by several different muscles and reflecting global kinematic and kinetic goals. Here we review recent studies on human locomotion showing that muscle activity is accounted for by a combination of few basic patterns, each one timed at a different phase of the gait cycle. Similar patterns are involved in walking and running at different speeds, walking forwards or backwards, and walking under different loading conditions. The corresponding weights of distribution to different muscles may change as a function of the condition, allowing highly flexible control. Biomechanical correlates of each activation pattern have been described, leading to the hypothesis that the co-ordination of limb and body segments arises from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle activations need only intervene during limited time epochs to force intrinsic oscillations of the system when energy is lost. PMID:22411012

  19. Patterned control of human locomotion.

    Science.gov (United States)

    Lacquaniti, Francesco; Ivanenko, Yuri P; Zago, Myrka

    2012-05-15

    There is much experimental evidence for the existence of biomechanical constraints which simplify the problem of control of multi-segment movements. In addition, it has been hypothesized that movements are controlled using a small set of basic temporal components or activation patterns, shared by several different muscles and reflecting global kinematic and kinetic goals. Here we review recent studies on human locomotion showing that muscle activity is accounted for by a combination of few basic patterns, each one timed at a different phase of the gait cycle. Similar patterns are involved in walking and running at different speeds, walking forwards or backwards, and walking under different loading conditions. The corresponding weights of distribution to different muscles may change as a function of the condition, allowing highly flexible control. Biomechanical correlates of each activation pattern have been described, leading to the hypothesis that the co-ordination of limb and body segments arises from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle activations need only intervene during limited time epochs to force intrinsic oscillations of the system when energy is lost.

  20. Steroid-associated hip joint collapse in bipedal emus.

    Directory of Open Access Journals (Sweden)

    Li-Zhen Zheng

    Full Text Available In this study we established a bipedal animal model of steroid-associated hip joint collapse in emus for testing potential treatment protocols to be developed for prevention of steroid-associated joint collapse in preclinical settings. Five adult male emus were treated with a steroid-associated osteonecrosis (SAON induction protocol using combination of pulsed lipopolysaccharide (LPS and methylprednisolone (MPS. Additional three emus were used as normal control. Post-induction, emu gait was observed, magnetic resonance imaging (MRI was performed, and blood was collected for routine examination, including testing blood coagulation and lipid metabolism. Emus were sacrificed at week 24 post-induction, bilateral femora were collected for micro-computed tomography (micro-CT and histological analysis. Asymmetric limping gait and abnormal MRI signals were found in steroid-treated emus. SAON was found in all emus with a joint collapse incidence of 70%. The percentage of neutrophils (Neut % and parameters on lipid metabolism significantly increased after induction. Micro-CT revealed structure deterioration of subchondral trabecular bone. Histomorphometry showed larger fat cell fraction and size, thinning of subchondral plate and cartilage layer, smaller osteoblast perimeter percentage and less blood vessels distributed at collapsed region in SAON group as compared with the normal controls. Scanning electron microscope (SEM showed poor mineral matrix and more osteo-lacunae outline in the collapsed region in SAON group. The combination of pulsed LPS and MPS developed in the current study was safe and effective to induce SAON and deterioration of subchondral bone in bipedal emus with subsequent femoral head collapse, a typical clinical feature observed in patients under pulsed steroid treatment. In conclusion, bipedal emus could be used as an effective preclinical experimental model to evaluate potential treatment protocols to be developed for prevention of

  1. A bipedal DNA Brownian motor with coordinated legs.

    Science.gov (United States)

    Omabegho, Tosan; Sha, Ruojie; Seeman, Nadrian C

    2009-04-03

    A substantial challenge in engineering molecular motors is designing mechanisms to coordinate the motion between multiple domains of the motor so as to bias random thermal motion. For bipedal motors, this challenge takes the form of coordinating the movement of the biped's legs so that they can move in a synchronized fashion. To address this problem, we have constructed an autonomous DNA bipedal walker that coordinates the action of its two legs by cyclically catalyzing the hybridization of metastable DNA fuel strands. This process leads to a chemically ratcheted walk along a directionally polar DNA track. By covalently cross-linking aliquots of the walker to its track in successive walking states, we demonstrate that this Brownian motor can complete a full walking cycle on a track whose length could be extended for longer walks. We believe that this study helps to uncover principles behind the design of unidirectional devices that can function without intervention. This device should be able to fulfill roles that entail the performance of useful mechanical work on the nanometer scale.

  2. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.

    Science.gov (United States)

    Grasso, R; Zago, M; Lacquaniti, F

    2000-01-01

    Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms

  3. Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept.

    Science.gov (United States)

    Shaikh, Muhammad Faraz; Salcic, Zoran; Wang, Kevin I-Kai; Hu, Aiguo Patrick

    2018-03-10

    Electrical stimulators are often prescribed to correct foot drop walking. However, commercial foot drop stimulators trigger inappropriately under certain non-gait scenarios. Past researches addressed this limitation by defining stimulation control based on automaton of a gait cycle executed by foot drop of affected limb/foot only. Since gait is a collaborative activity of both feet, this research highlights the role of normal foot for robust gait detection and stimulation triggering. A novel bipedal gait model is proposed where gait cycle is realized as an automaton based on concurrent gait sub-phases (states) from each foot. The input for state transition is fused information from feet-worn pressure and inertial sensors. Thereafter, a bipedal gait model-based stimulation control algorithm is developed. As a feasibility study, bipedal gait model and stimulation control are evaluated in real-time simulation manner on normal and simulated foot drop gait measurements from 16 able-bodied participants with three speed variations, under inappropriate triggering scenarios and with foot drop rehabilitation exercises. Also, the stimulation control employed in commercial foot drop stimulators and single foot gait-based foot drop stimulators are compared alongside. Gait detection accuracy (98.9%) and precise triggering under all investigations prove bipedal gait model reliability. This infers that gait detection leveraging bipedal periodicity is a promising strategy to rectify prevalent stimulation triggering deficiencies in commercial foot drop stimulators. Graphical abstract Bipedal information-based gait recognition and stimulation triggering.

  4. Robots in human biomechanics--a study on ankle push-off in walking.

    Science.gov (United States)

    Renjewski, Daniel; Seyfarth, André

    2012-09-01

    In biomechanics, explanatory template models are used to identify the basic mechanisms of human locomotion. However, model predictions often lack verification in a realistic environment. We present a method that uses template model mechanics as a blueprint for a bipedal robot and a corresponding computer simulation. The hypotheses derived from template model studies concerning the function of heel-off in walking are analysed and discrepancies between the template model and its real-world anchor are pointed out. Neither extending the ground clearance of the swinging leg nor an impact reduction at touch-down as an effect of heel lifting was supported by the experiments. To confirm the relevance of the experimental findings, a comparison of robot data to human walking data is discussed and we speculate on an alternative explanation of heel-off in human walking, i.e. that the push-off powers the following leg swing.

  5. Robots in human biomechanics—a study on ankle push-off in walking

    International Nuclear Information System (INIS)

    Renjewski, Daniel; Seyfarth, André

    2012-01-01

    In biomechanics, explanatory template models are used to identify the basic mechanisms of human locomotion. However, model predictions often lack verification in a realistic environment. We present a method that uses template model mechanics as a blueprint for a bipedal robot and a corresponding computer simulation. The hypotheses derived from template model studies concerning the function of heel-off in walking are analysed and discrepancies between the template model and its real-world anchor are pointed out. Neither extending the ground clearance of the swinging leg nor an impact reduction at touch-down as an effect of heel lifting was supported by the experiments. To confirm the relevance of the experimental findings, a comparison of robot data to human walking data is discussed and we speculate on an alternative explanation of heel-off in human walking, i.e. that the push-off powers the following leg swing. (paper)

  6. Modeling limbless locomotion using ADAMS software

    Data.gov (United States)

    National Aeronautics and Space Administration — Until now, the methods used by probes or humans for locomotion on planetary surfaces have typically been restricted to variations of wheeled motion. As human...

  7. Emotion through locomotion: gender impact.

    Directory of Open Access Journals (Sweden)

    Samuel Krüger

    Full Text Available Body language reading is of significance for daily life social cognition and successful social interaction, and constitutes a core component of social competence. Yet it is unclear whether our ability for body language reading is gender specific. In the present work, female and male observers had to visually recognize emotions through point-light human locomotion performed by female and male actors with different emotional expressions. For subtle emotional expressions only, males surpass females in recognition accuracy and readiness to respond to happy walking portrayed by female actors, whereas females exhibit a tendency to be better in recognition of hostile angry locomotion expressed by male actors. In contrast to widespread beliefs about female superiority in social cognition, the findings suggest that gender effects in recognition of emotions from human locomotion are modulated by emotional content of actions and opposite actor gender. In a nutshell, the study makes a further step in elucidation of gender impact on body language reading and on neurodevelopmental and psychiatric deficits in visual social cognition.

  8. Variant insertion of the fibularis tertius muscle is an evidence of the progressive evolutionary adaptation for the bipedal gait

    Directory of Open Access Journals (Sweden)

    Rashmoni Jana

    2011-10-01

    Full Text Available Fibularis tertius (FT is often considered as part of extensor digitorum longus (EDL muscle. The muscle is absent in hominoid apes and with the acquisition of the bipedal gait; the muscle emerged as a recent addition in the human foot. From its various modes of insertions, it is evident that the muscles of the sole are in search of its distal attachment, which can best support the relatively weak human midfoot. We describe an unusual insertion of the muscle in support of this hypothesis.

  9. Human locomotion through a multiple obstacle environment : Strategy changes as a result of visual field limitation

    NARCIS (Netherlands)

    Jansen, S.E.M.; Toet, A.; Werkhoven, P.J.

    2011-01-01

    This study investigated how human locomotion through an obstacle environment is influenced by visual field limitation. Participants were asked to walk at a comfortable pace to a target location while avoiding multiple vertical objects. During this task, they wore goggles restricting their visual

  10. Effect of walking speed on the gait of king penguins: An accelerometric approach.

    Science.gov (United States)

    Willener, Astrid S T; Handrich, Yves; Halsey, Lewis G; Strike, Siobhán

    2015-12-21

    Little is known about non-human bipedal gaits. This is probably due to the fact that most large animals are quadrupedal and that non-human bipedal animals are mostly birds, whose primary form of locomotion is flight. Very little research has been conducted on penguin pedestrian locomotion with the focus instead on their associated high energy expenditure. In animals, tri-axial accelerometers are frequently used to estimate physiological energy cost, as well as to define the behaviour pattern of a species, or the kinematics of swimming. In this study, we showed how an accelerometer-based technique could be used to determine the biomechanical characteristics of pedestrian locomotion. Eight king penguins, which represent the only family of birds to have an upright bipedal gait, were trained to walk on a treadmill. The trunk tri-axial accelerations were recorded while the bird was walking at four different speeds (1.0, 1.2, 1.4 and 1.6km/h), enabling the amplitude of dynamic body acceleration along the three axes (amplitude of DBAx, DBAy and DBAz), stride frequency, waddling and leaning amplitude, as well as the leaning angle to be defined. The magnitude of the measured variables showed a significant increase with increasing speed, apart from the backwards angle of lean, which decreased with increasing speed. The variability of the measured variables also showed a significant increase with speed apart from the DBAz amplitude, the waddling amplitude, and the leaning angle, where no significant effect of the walking speed was found. This paper is the first approach to describe 3D biomechanics with an accelerometer on wild animals, demonstrating the potential of this technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Synthesis of digital locomotive receiver of automatic locomotive signaling

    Directory of Open Access Journals (Sweden)

    K. V. Goncharov

    2013-02-01

    Full Text Available Purpose. Automatic locomotive signaling of continuous type with a numeric coding (ALSN has several disadvantages: a small number of signal indications, low noise stability, high inertia and low functional flexibility. Search for new and more advanced methods of signal processing for automatic locomotive signaling, synthesis of the noise proof digital locomotive receiver are essential. Methodology. The proposed algorithm of detection and identification locomotive signaling codes is based on the definition of mutual correlations of received oscillation and reference signals. For selecting threshold levels of decision element the following criterion has been formulated: the locomotive receiver should maximum set the correct solution for a given probability of dangerous errors. Findings. It has been found that the random nature of the ALSN signal amplitude does not affect the detection algorithm. However, the distribution law and numeric characteristics of signal amplitude affect the probability of errors, and should be considered when selecting a threshold levels According to obtained algorithm of detection and identification ALSN signals the digital locomotive receiver has been synthesized. It contains band pass filter, peak limiter, normalizing amplifier with automatic gain control circuit, analog to digital converter and digital signal processor. Originality. The ALSN system is improved by the way of the transfer of technical means to modern microelectronic element base, more perfect methods of detection and identification codes of locomotive signaling are applied. Practical value. Use of digital technology in the construction of the locomotive receiver ALSN will expand its functionality, will increase the noise immunity and operation stability of the locomotive signal system in conditions of various destabilizing factors.

  12. Mutant human torsinA, responsible for early-onset dystonia, dominantly suppresses GTPCH expression, dopamine levels and locomotion in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Noriko Wakabayashi-Ito

    2015-07-01

    Full Text Available Dystonia represents the third most common movement disorder in humans with over 20 genetic loci identified. TOR1A (DYT1, the gene responsible for the most common primary hereditary dystonia, encodes torsinA, an AAA ATPase family protein. Most cases of DYT1 dystonia are caused by a 3 bp (ΔGAG deletion that results in the loss of a glutamic acid residue (ΔE302/303 in the carboxyl terminal region of torsinA. This torsinAΔE mutant protein has been speculated to act in a dominant-negative manner to decrease activity of wild type torsinA. Drosophila melanogaster has a single torsin-related gene, dtorsin. Null mutants of dtorsin exhibited locomotion defects in third instar larvae. Levels of dopamine and GTP cyclohydrolase (GTPCH proteins were severely reduced in dtorsin-null brains. Further, the locomotion defect was rescued by the expression of human torsinA or feeding with dopamine. Here, we demonstrate that human torsinAΔE dominantly inhibited locomotion in larvae and adults when expressed in neurons using a pan-neuronal promoter Elav. Dopamine and tetrahydrobiopterin (BH4 levels were significantly reduced in larval brains and the expression level of GTPCH protein was severely impaired in adult and larval brains. When human torsinA and torsinAΔE were co-expressed in neurons in dtorsin-null larvae and adults, the locomotion rates and the expression levels of GTPCH protein were severely reduced. These results support the hypothesis that torsinAΔE inhibits wild type torsinA activity. Similarly, neuronal expression of a Drosophila DtorsinΔE equivalent mutation dominantly inhibited larval locomotion and GTPCH protein expression. These results indicate that both torsinAΔE and DtorsinΔE act in a dominant-negative manner. We also demonstrate that Dtorsin regulates GTPCH expression at the post-transcriptional level. This Drosophila model of DYT1 dystonia provides an important tool for studying the differences in the molecular function between the

  13. A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives.

    Science.gov (United States)

    Sartori, Massimo; Gizzi, Leonardo; Lloyd, David G; Farina, Dario

    2013-01-01

    Human locomotion has been described as being generated by an impulsive (burst-like) excitation of groups of musculotendon units, with timing dependent on the biomechanical goal of the task. Despite this view being supported by many experimental observations on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e., a low-dimensional set of time-delayed excitastion primitives) can be used as input drive for large musculoskeletal models across different human locomotion tasks. For this purpose, we extracted, with non-negative matrix factorization, five non-negative factors from a large sample of muscle electromyograms in two healthy subjects during four motor tasks. These included walking, running, sidestepping, and crossover cutting maneuvers. The extracted non-negative factors were then averaged and parameterized to obtain task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used to drive a subject-specific musculoskeletal model of the human lower extremity. Results showed that the same set of five impulsive excitation primitives could be used to predict the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint moments (i.e., NRMSE = 0.18 ± 0.08, and R (2) = 0.73 ± 0.22 across all tasks and subjects) without substantial loss of accuracy with respect to using experimental electromyograms (i.e., NRMSE = 0.16 ± 0.07, and R (2) = 0.78 ± 0.18 across all tasks and subjects). Results support the hypothesis that biomechanically different motor tasks might share similar neuromuscular control strategies. This might have implications in neurorehabilitation technologies such as human-machine interfaces for the torque-driven, proportional control of powered prostheses and orthoses. In this, device control commands (i.e., predicted joint torque) could be derived without direct experimental data but relying on simple parameterized Gaussian-shaped curves, thus decreasing the input drive

  14. Effect of expertise in shooting and Taekwondo on bipedal and unipedal postural control isolated or concurrent with a reaction-time task.

    Science.gov (United States)

    Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali

    2013-06-01

    It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A novel approach to mechanical foot stimulation during human locomotion under body weight support.

    Science.gov (United States)

    Gravano, S; Ivanenko, Y P; Maccioni, G; Macellari, V; Poppele, R E; Lacquaniti, F

    2011-04-01

    Input from the foot plays an essential part in perceiving support surfaces and determining kinematic events in human walking. To simulate adequate tactile pressure inputs under body weight support (BWS) conditions that represent an effective form of locomotion training, we here developed a new method of phasic mechanical foot stimulation using light-weight pneumatic insoles placed inside the shoes (under the heel and metatarsus). To test the system, we asked healthy participants to walk on a treadmill with different levels of BWS. The pressure under the stimulated areas of the feet and subjective sensations were higher at high levels of BWS and when applied to the ball and toes rather than heels. Foot stimulation did not disturb significantly the normal motor pattern, and in all participants we evoked a reliable step-synchronized triggering of stimuli for each leg separately. This approach has been performed in a general framework looking for "afferent templates" of human locomotion that could be used for functional sensory stimulation. The proposed technique can be used to imitate or partially restore surrogate contact forces under body weight support conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Locomotive Assignment Problem with Heterogeneous Vehicle Fleet and Hiring External Locomotives

    Directory of Open Access Journals (Sweden)

    Dušan Teichmann

    2015-01-01

    Full Text Available This paper focuses on solving the problem of how to assign locomotives to assembled trains optimally. To solve the problem, linear programming is applied. The situation we model in the paper occurs in the conditions of a transport operator that provides rail transport in the Czech Republic. In the paper, an extended locomotive assignment problem is modeled; the transport operator can use different classes of the locomotives to serve individual connections, some connections must be served by a predefined locomotive class, and the locomotives can be allocated to several depots at the beginning. The proposed model also takes into consideration the fact that some connections can be served by the locomotives of external transport companies or operators. The presented model is applied to a real example in order to test its functionality.

  17. Elastic coupling of limb joints enables faster bipedal walking

    Science.gov (United States)

    Dean, J.C.; Kuo, A.D.

    2008-01-01

    The passive dynamics of bipedal limbs alone are sufficient to produce a walking motion, without need for control. Humans augment these dynamics with muscles, actively coordinated to produce stable and economical walking. Present robots using passive dynamics walk much slower, perhaps because they lack elastic muscles that couple the joints. Elastic properties are well known to enhance running gaits, but their effect on walking has yet to be explored. Here we use a computational model of dynamic walking to show that elastic joint coupling can help to coordinate faster walking. In walking powered by trailing leg push-off, the model's speed is normally limited by a swing leg that moves too slowly to avoid stumbling. A uni-articular spring about the knee allows faster but uneconomical walking. A combination of uni-articular hip and knee springs can speed the legs for improved speed and economy, but not without the swing foot scuffing the ground. Bi-articular springs coupling the hips and knees can yield high economy and good ground clearance similar to humans. An important parameter is the knee-to-hip moment arm that greatly affects the existence and stability of gaits, and when selected appropriately can allow for a wide range of speeds. Elastic joint coupling may contribute to the economy and stability of human gait. PMID:18957360

  18. Comparative analysis between radiographic views for knee osteoarthrosis (bipedal AP versus monopedal AP

    Directory of Open Access Journals (Sweden)

    Rodrigo Pires e Albuquerque

    2013-08-01

    Full Text Available OBJECTIVE: A comparative analysis by applying the criteria of the original classification Ahlbäck in the anteroposterior (AP bipedal knee in extension and anteroposterior (AP monopodal knee in symptomatic knee arthrosis. With this analysis we intend to observe the agreement, any advantage or difference between the incidence and degree of joint involvement between the orthopedic surgeons and radiologists with the referring physician. METHODS: From January 2012 to March 2012, was a prospective study of 60 symptomatic arthrosis knees (60 patients, clinically selected group of outpatient knee and radiographic proposals submitted to the search. Of the 60 patients, 39 were female and 21 male, mean age 64 years (ranging from 50 to 84 years. Of the 60 knees studied, 37 corresponded to the right side and 23 on the left side. Statistical analysis was performed by Kappa statistics, which evaluates the interobserver agreement for qualitative data. RESULTS: According to the scale of Ahlbäck, there was a significant agreement (p < 0.0001 intra-observer in the classification of knee osteoarthritis among the five evaluators. There was a significant agreement (p < 0.0001 with inter-observer referring physician in the incidence of AP monopodal and AP bipedal for the four raters. CONCLUSION: The study found no difference between the incidence in the AP monopodal versus AP bipedal in osteoarthritis of the knee.

  19. Human-like Walking with Compliant Legs

    NARCIS (Netherlands)

    Visser, L.C.; de Geus, Wouter; Stramigioli, Stefano; Carloni, Raffaella

    2011-01-01

    This work presents a novel approach to robotic bipedal walking. Based on the bipedal spring-mass model, which is known to closely describe human-like walking behavior, a robot has been designed that approaches the ideal model as closely as possible. The compliance of the springs is controllable by

  20. Walking paths to and from a goal differ: on the role of bearing angle in the formation of human locomotion paths.

    Directory of Open Access Journals (Sweden)

    Manish Sreenivasa

    Full Text Available The path that humans take while walking to a goal is the result of a cognitive process modulated by the perception of the environment and physiological constraints. The path shape and timing implicitly embeds aspects of the architecture behind this process. Here, locomotion paths were investigated during a simple task of walking to and from a goal, by looking at the evolution of the position of the human on a horizontal (x,y plane. We found that the path while walking to a goal was not the same as that while returning from it. Forward-return paths were systematically separated by 0.5-1.9m, or about 5% of the goal distance. We show that this path separation occurs as a consequence of anticipating the desired body orientation at the goal while keeping the target in view. The magnitude of this separation was strongly influenced by the bearing angle (difference between body orientation and angle to goal and the final orientation imposed at the goal. This phenomenon highlights the impact of a trade-off between a directional perceptual apparatus-eyes in the head on the shoulders-and and physiological limitations, in the formation of human locomotion paths. Our results give an insight into the influence of environmental and perceptual variables on human locomotion and provide a basis for further mathematical study of these mechanisms.

  1. Electric-Pneumatic Actuator: A New Muscle for Locomotion

    Directory of Open Access Journals (Sweden)

    Maziar Ahmad Sharbafi

    2017-10-01

    Full Text Available A better understanding of how actuator design supports locomotor function may help develop novel and more functional powered assistive devices or robotic legged systems. Legged robots comprise passive parts (e.g., segments, joints and connections which are moved in a coordinated manner by actuators. In this study, we propose a novel concept of a hybrid electric-pneumatic actuator (EPA as an enhanced variable impedance actuator (VIA. EPA is consisted of a pneumatic artificial muscle (PAM and an electric motor (EM. In contrast to other VIAs, the pneumatic artificial muscle (PAM within the EPA provides not only adaptable compliance, but also an additional powerful actuator with muscle-like properties, which can be arranged in different combinations (e.g., in series or parallel to the EM. The novel hybrid actuator shares the advantages of both integrated actuator types combining precise control of EM with compliant energy storage of PAM, which are required for efficient and adjustable locomotion. Experimental and simulation results based on the new dynamic model of PAM support the hypothesis that combination of the two actuators can improve efficiency (energy and peak power and performance, while does not increase control complexity and weight, considerably. Finally, the experiments on EPA adapted bipedal robot (knee joint of the BioBiped3 robot show improved efficiency of the actuator at different frequencies.

  2. A survey report for the turning of biped locomotion robot

    International Nuclear Information System (INIS)

    Kato, Ichiro; Takanishi, Atsuo; Kume, Etsuo.

    1992-12-01

    A mechanical design study of biped locomotion robots is going on at JAERI within the scope of the Human Acts Simulation Program (HASP). The design study at JAERI is of an arbitrarily mobile robot for inspection of nuclear facilities. A survey has been performed for collecting useful information from already existing biped locomotion robots. This is a survey report for the turning of biped locomotion robot: the WL-10R designed and developed at Waseda University. This report includes the control method of turning, machine model and control system. (author)

  3. Mechanical design and optimal control of humanoid robot (TPinokio

    Directory of Open Access Journals (Sweden)

    Teck Chew Wee

    2014-04-01

    Full Text Available The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking gait generation methods. The optimality in the gait trajectory is achieved by applying augmented model predictive control method and the pole-zero cancellation method, taken into consideration of a trade-off between walking speed and stability. The mechanism of the TPinokio robot is designed in modular form, so that its kinematics can be modelled accurately into a multiple point-mass system, its dynamics is modelled using the single and double mass inverted pendulum model and zero-moment-point concept. The effectiveness of the design and control technique is validated by simulation testing with the robot walking on flat surface and climbing stairs.

  4. Spinal lordosis optimizes the requirements for a stable erect posture.

    Science.gov (United States)

    Wagner, Heiko; Liebetrau, Anne; Schinowski, David; Wulf, Thomas; de Lussanet, Marc H E

    2012-04-16

    Lordosis is the bending of the lumbar spine that gives the vertebral column of humans its characteristic ventrally convex curvature. Infants develop lordosis around the time when they acquire bipedal locomotion. Even macaques develop a lordosis when they are trained to walk bipedally. The aim of this study was to investigate why humans and some animals develop a lumbar lordosis while learning to walk bipedally. We developed a musculoskeletal model of the lumbar spine, that includes an asymmetric, dorsally shifted location of the spinal column in the body, realistic moment arms, and physiological cross-sectional areas (PCSA) of the muscles as well as realistic force-length and force-velocity relationships. The model was used to analyze the stability of an upright body posture. According to our results, lordosis reduces the local joint torques necessary for an equilibrium of the vertebral column during an erect posture. At the same time lordosis increases the demands on the global muscles to provide stability. We conclude that the development of a spinal lordosis is a compromise between the stability requirements of an erect posture and the necessity of torque equilibria at each spinal segment.

  5. Spinal lordosis optimizes the requirements for a stable erect posture

    Directory of Open Access Journals (Sweden)

    Wagner Heiko

    2012-04-01

    Full Text Available Abstract Background Lordosis is the bending of the lumbar spine that gives the vertebral column of humans its characteristic ventrally convex curvature. Infants develop lordosis around the time when they acquire bipedal locomotion. Even macaques develop a lordosis when they are trained to walk bipedally. The aim of this study was to investigate why humans and some animals develop a lumbar lordosis while learning to walk bipedally. Results We developed a musculoskeletal model of the lumbar spine, that includes an asymmetric, dorsally shifted location of the spinal column in the body, realistic moment arms, and physiological cross-sectional areas (PCSA of the muscles as well as realistic force-length and force-velocity relationships. The model was used to analyze the stability of an upright body posture. According to our results, lordosis reduces the local joint torques necessary for an equilibrium of the vertebral column during an erect posture. At the same time lordosis increases the demands on the global muscles to provide stability. Conclusions We conclude that the development of a spinal lordosis is a compromise between the stability requirements of an erect posture and the necessity of torque equilibria at each spinal segment.

  6. Comparative Triceps Surae Morphology in Primates: A Review

    Directory of Open Access Journals (Sweden)

    Jandy B. Hanna

    2011-01-01

    Full Text Available Primate locomotor evolution, particularly the evolution of bipedalism, is often examined through morphological studies. Many of these studies have examined the uniqueness of the primate forelimb, and others have examined the primate hip and thigh. Few data exist, however, regarding the myology and function of the leg muscles, even though the ankle plantar flexors are highly important during human bipedalism. In this paper, we draw together data on the fiber type and muscle mass variation in the ankle plantar flexors of primates and make comparisons to other mammals. The data suggest that great apes, atelines, and lorisines exhibit similarity in the mass distribution of the triceps surae. We conclude that variation in triceps surae may be related to the shared locomotor mode exhibited by these groups and that triceps surae morphology, which approaches that of humans, may be related to frequent use of semiplantigrade locomotion and vertical climbing.

  7. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview.

    Science.gov (United States)

    Rangasamy, Suresh Babu

    2013-07-01

    Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed

  8. A Study on Bipedal and Mobile Robot Behavior Through Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    Nirmala Nirmala

    2015-05-01

    Full Text Available The purpose of this work is to study and analyze mobile robot behavior. In performing this, a framework is adopted and developed for mobile and bipedal robot. The robots are design, build, and run as proceed from the development of mechanical structure, electronics and control integration, and control software application. The behavior of those robots are difficult to be observed and analyzed qualitatively. To evaluate the design and behavior quality, modeling and simulation of robot structure and its task capability is performed. The stepwise procedure to robot behavior study is explained. Behavior cases study are experimented to bipedal robots, transporter robot and Autonomous Guided Vehicle (AGV developed at our institution. The experimentation are conducted on those robots by adjusting their dynamic properties and/or surrounding environment. Validation is performed by comparing the simulation result and the real robot execution. The simulation gives a more idealistic behavior execution rather than realistic one. Adjustments are performed to fine tuning simulation's parameters to provide a more realistic performance.

  9. A wider pelvis does not increase locomotor cost in humans, with implications for the evolution of childbirth.

    Directory of Open Access Journals (Sweden)

    Anna G Warrener

    Full Text Available The shape of the human female pelvis is thought to reflect an evolutionary trade-off between two competing demands: a pelvis wide enough to permit the birth of large-brained infants, and narrow enough for efficient bipedal locomotion. This trade-off, known as the obstetrical dilemma, is invoked to explain the relative difficulty of human childbirth and differences in locomotor performance between men and women. The basis for the obstetrical dilemma is a standard static biomechanical model that predicts wider pelves in females increase the metabolic cost of locomotion by decreasing the effective mechanical advantage of the hip abductor muscles for pelvic stabilization during the single-leg support phase of walking and running, requiring these muscles to produce more force. Here we experimentally test this model against a more accurate dynamic model of hip abductor mechanics in men and women. The results show that pelvic width does not predict hip abductor mechanics or locomotor cost in either women or men, and that women and men are equally efficient at both walking and running. Since a wider birth canal does not increase a woman's locomotor cost, and because selection for successful birthing must be strong, other factors affecting maternal pelvic and fetal size should be investigated in order to help explain the prevalence of birth complications caused by a neonate too large to fit through the birth canal.

  10. Limb Bone Structural Proportions and Locomotor Behavior in A.L. 288-1 ("Lucy".

    Directory of Open Access Journals (Sweden)

    Christopher B Ruff

    Full Text Available While there is broad agreement that early hominins practiced some form of terrestrial bipedality, there is also evidence that arboreal behavior remained a part of the locomotor repertoire in some taxa, and that bipedal locomotion may not have been identical to that of modern humans. It has been difficult to evaluate such evidence, however, because of the possibility that early hominins retained primitive traits (such as relatively long upper limbs of little contemporaneous adaptive significance. Here we examine bone structural properties of the femur and humerus in the Australopithecus afarensis A.L. 288-1 ("Lucy", 3.2 Myr that are known to be developmentally plastic, and compare them with other early hominins, modern humans, and modern chimpanzees. Cross-sectional images were obtained from micro-CT scans of the original specimens and used to derive section properties of the diaphyses, as well as superior and inferior cortical thicknesses of the femoral neck. A.L. 288-1 shows femoral/humeral diaphyseal strength proportions that are intermediate between those of modern humans and chimpanzees, indicating more mechanical loading of the forelimb than in modern humans, and by implication, a significant arboreal locomotor component. Several features of the proximal femur in A.L. 288-1 and other australopiths, including relative femoral head size, distribution of cortical bone in the femoral neck, and cross-sectional shape of the proximal shaft, support the inference of a bipedal gait pattern that differed slightly from that of modern humans, involving more lateral deviation of the body center of mass over the support limb, which would have entailed increased cost of terrestrial locomotion. There is also evidence consistent with increased muscular strength among australopiths in both the forelimb and hind limb, possibly reflecting metabolic trade-offs between muscle and brain development during hominin evolution. Together these findings imply

  11. Expression of emotion in the kinematics of locomotion.

    Science.gov (United States)

    Barliya, Avi; Omlor, Lars; Giese, Martin A; Berthoz, Alain; Flash, Tamar

    2013-03-01

    Here, we examine how different emotions-happiness, fear, sadness and anger-affect the kinematics of locomotion. We focus on a compact representation of locomotion properties using the intersegmental law of coordination (Borghese et al. in J Physiol 494(3):863-879, 1996), which states that, during the gait cycle of human locomotion, the elevation angles of the thigh, shank and foot do not evolve independently of each other but form a planar pattern of co-variation. This phenomenon is highly robust and has been extensively studied. The orientation of the plane has been correlated with changes in the speed of locomotion and with reduction in energy expenditure as speed increases. An analytical model explaining the conditions underlying the emergence of this plane and predicting its orientation reveals that it suffices to examine the amplitudes of the elevation angles of the different segments along with the phase shifts between them (Barliya et al. in Exp Brain Res 193:371-385, 2009). We thus investigated the influence of different emotions on the parameters directly determining the orientation of the intersegmental plane and on the angular rotation profiles of the leg segments, examining both the effect of changes in walking speed and effects independent of speed. Subjects were professional actors and naïve subjects with no training in acting. As expected, emotions were found to strongly affect the kinematics of locomotion, particularly walking speed. The intersegmental coordination patterns revealed that emotional expression caused additional modifications to the locomotion patterns that could not be explained solely by a change in speed. For all emotions except sadness, the amplitude of thigh elevation angles changed from those in neutral locomotion. The intersegmental plane was also differently oriented, especially during anger. We suggest that, while speed is the dominant variable allowing discrimination between different emotional gaits, emotion can be

  12. Optimisation of a machine learning algorithm in human locomotion using principal component and discriminant function analyses

    OpenAIRE

    Bisele, M; Bencsik, M; Lewis, MGC; Barnett, CT

    2017-01-01

    Assessment methods in human locomotion often involve the description of normalised graphical profiles and/or the extraction of discrete variables. Whilst useful, these approaches may not represent the full complexity of gait data. Multivariate statistical methods, such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), have been adopted since they have the potential to overcome these data handling issues. The aim of the current study was to develop and optimise a ...

  13. Distribution of spinal neuronal networks controlling forward and backward locomotion.

    Science.gov (United States)

    Merkulyeva, Natalia; Veshchitskii, Aleksandr; Gorsky, Oleg; Pavlova, Natalia; Zelenin, Pavel V; Gerasimenko, Yury; Deliagina, Tatiana G; Musienko, Pavel

    2018-04-20

    Higher vertebrates, including humans, are capable not only of forward (FW) locomotion but also of walking in other directions relative to the body axis [backward (BW), sideways, etc.]. While the neural mechanisms responsible for controlling FW locomotion have been studied in considerable detail, the mechanisms controlling steps in other directions are mostly unknown. The aim of the present study was to investigate the distribution of spinal neuronal networks controlling FW and BW locomotion. First, we applied electrical epidural stimulation (ES) to different segments of the spinal cord from L2 to S2 to reveal zones triggering FW and BW locomotion in decerebrate cats of either sex. Second, to determine the location of spinal neurons activated during FW and BW locomotion, we used c-fos immunostaining. We found that the neuronal networks responsible for FW locomotion were distributed broadly in the lumbosacral spinal cord and could be activated by ES of any segment from L3 to S2. By contrast, networks generating BW locomotion were activated by ES of a limited zone from the caudal part of L5 to the caudal part of L7. In the intermediate part of the gray matter within this zone, a significantly higher number of c- fos -positive interneurons was revealed in BW-stepping cats compared with FW-stepping cats. We suggest that this region of the spinal cord contains the network that determines the BW direction of locomotion. Significance Statement Sequential and single steps in various directions relative to the body axis [forward (FW), backward (BW), sideways, etc.] are used during locomotion and to correct for perturbations, respectively. The mechanisms controlling step direction are unknown. In the present study, for the first time we compared the distributions of spinal neuronal networks controlling FW and BW locomotion. Using a marker to visualize active neurons, we demonstrated that in the intermediate part of the gray matter within L6 and L7 spinal segments

  14. The relative cost of bent-hip bent-knee walking is reduced in water.

    Science.gov (United States)

    Kuliukas, Algis V; Milne, Nick; Fournier, Paul

    2009-01-01

    The debate about how early hominids walked may be characterised as two competing hypotheses: They moved with a fully upright (FU) gait, like modern humans, or with a bent-hip, bent-knee (BK) gait, like apes. Both have assumed that this bipedalism was almost exclusively on land, in trees or a combination of the two. Recent findings favoured the FU hypothesis by showing that the BK gait is 50-60% more energetically costly than a FU human gait on land. We confirm these findings but show that in water this cost differential is markedly reduced, especially in deeper water, at slower speeds and with greater knee flexion. These data suggest that the controversy about australopithecine locomotion may be eased if it is assumed that wading was a component of their locomotor repertoire and supports the idea that shallow water might have been an environment favourable to the evolution of early forms of "non-optimal" hominid bipedalism.

  15. Locomotor pattern fails to predict foramen magnum angle in rodents, strepsirrhine primates, and marsupials.

    Science.gov (United States)

    Ruth, Aidan A; Raghanti, Mary Ann; Meindl, Richard S; Lovejoy, C Owen

    2016-05-01

    Foramen magnum position has traditionally been used as an indicator of bipedality because it has been thought to favor a more "balanced" skull position. Here, we analyzed foramen magnum angle (FMA) in relation to locomotion in three mammalian orders that include bipedal or orthograde species in addition to quadrupedal or pronograde species. In marsupials and strepsirrhine primates, we found that there is no relationship between locomotor pattern and FMA. In rodents, we found that there is a significant difference in FMA between bipedal and quadrupedal rodents. However, when these species are analyzed in the context of enlarged auditory bullae, this relationship is no longer significant. Additionally, we find a significant relationship between relative brain size and FMA in strepsirrhine primates. Taken together, these data indicate that several developmental modules of the cranium influence FMA, but that locomotion does not. We caution that basicranial evolution is a complex phenomenon that must be explored in the context of each taxon's unique evolutionary and developmental history. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A Novel Sensory Mapping Design for Bipedal Walking on a Sloped Surface

    Directory of Open Access Journals (Sweden)

    Chiao-Min Wu

    2012-10-01

    Full Text Available This paper presents an environment recognition method for bipedal robots using a time-delay neural network. For a robot to walk in a varying terrain, it is desirable that the robot can adapt to any environment encountered in real-time. This paper aims to develop a sensory mapping unit to recognize environment types from the input sensory data based on an artificial neural network approach. With the proposed sensory mapping design, a bipedal walking robot can obtain real-time environment information and select an appropriate walking pattern accordingly. Due to the time-dependent property of sensory data, the sensory mapping is realized by using a time-delay neural network. The sensory data of earlier time sequences combined with current sensory data are sent to the neural network. The proposed method has been implemented on the humanoid robot NAO for verification. Several interesting experiments were carried out to verify the effectiveness of the sensory mapping design. The mapping design is validated for the uphill, downhill and flat surface cases, where three types of environment can be recognized by the NAO robot online.

  17. Two-fluid model for locomotion under self-confinement

    Science.gov (United States)

    Reigh, Shang Yik; Lauga, Eric

    2017-09-01

    The bacterium Helicobacter pylori causes ulcers in the stomach of humans by invading mucus layers protecting epithelial cells. It does so by chemically changing the rheological properties of the mucus from a high-viscosity gel to a low-viscosity solution in which it may self-propel. We develop a two-fluid model for this process of swimming under self-generated confinement. We solve exactly for the flow and the locomotion speed of a spherical swimmer located in a spherically symmetric system of two Newtonian fluids whose boundary moves with the swimmer. We also treat separately the special case of an immobile outer fluid. In all cases, we characterize the flow fields, their spatial decay, and the impact of both the viscosity ratio and the degree of confinement on the locomotion speed of the model swimmer. The spatial decay of the flow retains the same power-law decay as for locomotion in a single fluid but with a decreased magnitude. Independent of the assumption chosen to characterize the impact of confinement on the actuation applied by the swimmer, its locomotion speed always decreases with an increase in the degree of confinement. Our modeling results suggest that a low-viscosity region of at least six times the effective swimmer size is required to lead to swimming with speeds similar to locomotion in an infinite fluid, corresponding to a region of size above ≈25 μ m for Helicobacter pylori.

  18. A physical model of sensorimotor interactions during locomotion

    Science.gov (United States)

    Klein, Theresa J.; Lewis, M. Anthony

    2012-08-01

    In this paper, we describe the development of a bipedal robot that models the neuromuscular architecture of human walking. The body is based on principles derived from human muscular architecture, using muscles on straps to mimic agonist/antagonist muscle action as well as bifunctional muscles. Load sensors in the straps model Golgi tendon organs. The neural architecture is a central pattern generator (CPG) composed of a half-center oscillator combined with phase-modulated reflexes that is simulated using a spiking neural network. We show that the interaction between the reflex system, body dynamics and CPG results in a walking cycle that is entrained to the dynamics of the system. We also show that the CPG helped stabilize the gait against perturbations relative to a purely reflexive system, and compared the joint trajectories to human walking data. This robot represents a complete physical, or ‘neurorobotic’, model of the system, demonstrating the usefulness of this type of robotics research for investigating the neurophysiological processes underlying walking in humans and animals.

  19. Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans.

    Science.gov (United States)

    Makihara, Yukiko; Segal, Richard L; Wolpaw, Jonathan R; Thompson, Aiko K

    2014-09-15

    In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion. Copyright © 2014 the American Physiological Society.

  20. 40 CFR 92.707 - Notification to locomotive or locomotive engine owners.

    Science.gov (United States)

    2010-07-01

    ... the nonconformity of any such locomotives or locomotive engines which have been, if required by the... affected by the remedy and a general statement of the measures to be taken to correct the nonconformity. (5) A description of the adverse effects, if any, that an uncorrected nonconformity would have on the...

  1. Artificial locomotion control

    DEFF Research Database (Denmark)

    Azevedo, Christine; Poignet, Philippe; Espiau, Bernard

    2004-01-01

    of postural and walking control; use of evolutive optimization objectives; on-line event handling and environment adaptation and anticipation. This leads to the synthesis of an original control scheme based on non-linear model predictive control: Trajectory Free NMPC. The movement is specified implicitly......This paper concerns the simultaneous synthesis and control of walking gaits for biped robots. The goal is to propose an adaptable and reactive control law for two-legged machines. The problem is addressed with human locomotion as a reference. The starting point of our work is an analysis of human...... walking from descriptive (biomechanics) as well as explicative (neuroscience and physiology) points of view, the objective being to stress the relevant elements for the approach of robot control. The adopted principles are then: no joint trajectory tracking; explicit distinction and integration...

  2. Human locomotion on ice: the evolution of ice-skating energetics through history.

    Science.gov (United States)

    Formenti, Federico; Minetti, Alberto E

    2007-05-01

    More than 3000 years ago, peoples living in the cold North European regions started developing tools such as ice skates that allowed them to travel on frozen lakes. We show here which technical and technological changes determined the main steps in the evolution of ice-skating performance over its long history. An in-depth historical research helped identify the skates displaying significantly different features from previous models and that could consequently determine a better performance in terms of speed and energy demand. Five pairs of ice skates were tested, from the bone-skates, dated about 1800 BC, to modern ones. This paper provides evidence for the fact that the metabolic cost of locomotion on ice decreased dramatically through history, the metabolic cost of modern ice-skating being only 25% of that associated with the use of bone-skates. Moreover, for the same metabolic power, nowadays skaters can achieve speeds four times higher than their ancestors could. In the range of speeds considered, the cost of travelling on ice was speed independent for each skate model, as for running. This latter finding, combined with the accepted relationship between time of exhaustion and the sustainable fraction of metabolic power, gives the opportunity to estimate the maximum skating speed according to the distance travelled. Ice skates were probably the first human powered locomotion tools to take the maximum advantage from the biomechanical properties of the muscular system: even when travelling at relatively high speeds, the skating movement pattern required muscles to shorten slowly so that they could also develop a considerable amount of force.

  3. Emotion through Locomotion: Gender Impact

    OpenAIRE

    Kr?ger, Samuel; Sokolov, Alexander N.; Enck, Paul; Kr?geloh-Mann, Ingeborg; Pavlova, Marina A.

    2013-01-01

    Body language reading is of significance for daily life social cognition and successful social interaction, and constitutes a core component of social competence. Yet it is unclear whether our ability for body language reading is gender specific. In the present work, female and male observers had to visually recognize emotions through point-light human locomotion performed by female and male actors with different emotional expressions. For subtle emotional expressions only, males surpass fema...

  4. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of a...

  5. Why forefoot striking in minimal shoes might positively change the course of running injuries

    OpenAIRE

    Irene S. Davis; Hannah M. Rice; Scott C. Wearing

    2017-01-01

    It is believed that human ancestors evolved the ability to run bipedally approximately 2 million years ago. This form of locomotion may have been important to our survival and likely has influenced the evolution of our body form. As our bodies have adapted to run, it seems unusual that up to 79% of modern day runners are injured annually. The etiology of these injuries is clearly multifactorial. However, 1 aspect of running that has significantly changed over the past 50 years is the footwear...

  6. Optimisation of a machine learning algorithm in human locomotion using principal component and discriminant function analyses.

    Science.gov (United States)

    Bisele, Maria; Bencsik, Martin; Lewis, Martin G C; Barnett, Cleveland T

    2017-01-01

    Assessment methods in human locomotion often involve the description of normalised graphical profiles and/or the extraction of discrete variables. Whilst useful, these approaches may not represent the full complexity of gait data. Multivariate statistical methods, such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), have been adopted since they have the potential to overcome these data handling issues. The aim of the current study was to develop and optimise a specific machine learning algorithm for processing human locomotion data. Twenty participants ran at a self-selected speed across a 15m runway in barefoot and shod conditions. Ground reaction forces (BW) and kinematics were measured at 1000 Hz and 100 Hz, respectively from which joint angles (°), joint moments (N.m.kg-1) and joint powers (W.kg-1) for the hip, knee and ankle joints were calculated in all three anatomical planes. Using PCA and DFA, power spectra of the kinematic and kinetic variables were used as a training database for the development of a machine learning algorithm. All possible combinations of 10 out of 20 participants were explored to find the iteration of individuals that would optimise the machine learning algorithm. The results showed that the algorithm was able to successfully predict whether a participant ran shod or barefoot in 93.5% of cases. To the authors' knowledge, this is the first study to optimise the development of a machine learning algorithm.

  7. 49 CFR 238.223 - Locomotive fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the requirements...

  8. Simulation of aperiodic bipedal sprinting.

    Science.gov (United States)

    Celik, Huseyin; Piazza, Stephen J

    2013-08-01

    Synthesis of legged locomotion through dynamic simulation is useful for exploration of the mechanical and control variables that contribute to efficient gait. Most previous simulations have made use of periodicity constraints, a sensible choice for investigations of steady-state walking or running. Sprinting from rest, however, is aperiodic by nature and this aperiodicity is central to the goal of the movement, as performance is determined in large part by a rapid acceleration phase early in the race. The purpose of this study was to create a novel simulation of aperiodic sprinting using a modified spring-loaded inverted pendulum (SLIP) biped model. The optimal control problem was to find the set of controls that minimized the time for the model to run 20 m, and this problem was solved using a direct multiple shooting algorithm that converts the original continuous time problem into piecewise discrete subproblems. The resulting nonlinear programming problem was solved iteratively using a sequential quadratic programming method. The starting point for the optimizer was an initial guess simulation that was a slow alternating-gait "jogging" simulation developed using proportional-derivative feedback to control trunk attitude, swing leg angle, and leg retraction and extension. The optimized aperiodic sprint simulation solution yielded a substantial improvement in locomotion time over the initial guess (2.79 s versus 6.64 s). Following optimization, the model produced forward impulses at the start of the sprint that were four times greater than those of the initial guess simulation, producing more rapid acceleration. Several gait features demonstrated in the optimized sprint simulation correspond to behaviors of human sprinters: forward trunk lean at the start; straightening of the trunk during acceleration; and a dive at the finish. Optimization resulted in reduced foot contact times (0.065 s versus 0.210 s), but contact times early in the optimized

  9. The evolution of the upright posture and gait—a review and a new synthesis

    Science.gov (United States)

    Niemitz, Carsten

    2010-03-01

    During the last century, approximately 30 hypotheses have been constructed to explain the evolution of the human upright posture and locomotion. The most important and recent ones are discussed here. Meanwhile, it has been established that all main hypotheses published until the last decade of the past century are outdated, at least with respect to some of their main ideas: Firstly, they were focused on only one cause for the evolution of bipedality, whereas the evolutionary process was much more complex. Secondly, they were all placed into a savannah scenario. During the 1990s, the fossil record allowed the reconstruction of emerging bipedalism more precisely in a forested habitat (e.g., as reported by Clarke and Tobias (Science 269:521-524, 1995) and WoldeGabriel et al. (Nature 412:175-178, 2001)). Moreover, the fossil remains revealed increasing evidence that this part of human evolution took place in a more humid environment than previously assumed. The Amphibian Generalist Theory, presented first in the year 2000, suggests that bipedalism began in a wooded habitat. The forests were not far from a shore, where our early ancestor, along with its arboreal habits, walked and waded in shallow water finding rich food with little investment. In contrast to all other theories, wading behaviour not only triggers an upright posture, but also forces the individual to maintain this position and to walk bipedally. So far, this is the only scenario suitable to overcome the considerable anatomical and functional threshold from quadrupedalism to bipedalism. This is consistent with paleoanthropological findings and with functional anatomy as well as with energetic calculations, and not least, with evolutionary psychology. The new synthesis presented here is able to harmonise many of the hitherto competing theories.

  10. Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis.

    Science.gov (United States)

    Georgi, Justin A; Sipla, Justin S; Forster, Catherine A

    2013-01-01

    Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function.

  11. Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis.

    Directory of Open Access Journals (Sweden)

    Justin A Georgi

    Full Text Available Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function.

  12. 49 CFR 229.121 - Locomotive cab noise.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive cab noise. 229.121 Section 229.121... § 229.121 Locomotive cab noise. (a) Performance standards for locomotives. (1) When tested for static noise in accordance with paragraph (a)(3) of this section, all locomotives of each design or model that...

  13. The noise factor in railway locomotives.

    Science.gov (United States)

    Rotter, T

    1982-09-01

    This article concerns the problem of acoustic work conditions on railway locomotives. The objective results of sonometric surveys in locomotive cabins are compared with subject data received from locomotive crews obtained by means of a specific questionnaire 'The Subjective Estimation of Noise'. The analysis touched 9 type of locomotives; steam, diesel and electric engines. We asked drivers of different age groups and with varying lengths of professional service for their opinions The aim of the investigation was to determine the following points: 1. to analyse the drivers' subjective estimation of the noise in the locomotive cabins; 2. to define length of time for which the driver remains under the influence of the noise after finishing work; 3. to investigate the question of perception and understanding of sounds and vocal signals used in the locomotive. These problems are a small part of the general plan to improve work conditions on the Polish National Railways.

  14. [Job stress in locomotive attendants in a locomotive depot and related influencing factors].

    Science.gov (United States)

    Kang, L; Jia, X C; Lu, F; Zhou, W H; Chen, R

    2017-10-20

    Objective: To investigate the current status of job stress in locomotive attendants in a locomotive depot and related influencing factors. Methods: From 2012 to 2013, cluster sampling was used to select 1500 locomotive attendants in a locomotive depot in Zhengzhou Railway Bureau as respondents.The contents of the investigation included general data and occupational information.A job satisfaction questionnaire was used to investigate the degree of satisfaction, a depression scale was used to investigate the frequency of symptoms, and a daily stress scale was used to investigate the frequency of fatigue and stress. Results: There was a significant difference in depression score between locomotive attendants with different ages, working years, degrees of education, working situations of spouse, total monthly family incomes, numbers of times of attendanceat night, monthly numbers of times of attendance,ormonthly attendance times( P job satisfaction score between locomotive attendants with different ages,working years, degrees of education, working situations of spouse, total monthly family incomes, numbers of times of attendance at night, monthly attendance times,or ways to work( P job satisfaction( β =1.546)and monthly number of times of attendance,working years,attendance time at night,and degree of education were negatively correlated with job satisfaction( β =-0.185,-0.097,-0.020,and -1.106); monthly number of times of attendance andcommute time were positively correlated with depression( β =0.243 and 0.029); attendance time at night,working situation of spouse,commute time,monthly number of times of attendance,degree of education,and working years were positively correlated with daily stress( β =0.006,0.473,0.010,0.043,0.585, and 0.028). Conclusion: Number of times of attendance, attendance time,working years,and spouse are influencing factors for job stress in locomotive attendants. Improvement in work process and care for their personal life help to reduce

  15. Phalangeal joints kinematics during ostrich (Struthio camelus locomotion

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2017-01-01

    Full Text Available The ostrich is a highly cursorial bipedal land animal with a permanently elevated metatarsophalangeal joint supported by only two toes. Although locomotor kinematics in walking and running ostriches have been examined, these studies have been largely limited to above the metatarsophalangeal joint. In this study, kinematic data of all major toe joints were collected from gaits with double support (slow walking to running during stance period in a semi-natural setup with two selected cooperative ostriches. Statistical analyses were conducted to investigate the effect of locomotor gait on toe joint kinematics. The MTP3 and MTP4 joints exhibit the largest range of motion whereas the first phalangeal joint of the 4th toe shows the largest motion variability. The interphalangeal joints of the 3rd and 4th toes present very similar motion patterns over stance phases of slow walking and running. However, the motion patterns of the MTP3 and MTP4 joints and the vertical displacement of the metatarsophalangeal joint are significantly different during running and slow walking. Because of the biomechanical requirements, osctriches are likely to select the inverted pendulum gait at low speeds and the bouncing gait at high speeds to improve movement performance and energy economy. Interestingly, the motions of the MTP3 and MTP4 joints are highly synchronized from slow to fast locomotion. This strongly suggests that the 3rd and 4th toes really work as an “integrated system” with the 3rd toe as the main load bearing element whilst the 4th toe as the complementary load sharing element with a primary role to ensure the lateral stability of the permanently elevated metatarsophalangeal joint.

  16. Regularity of Center of Pressure Trajectories in Expert Gymnasts during Bipedal Closed-Eyes Quiet Standing

    Directory of Open Access Journals (Sweden)

    Brice Isableu

    2017-06-01

    Full Text Available We compared postural control of expert gymnasts (G to that of non-gymnasts (NG during bipedal closed-eyes quiet standing using conventional and nonlinear dynamical measures of center of foot pressure (COP trajectories. Earlier findings based on COP classical variables showed that gymnasts exhibited a better control of postural balance but only in demanding stances. We examined whether the effect of expertise in Gymnastic can be uncovered in less demanding stances, from the analysis of the dynamic patterns of COP trajectories. Three dependent variables were computed to describe the subject’s postural behavior: the variability of COP displacements (ACoP, the variability of the COP velocities (VCoP and the sample entropy of COP (SEnCoP to quantify COP regularity (i.e., predictability. Conventional analysis of COP trajectories showed that NG and G exhibited similar amount and control of postural sway, as indicated by similar ACoP and VCoP values observed in NG and G, respectively. These results suggest that the specialized balance training received by G may not transfer to less challenging balance conditions such as the bipedal eyes-closed stance condition used in the present experiment. Interestingly, nonlinear dynamical analysis of COP trajectories regarding COP regularity showed that G exhibited more irregular COP fluctuations relative to NG, as indicated by the higher SEnCoP values observed for the G than for the NG. The present results showed that a finer-grained analysis of the dynamic patterns of the COP displacements is required to uncover an effect of gymnastic expertise on postural control in nondemanding postural stance. The present findings shed light on the surplus value in the nonlinear dynamical analysis of COP trajectories to gain further insight into the mechanisms involved in the control of bipedal posture.

  17. Improved Usability of Locomotion Devices Using Human-Centric Taxonomy

    Science.gov (United States)

    2009-03-01

    the classification of interaction devices by the limbs used in the interaction rather than by arbitrary classifications, such as “ wand ”, or “glove...ABILITY REQUIREMENTS ANALYSIS USING F-JAS In Tables 5 through 8, we took the results of a sample HAR analysis done by Cockayne and Darken [13] comparing...point less than natural locomotion in all categories except for explosive strength, in which it receives 2 less points. 2. Decelerate from Walk or Jog

  18. Sketch-Based Spatial Queries for the Retrieval of Human Locomotion Patterns in Smart Environments

    Directory of Open Access Journals (Sweden)

    Gamhewage C. de Silva

    2009-01-01

    Full Text Available A system for retrieving video sequences created by tracking humans in a smart environment, by using spatial queries, is presented. Sketches made with a pointing device on the floor layout of the environment are used to form queries corresponding to locomotion patterns. The sketches are analyzed to identify the type of the query. Directional search algorithms based on the minimum distance between points are applied for finding the best matches to the sketch. The results are ranked according to the similarity and presented to the user. The system was developed in two stages. An initial version of the system was implemented and evaluated by conducting a user study. Modifications were made where appropriate, according to the results and the feedback, to make the system more accurate and usable. We present the details of the initial system, the user study and the results, and the modifications thus made. The overall accuracy of retrieval for the initial system was approximately 93%, when tested on a collection of data from a real-life experiment. This is improved to approximately 97% after the modifications. The user interaction strategy and the search algorithms are usable in any environment for automated retrieval of locomotion patterns. The subjects who evaluated the system found it easy to learn and use. Their comments included several prospective applications for the user interaction strategy, providing valuable insight for future directions.

  19. The neural representation of human versus nonhuman bipeds and quadrupeds.

    Science.gov (United States)

    Papeo, Liuba; Wurm, Moritz F; Oosterhof, Nikolaas N; Caramazza, Alfonso

    2017-10-25

    How do humans recognize humans among other creatures? Recent studies suggest that a preference for conspecifics may emerge already in perceptual processing, in regions such as the right posterior superior temporal sulcus (pSTS), implicated in visual perception of biological motion. In the current functional MRI study, participants viewed point-light displays of human and nonhuman creatures moving in their typical bipedal (man and chicken) or quadrupedal mode (crawling-baby and cat). Stronger activity for man and chicken versus baby and cat was found in the right pSTS responsive to biological motion. The novel effect of pedalism suggests that, if right pSTS contributes to recognizing of conspecifics, it does so by detecting perceptual features (e.g. bipedal motion) that reliably correlate with their appearance. A searchlight multivariate pattern analysis could decode humans and nonhumans across pedalism in the left pSTS and bilateral posterior cingulate cortex. This result implies a categorical human-nonhuman distinction, independent from within-category physical/perceptual variation. Thus, recognizing conspecifics involves visual classification based on perceptual features that most frequently co-occur with humans, such as bipedalism, and retrieval of information that determines category membership above and beyond visual appearance. The current findings show that these processes are at work in separate brain networks.

  20. Tractable Quantification of Metastability for Robust Bipedal Locomotion

    Science.gov (United States)

    2015-06-01

    supporting me from the other side of the earth all these years. Finally, I would like to thank Institute for Collaborative Biotechnologies for funding my...Robotics & Automation Magazine , IEEE, 14(2):18–29. Available from: http://ieeexplore.ieee.org/xpls/abs all. jsp?arnumber=4264364. [Lagarias et al

  1. Bioinspired template-based control of legged locomotion

    OpenAIRE

    Ahmad Sharbafi, Maziar

    2018-01-01

    cient and robust locomotion is a crucial condition for the more extensive use of legged robots in real world applications. In that respect, robots can learn from animals, if the principles underlying locomotion in biological legged systems can be transferred to their artificial counterparts. However, legged locomotion in biological systems is a complex and not fully understood problem. A great progress to simplify understanding locomotion dynamics and control was made by introducing simple mo...

  2. Locomotive monitoring system using wireless sensor networks

    CSIR Research Space (South Africa)

    Croucamp, PL

    2014-07-01

    Full Text Available Theft of cables used for powering a locomotive not only stops the train from functioning but also paralyzes the signalling and monitoring system. This means that information on certain locomotive's cannot be passed onto other locomotives which may...

  3. Primate pelvic anatomy and implications for birth

    Science.gov (United States)

    Trevathan, Wenda

    2015-01-01

    The pelvis performs two major functions for terrestrial mammals. It provides somewhat rigid support for muscles engaged in locomotion and, for females, it serves as the birth canal. The result for many species, and especially for encephalized primates, is an ‘obstetric dilemma’ whereby the neonate often has to negotiate a tight squeeze in order to be born. On top of what was probably a baseline of challenging birth, locomotor changes in the evolution of bipedalism in the human lineage resulted in an even more complex birth process. Negotiation of the bipedal pelvis requires a series of rotations, the end of which has the infant emerging from the birth canal facing the opposite direction from the mother. This pattern, strikingly different from what is typically seen in monkeys and apes, places a premium on having assistance at delivery. Recently reported observations of births in monkeys and apes are used to compare the process in human and non-human primates, highlighting similarities and differences. These include presentation (face, occiput anterior or posterior), internal and external rotation, use of the hands by mothers and infants, reliance on assistance, and the developmental state of the neonate. PMID:25602069

  4. How is sagittal balance acquired during bipedal gait acquisition? Comparison of neonatal and adult pelves in three dimensions. Evolutionary implications.

    Science.gov (United States)

    Tardieu, Christine; Bonneau, Noémie; Hecquet, Jérôme; Boulay, Christophe; Marty, Catherine; Legaye, Jean; Duval-Beaupère, Geneviève

    2013-08-01

    We compare adult and intact neonatal pelves, using a pelvic sagittal variable, the angle of sacral incidence, which presents significant correlations with vertebral curvature in adults and plays an important role in sagittal balance of the trunk on the lower limbs. Since the lumbar curvature develops in the child in association with gait acquisition, we expect a change in this angle during growth which could contribute to the acquisition of sagittal balance. To understand the mechanisms underlying the sagittal balance in the evolution of human bipedalism, we also measure the angle of incidence of hominid fossils. Fourty-seven landmarks were digitized on 50 adult and 19 intact neonatal pelves. We used a three-dimensional model of the pelvis (DE-VISU program) which calculates the angle of sacral incidence and related functional variables. Cross-sectional data from newborns and adults show that the angle of sacral incidence increases and becomes negatively correlated with the sacro-acetabular distance. During ontogeny the sacrum becomes curved, tends to sink down between the iliac blades as a wedge and moves backward in the sagittal plane relative to the acetabula, thus contributing to the backwards displacement of the center of gravity of the trunk. A chain of correlations links the degree of the sacral slope and of the angle of incidence, which is tightly linked with the lumbar lordosis. We sketch a model showing the coordinated changes occurring in the pelvis and vertebral column during the acquisition of bipedalism in infancy. In the australopithecine pelves, Sts 14 and AL 288-1, and in the Homo erectus Gona pelvis the angle of sacral incidence reaches the mean values of humans. Discussing the incomplete pelves of Ardipithecus ramidus, Australopithecus sediba and the Nariokotome Boy, we suggest how the functional linkage between pelvis and spine, observed in humans, could have emerged during hominid evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Motor patterns during walking on a slippery walkway

    NARCIS (Netherlands)

    Cappellini, Germana; Ivanenko, Yuri P; Dominici, Nadia; Poppele, Richard E; Lacquaniti, Francesco

    Friction and gravity represent two basic physical constraints of terrestrial locomotion that affect both motor patterns and the biomechanics of bipedal gait. To provide insights into the spatiotemporal organization of the motor output in connection with ground contact forces, we studied adaptation

  6. Locomotive fuel tank structural safety testing program : passenger locomotive fuel tank jackknife derailment load test.

    Science.gov (United States)

    2010-08-01

    This report presents the results of a passenger locomotive fuel tank load test simulating jackknife derailment (JD) load. The test is based on FRA requirements for locomotive fuel tanks in the Title 49, Code of Federal Regulations (CFR), Part 238, Ap...

  7. Running and Breathing in Mammals

    Science.gov (United States)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  8. On extracting design principles from biology: II. Case study—the effect of knee direction on bipedal robot running efficiency

    International Nuclear Information System (INIS)

    Haberland, M; Kim, S

    2015-01-01

    Comparing the leg of an ostrich to that of a human suggests an important question to legged robot designers: should a robot's leg joint bend in the direction of running (‘forwards’) or opposite (‘backwards’)? Biological studies cannot answer this question for engineers due to significant differences between the biological and engineering domains. Instead, we investigated the inherent effect of joint bending direction on bipedal robot running efficiency by comparing energetically optimal gaits of a wide variety of robot designs sampled at random from a design space. We found that the great majority of robot designs have several locally optimal gaits with the knee bending backwards that are more efficient than the most efficient gait with the knee bending forwards. The most efficient backwards gaits do not exhibit lower touchdown losses than the most efficient forward gaits; rather, the improved efficiency of backwards gaits stems from lower torque and reduced motion at the hip. The reduced hip use of backwards gaits is enabled by the ability of the backwards knee, acting alone, to (1) propel the robot upwards and forwards simultaneously and (2) lift and protract the foot simultaneously. In the absence of other information, designers interested in building efficient bipedal robots with two-segment legs driven by electric motors should design the knee to bend backwards rather than forwards. Compared to common practices for choosing robot knee direction, application of this principle would have a strong tendency to improve robot efficiency and save design resources. (paper)

  9. Modelling of dynamically stable AR-601M robot locomotion in Simulink

    Directory of Open Access Journals (Sweden)

    Khusainov Ramil

    2016-01-01

    Full Text Available Humanoid robots will gradually play an important role in our daily lives. Currently, research on anthropomorphic robots and biped locomotion is one of the most important problems in the field of mobile robotics, and the development of reliable control algorithms for them is a challenging task. In this research two algorithms for stable walking of Russian anthropomorphic robot AR-601M with 41 Degrees of Freedom (DoF are investigated. To achieve a human-like dynamically stable locomotion 6 DoF in each robot leg are controlled with Virtual Height Inverted Pendulum and Preview control methods.

  10. Performance of human observers and an automatic 3-dimensional computer-vision-based locomotion scoring method to detect lameness and hoof lesions in dairy cows

    NARCIS (Netherlands)

    Schlageter-Tello, Andrés; Hertem, Van Tom; Bokkers, Eddie A.M.; Viazzi, Stefano; Bahr, Claudia; Lokhorst, Kees

    2018-01-01

    The objective of this study was to determine if a 3-dimensional computer vision automatic locomotion scoring (3D-ALS) method was able to outperform human observers for classifying cows as lame or nonlame and for detecting cows affected and nonaffected by specific type(s) of hoof lesion. Data

  11. Locomotive Schedule Optimization for Da-qin Heavy Haul Railway

    Directory of Open Access Journals (Sweden)

    Ruiye Su

    2015-01-01

    Full Text Available The main difference between locomotive schedule of heavy haul railways and that of regular rail transportation is the number of locomotives utilized for one train. One heavy-loaded train usually has more than one locomotive, but a regular train only has one. This paper develops an optimization model for the multilocomotive scheduling problem (MLSP through analyzing the current locomotive schedule of Da-qin Railway. The objective function of our paper is to minimize the total number of utilized locomotives. The MLSP is nondeterministic polynomial (NP hard. Therefore, we convert the multilocomotive traction problem into a single-locomotive traction problem. Then, the single-locomotive traction problem (SLTP can be converted into an assignment problem. The Hungarian algorithm is applied to solve the model and obtain the optimal locomotive schedule. We use the variance of detention time of locomotives at stations to evaluate the stability of locomotive schedule. In order to evaluate the effectiveness of the proposed optimization model, case studies for 20 kt and 30 kt heavy-loaded combined trains on Da-qin Railway are both conducted. Compared to the current schedules, the optimal schedules from the proposed models can save 62 and 47 locomotives for 20 kt and 30 kt heavy-loaded combined trains, respectively. Therefore, the effectiveness of the proposed model and its solution algorithm are both valid.

  12. Locomotor-like leg movements evoked by rhythmic arm movements in humans.

    Directory of Open Access Journals (Sweden)

    Francesca Sylos-Labini

    Full Text Available Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs.

  13. Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals.

    Science.gov (United States)

    Afzal, Taimoor; White, Gannon; Wright, Andrew B; Iqbal, Kamran

    2014-01-01

    Recent development in lower limb prosthetics has seen an emergence of powered prosthesis that have the capability to operate in different locomotion modes. However, these devices cannot transition seamlessly between modes such as level walking, stair ascent and descent and up slope and down slope walking. They require some form of user input that defines the human intent. The purpose of this study was to develop a locomotion mode detection system and evaluate its performance for different sensor configurations and to study the effect of locomotion mode detection with and without electromyography (EMG) signals while using kinematic data from hip joint of non-dominant/impaired limb and an accelerometer. Data was collected from four able bodied subjects that completed two circuits that contained standing, level-walking, ramp ascent and descent and stair ascent and descent. By using only the kinematic data from the hip joint and accelerometer data the system was able to identify the transitions, stance and swing phases with similar performance as compared to using only EMG and accelerometer data. However, significant improvement in classification error was observed when EMG, kinematic and accelerometer data were used together to identify the locomotion modes. The higher recognition rates when using the kinematic data along with EMG shows that the joint kinematics could be beneficial in intent recognition systems of locomotion modes.

  14. The Need for Speed in Rodent Locomotion Analyses

    Science.gov (United States)

    Batka, Richard J.; Brown, Todd J.; Mcmillan, Kathryn P.; Meadows, Rena M.; Jones, Kathryn J.; Haulcomb, Melissa M.

    2016-01-01

    Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript, we accomplish three things: (1) review the interaction between speed and locomotion variables in rodent studies, (2) comprehensively analyze the relationship between speed and 162 locomotion variables in a group of 16 wild-type mice using the CatWalk gait analysis system, and (3) develop and test a statistical method in which locomotion variables are analyzed and reported in the context of speed. Notable results include the following: (1) over 90% of variables, reported by CatWalk, were dependent on speed with an average R2 value of 0.624, (2) most variables were related to speed in a nonlinear manner, (3) current methods of controlling for speed are insufficient, and (4) the linear mixed model is an appropriate and effective statistical method for locomotion analyses that is inclusive of speed-dependent relationships. Given the pervasive dependency of locomotion variables on speed, we maintain that valid conclusions from locomotion analyses cannot be made unless they are analyzed and reported within the context of speed. PMID:24890845

  15. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Discrete-mode steady-state emission... Procedures § 1033.515 Discrete-mode steady-state emission tests of locomotives and locomotive engines. This... a warm-up followed by a sequence of nominally steady-state discrete test modes, as described in...

  16. Locomotion Gait Planning of Climber Snake-Like Robot

    Directory of Open Access Journals (Sweden)

    Mohammad Nezaminia

    2013-04-01

    Full Text Available In this article a novel breed of snake-like climber robots has been introduced. Structure and operation of the first generation of snake-like climber robot "Marak I" has been discussed. The gait planning for two dimensional locomotion of a novel snake-like climber robot "Marak I" is presented. The types of locomotion investigated were rectilinear and wheeling gaits. The gaits of locomotion were experimented and their suitability for various applications has been mentioned. Some encountered practical problems plus solutions were addressed. Finally we found out that: the vertical motion was producing more fault than horizontal locomotion, and notably the fastest gait of locomotion was the wheeling gait

  17. Control method for biped locomotion robots based on ZMP information

    International Nuclear Information System (INIS)

    Kume, Etsuo

    1994-01-01

    The Human Acts Simulation Program (HASP) started as a ten year program of Computing and Information Systems Center (CISC) at Japan Atomic Energy Research Institute (JAERI) in 1987. A mechanical design study of biped locomotion robots for patrol and inspection in nuclear facilities is being performed as an item of the research scope. One of the goals of our research is to design a biped locomotion robot for practical use in nuclear facilities. So far, we have been studying for several dynamic walking patterns. In conventional control methods for biped locomotion robots, the program control is used based on preset walking patterns, so it dose not have the robustness such as a dynamic change of walking pattern. Therefore, a real-time control method based on dynamic information of the robot states is necessary for the high performance of walking. In this study a new control method based on Zero Moment Point (ZMP) information is proposed as one of real-time control methods. The proposed method is discussed and validated based on the numerical simulation. (author)

  18. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  19. Multi-modal locomotion: from animal to application

    International Nuclear Information System (INIS)

    Lock, R J; Burgess, S C; Vaidyanathan, R

    2014-01-01

    The majority of robotic vehicles that can be found today are bound to operations within a single media (i.e. land, air or water). This is very rarely the case when considering locomotive capabilities in natural systems. Utility for small robots often reflects the exact same problem domain as small animals, hence providing numerous avenues for biological inspiration. This paper begins to investigate the various modes of locomotion adopted by different genus groups in multiple media as an initial attempt to determine the compromise in ability adopted by the animals when achieving multi-modal locomotion. A review of current biologically inspired multi-modal robots is also presented. The primary aim of this research is to lay the foundation for a generation of vehicles capable of multi-modal locomotion, allowing ambulatory abilities in more than one media, surpassing current capabilities. By identifying and understanding when natural systems use specific locomotion mechanisms, when they opt for disparate mechanisms for each mode of locomotion rather than using a synergized singular mechanism, and how this affects their capability in each medium, similar combinations can be used as inspiration for future multi-modal biologically inspired robotic platforms. (topical review)

  20. Steam Locomotives: a forgotten era

    African Journals Online (AJOL)

    The boiler was not armoured as the idea was that it was bullet proof. The locomotives were arranged into groups of five and for each group there was an engine as standby. As far as can be ascertained, locomotive No 537 was never armoured, but did work draw trains and freight trains during the Anglo-Boer War too.

  1. Development of a Novel Locomotion Algorithm for Snake Robot

    International Nuclear Information System (INIS)

    Khan, Raisuddin; Billah, Md Masum; Watanabe, Mitsuru; Shafie, A A

    2013-01-01

    A novel algorithm for snake robot locomotion is developed and analyzed in this paper. Serpentine is one of the renowned locomotion for snake robot in disaster recovery mission to overcome narrow space navigation. Several locomotion for snake navigation, such as concertina or rectilinear may be suitable for narrow spaces, but is highly inefficient if the same type of locomotion is used even in open spaces resulting friction reduction which make difficulties for snake movement. A novel locomotion algorithm has been proposed based on the modification of the multi-link snake robot, the modifications include alterations to the snake segments as well elements that mimic scales on the underside of the snake body. Snake robot can be able to navigate in the narrow space using this developed locomotion algorithm. The developed algorithm surmount the others locomotion limitation in narrow space navigation

  2. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.

    Science.gov (United States)

    Sartori, Massimo; Maculan, Marco; Pizzolato, Claudio; Reggiani, Monica; Farina, Dario

    2015-10-01

    This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during overground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion. Copyright © 2015 the American Physiological Society.

  3. Locomotion through Morphosis

    DEFF Research Database (Denmark)

    Larsen, Jørgen Christian

    , this is still not the case. One of the reasons for this is that science does still not fully understand the principles of dynamic locomotion which is a requirement for them to move around in our environment with stairs, obstacles etc. In this thesis the focus will be on the creation of the modular robotic...... it have been build. This will hopefully help to identify which parameters that are affecting the locomotive abilities of a legged robot the most. Experiments shows that the system in its current state is able for form legged robots of various kinds, and perform walking gaits where phenomenon’s also seen...

  4. The Fibularis (Peroneus Tertius Muscle in Humans: A Meta-Analysis of Anatomical Studies with Clinical and Evolutionary Implications

    Directory of Open Access Journals (Sweden)

    Kaissar Yammine

    2017-01-01

    Full Text Available Being considered an exclusive human structure for a long time, fibularis tertius (FT is believed to have a secondary function of foot dorsiflexion and eversion. This study is an attempt to approach the issue from an anatomical perspective. A systematic literature search identified 35 studies (7601 legs which met the inclusion criteria. The weighted results of FT presence were as follows: an “adult cadaveric” frequency of 93.2% and a clinical frequency of 80%. The most common FT origin and insertion sites were the distal half of fibula and the base of the 5th metatarsal, respectively. In 95% of cases, an accessory fibular muscle was detected when FT was lacking. We demonstrated that the discrepancy found between the adult cadaveric and clinical frequency values would point out a probable bias in interpreting previous kinesiological results. On an evolutionary level, comparative anatomy demonstrated a very low FT prevalence among monkeys while reaching a frequency of 30% in gorillas, the only non-human apes having an almost exclusive terrestrial locomotion. The consistent prevalence among humans and the presence of similar functional muscles when it is missing would support an essential role of FT during the phylogenetic development of the erect bipedal posture and probably during gait.

  5. A bipedal DNA motor that travels back and forth between two DNA origami tiles.

    Science.gov (United States)

    Liber, Miran; Tomov, Toma E; Tsukanov, Roman; Berger, Yaron; Nir, Eyal

    2015-02-04

    In this work, the successful operation of a dynamic DNA device constructed from two DNA origami building blocks is reported. The device includes a bipedal walker that strides back and forth between the two origami tiles. Two different DNA origami tiles are first prepared separately; they are then joined together in a controlled manner by a set of DNA strands to form a stable track in high yield as confirmed by single-molecule fluorescence (SMF). Second, a bipedal DNA motor, initially attached to one of the two origami units and operated by sequential interaction with "fuel" and "antifuel" DNA strands, moves from one origami tile to another and then back again. The operational yield, measured by SMF, was similar to that of a motor operating on a similar track embedded in a single origami tile, confirming that the transfer across the junction from one tile to the other does not result in dissociation that is any more than that of steps on a single tile. These results demonstrate that moving parts can reliably travel from one origami unit to another, and it demonstrates the feasibility of dynamic DNA molecular machines that are made of more than a single origami building block. This study is a step toward the development of motors that can stride over micrometer distances. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Locomotive Crash Energy Management Coupling Tests

    Science.gov (United States)

    2018-04-18

    This paper describes the results of the CEM equipped locomotive coupling tests. In this set of tests, a moving CEM locomotive was coupled to a standing cab car. The primary objective was to demonstrate the robustness of the PBC design and determine t...

  7. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...

  8. 76 FR 2199 - Locomotive Safety Standards

    Science.gov (United States)

    2011-01-12

    ..., alcohol and drug testing, locomotive engineer certification, and workplace safety. In 1980, FRA issued the...) Association of State Rail Safety Managers (ASRSM) Brotherhood of Locomotive Engineers and Trainmen (BLET... desirable to minimize the health and safety effects of temperature extremes. Depending upon the workplace...

  9. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive leading...

  10. Problems of locomotive wheel wear in fleet replacement

    Directory of Open Access Journals (Sweden)

    L.P. Lingaytis

    2013-08-01

    Full Text Available Purpose. To conduct a research and find out the causes of defects appearing on the wheel thread of freight locomotives 2М62 and SIEMENS ER20CF. Methodology. To find the ways to solve this problem comparing the locomotive designs and their operating conditions. Findings. After examining the nature of the wheel wear the main difference was found: in locomotives of the 2M62 line wears the wheel flange, and in the locomotives SIEMENS ER20CF – the tread surface. After installation on the 2M62 locomotive the lubrication system of flanges their wear rate significantly decreased. On the new freight locomotives SIEMENS ER20CF the flange lubrication systems of the wheel set have been already installed at the factory, however the wheel thread is wearing. As for locomotives 2M62, and on locomotives SIEMENS ER20CF most wear profile skating wheels of the first wheel set. On both locomotive lines the 2М62 and the SIEMENS ER20CF the tread profile of the first wheel set most of all is subject to the wear. After reaching the 170 000 km run, the tread surface of some wheels begins to crumble. There was a suspicion that the reason for crumb formation of the wheel surface may be insufficient or excessive wheel hardness or its chemical composition. In order to confirm or deny this suspicion the following studies were conducted: the examination of the rim surface, the study of the wheel metal hardness and the document analysis of the wheel production and their comparison with the results of wheel hardness measurement. Practical value. The technical condition of locomotives is one of the bases of safety and reliability of the rolling stock. The reduction of the wheel wear significantly reduces the operating costs of railway transport. After study completion it was found that there was no evidence to suggest that the ratio of the wheel-rail hardness could be the cause of the wheel surface crumbling.

  11. 77 FR 21311 - Locomotive Safety Standards

    Science.gov (United States)

    2012-04-09

    ... preparedness, alcohol and drug testing, locomotive engineer certification, and workplace safety. In 1980, FRA... Association (ATDA) Amtrak AAR Association of Railway Museums (ARM) Association of State Rail Safety Managers... Administration 49 CFR Parts 229 and 238 Locomotive Safety Standards; Final Rule #0;#0;Federal Register / Vol. 77...

  12. Blunt impact tests of retired passenger locomotive fuel tanks

    Science.gov (United States)

    2017-08-01

    The Transportation Technology Center, Inc. conducted impact tests on three locomotive fuel tanks as part of the Federal Railroad Administrations locomotive fuel tank crashworthiness improvement program. Three fuel tanks, two from EMD F40PH locomot...

  13. [Evolutionary history of human locomotor system--from walking to long-distance running].

    Science.gov (United States)

    Viranta-Kovanen, Suvi

    2015-01-01

    Bipedality evolved in hominids more than 4 million years ago. Bipedals were a diverse group including the lineage of obligatory walkers that finally lead to humans. Important anatomical changes in this group were: enhanced lumbar lordosis, shortening of the ilium, and emphasize on the parasagittal movements. Long-distance running evolved much later and it was associated with well-developed plantar arches, strengthening of muscles supporting the erect trunk, and decoupling of the pectoral girdle and head. In addition to anatomical changes, humans have many physiological adaptations to long-distance running. It is likely that the ability to run long-distance has been important for the survival of our species.

  14. The genetics of human running: ACTN3 polymorphism as an evolutionary tool improving the energy economy during locomotion.

    Science.gov (United States)

    Pasqua, Leonardo A; Bueno, Salomão; Matsuda, Monique; Marquezini, Mônica V; Lima-Silva, Adriano E; Saldiva, Paulo H N; Bertuzzi, Rômulo

    2016-05-01

    Covering long distances was an important trait to human evolution and continues to be highlighted for health and athletic status. This ability is benefitted by a low cost of locomotion (CoL), meaning that the individuals who are able to expend less energy would be able to cover longer distances. The CoL has been shown to be influenced by distinct and even 'opposite' factors, such as physiological and muscular characteristics, which are genetically inherited. In this way, DNA alterations could be important determinants of the characteristics associated with the CoL. A polymorphism in the ACTN3 gene (R577X) has been related to physical performance, associating the X allele with endurance and the R allele with strength/power abilities. To investigate the influence of ACTN3 genotypes on the CoL. One hundred and fifty healthy male individuals performed two constant speed tests (at 10 and 12 km/h) to determine the CoL. Interestingly, the results showed that heterozygous individuals (RX genotype) presented significantly lower CoL compared to RR and XX individuals. It is argued that RX genotype might generate an intermediate strength-to-endurance phenotype, leading to a better phenotypic profile for energy economy during running and, consequently, for long-term locomotion.

  15. A survey report for the biped locomotion model under external force

    International Nuclear Information System (INIS)

    Kato, Ichiro; Takanishi, Atsuo; Kume, Etsuo.

    1993-10-01

    A mechanical design study of biped locomotion robots is being performed at JAERI within the scope of the Human Acts Simulation Program (HASP). The design study at JAERI is of an arbitrarily mobile robot for inspection of nuclear facilities. We have developed the simulation software which has capability of obtaining several types of stable motions for straight walking in terms of design tools. In addition, we are studying more complex walking patterns such as turning. However, in order to realize the robustness of walking, it is also necessary for the robot to have a capability of walking under external force as a disturbance which is caused by touching an object and so on. A survey has been performed for collecting useful information from already existing biped locomotion robots. This is a survey report for the biped locomotion model under external force: the WL-12RIII/IV designed and developed at Waseda University. This report includes the machine model, control system, control method and results of walking experiments. (author)

  16. A hyper-robust sauropodomorph dinosaur ilium from the Upper Triassic-Lower Jurassic Elliot Formation of South Africa: Implications for the functional diversity of basal Sauropodomorpha

    Science.gov (United States)

    McPhee, Blair W.; Choiniere, Jonah N.

    2016-11-01

    It has generally been held that the locomotory habits of sauropodomorph dinosaurs moved in a relatively linear evolutionary progression from bipedal through "semi-bipedal" to the fully quadrupedal gait of Sauropoda. However, there is now a growing appreciation of the range of locomotory strategies practiced amongst contemporaneous taxa of the latest Triassic and earliest Jurassic. Here we present on the anatomy of a hyper-robust basal sauropodomorph ilium from the Late Triassic-Early Jurassic Elliot Formation of South Africa. This element, in addition to highlighting the unexpected range of bauplan diversity throughout basal Sauropodomorpha, also has implications for our understanding of the relevance of "robusticity" to sauropodomorph evolution beyond generalized limb scaling relationships. Possibly representing a unique form of hindlimb stabilization during phases of bipedal locomotion, the autapomorphic morphology of this newly rediscovered ilium provides additional insight into the myriad ways in which basal Sauropodomorpha managed the inherited behavioural and biomechanical challenges of increasing body-size, hyper-herbivory, and a forelimb primarily adapted for use in a bipedal context.

  17. Gait control by foot placement for humanoid robots

    NARCIS (Netherlands)

    Botden, F.J.B.M.; Nijmeijer, H.; Zutven, van P.W.M.

    2013-01-01

    Humanoid robots are used as a research tool to understand bipedal locomotion. When pushed, a humanoid robot must be able to avoid falling and return to a balanced configuration. This is called push recovery and can be achieved using proper foot placement. Depending on the freedom of movement, one or

  18. The mechanics of slithering locomotion.

    Science.gov (United States)

    Hu, David L; Nirody, Jasmine; Scott, Terri; Shelley, Michael J

    2009-06-23

    In this experimental and theoretical study, we investigate the slithering of snakes on flat surfaces. Previous studies of slithering have rested on the assumption that snakes slither by pushing laterally against rocks and branches. In this study, we develop a theoretical model for slithering locomotion by observing snake motion kinematics and experimentally measuring the friction coefficients of snakeskin. Our predictions of body speed show good agreement with observations, demonstrating that snake propulsion on flat ground, and possibly in general, relies critically on the frictional anisotropy of their scales. We have also highlighted the importance of weight distribution in lateral undulation, previously difficult to visualize and hence assumed uniform. The ability to redistribute weight, clearly of importance when appendages are airborne in limbed locomotion, has a much broader generality, as shown by its role in improving limbless locomotion.

  19. EVALUATION OF DYNAMIC INDICATORS OF SIX-AXLE LOCOMOTIVE

    Directory of Open Access Journals (Sweden)

    S. V. Myamlin

    2015-04-01

    Full Text Available Purpose. The paper is devoted to dynamic characteristics evaluation of the locomotive with prospective design and determination the feasibility of its use on the Ukrainian railways. Methodology. The methods of mathematical and computer modeling of the dynamics of railway vehicles, as well as methods for the numerical integration of systems of ordinary nonlinear differential equations were used to solve the problem. Findings. The calculated diagram of a locomotive on three-axle bogies was built to solve the problem, and it is a system of rigid bodies connected by various elements of rheology. The mathematical model of the locomotive movement, allowing studying its spatial vibrations at driving on straight and curved sections of the track with random irregularities in plan and profile was developed with use of this calculated diagram. At compiling the mathematical model took into account both geometric (nonlinearity profile of the wheel roll surface and physical nonlinearity of the system (the work forces of dry friction, nonlinearity characteristics of interaction forces between wheels and rails. The multivariate calculations, which allowed assessing the dynamic qualities of the locomotive at its movement along straight and curved sections of the track, were realized with the use of computer modeling. The smoothness movement indicators of the locomotive in horizontal and vertical planes, frame strength, coefficients of vertical dynamics in the first and second stages of the suspension, the load factor of resistance against the derailment of the wheel from the rail were determined at the period of research. In addition, a comparison of the obtained results with similar characteristics is widely used on the Ukrainian railways in six-axle locomotive TE 116. The influence of speed and technical state of the track on the locomotive traffic safety was determined.Originality. A mathematical model of the spatial movement of a six-axle locomotive with

  20. Fundamentals of soft robot locomotion

    OpenAIRE

    Calisti, M.; Picardi, G.; Laschi, C.

    2017-01-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human���robot interaction and locomotion. Although field applications have emerged for soft manipulation and human���robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This p...

  1. Railroad and locomotive technology roadmap.

    Energy Technology Data Exchange (ETDEWEB)

    Stodolsky, F.; Gaines, L.; Energy Systems

    2003-02-24

    Railroads are important to the U.S. economy. They transport freight efficiently, requiring less energy and emitting fewer pollutants than other modes of surface transportation. While the railroad industry has steadily improved its fuel efficiency--by 16% over the last decade--more can, and needs to, be done. The ability of locomotive manufacturers to conduct research into fuel efficiency and emissions reduction is limited by the small number of locomotives manufactured annually. Each year for the last five years, the two North American locomotive manufacturers--General Electric Transportation Systems and the Electro-Motive Division of General Motors--have together sold about 800 locomotives in the United States. With such a small number of units over which research costs can be spread, outside help is needed to investigate all possible ways to reduce fuel usage and emissions. Because fuel costs represent a significant portion of the total operating costs of a railroad, fuel efficiency has always been an important factor in the design of locomotives and in the operations of a railroad. However, fuel efficiency has recently become even more critical with the introduction of strict emission standards by the U.S. Environmental Protection Agency, to be implemented in stages (Tiers 0, 1, and 2) between 2000 and 2005. Some of the technologies that could be employed to meet the emission standards may negatively affect fuel economy--by as much as 10-15% when emissions are reduced to Tier 1 levels. Lowering fuel economy by that magnitude would have a serious impact on the cost to the consumer of goods shipped by rail, on the competitiveness of the railroad industry, and on this country's dependence on foreign oil. Clearly, a joint government/industry R&D program is needed to help catalyze the development of advanced technologies that will substantially reduce locomotive engine emissions while also improving train system energy efficiency. DOE convened an industry

  2. The Effects of Natural Locomotion on Maneuvering Task Performance in Virtual and Real Environments

    National Research Council Canada - National Science Library

    Unguder, Eray

    2001-01-01

    ... treadmill. The motivation for the development of locomotion devices thus far has been driven by the assumption that a The "perfect" device will result in human performance levels comparable to the real world...

  3. Le Shuttle, the locomotive from Eurotunnel

    OpenAIRE

    Gabriel MOISA

    2002-01-01

    This paper present some performances of locomotive ‘Le Shuttle’, so-called locomotive from ‘Eurotunnel’, techniques characteristics of traction motors 6 FHA 7079 and converters witch use it, the principal electric scheme and its function principle and no at last rind the principle scheme of command-control equipment MICAS-S2 with detailed description of its operation mode.

  4. Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity

    Science.gov (United States)

    Sundaresan, Alamelu; Risin, Diana; Pellis, Neal R.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Inflammatory adherence to, and locomotion through the interstitium is an important component of the immune response. Conditions such as microgravity and modeled microgravity (MMG) severely inhibit lymphocyte locomotion in vitro through gelled type I collagen. We used the NASA rotating wall vessel bioreactor or slow-turning lateral vessel as a prototype for MMG in ground-based experiments. Previous experiments from our laboratory revealed that when lymphocytes (human peripheral blood mononuclear cells [PBMCs]) were first activated with phytohemaglutinin followed by exposure to MMG, locomotory capacity was not affected. In the present study, MMG inhibits lymphocyte locomotion in a manner similar to that observed in microgravity. Phorbol myristate acetate (PMA) treatment of PBMCs restored lost locomotory capacity by a maximum of 87%. Augmentation of cellular calcium flux with ionomycin had no restorative effect. Treatment of lymphocytes with mitomycin C prior to exposure to MMG, followed by PMA, restored locomotion to the same extent as when nonmitomycin C-treated lymphocytes were exposed to MMG (80-87%), suggesting that deoxyribonucleic acid replication is not essential for the restoration of locomotion. Thus, direct activation of protein kinase C (PKC) with PMA was effective in restoring locomotion in MMG comparable to the normal levels seen in Ig cultures. Therefore, in MMG, lymphocyte calcium signaling pathways were functional, with defects occurring at either the level of PKC or upstream of PKC.

  5. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not more...

  6. DESIGN IMPROVEMENT OF THE LOCOMOTIVE RUNNING GEARS

    Directory of Open Access Journals (Sweden)

    S. V. Myamlin

    2013-09-01

    Full Text Available Purpose. To determine the dynamic qualities of the mainline freight locomotives characterizing the safe motion in tangent and curved track sections at all operational speeds, one needs a whole set of studies, which includes a selection of the design scheme, development of the corresponding mathematical model of the locomotive spatial fluctuations, construction of the computer calculation program, conducting of the theoretical and then experimental studies of the new designs. In this case, one should compare the results with existing designs. One of the necessary conditions for the qualitative improvement of the traction rolling stock is to define the parameters of its running gears. Among the issues related to this problem, an important place is occupied by the task of determining the locomotive dynamic properties on the stage of projection, taking into account the selected technical solutions in the running gear design. Methodology. The mathematical modeling studies are carried out by the numerical integration method of the dynamic loading for the mainline locomotive using the software package «Dynamics of Rail Vehicles » («DYNRAIL». Findings. As a result of research for the improvement of locomotive running gear design it can be seen that the creation of the modern locomotive requires from engineers and scientists the realization of scientific and technical solutions. The solutions enhancing design speed with simultaneous improvement of the traction, braking and dynamic qualities to provide a simple and reliable design, especially the running gear, reducing the costs for maintenance and repair, low initial cost and operating costs for the whole service life, high traction force when starting, which is as close as possible to the ultimate force of adhesion, the ability to work in multiple traction mode and sufficient design speed. Practical Value. The generalization of theoretical, scientific and methodological, experimental studies aimed

  7. Boldness and intermittent locomotion in the bluegill sunfish, Lepomis macrochirus

    OpenAIRE

    Alexander D.M. Wilson; Jean-Guy J. Godin

    2009-01-01

    Intermittent locomotion, characterized by moves interspersed with pauses, is a common pattern of locomotion in animals, but its ecological and evolutionary significance relative to continuous locomotion remains poorly understood. Although many studies have examined individual differences in both intermittent locomotion and boldness separately, to our knowledge, no study to date has investigated the relationship between these 2 traits. Characterizing and understanding this relationship is impo...

  8. Le Shuttle, the locomotive from Eurotunnel

    Directory of Open Access Journals (Sweden)

    Gabriel MOISA

    2002-12-01

    Full Text Available This paper present some performances of locomotive ‘Le Shuttle’, so-called locomotive from ‘Eurotunnel’, techniques characteristics of traction motors 6 FHA 7079 and converters witch use it, the principal electric scheme and its function principle and no at last rind the principle scheme of command-control equipment MICAS-S2 with detailed description of its operation mode.

  9. The Need for Speed in Rodent Locomotion Analyses

    OpenAIRE

    Batka, Richard J.; Brown, Todd J.; Mcmillan, Kathryn P.; Meadows, Rena M.; Jones, Kathryn J.; Haulcomb, Melissa M.

    2014-01-01

    Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript,...

  10. Different performances in static and dynamic imagery and real locomotion. An exploratory trial.

    Directory of Open Access Journals (Sweden)

    Augusto eFusco

    2014-10-01

    Full Text Available Motor imagery is a mental representation of an action without its physical execution. Recently, the simultaneous movement of the body has been added to the mental simulation. This refers to dynamic motor imagery (dMI. This study was aimed at analyzing the temporal features for static and dMI in different locomotor conditions (natural walking, NW, light running, LR, lateral walking, LW, backward walking, BW, and whether these performances were more related to all the given conditions or present only in walking. We have been also evaluated the steps performed in the dMI in comparison with the ones performed by real locomotion. Twenty healthy participants (29.3 ± 5.1 y. old were asked to move towards a visualized target located at 10mt. In dMI, no significant temporal differences respect the actual locomotion were found for all the given tasks (NW: p=0.058, LR: p=0.636, BW: p=0.096; LW: p=0,487. Significant temporal differences between static imagery and actual movements were found for LR (p<0.001 and LW (p<0.001, due to an underestimation of time needed to achieve the target in imagined locomotion. Significant differences in terms of number of steps among tasks were found for LW (p<0.001 and BW (p=0.036, whereas neither in NW (p=0.124 nor LR (p=0.391 between dMI and real locomotion.Our results confirmed that motor imagery is a task-dependent process, with walking being temporally closer than other locomotor conditions. Moreover, the time records of dynamic motor imagery are nearer to the ones of actual locomotion respect than the ones of static motor imagery. Keywords: Walking, dynamic motor imagery, human locomotion, chronometry.

  11. Introducing Aesthetic Features in Gymnastic Skills

    Science.gov (United States)

    Pollatou, Elisana; Savrami, Katia; Karadimou, Konstanding

    2004-01-01

    This paper focuses on an aesthetic approach that takes the simplest functional skill, such as walking, and develops it into an artistic skill. The aim then is to identify aesthetic characteristics and examine ways to apply them in gymnastic classes. Because walking is the child's first experience with bipedal locomotion, the initial walking action…

  12. Morphological self stabilization of locomotion gaits: illustration on a few examples from bio-inspired locomotion

    OpenAIRE

    Chevallereau , Christine; Boyer , Frédéric; Porez , Mathieu; Mauny , Johan; Aoustin , Yannick

    2017-01-01

    International audience; — To a large extent, robotics locomotion can be viewed as cyclic motions, named gaits. Due to the high complexity of the locomotion dynamics, to find the control laws that ensure an expected gait and its stability with respect to external perturbations, is a challenging issue for feedback control. To address this issue, a promising way is to take inspiration from animals that intensively exploit the interactions of the passive degrees of freedom of their body with thei...

  13. Architectures of soft robotic locomotion enabled by simple mechanical principles.

    Science.gov (United States)

    Zhu, Liangliang; Cao, Yunteng; Liu, Yilun; Yang, Zhe; Chen, Xi

    2017-06-28

    In nature, a variety of limbless locomotion patterns flourish, from the small or basic life forms (Escherichia coli, amoebae, etc.) to the large or intelligent creatures (e.g., slugs, starfishes, earthworms, octopuses, jellyfishes, and snakes). Many bioinspired soft robots based on locomotion have been developed in the past few decades. In this work, based on the kinematics and dynamics of two representative locomotion modes (i.e., worm-like crawling and snake-like slithering), we propose a broad set of innovative designs for soft mobile robots through simple mechanical principles. Inspired by and going beyond the existing biological systems, these designs include 1-D (dimensional), 2-D, and 3-D robotic locomotion patterns enabled by the simple actuation of continuous beams. We report herein over 20 locomotion modes achieving various locomotion functions, including crawling, rising, running, creeping, squirming, slithering, swimming, jumping, turning, turning over, helix rolling, wheeling, etc. Some are able to reach high speed, high efficiency, and overcome obstacles. All these locomotion strategies and functions can be integrated into a simple beam model. The proposed simple and robust models are adaptive for severe and complex environments. These elegant designs for diverse robotic locomotion patterns are expected to underpin future deployments of soft robots and to inspire a series of advanced designs.

  14. The investigation of the locomotive boiler material

    International Nuclear Information System (INIS)

    Tucholski, Z.; Wasiak, J.; Bilous, W.; Hajewska, E.

    2006-01-01

    In the paper, the history of narrow-gauge railway system is described. The other information about the steam locomotive construction, as well as the technical regulations of its construction and exploitation are also done. The results of the studies of the locomotive boiler material are presented. (authors)

  15. 49 CFR 230.90 - Draw gear between steam locomotive and tender.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Draw gear between steam locomotive and tender. 230... Steam Locomotives and Tenders Draw Gear and Draft Systems § 230.90 Draw gear between steam locomotive and tender. (a) Maintenance and testing. The draw gear between the steam locomotive and tender...

  16. Analysis of fuel cell hybrid locomotives

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects LLC, 621, 17th Street, Suite 2131, Denver, CO 80293 (United States); Peters, John; Smith, Brian E. [Transportation Technology Center Inc., 55500 DOT Road, Pueblo, CO 81007 (United States); Velev, Omourtag A. [AeroVironment Inc., 232 West Maple Avenue, Monrovia, CA 91016 (United States)

    2006-07-03

    Led by Vehicle Projects LLC, an international industry-government consortium is developing a 109t, 1.2MW road-switcher locomotive for commercial and military railway applications. As part of the feasibility and conceptual-design analysis, a study has been made of the potential benefits of a hybrid power plant in which fuel cells comprise the prime mover and a battery or flywheel provides auxiliary power. The potential benefits of a hybrid power plant are: (i) enhancement of transient power and hence tractive effort; (ii) regenerative braking; (iii) reduction of capital cost. Generally, the tractive effort of a locomotive at low speed is limited by wheel adhesion and not by available power. Enhanced transient power is therefore unlikely to benefit a switcher locomotive, but could assist applications that require high acceleration, e.g. subway trains with all axles powered. In most cases, the value of regeneration in locomotives is minimal. For low-speed applications such as switchers, the available kinetic energy and the effectiveness of traction motors as generators are both minimal. For high-speed heavy applications such as freight, the ability of the auxiliary power device to absorb a significant portion of the available kinetic energy is low. Moreover, the hybrid power plant suffers a double efficiency penalty, namely, losses occur in both absorbing and then releasing energy from the auxiliary device, which result in a net storage efficiency of no more than 50% for present battery technology. Capital cost in some applications may be reduced. Based on an observed locomotive duty cycle, a cost model shows that a hybrid power plant for a switcher may indeed reduce capital cost. Offsetting this potential benefit are the increased complexity, weight and volume of the power plant, as well as 20-40% increased fuel consumption that results from lower efficiency. Based on this analysis, the consortium has decided to develop a pure fuel cell road-switcher locomotive, that

  17. 49 CFR 230.106 - Steam locomotive frame.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive frame. 230.106 Section 230.106... Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance and inspection. Frames, decks, plates, tailpieces, pedestals, and braces shall be maintained in a safe and...

  18. Synthesis of adaptive impedance control for bipedal robot mechanisms

    OpenAIRE

    Petrović Milena; Rodić Aleksandar

    2008-01-01

    The paper describes the impedance algorithm in locomotion of humanoid robot with proposed parameter modulation depending on the gate phase. The analysis shows influence of walking speed and foot elevation on regulator's parameters. Chosen criterion cares for footpath tracking and needed energy for that way of walking. The experiments give recommendation for impedance regulator tuning.

  19. Structural and molecular study of the supraspinatus muscle of modern humans (Homo sapiens) and common chimpanzees (Pan troglodytes).

    Science.gov (United States)

    Potau, J M; Casado, A; de Diego, M; Ciurana, N; Arias-Martorell, J; Bello-Hellegouarch, G; Barbosa, M; de Paz, F J; Pastor, J F; Pérez-Pérez, A

    2018-04-21

    To analyze the muscle architecture and the expression pattern of the myosin heavy chain (MyHC) isoforms in the supraspinatus of Pan troglodytes and Homo sapiens in order to identify differences related to their different types of locomotion. We have analyzed nine supraspinatus muscles of Pan troglodytes and ten of Homo sapiens. For each sample, we have recorded the muscle fascicle length (MFL), the pennation angle, and the physiological cross-sectional area (PCSA). In the same samples, by real-time quantitative polymerase chain reaction, we have assessed the percentages of expression of the MyHC-I, MyHC-IIa, and MyHC-IIx isoforms. The mean MFL of the supraspinatus was longer (p = 0.001) and the PCSA was lower (p sapiens than in Pan troglodytes. Although the percentage of expression of MyHC-IIa was lower in Homo sapiens than in Pan troglodytes (p = 0.035), the combination of MyHC-IIa and MyHC-IIx was expressed at a similar percentage in the two species. The longer MFL in the human supraspinatus is associated with a faster contractile velocity, which reflects the primary function of the upper limbs in Homo sapiens-the precise manipulation of objects-an adaptation to bipedal locomotion. In contrast, the larger PCSA in Pan troglodytes is related to the important role of the supraspinatus in stabilizing the glenohumeral joint during the support phase of knuckle-walking. These functional differences of the supraspinatus in the two species are not reflected in differences in the expression of the MyHC isoforms. © 2018 Wiley Periodicals, Inc.

  20. Full-scale locomotive dynamic crash testing and correlations : locomotive consist colliding with steel coil truck at grade crossing (test 3).

    Science.gov (United States)

    2011-09-01

    This report presents the test results and finite element correlations of a full-scale dynamic collision between a locomotive and a highway truck loaded with two heavy steel coils. The locomotive consist was moving at 58 miles per hour before it struc...

  1. Origami-based earthworm-like locomotion robots.

    Science.gov (United States)

    Fang, Hongbin; Zhang, Yetong; Wang, K W

    2017-10-16

    Inspired by the morphology characteristics of the earthworms and the excellent deformability of origami structures, this research creates a novel earthworm-like locomotion robot through exploiting the origami techniques. In this innovation, appropriate actuation mechanisms are incorporated with origami ball structures into the earthworm-like robot 'body', and the earthworm's locomotion mechanism is mimicked to develop a gait generator as the robot 'centralized controller'. The origami ball, which is a periodic repetition of waterbomb units, could output significant bidirectional (axial and radial) deformations in an antagonistic way similar to the earthworm's body segment. Such bidirectional deformability can be strategically programmed by designing the number of constituent units. Experiments also indicate that the origami ball possesses two outstanding mechanical properties that are beneficial to robot development: one is the structural multistability in the axil direction that could contribute to the robot control implementation; and the other is the structural compliance in the radial direction that would increase the robot robustness and applicability. To validate the origami-based innovation, this research designs and constructs three robot segments based on different axial actuators: DC-motor, shape-memory-alloy springs, and pneumatic balloon. Performance evaluations reveal their merits and limitations, and to prove the concept, the DC-motor actuation is selected for building a six-segment robot prototype. Learning from earthworms' fundamental locomotion mechanism-retrograde peristalsis wave, seven gaits are automatically generated; controlled by which, the robot could achieve effective locomotion with qualitatively different modes and a wide range of average speeds. The outcomes of this research could lead to the development of origami locomotion robots with low fabrication costs, high customizability, light weight, good scalability, and excellent re-configurability.

  2. How animals move: comparative lessons on animal locomotion.

    Science.gov (United States)

    Schaeffer, Paul J; Lindstedt, Stan L

    2013-01-01

    Comparative physiology often provides unique insights in animal structure and function. It is specifically through this lens that we discuss the fundamental properties of skeletal muscle and animal locomotion, incorporating variation in body size and evolved difference among species. For example, muscle frequencies in vivo are highly constrained by body size, which apparently tunes muscle use to maximize recovery of elastic recoil potential energy. Secondary to this constraint, there is an expected linking of skeletal muscle structural and functional properties. Muscle is relatively simple structurally, but by changing proportions of the few muscle components, a diverse range of functional outputs is possible. Thus, there is a consistent and predictable relation between muscle function and myocyte composition that illuminates animal locomotion. When animals move, the mechanical properties of muscle diverge from the static textbook force-velocity relations described by A. V. Hill, as recovery of elastic potential energy together with force and power enhancement with activation during stretch combine to modulate performance. These relations are best understood through the tool of work loops. Also, when animals move, locomotion is often conveniently categorized energetically. Burst locomotion is typified by high-power outputs and short durations while sustained, cyclic, locomotion engages a smaller fraction of the muscle tissue, yielding lower force and power. However, closer examination reveals that rather than a dichotomy, energetics of locomotion is a continuum. There is a remarkably predictable relationship between duration of activity and peak sustainable performance.

  3. The aspect of vector control using the asynchronous traction motor in locomotives

    Directory of Open Access Journals (Sweden)

    L. Liudvinavičius

    2009-12-01

    Full Text Available The article examines curves controlling asynchronous traction motors increasingly used in locomotive electric drives the main task of which is to create a tractive effort-speed curve of an ideal locomotive Fk = f(v, including a hyperbolic area the curve of which will create conditions showing that energy created by the diesel engine of diesel locomotives (electric locomotives and in case of electric trains, electricity taken from the contact network over the entire range of locomotive speed is turned into efficient work. Mechanical power on wheel sets is constant Pk = Fkv = const, the power of the diesel engine is fully used over the entire range of locomotive speed. Tractive effort-speed curve Fk(v shows the dependency of locomotive traction power Fk on movement speed v. The article presents theoretical and practical aspects relevant to creating the structure of locomotive electric drive and selecting optimal control that is especially relevant to creating the structure of locomotive electric drive using ATM (asynchronous traction motor that gains special popularity in traction rolling stock replacing DC traction motors having low reliability. The frequency modes of asynchronous motor speed regulation are examined. To control ATM, the authors suggest the method of vector control presenting the structural schemes of a locomotive with ATM and control algorithm.

  4. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of non-complying steam locomotives. 230... General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a) General limitations on movement. A steam locomotive with one or more non-complying conditions may be moved only as a...

  5. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  6. Hybrid Locomotion Evaluation for a Novel Amphibious Spherical Robot

    Directory of Open Access Journals (Sweden)

    Huiming Xing

    2018-01-01

    Full Text Available We describe the novel, multiply gaited, vectored water-jet, hybrid locomotion-capable, amphibious spherical robot III (termed ASR-III featuring a wheel-legged, water-jet composite driving system incorporating a lifting and supporting wheel mechanism (LSWM and mechanical legs with a water-jet thruster. The LSWM allows the ASR-III to support the body and slide flexibly on smooth (flat terrain. The composite driving system facilitates two on-land locomotion modes (sliding and walking and underwater locomotion mode with vectored thrusters, improving adaptability to the amphibious environment. Sliding locomotion improves the stability and maneuverability of ASR-III on smooth flat terrain, whereas walking locomotion allows ASR-III to conquer rough terrain. We used both forward and reverse kinematic models to evaluate the walking and sliding gait efficiency. The robot can also realize underwater locomotion with four vectored water-jet thrusters, and is capable of forward motion, heading angle control and depth control. We evaluated LSWM efficiency and the sliding velocities associated with varying extensions of the LSWM. To explore gait stability and mobility, we performed on-land experiments on smooth flat terrain to define the optimal stride length and frequency. We also evaluated the efficacy of waypoint tracking when the sliding gait was employed, using a closed-loop proportional-integral-derivative (PID control mechanism. Moreover, experiments of forward locomotion, heading angle control and depth control were conducted to verify the underwater performance of ASR-III. Comparison of the previous robot and ASR-III demonstrated the ASR-III had better amphibious motion performance.

  7. Ichnotaxonomy of the Laetoli trackways: The earliest hominin footprints

    Science.gov (United States)

    Meldrum, D. J.; Lockley, Martin G.; Lucas, Spencer G.; Musiba, Charles

    2011-04-01

    At 3.6 Ma, the Laetoli Pliocene hominin trackways are the earliest direct evidence of hominin bipedalism. Three decades since their discovery, not only is the question of their attribution still discussed, but marked differences in interpretation concerning the footprints' qualitative features and the inferred nature of the early hominin foot morphology remain. Here, we establish a novel ichnotaxon, Praehominipes laetoliensis, for these tracks and clarify the distinctions of these footprints from those of later hominins, especially modern humans. We also contrast hominin, human, and ape footprints to establish morphological features of these footprints correlated with a midtarsal break versus a stiff longitudinal arch. Original photos, including stereo photographs, and casts of footprints from the 1978 Laetoli excavation, confirm midtarsal flexibility, and repeatedly indicate an associated midfoot pressure ridge. In contrast, the modern human footprint reflects the derived arched-foot architecture, combined with a stiff-legged striding gait. Fossilized footprints of unshod modern human pedestrians in Hawaii and Nicaragua unambiguously illustrate these contrasts. Some points of comparisons with ape footprints are complicated by a variable hallucal position and the distinct manner of ape facultative bipedalism. In contrast to the comparatively rigid platform of the modern human foot, midtarsal flexibility is present in the chimpanzee foot. In ape locomotion, flexion at the transverse tarsal joint, referred to as the "midtarsal break," uncouples the respective functions of the prehensile forefoot and the propulsive hindfoot during grasp-climbing. At some point after the transition to habitual bipedalism, these grasp-climb adaptations, presumed to be present in the last common ancestor of apes and humans, were initially compromised by the loss of divergence of the hallux. An analogous trajectory is evident along an array of increasingly terrestrial extant ape species

  8. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  9. 49 CFR 232.105 - General requirements for locomotives.

    Science.gov (United States)

    2010-10-01

    ... locomotives. (a) The air brake equipment on a locomotive shall be in safe and suitable condition for service... set pressure at any service application with the brakes control valve in the freight position. If such... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER NON-PASSENGER...

  10. Locomotion of Paramecium in patterned environments

    Science.gov (United States)

    Park, Eun-Jik; Eddins, Aja; Kim, Junil; Yang, Sung; Jana, Saikat; Jung, Sunghwan

    2011-10-01

    Ciliary organisms like Paramecium Multimicronucleatum locomote by synchronized beating of cilia that produce metachronal waves over their body. In their natural environments they navigate through a variety of environments especially surfaces with different topology. We study the effects of wavy surfaces patterned on the PDMS channels on the locomotive abilities of Paramecium by characterizing different quantities like velocity amplitude and wavelength of the trajectories traced. We compare this result with the swimming characteristics in straight channels and draw conclusions about the effects of various patterned surfaces.

  11. Operating a locomotive on liquid methane fuel

    International Nuclear Information System (INIS)

    Stolz, J.L.

    1992-01-01

    This paper reports that several years ago, Burlington Northern Railroad looked into the feasibility of operating a diesel railroad locomotive to also run on compressed natural gas in a dual-fuel mode. Recognizing the large volume of on-board storage required and other limitations of CNG in the application, a program was begun to fuel a locomotive with liquefied natural gas. Because natural gas composition can vary with source and processing, it was considered desirable to use essentially pure liquid methane as the engine fuel. Initial testing results show the locomotive system achieved full diesel-rated power when operating on liquid methane and with equivalent fuel efficiency. Extended testing, including an American Association of Railroad 500-hour durability test, was undertaken to obtain information on engine life, wear rate and lubrication oil life

  12. Locomotion-learning behavior relationship in Caenorhabditis elegans following γ-ray irradiation

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya; Hamada, Nobuyuki; Suzuki, Michiyo; Kobayashi, Yasuhiko; Ikeda, Daisuke D.; Yanase, Sumino; Ishii, Naoaki

    2008-01-01

    Learning impairment following ionizing radiation (IR) exposure is an important potential risk in manned space missions. We previously reported the modulatory effects of IR on salt chemotaxis learning in Caenorhabditis elegans. However, little is known about the effects of IR on the functional relationship in the nervous system. In the present study, we investigated the effects of γ-ray exposure on the relationship between locomotion and salt chemotaxis learning behavior. We found that effects of pre-learning irradiation on locomotion were significantly correlated with the salt chemotaxis learning performance, whereas locomotion was not directly related to chemotaxis to NaCl. On the other hand, locomotion was positively correlated with salt chemotaxis of animals which were irradiated during learning, and the correlation disappeared with increasing doses. These results suggest an indirect relationship between locomotion and salt chemotaxis learning in C. elegans, and that IR inhibits the innate relationship between locomotion and chemotaxis, which is related to salt chemotaxis learning conditioning of C. elegans. (author)

  13. Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information.

    Science.gov (United States)

    Barbera, Giovanni; Liang, Bo; Zhang, Lifeng; Gerfen, Charles R; Culurciello, Eugenio; Chen, Rong; Li, Yun; Lin, Da-Ting

    2016-10-05

    An influential striatal model postulates that neural activities in the striatal direct and indirect pathways promote and inhibit movement, respectively. Normal behavior requires coordinated activity in the direct pathway to facilitate intended locomotion and indirect pathway to inhibit unwanted locomotion. In this striatal model, neuronal population activity is assumed to encode locomotion relevant information. Here, we propose a novel encoding mechanism for the dorsal striatum. We identified spatially compact neural clusters in both the direct and indirect pathways. Detailed characterization revealed similar cluster organization between the direct and indirect pathways, and cluster activities from both pathways were correlated with mouse locomotion velocities. Using machine-learning algorithms, cluster activities could be used to decode locomotion relevant behavioral states and locomotion velocity. We propose that neural clusters in the dorsal striatum encode locomotion relevant information and that coordinated activities of direct and indirect pathway neural clusters are required for normal striatal controlled behavior. VIDEO ABSTRACT. Published by Elsevier Inc.

  14. Energy-based control for a biologically inspired hexapod robot with rolling locomotion

    Directory of Open Access Journals (Sweden)

    Takuma Nemoto

    2015-04-01

    Full Text Available This paper presents an approach to control rolling locomotion on the level ground with a biologically inspired hexapod robot. For controlling rolling locomotion, a controller which can compensate energy loss with rolling locomotion of the hexapod robot is designed based on its dynamic model. The dynamic model describes the rolling locomotion which is limited to planar one by an assumption that the hexapod robot does not fall down while rolling and influences due to collision and contact with the ground, and it is applied for computing the mechanical energy of the hexapod robot and a plant for a numerical simulation. The numerical simulation of the rolling locomotion on the level ground verifies the effectiveness of the proposed controller. The simulation results show that the hexapod robot can perform the rolling locomotion with the proposed controller. In conclusion, it is shown that the proposed control approach is effective in achieving the rolling locomotion on the level ground.

  15. Advanced aftertreatment systems for locomotive applications; Moderne Abgasnachbehandlungssysteme fuer Lokomotiven

    Energy Technology Data Exchange (ETDEWEB)

    Park, Paul [Caterpillar Inc., Peoria, IL (United States); Bruestle, Claus [Emitec Inc., Rochester Hill, MI (United States)

    2013-07-15

    Tier 4 legislation for locomotives, starting in 2015, will require significant reductions in particulate matter and nitrogen oxide tail pipe emissions. To reduce nitrogen oxide emissions of line-haul locomotives at least to the level of Tier 4, Caterpillar has developed an aftertreatment system. Here, for the first time an SCR system was used for diesel locomotive engines with an urea dosing system. (orig.)

  16. Perception-Driven Obstacle-Aided Locomotion for Snake Robots: The State of the Art, Challenges and Possibilities †

    Directory of Open Access Journals (Sweden)

    Filippo Sanfilippo

    2017-03-01

    Full Text Available In nature, snakes can gracefully traverse a wide range of different and complex environments. Snake robots that can mimic this behaviour could be fitted with sensors and transport tools to hazardous or confined areas that other robots and humans are unable to access. In order to carry out such tasks, snake robots must have a high degree of awareness of their surroundings (i.e., perception-driven locomotion and be capable of efficient obstacle exploitation (i.e., obstacle-aided locomotion to gain propulsion. These aspects are pivotal in order to realise the large variety of possible snake robot applications in real-life operations such as fire-fighting, industrial inspection, search-and-rescue, and more. In this paper, we survey and discuss the state of the art, challenges, and possibilities of perception-driven obstacle-aided locomotion for snake robots. To this end, different levels of autonomy are identified for snake robots and categorised into environmental complexity, mission complexity, and external system independence. From this perspective, we present a step-wise approach on how to increment snake robot abilities within guidance, navigation, and control in order to target the different levels of autonomy. Pertinent to snake robots, we focus on current strategies for snake robot locomotion in the presence of obstacles. Moreover, we put obstacle-aided locomotion into the context of perception and mapping. Finally, we present an overview of relevant key technologies and methods within environment perception, mapping, and representation that constitute important aspects of perception-driven obstacle-aided locomotion.

  17. 49 CFR 1242.25 - Locomotive servicing facilities (account XX-19-27).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Locomotive servicing facilities (account XX-19-27... Structures § 1242.25 Locomotive servicing facilities (account XX-19-27). Separate common expenses according to distribution of common expenses in the following accounts: Locomotive Fuel (XX-51-67 and XX-52-67...

  18. Locomotion and basicranial anatomy in primates and marsupials.

    Science.gov (United States)

    Villamil, Catalina I

    2017-10-01

    There is ongoing debate in paleoanthropology about whether and how the anatomy of the cranium, and especially the cranial base, is evolving in response to locomotor and postural changes. However, the majority of studies focus on two-dimensional data, which fails to capture the complexity of cranial anatomy. This study tests whether three-dimensional cranial base anatomy is linked to locomotion or to other factors in primates (n = 473) and marsupials (n = 231). Results indicate that although there is a small effect of locomotion on cranial base anatomy in primates, this is not the case in marsupials. Instead, facial anatomy likely drives variation in cranial base anatomy in both primates and marsupials, with additional roles for body size and brain size. Although some changes to foramen magnum position and orientation are phylogenetically useful among the hominoids, they do not necessarily reflect locomotion or positional behavior. The interplay between locomotion, posture, and facial anatomy in primates requires further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comparison of the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy young women.

    Science.gov (United States)

    Shirazi, Zahra Rojhani; Jahromi, Fatemeh Nikhalat

    2013-09-01

    The maintenance of balance is an essential requirement for the performance of daily tasks and sporting activities and muscular fatigue is a factor to impair postural control, so this study was done to compare the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy subjects. Fifteen healthy female students (24.3 ± 2.6 years) completed three testing session with a break period of at least 2 days. During each session, postural control was assessed during two 30-s trials of bipedal stance with eyes close before and after the fatigue protocol. Fatigue protocols were performed by 60% of their unfatigued Maximum Voluntary Contraction of unilateral ankle plantar flexors, bilateral lumbar extensors and bilateral neck extensors. One of the three fatigue protocols was performed on each session. The result showed that fatigue had a significant effect on COP velocity and it increase COP velocity but there was not found any difference in postural sway between muscle groups. Localized muscle fatigue caused deficits in postural control regardless of the location of fatigue. Authors suggest the possibility of the contributions of central mechanisms to postural deficits due to fatigue and it seems that difference was not between muscle groups due to central fatigue.

  20. The stochastic distribution of available coefficient of friction on quarry tiles for human locomotion.

    Science.gov (United States)

    Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi

    2012-01-01

    The available coefficient of friction (ACOF) for human locomotion is the maximum coefficient of friction that can be supported without a slip at the shoe and floor interface. A statistical model was introduced to estimate the probability of slip by comparing the ACOF with the required coefficient of friction, assuming that both coefficients have stochastic distributions. This paper presents an investigation of the stochastic distributions of the ACOF of quarry tiles under dry, water and glycerol conditions. One hundred friction measurements were performed on a walkway under the surface conditions of dry, water and 45% glycerol concentration. The Kolmogorov-Smirnov goodness-of-fit test was used to determine if the distribution of the ACOF was a good fit with the normal, log-normal and Weibull distributions. The results indicated that the ACOF appears to fit the normal and log-normal distributions better than the Weibull distribution for the water and glycerol conditions. However, no match was found between the distribution of ACOF under the dry condition and any of the three continuous distributions evaluated. Based on limited data, a normal distribution might be more appropriate due to its simplicity, practicality and familiarity among the three distributions evaluated.

  1. Axial dynamics during locomotion in vertebrates: lesson from the salamander

    OpenAIRE

    GOSSARD, JEAN-PIERRE; DUBUC, RÉJEAN; KOLTA, ARLETTE; Cabelguen, Jean-Marie; Ijspeert, Auke; Lamarque, Stéphanie; Ryczko, Dimitri

    2010-01-01

    Much of what we know about the flexibility of the locomotor networks in vertebrates is derived from studies examining the adaptation of limb movements during stepping in various conditions. However, the body movements play important roles during locomotion: they produce the thrust during undulatory locomotion and they help to increase the stride length during legged locomotion. In this chapter, we review our current knowledge about the flexibility in the neuronal circuits controlling the body...

  2. The personification of animals: coding of human and nonhuman body parts based on posture and function.

    Science.gov (United States)

    Welsh, Timothy N; McDougall, Laura; Paulson, Stephanie

    2014-09-01

    The purpose of the present research was to determine how humans represent the bodies and limbs of nonhuman mammals based on anatomical and functional properties. To this end, participants completed a series of body-part compatibility tasks in which they responded with a thumb or foot response to the color of a stimulus (red or blue, respectively) presented on different limbs of several animals. Across the studies, this compatibility task was conducted with images of human and nonhuman animals (bears, cows, and monkeys) in bipedal or quadrupedal postures. The results revealed that the coding of the limbs of nonhuman animals is strongly influenced by the posture of the body, but not the functional capacity of the limb. Specifically, body-part compatibility effects were present for both human and nonhuman animals when the figures were in a bipedal posture, but were not present when the animals were in a quadrupedal stance (Experiments 1a-c). Experiments 2a and 2b revealed that the posture-based body-part compatibility effects were not simply a vertical spatial compatibility effect or due to a mismatch between the posture of the body in the image and the participant. These data indicate that nonhuman animals in a bipedal posture are coded with respect to the "human" body representation, whereas nonhuman animals in a quadrupedal posture are not mapped to the human body representation. Overall, these studies provide new insight into the processes through which humans understand, mimic, and learn from the actions of nonhuman animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. LSTM-Based Temperature Prediction for Hot-Axles of Locomotives

    Directory of Open Access Journals (Sweden)

    Luo Can

    2017-01-01

    Full Text Available The reliability of locomotives plays a central role for the smooth operation of railway systems. Hot-axle failures are one of the most commonly found problems leading to locomotive accidents. Since the operating status of the locomotive axle bearings can be distinctly reflected by the axle temperatures, online temperature monitoring has become an essential way to detect hot-axle failures. In this work, we explore the feasibility of predict the hot-axle failures by identifying the temperature from predicted nominal values. We propose a data-driven approach based on the Long Short-Term Memory (LSTM network to predict the sensor temperature for axle bearings. The effectiveness of the prediction model was validated with operation data collected from commercial locomotives. With a prediction accuracy is within a few percent, the proposed techniques can be used as a dynamic reference for hot-axle monitoring.

  4. Biomechanical Analysis of Treadmill Locomotion on the International Space Station

    Science.gov (United States)

    De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.

    2011-01-01

    Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to

  5. Linking pedestrian flow characteristics with stepping locomotion

    Science.gov (United States)

    Wang, Jiayue; Boltes, Maik; Seyfried, Armin; Zhang, Jun; Ziemer, Verena; Weng, Wenguo

    2018-06-01

    While properties of human traffic flow are described by speed, density and flow, the locomotion of pedestrian is based on steps. To relate characteristics of human locomotor system with properties of human traffic flow, this paper aims to connect gait characteristics like step length, step frequency, swaying amplitude and synchronization with speed and density and thus to build a ground for advanced pedestrian models. For this aim, observational and experimental study on the single-file movement of pedestrians at different densities is conducted. Methods to measure step length, step frequency, swaying amplitude and step synchronization are proposed by means of trajectories of the head. Mathematical models for the relations of step length or frequency and speed are evaluated. The problem how step length and step duration are influenced by factors like body height and density is investigated. It is shown that the effect of body height on step length and step duration changes with density. Furthermore, two different types of step in-phase synchronization between two successive pedestrians are observed and the influence of step synchronization on step length is examined.

  6. 49 CFR 223.17 - Identification of equipped locomotives, passenger cars and cabooses.

    Science.gov (United States)

    2010-10-01

    ... cars and cabooses. 223.17 Section 223.17 Transportation Other Regulations Relating to Transportation...-LOCOMOTIVES, PASSENGER CARS AND CABOOSES Specific Requirements § 223.17 Identification of equipped locomotives, passenger cars and cabooses. Each locomotive, passenger car and caboose that is fully equipped with glazing...

  7. Biologie se uniekheid as substraat vir die tipies menslike funksionering

    Directory of Open Access Journals (Sweden)

    P. A. J. Ryke

    1989-03-01

    Full Text Available The biological similarities between humans and apes are great but they should not obscure the differences. Some differences are of such great consequence that man should be considered truly unique kind of organism with a marvellous plasticity of mind. All of the uniquely human traits are adaptations to the environments in which man evolved; these Include profound modifications of anatomy, physiology and behaviour. The morphological differences between man and his nearest relatives are very conspicuous. The form of the skeleton is adapted to fully erect posture and bipedal locomotion. The pelvis is broadened to provide adequate attachment for the powerful striding muscles. The transformation of the tail vertebrae is unique among the vertebrates. The joint for the neck is in the middel of the base of the skull. The hands are prehensile, with a large and strongly opposable thumb. The brain is uniquely large in proportion to the body and has a particularly large and complex cerebrum; the cerebral cortex contains the cent res for memory and complex computation. The enlarged brain requires prolonged infant dependency and high quality nutrition. Differences between humans and animals are grea tes t in the realm of behaviour: Ability to make tools (associated with bipedalism; ability to anticipate the future; development of symbolic communication (associated with expansion of cortex. Direct evidence of man's language capabilities comes form the anatomy of the modern human vocal tract. Man is the only species that succeeded in creating a truly productive language, and it is the scaffolding of human culture and civilization.

  8. 49 CFR 236.1006 - Equipping locomotives operating in PTC territory.

    Science.gov (United States)

    2010-10-01

    ... 31, 2015, a train controlled by a locomotive with an onboard PTC apparatus that has failed en route... III railroad, including a tourist or excursion railroad, and controlled by a locomotive not equipped...

  9. Locomotion of inchworm-inspired robot made of smart soft composite (SSC)

    International Nuclear Information System (INIS)

    Wang, Wei; Lee, Jang-Yeob; Rodrigue, Hugo; Song, Sung-Hyuk; Ahn, Sung-Hoon; Chu, Won-Shik

    2014-01-01

    A soft-bodied robot made of smart soft composite with inchworm-inspired locomotion capable of both two-way linear and turning movement has been proposed, developed, and tested. The robot was divided into three functional parts based on the different functions of the inchworm: the body, the back foot, and the front foot. Shape memory alloy wires were embedded longitudinally in a soft polymer to imitate the longitudinal muscle fibers that control the abdominal contractions of the inchworm during locomotion. Each foot of the robot has three segments with different friction coefficients to implement the anchor and sliding movement. Then, utilizing actuation patterns between the body and feet based on the looping gait, the robot achieves a biomimetic inchworm gait. Experiments were conducted to evaluate the robot’s locomotive performance for both linear locomotion and turning movement. Results show that the proposed robot’s stride length was nearly one third of its body length, with a maximum linear speed of 3.6 mm s −1 , a linear locomotion efficiency of 96.4%, a maximum turning capability of 4.3 degrees per stride, and a turning locomotion efficiency of 39.7%. (paper)

  10. Locomotive emissions measurements for various blends of biodiesel fuel.

    Science.gov (United States)

    2014-12-01

    The objective of this project was to assess the effects of various blends of biodiesel on locomotive engine exhaust emissions. The : emission tests were conducted on two locomotive models, a Tier 2 EMD SD70ACe and a Tier 1 Plus GE Dash9-44CW, using t...

  11. [The concept and definition of locomotive syndrome in a super-aged society].

    Science.gov (United States)

    Nakamura, Kozo; Yoshimura, Noriko; Akune, Toru; Ogata, Toru; Tanaka, Sakae

    2014-10-01

    The population of elderly individuals who need nursing care is rapidly increasing in Japan. Locomotive syndrome involves a decrease in mobility due to locomotive organ dysfunction, and increases risk for dependency on nursing care service. Because gait speed and chair stand time are correlated with such risks, patients with locomotive syndrome are assessed using brief methods such as the two-step test, which involves dividing the maximum stride length by the height of the patient, and the stand-up test, which involves standing on one or both legs at different heights. One leg standing and squatting are recommended as beneficial locomotive home exercises. Locomotive syndrome has been recognized widely in Japan, and included in the National Health Promotion Movement (2013-2022).

  12. [Comparison of the Latissimus dorsi insertions on the iliac crest in chimpanzee (Pan troglodytes) and in man].

    Science.gov (United States)

    Vacher, C; Ben Hadj Yahia, S; Braun, M; Journeau, P

    2014-03-01

    Comparing to other primates, one of the most important specificities of the human anatomy are consequences of bipedalism. Although bone consequences are well known (lumbar lordosis, horizontal position of the foramen magnum, lengthening of the lower limbs, reduction of the pelvis, specialization of the foot), consequences of our locomotion on the Latissimus dorsi are still unclear. One dissection of a chimpanzee Latissimus dorsi (Pan troglodytes) has been performed and compared to 30 human Latissimus dorsi dissections (10 fresh cadavers and 20 formoled cadavers). In each dissection, the existence of direct muscular insertions on the iliac crest has been investigated and the constitution of the thoracolumbar fascia has been described. In chimpanzee dissection, a muscular direct insertion of the Latissimus dorsi was present on the iliac crest of 9 cm long. The TLF was made of the superficial and the deep fascias of the Latissimus dorsi and the superficial fascia of the erector spinae muscles which was deeper. In man, there was no direct muscular insertion of the Latissimus dorsi in 90 % of cases, the TLF was constituted the same way. This study suggests that the Latissimus dorsi has been separated from the iliac crest in man during the evolution because of the permanent bipedalism and that it stayed inserted on the iliac crest in chimpanzee because of the brachiation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Passive appendages aid locomotion through symmetry breaking

    Science.gov (United States)

    Bagheri, Shervin; Lacis, Ugis; Mazzino, Andrea; Kellay, Hamid; Brosse, Nicolas; Lundell, Fredrik; Ingremeau, Francois

    2014-11-01

    Plants and animals use plumes, barbs, tails, feathers, hairs, fins, and other types of appendages to aid locomotion. Despite their enormous variation, passive appendages may contribute to locomotion by exploiting the same physical mechanism. We present a new mechanism that applies to body appendages surrounded by a separated flow, which often develops behind moving bodies larger than a few millimeters. We use theory, experiments, and numerical simulations to show that bodies with protrusions turn and drift by exploiting a symmetry-breaking instability similar to the instability of an inverted pendulum. Our model explains why the straight position of an appendage in flowing fluid is unstable and how it stabilizes either to the left or right of the incoming fluid flow direction. The discovery suggests a new mechanism of locomotion that may be relevant for certain organisms; for example, how plumed seeds may drift without wind and how motile animals may passively reorient themselves.

  14. Recognizing stationary and locomotion activities using combinational of spectral analysis with statistical descriptors features

    Science.gov (United States)

    Zainudin, M. N. Shah; Sulaiman, Md Nasir; Mustapha, Norwati; Perumal, Thinagaran

    2017-10-01

    Prior knowledge in pervasive computing recently garnered a lot of attention due to its high demand in various application domains. Human activity recognition (HAR) considered as the applications that are widely explored by the expertise that provides valuable information to the human. Accelerometer sensor-based approach is utilized as devices to undergo the research in HAR since their small in size and this sensor already build-in in the various type of smartphones. However, the existence of high inter-class similarities among the class tends to degrade the recognition performance. Hence, this work presents the method for activity recognition using our proposed features from combinational of spectral analysis with statistical descriptors that able to tackle the issue of differentiating stationary and locomotion activities. The noise signal is filtered using Fourier Transform before it will be extracted using two different groups of features, spectral frequency analysis, and statistical descriptors. Extracted signal later will be classified using random forest ensemble classifier models. The recognition results show the good accuracy performance for stationary and locomotion activities based on USC HAD datasets.

  15. Sustained Treatment with Insulin Detemir in Mice Alters Brain Activity and Locomotion.

    Directory of Open Access Journals (Sweden)

    Tina Sartorius

    Full Text Available Recent studies have identified unique brain effects of insulin detemir (Levemir®. Due to its pharmacologic properties, insulin detemir may reach higher concentrations in the brain than regular insulin. This might explain the observed increased brain stimulation after acute insulin detemir application but it remained unclear whether chronic insulin detemir treatment causes alterations in brain activity as a consequence of overstimulation.In mice, we examined insulin detemir's prolonged brain exposure by continuous subcutaneous (s.c. application using either micro-osmotic pumps or daily s.c. injections and performed continuous radiotelemetric electrocorticography and locomotion recordings.Acute intracerebroventricular injection of insulin detemir activated cortical and locomotor activity significantly more than regular insulin in equimolar doses (0.94 and 5.63 mU in total, suggesting an enhanced acute impact on brain networks. However, given continuously s.c., insulin detemir significantly reduced cortical activity (theta: 21.3±6.1% vs. 73.0±8.1%, P<0.001 and failed to maintain locomotion, while regular insulin resulted in an increase of both parameters.The data suggest that permanently-increased insulin detemir levels in the brain convert its hyperstimulatory effects and finally mediate impairments in brain activity and locomotion. This observation might be considered when human studies with insulin detemir are designed to target the brain in order to optimize treatment regimens.

  16. 49 CFR 229.9 - Movement of non-complying locomotives.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of non-complying locomotives. 229.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.9 Movement of non... restrictions necessary for safely conducting the movement; (2)(i) The engineer in charge of the movement of the...

  17. A Specific Population of Reticulospinal Neurons Controls the Termination of Locomotion.

    Science.gov (United States)

    Juvin, Laurent; Grätsch, Swantje; Trillaud-Doppia, Emilie; Gariépy, Jean-François; Büschges, Ansgar; Dubuc, Réjean

    2016-06-14

    Locomotion requires the proper sequencing of neural activity to start, maintain, and stop it. Recently, brainstem neurons were shown to specifically stop locomotion in mammals. However, the cellular properties of these neurons and their activity during locomotion are still unknown. Here, we took advantage of the lamprey model to characterize the activity of a cell population that we now show to be involved in stopping locomotion. We find that these neurons display a burst of spikes that coincides with the end of swimming activity. Their pharmacological activation ends ongoing swimming, whereas the inactivation of these neurons dramatically impairs the rapid termination of swimming. These neurons are henceforth referred to as stop cells, because they play a crucial role in the termination of locomotion. Our findings contribute to the fundamental understanding of motor control and provide important details about the cellular mechanisms involved in locomotor termination. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. System design of a large fuel cell hybrid locomotive

    Science.gov (United States)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  19. Inferring Characteristics of Sensorimotor Behavior by Quantifying Dynamics of Animal Locomotion

    Science.gov (United States)

    Leung, KaWai

    Locomotion is one of the most well-studied topics in animal behavioral studies. Many fundamental and clinical research make use of the locomotion of an animal model to explore various aspects in sensorimotor behavior. In the past, most of these studies focused on population average of a specific trait due to limitation of data collection and processing power. With recent advance in computer vision and statistical modeling techniques, it is now possible to track and analyze large amounts of behavioral data. In this thesis, I present two projects that aim to infer the characteristics of sensorimotor behavior by quantifying the dynamics of locomotion of nematode Caenorhabditis elegans and fruit fly Drosophila melanogaster, shedding light on statistical dependence between sensing and behavior. In the first project, I investigate the possibility of inferring noxious sensory information from the behavior of Caenorhabditis elegans. I develop a statistical model to infer the heat stimulus level perceived by individual animals from their stereotyped escape responses after stimulation by an IR laser. The model allows quantification of analgesic-like effects of chemical agents or genetic mutations in the worm. At the same time, the method is able to differentiate perturbations of locomotion behavior that are beyond affecting the sensory system. With this model I propose experimental designs that allows statistically significant identification of analgesic-like effects. In the second project, I investigate the relationship of energy budget and stability of locomotion in determining the walking speed distribution of Drosophila melanogaster during aging. The locomotion stability at different age groups is estimated from video recordings using Floquet theory. I calculate the power consumption of different locomotion speed using a biomechanics model. In conclusion, the power consumption, not stability, predicts the locomotion speed distribution at different ages.

  20. SELECTION OF RATIONAL PARAMETERS OF THE NOMINAL MODE OF ELECTRIC LOCOMOTIVES

    Directory of Open Access Journals (Sweden)

    H. K. Hetman

    2017-02-01

    Full Text Available Purpose.The railways of Ukraine have been operated the locomotives, which are both morally and physically obsolete. Therefore, to ensure the competitiveness of rail transport it is necessary to update the locomotive fleet, and first of all the fleet of electric locomotives, because electrified railways provide the greater part of passenger and freight traffic. In this connection it is of special importance to determine the optimum parameters of the nominal mode of electric rolling stock. The purpose of the work is to examine the features of solution of these problems with respect to electric locomotives. Methodology. Assuming that the limit values of traction force are determined by the conditions of wheel-rail grip, then the power of the nominal mode can be represented as the product of rated speed, estimated friction coefficient, train weight and the coefficients that represent the ratio of the estimated (starting value of traction force to value of traction force the nominal mode and the ratio of the mass of the locomotive to the train weight. Since the mass of the train is not a constant value, there is always a surplus power of the locomotive fleet required for the mastering of a predetermined volume of transportations. Reduced overcapacity of the locomotive fleet can be achieved by introduction of the locomotives of different power, designed for driving trains of different weight that will result in increased completeness of the power use but also in difficulty in selecting of locomotives for trains in operation. The paper shows the method of calculating the optimum values of power, speed and traction force of the nominal mode. It presents the mathematical model of the relationship of traction rate, excessive capacity and power of the traction unit. Findings.It is proved that the power of the traction unit, the total fleet power requirement and the excess of power in absolute units are proportional to the speed of the nominal mode. To

  1. Lifestyle factors are significantly associated with the locomotive syndrome: a cross-sectional study.

    Science.gov (United States)

    Akahane, Manabu; Yoshihara, Shingo; Maeyashiki, Akie; Tanaka, Yasuhito; Imamura, Tomoaki

    2017-10-18

    The Japanese Orthopedic Association first proposed the concept of "locomotive syndrome" in 2007. It refers to circumstances in which elderly people need nursing care services or are at high risk of requiring such services within a short time. Recently, the public health burden of providing nursing care for elderly individuals has increased. Therefore, locomotive syndrome, and the means of preventing it, are a major public health focus in Japan. The purpose of this study was to investigate the relationships of lifestyle factors, such as smoking, alcohol consumption, sleep duration, and dental health, with locomotive syndrome. We conducted a cross-sectional study using an internet panel survey. The participants comprised 747 individuals aged 30-90 years. Factors related to demographics (age, sex), general health (number of teeth, presence of periodontal disease), and lifestyle (smoking, alcohol consumption, sleep duration) were assessed. We also used the 25-question Geriatric Locomotive Function Scale to determine whether each participant had locomotive syndrome. Multivariate analysis was conducted using logistic regression to investigate the independent relationships between locomotive syndrome and lifestyle factors after adjusting for sex and age. A greater proportion of women (17.7%) than men (11.2%) had locomotive syndrome (p syndrome compared with those aged syndrome, whereas sleep duration was not. The frequency of alcohol consumption, except for daily drinking, was also associated with locomotive syndrome. Our study indicates that lifestyle factors, such as smoking and number of existing teeth, may partly affect the prevalence of locomotive syndrome. Hence, lifestyle modifications, such as improving oral hygiene and promoting cessation of smoking, are important means to reduce the risk of locomotive syndrome and should be promoted by public health staff.

  2. ANALYSIS OF THE OPERATIONAL CHARACTERISTICS OF DIESEL-ELECTRIC LOCOMOTIVES

    Directory of Open Access Journals (Sweden)

    L. V. Ursulyak

    2014-12-01

    Full Text Available Purpose. To compare the operational characteristics of freight diesel-electric locomotives ER20CF and 2М62м, which are operated with Lithuanian Railways. Important problems on traction calculations are considered in this article. In this article the critical tasks of traction calculations are solved. It is the main computational tool in the rational functioning, planning and development of railways: determination of the estimated weight of the rolling stock, the diagrams construction of specific resultant forces of a train, the permitted speed definition of the train on the slopes, curves of train traffic construction on the section. Methodology. Using the rules and methods of traction calculations the analysis of the basic operational characteristics of the modernized freight diesel-electric locomotive 2М62m and freight passenger dual locomotive 2ER20CF was held. The maximum weight of the train set, the track structure on a high-speed ascent through the use of kinetic energy (with traction and without traction, technical speed, acceleration force and the value of the smallest radius curve are selected as controlled parameters. During the calculations it was considered that the trains were formed of a fully loaded four-axle gondola cars, model 112-119 (feature-606 with axle load of 23.5 t; the motion was carried out on the continuous welded rail track; the front of the train set is a dual locomotive 2ER20CF or two locomotive 2М62м. Longitudinal profile of the road on the route Vilnus–KlF was analyzed for the choice of theoretical rise. Inspection concerning the possibility of overcoming the high-speed rise was performed with an analytical method, based on the use of the kinetic energy accumulated by the overcoming of «light» elements of the profile. Findings. In the calculations, the maximum weight of the train set taking into account theoretical rise was analyzed. The inspection of the theoretical weight of the train set on a reliable

  3. Motor deficits following dorsal corticospinal tract transection in rats: voluntary versus skilled locomotion readouts

    Directory of Open Access Journals (Sweden)

    Lara Bieler

    2018-02-01

    The functional relevance of the dorsal CST in locomotion of rats is not as prominent as compared to in humans and thus challenging the motor execution is mandatory to reliably investigate CST function. A detailed analysis of voluntary walking using the CatWalk XT is not adequate to detect deficits following dorsal CST lesion in rats.

  4. The neural representation of human versus nonhuman bipeds and quadrupeds

    OpenAIRE

    Papeo, Liuba; Wurm, Moritz F.; Oosterhof, Nikolaas N.; Caramazza, Alfonso

    2017-01-01

    How do humans recognize humans among other creatures? Recent studies suggest that a preference for conspecifics may emerge already in perceptual processing, in regions such as the right posterior superior temporal sulcus (pSTS), implicated in visual perception of biological motion. In the current functional MRI study, participants viewed point-light displays of human and nonhuman creatures moving in their typical bipedal (man and chicken) or quadrupedal mode (crawling-baby and cat). Stronger ...

  5. The G6. A heavy-duty, six-wheeled shunting locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Tim [Vossloh Locomotives GmbH, Kiel (Germany). Development and Standardisation Group

    2010-05-15

    Nowadays, railway operating companies need robust, reliable and versatile locomotives. Vossloh has shown one way that future developments are likely to go with its 'G6' six-wheeled shunting locomotive, which features a central driver's cab. (orig.)

  6. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot

    International Nuclear Information System (INIS)

    Onal, Cagdas D; Rus, Daniela

    2013-01-01

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s −1 . (paper)

  7. Animal Locomotion in Different Mediums

    Indian Academy of Sciences (India)

    IAS Admin

    examine only self-powered animal locomotion. ... At different phases of their life cycle both animals and plants are highly mobile but their ... wind driven transport (Figure C). ..... fins which serve the function of rudimentary limbs, particularly.

  8. THE DYNAMICS AND TRACTION ENERGY METRICS LOCOMOTIVE VL40

    Directory of Open Access Journals (Sweden)

    S. V. Pylypenko

    2008-03-01

    Full Text Available In the article the results of dynamic running and traction-energy tests of the electric locomotive VL40U are presented. In accordance with the test results a conclusion about the suitability of electric locomotive of such a type for operation with trains containing up to 15 passenger coaches inclusive is made.

  9. Musculoskeletal modelling of an ostrich (Struthio camelus pelvic limb: influence of limb orientation on muscular capacity during locomotion

    Directory of Open Access Journals (Sweden)

    John R. Hutchinson

    2015-06-01

    Full Text Available We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures. This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our

  10. 49 CFR 231.15 - Steam locomotives used in road service.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotives used in road service. 231.15 Section 231.15 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.15 Steam locomotives used...

  11. Experiments on vibration-driven stick-slip locomotion: A sliding bifurcation perspective

    Science.gov (United States)

    Du, Zhouwei; Fang, Hongbin; Zhan, Xiong; Xu, Jian

    2018-05-01

    Dry friction appears at the contact interface between two surfaces and is the source of stick-slip vibrations. Instead of being a negative factor, dry friction is essential for vibration-driven locomotion system to take effect. However, the dry-friction-induced stick-slip locomotion has not been fully understood in previous research, especially in terms of experiments. In this paper, we experimentally study the stick-slip dynamics of a vibration-driven locomotion system from a sliding bifurcation perspective. To this end, we first design and build a vibration-driven locomotion prototype based on an internal piezoelectric cantilever. By utilizing the mechanical resonance, the small piezoelectric deformation is significantly amplified to drive the prototype to achieve effective locomotion. Through identifying the stick-slip characteristics in velocity histories, we could categorize the system's locomotion into four types and obtain a stick-slip categorization diagram. In each zone of the diagram the locomotion exhibits qualitatively different stick-slip dynamics. Such categorization diagram is actually a sliding bifurcation diagram; crossing from one stick-slip zone to another corresponds to the triggering of a sliding bifurcation. In addition, a simplified single degree-of-freedom model is established, with the rationality of simplification been explained theoretically and numerically. Based on the equivalent model, a numerical stick-slip categorization is also obtained, which shows good agreement with the experiments both qualitatively and quantitatively. To the best of our knowledge, this is the first work that experimentally generates a sliding bifurcation diagram. The obtained stick-slip categorizations deepen our understanding of stick-slip dynamics in vibration-driven systems and could serve as a base for system design and optimization.

  12. Small-scale soft-bodied robot with multimodal locomotion

    Science.gov (United States)

    Hu, Wenqi; Lum, Guo Zhan; Mastrangeli, Massimo; Sitti, Metin

    2018-02-01

    Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

  13. Are human hands and feet affected by climate? A test of Allen's rule.

    Science.gov (United States)

    Betti, Lia; Lycett, Stephen J; von Cramon-Taubadel, Noreen; Pearson, Osbjorn M

    2015-09-01

    In recent years, several studies have shown that populations from cold, high-latitude regions tend to have relatively shorter limbs than populations from tropical regions, with most of the difference due to the relative length of the zeugopods (i.e., radius, ulna, tibia, fibula). This pattern has been explained either as the consequence of long-term climatic selection or of phenotypic plasticity, with temperature having a direct effect on bone growth during development. The aims of this study were to test whether this pattern of intra-limb proportions extended to the bones of the hands and feet, and to determine whether the pattern remained significant after taking into account the effects of neutral evolutionary processes related to population history. Measurements of the limb bones, including the first metatarsal and metacarpal, were collected for 393 individuals from 10 globally distributed human populations. The relationship between intra-limb indices and minimum temperature was tested using generalized least squares regression, correcting for spatial autocorrelation. The results confirmed previous observations of a temperature-related gradient in intra-limb proportions, even accounting for population history. This pattern extends to the hands, with populations from cold regions displaying a relatively shorter and stockier first metacarpal; however, the first metatarsal appears to be wider but not shorter in cold-adapted populations. The results suggest that climatic adaptation played a role in shaping variation in limb proportions between human populations. The different patterns shown by the hands and feet might be due to the presence of evolutionary constraints on the foot to maintain efficient bipedal locomotion. © 2015 Wiley Periodicals, Inc.

  14. The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology

    Directory of Open Access Journals (Sweden)

    Costas Boletsis

    2017-09-01

    Full Text Available The latest technical and interaction advancements that took place in the Virtual Reality (VR field have marked a new era, not only for VR, but also for VR locomotion. Although the latest advancements in VR locomotion have raised the interest of both researchers and users in analyzing and experiencing current VR locomotion techniques, the field of research on VR locomotion, in its new era, is still uncharted. In this work, VR locomotion is explored through a systematic literature review investigating empirical studies of VR locomotion techniques from 2014–2017. The review analyzes the VR locomotion techniques that have been studied, their interaction-related characteristics and the research topics that were addressed in these studies. Thirty-six articles were identified as relevant to the literature review, and the analysis of the articles resulted in 73 instances of 11 VR locomotion techniques, such as real-walking, walking-in-place, point and teleport, joystick-based locomotion, and more. Results showed that since the VR revival, the focus of VR locomotion research has been on VR technology and various technological aspects, overshadowing the investigation of user experience. From an interaction perspective, the majority of the utilized and studied VR locomotion techniques were found to be based on physical interaction, exploiting physical motion cues for navigation in VR environments. A significant contribution of the literature review lies in the proposed typology for VR locomotion, introducing four distinct VR locomotion types: motion-based, room scale-based, controller-based and teleportation-based locomotion.

  15. ENERGY EFFICIENCY OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSION TESTS AT LOCOMOTIVE REPAIR PLANT

    Directory of Open Access Journals (Sweden)

    B. E. Bodnar

    2015-10-01

    Full Text Available Purpose. In difficult economic conditions, cost reduction of electricity consumption for the needs of production is an urgent task for the country’s industrial enterprises. Technical specifications of enterprises, which repair diesel locomotive hydraulic transmission, recommend conducting a certain amount of evaluation and regulatory tests to monitor their condition after repair. Experience shows that a significant portion of hydraulic transmission defects is revealed by bench tests. The advantages of bench tests include the ability to detect defects after repair, ease of maintenance of the hydraulic transmission and relatively low labour intensity for eliminating defects. The quality of these tests results in the transmission resource and its efficiency. Improvement of the technology of plant post-repairs hydraulic tests in order to reduce electricity consumption while testing. Methodology. The possible options for hydraulic transmission test bench improvement were analysed. There was proposed an energy efficiency method for diesel locomotive hydraulic transmission testing in locomotive repair plant environment. This is achieved by installing additional drive motor which receives power from the load generator. Findings. Based on the conducted analysis the necessity of improving the plant stand testing of hydraulic transmission was proved. The variants of the stand modernization were examined. The test stand modernization analysis was conducted. Originality. The possibility of using electric power load generator to power the stand electric drive motor or the additional drive motor was theoretically substantiated. Practical value. A variant of hydraulic transmission test stand based on the mutual load method was proposed. Using this method increases the hydraulic transmission load range and power consumption by stand remains unchanged. The additional drive motor will increase the speed of the input shaft that in its turn wil allow testing in

  16. DEFINITION OF LOCOMOTIVE TRACTION FORCE WITH REGARD TO UNEVEN LOADING OF WHEEL-MOTOR BLOCK

    Directory of Open Access Journals (Sweden)

    B. Ye. Bodnar

    2013-11-01

    Full Text Available Purpose. The article describes the most common methods for determining the locomotive traction force. Solving the tasks of traction calculations involves determination of the forces influencing the train at every point of the way. When choosing a rational trajectory of the train motion and the development of operational regulations of train driving it is necessary to determine the actual value of the locomotive traction force. Considering various factors, power value of traction electric motor of locomotive may have significant differences. Advancement of the operational definition system of the locomotive traction force during the calculations by electrical parameters of traction electric motor with regard to uneven load of wheel-motor block is the purpose of the article. Methodology. The method of determining the traction force of locomotives and diesel locomotives with electric transmission, which is based on primary data acquisition of traction electric engines of direct current behavior, was proposed. Sensors and their integration into the electrical circuitry of the locomotive in order to get the data in digital form and for operational calculation of the each traction motor mode and the definition of locomotive traction force are presented. Findings. The experimental investigation of the system of locomotive traction force determination with the electric traction motor ED-105 was offered. A comparison of electrical and mechanical power of the electric motor was conducted. Originality. The system of locomotives power operational definition, which takes into account the variable electro-mechanical factors of wheel and motor blocks and increases the accuracy of the calculations, was proposed. Practical value. The system is a part of an onboard complex in definition of energy-efficient regimes for trains movement and provides the definition of accelerating and decelerating forces.

  17. Feeding strategies as revealed by the section moduli of the humerus bones in bipedal theropod dinosaurs

    Science.gov (United States)

    Lee, Scott; Richards, Zachary

    2015-03-01

    The section modulus of a bone is a measure of its ability to resist bending torques. Carnivorous dinosaurs presumably had strong arm bones to hold struggling prey during hunting. Some theropods are believed to have become herbivorous and such animals would not have needed such strong arms. In this work, the section moduli of the humerus bones of bipedal theropod dinosaurs (from Microvenator celer to Tyrannosaurus rex) are studied to determine the maximum bending loads their arms could withstand. The results show that bending strength is not of uniform importance to these magnificent animals. The predatory theropods had strong arms for use in hunting. In contrast, the herbivorous dinosaurs had weaker arms.

  18. On the rules for aquatic locomotion

    Science.gov (United States)

    Saadat, M.; Fish, F. E.; Domel, A. G.; Di Santo, V.; Lauder, G. V.; Haj-Hariri, H.

    2017-08-01

    We present unifying rules governing the efficient locomotion of swimming fish and marine mammals. Using scaling and dimensional analysis, supported by new experimental data, we show that efficient locomotion occurs when the values of the Strouhal (St) number St (=f A /U ) and A*(=A /L ) , two nondimensional numbers that relate forward speed U , tail-beat amplitude A , tail-beat frequency f , and the length of the swimmer L are bound to the tight ranges of 0.2-0.4 and 0.1-0.3, respectively. The tight range of 0.2-0.4 for the St number has previously been associated with optimal thrust generation. We show that the St number alone is insufficient to achieve optimal aquatic locomotion, and an additional condition on A* is needed. More importantly, we show that when swimming at minimal power consumption, the Strouhal number of a cruising swimmer is predetermined solely by the shape and drag characteristics of the swimmer. We show that diverse species of fish and cetaceans cruise indeed with the St number and A* predicted by our theory. Our findings provide a physical explanation as to why fast aquatic swimmers cruise with a relatively constant tail-beat amplitude of approximately 20% of the body length, and their swimming speed is nearly proportional to their tail-beat frequency.

  19. Development of a Self-Stabilizing Robotic Chassis for Industry

    Directory of Open Access Journals (Sweden)

    Ryadchikov Igor

    2017-01-01

    Full Text Available Presented the description of the bipedal robotic chassis with the unique kinematic scheme which has the possibility to locomote in complicated multi-level environment. AnyWalker is equipped with the system of compensation of external impacts with motor-wheels which can self-stabilize the robotic system in 3 dimensions. Presented chassis suggests to have open software and hardware architecture in order to become the universal walking platform for service and industry robots.

  20. Biomechanics of running indicates endothermy in bipedal dinosaurs.

    Directory of Open Access Journals (Sweden)

    Herman Pontzer

    Full Text Available BACKGROUND: One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira, other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe two new biomechanical approaches for reconstructing the metabolic rate of 14 extinct bipedal dinosauriforms during walking and running. These methods, well validated for extant animals, indicate that during walking and slow running the metabolic rate of at least the larger extinct dinosaurs exceeded the maximum aerobic capabilities of modern ectotherms, falling instead within the range of modern birds and mammals. Estimated metabolic rates for smaller dinosaurs are more ambiguous, but generally approach or exceed the ectotherm boundary. CONCLUSIONS/SIGNIFICANCE: Our results support the hypothesis that endothermy was widespread in at least larger non-avian dinosaurs. It was plausibly ancestral for all dinosauriforms (perhaps Ornithodira, but this is perhaps more strongly indicated by high growth rates than by locomotor costs. The polarity of the evolution of endothermy indicates that rapid growth, insulation, erect postures, and perhaps aerobic power predated advanced "avian" lung structure and high locomotor costs.

  1. Biomechanics of running indicates endothermy in bipedal dinosaurs.

    Science.gov (United States)

    Pontzer, Herman; Allen, Vivian; Hutchinson, John R

    2009-11-11

    One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira), other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals. Here we describe two new biomechanical approaches for reconstructing the metabolic rate of 14 extinct bipedal dinosauriforms during walking and running. These methods, well validated for extant animals, indicate that during walking and slow running the metabolic rate of at least the larger extinct dinosaurs exceeded the maximum aerobic capabilities of modern ectotherms, falling instead within the range of modern birds and mammals. Estimated metabolic rates for smaller dinosaurs are more ambiguous, but generally approach or exceed the ectotherm boundary. Our results support the hypothesis that endothermy was widespread in at least larger non-avian dinosaurs. It was plausibly ancestral for all dinosauriforms (perhaps Ornithodira), but this is perhaps more strongly indicated by high growth rates than by locomotor costs. The polarity of the evolution of endothermy indicates that rapid growth, insulation, erect postures, and perhaps aerobic power predated advanced "avian" lung structure and high locomotor costs.

  2. 49 CFR 210.29 - Operation standards (moving locomotives and rail cars).

    Science.gov (United States)

    2010-10-01

    ... cars). 210.29 Section 210.29 Transportation Other Regulations Relating to Transportation (Continued... REGULATIONS Inspection and Testing § 210.29 Operation standards (moving locomotives and rail cars). The operation standards for the noise emission levels of moving locomotives, rail cars, or consists of...

  3. Locomotion of Mexican jumping beans

    International Nuclear Information System (INIS)

    West, Daniel M; K Lal, Ishan; Leamy, Michael J; Hu, David L

    2012-01-01

    The Mexican jumping bean, Laspeyresia saltitans, consists of a hollow seed housing a moth larva. Heating by the sun induces movements by the larva which appear as rolls, jumps and flips by the bean. In this combined experimental, numerical and robotic study, we investigate this unique means of rolling locomotion. Time-lapse videography is used to record bean trajectories across a series of terrain types, including one-dimensional channels and planar surfaces of varying inclination. We find that the shell encumbers the larva's locomotion, decreasing its speed on flat surfaces by threefold. We also observe that the two-dimensional search algorithm of the bean resembles the run-and-tumble search of bacteria. We test this search algorithm using both an agent-based simulation and a wheeled Scribbler robot. The algorithm succeeds in propelling the robot away from regions of high temperature and may have application in biomimetic micro-scale navigation systems. (paper)

  4. PROSPECTS OF THE PRIVATE LOCOMOTIVES USAGE FOR GOODS TRAFFIC IN THE DIRECTION OF SEA PORTS

    Directory of Open Access Journals (Sweden)

    D. M. Kozachenko

    2017-12-01

    Full Text Available Purpose. At the present time, Ukraine's mainline railway transport is entirely in state ownership. Ukraine has undertaken to implement the European Union Directives providing of non-discriminatory access to the railway infrastructure of independent carriers. A considerable quantity of options significantly affects the working conditions of carriers that do not depend on Ukrzaliznytsia. One of the tasks that arises when performing transportation by independent carriers is the organization of private locomotives operation and their servicing by engine crews. The purpose of the article is to evaluate the technical characteristic of the private locomotives usage in order to perform goods traffic in the direction of sea ports. Methodology. The researches were carried out on the basis of methods for organizing the operational work of railways and methods of traction calculations. Findings. The paper highlights the problem of goods traffic organization to seaports by independent carriers. It determines the requirements for equipment for diesel locomotives and electric locomotives depending on the distance of transportation. Permissible distances that can be served by engine crews in performing the requirements for the duration of their continuous operation were also determined. Schemes of infrastructure objects location for the locomotives and engine crews operation have been developed. It was established that diesel locomotives of independent carriers will be able to serve transportation between loading and unloading stations up to 822 km, and electric locomotives up to 1000 km with the construction of the main part of the locomotive infrastructure at the port station. The performed calculations show the potential coverage of rail transportation to sea ports by independent carriers with the use of its own locomotive infrastructure. To define more exactly the haul length of train servicing by locomotives and locomotives by engine crews, it is necessary

  5. INFLUENCE OF ROLLING STOCK VIBROACOUSTICAL PARAMETERS ON THE CHOICE OF RATIONAL VALUES OF LOCOMOTIVE RUNNING GEAR

    Directory of Open Access Journals (Sweden)

    Yu. V. Zelenko

    2016-06-01

    Full Text Available Purpose.The success of the traffic on the railways of Ukraine depends on the number and the operational fleet of electric locomotives. Today, the locomotive depot exploit physically and morally outdated locomotives that have low reliability. Modernization of electric locomotives is not economically justified. The aim of this study is to improve the safety of the traction rolling stock by the frequency analysis of dynamical systems, which allows conducting the calculation of the natural (of resonant frequencies of the design and related forms of vibrations.Methodology.The study was conducted by methods of analytical mechanics and mathematical modeling of operating loads of freight locomotive when driving at different speeds on the straight and curved track sections. The theoretical value of the work is the technique of choice of constructive schemes and rational parameters of perspective electric locomotive taking into account the electric inertia ratios and stiffness coefficients of Lagrange second-order equations.Findings. The problems of theoretical research and the development of a mathematical model of the spatial electric vibrations are solved. The theoretical studies of the effect of inertia ratios and stiffness coefficients on the dynamic values and the parameter values of electric locomotive undercarriages are presented.Originality.The set of developed regulations and obtained results is a practical solution to selecting rational parameters of bogies of the freight mainline locomotive for railways of Ukraine. A concept of choice of constructive scheme and rational parameters of perspective locomotive is formulated. It is developed the method of calculation of spatial electric locomotive oscillations to determine its dynamic performance. The software complex for processing the data of experimental studies of dynamic parameters of electric locomotive and comparing the results of the theoretical calculations with the data of full

  6. Energetic Extremes in Aquatic Locomotion by Coral Reef Fishes

    Science.gov (United States)

    Fulton, Christopher J.; Johansen, Jacob L.; Steffensen, John F.

    2013-01-01

    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s−1) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed. PMID:23326566

  7. Energetic extremes in aquatic locomotion by coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Christopher J Fulton

    Full Text Available Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1 while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting, streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.

  8. The Determination of the Asynchronous Traction Motor Characteristics of Locomotive

    Directory of Open Access Journals (Sweden)

    Pavel Grigorievich Kolpakhchyan

    2017-01-01

    Full Text Available The article deals with the problem of the locomotive asynchronous traction motor control with the AC diesel-electric transmission. The limitations of the torque of the traction motor when powered by the inverter are determined. The recommendations to improve the use of asynchronous traction motor of locomotives with the AC diesel-electric transmission are given.

  9. Quasi-dynamic walk of a quadruped locomotion robot using optimal tracking control

    International Nuclear Information System (INIS)

    Uchida, Hiroaki; Nonami, Kenzo; Chiba, Yasunori; Koyama, Kakutaro.

    1994-01-01

    Recently, many research works of quadruped locomotion robots, which are considered to be operable on irregular terrain, have been carried out. In the case of realizing ideal motion control of the quadruped locomotion robot, it is assumed that hierarchical cooperative control consisting of decentralized control and centralized control is desirable. In the case that the locomotion robot moves at high speed, it is impossible to follow the desired trajectory because using only the feedback control method includes time delay. It is known that feedforward control input is valid for such motion control. In this paper, decentralized control is realized to apply optimal tracking control using feedforward control input to the quadruped locomotion robot, as the first step. As a result, it is determined that the angle variation of the foot and the stride applying optimal tracking control input are large compared with using only feedback control. It is verified that feedforward control input is useful to control the trajectory of the tip of the foot in high speed locomotion. (author)

  10. Observation of Point-Light-Walker Locomotion Induces Motor Resonance When Explicitly Represented; An EEG Source Analysis Study

    Directory of Open Access Journals (Sweden)

    Alberto Inuggi

    2018-03-01

    Full Text Available Understanding human motion, to infer the goal of others' actions, is thought to involve the observer's motor repertoire. One prominent class of actions, the human locomotion, has been object of several studies, all focused on manipulating the shape of degraded human figures like point-light walker (PLW stimuli, represented as walking on the spot. Nevertheless, since the main goal of the locomotor function is to displace the whole body from one position to the other, these stimuli might not fully represent a goal-directed action and thus might not be able to induce the same motor resonance mechanism expected when observing a natural locomotion. To explore this hypothesis, we recorded the event-related potentials (ERP of canonical/scrambled and translating/centered PLWs decoding. We individuated a novel ERP component (N2c over central electrodes, around 435 ms after stimulus onset, for translating compared to centered PLW, only when the canonical shape was preserved. Consistently with our hypothesis, sources analysis associated this component to the activation of trunk and lower legs primary sensory-motor and supplementary motor areas. These results confirm the role of own motor repertoire in processing human action and suggest that ERP can detect the associated motor resonance only when the human figure is explicitly involved in performing a meaningful action.

  11. Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand?

    OpenAIRE

    Gjorgjieva, Julijana; Biron, David; Haspel, Gal

    2014-01-01

    Animals use a nervous system for locomotion in some stage of their life cycle. The nematode Caenorhabditis elegans, a major animal model for almost all fields of experimental biology, has long been used for detailed studies of genetic and physiological locomotion mechanisms. Of its 959 somatic cells, 302 are neurons that are identifiable by lineage, location, morphology, and neurochemistry in every adult hermaphrodite. Of those, 75 motoneurons innervate body wall muscles that provide the thru...

  12. Damages and resource of locomotive wheels used under the north operating conditions

    Directory of Open Access Journals (Sweden)

    A. V. Grigorev

    2014-01-01

    Full Text Available In operating railway equipment, in particular the elements, such as a wheel and a rail there is damage accumulation of any kind, causing a premature equipment failure. Thus, an analysis of the mechanisms and modeling of damage accumulation and fracture both on the surface and in the bulk material remain a challenge.Data on the defective wheel sets to be subjected to facing has been collected and analyzed to assess the locomotive wheel sets damage of the locomotive fleet company of AK «Yakutia Railways», city of Aldan, The Republic of Sakha (Yakutia. For this purpose, three main locomotives have been examined.The object of research carried out in this paper, is a locomotive wheels tire, which is subjected to cyclic impact (dynamic loads during operation. In this regard, the need arises to determine both the strength of material in response to such shock loads and the quantitative calculation of damage accumulated therein.The accumulated fatigue damage has been attributed to one radial cross section of the wheel coming into contact with the rail once per revolution of the wheel. Consequently, in one revolution a wheel is under one loading cycle. As stated, the average mileage of locomotives to have the unacceptable damages formed on the tread surface is 12 thousand km.Test results establish that along with the high-cycle loading the shock-contact action on rail joints significantly affects the accumulation of damage in the locomotive wheels tire. The number of cycles to failure due to the formation of unacceptable damage in the locomotive wheels tire is N = 2,4×106 and 6×105 cycles, respectively, for fatigue and shock-contact loading.In general, we can say that the problem of higher intensity to form the surface damage is directly related to the operation of the locomotive wheel tire under abnormally low climatic temperatures. With decreasing ambient temperature, this element material rapidly looses its plastic properties, thereby accelerating

  13. Investigations into dynamics of a draft of mine cars with two locomotives during electric braking

    Energy Technology Data Exchange (ETDEWEB)

    Sikora-Iliew, R; Szklarski, L; Thuc, Thai Duy

    1983-03-01

    The computerized simulation of electric braking of a draft of GRANBY-5 mine cars and two locomotives (Ld2 locomotives with LDO30 electric series motors) is discussed. The following stages of simulation are analyzed: constructing a mathematical model of the draft of mine cars during electric (dynamic) braking, equations which describe dynamic states of locomotives, mine cars and electric motors during dynamic braking, equations for stability assessment of the draft during dynamic braking. The analog model for simulation of dynamic braking of the draft is given. Simulation results are shown in 10 diagrams. The WAT-1000 hybrid computer is used. Simulation shows that dynamic braking causes occurrence of maximum forces in the couplers between a locomotive and a mine car. When two locomotives are used the maximum force in couplers is lower than in a draft with one locomotive. Braking distance does not depend on position of locomotives in a draft of mine cars. Doubling draft speed causes braking distance to increase by 4 times. Optimum stability conditions of a draft of mine cars are guaranteed when one locomotive is placed at the draft head and a second is separated from the first one by one third of the draft length. 6 references

  14. Quadrupedal Robot Locomotion: A Biologically Inspired Approach and Its Hardware Implementation

    Directory of Open Access Journals (Sweden)

    A. Espinal

    2016-01-01

    Full Text Available A bioinspired locomotion system for a quadruped robot is presented. Locomotion is achieved by a spiking neural network (SNN that acts as a Central Pattern Generator (CPG producing different locomotion patterns represented by their raster plots. To generate these patterns, the SNN is configured with specific parameters (synaptic weights and topologies, which were estimated by a metaheuristic method based on Christiansen Grammar Evolution (CGE. The system has been implemented and validated on two robot platforms; firstly, we tested our system on a quadruped robot and, secondly, on a hexapod one. In this last one, we simulated the case where two legs of the hexapod were amputated and its locomotion mechanism has been changed. For the quadruped robot, the control is performed by the spiking neural network implemented on an Arduino board with 35% of resource usage. In the hexapod robot, we used Spartan 6 FPGA board with only 3% of resource usage. Numerical results show the effectiveness of the proposed system in both cases.

  15. Physiological aspects of legged terrestrial locomotion the motor and the machine

    CERN Document Server

    Cavagna, Giovanni

    2017-01-01

    This book offers a succinct but comprehensive description of the mechanics of muscle contraction and legged terrestrial locomotion. It describes on the one hand how the fundamental properties of muscle tissue affect the mechanics of locomotion, and on the other, how the mechanics of locomotion modify the mechanism of muscle operation under different conditions. Further, the book reports on the design and results of experiments conducted with two goals. The first was to describe the physiological function of muscle tissue (which may be considered as the “motor”) contracting at a constant length, during shortening, during lengthening, and under a condition that occurs most frequently in the back-and-forth movement of the limbs during locomotion, namely the stretch-shortening cycle of the active muscle. The second objective was to analyze the interaction between the motor and the “machine” (the skeletal lever system) during walking and running in different scenarios with respect to speed, step frequency,...

  16. Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion.

    Science.gov (United States)

    Lee, A Moses; Hoy, Jennifer L; Bonci, Antonello; Wilbrecht, Linda; Stryker, Michael P; Niell, Cristopher M

    2014-07-16

    Sensory processing is dependent upon behavioral state. In mice, locomotion is accompanied by changes in cortical state and enhanced visual responses. Although recent studies have begun to elucidate intrinsic cortical mechanisms underlying this effect, the neural circuits that initially couple locomotion to cortical processing are unknown. The mesencephalic locomotor region (MLR) has been shown to be capable of initiating running and is associated with the ascending reticular activating system. Here, we find that optogenetic stimulation of the MLR in awake, head-fixed mice can induce both locomotion and increases in the gain of cortical responses. MLR stimulation below the threshold for overt movement similarly changed cortical processing, revealing that MLR's effects on cortex are dissociable from locomotion. Likewise, stimulation of MLR projections to the basal forebrain also enhanced cortical responses, suggesting a pathway linking the MLR to cortex. These studies demonstrate that the MLR regulates cortical state in parallel with locomotion. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Motorneurons dedicated to either forward or backward locomotion in the nematode C. elegans

    OpenAIRE

    Haspel, Gal; O'Donovan, Michael J.; Hart, Anne C.

    2010-01-01

    Multifunctional motorneurons and muscles, which are active during forward and backward locomotion and driven by common central pattern generators, are ubiquitous in animal models. However, studies in the nematode Caenorhabditis elegans suggest that some locomotor motorneurons are necessary only for forward locomotion (dorsal B-motorneurons, DB) while others (dorsal A-motorneurons, DA) are necessary only for backward locomotion. We tested this hypothesis directly by recording the activity of t...

  18. Fluid Mechanics of Aquatic Locomotion at Large Reynolds Numbers

    OpenAIRE

    Govardhan, RN; Arakeri, JH

    2011-01-01

    Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body...

  19. 49 CFR 1242.22 - Shop buildings-locomotives (account XX-19-24).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Shop buildings-locomotives (account XX-19-24... Structures § 1242.22 Shop buildings—locomotives (account XX-19-24). Separate common expenses according to distribution of common expenses in the following accounts: Machinery Repair (XX-26-40) Locomotive—Repair and...

  20. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California

    Science.gov (United States)

    Tang, N. W.; Kirchstetter, T.; Martien, P. T.; Apte, J.

    2015-12-01

    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate "head-end" power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  1. Profile and genetic parameters of dairy cattle locomotion score and lameness across lactation.

    Science.gov (United States)

    Kougioumtzis, A; Valergakis, G E; Oikonomou, G; Arsenos, G; Banos, G

    2014-01-01

    This study investigated the profile of locomotion score and lameness before the first calving and throughout the first (n=237) and second (n=66) lactation of 303 Holstein cows raised on a commercial farm. Weekly heritability estimates of locomotion score and lameness, and their genetic and phenotypic correlations with milk yield, body condition score, BW and reproduction traits were derived. Daughter future locomotion score and lameness predictions from their sires��� breeding values for conformation traits were also calculated. First-lactation cows were monitored weekly from 6 weeks before calving to the end of lactation. Second-lactation cows were monitored weekly throughout lactation. Cows were locomotion scored on a scale from one (sound) to five (severely lame); a score greater than or equal to two defined presence of lameness. Cows��� weekly body condition score and BW was also recorded. These records were matched to corresponding milk yield records, where the latter were 7-day averages on the week of inspection. The total number of repeated records amounted to 12 221. Data were also matched to the farm���s reproduction database, from which five traits were derived. Statistical analyses were based on uni- and bivariate random regression models. The profile analysis showed that locomotion and lameness problems in first lactation were fewer before and immediately after calving, and increased as lactation progressed. The profile of the two traits remained relatively constant across the second lactation. Highest heritability estimates were observed in the weeks before first calving (0.66 for locomotion score and 0.54 for lameness). Statistically significant genetic correlations were found for first lactation weekly locomotion score and lameness with body condition score, ranging from ���0.31 to ���0.65 and from ���0.44 to ���0.76, respectively, suggesting that cows genetically pre-disposed for high body condition score

  2. Design of master control unit for laboratory prototype of traction converter for locomotives

    OpenAIRE

    Žák, Jan; Peroutka, Zdeněk; Ovaska, Seppo J.

    2008-01-01

    This paper deals with the prototype of a main traction converter with medium-frequency transformer for AC trolley wire-fed locomotives. The attention is paid to the new master control and diagnostic unit. The designed master control unit has been implemented in the LabVIEW environment. Our master control unit ensures an effective human interface between a user and the control hardware. In this case, the master unit makes possible both extensive control and diagnostic operations of the laborat...

  3. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.

    Science.gov (United States)

    Barron-Zambrano, Jose Hugo; Torres-Huitzil, Cesar

    2013-09-01

    Neuromorphic engineering is a discipline devoted to the design and development of computational hardware that mimics the characteristics and capabilities of neuro-biological systems. In recent years, neuromorphic hardware systems have been implemented using a hybrid approach incorporating digital hardware so as to provide flexibility and scalability at the cost of power efficiency and some biological realism. This paper proposes an FPGA-based neuromorphic-like embedded system on a chip to generate locomotion patterns of periodic rhythmic movements inspired by Central Pattern Generators (CPGs). The proposed implementation follows a top-down approach where modularity and hierarchy are two desirable features. The locomotion controller is based on CPG models to produce rhythmic locomotion patterns or gaits for legged robots such as quadrupeds and hexapods. The architecture is configurable and scalable for robots with either different morphologies or different degrees of freedom (DOFs). Experiments performed on a real robot are presented and discussed. The obtained results demonstrate that the CPG-based controller provides the necessary flexibility to generate different rhythmic patterns at run-time suitable for adaptable locomotion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Dynamically Stable Legged Locomotion

    Science.gov (United States)

    1989-09-01

    length during overground locomotion: task-specific modulation of the locomotor synergy. Journal of Experimental Psychology, 15(3). Raibert, M. I. 1986...energy conversions that intermediates between combus- tion of a fluid fuel such as gasoline , and the controlled delivery of force and power to the...question of this study: Can the extremely high energy density and rapid response of combustible fluid fuels such as gasoline be harnessed to produce

  5. The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    P J Bishop

    Full Text Available How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF, the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete 'walking' and 'running' gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79-93% of the observed variation in kinematics and 69-83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation.

  6. The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs.

    Science.gov (United States)

    Bishop, P J; Graham, D F; Lamas, L P; Hutchinson, J R; Rubenson, J; Hancock, J A; Wilson, R S; Hocknull, S A; Barrett, R S; Lloyd, D G; Clemente, C J

    2018-01-01

    How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete 'walking' and 'running' gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79-93% of the observed variation in kinematics and 69-83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation.

  7. The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs

    Science.gov (United States)

    Graham, D. F.; Lamas, L. P.; Hutchinson, J. R.; Rubenson, J.; Hancock, J. A.; Wilson, R. S.; Hocknull, S. A.; Barrett, R. S.; Lloyd, D. G.; Clemente, C. J.

    2018-01-01

    How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete ‘walking’ and ‘running’ gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79–93% of the observed variation in kinematics and 69–83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation. PMID:29466362

  8. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels

    Science.gov (United States)

    Tao, Gongquan; Wang, Linfeng; Wen, Zefeng; Guan, Qinghua; Jin, Xuesong

    2018-06-01

    Experiments were conducted at field sites to investigate the mechanism of the polygonal wear of electric locomotive wheels. The polygonal wear rule of electric locomotive wheels was obtained. Moreover, two on-track tests have been carried out to investigate the vibration characteristics of the electric locomotive's key components. The measurement results of wheels out-of-round show that most electric locomotive wheels exhibit polygonal wear. The main centre wavelength in the 1/3 octave bands is 200 mm and/or 160 mm. The test results of vibration characteristics indicate that the dominating frequency of the vertical acceleration measured on the axle box is approximately equal to the passing frequency of a polygonal wheel, and does not vary with the locomotive speed during the acceleration course. The wheelset modal analysis using the finite element method (FEM) indicates that the first bending resonant frequency of the wheelset is quite close to the main vibration frequency of the axle box. The FEM results are verified by the experimental modal analysis of the wheelset. Moreover, different plans were designed to verify whether the braking system and the locomotive's adhesion control have significant influence on the wheel polygon or not. The test results indicate that they are not responsible for the initiation of the wheel polygon. The first bending resonance of the wheelset is easy to be excited in the locomotive operation and it is the root cause of wheel polygon with centre wavelength of 200 mm in the 1/3 octave bands.

  9. How much locomotive activity is needed for an active physical activity level: analysis of total step counts

    Directory of Open Access Journals (Sweden)

    Ohkawara Kazunori

    2011-11-01

    Full Text Available Abstract Background Although physical activity recommendations for public health have focused on locomotive activity such as walking and running, it is uncertain how much these activities contribute to overall physical activity level (PAL. The purpose of the present study was to determine the contribution of locomotive activity to PAL using total step counts measured in a calorimeter study. Methods PAL, calculated as total energy expenditure divided by basal metabolic rate, was evaluated in 11 adult men using three different conditions for 24-hour human calorimeter measurements: a low-activity day (L-day targeted at a low active level of PAL (1.45, and a high-frequency moderate activity day (M-day or a high-frequency vigorous activity day (V-day targeted at an active level of PAL (1.75. These subjects were permitted only light activities except prescribed activities. In a separate group of 41 adults, free-living PAL was evaluated using doubly-labeled water (DLW. In both experiments, step counts per day were also measured using an accelerometer. Results In the human calorimeter study, PAL and step counts were 1.42 ± 0.10 and 8,973 ± 543 steps/d (L-day, 1.82 ± 0.14 and 29,588 ± 1,126 steps/d (M-day, and 1.74 ± 0.15 and 23,755 ± 1,038 steps/d (V-day, respectively. In the DLW study, PAL and step counts were 1.73 ± 0.15 and 10,022 ± 2,605 steps/d, and there was no significant relationship between PAL and daily step counts. Conclusions These results indicate that an enormous number of steps are needed for an active level of PAL if individuals extend physical activity-induced energy expenditure by only locomotive activity. Therefore, non-locomotive activity such as household activity should also play a significant role in increasing PAL under free-living conditions.

  10. Skipping on uneven ground: trailing leg adjustments simplify control and enhance robustness.

    Science.gov (United States)

    Müller, Roy; Andrada, Emanuel

    2018-01-01

    It is known that humans intentionally choose skipping in special situations, e.g. when descending stairs or when moving in environments with lower gravity than on Earth. Although those situations involve uneven locomotion, the dynamics of human skipping on uneven ground have not yet been addressed. To find the reasons that may motivate this gait, we combined experimental data on humans with numerical simulations on a bipedal spring-loaded inverted pendulum model (BSLIP). To drive the model, the following parameters were estimated from nine subjects skipping across a single drop in ground level: leg lengths at touchdown, leg stiffness of both legs, aperture angle between legs, trailing leg angle at touchdown (leg landing first after flight phase), and trailing leg retraction speed. We found that leg adjustments in humans occur mostly in the trailing leg (low to moderate leg retraction during swing phase, reduced trailing leg stiffness, and flatter trailing leg angle at lowered touchdown). When transferring these leg adjustments to the BSLIP model, the capacity of the model to cope with sudden-drop perturbations increased.

  11. Development of quadruped walking locomotion gait generator using a hybrid method

    International Nuclear Information System (INIS)

    Jasni, F; Shafie, A A

    2013-01-01

    The earth, in many areas is hardly reachable by the wheeled or tracked locomotion system. Thus, walking locomotion system is becoming a favourite option for mobile robot these days. This is because of the ability of walking locomotion to move on the rugged and unlevel terrains. However, to develop a walking locomotion gait for a robot is not a simple task. Central Pattern Generator (CPGs) method is a biological inspired method that is introduced as a method to develop the gait for the walking robot recently to tackle the issue faced by the conventional method of pre-designed trajectory based method. However, research shows that even the CPG method do have some limitations. Thus, in this paper, a hybrid method that combines CPG and the pre-designed trajectory based method is introduced to develop a walking gait for quadruped walking robot. The 3-D foot trajectories and the joint angle trajectories developed using the proposed method are compared with the data obtained via the conventional method of pre-designed trajectory to confirm the performance

  12. Human evolutionary history: consequences for the pathogenesis of otitis media.

    Science.gov (United States)

    Bluestone, Charles D; Swarts, J Douglas

    2010-12-01

    The pathogenesis of otitis media is multifactorial, but the role of evolution on its development has not been addressed. We posit that the high prevalence of middle-ear disease is most likely restricted to humans, in contrast to other wild species, because the associated hearing loss would have reduced the fitness of affected individuals as a result of predation. We present here the possible consequences of two human adaptations that may have resulted in ubiquitous otitis media: the interaction of bipedalism and increased brain size, and the loss of facial prognathism resulting from speech or cooking. As a consequence of our adaptation for bipedalism, the female pelvic outlet is constricted, which, in the context of a rapidly enlarging brain, results in humans being born 12 months too soon. Significantly, immature eustachian tube structure and function, in conjunction with an immature immune system, helps to explain the high incidence of otitis media in the first year of life. But the persistence of middle-ear disease beyond this stage is not explained by "immaturity." The morphology of the palate changed with the adaptations that produced facial flattening, with concomitant effects on eustachian tube function. These changes resulted in relatively poor human physiologic tubal function in comparison to the nonhuman primate. Copyright © 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  13. Sustained periodic terrestrial locomotion in air-breathing fishes.

    Science.gov (United States)

    Pace, C M; Gibb, A C

    2014-03-01

    While emergent behaviours have long been reported for air-breathing osteichthyians, only recently have researchers undertaken quantitative analyses of terrestrial locomotion. This review summarizes studies of sustained periodic terrestrial movements by air-breathing fishes and quantifies the contributions of the paired appendages and the axial body to forward propulsion. Elongate fishes with axial-based locomotion, e.g. the ropefish Erpetoichthys calabaricus, generate an anterior-to-posterior wave of undulation that travels down the axial musculoskeletal system and pushes the body against the substratum at multiple points. In contrast, appendage-based locomotors, e.g. the barred mudskipper Periophthalmus argentilineatus, produce no axial bending during sustained locomotion, but instead use repeated protraction-retraction cycles of the pectoral fins to elevate the centre of mass and propel the entire body anteriorly. Fishes that use an axial-appendage-based mechanism, e.g. walking catfishes Clarias spp., produce side-to-side, whole-body bending in co-ordination with protraction-retraction cycles of the pectoral fins. Once the body is maximally bent to one side, the tail is pressed against the substratum and drawn back through the mid-sagittal plane, which elevates the centre of mass and rotates it about a fulcrum formed by the pectoral fin and the ground. Although appendage-based terrestrial locomotion appears to be rare in osteichthyians, many different species appear to have converged upon functionally similar axial-based and axial-appendage-based movements. Based on common forms observed across divergent taxa, it appears that dorsoventral compression of the body, elongation of the axial skeleton or the presence of robust pectoral fins can facilitate effective terrestrial movement by air-breathing fishes. © 2014 The Fisheries Society of the British Isles.

  14. South Turkwel: a new pliocene hominid site in Kenya.

    Science.gov (United States)

    Ward, C V; Leakey, M G; Brown, B; Brown, F; Harris, J; Walker, A

    1999-01-01

    New fossils discovered south of the Turkwel River in northern Kenya include an associated metacarpal, capitate, hamate, lunate, pedal phalanx, mandibular fragment, and teeth. These fossils probably date to around 3.5 m.y.a. Faunal information suggests that the environment at South Turkwel was predominantly bushland. The mandibular and dental remains are fragmentary, but the postcranial fossils are informative. Comparisons with Australopithecus, modern human, chimpanzee and gorilla hand bones suggest that the Turkwel hominid was most like Australopithecus afarensis and A. africanus. Carpometacarpal articulations are intermediate between those of modern humans and African apes, suggesting enhanced gripping capabilities compared with extant apes. The hamulus was strikingly large, similar in proportion only to Neandertals and some gorillas, suggesting the presence of powerful forearms and hands. There are no indicators of adaptations to knuckle-walking or suspensory locomotion in the hand, and the pedal phalanx suggests that this hominid was habitually bipedal. Copyright 1999 Academic Press.

  15. Organization of common synaptic drive to motoneurones during fictive locomotion in the spinal cat.

    Science.gov (United States)

    Nielsen, J B; Conway, B A; Halliday, D M; Perreault, M-C; Hultborn, H

    2005-11-15

    The basic locomotor rhythm in the cat is generated by a neuronal network in the spinal cord. The exact organization of this network and its drive to the spinal motoneurones is unknown. The purpose of the present study was to use time (cumulant density) and frequency domain (coherence) analysis to examine the organization of the last order drive to motoneurones during fictive locomotion (evoked by application of nialamide and dihydroxyphenylalanine (DOPA)) in the spinal cat. In all cats, narrow central synchronization peaks (half-width synchronization was observed between the individual intracellular recordings and the ENGs recorded from nerves of the same pool and of close synergists. Recordings from 34 pairs of motoneurones (10 pairs belonged to the same motor pool, 11 pairs to close synergists and 13 pairs to antagonistic pools) failed to reveal any short-lasting synchronization. These data demonstrate that short-term synchronization during fictive locomotion is relatively weak and is restricted to close synergists. In addition, coherence analysis failed to identify any specific rhythmic component in the locomotor drive that could be associated with this synchronization. These results resemble findings obtained during human treadmill walking and imply that the spinal interneurones participating in the generation of the locomotor rhythm are themselves weakly synchronized. The restricted synchronization within the locomotor drive to motoneuronal pools may be a feature of the locomotor generating networks that is related to the ability of these networks to produce highly adaptive patterns of muscle activity during locomotion.

  16. Relating appendicular skeletal variation of sigmodontine rodents to locomotion modes in a phylogenetic context.

    Science.gov (United States)

    Carvalho Coutinho, Ludmilla; Alves de Oliveira, João

    2017-10-01

    Sigmodontinae rodents constitute the second-largest subfamily among mammals. Alongside the taxonomic diversity, they are also ecologically diverse, exhibiting a wide array of locomotion modes, with semifossorial, terrestrial, semiaquatic, scansorial, arboreal, and saltatorial forms. To understand the ecomorphologic aspects that allow these rodents to display such locomotion diversity, we analyzed 35 qualitative characters of the appendicular skeleton (humerus, ulna, radius, scapula, femur, tibia, ilium, ischium and pubis) in 795 specimens belonging to 64 species, 34 genera and 10 tribes, representing all locomotion modes assigned to this subfamily. We performed a statistical analysis based upon the coefficient of trait differentiation to test the congruence of character states and the different locomotion modes. We also mapped characters states in a molecular phylogeny in order to reconstruct ancestral states and to evaluate how appendicular characters evolved within main lineages of Sigmodontinae radiation under a phylogenetic framework. The statistical analyses revealed six characters related to specific locomotion modes, except terrestrial. The mapping and parsimony ancestral states reconstruction identified two characters with phylogenetical signal and eight characters that are exclusively or more frequently recorded in certain modes of locomotion, four of them also detected by the statistical analysis. Notwithstanding the documented morphological variation, few changes characterize the transition to each of the locomotion modes, at least regarding the appendicular skeleton. This finding corroborates previous results that showed that sigmodontines exhibit an all-purpose appendicular morphology that allows them to use and explore a great variety of habitats. © 2017 Anatomical Society.

  17. Application of flywheel energy storage for heavy haul locomotives

    International Nuclear Information System (INIS)

    Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Sun, Yan Quan; Cole, Colin; Nielsen, Dwayne

    2015-01-01

    Highlights: • A novel design for heavy haul locomotive equipped with a flywheel energy storage system is proposed. • The integrated intelligent traction control system was developed. • A flywheel energy storage system has been tested through a simulation process. • The developed hybrid system was verified using an existing heavy haul railway route. • Fuel efficiency analysis confirms advantages of the hybrid design. - Abstract: At the present time, trains in heavy haul operations are typically hauled by several diesel-electric locomotives coupled in a multiple unit. This paper studies the case of a typical consist of three Co–Co diesel-electric locomotives, and considers replacing one unit with an alternative version, with the same design parameters, except that the diesel-electric plant is replaced with flywheel energy storage equipment. The intelligent traction and energy control system installed in this unit is integrated into the multiple-unit control to allow redistribution of the power between all units. In order to verify the proposed design, a three-stage investigation has been performed as described in this paper. The initial stage studies a possible configuration of the flywheel energy storage system by detailed modelling of the proposed intelligent traction and energy control system. The second stage includes the investigation and estimation of possible energy flows using a longitudinal train dynamics simulation. The final stage compares the conventional and the proposed locomotive configurations considering two parameters: fuel efficiency and emissions reduction.

  18. Using Computational and Mechanical Models to Study Animal Locomotion

    Science.gov (United States)

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  19. Chaotic exploration and learning of locomotion behaviors.

    Science.gov (United States)

    Shim, Yoonsik; Husbands, Phil

    2012-08-01

    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage.

  20. The Role of Adaptation in Body Load-Regulating Mechanisms During Locomotion

    Science.gov (United States)

    Ruttley, Tara; Holt, Christopher; Mulavara, Ajitkumar; Bloomberg, Jacob

    2010-01-01

    Body loading is a fundamental parameter that modulates motor output during locomotion, and is especially important for controlling the generation of stepping patterns, dynamic balance, and termination of locomotion. Load receptors that regulate and control posture and stance in locomotion include the Golgi tendon organs and muscle spindles at the hip, knee, and ankle joints, and the Ruffini endings and the Pacinian corpuscles in the soles of the feet. Increased body weight support (BWS) during locomotion results in an immediate reorganization of locomotor control, such as a reduction in stance and double support duration and decreased hip, ankle, and knee angles during the gait cycle. Previous studies on the effect during exposure to increased BWS while walking showed a reduction in lower limb joint angles and gait cycle timing that represents a reorganization of locomotor control. Until now, no studies have investigated how locomotor control responds after a period of exposure to adaptive modification in the body load sensing system. The goal of this research was to determine the adaptive properties of body load-regulating mechanisms in locomotor control during locomotion. We hypothesized that body load-regulating mechanisms contribute to locomotor control, and adaptive changes in these load-regulating mechanisms require reorganization to maintain forward locomotion. Head-torso coordination, lower limb movement patterns, and gait cycle timing were evaluated before and after a 30-minute adaptation session during which subjects walked on a treadmill at 5.4 km/hr with 40% body weight support (BWS). Before and after the adaptation period, head-torso and lower limb 3D kinematic data were obtained while performing a goal directed task during locomotion with 0% BWS using a video-based motion analysis system, and gait cycle timing parameters were collected by foot switches positioned under the heel and toe of the subjects shoes. Subjects showed adaptive modification in

  1. Dynamic processes during monorail locomotive rocking and their impact on draw gear characteristics

    OpenAIRE

    Viktor GUTAREVICH

    2011-01-01

    The article discusses the motion of the suspended monorail locomotive, interrelation between the parameters of irregularities false path and lateral rocking monorail locomotive, the values of lateral deviation for the different speeds on the monorail.

  2. Association of Mode of Locomotion and Independence in Locomotion With Long-Term Outcomes After Spinal Cord Injury

    Science.gov (United States)

    Krause, James; Carter, Rickey E; Brotherton, Sandra

    2009-01-01

    Background/Objective: To explore the association of mode of locomotion (ambulation vs wheelchair use) and independence in locomotion (independent vs require assistance) with health, participation, and subjective well-being (SWB) after spinal cord injury (SCI). Research Design: Secondary analysis was conducted on survey data collected from 2 rehabilitation hospitals in the Midwest and a specialty hospital in the southeastern United States. The 1,493 participants were a minimum of 18 years of age and had traumatic SCI of at least 1 year duration at enrollment. Main Outcome Measures: Three sets of outcome measures were used: SWB, participation, and health. SWB was measured by 8 scales and a measure of depressive symptoms, participation by 3 items, health by general health ratings, days in poor health, hospitalizations, and treatments. Results: Small but significant associations were observed between independence in locomotion and every outcome. Ambulation was associated with greater participation but a mixed pattern of favorable and unfavorable health and SWB outcomes. Supplemental analyses were conducted on those who ambulated but who were dependent on others to do so (n = 117), because this group reported poor outcomes in several areas. Individuals who were independent in wheelchair use reported substantially better outcomes than nonwheelchair users and those dependent on others in wheelchair use. Conclusions: Although ambulation is often a recovery goal, individuals with SCI who ambulate do not uniformly report better outcomes than wheelchair users, and those who depend on others for assistance with ambulation may experience a unique set of problems. PMID:19810625

  3. Discrete-State-Based Vision Navigation Control Algorithm for One Bipedal Robot

    Directory of Open Access Journals (Sweden)

    Dunwen Wei

    2015-01-01

    Full Text Available Navigation with the specific objective can be defined by specifying desired timed trajectory. The concept of desired direction field is proposed to deal with such navigation problem. To lay down a principled discussion of the accuracy and efficiency of navigation algorithms, strictly quantitative definitions of tracking error, actuator effect, and time efficiency are established. In this paper, one vision navigation control method based on desired direction field is proposed. This proposed method uses discrete image sequences to form discrete state space, which is especially suitable for bipedal walking robots with single camera walking on a free-barrier plane surface to track the specific objective without overshoot. The shortest path method (SPM is proposed to design such direction field with the highest time efficiency. However, one improved control method called canonical piecewise-linear function (PLF is proposed. In order to restrain the noise disturbance from the camera sensor, the band width control method is presented to significantly decrease the error influence. The robustness and efficiency of the proposed algorithm are illustrated through a number of computer simulations considering the error from camera sensor. Simulation results show that the robustness and efficiency can be balanced by choosing the proper controlling value of band width.

  4. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers.

    Science.gov (United States)

    2010-10-01

    ... boilers. 230.20 Section 230.20 Transportation Other Regulations Relating to Transportation (Continued... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... maintained for the life of the boiler. (See appendix B of this part.) (b) Welded and riveted repairs to...

  5. Dynamic processes during monorail locomotive rocking and their impact on draw gear characteristics

    Directory of Open Access Journals (Sweden)

    Viktor GUTAREVICH

    2011-01-01

    Full Text Available The article discusses the motion of the suspended monorail locomotive, interrelation between the parameters of irregularities false path and lateral rocking monorail locomotive, the values of lateral deviation for the different speeds on the monorail.

  6. Fictive locomotion in the adult decerebrate and spinal mouse in vivo

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Grøndahl, Lillian; Nielsen, Jens Bo

    2012-01-01

    Recently, transgenic mice have been created with mutations affecting the components of the mammalian spinal central pattern generator (CPG) for locomotion, however, it has currently only been possible to evoke fictive locomotion in mice, using neonatal in vitro preparations. Here, we demonstrate...... organisation and allowing for future results in transgenic mice to be extrapolated to existing knowledge of CPG components and circuitry obtained in larger species....

  7. Travel adaptations of Bornean Agile Gibbons Hylobates albibarbis (Primates: Hylobatidaein a degraded secondary forest, Indonesia

    Directory of Open Access Journals (Sweden)

    S.M. Cheyne

    2013-03-01

    Full Text Available Data are presented on the locomotion of Bornean Agile Gibbons (Hylobatesalbibarbis in a disturbed peat-swamp forest. Our results indicate that gibbons favour continuous-canopy forest, higher canopy heights and trees with a larger diameter at breast height. Gibbons select these trees despite the study site being dominated by broken-canopy forest and small trees. Gibbons also change frequently between brachiation, climbing, clambering and bipedal walking in this disturbed forest depending on the size of gap to be crossed. Gibbons are shown to be capable of adapting to some human-induced disturbances in forest continuity and canopy height, and to the presence of smaller trees, e.g., after selective logging. Despite this, gibbons are still limited to crossing gaps of =12m in a single movement, and more research is needed to quantify levels of disturbance gibbons can tolerate.

  8. Using the Functional Reach Test for Probing the Static Stability of Bipedal Standing in Humanoid Robots Based on the Passive Motion Paradigm

    Directory of Open Access Journals (Sweden)

    Jacopo Zenzeri

    2013-01-01

    Full Text Available The goal of this paper is to analyze the static stability of a computational architecture, based on the Passive Motion Paradigm, for coordinating the redundant degrees of freedom of a humanoid robot during whole-body reaching movements in bipedal standing. The analysis is based on a simulation study that implements the Functional Reach Test, originally developed for assessing the danger of falling in elderly people. The study is carried out in the YARP environment that allows realistic simulations with the iCub humanoid robot.

  9. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    Science.gov (United States)

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-06-18

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.

  10. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    Directory of Open Access Journals (Sweden)

    Alan Cross

    Full Text Available The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be

  11. 77 FR 75045 - Locomotive Safety Standards

    Science.gov (United States)

    2012-12-19

    ...; and, locomotive diesel exhaust. In addition to the issues raised in the petitions, FRA has determined... flow method (AFM) indicator calibration date on the Form 6180-49A; the duration of the remote control... in the context of its use. For example, fuel injectors might possibly be considered as providing...

  12. DETERMINATION OF FRAME FORCE FOR ELECTRIC LOCOMOTIVE VL80 WHEN MOVING IN THE CURVED TRACK SECTIONS

    Directory of Open Access Journals (Sweden)

    A. Y. Kuzyshyn

    2017-06-01

    Full Text Available Purpose. When locomotives move in curved sections of the railway track, horizontal forces arise, which lead to pressing the ridge of the wheel pair to the railway track. The article is aimed to develop a method for determining the frame force acting on the bogie from the side of body of the locomotive section using the current methodology of calculating the lateral force. It is also aimed to determine the basic parameters that influence the value of the frame force. It is necessary to construct the dependencies of the frame force on the travel time of electric locomotive in the corresponding curve changing these parameters. Methodology. As is known, the electric locomotive is a multimass mechanical system. We will assume that this system consists of seven bodies: a body, two frames of carriages and four wheel sets. To determine the lateral force acting on the rail from the wheelset one need to solve differential equations of motion of locomotive bogie in curves of small radius. Using the equations of kinetostatics for wheelset one should come to determining the frame force acting on the car bogie from the side of body of the locomotive section. The nominal geometric and mass parameters of parts and components of electric locomotive are taken in the calculations. The curve radius, the length of transition curve, the length of circular curve, the longitudinal slope of railway track and other parameters are fixed values. Findings. There were obtained calculated values of the frame force of electric locomotive VL80 acting on the bogie from the side of body of the locomotive section. Based on the obtained results there were built the dependencies of frame force on the travel time of electric locomotive on the corresponding curve when changing the speed and corresponding elevation of the outer rail. Originality. On the basis of the existing methodology for calculating the lateral force it was developed the method for determining the frame force acting

  13. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems

    Energy Technology Data Exchange (ETDEWEB)

    Asnafi, Alireza [Hydro-Aeronautical Research Center, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of); Mahzoon, Mojtaba [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of)

    2011-09-15

    Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.

  14. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems

    International Nuclear Information System (INIS)

    Asnafi, Alireza; Mahzoon, Mojtaba

    2011-01-01

    Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.

  15. Airborne concentrations of benzene due to diesel locomotive exhaust in a roundhouse.

    Science.gov (United States)

    Madl, Amy K; Paustenbach, Dennis J

    2002-12-13

    Concentrations of airborne benzene due to diesel exhaust from a locomotive were measured during a worst-case exposure scenario in a roundhouse. To understand the upper bound human health risk due to benzene, an electromotive diesel and a General Electric four-cycle turbo locomotive were allowed to run for four 30-min intervals during an 8-h workshift in a roundhouse. Full-shift and 1-h airborne concentrations of benzene were measured in the breathing zone of surrogate locomotive repairmen over the 8-h workshift on 2 consecutive days. In addition, carbon monoxide was measured continuously; elemental carbon (surrogate for diesel exhaust) was sampled with full-shift area samples; and nitrogen dioxide/nitric oxide was sampled using full-shift and 15-min (nitrogen dioxide only) area samples. Peak concentrations of carbon monoxide ranged from 22.5 to 93 ppm. The average concentration of elemental carbon for each day of the roundhouse study was 0.0543 and 0.0552 microg/m(3 )for an 8-h workshift. These were considered "worst-case" conditions since the work environment was intolerably irritating to the eyes, nose, and throat. Short-term nitrogen dioxide concentrations ranged from 0.81 to 2.63 ppm during the diesel emission events with the doors closed. One-hour airborne benzene concentrations ranged from 0.001 to 0.015 ppm with 45% of the measurements below the detection limit of 0.002-0.004 ppm. Results indicated that the 8-h time-weighted average for benzene in the roundhouse was approximately 100-fold less than the current threshold limit value (TLV) of 0.5 ppm. These data are consistent with other studies, which have indicated that benzene concentrations due to diesel emissions, even in a confined environment, are quite low.

  16. A semi-automated motion-tracking analysis of locomotion speed in the C. elegans transgenics overexpressing beta-amyloid in neurons

    Directory of Open Access Journals (Sweden)

    Kevin eMachino

    2014-07-01

    Full Text Available Multi-Worm Tracker (MWT is a real-time computer vision system that can simultaneously quantify motional patterns of multiple worms. MWT provides several behavioral parameters, including analysis of accurate real-time locomotion speed in the nematode, Caenorhabditis elegans. Here, we determined locomotion speed of the Alzheimer’s disease (AD transgenic strain that over-expresses human beta-amyloid1-42 (Aβ in the neurons. The MWT analysis showed that the AD strain logged a slower average speed than the wild type worms. The results may be consistent with the observation that the AD patients with dementia tend to show deficits in physical activities, including frequent falls. The AD strain showed reduced ability of the eggs to hatch and slowed hatching of the eggs. Thus, over-expression of Aβ in neurons causes negative effects on locomotion and hatchability. This study sheds light on new examples of detrimental effects that Aβ deposits can exhibit using C. elegans as a model system. The information gathered from this study indicates that the motion tracking analysis is a cost-effective, efficient way to assess the deficits of Aβ over-expression in the C. elegans system.

  17. Acute food deprivation reverses morphine-induced locomotion deficits in M5 muscarinic receptor knockout mice.

    Science.gov (United States)

    Steidl, Stephan; Lee, Esther; Wasserman, David; Yeomans, John S

    2013-09-01

    Lesions of the pedunculopontine tegmental nucleus (PPT), one of two sources of cholinergic input to the ventral tegmental area (VTA), block conditioned place preference (CPP) for morphine in drug-naïve rats. M5 muscarinic cholinergic receptors, expressed by midbrain dopamine neurons, are critical for the ability of morphine to increase nucleus accumbens dopamine levels and locomotion, and for morphine CPP. This suggests that M5-mediated PPT cholinergic inputs to VTA dopamine neurons critically contribute to morphine-induced dopamine activation, reward and locomotion. In the current study we tested whether food deprivation, which reduces PPT contribution to morphine CPP in rats, could also reduce M5 contributions to morphine-induced locomotion in mice. Acute 18-h food deprivation reversed the phenotypic differences usually seen between non-deprived wild-type and M5 knockout mice. That is, food deprivation increased morphine-induced locomotion in M5 knockout mice but reduced morphine-induced locomotion in wild-type mice. Food deprivation increased saline-induced locomotion equally in wild-type and M5 knockout mice. Based on these findings, we suggest that food deprivation reduces the contribution of M5-mediated PPT cholinergic inputs to the VTA in morphine-induced locomotion and increases the contribution of a PPT-independent pathway. The contributions of cholinergic, dopaminergic and GABAergic neurons to the effects of acute food deprivation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. FORMALIZATION OF LOCOMOTIVE DRIVER ACTIVITY TENSION INDICATOR BASED ON THE ERGONOMIC MODEL

    Directory of Open Access Journals (Sweden)

    O. M. Horobchenko

    2017-02-01

    Full Text Available Purpose. A key factor contributing to the safety and quality of ergatic system "train-driver" is the intensity of the locomotive crew’s work. The aim of this work is formalization of locomotive driver activity tension indicator. Methodology. One of the characteristics of driver activity tension is the difference between the time allotted to complete the task, and the necessary (external reserve or deficiency time. The sets of major and minor operations in the management of the train locomotive in different train situations were identified. Using the methods of fuzzy logic, the concept of "materiality of the operation of the locomotive control" is presented in the form of a set of linguistic variables. To determine the function membership of the elements of the set "the importance of the operation of the locomotive control" the method of expert evaluations was used. Coefficient of temporary tension is presented in the form of fuzzy number L-R-type. Findings. It was found the value of the relative number of operations of locomotive control according to the distribution using the parameter of operation "importance". To determine the most tensioned mode of the driver ranking the traffic condition according to the parameter of relative amounts of the important management operations was conducted. The most difficult modes are the "front hindrance", "movement in unfavorable weather conditions" and "departure from the station to the running line". Originality. The introduction of the value "conventional importance of the operation" allowed us to more accurately describe the terms of train driving. For the first time the work presents determination of tension of the driver’s work in the form of a unimodal fuzzy number, which will make it possible to use the methods of the theory of artificial intelligence to simulate activity of the locomotive driver and develop intelligent control systems. Practical value. There were obtained the opportunity to

  19. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  20. HoverBots: Precise Locomotion Using Robots That Are Designed for Manufacturability

    Directory of Open Access Journals (Sweden)

    Markus P. Nemitz

    2017-11-01

    Full Text Available Scaling up robot swarms to collectives of hundreds or even thousands without sacrificing sensing, processing, and locomotion capabilities is a challenging problem. Low-cost robots are potentially scalable, but the majority of existing systems have limited capabilities, and these limitations substantially constrain the type of experiments that could be performed by robotics researchers. As an alternative to increasing the quantity of robots by reducing their functionality, we have developed a new technology that delivers increased functionality at low-cost. In this study, we present a comprehensive literature review on the most commonly used locomotion strategies of swarm robotic systems. We introduce a new type of low-friction locomotion—active low-friction locomotion—and we show its first implementation in the HoverBot system. The HoverBot system consists of an air levitation and magnet table, and a HoverBot agent. HoverBot agents are levitating circuit boards that we have equipped with an array of planar coils and a Hall-effect sensor. The HoverBot agent uses its coils to pull itself toward magnetic anchors that are embedded into a levitation table. These robots use active low-friction locomotion; consist of only surface-mount components; circumvent actuator calibration; are capable of odometry by using a single Hall-effect sensor; and perform precise movement. We conducted three hours of experimental evaluation of the HoverBot system in which we observed the system performing more than 10,000 steps. We also demonstrate formation movement, random collision, and straight collisions with two robots. This study demonstrates that active low-friction locomotion is an alternative to wheeled and slip-stick locomotion in the field of swarm robotics.

  1. Design and analysis of an optimal hopper for use in resonance-based locomotion

    NARCIS (Netherlands)

    Wanders, Ivor; Folkertsma, Gerrit Adriaan; Stramigioli, Stefano

    Quadrupedal running is an efficient form of locomotion found in nature, which serves as an inspiration for robotics. We believe that a resonance-based approach is the path towards energy-efficient legged locomotion and running robots. The first step in working towards this goal is creating an

  2. Swimming at low Reynolds number: a beginners guide to undulatory locomotion

    Science.gov (United States)

    Cohen, Netta; Boyle, Jordan H.

    2010-03-01

    Undulatory locomotion is a means of self-propulsion that relies on the generation and propagation of waves along a body. As a mode of locomotion it is primitive and relatively simple, yet can be remarkably robust. No wonder then, that it is so prevalent across a range of biological scales from motile bacteria to gigantic prehistoric snakes. Key to understanding undulatory locomotion is the body's interplay with the physical environment, which the swimmer or crawler will exploit to generate propulsion, and in some cases, even to generate the underlying undulations. This review focuses by and large on undulators in the low Reynolds number regime, where the physics of the environment can be much more tractable. We review some key concepts and theoretical advances, as well as simulation tools and results applied to selected examples of biological swimmers. In particular, we extend the discussion to some simple cases of locomotion in non-Newtonian media as well as to small animals, in which the nervous system, motor control, body properties and the environment must all be considered to understand how undulations are generated and modulated. To conclude, we review recent progress in microrobotic undulators that may one day become commonplace in applications ranging from toxic waste disposal to minimally invasive surgery.

  3. Differences in gaze anticipation for locomotion with and without vision

    Science.gov (United States)

    Authié, Colas N.; Hilt, Pauline M.; N'Guyen, Steve; Berthoz, Alain; Bennequin, Daniel

    2015-01-01

    Previous experimental studies have shown a spontaneous anticipation of locomotor trajectory by the head and gaze direction during human locomotion. This anticipatory behavior could serve several functions: an optimal selection of visual information, for instance through landmarks and optic flow, as well as trajectory planning and motor control. This would imply that anticipation remains in darkness but with different characteristics. We asked 10 participants to walk along two predefined complex trajectories (limaçon and figure eight) without any cue on the trajectory to follow. Two visual conditions were used: (i) in light and (ii) in complete darkness with eyes open. The whole body kinematics were recorded by motion capture, along with the participant's right eye movements. We showed that in darkness and in light, horizontal gaze anticipates the orientation of the head which itself anticipates the trajectory direction. However, the horizontal angular anticipation decreases by a half in darkness for both gaze and head. In both visual conditions we observed an eye nystagmus with similar properties (frequency and amplitude). The main difference comes from the fact that in light, there is a shift of the orientations of the eye nystagmus and the head in the direction of the trajectory. These results suggest that a fundamental function of gaze is to represent self motion, stabilize the perception of space during locomotion, and to simulate the future trajectory, regardless of the vision condition. PMID:26106313

  4. 49 CFR 229.129 - Locomotive horn.

    Science.gov (United States)

    2010-10-01

    .... The locomotive shall be positioned on straight, level track. (6) Measurements shall be taken only when... between 20 percent and 95 percent inclusively; wind velocity is not more than 12 miles per hour and there..., at an angle no greater than 20 degrees from the center line of the track, and oriented with respect...

  5. Equilibrium Condition during Locomotion and Gait in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    MCF Alves

    Full Text Available ABSTRACT The experiment was carried out with the objective of evaluating a methodology to estimate the angulation and equilibrium condition, relating them to gait score and the main diseases of the locomotion system in males and females of commercial broiler strains. A completely randomized experimental design in a factorial arrangement (2x2 was applied, consisting of two sexes and two genetic strains, with five replicates of 53 chickens each. The following characteristics related to broiler locomotion were studied: gait score (GS; incidence of Valgus (VAL and Varus (VAR deformities and of pododermatitis (POD; body angle relative the ground (ANG; equilibrium condition (EC; body weight (BW and breast weight (BrW; and incidence of femoral degeneration (FD, tibial dyschondroplasia (TD and spondylolisthesis (SPO. GS, and VAL and VAR were assessed inside a broiler house. Birds were then photographed to estimate ANG and EC. Birds were sacrificed at 42 days of age and analyzed for FD, TD, and SPO. Breast percentage was not influenced by sex or strain. Males showed better ANG than females, regardless of strain. Overall, the strains studied showed prostrated EC. The correlation between GS and the evaluated traits was low. There was a moderate to high association between EC and ANG both in males and females. GS showed low correlation with locomotion problems, and therefore, it is a poor indicator of skeletal diseases. On the other hand, the moderate to high correlations of ANG and EC with locomotion problems make them better indicators of bone diseases than gait score, which is possibly more related to EC and body posture than to bone pathologies.

  6. Dynamic Locomotion With Four and Six-Legged Robots

    National Research Council Canada - National Science Library

    Buehler, M; Saranli, U; Papadopoulos, D; Koditschek, D

    2000-01-01

    .... The Scout II quadruped runs on flat ground in a bounding gait, and was motivated by an effort to understand the minimal mechanical design and control complexity for dynamically stable locomotion...

  7. Full-scale locomotive dynamic collision testing and correlations : offset collisions between a locomotive and a covered hopper car (test 4).

    Science.gov (United States)

    2011-09-01

    This report presents the test results and finite element correlations of a full-scale dynamic collision test with rail vehicles as part of the Federal Railroad Administrations research program on improved crashworthiness of locomotive structures. ...

  8. [Possible changes in energy-minimizer mechanisms of locomotion due to chronic low back pain - a literature review].

    Science.gov (United States)

    de Carvalho, Alberito Rodrigo; Andrade, Alexandro; Peyré-Tartaruga, Leonardo Alexandre

    2015-01-01

    One goal of the locomotion is to move the body in the space at the most economical way possible. However, little is known about the mechanical and energetic aspects of locomotion that are affected by low back pain. And in case of occurring some damage, little is known about how the mechanical and energetic characteristics of the locomotion are manifested in functional activities, especially with respect to the energy-minimizer mechanisms during locomotion. This study aimed: a) to describe the main energy-minimizer mechanisms of locomotion; b) to check if there are signs of damage on the mechanical and energetic characteristics of the locomotion due to chronic low back pain (CLBP) which may endanger the energy-minimizer mechanisms. This study is characterized as a narrative literature review. The main theory that explains the minimization of energy expenditure during the locomotion is the inverted pendulum mechanism, by which the energy-minimizer mechanism converts kinetic energy into potential energy of the center of mass and vice-versa during the step. This mechanism is strongly influenced by spatio-temporal gait (locomotion) parameters such as step length and preferred walking speed, which, in turn, may be severely altered in patients with chronic low back pain. However, much remains to be understood about the effects of chronic low back pain on the individual's ability to practice an economic locomotion, because functional impairment may compromise the mechanical and energetic characteristics of this type of gait, making it more costly. Thus, there are indications that such changes may compromise the functional energy-minimizer mechanisms. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  9. Locomotive energy savings possibilities

    Directory of Open Access Journals (Sweden)

    Leonas Povilas LINGAITIS

    2009-01-01

    Full Text Available Economic indicators of electrodynamic braking have not been properly estimated. Vehicles with alternative power trains are transitional stage between development of pollution- free vehicles. According to these aspects the investigation on conventional hybrids drives and their control system is carried out in the article. The equation that allows evaluating effectiveness of regenerative braking for different variants of hybrid drive are given. Presenting different types of locomotive energy savings power systems, which are using regenerative braking energy any form of hybrid traction vehicles systems, circuit diagrams, electrical parameters curves.

  10. Environmental and cow-related factors affect cow locomotion and can cause misclassification in lameness detection systems.

    Science.gov (United States)

    Van Nuffel, A; Van De Gucht, T; Saeys, W; Sonck, B; Opsomer, G; Vangeyte, J; Mertens, K C; De Ketelaere, B; Van Weyenberg, S

    2016-09-01

    To tackle the high prevalence of lameness, techniques to monitor cow locomotion are being developed in order to detect changes in cows' locomotion due to lameness. Obviously, in such lameness detection systems, alerts should only respond to locomotion changes that are related to lameness. However, other environmental or cow factors can contribute to locomotion changes not related to lameness and hence, might cause false alerts. In this study the effects of wet surfaces, dark environment, age, production level, lactation and gestation stage on cow locomotion were investigated. Data was collected at Institute for Agricultural and Fisheries Research research farm (Melle, Belgium) during a 5-month period. The gait variables of 30 non-lame and healthy Holstein cows were automatically measured every day. In dark environments and on wet walking surfaces cows took shorter, more asymmetrical strides with less step overlap. In general, older cows had a more asymmetrical gait and they walked slower with more abduction. Lactation stage or gestation stage also showed significant association with asymmetrical and shorter gait and less step overlap probably due to the heavy calf in the uterus. Next, two lameness detection algorithms were developed to investigate the added value of environmental and cow data into detection models. One algorithm solely used locomotion variables and a second algorithm used the same locomotion variables and additional environmental and cow data. In the latter algorithm only age and lactation stage together with the locomotion variables were withheld during model building. When comparing the sensitivity for the detection of non-lame cows, sensitivity increased by 10% when the cow data was added in the algorithm (sensitivity was 70% and 80% for the first and second algorithm, respectively). Hence, the number of false alerts for lame cows that were actually non-lame, decreased. This pilot study shows that using knowledge on influencing factors on cow

  11. Crucial advantages of tail use in the evolution of vertebrate terrestrial locomotion

    Science.gov (United States)

    Astley, Henry; McInroe, Benjamin; Kawano, Sandy; Blob, Rick; Goldman, Daniel

    In the invasion of terrestrial environment, the first tetrapods faced the challenge of locomotion on flowable substrates (e.g. sand and mud), sometimes oriented at inclines. Although the morphology of many early tetrapods is known, robotic studies have revealed that effective locomotion on these substrates also depends strongly upon kinematics; slight differences in movements of the same appendage can lead to success or failure. Using a model organism (the mudskipper) and a robotic physical model, we demonstrate how muscular tails provided critical locomotor advantages on granular substrates that the first invaders of land likely encountered. Mudskippers use their tails for additional propulsion with increasing frequency as the slope of the granular material increases, and the decline in locomotor performance with slope is shallower when the tail is used. Experiments with a robotic model of the mudskipper showed that, while the tail did not always provide a benefit to locomotion, use of the tail made the robot's performance more robust, achieving effective locomotion on a wider range of slopes, limb postures and foot placements. These results suggest that, rather than simply being an inert appendage, the tails of early tetrapods were vital to their first forays into terrestrial habitats.

  12. Bombardier extends its TRAXX locomotive family; Bombardier erweitert seine Lokomotivfamilie TRAXX

    Energy Technology Data Exchange (ETDEWEB)

    Vitins, J. [Bombardier, Zuerich (Switzerland)

    2005-07-01

    Bombardier has extended and optimised its TRAXX locomotive platform, launched in 2003, with the addition of a multi-system locomotive and the introduction of technical innovations. The developments centre on the multi-system loco TRAXX F140 MS, which gained approval in a very short space of time and is already being successfully operated by SBB as type Re 484 for freight traffic between Switzerland and Italy; the TRAXX F140 DC, recently ordered by Angel Trains Cargo for Italy's DC network, and the 2nd series of the proven AC loco TRAXX AC2, operated by Railion in Germany as type BR 185.2. All these locomotive types reflect the development work undertaken with a view to accommodating the various national train protection systems through the new ETCS-compatible Bombardier ATP (Automatic Train Protection) system, together with chopper-controlled power conversion in DC networks. (orig.)

  13. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons.

    Science.gov (United States)

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei

    2016-09-02

    Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.

  14. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons

    Directory of Open Access Journals (Sweden)

    Yi Long

    2016-09-01

    Full Text Available Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM optimized by particle swarm optimization (PSO to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz, a three-layer wavelet packet analysis (WPA is used for feature extraction, after which, the kernel principal component analysis (kPCA is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.

  15. Hybrid Locomotive for Energy Savings and Reduced Emissions

    Science.gov (United States)

    2017-08-01

    Norfolk Southern Corporation (NS) and Pennsylvania State University tested several different battery systems in hybrid locomotives. Advanced lithium-ion battery technology was the only kind that displayed the capacity to perform in heavy switching or...

  16. Performance analysis of jump-gliding locomotion for miniature robotics.

    Science.gov (United States)

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  17. Economic aspects of advanced coal-fired gas turbine locomotives

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  18. The G6 - a heavy-duty six-wheeled shunting locomotive; Dreiachsige Hochleistungsrangierlokomotive G6

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Tim [Vossloh Locomotives GmbH, Kiel (Germany). Entwicklung und Standardisierung

    2009-03-15

    With the three-axle shunter G6, exhibited at Innotrans 2008, the renowned producer of rail vehicles Vossloh Locomotives GmbH marks the beginning of a generational change - not only for three-axle but also for four-axle locomotives. In order to replace the type G765C the G6 has been developed in close cooperation with potential customers. Their request concerning robustness and reliability as well as the equipment options set standards for central driver's cab locomotives in general and lead the way for future four-axle replacements within the Vossloh product family. (orig.)

  19. Full-scale locomotive dynamic crash testing and correlations : C-39 type locomotive colliding with a loaded hopper car (test 7).

    Science.gov (United States)

    2011-09-01

    This report presents the results of a locomotive and three loaded hopper car consist traveling at 29 miles per hour colliding with a stationary consist of 35 loaded hopper cars. The details of test instrumentation, LS-DYNA finite element simulation, ...

  20. A 3D musculoskeletal model of the western lowland gorilla hind limb: moment arms and torque of the hip, knee and ankle.

    Science.gov (United States)

    Goh, Colleen; Blanchard, Mary L; Crompton, Robin H; Gunther, Michael M; Macaulay, Sophie; Bates, Karl T

    2017-10-01

    Three-dimensional musculoskeletal models have become increasingly common for investigating muscle moment arms in studies of vertebrate locomotion. In this study we present the first musculoskeletal model of a western lowland gorilla hind limb. Moment arms of individual muscles around the hip, knee and ankle were compared with previously published data derived from the experimental tendon travel method. Considerable differences were found which we attribute to the different methodologies in this specific case. In this instance, we argue that our 3D model provides more accurate and reliable moment arm data than previously published data on the gorilla because our model incorporates more detailed consideration of the 3D geometry of muscles and the geometric constraints that exist on their lines-of-action about limb joints. Our new data have led us to revaluate the previous conclusion that muscle moment arms in the gorilla hind limb are optimised for locomotion with crouched or flexed limb postures. Furthermore, we found that bipedalism and terrestrial quadrupedalism coincided more regularly with higher moment arms and torque around the hip, knee and ankle than did vertical climbing. This indicates that the ability of a gorilla to walk bipedally is not restricted by musculoskeletal adaptations for quadrupedalism and vertical climbing, at least in terms of moment arms and torque about hind limb joints. © 2017 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  1. How the unique configuration of the human head may enhance flavor perception capabilities: an evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Daniel E Lieberman

    2014-07-01

    the 90° orientation of the neck relative to the long axes of the nasal and oral cavities (Figure 1. This shift in the orientation was almost certainly selected for because of the evolution of bipedalism, which appears to be the key derived feature that distinguishes early hominins from other apes. Although bipedalism likely evolved as an adaption for hominins to locomote and forage efficiently, a vertically oriented neck requires expired air to turn approximately 90° to get from the nasopharynx to the external nares [reviewed in 3]. Consequently, a larger percentage of expired air in bipedal hominins is directed toward the superior margin of the nasal cavity, hence to the olfactory epithelium. The third derived adaptation of humans that may aid retronasal olfaction is enhanced turbulence in the nasal cavity. Turbulent flow generates more resistance than laminar flow but likely increases the ability for odorants to bind to olfactory neurons by slowing airflow rates, causing a higher percentage of odorants to circulate repeatedly in vortices along the margins of the olfactory epithelium, and by eliminating the boundary zone of inert air that occurs during pure laminar flow [2]. Retronasal airflow turbulence in humans is likely increased by the 90° turn that expired air must take to enter the nasal cavity, by shortening of the nasal cavity from the loss of a snout, and by valve-like discontinuities in cross sectional area between the nasal cavity, the internal nares, and the nasopharynx. Some of these features evolved in the first bipedal hominins, but others such as midfacial shortening evolved in the genus Homo. Although enhanced turbulence in the nose may benefit olfaction, it most likely evolved as an adaptation to enhance the ability to control the humidity and temperature of both inspired and expired air during vigorous physical activity in hot, arid conditions [reviewed in 3]. The final adaptation that may improve retronasal olfaction is the unique

  2. Natural Translating Locomotion Modulates Cortical Activity at Action Observation

    Directory of Open Access Journals (Sweden)

    Thierry Pozzo

    2017-11-01

    Full Text Available The present study verified if the translational component of locomotion modulated cortical activity recorded at action observation. Previous studies focusing on visual processing of biological motion mainly presented point light walker that were fixed on a spot, thus removing the net translation toward a goal that yet remains a critical feature of locomotor behavior. We hypothesized that if biological motion recognition relies on the transformation of seeing in doing and its expected sensory consequences, a significant effect of translation compared to centered displays on sensorimotor cortical activity is expected. To this aim, we explored whether EEG activity in the theta (4–8 Hz, alpha (8–12 Hz, beta 1 (14–20 Hz and beta 2 (20–32 Hz frequency bands exhibited selectivity as participants viewed four types of stimuli: a centered walker, a centered scrambled, a translating walker and a translating scrambled. We found higher theta synchronizations for observed stimulus with familiar shape. Higher power decreases in the beta 1 and beta 2 bands, indicating a stronger motor resonance was elicited by translating compared to centered stimuli. Finally, beta bands modulation in Superior Parietal areas showed that the translational component of locomotion induced greater motor resonance than human shape. Using a Multinomial Logistic Regression classifier we found that Dorsal-Parietal and Inferior-Frontal regions of interest (ROIs, constituting the core of action-observation system, were the only areas capable to discriminate all the four conditions, as reflected by beta activities. Our findings suggest that the embodiment elicited by an observed scenario is strongly mediated by horizontal body displacement.

  3. Nonlinear dynamics analysis of the spur gear system for railway locomotive

    Science.gov (United States)

    Wang, Junguo; He, Guangyue; Zhang, Jie; Zhao, Yongxiang; Yao, Yuan

    2017-02-01

    Considering the factors such as the nonlinearity backlash, static transmission error and time-varying meshing stiffness, a three-degree-of-freedom torsional vibration model of spur gear transmission system for a typical locomotive is developed, in which the wheel/rail adhesion torque is considered as uncertain but bounded parameter. Meantime, the Ishikawa method is used for analysis and calculation of the time-varying mesh stiffness of the gear pair in meshing process. With the help of bifurcation diagrams, phase plane diagrams, Poincaré maps, time domain response diagrams and amplitude-frequency spectrums, the effects of the pinion speed and stiffness on the dynamic behavior of gear transmission system for locomotive are investigated in detail by using the numerical integration method. Numerical examples reveal various types of nonlinear phenomena and dynamic evolution mechanism involving one-period responses, multi-periodic responses, bifurcation and chaotic responses. Some research results present useful information to dynamic design and vibration control of the gear transmission system for railway locomotive.

  4. Stable walking with asymmetric legs

    International Nuclear Information System (INIS)

    Merker, Andreas; Rummel, Juergen; Seyfarth, Andre

    2011-01-01

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  5. Impact of food restriction and cocaine on locomotion in ghrelin- and ghrelin-receptor knockout mice.

    Science.gov (United States)

    Clifford, Shane; Zeckler, Rosie Albarran; Buckman, Sam; Thompson, Jeff; Hart, Nigel; Wellman, Paul J; Smith, Roy G

    2011-07-01

    Food restriction (FR) augments the behavioral and reinforcing effects of psychomotor stimulants such as cocaine or amphetamine; effects that may be related to the capacity of FR to increase plasma levels of ghrelin (GHR), a 28-amino acid orexigenenic peptide linked to activation of brain dopamine systems. The present study used wild-type (WT) mice or mutant mice sustaining knockout of either GHR [GHR((-/-)) ] or of the growth hormone secretagogue receptor [GHS-R((-/-)) ] and subjected to FR or not to evaluate the role of GHR and GHS-R in cocaine-stimulated locomotion. WT, GHR((-/-)) , and GHS-R((-/-)) mice were either restricted to 60% of baseline caloric intake or allowed to free-feed (FF). Mice were treated with 0, 1.25, 2.5 and 5.0 mg/kg cocaine on separate test days (in random dose order) and forward locomotion was recorded on each drug day for 45 minutes after drug dosing. Food (and water) was available immediately after (but not during) each activity test. For FF mice, there was no interaction between cocaine and GHR status on locomotion. FR-WT mice treated with saline exhibited significant increases in anticipatory locomotion (relative to FF-WT mice), whereas FR-GHS-R((-/-)) mice did not. Cocaine significantly increased locomotion in FR-GHR((-/-)) and FR-GHS-R((-/-)) mice to the levels noted in FR-WT mice. These results suggest that GHS-R activity, but not GHR activity, is required for FR to augment food-associated anticipatory locomotion, but do not support the contention that GHR pathways are required for the capacity of FR to augment the acute effect of cocaine on locomotion. © 2010 The Authors, Addiction Biology © 2010 Society for the Study of Addiction.

  6. A Dynamic Simulation of Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion

    Directory of Open Access Journals (Sweden)

    James P. Charles

    2018-05-01

    Full Text Available Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations.

  7. The coal-fired gas turbine locomotive - A new look

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  8. Three-dimensional Locomotion and Drilling Microrobot Using Electromagnetic Actuation System

    International Nuclear Information System (INIS)

    Li, Girl; Choi, Hyun Chul; Cha, Kyoung Rae; Jeong, Se Mi; Park, Jong Oh; Park, Suk Ho

    2011-01-01

    In this study, a novel electromagnetic microrobot system with locomotion and drilling functions in three dimensional space was developed. Because of size limitations, the microrobot does not have actuator, battery, and controller. Therefore, an electromagnetic actuation (EMA) system was used to drive the robot. The proposed EMA system consists of three rectangular Helmholtz coil pairs in x-, y- and z-axes and a Maxwell coil pair in the z-axis. The magnetic field generated in the EMA coil system could be controlled by the input current of the EMA coil. Finally, through various experiments, the locomotion and drilling performances of the proposed EMA microrobot system were verified

  9. Three-dimensional Locomotion and Drilling Microrobot Using Electromagnetic Actuation System

    Energy Technology Data Exchange (ETDEWEB)

    Li, Girl; Choi, Hyun Chul; Cha, Kyoung Rae; Jeong, Se Mi; Park, Jong Oh; Park, Suk Ho [Chonnam National University, Gwangju (Korea, Republic of)

    2011-12-15

    In this study, a novel electromagnetic microrobot system with locomotion and drilling functions in three dimensional space was developed. Because of size limitations, the microrobot does not have actuator, battery, and controller. Therefore, an electromagnetic actuation (EMA) system was used to drive the robot. The proposed EMA system consists of three rectangular Helmholtz coil pairs in x-, y- and z-axes and a Maxwell coil pair in the z-axis. The magnetic field generated in the EMA coil system could be controlled by the input current of the EMA coil. Finally, through various experiments, the locomotion and drilling performances of the proposed EMA microrobot system were verified.

  10. Obstacle traversal and self-righting of bio-inspired robots reveal the physics of multi-modal locomotion

    Science.gov (United States)

    Li, Chen; Fearing, Ronald; Full, Robert

    Most animals move in nature in a variety of locomotor modes. For example, to traverse obstacles like dense vegetation, cockroaches can climb over, push across, reorient their bodies to maneuver through slits, or even transition among these modes forming diverse locomotor pathways; if flipped over, they can also self-right using wings or legs to generate body pitch or roll. By contrast, most locomotion studies have focused on a single mode such as running, walking, or jumping, and robots are still far from capable of life-like, robust, multi-modal locomotion in the real world. Here, we present two recent studies using bio-inspired robots, together with new locomotion energy landscapes derived from locomotor-environment interaction physics, to begin to understand the physics of multi-modal locomotion. (1) Our experiment of a cockroach-inspired legged robot traversing grass-like beam obstacles reveals that, with a terradynamically ``streamlined'' rounded body like that of the insect, robot traversal becomes more probable by accessing locomotor pathways that overcome lower potential energy barriers. (2) Our experiment of a cockroach-inspired self-righting robot further suggests that body vibrations are crucial for exploring locomotion energy landscapes and reaching lower barrier pathways. Finally, we posit that our new framework of locomotion energy landscapes holds promise to better understand and predict multi-modal biological and robotic movement.

  11. On The Evolution of Human Jaws and Teeth: A Review

    Directory of Open Access Journals (Sweden)

    Serhat Yalcin

    2011-06-01

    Full Text Available The jaws and teeth of Homo sapiens have evolved, from the last common ancestor of chimpanzee and men to their current form. Many factors such as the foods eaten and the processing of foods by fire and tools have effected this evolution course. The evolution of the masticatory complex is related to other anatomical features such as brain size and bipedal posture, and leads to important proceedings like the formation of speech and language. In this review, the evolution of human jaws and teeth and its impact on the general course of human evolution is discussed.

  12. On the origin of avian air sacs.

    Science.gov (United States)

    Farmer, C G

    2006-11-01

    For many vertebrates the lung is the largest and lightest organ in the body cavity and for these reasons can greatly affect an organism's shape, density, and its distribution of mass; characters that are important to locomotion. In this paper non-respiratory functions of the lung are considered along with data on the respiratory capacities and gas exchange abilities of birds and crocodilians to infer the evolutionary history of the respiratory systems of dinosaurs, including birds. From a quadrupedal ancestry theropod dinosaurs evolved a bipedal posture. Bipedalism is an impressive balancing act, especially for tall animals with massive heads. During this transition selection for good balance and agility may have helped shape pulmonary morphology. Respiratory adaptations arising for bipedalism are suggested to include a reduction in costal ventilation and the use of cuirassal ventilation with a caudad expansion of the lung into the dorsal abdominal cavity. The evolution of volant animals from bipeds required yet again a major reorganization in body form. With this transition avian air sacs may have been favored because they enhanced balance and agility in flight. Finally, I propose that these hypotheses can be tested by examining the importance of the air sacs to balance and agility in extant animals and that these data will enhance our understanding of the evolution of the respiratory system in archosaurs.

  13. The effects of ketamine on sexual behavior, anxiety, and locomotion in female rats.

    Science.gov (United States)

    Guarraci, Fay A; Gonzalez, Chantal M F; Lucero, Devon; Womble, Paige D; Abdel-Rahim, Heba; DeVore, Jennie; Kunkel, Marcela Nicole; Quadlander, Emma; Stinnett, Morgan; Boyette-Davis, Jessica

    2018-02-01

    The present study characterized the effects of ketamine on sexual behavior and anxiety in female rats. In Experiment 1, female subjects received an injection of ketamine (10.0mg/kg) or saline 30min prior to a sexual partner-preference test during which each female subject was given the opportunity to interact with a female stimulus or a sexually vigorous male stimulus. Immediately afterwards, female subjects were tested for locomotion in an open field test. Ketamine-treated subjects spent significantly more time with the male stimulus than saline-treated subjects. No other measures of mating behavior (i.e., paced mating behavior, lordosis) were affected by ketamine. Ketamine also had no effect on locomotion. In Experiment 2, female subjects received an injection of ketamine (10.0mg/kg), or saline daily for 10days to investigate the possibility that sexual dysfunction emerges only after repeated exposure. Similar to the results of Experiment 1, ketamine-treated subjects spent significantly more time with the male stimulus than saline-treated subjects. Chronic ketamine treatment also decreased the likelihood of leaving the male after mounts, without affecting any other measures of sexual behavior. Chronic ketamine had no effect on locomotion. In Experiment 3, female subjects received an injection of ketamine (10.0mg/kg) or saline and were tested for anxiety in an elevated plus maze test and for locomotion in an open field test. Acute ketamine had no effect on anxiety or locomotion. In Experiment 4, female subjects received an injection of ketamine (10.0mg/kg) or saline daily for 10days to investigate the possibility that anxiety emerges only after repeated exposure. Chronic ketamine exposure had no effect on any measure of anxiety. However, chronic ketamine exposure increased locomotion. The results from these experiments indicate that unlike other medications prescribed for depression, neither acute nor chronic ketamine treatment causes anxiety or disruption of

  14. Locomotion of bluefish.

    Science.gov (United States)

    DuBois, A B; Cavagna, G A; Fox, R S

    1976-02-01

    1. Pressure previously measured on the body surface of swimming bluefish were resolved into their backward vectorial components to allow calculation of profile drag. It was 0.18 kg at a speed of 1.8 m/sec. Tangential drag was calculated as if for a thin plate of an area equal to that of the fish. It was 0.08 kg at 1.8 m/sec. Net drag, 0.26 kg, was the sum of profile and tangential drag. 2. Thrust and drag also were calculated from the changes of acceleration measured during steady swimming, assuming that thrust took place only during the acceleration phase, whereas drag occurred during both acceleration and deceleration. This drag was 0.08 kg at a speed of 1.1 m/sec. It is compatible with the drag of 0.26 at 1.8 m/sec calculated from profile and tangential drag provided drag varies as the square of velocity. 3. The force required to produced maximal acceleration was measured during a scare. It was calculated to be 6.9 kg at a peak acceleration of 3 g. 4. The compression strength of th vertebrae was found to be approximately 20 kg per cm2, or roughly three times the force encountered during maximal acceleration. This safety factor of 3 would be reduced when the back was curved, or if opposing groups of muscles were under tension. 5. The finding that a bluefish can accelerate at 3 g and that the vertebral column is strongg enough to withstand this force indicates that the muscles and body structure of a bluefish would be able to withstand the force of gravity if the fish were otherwise equipped for terrestrial life. This fish may have evolved these strengths simultaneously with land animals. It is speculated that other fish may have evolved some degree of strength to overcome inertia and drag during aquatic locomotion, and this evolution may have been a prelude to terrestrial locomotion.

  15. Trading of locomotive NO(sub x) emissions : a potential success story

    International Nuclear Information System (INIS)

    Gaines, L. L.; Biess, L. J.; Diedrich, G. K.

    2002-01-01

    New US Environmental Protection Agency regulations are forcing locomotive manufacturers and railroads to reduce pollutant emissions from locomotive operation. All new locomotives must meet strict standards when they are built, and existing locomotives must comply when they are rebuilt. Emissions can be reduced either by adjusting combustion parameters, which incurs a fuel penalty, or by turning the diesel engine off when the train is not moving and would otherwise be idling. The latter reduces fuel consumption, but requires installation of a device-such as an auxiliary power unit (APU)-to ensure that the engine can be restarted in cold weather and to supply hotel loads for the crew. Without a financial incentive, capital-short railroads will opt to achieve compliance in the least costly way. However, if they have the option of selling emissions credits from reducing emissions below regulated levels, it would be in their best interest to install additional equipment to minimize emissions. These credits could be purchased by businesses with compliance costs greater than either the cost of the credits or the fines they would have had to pay for non-compliance. The result is a financial benefit for both parties, and a net reduction in emissions, because the seller is emitting below regulated levels, and the buyer is no longer non-compliant. This paper describes a railroad as the potential seller, unable to consummate trades because of uncertainty in the regulatory environment, and estimates financial benefits and reductions in emissions and energy use that could be achieved if the barrier could be removed

  16. Test requirements of locomotive fuel tank blunt impact tests

    Science.gov (United States)

    2013-10-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into passenger : locomotive fuel tank crashworthiness. A series of impact tests : are planned to measure fuel tank deformation under two types : of dy...

  17. Reflex control of robotic gait using human walking data.

    Directory of Open Access Journals (Sweden)

    Catherine A Macleod

    Full Text Available Control of human walking is not thoroughly understood, which has implications in developing suitable strategies for the retraining of a functional gait following neurological injuries such as spinal cord injury (SCI. Bipedal robots allow us to investigate simple elements of the complex nervous system to quantify their contribution to motor control. RunBot is a bipedal robot which operates through reflexes without using central pattern generators or trajectory planning algorithms. Ground contact information from the feet is used to activate motors in the legs, generating a gait cycle visually similar to that of humans. Rather than developing a more complicated biologically realistic neural system to control the robot's stepping, we have instead further simplified our model by measuring the correlation between heel contact and leg muscle activity (EMG in human subjects during walking and from this data created filter functions transferring the sensory data into motor actions. Adaptive filtering was used to identify the unknown transfer functions which translate the contact information into muscle activation signals. Our results show a causal relationship between ground contact information from the heel and EMG, which allows us to create a minimal, linear, analogue control system for controlling walking. The derived transfer functions were applied to RunBot II as a proof of concept. The gait cycle produced was stable and controlled, which is a positive indication that the transfer functions have potential for use in the control of assistive devices for the retraining of an efficient and effective gait with potential applications in SCI rehabilitation.

  18. Contact enhancement of locomotion in spreading cell colonies

    Science.gov (United States)

    D'Alessandro, Joseph; Solon, Alexandre P.; Hayakawa, Yoshinori; Anjard, Christophe; Detcheverry, François; Rieu, Jean-Paul; Rivière, Charlotte

    2017-10-01

    The dispersal of cells from an initially constrained location is a crucial aspect of many physiological phenomena, ranging from morphogenesis to tumour spreading. In such processes, cell-cell interactions may deeply alter the motion of single cells, and in turn the collective dynamics. While contact phenomena like contact inhibition of locomotion are known to come into play at high densities, here we focus on the little explored case of non-cohesive cells at moderate densities. We fully characterize the spreading of micropatterned colonies of Dictyostelium discoideum cells from the complete set of individual trajectories. From data analysis and simulation of an elementary model, we demonstrate that contact interactions act to speed up the early population spreading by promoting individual cells to a state of higher persistence, which constitutes an as-yet unreported contact enhancement of locomotion. Our findings also suggest that the current modelling paradigm of memoryless active particles may need to be extended to account for the history-dependent internal state of motile cells.

  19. Paper-based Pneumatic Locomotive Robot with Sticky Actuator

    Directory of Open Access Journals (Sweden)

    Du Xiaohan

    2016-01-01

    Full Text Available Demands for small-scale and low-cost robots have witnessed a great increase in recent years [1–5]. This paper introduces the design and fabrication of a novel, simple, low-cost and designer-friendly locomotive robot. The materials and tools to build the robot originate from everyday life. The robot is pneumatically powered and manually controlled by simply pumping and vacuuming the syringe repeatedly, which realizes reliable locomotion by folding and opening of the planes. In order to realize this complicated motion, a “3D Sticky Actuator” is developed. The motion and force analysis of actuator are then modelled by the numerical method to develop the relations between design parameters. This suggests a systematic and user interactive way of manufacturing various shapes of the actuator, depending on user-defined road condition (e.g. obstacles and slopes and other constraints. One key advantage of the paper-based robot is suggested by its high feasibility.

  20. Locomotion training of legged robots using hybrid machine learning techniques

    Science.gov (United States)

    Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.

    1995-01-01

    In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible

  1. Kinematic and Gait Similarities between Crawling Human Infants and Other Quadruped Mammals

    Science.gov (United States)

    Righetti, Ludovic; Nylén, Anna; Rosander, Kerstin; Ijspeert, Auke Jan

    2015-01-01

    Crawling on hands and knees is an early pattern of human infant locomotion, which offers an interesting way of studying quadrupedalism in one of its simplest form. We investigate how crawling human infants compare to other quadruped mammals, especially primates. We present quantitative data on both the gait and kinematics of seven 10-month-old crawling infants. Body movements were measured with an optoelectronic system giving precise data on 3-dimensional limb movements. Crawling on hands and knees is very similar to the locomotion of non-human primates in terms of the quite protracted arm at touch-down, the coordination between the spine movements in the lateral plane and the limbs, the relatively extended limbs during locomotion and the strong correlation between stance duration and speed of locomotion. However, there are important differences compared to primates, such as the choice of a lateral-sequence walking gait, which is similar to most non-primate mammals and the relatively stiff elbows during stance as opposed to the quite compliant gaits of primates. These finding raise the question of the role of both the mechanical structure of the body and neural control on the determination of these characteristics. PMID:25709597

  2. Locomotion Dynamics for Bio-inspired Robots with Soft Appendages: Application to Flapping Flight and Passive Swimming

    Science.gov (United States)

    Boyer, Frédéric; Porez, Mathieu; Morsli, Ferhat; Morel, Yannick

    2017-08-01

    In animal locomotion, either in fish or flying insects, the use of flexible terminal organs or appendages greatly improves the performance of locomotion (thrust and lift). In this article, we propose a general unified framework for modeling and simulating the (bio-inspired) locomotion of robots using soft organs. The proposed approach is based on the model of Mobile Multibody Systems (MMS). The distributed flexibilities are modeled according to two major approaches: the Floating Frame Approach (FFA) and the Geometrically Exact Approach (GEA). Encompassing these two approaches in the Newton-Euler modeling formalism of robotics, this article proposes a unique modeling framework suited to the fast numerical integration of the dynamics of a MMS in both the FFA and the GEA. This general framework is applied on two illustrative examples drawn from bio-inspired locomotion: the passive swimming in von Karman Vortex Street, and the hovering flight with flexible flapping wings.

  3. Geckos significantly alter foot orientation to facilitate adhesion during downhill locomotion.

    Science.gov (United States)

    Birn-Jeffery, Aleksandra V; Higham, Timothy E

    2014-10-01

    Geckos employ their adhesive system when moving up an incline, but the directionality of the system may limit function on downhill surfaces. Here, we use a generalist gecko to test whether limb modulation occurs on downhill slopes to allow geckos to take advantage of their adhesive system. We examined three-dimensional limb kinematics for geckos moving up and down a 45° slope. Remarkably, the hind limbs were rotated posteriorly on declines, resulting in digit III of the pes facing a more posterior direction (opposite to the direction of travel). No significant changes in limb orientation were found in any other condition. This pes rotation leads to a dramatic shift in foot function that facilitates the use of the adhesive system as a brake/stabilizer during downhill locomotion and, although this rotation is not unique to geckos, it is significant for the deployment of adhesion. Adhesion is not just advantageous for uphill locomotion but can be employed to help deal with the effects of gravity during downhill locomotion, highlighting the incredible multi-functionality of this key innovation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Pelvic incidence variation among individuals: functional influence versus genetic determinism.

    Science.gov (United States)

    Chen, Hong-Fang; Zhao, Chang-Qing

    2018-03-20

    Pelvic incidence has become one of the most important sagittal parameters in spinal surgery. Despite its great importance, pelvic incidence can vary from 33° to 85° in the normal population. The reasons for this great variability in pelvic incidence remain unexplored. The objective of this article is to present some possible interpretations for the great variability in pelvic incidence under both normal and pathological conditions and to further understand the determinants of pelvic incidence from the perspective of the functional requirements for bipedalism and genetic backgrounds via a literature review. We postulate that both pelvic incidence and pelvic morphology may be genetically predetermined, and a great variability in pelvic incidence may already exist even before birth. This great variability may also serve as a further reminder that the sagittal profile, bipedal locomotion mode, and genetic background of every individual are unique and specific, and clinicians should avoid making universally applying broad generalizations of pelvic incidence. Although PI is an important parameter and there are many theories behind its variability, we still do not have clear mechanistic answers.

  5. Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments with Transfemoral Amputees.

    Science.gov (United States)

    Gregg, Robert D; Lenzi, Tommaso; Hargrove, Levi J; Sensinger, Jonathon W

    2014-12-01

    Recent powered (or robotic) prosthetic legs independently control different joints and time periods of the gait cycle, resulting in control parameters and switching rules that can be difficult to tune by clinicians. This challenge might be addressed by a unifying control model used by recent bipedal robots, in which virtual constraints define joint patterns as functions of a monotonic variable that continuously represents the gait cycle phase. In the first application of virtual constraints to amputee locomotion, this paper derives exact and approximate control laws for a partial feedback linearization to enforce virtual constraints on a prosthetic leg. We then encode a human-inspired invariance property called effective shape into virtual constraints for the stance period. After simulating the robustness of the partial feedback linearization to clinically meaningful conditions, we experimentally implement this control strategy on a powered transfemoral leg. We report the results of three amputee subjects walking overground and at variable cadences on a treadmill, demonstrating the clinical viability of this novel control approach.

  6. Peristaltic Wave Locomotion and Shape Morphing with a Millipede Inspired System

    Science.gov (United States)

    Spinello, Davide; Fattahi, Javad S.

    2017-08-01

    We present the mechanical model of a bio-inspired deformable system, modeled as a Timoshenko beam, which is coupled to a substrate by a system of distributed elements. The locomotion action is inspired by the coordinated motion of coupling elements that mimic the legs of millipedes and centipedes, whose leg-to-ground contact can be described as a peristaltic displacement wave. The multi-legged structure is crucial in providing redundancy and robustness in the interaction with unstructured environments and terrains. A Lagrangian approach is used to derive the governing equations of the system that couple locomotion and shape morphing. Features and limitations of the model are illustrated with numerical simulations.

  7. A light-weight, yet powerful diesel locomotive from Vossloh

    Energy Technology Data Exchange (ETDEWEB)

    Marti, Mariano [Vossloh Rail Vehicles, Albuixech/Valencia (Spain)

    2013-05-15

    The EUROLIGHT is an eight-wheeled diesel-electric locomotive developed by Vossloh Rail Vehicles for interoperable rail traffic. With its low axle load of less than 20 tonnes, it can be deployed flexibly on both main lines and secondary ones.

  8. An Adaptive Classification Strategy for Reliable Locomotion Mode Recognition

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2017-09-01

    Full Text Available Algorithms for locomotion mode recognition (LMR based on surface electromyography and mechanical sensors have recently been developed and could be used for the neural control of powered prosthetic legs. However, the variations in input signals, caused by physical changes at the sensor interface and human physiological changes, may threaten the reliability of these algorithms. This study aimed to investigate the effectiveness of applying adaptive pattern classifiers for LMR. Three adaptive classifiers, i.e., entropy-based adaptation (EBA, LearnIng From Testing data (LIFT, and Transductive Support Vector Machine (TSVM, were compared and offline evaluated using data collected from two able-bodied subjects and one transfemoral amputee. The offline analysis indicated that the adaptive classifier could effectively maintain or restore the performance of the LMR algorithm when gradual signal variations occurred. EBA and LIFT were recommended because of their better performance and higher computational efficiency. Finally, the EBA was implemented for real-time human-in-the-loop prosthesis control. The online evaluation showed that the applied EBA effectively adapted to changes in input signals across sessions and yielded more reliable prosthesis control over time, compared with the LMR without adaptation. The developed novel adaptive strategy may further enhance the reliability of neurally-controlled prosthetic legs.

  9. Unifying Rules for Aquatic Locomotion

    Science.gov (United States)

    Saadat, Mehdi; Domel, August; di Santo, Valentina; Lauder, George; Haj-Hariri, Hossein

    2016-11-01

    Strouhal number, St (=fA/U) , a scaling parameter that relates speed, U, to the tail-beat frequency, f, and tail-beat amplitude, A, has been used many times to describe animal locomotion. It has been observed that swimming animals cruise at 0.2 fish-like swimmer, we show that when cruising at minimum hydrodynamic input power, St is predetermined, and is only a function of the shape, i.e. drag coefficient and area. The narrow range for St, 0.2-0.4, has been previously associated with optimal propulsive efficiency. However, St alone is insufficient for deciding optimal motion. We show that hydrodynamic input power (energy usage to propel over a unit distance) in fish locomotion is minimized at all cruising speeds when A* (= A/L), a scaling parameter that relates tail-beat amplitude, A, to the length of the swimmer, L, is constrained to a narrow range of 0.15-0.25. Our analysis proposes a constraint on A*, in addition to the previously found constraint on St, to fully describe the optimal swimming gait for fast swimmers. A survey of kinematics for dolphin, as well as new data for trout, show that the range of St and A* for fast swimmers indeed are constrained to 0.2-0.4 and 0.15-0.25, respectively. Our findings provide physical explanation as to why fast aquatic swimmers cruise with relatively constant tail-beat amplitude at approximately 20 percent of body length, while their swimming speed is linearly correlated with their tail-beat frequency.

  10. Highlighting the harmonic regime generated by electric locomotives equipped with DC motors

    Science.gov (United States)

    Baciu, I.; Cunţan, C. D.

    2018-01-01

    The paper presents the results of measurements made using the C.A. 8334 power quality analyzer on an electric locomotive equipped with DC motors. We carried out determinations of the current-voltage regime using a locomotive motor. The harmonic regime of the other motors being identical to the analysed one, we could easily deduce the effects caused by the entire locomotive. The data measured with the analyzer were firstly transferred into a computer system using the Qualistar software, followed by data processing in Excel, enabling therefore a graphical representation of the characteristic parameters of power quality. Based on the acquired data, we determined the power factor, as well as the active, reactive and apparent power. The measurements revealed high values of the current harmonics, fact that required some measures to be taken for reducing the values of these harmonics. For this, we ran a simulation using the PSCAD/EMTDC software, by introducing LC filters in tune with the harmonic frequencies. The result was a significant reduction in the harmonic regime, either in the harmonics values or the power factor and reactive power.

  11. A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats.

    Science.gov (United States)

    Hamlin, Marvin; Traughber, Terence; Reinkensmeyer, David J; de Leon, Ray D

    2015-05-15

    Providing weight support facilitates locomotion in spinal cord injured animals. To control weight support, robotic systems have been developed for treadmill stepping and more recently for overground walking. We developed a novel device, the body weight supported ambulatory rodent trainer (i.e. BART). It has a small pneumatic cylinder that moves along a linear track above the rat. When air is supplied to the cylinder, the rats are lifted as they perform overground walking. We tested the BART device in rats that received a moderate spinal cord contusion injury and in normal rats. Locomotor training with the BART device was not performed. All of the rats learned to walk in the BART device. In the contused rats, significantly greater paw dragging and dorsal stepping occurred in the hindlimbs compared to normal. Providing weight support significantly raised hip position and significantly reduced locomotor deficits. Hindlimb stepping was tightly coupled to forelimb stepping but only when the contused rats stepped without weight support. Three weeks after the contused rats received a complete spinal cord transection, significantly fewer hindlimb steps were performed. Relative to rodent robotic systems, the BART device is a simpler system for studying overground locomotion. The BART device lacks sophisticated control and sensing capability, but it can be assembled relatively easily and cheaply. These findings suggest that the BART device is a useful tool for assessing quadrupedal, overground locomotion which is a more natural form of locomotion relative to treadmill locomotion. Published by Elsevier B.V.

  12. MTU locomotive drive systems for EU emissions stage IIIB

    Energy Technology Data Exchange (ETDEWEB)

    Wintruff, Ingo [MTU Friedrichshafen GmbH, Friedrichshafen (Germany)

    2011-05-15

    Emissions limits for diesel locomotives within the European Union are regulated by EU Non-road Directive 97/68/EC which places restrictions on the pollutants NOx, particulate, CO and HC. MTU has developed suitable diesel engines for EU Emissions stage IIIB. (orig.)

  13. Applications of Chaotic Dynamics in Robotics

    Directory of Open Access Journals (Sweden)

    Xizhe Zang

    2016-03-01

    Full Text Available This article presents a summary of applications of chaos and fractals in robotics. Firstly, basic concepts of deterministic chaos and fractals are discussed. Then, fundamental tools of chaos theory used for identifying and quantifying chaotic dynamics will be shared. Principal applications of chaos and fractal structures in robotics research, such as chaotic mobile robots, chaotic behaviour exhibited by mobile robots interacting with the environment, chaotic optimization algorithms, chaotic dynamics in bipedal locomotion and fractal mechanisms in modular robots will be presented. A brief survey is reported and an analysis of the reviewed publications is also presented.

  14. Performance requirements for locomotive braking systems

    CSIR Research Space (South Africa)

    Vermaak, P

    2000-02-01

    Full Text Available operated “Neutral Brake”. This brake may become active immediately or after a certain time delay when the controller is placed in the neutral position or moved into the neutral position by the “dead-man’s device”. Because this brake will interfere... in testing emergency brake systems due to the inherent braking action of the service brakes and/or locomotive controllers; • Potential problems limitations to braking effort associated with the prime movers and/or hydraulic systems on hydrostatically...

  15. Millipede-inspired locomotion through novel U-shaped piezoelectric motors

    International Nuclear Information System (INIS)

    Avirovik, Dragan; Butenhoff, Bryan; Priya, Shashank

    2014-01-01

    We report a novel piezoelectric motor that operates at a resonance frequency of 144 Hz, much lower than that of conventional ultrasonic motors, and meets the displacement and gait requirements for designing the locomotion mechanism of a millipede-inspired robot (millibot). The motor structure consists of two piezoelectric bimorphs arranged in a U-shaped configuration. Using the first bending mode for both the piezoelectric bimorphs an elliptical motion was obtained at the tip which led to the successful implementation of millipede inspired locomotion. At an input voltage of 70.7 V rms , the piezoelectric motor operating at resonance frequency was able to generate torque of 0.03 mN m, mechanical power of 0.84 mW and maximum velocity of 62 rad s −1 . Detailed discussion is provided about the principle of operation of the millibot. (technical note)

  16. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.

    Directory of Open Access Journals (Sweden)

    Monzurul Alam

    Full Text Available A brain-machine interface (BMI is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.

  17. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients

    Directory of Open Access Journals (Sweden)

    Pierre eGuertin

    2014-05-01

    Full Text Available Ambulation or walking is one of the main gaits of locomotion. In terrestrial animals, it may be defined as a series of rhythmic and bilaterally coordinated movement of the limbs which creates a forward movement of the body. This applies regardless of the number of limbs - from arthropods with six or more limbs to bipedal primates. These fundamental similarities among species may explain why comparable neural systems and cellular properties have been found, thus far, to control in similar ways locomotor rhythm generation in most animal models. The aim of this article is to provide a comprehensive review of the known structural and functional features associated with central nervous system (CNS networks that are involved in the control of ambulation and other stereotyped motor patterns - specifically Central Pattern Generators (CPGs that produce basic rhythmic patterned outputs for locomotion, micturition, ejaculation, and defecation. Although there is compelling evidence of their existence in humans, CPGs have been most studied in reduced models including in vitro isolated preparations, genetically-engineered mice and spinal cord-transected animals. Compared with other structures of the CNS, the spinal cord is generally considered as being well-preserved phylogenetically. As such, most animal models of SCI should be considered as valuable tools for the development of novel pharmacological strategies aimed at modulating spinal activity and restoring corresponding functions in chronic spinal cord-injured patients.

  18. RESEARCH OF IMPACT OF THE LOADING ON ENDURANCE OF THE FREIGHT LOCOMOTIVE ENGINES

    Directory of Open Access Journals (Sweden)

    Sergejus LEBEDEVAS

    2015-12-01

    Full Text Available The publication reflects the research results of the rationalization of the rolling stock use of JSC LG Lithuanian railways to increase the reliability indicators of the freight diesel locomotive exploitation reliability. The comparative evaluation of the exploited freight diesel locomotive work duration, according to the technical documentation, by using comparative test results and indirect diesel reliability criteria approved in practice. An algorithm of work duration forecasting methodology has been created, as well as a programme complex of mathematic modelling. The differences of the results indicated in the experiment and modelled by computer do not exceed 5 ÷ 7%. The proposed and described methodology of the diesel locomotive exploitation load cycle dynamic indicator reduction, by the use of which the following is achieved: increase of the diesel work duration by 7÷10%, reduction of fuel consumption up to 10%, reduction of the load cycle dynamic indicators (increasing the fatigue stress of parts and units of the diesel by 15÷20%.

  19. Femoral bone strength in large theropod dinosaurs: A study by genus

    Science.gov (United States)

    Lee, Scott

    2015-03-01

    The locomotion of bipedal theropod dinosaurs is controlled by the strength of the femur to resist bending torques (caused by the foot striking the ground and the action of muscles on the femur). The section modulus at the narrowest part measures the ability of the femur to resist such torques. We present the results of our study of the femoral section moduli for six genus of large theropods: Tyrannosaurus, Nanotyrannus, Gorgosaurus, and Albertosaurus of the Late Cretaceous, Acrocanthosaurus of the Early Cretaceous, and Allosaurus of the Late Jurassic. These animals had femora of lengths between 65 and 134 cm. The corresponding section moduli varied between 23 and 570 cm3. Some species of Tyrannosaurus, Gorgosaurus, Allosaurus, and Albertosaurus had femora with lengths in the same 75 to 90 cm range. The section moduli of these animals are all in the same range, showing that the animals had the same abilities of locomotion. That is, Allosaurus of the Late Jurassic could locomote just as well as the Late Cretaceous Tyrannosaurus, Gorgosaurus, and Albertosaurus. There is no evidence that these later theropods had evolved to be any faster than similarly-sized theropods living about 80 million years earlier.

  20. Review of codes, standards, and regulations for natural gas locomotives.

    Science.gov (United States)

    2014-06-01

    This report identified, collected, and summarized relevant international codes, standards, and regulations with potential : applicability to the use of natural gas as a locomotive fuel. Few international or country-specific codes, standards, and regu...

  1. The Perceived Naturalness of Virtual Walking Speeds during WIP Locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    2016-01-01

    It is well established that individuals tend to underestimate visually presented walking speeds when relying on treadmills for virtual walking. However, prior to the present studies this perceptual distortion had not been observed in relation to Walking-in-Place (WIP) locomotion, and a number...... to how gait cycle characteristics, visual display properties, and methodological differences affect speed underestimation during treadmill and WIP locomotion. The studies suggested the following: A significant main effect was found for step frequency; both display and geometric field of view were...... inversely proportional to the degree of underestimation; varying degrees of peripheral occlusion and increased HMD weight did not yield significant main effects; and the choice of method (i.e., how the speeds were presented) had a significant effect on the upper and lower bounds of what speeds were...

  2. The stochastic distribution of available coefficient of friction for human locomotion of five different floor surfaces.

    Science.gov (United States)

    Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi

    2014-05-01

    The maximum coefficient of friction that can be supported at the shoe and floor interface without a slip is usually called the available coefficient of friction (ACOF) for human locomotion. The probability of a slip could be estimated using a statistical model by comparing the ACOF with the required coefficient of friction (RCOF), assuming that both coefficients have stochastic distributions. An investigation of the stochastic distributions of the ACOF of five different floor surfaces under dry, water and glycerol conditions is presented in this paper. One hundred friction measurements were performed on each floor surface under each surface condition. The Kolmogorov-Smirnov goodness-of-fit test was used to determine if the distribution of the ACOF was a good fit with the normal, log-normal and Weibull distributions. The results indicated that the ACOF distributions had a slightly better match with the normal and log-normal distributions than with the Weibull in only three out of 15 cases with a statistical significance. The results are far more complex than what had heretofore been published and different scenarios could emerge. Since the ACOF is compared with the RCOF for the estimate of slip probability, the distribution of the ACOF in seven cases could be considered a constant for this purpose when the ACOF is much lower or higher than the RCOF. A few cases could be represented by a normal distribution for practical reasons based on their skewness and kurtosis values without a statistical significance. No representation could be found in three cases out of 15. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. 49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Requirements for External Fuel Tanks on Tier I..., App. D Appendix D to Part 238—Requirements for External Fuel Tanks on Tier I Locomotives The... properties of the locomotive fuel tank to reduce the risk of fuel spillage to acceptable levels under...

  4. Lameness Detection in Dairy Cows: Part 1. How to Distinguish between Non-Lame and Lame Cows Based on Differences in Locomotion or Behavior

    Science.gov (United States)

    Van Nuffel, Annelies; Zwertvaegher, Ingrid; Pluym, Liesbet; Van Weyenberg, Stephanie; Thorup, Vivi M.; Pastell, Matti; Sonck, Bart; Saeys, Wouter

    2015-01-01

    Simple Summary Scoring cattle for lameness based on changes in locomotion or behavior is essential for farmers to find and treat their lame animals. This review discusses the normal locomotion of cows in order to define abnormal locomotion due to lameness. It furthermore provides an overview of various relevant visual locomotion scoring systems that are currently being used as well as practical considerations when assessing lameness on a commercial farm. Abstract Due to its detrimental effect on cow welfare, health and production, lameness in dairy cows has received quite a lot of attention in the last few decades—not only in terms of prevention and treatment of lameness but also in terms of detection, as early treatment might decrease the number of severely lame cows in the herds as well as decrease the direct and indirect costs associated with lameness cases. Generally, lame cows are detected by the herdsman, hoof trimmer or veterinarian based on abnormal locomotion, abnormal behavior or the presence of hoof lesions during routine trimming. In the scientific literature, several guidelines are proposed to detect lame cows based on visual interpretation of the locomotion of individual cows (i.e., locomotion scoring systems). Researchers and the industry have focused on automating such observations to support the farmer in finding the lame cows in their herds, but until now, such automated systems have rarely been used in commercial herds. This review starts with the description of normal locomotion of cows in order to define ‘abnormal’ locomotion caused by lameness. Cow locomotion (gait and posture) and behavioral features that change when a cow becomes lame are described and linked to the existing visual scoring systems. In addition, the lack of information of normal cow gait and a clear description of ‘abnormal’ gait are discussed. Finally, the different set-ups used during locomotion scoring and their influence on the resulting locomotion scores are

  5. Manual and automatic locomotion scoring systems in dairy cows: a review.

    Science.gov (United States)

    Schlageter-Tello, Andrés; Bokkers, Eddie A M; Koerkamp, Peter W G Groot; Van Hertem, Tom; Viazzi, Stefano; Romanini, Carlos E B; Halachmi, Ilan; Bahr, Claudia; Berckmans, Daniël; Lokhorst, Kees

    2014-09-01

    The objective of this review was to describe, compare and evaluate agreement, reliability, and validity of manual and automatic locomotion scoring systems (MLSSs and ALSSs, respectively) used in dairy cattle lameness research. There are many different types of MLSSs and ALSSs. Twenty-five MLSSs were found in 244 articles. MLSSs use different types of scale (ordinal or continuous) and different gait and posture traits need to be observed. The most used MLSS (used in 28% of the references) is based on asymmetric gait, reluctance to bear weight, and arched back, and is scored on a five-level scale. Fifteen ALSSs were found that could be categorized according to three approaches: (a) the kinetic approach measures forces involved in locomotion, (b) the kinematic approach measures time and distance of variables associated to limb movement and some specific posture variables, and (c) the indirect approach uses behavioural variables or production variables as indicators for impaired locomotion. Agreement and reliability estimates were scarcely reported in articles related to MLSSs. When reported, inappropriate statistical methods such as PABAK and Pearson and Spearman correlation coefficients were commonly used. Some of the most frequently used MLSSs were poorly evaluated for agreement and reliability. Agreement and reliability estimates for the original four-, five- or nine-level MLSS, expressed in percentage of agreement, kappa and weighted kappa, showed large ranges among and sometimes also within articles. After the transformation into a two-level scale, agreement and reliability estimates showed acceptable estimates (percentage of agreement ≥ 75%; kappa and weighted kappa ≥ 0.6), but still estimates showed a large variation between articles. Agreement and reliability estimates for ALSSs were not reported in any article. Several ALSSs use MLSSs as a reference for model calibration and validation. However, varying agreement and reliability estimates of MLSSs make a

  6. Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions

    Science.gov (United States)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2017-11-01

    Locomotive is used to drag trailers to move or supply the braking forces to slow the running speed of a train. The electromagnetic torque of the motor is always transmitted by the gear transmission system to the wheelset for generation of the tractive or braking forces at the wheel-rail contact interface. Consequently, gear transmission system is significant for power delivery of a locomotive. This paper develops a comprehensive locomotive-track vertical-longitudinal coupled dynamics model with dynamic effect of gear transmissions. This dynamics model enables considering the coupling interactions between the gear transmission motion, the vertical and the longitudinal motions of the vehicle, and the vertical vibration of the track structure. In this study, some complicated dynamic excitations, such as the gear time-varying mesh stiffness, nonlinear gear tooth backlash, the nonlinear wheel-rail normal contact force and creep force, and the rail vertical geometrical irregularity, are considered. Then, the dynamic responses of the locomotive under the tractive conditions are demonstrated by numerical simulations based on the established dynamics model and by experimental test. The developed dynamics model is validated by the good agreement between the experimental and the theoretical results. The calculated results reveal that the gear transmission system has strong dynamic interactions with the wheel-rail contact interface including both the vertical and the longitudinal motions, and it has negligible effect on the vibrations of the bogie frame and carbody.

  7. Effects of Unaugmented Periphery and Vibrotactile Feedback on Proxemics with Virtual Humans in AR.

    Science.gov (United States)

    Lee, Myungho; Bruder, Gerd; Hollerer, Tobias; Welch, Greg

    2018-04-01

    In this paper, we investigate factors and issues related to human locomotion behavior and proxemics in the presence of a real or virtual human in augmented reality (AR). First, we discuss a unique issue with current-state optical see-through head-mounted displays, namely the mismatch between a small augmented visual field and a large unaugmented periphery, and its potential impact on locomotion behavior in close proximity of virtual content. We discuss a potential simple solution based on restricting the field of view to the central region, and we present the results of a controlled human-subject study. The study results show objective benefits for this approach in producing behaviors that more closely match those that occur when seeing a real human, but also some drawbacks in overall acceptance of the restricted field of view. Second, we discuss the limited multimodal feedback provided by virtual humans in AR, present a potential improvement based on vibrotactile feedback induced via the floor to compensate for the limited augmented visual field, and report results showing that benefits of such vibrations are less visible in objective locomotion behavior than in subjective estimates of co-presence. Third, we investigate and document significant differences in the effects that real and virtual humans have on locomotion behavior in AR with respect to clearance distances, walking speed, and head motions. We discuss potential explanations for these effects related to social expectations, and analyze effects of different types of behaviors including idle standing, jumping, and walking that such real or virtual humans may exhibit in the presence of an observer.

  8. Unpredictability of escape trajectory explains predator evasion ability and microhabitat preference of desert rodents.

    Science.gov (United States)

    Moore, Talia Y; Cooper, Kimberly L; Biewener, Andrew A; Vasudevan, Ramanarayan

    2017-09-05

    Mechanistically linking movement behaviors and ecology is key to understanding the adaptive evolution of locomotion. Predator evasion, a behavior that enhances fitness, may depend upon short bursts or complex patterns of locomotion. However, such movements are poorly characterized by existing biomechanical metrics. We present methods based on the entropy measure of randomness from Information Theory to quantitatively characterize the unpredictability of non-steady-state locomotion. We then apply the method by examining sympatric rodent species whose escape trajectories differ in dimensionality. Unlike the speed-regulated gait use of cursorial animals to enhance locomotor economy, bipedal jerboa (family Dipodidae) gait transitions likely enhance maneuverability. In field-based observations, jerboa trajectories are significantly less predictable than those of quadrupedal rodents, likely increasing predator evasion ability. Consistent with this hypothesis, jerboas exhibit lower anxiety in open fields than quadrupedal rodents, a behavior that varies inversely with predator evasion ability. Our unpredictability metric expands the scope of quantitative biomechanical studies to include non-steady-state locomotion in a variety of evolutionary and ecologically significant contexts.Biomechanical understanding of animal gait and maneuverability has primarily been limited to species with more predictable, steady-state movement patterns. Here, the authors develop a method to quantify movement predictability, and apply the method to study escape-related movement in several species of desert rodents.

  9. Comparison of kinematic and dynamic leg trajectory optimization techniques for biped robot locomotion

    Science.gov (United States)

    Khusainov, R.; Klimchik, A.; Magid, E.

    2017-01-01

    The paper presents comparison analysis of two approaches in defining leg trajectories for biped locomotion. The first one operates only with kinematic limitations of leg joints and finds the maximum possible locomotion speed for given limits. The second approach defines leg trajectories from the dynamic stability point of view and utilizes ZMP criteria. We show that two methods give different trajectories and demonstrate that trajectories based on pure dynamic optimization cannot be realized due to joint limits. Kinematic optimization provides unstable solution which can be balanced by upper body movement.

  10. 78 FR 33860 - Crawler, Locomotive, and Truck Cranes Standard; Extension of the Office of Management and Budget...

    Science.gov (United States)

    2013-06-05

    ...] Crawler, Locomotive, and Truck Cranes Standard; Extension of the Office of Management and Budget's (OMB... collection requirements contained in the General Industry Standard on Crawler, Locomotive, and Truck cranes... workers from using unsafe cranes and ropes, thereby reducing their risk of death or serious injury caused...

  11. 75 FR 20005 - Crawler, Locomotive, and Truck Cranes Standard; Extension of the Office of Management and Budget...

    Science.gov (United States)

    2010-04-16

    ...] Crawler, Locomotive, and Truck Cranes Standard; Extension of the Office of Management and Budget's (OMB... Crawler, Locomotive, and Truck Cranes Standard (29 CFR 1910.180). DATES: Comments must be submitted... of each of these requirements is to prevent workers from using unsafe cranes and ropes, thereby...

  12. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines

    Directory of Open Access Journals (Sweden)

    Poramate eManoonpong

    2013-02-01

    Full Text Available Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs and sensory feedback (afferent-based control but also on internal forward models (efference copies. They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines.

  13. SIMULATION OF DRIVER’S LOCOMOTIVE-HANDLING ACTIVITY USING THE THEORY OF FUZZY GRAPHS

    Directory of Open Access Journals (Sweden)

    T. V. Butko

    2015-03-01

    Full Text Available Purpose. The efficiency and safety of locomotive control improving is important and relevant scientific and practical problem. Every driver during the trains-handling bases on his experience and knowledge, that is why the compilation and detection the most efficient ways to control the locomotive-handling is one of the stages of measures development to reduce transportation costs. The purpose of this paper is a formalization process description of locomotive-handling and quality parameters determination of this process. Methodology. In order to achieve this goal the theory of fuzzy probabilistic graphs was used. Vertices of the graph correspond to the events start and end operations at train-handling. The graph arcs describe operations on train-handling. Graph consists of thirteen peaks corresponding to the main control actions of the engine-driver. The weighting factors of transitions between vertices are assigned by fuzzy numbers. Their values were obtained by expert estimates. Fuzzy probabilities and transition time are presented as numbers with trapezoidal membership function. Findings. Using successive merging of parallel arcs, loops and vertices elimination, the equivalent fuzzy graph of train-handling and the corresponding L-matrix were obtained. Equivalent graph takes into account separately activity of the driver during normal operation and during emergency situations. Originality. The theoretical foundations of describing process formalization in driver’s locomotive-handling activity were developed using the fuzzy probabilistic graph. The parameters characterizing the decision-making process of engineer were obtained. Practical value. With the resulting model it is possible to estimate the available reserves for the quality improvement of locomotive-handling. Reduction in the time for decision-making will lead to the approximation the current mode of control to the rational one and decrease costs of hauling operations. And reduction

  14. Designing presence for real locomotion in immersive virtual environments

    DEFF Research Database (Denmark)

    Turchet, Luca

    2015-01-01

    This paper describes a framework for designing systems for real locomotion in virtual environments (VEs) in order to achieve an intense sense of presence. The main outcome of the present research is a list of design features that the virtual reality technology should have in order to achieve...

  15. Gait Selection and Transition of Passivity-Based Bipeds with Adaptable Ankle Stiffness

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2012-10-01

    Full Text Available Stable bipedal walking is one of the most important components of humanoid robot design, which can help us better understand natural human walking. In this paper, to study gait selection and gait transition of efficient bipedal walking, we proposed a dynamic bipedal walking model with an upper body, flat feet and compliant joints. The model can achieve stable cyclic motion with different walking gaits. The hip actuation and ankle stiffness behavior of the model are quite similar to those of human normal walking. In simulation, we studied the influence of hip actuation and ankle stiffness on walking performance of each gait. The effects of ankle stiffness on gait selection are also analyzed. Gait transition is realized by adjusting ankle stiffness during walking.

  16. Longitudinal Prediction of Quality-of-Life Scores and Locomotion in Individuals With Traumatic Spinal Cord Injury.

    Science.gov (United States)

    Hiremath, Shivayogi V; Hogaboom, Nathan S; Roscher, Melissa R; Worobey, Lynn A; Oyster, Michelle L; Boninger, Michael L

    2017-12-01

    To examine (1) differences in quality-of-life scores for groups based on transitions in locomotion status at 1, 5, and 10 years postdischarge in a sample of people with spinal cord injury (SCI); and (2) whether demographic factors and transitions in locomotion status can predict quality-of-life measures at these time points. Retrospective case study of the National SCI Database. Model SCI Systems Centers. Individuals with SCI (N=10,190) from 21 SCI Model Systems Centers, identified through the National SCI Model Systems Centers database between the years 1985 and 2012. Subjects had FIM (locomotion mode) data at discharge and at least 1 of the following: 1, 5, or 10 years postdischarge. Not applicable. FIM-locomotion mode; Severity of Depression Scale; Satisfaction With Life Scale; and Craig Handicap Assessment and Reporting Technique. Participants who transitioned from ambulation to wheelchair use reported lower participation and life satisfaction, and higher depression levels (P.05) or life satisfaction (P>.05) compared with those who transitioned from wheelchair to ambulation. Demographic factors and locomotion transitions predicted quality-of-life scores at all time points (P<.05). The results of this study indicate that transitioning from ambulation to wheelchair use can negatively impact psychosocial health 10 years after SCI. Clinicians should be aware of this when deciding on ambulation training. Further work to characterize who may be at risk for these transitions is needed. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. A Novel Interactive Exoskeletal Robot for Overground Locomotion Studies in Rats.

    Science.gov (United States)

    Song, Yun Seong; Hogan, Neville

    2015-07-01

    This paper introduces a newly developed apparatus, Iron Rat, for locomotion research in rodents. Its main purpose is to allow maximal freedom of voluntary overground movement of the animal while providing forceful interaction to the hindlimbs. Advantages and challenges of the proposed exoskeletal apparatus over other existing designs are discussed. Design and implementation challenges are presented and discussed, emphasizing their implications for free, voluntary movement of the animal. A live-animal experiment was conducted to assess the design. Unconstrained natural movement of the animal was compared with its movement with the exoskeletal module attached. The compact design and back-drivable implementation of this apparatus will allow novel experimental manipulations that may include forceful yet compliant dynamic interaction with the animal's overground locomotion.

  18. The role of nucleotides in augmentation of lymphocyte locomotion: Adaptional countermeasure development in microgravity analog environments

    Science.gov (United States)

    Sundaresan, Alamelu; Kulkarni, Anil D.; Yamauchi, Keiko; Pellis, Neal R.

    2006-09-01

    Space travel and long-term space residence such as envisaged in the exploration era implicates burdens on the immune system. An optimal immune response is required to countered and with-stand exposure to pathogens. Countermeasure development is an important avenue in space research especially for long-term space exploration. Microgravity exposure causes detrimental effects in lymphocyte functions which may impair immune response. Impaired lymphocyte function can be remedied by bypassing cell membrane events. This is done by using compounds such as Phorbol Myristate Acetate (PMA). Since activation in mouse splenocytes was augmented using nucleotides, it was essential to observe their effects on human lymphocyte locomotion. A nucleotide/nucleoside (NT/NT) mixture from Otsuka Pharmaceuticals (Naruto, Japan) was used at recommended doses. In lymphocytes cultured in modeled microgravity, the NT/NT mixture used orchestrated locomotion recovery by more than 87%, similar to the response documented with PMA in lymphocytes. Both 12µM and 120µM doses worked similarly. These are preliminary results leading to the possible use of the NT/NT mixture to mitigate immune suppression in micro-gravity. More studies in this direction are required to delineate the role of NT/NT on the immune response in microgravity.

  19. Mutually opposing forces during locomotion can eliminate the tradeoff between maneuverability and stability

    Science.gov (United States)

    Cowan, Noah; Sefati, Shahin; Neveln, Izaak; Roth, Eatai; Mitchell, Terence; Snyder, James; Maciver, Malcolm; Fortune, Eric

    A surprising feature of animal locomotion is that organisms typically produce substantial forces in directions other than what is necessary to move the animal through its environment, such as perpendicular to, or counter to, the direction of travel. The effect of these forces has been difficult to observe because they are often mutually opposing and therefore cancel out. Using a combination of robotic physical modeling, computational modeling, and biological experiments, we discovered that these forces serve an important role: to simplify and enhance the control of locomotion. Specifically, we examined a well-suited model system, the glass knifefish Eigenmannia virescens, which produces mutually opposing forces during a hovering behavior. By systematically varying the locomotor parameters of our biomimetic robot, and measuring the resulting forces and kinematics, we demonstrated that the production and differential control of mutually opposing forces is a strategy that generates passive stabilization while simultaneously enhancing maneuverability. Mutually opposing forces during locomotion are widespread across animal taxa, and these results indicate that such forces can eliminate the tradeoff between stability and maneuverability, thereby simplifying robotic and neural control.

  20. Wind-powered wheel locomotion, initiated by leaping somersaults, in larvae of the southeastern beach tiger beetle (Cicindela dorsalis media.

    Directory of Open Access Journals (Sweden)

    Alan Harvey

    2011-03-01

    Full Text Available Rapid movement is challenging for elongate, soft-bodied animals with short or no legs. Leaping is known for only a few animals with this "worm-like" morphology. Wheel locomotion, in which the animal's entire body rolls forward along a central axis, has been reported for only a handful of animals worldwide. Here we present the first documented case of wind-powered wheel locomotion, in larvae of the coastal tiger beetle Cicindela dorsalis media. When removed from their shallow burrows, larvae easily can be induced to enter a behavioral sequence that starts with leaping; while airborne, larvae loop their body into a rotating wheel and usually either "hit the ground rolling" or leap again. The direction larvae wheel is closely related to the direction in which winds are blowing; thus, all our larvae wheeled up-slope, as winds at our study site consistently blew from sea to land. Stronger winds increased both the proportion of larvae wheeling, and the distance traveled, exceeding 60 m in some cases. In addition, the proportion of larvae that wheel and the distance traveled by wheeling larvae are significantly greater on smooth sandy beaches than on beach surfaces made rough and irregular by pedestrian, equestrian, and vehicular traffic. Like other coastal species of tiger beetles, C. dorsalis media has suffered major declines in recent years that are clearly correlated with increased human impacts. The present study suggests that the negative effects of beach traffic may be indirect, preventing larvae from escaping from predators using wheel locomotion by disrupting the flat, hard surface necessary for efficient wheeling.

  1. Biomechanics of gecko locomotion: the patterns of reaction forces on inverted, vertical and horizontal substrates

    International Nuclear Information System (INIS)

    Wang, Zhouyi; Dai, Zhendong; Ji, Aihong; Xing, Qiang; Ren, Lei; Dai, Liming

    2015-01-01

    The excellent locomotion ability of geckos on various rough and/or inclined substrates has attracted scientists’ attention for centuries. However, the moving ability of gecko-mimicking robots on various inclined surfaces still lags far behind that of geckos, mainly because our understanding of how geckos govern their locomotion is still very poor. To reveal the fundamental mechanism of gecko locomotion and also to facilitate the design of gecko-mimicking robots, we have measured the reaction forces (RFs) acting on each individual foot of moving geckos on inverted, vertical and horizontal substrates (i.e. ceiling, wall and floor), have associated the RFs with locomotion behaviors by using high-speed camera, and have presented the relationships of the force components with patterns of reaction forces (PRFs). Geckos generate different PRF on ceiling, wall and floor, that is, the PRF is determined by the angles between the direction of gravity and the substrate on which geckos move. On the ceiling, geckos produce reversed shear forces acting on the front and hind feet, which pull away from the body in both lateral and fore-aft directions. They use a very large supporting angle from 21° to 24° to reduce the forces acting on their legs and feet. On the floor, geckos lift their bodies using a supporting angle from 76° to 78°, which not only decreases the RFs but also improves their locomotion ability. On the wall, geckos generate a reliable self-locking attachment by using a supporting angle of 14.8°, which is only about half of the critical angle of detachment. (paper)

  2. USING THE INFORMATION OF ON-BOARD DIAGNOSTIC SYSTEMS IN DETERMINING THE TECHNICAL STATE OF THE LOCOMOTIVE

    Directory of Open Access Journals (Sweden)

    B. Ye. Bodnar

    2008-12-01

    Full Text Available The issues of increase of efficiency of information processing by оn-board systems of diagnostics of locomotives are considered. The examples of information processing by the on-board system of diagnostics of electric locomotives DE1 are presented. The suggestions on improvement of systematization and processing of information by on-board systems of diagnostics are given.

  3. Investigation of human locomotion using Penny & Giles electrogoniometer

    Science.gov (United States)

    Jaworek, Krzysztof; Derlatka, Marcin; Dominikowski, Mateusz

    1999-04-01

    This paper deals with the experimental measurements, data filtering and theoretical representation of the angular position of a human led in 3D space during normal and pathological walking. The angular position of a human leg during walking in sagittal plane was measured by a new electrogoniometer made by a UK company named Penny & Giles. This system is a spatial mechanism made of a group of links which are coupled by proper angular sensor. This instrument enables an indirect evaluation of the angular position of a human leg in the 3D space from knowledge of the system geometry and from the angular value readings. This instrument is light, small-sized technologically new and is easy to use. However, its dynamics features have not been analyzed in the literature. Therefore we decided to analyze the instrument in order to built a DWT (Discrete Wavelets Transform) filter for filtering data recorded by a electrogoniometer Penny & Giles. We built filter corresponding to Daubechies wavelets, DAUB #20. The DWT filter is sufficient for filtering high frequency noise which exists during experimental measurement of the angular position of a human leg during normal and pathological gait. Filtering using Daubechies wavelets--DAUB #20 is more efficient than commercial numerical filtering delivered by Penny & Giles company.

  4. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion

    DEFF Research Database (Denmark)

    Hägglund, Martin; Borgius, Lotta; Dougherty, Kimberly J.

    2010-01-01

    Central pattern generators (CPGs) are spinal neuronal networks required for locomotion. Glutamatergic neurons have been implicated as being important for intrinsic rhythm generation in the CPG and for the command signal for initiating locomotion, although this has not been demonstrated directly. We...... neurons in the spinal cord are critical for initiating or maintaining the rhythm and that activation of hindbrain areas containing the locomotor command regions is sufficient to directly activate the spinal locomotor network....

  5. Development of generalized dynamic model of oscillations of cylinder case of diesel engine of locomotive

    Directory of Open Access Journals (Sweden)

    Irina YUTKINA

    2014-03-01

    Full Text Available An engineering method of design, worked out by the authors, is considered in the paper. It allows to carry out design of amplitude-frequency specter and vibration loading of cylinder cases of the diesel engine of locomotive with account of cavitation-erosion damage. Offered method of design of parameters of cavitation-erosion damage may be used in design of new structures of diesel engines of locomotives and systems of cooling.

  6. Research of the possibility of using neural networks in the tests of locomotive hydraulic transmissions

    OpenAIRE

    КЛЮШНИК, І. А.

    2017-01-01

    The possibility of developing a self-diagnostics system of the diesel locomotives hydraulic transmissions information-measuring test system is researched. The use of neural networks and fuzzy logic for the development of a self-diagnostics system of the diesel locomotives hydraulic transmissions information-measuring tests system is proposed. As the initial stage of developing a diagnostic system using neural networks, a neural network is presented which predicts the rotational speed of the h...

  7. Energy Efficiency of Robot Locomotion Increases Proportional to Weight

    DEFF Research Database (Denmark)

    Larsen, Jørgen Christian; Støy, Kasper

    2011-01-01

    The task of producing steady, stable and energy efficient locomotion in legged robots with the ability to walk in un- known terrain have for many years been a big challenge in robotics. This work is focusing on how different robots build from the modular robotic system, LocoKit by Larsen et. la [3...

  8. Energy Efficiency of Robot Locomotion Increases Proportional to Weight

    DEFF Research Database (Denmark)

    Larsen, J. C.; Stoy, K.

    2011-01-01

    The task of producing steady, stable and energy efficient locomotion in legged robots with the ability to walk in unknown terrain have for many years been a big challenge in robotics. This work is focusing on how different robots build from the modular robotic system, LocoKit by Larsen et al. [1...

  9. 40 CFR 1042.836 - Marine certification of locomotive remanufacturing systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Marine certification of locomotive remanufacturing systems. 1042.836 Section 1042.836 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.836 Marine certification...

  10. Flexible Coupling of Respiration and Vocalizations with Locomotion and Head Movements in the Freely Behaving Rat

    Directory of Open Access Journals (Sweden)

    Joseph Andrews Alves

    2016-01-01

    Full Text Available Quadrupedal mammals typically synchronize their respiration with body movements during rhythmic locomotion. In the rat, fast respiration is coupled to head movements during sniffing behavior, but whether respiration is entrained by stride dynamics is not known. We recorded intranasal pressure, head acceleration, instantaneous speed, and ultrasonic vocalizations from male and female adult rats while freely behaving in a social environment. We used high-speed video recordings of stride to understand how head acceleration signals relate to locomotion and developed techniques to identify episodes of sniffing, walking, trotting, and galloping from the recorded variables. Quantitative analysis of synchrony between respiration and head acceleration rhythms revealed that respiration and locomotion movements were coordinated but with a weaker coupling than expected from previous work in other mammals. We have recently shown that rats behaving in social settings produce high rates of ultrasonic vocalizations during locomotion bouts. Accordingly, rats emitted vocalizations in over half of the respiratory cycles during fast displacements. We present evidence suggesting that emission of these calls disrupts the entrainment of respiration by stride. The coupling between these two variables is thus flexible, such that it can be overridden by other behavioral demands.

  11. Architecture and functional ecology of the human gastrocnemius muscle-tendon unit.

    Science.gov (United States)

    Butler, Erin E; Dominy, Nathaniel J

    2016-04-01

    The gastrocnemius muscle-tendon unit (MTU) is central to human locomotion. Structural variation in the human gastrocnemius MTU is predicted to affect the efficiency of locomotion, a concept most often explored in the context of performance activities. For example, stiffness of the Achilles tendon varies among individuals with different histories of competitive running. Such a finding highlights the functional variation of individuals and raises the possibility of similar variation between populations, perhaps in response to specific ecological or environmental demands. Researchers often assume minimal variation in human populations, or that industrialized populations represent the human species as well as any other. Yet rainforest hunter-gatherers, which often express the human pygmy phenotype, contradict such assumptions. Indeed, the human pygmy phenotype is a potential model system for exploring the range of ecomorphological variation in the architecture of human hindlimb muscles, a concept we review here. © 2015 Anatomical Society.

  12. Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots

    International Nuclear Information System (INIS)

    Daltorio, Kathryn A; Horchler, Andrew D; Quinn, Roger D; Boxerbaum, Alexander S; Shaw, Kendrick M; Chiel, Hillel J

    2013-01-01

    In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress. (paper)

  13. Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots.

    Science.gov (United States)

    Daltorio, Kathryn A; Boxerbaum, Alexander S; Horchler, Andrew D; Shaw, Kendrick M; Chiel, Hillel J; Quinn, Roger D

    2013-09-01

    In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress

  14. Modeling locomotion of a soft-bodied arthropod using inverse dynamics

    International Nuclear Information System (INIS)

    Saunders, Frank; Trimmer, Barry A; Rife, Jason

    2011-01-01

    Most bio-inspired robots have been based on animals with jointed, stiff skeletons. There is now an increasing interest in mimicking the robust performance of animals in natural environments by incorporating compliant materials into the locomotory system. However, the mechanics of moving, highly conformable structures are particularly difficult to predict. This paper proposes a planar, extensible-link model for the soft-bodied tobacco hornworm caterpillar, Manduca sexta, to provide insight for biologists and engineers studying locomotion by highly deformable animals and caterpillar-like robots. Using inverse dynamics to process experimentally acquired point-tracking data, ground reaction forces and internal forces were determined for a crawling caterpillar. Computed ground reaction forces were compared to experimental data to validate the model. The results show that a system of linked extendable joints can faithfully describe the general form and magnitude of the contact forces produced by a crawling caterpillar. Furthermore, the model can be used to compute internal forces that cannot be measured experimentally. It is predicted that between different body segments in stance phase the body is mostly kept in tension and that compression only occurs during the swing phase when the prolegs release their grip. This finding supports a recently proposed mechanism for locomotion by soft animals in which the substrate transfers compressive forces from one part of the body to another (the environmental skeleton) thereby minimizing the need for hydrostatic stiffening. The model also provides a new means to characterize and test control strategies used in caterpillar crawling and soft robot locomotion.

  15. Sexuality of Disabled Athletes Depending on the Form of Locomotion

    Directory of Open Access Journals (Sweden)

    Plinta Ryszard

    2015-12-01

    Full Text Available The main purpose of this study was to determine sexuality of disabled athletes depending on the form of locomotion. The study included 170 disabled athletes, aged between 18 and 45. The entire population was divided into 3 research groups depending on the form of locomotion: moving on wheelchairs (n=52, on crutches (n=29 and unaided (n=89. The research tool was a questionnaire voluntarily and anonymously completed by the respondents of the research groups. The questionnaire was composed of a general part concerning the socio-demographic conditions, medical history, health problems, a part dedicated to physical disability as well as the Polish version of the International Index of Erectile Function (IIEF and the Female Sexual Function Index (FSFI evaluating sexual life. STATISTICA 10.0 for Windows was used in the statistical analysis. Subjects moving on crutches were significantly older than ones moving on wheelchairs and unaided (34.41 ±11.00 vs. 30.49 ±10.44 and 27.99 ±10.51 years, respectively (p=0.018. Clinically significant erectile dysfunctions were most often diagnosed in athletes moving on wheelchairs (70.27%, followed by athletes moving on crutches and moving unaided (60% and 35.42%, respectively; p=0.048. Clinical sexual dysfunctions were diagnosed on a similar level among all female athletes. It was concluded that the form of locomotion may determine sexuality of disabled men. Males on wheelchair revealed the worst sexual functioning. Female athletes moving on wheelchairs, on crutches and moving unaided were comparable in the aspect of their sexual life.

  16. Animal and robot experiments to discover principles behind the evolution of a minimal locomotor apparatus for robust legged locomotion

    Science.gov (United States)

    McInroe, Benjamin; Astley, Henry; Kawano, Sandy; Blob, Richard; Goldman, Daniel I.

    2015-03-01

    In the evolutionary transition from an aquatic to a terrestrial environment, early walkers adapted to the challenges of locomotion on complex, flowable substrates (e.g. sand and mud). Our previous biological and robotic studies have demonstrated that locomotion on such substrates is sensitive to both limb morphology and kinematics. Although reconstructions of early vertebrate skeletal morphologies exist, the kinematic strategies required for successful locomotion by these organisms have not yet been explored. To gain insight into how early walkers contended with complex substrates, we developed a robotic model with appendage morphology inspired by a model analog organism, the mudskipper. We tested mudskippers and the robot on different substrates, including rigid ground and dry granular media, varying incline angle. The mudskippers moved effectively on all level substrates using a fin-driven gait. But as incline angle increased, the animals used their tails in concert with their fins to generate propulsion. Adding an actuated tail to the robot improved robustness, making possible locomotion on otherwise inaccessible inclines. With these discoveries, we are elucidating a minimal template that may have allowed the early walkers to adapt to locomotion on land. This work was supported by NSF PoLS.

  17. Support afferentation in the posture and locomotion control system

    Science.gov (United States)

    Grigoriev, Anatoly; Tomilovskaya, Elena; Kozlovskaya, Inesa

    Mechanisms of support afferentation contribution in posture and locomotion control, which were uncertain up to now, became the point of intensive studies recently. This became possible since the space flights era started which created the conditions for simulated microgravity experiments under conditions of dry immersion and bedrest. The results of neurophysiological studies performed under the conditions of supportlessness have shown that decline or elimination of support loads is followed by deep and fast developing alterations in postural tonic system, including development of postural muscle atonia, changes of recruitment order of motoneurons innervating the shin muscles, spinal hyperreflexia development etc. (Kozlovskaya I.B. et al., 1987). It has been also shown that application of artificial support stimulation in the regimen of natural locomotion under these conditions decreases significantly or even eliminates the development of mentioned changes. The results of these studies laid down the basis for a new hypothesis on the trigger role of support afferentation in postural tonic system and its role in organization and control of postural synergies (Grigoriev A.I. et al., 2004). According to this hypothesis the muscle reception is considered to be the leading afferent input in the control of locomotion. However the data of recent studies pointed out strongly to the participation of support afferentation in definition of cognitive strategies and motor programs of locomotor movements (Chernikova L.A. et al., 2013) and, consequently, in the processes of their initiation (Gerasimenko Yu.P. et al., 2012). The cortical locomotor reflex composes apparently the basis of these processes. The receptive field of this reflex is located in the support zones of the soles and the central part is located in the posterior parietal areas (IPL) of brain cortex. The study is supported by RFBR grant N 13-04-12091 OFI-m.

  18. Controlling legs for locomotion-insights from robotics and neurobiology.

    Science.gov (United States)

    Buschmann, Thomas; Ewald, Alexander; von Twickel, Arndt; Büschges, Ansgar

    2015-06-29

    Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.

  19. Lameness Detection in Dairy Cows: Part 1. How to Distinguish between Non-Lame and Lame Cows Based on Differences in Locomotion or Behavior

    Directory of Open Access Journals (Sweden)

    Annelies Van Nuffel

    2015-08-01

    Full Text Available Due to its detrimental effect on cow welfare, health and production, lameness in dairy cows has received quite a lot of attention in the last few decades—not only in terms of prevention and treatment of lameness but also in terms of detection, as early treatment might decrease the number of severely lame cows in the herds as well as decrease the direct and indirect costs associated with lameness cases. Generally, lame cows are detected by the herdsman, hoof trimmer or veterinarian based on abnormal locomotion, abnormal behavior or the presence of hoof lesions during routine trimming. In the scientific literature, several guidelines are proposed to detect lame cows based on visual interpretation of the locomotion of individual cows (i.e., locomotion scoring systems. Researchers and the industry have focused on automating such observations to support the farmer in finding the lame cows in their herds, but until now, such automated systems have rarely been used in commercial herds. This review starts with the description of normal locomotion of cows in order to define ‘abnormal’ locomotion caused by lameness. Cow locomotion (gait and posture and behavioral features that change when a cow becomes lame are described and linked to the existing visual scoring systems. In addition, the lack of information of normal cow gait and a clear description of ‘abnormal’ gait are discussed. Finally, the different set-ups used during locomotion scoring and their influence on the resulting locomotion scores are evaluated.

  20. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    Science.gov (United States)

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just

  1. Cognitive impairment associated with locomotive syndrome in community-dwelling elderly women in Japan

    Directory of Open Access Journals (Sweden)

    Nakamura M

    2017-09-01

    Full Text Available Misa Nakamura,1 Fumie Tazaki,1 Kazuki Nomura,1 Taeko Takano,1 Masashi Hashimoto,1 Hiroshi Hashizume,2 Ichiro Kamei1 1Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan; 2Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan Abstract: In our worldwide aging society, elderly people should maintain cognitive and physical function to help avoid health problems. Dementia is a major brain disease among elderly people, and is caused by cognitive impairment. The locomotive syndrome (LS refers to a condition in which people require healthcare services because of problems associated with locomotion. The purpose of this study was to determine the association between cognitive impairment and LS. Study participants were 142 healthy elderly female volunteers living in a rural area in Japan. Cognitive function was assessed using the Mini-Mental State Examination (MMSE. A score of ≤26 points on the MMSE was used to indicate categorically defined poor cognitive performance (cognitive impairment. The LS was defined by a score ≥16 points, and non-LS as <16 points, on the 25-question Geriatric Locomotive Function Scale (GLFS-25. Twenty-one participants (14.8% had an MMSE score ≤26, and 19.0% were found to have LS. Compared with the MMSE >26 group, the ≤26 group was significantly older, had a higher percentage of body fat, and a higher GLFS-25 score. Those with LS were significantly older, had a higher body mass index, a higher percentage of body fat, and a lower MMSE score. Participants in the LS group had higher odds of cognitive impairment than those without LS [odds ratio (OR =3.08] by logistic regression analysis adjusted for age. Furthermore, participants with GLFS-25 scores ≥6 had higher odds of cognitive impairment than those with a GLFS-25 score <6 by logistic regression analysis adjusted for both age (OR =4.44, and age and percent body fat (OR =4.12. These findings

  2. 49 CFR 231.16 - Steam locomotives used in switching service.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotives used in switching service. 231... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.16 Steam..., buffer block, footboard, brake pipe, signal pipe, steam-heat pipe or arms of uncoupling lever shall...

  3. 49 CFR 222.21 - When must a locomotive horn be used?

    Science.gov (United States)

    2010-10-01

    ... or lead cab car shall be sounded when such locomotive or lead cab car is approaching a public highway... equipped with automatic flashing lights and gates and the gates are fully lowered; or (2) There are no...

  4. Locomotive emissions test stand with particulate matter measurement integration : final report.

    Science.gov (United States)

    2015-10-01

    This project builds upon previous research efforts, in which a complete instruction manual and bill of materials was developed for : a blueprint that allows any organization in the railroad industry to build their own locomotive emissions measurement...

  5. Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane

    KAUST Repository

    So, Hongyun; Pisano, Albert P.; Seo, Young Ho

    2014-01-01

    This paper presents a microfluidic pump operated by an asymmetrically deformed membrane, which was inspired by caterpillar locomotion. Almost all mechanical micropumps consist of two major components of fluid halting and fluid pushing parts, whereas the proposed caterpillar locomotion-inspired micropump has only a single, bilaterally symmetric membrane-like teardrop shape. A teardrop-shaped elastomeric membrane was asymmetrically deformed and then consecutively touched down to the bottom of the chamber in response to pneumatic pressure, thus achieving fluid pushing. Consecutive touchdown motions of the teardrop-shaped membrane mimicked the propagation of a caterpillar's hump during its locomotory gait. The initial touchdown motion of the teardrop-shaped membrane at the centroid worked as a valve that blocked the inlet channel, and then, the consecutive touchdown motions pushed fluid in the chamber toward the tail of the chamber connected to the outlet channel. The propagation of the touchdown motion of the teardrop-shaped membrane was investigated using computational analysis as well as experimental studies. This caterpillar locomotion-inspired micropump composed of only a single membrane can provide new opportunities for simple integration of microfluidic systems. © the Partner Organisations 2014.

  6. Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane

    KAUST Repository

    So, Hongyun

    2014-01-01

    This paper presents a microfluidic pump operated by an asymmetrically deformed membrane, which was inspired by caterpillar locomotion. Almost all mechanical micropumps consist of two major components of fluid halting and fluid pushing parts, whereas the proposed caterpillar locomotion-inspired micropump has only a single, bilaterally symmetric membrane-like teardrop shape. A teardrop-shaped elastomeric membrane was asymmetrically deformed and then consecutively touched down to the bottom of the chamber in response to pneumatic pressure, thus achieving fluid pushing. Consecutive touchdown motions of the teardrop-shaped membrane mimicked the propagation of a caterpillar\\'s hump during its locomotory gait. The initial touchdown motion of the teardrop-shaped membrane at the centroid worked as a valve that blocked the inlet channel, and then, the consecutive touchdown motions pushed fluid in the chamber toward the tail of the chamber connected to the outlet channel. The propagation of the touchdown motion of the teardrop-shaped membrane was investigated using computational analysis as well as experimental studies. This caterpillar locomotion-inspired micropump composed of only a single membrane can provide new opportunities for simple integration of microfluidic systems. © the Partner Organisations 2014.

  7. Hybrid magnetic mechanism for active locomotion based on inchworm motion

    International Nuclear Information System (INIS)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi

    2013-01-01

    Magnetic robots have been studied in the past. Insect-type micro-robots are used in various biomedical applications; researchers have developed inchworm micro-robots for endoscopic use. A biological inchworm has a looping locomotion gait. However, most inchworm micro-robots depend on a general bending, or bellows, motion. In this paper, we introduce a new robotic mechanism using magnetic force and torque control in a rotating magnetic field for a looping gait. The proposed robot is controlled by the magnetic torque, attractive force, and body mechanisms (two stoppers, flexible body, and different frictional legs). The magnetic torque generates a general bending motion. In addition, the attractive force and body mechanisms produce the robot’s looping motion within a rotating magnetic field and without the use of an algorithm for field control. We verified the device’s performance and analyzed the motion through simulations and various experiments. The robot mechanism can be applied to active locomotion for various medical robots, such as wireless endoscopes. (technical note)

  8. Cellullar insights into cerebral cortical development: focusing on the locomotion mode of neuronal migration

    Directory of Open Access Journals (Sweden)

    Takeshi eKawauchi

    2015-10-01

    Full Text Available The mammalian brain consists of numerous compartments that are closely connected with each other via neural networks, comprising the basis of higher order brain functions. The highly specialized structure originates from simple pseudostratified neuroepithelium-derived neural progenitors located near the ventricle. A long journey by neurons from the ventricular side is essential for the formation of a sophisticated brain structure, including a mammalian-specific six-layered cerebral cortex. Neuronal migration consists of several contiguous steps, but the locomotion mode comprises a large part of the migration. The locomoting neurons exhibit unique features; a radial glial fiber-dependent migration requiring the endocytic recycling of N-cadherin and a neuron-specific migration mode with dilation/swelling formation that requires the actin and microtubule organization possibly regulated by cyclin-dependent kinase 5 (Cdk5, Dcx, p27kip1, Rac1 and POSH. Here I will introduce the roles of various cellular events, such as cytoskeletal organization, cell adhesion and membrane trafficking, in the regulation of the neuronal migration, with particular focus on the locomotion mode.

  9. Knuckle-walking anteater: a convergence test of adaptation for purported knuckle-walking features of African Hominidae.

    Science.gov (United States)

    Orr, Caley M

    2005-11-01

    Appeals to synapomorphic features of the wrist and hand in African apes, early hominins, and modern humans as evidence of knuckle-walking ancestry for the hominin lineage rely on accurate interpretations of those features as adaptations to knuckle-walking locomotion. Because Gorilla, Pan, and Homo share a relatively close common ancestor, the interpretation of such features is confounded somewhat by phylogeny. The study presented here examines the evolution of a similar locomotor regime in New World anteaters (order Xenarthra, family Myrmecophagidae) and uses the terrestrial giant anteater (Myrmecophaga tridactyla) as a convergence test of adaptation for purported knuckle-walking features of the Hominidae. During the stance phase of locomotion, Myrmecophaga transmits loads through flexed digits and a vertical manus, with hyperextension occurring at the metacarpophalangeal joints of the weight-bearing rays. This differs from the locomotion of smaller, arboreal anteaters of outgroup genera Tamandua and Cyclopes that employ extended wrist postures during above-branch quadrupedality. A number of features shared by Myrmecophaga and Pan and Gorilla facilitate load transmission or limit extension, thereby stabilizing the wrist and hand during knuckle-walking, and distinguish these taxa from their respective outgroups. These traits are a distally extended dorsal ridge of the distal radius, proximal expansion of the nonarticular surface of the dorsal capitate, a pronounced articular ridge on the dorsal aspects of the load-bearing metacarpal heads, and metacarpal heads that are wider dorsally than volarly. Only the proximal expansion of the nonarticular area of the dorsal capitate distinguishes knuckle-walkers from digitigrade cercopithecids, but features shared with digitigrade primates might be adaptive to the use of a vertical manus of some sort in the stance phase of terrestrial locomotion. The appearance of capitate nonarticular expansion and the dorsal ridge of the

  10. Reciprocal locomotion of dense swimmers in Stokes flow

    International Nuclear Information System (INIS)

    Gonzalez-Rodriguez, David; Lauga, Eric

    2009-01-01

    Due to the kinematic reversibility of Stokes flow, a body executing a reciprocal motion (a motion in which the sequence of body configurations remains identical under time reversal) cannot propel itself in a viscous fluid in the limit of negligible inertia; this result is known as Purcell's scallop theorem. In this limit, the Reynolds numbers based on the fluid inertia and on the body inertia are all zero. Previous studies characterized the breakdown of the scallop theorem with fluid inertia. In this paper we show that, even in the absence of fluid inertia, certain dense bodies undergoing reciprocal motion are able to swim. Using Lorentz's reciprocal theorem, we first derive the general differential equations that govern the locomotion kinematics of a dense swimmer. We demonstrate that no reciprocal swimming is possible if the body motion consists only of tangential surface deformation (squirming). We then apply our general formulation to compute the locomotion of four simple swimmers, each with a different spatial asymmetry, that perform normal surface deformations. We show that the resulting swimming speeds (or rotation rates) scale as the first power of a properly defined 'swimmer Reynolds number', demonstrating thereby a continuous breakdown of the scallop theorem with body inertia.

  11. 49 CFR 231.17 - Specifications common to all steam locomotives.

    Science.gov (United States)

    2010-10-01

    ... shall be securely fastened with bolts, rivets, or studs. (ii) Locomotives having Wootten type boilers... inches above outside edge of running boards, securely fastened with bolts, rivets, or studs. (c... inches in height, measured from the top of end sill, and securely fastened with bolts or rivets. (f...

  12. Vestibular-Somatosensory Convergence in Head Movement Control During Locomotion after Long-Duration Space Flight

    Science.gov (United States)

    Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob

    2010-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.

  13. Adaptive control of dynamic balance in human gait on a split-belt treadmill.

    Science.gov (United States)

    Buurke, Tom J W; Lamoth, Claudine J C; Vervoort, Danique; van der Woude, Lucas H V; den Otter, Rob

    2018-05-17

    Human bipedal gait is inherently unstable and staying upright requires adaptive control of dynamic balance. Little is known about adaptive control of dynamic balance in reaction to long-term, continuous perturbations. We examined how dynamic balance control adapts to a continuous perturbation in gait, by letting people walk faster with one leg than the other on a treadmill with two belts (i.e. split-belt walking). In addition, we assessed whether changes in mediolateral dynamic balance control coincide with changes in energy use during split-belt adaptation. In nine minutes of split-belt gait, mediolateral margins of stability and mediolateral foot roll-off changed during adaptation to the imposed gait asymmetry, especially on the fast side, and returned to baseline during washout. Interestingly, no changes in mediolateral foot placement (i.e. step width) were found during split-belt adaptation. Furthermore, the initial margin of stability and subsequent mediolateral foot roll-off were strongly coupled to maintain mediolateral dynamic balance throughout the gait cycle. Consistent with previous results net metabolic power was reduced during split-belt adaptation, but changes in mediolateral dynamic balance control were not correlated with the reduction of net metabolic power during split-belt adaptation. Overall, this study has shown that a complementary mechanism of relative foot positioning and mediolateral foot roll-off adapts to continuously imposed gait asymmetry to maintain dynamic balance in human bipedal gait. © 2018. Published by The Company of Biologists Ltd.

  14. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    Science.gov (United States)

    Lee, Scott

    2015-01-01

    In our first article on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find…

  15. Proprioceptive Actuation Design for Dynamic Legged locomotion

    Science.gov (United States)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  16. Simulating spinal border cells and cerebellar granule cells under locomotion--a case study of spinocerebellar information processing.

    Directory of Open Access Journals (Sweden)

    Anton Spanne

    Full Text Available The spinocerebellar systems are essential for the brain in the performance of coordinated movements, but our knowledge about the spinocerebellar interactions is very limited. Recently, several crucial pieces of information have been acquired for the spinal border cell (SBC component of the ventral spinocerebellar tract (VSCT, as well as the effects of SBC mossy fiber activation in granule cells of the cerebellar cortex. SBCs receive monosynaptic input from the reticulospinal tract (RST, which is an important driving system under locomotion, and disynaptic inhibition from Ib muscle afferents. The patterns of activity of RST neurons and Ib afferents under locomotion are known. The activity of VSCT neurons under fictive locomotion, i.e. without sensory feedback, is also known, but there is little information on how these neurons behave under actual locomotion and for cerebellar granule cells receiving SBC input this is completely unknown. But the available information makes it possible to simulate the interactions between the spinal and cerebellar neuronal circuitries with a relatively large set of biological constraints. Using a model of the various neuronal elements and the network they compose, we simulated the modulation of the SBCs and their target granule cells under locomotion and hence generated testable predictions of their general pattern of modulation under this condition. This particular system offers a unique opportunity to simulate these interactions with a limited number of assumptions, which helps making the model biologically plausible. Similar principles of information processing may be expected to apply to all spinocerebellar systems.

  17. CONCENTRATION OF HARMFUL SUBSTANCES REDUCING IN SURFACE LAYER OF ATMOSPHERE AT RHEOSTAT LOCOMOTIVE TESTS

    Directory of Open Access Journals (Sweden)

    E. A. Bondar

    2010-06-01

    Full Text Available It is shown that at present an acceptable way of reducing the concentration of harmful substances in the surface layer of the atmosphere at rheostat tests of locomotives is their dispersion in a large volume of air. Channels, installed above an exhaust pipe of diesel locomotive with a break at the gas flow, work as ejectors. We have solved jointly the equation of aerodynamic characteristics of the ejector device and the equation of diffusion of gases; as a result the calculated dependence for determining the necessary height of ejector device has been obtained.

  18. The Relationship between Locomotive Syndrome and Depression in Community-Dwelling Elderly People

    Directory of Open Access Journals (Sweden)

    Misa Nakamura

    2017-01-01

    Full Text Available Locomotive syndrome (LS is a concept that refers to the condition of people requiring healthcare services because of problems associated with locomotion. Depression is a major psychiatric disease among the elderly, in addition to dementia. The purpose of this study was to determine the association between LS and depression. The study participants were 224 healthy elderly volunteers living in a rural area in Japan. LS was defined as scores ≥ 16 on the 25-question Geriatric Locomotive Function Scale (GLFS-25. Depression was defined as scores ≥ 5 on the 15-item Geriatric Depression Scale (GDS-15. Height and body weight were measured. The prevalence of LS and depression was 13.9% and 24.2%, respectively. Compared with the non-LS group, the LS group was older, was shorter, had a higher BMI, and had higher GDS-15 scores. Logistic regression analysis showed that participants with GDS-15 scores ≥ 6 had higher odds for LS than those with GDS-15 scores < 6 (odds ratio [OR] = 4.22. Conversely, the depression group had higher GLFS-25 scores than the nondepression group. Participants with GLFS-25 scores ≥ 5 had higher odds for depression than those with GLFS-25 scores < 5 (OR = 4.53. These findings suggest that there is a close relationship between LS and depression.

  19. Coupling of cytoskeleton functions for fibroblast locomotion

    DEFF Research Database (Denmark)

    Couchman, J R; Lenn, M; Rees, D A

    1985-01-01

    caused visible protrusions in projected positions at the leading edge. We conclude that fibroblast locomotion may be driven coordinately by a common set of motility mechanisms and that this coordination may be lost as a result of physical or pharmacological disturbance. Taking our evidence with results...... from other Laboratories, we propose the following cytoskeleton functions. (i) Protrusive activity, probably based on solation--gelation cycles of the actin based cytoskeleton and membrane recycling which provides cellular and membrane components for streaming through the cell body to the leading edge...

  20. FIM imaging and FIMtrack: two new tools allowing high-throughput and cost effective locomotion analysis.

    Science.gov (United States)

    Risse, Benjamin; Otto, Nils; Berh, Dimitri; Jiang, Xiaoyi; Klämbt, Christian

    2014-12-24

    The analysis of neuronal network function requires a reliable measurement of behavioral traits. Since the behavior of freely moving animals is variable to a certain degree, many animals have to be analyzed, to obtain statistically significant data. This in turn requires a computer assisted automated quantification of locomotion patterns. To obtain high contrast images of almost translucent and small moving objects, a novel imaging technique based on frustrated total internal reflection called FIM was developed. In this setup, animals are only illuminated with infrared light at the very specific position of contact with the underlying crawling surface. This methodology results in very high contrast images. Subsequently, these high contrast images are processed using established contour tracking algorithms. Based on this, we developed the FIMTrack software, which serves to extract a number of features needed to quantitatively describe a large variety of locomotion characteristics. During the development of this software package, we focused our efforts on an open source architecture allowing the easy addition of further modules. The program operates platform independent and is accompanied by an intuitive GUI guiding the user through data analysis. All locomotion parameter values are given in form of csv files allowing further data analyses. In addition, a Results Viewer integrated into the tracking software provides the opportunity to interactively review and adjust the output, as might be needed during stimulus integration. The power of FIM and FIMTrack is demonstrated by studying the locomotion of Drosophila larvae.

  1. The application of high-speed cinematography for the quantitative analysis of equine locomotion.

    Science.gov (United States)

    Fredricson, I; Drevemo, S; Dalin, G; Hjertën, G; Björne, K

    1980-04-01

    Locomotive disorders constitute a serious problem in horse racing which will only be rectified by a better understanding of the causative factors associated with disturbances of gait. This study describes a system for the quantitative analysis of the locomotion of horses at speed. The method is based on high-speed cinematography with a semi-automatic system of analysis of the films. The recordings are made with a 16 mm high-speed camera run at 500 frames per second (fps) and the films are analysed by special film-reading equipment and a mini-computer. The time and linear gait variables are presented in tabular form and the angles and trajectories of the joints and body segments are presented graphically.

  2. A Reconfigurable Omnidirectional Soft Robot Based on Caterpillar Locomotion.

    Science.gov (United States)

    Zou, Jun; Lin, Yangqiao; Ji, Chen; Yang, Huayong

    2018-04-01

    A pneumatically powered, reconfigurable omnidirectional soft robot based on caterpillar locomotion is described. The robot is composed of nine modules arranged as a three by three matrix and the length of this matrix is 154 mm. The robot propagates a traveling wave inspired by caterpillar locomotion, and it has all three degrees of freedom on a plane (X, Y, and rotation). The speed of the robot is about 18.5 m/h (two body lengths per minute) and it can rotate at a speed of 1.63°/s. The modules have neodymium-iron-boron (NdFeB) magnets embedded and can be easily replaced or combined into other configurations. Two different configurations are presented to demonstrate the possibilities of the modular structure: (1) by removing some modules, the omnidirectional robot can be reassembled into a form that can crawl in a pipe and (2) two omnidirectional robots can crawl close to each other and be assembled automatically into a bigger omnidirectional robot. Omnidirectional motion is important for soft robots to explore unstructured environments. The modular structure gives the soft robot the ability to cope with the challenges of different environments and tasks.

  3. Left–right coordination from simple to extreme conditions during split‐belt locomotion in the chronic spinal adult cat

    Science.gov (United States)

    Desrochers, Étienne; Thibaudier, Yann; Hurteau, Marie‐France; Dambreville, Charline

    2016-01-01

    Key points Coordination between the left and right sides is essential for dynamic stability during locomotion.The immature or neonatal mammalian spinal cord can adjust to differences in speed between the left and right sides during split‐belt locomotion by taking more steps on the fast side.We show that the adult mammalian spinal cord can also adjust its output so that the fast side can take more steps.During split‐belt locomotion, only certain parts of the cycle are modified to adjust left–right coordination, primarily those associated with swing onset.When the fast limb takes more steps than the slow limb, strong left–right interactions persist.Therefore, the adult mammalian spinal cord has a remarkable adaptive capacity for left–right coordination, from simple to extreme conditions. Abstract Although left–right coordination is essential for locomotion, its control is poorly understood, particularly in adult mammals. To investigate the spinal control of left–right coordination, a spinal transection was performed in six adult cats that were then trained to recover hindlimb locomotion. Spinal cats performed tied‐belt locomotion from 0.1 to 1.0 m s−1 and split‐belt locomotion with low to high (1:1.25–10) slow/fast speed ratios. With the left hindlimb stepping at 0.1 m s−1 and the right hindlimb stepping from 0.2 to 1.0 m s−1, 1:1, 1:2, 1:3, 1:4 and 1:5 left–right step relationships could appear. The appearance of 1:2+ relationships was not linearly dependent on the difference in speed between the slow and fast belts. The last step taken by the fast hindlimb displayed longer cycle, stance and swing durations and increased extensor activity, as the slow limb transitioned to swing. During split‐belt locomotion with 1:1, 1:2 and 1:3 relationships, the timing of stance onset of the fast limb relative to the slow limb and placement of both limbs at contact were invariant with increasing slow/fast speed ratios. In contrast, the timing of

  4. Manual and automatic locomotion scoring systems in dairy cows: A review

    NARCIS (Netherlands)

    Schlageter-Tello, A.; Bokkers, E.A.M.; Groot Koerkamp, P.W.G.; Hertem, van T.; Viazzi, S.; Romanini Bites, E.; Halachmi, I.; Bahr, C.; Berckmans, D.; Lokhorst, K.

    2014-01-01

    The objective of this review was to describe, compare and evaluate agreement, reliability, and validity of manual and automatic locomotion scoring systems (MLSSs and ALSSs, respectively) used in dairy cattle lameness research. There are many different types of MLSSs and ALSSs. Twenty-five MLSSs were

  5. Differential effects of absent visual feedback control on gait variability during different locomotion speeds.

    Science.gov (United States)

    Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K

    2013-01-01

    Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.

  6. L1cam is crucial for cell locomotion and terminal translocation of the Soma in radial migration during murine corticogenesis.

    Directory of Open Access Journals (Sweden)

    Madoka Tonosaki

    Full Text Available L1cam (L1 is a cell adhesion molecule associated with a spectrum of human neurological diseases, the most well-known being X-linked hydrocephalus. Although we recently demonstrated that L1 plays an important role in neuronal migration during cortical histogenesis, the mechanisms of delayed migration have still not been clarified. In this study, we found that cell locomotion in the intermediate zone and terminal translocation in the primitive cortical zone (PCZ were affected by L1-knockdown (L1-KD. Time-lapse analyses revealed that L1-KD neurons produced by in utero electroporation of shRNA targeting L1 (L1-shRNAs molecules showed decreased locomotion velocity in the intermediate zone, compared with control neurons. Furthermore, L1-KD neurons showed longer and more undulated leading processes during translocation through the primitive cortical zone. The curvature index, a quantitative index for curvilinearity, as well as the length of the leading process, were increased, whereas the somal movement was decreased in L1-KD neurons during terminal translocation in the PCZ. These results suggest that L1 has a role in radial migration of cortical neurons.

  7. Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior

    International Nuclear Information System (INIS)

    Kim, Cha Soon; Lee, Byung Sub; Lee, In Kyung; Yang, Kwang Hee; Kim, Ji-Young; Nam, Seon Young; Seong, Ki Moon

    2015-01-01

    Although radiation effects have been extensively studied, the biological effects of low-dose radiation (LDR) are controversial. This study investigates LDR-induced alterations in locomotive behavior and gene expression profiles of Drosophila melanogaster. We measured locomotive behavior using larval pupation height and the rapid iterative negative geotaxis (RING) assay after exposure to 0.1 Gy γ-radiation (dose rate of 16.7 mGy/h). We also observed chronic LDR effects on development (pupation and eclosion rates) and longevity (life span). To identify chronic LDR effects on gene expression, we performed whole-genome expression analysis using gene-expression microarrays, and confirmed the results using quantitative real-time PCR. The pupation height of the LDR-treated group at the first larval instar was significantly higher (∼2-fold increase in PHI value, P < 0.05). The locomotive behavior of LDR-treated male flies (∼3 − 5 weeks of age) was significantly increased by 7.7%, 29% and 138%, respectively (P < 0.01), but pupation and eclosion rates and life spans were not significantly altered. Genome-wide expression analysis identified 344 genes that were differentially expressed in irradiated larvae compared with in control larvae. We identified several genes belonging to larval behavior functional groups such as locomotion (1.1%), oxidation reduction (8.0%), and genes involved in conventional functional groups modulated by irradiation such as defense response (4.9%), and sensory and perception (2.5%). Four candidate genes were confirmed as differentially expressed genes in irradiated larvae using qRT-PCR (>2-fold change). These data suggest that LDR stimulates locomotion-related genes, and these genes can be used as potential markers for LDR. (author)

  8. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems

    Science.gov (United States)

    Aguilar, Jeffrey; Zhang, Tingnan; Qian, Feifei; Kingsbury, Mark; McInroe, Benjamin; Mazouchova, Nicole; Li, Chen; Maladen, Ryan; Gong, Chaohui; Travers, Matt; Hatton, Ross L.; Choset, Howie; Umbanhowar, Paul B.; Goldman, Daniel I.

    2016-11-01

    Discovery of fundamental principles which govern and limit effective locomotion (self-propulsion) is of intellectual interest and practical importance. Human technology has created robotic moving systems that excel in movement on and within environments of societal interest: paved roads, open air and water. However, such devices cannot yet robustly and efficiently navigate (as animals do) the enormous diversity of natural environments which might be of future interest for autonomous robots; examples include vertical surfaces like trees and cliffs, heterogeneous ground like desert rubble and brush, turbulent flows found near seashores, and deformable/flowable substrates like sand, mud and soil. In this review we argue for the creation of a physics of moving systems—a ‘locomotion robophysics’—which we define as the pursuit of principles of self-generated motion. Robophysics can provide an important intellectual complement to the discipline of robotics, largely the domain of researchers from engineering and computer science. The essential idea is that we must complement the study of complex robots in complex situations with systematic study of simplified robotic devices in controlled laboratory settings and in simplified theoretical models. We must thus use the methods of physics to examine both locomotor successes and failures using parameter space exploration, systematic control, and techniques from dynamical systems. Using examples from our and others’ research, we will discuss how such robophysical studies have begun to aid engineers in the creation of devices that have begun to achieve life-like locomotor abilities on and within complex environments, have inspired interesting physics questions in low dimensional dynamical systems, geometric mechanics and soft matter physics, and have been useful to develop models for biological locomotion in complex terrain. The rapidly decreasing cost of constructing robot models with easy access to significant

  9. Consequences of evolution: is rhinosinusitis, like otitis media, a unique disease of humans?

    Science.gov (United States)

    Bluestone, Charles D; Pagano, Anthony S; Swarts, J Douglas; Laitman, Jeffrey T

    2012-12-01

    We hypothesize that if otitis media is most likely primarily a human disease due to consequences of evolution, rhinosinusitis may also be limited to humans for similar reasons. If otitis media, with its associated hearing loss, occurred in animals in the wild, they probably would have been culled out by predation. Similarly, if rhinosinusitis occurred regularly in animals, they likely would have suffered from severely decreased olfactory abilities, crucial for predator avoidance, and presumably would likewise have been selected against evolutionarily. Thus, both otitis media and rhinosinusitis-common conditions particularly in infants and young children-appear to be essentially human conditions. Their manifestation in our species is likely due to our unique evolutionary trajectory and may be a consequence of adaptations, including adaptations to bipedalism and speech, loss of prognathism, and immunologic and environmental factors.

  10. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion II

    Science.gov (United States)

    Lee, Scott

    2015-01-01

    In the second paper of this series, the effect of transverse femoral stresses due to locomotion in theropod dinosaurs of different sizes was examined for the case of an unchanging leg geometry. Students are invariably thrilled to learn about theropod dinosaurs, and this activity applies the concepts of torque and stress to the issue of theropod…

  11. Analysis of emotionality and locomotion in radio-frequency electromagnetic radiation exposed rats.

    Science.gov (United States)

    Narayanan, Sareesh Naduvil; Kumar, Raju Suresh; Paval, Jaijesh; Kedage, Vivekananda; Bhat, M Shankaranarayana; Nayak, Satheesha; Bhat, P Gopalakrishna

    2013-07-01

    In the current study the modulatory role of mobile phone radio-frequency electromagnetic radiation (RF-EMR) on emotionality and locomotion was evaluated in adolescent rats. Male albino Wistar rats (6-8 weeks old) were randomly assigned into the following groups having 12 animals in each group. Group I (Control): they remained in the home cage throughout the experimental period. Group II (Sham exposed): they were exposed to mobile phone in switch-off mode for 28 days, and Group III (RF-EMR exposed): they were exposed to RF-EMR (900 MHz) from an active GSM (Global system for mobile communications) mobile phone with a peak power density of 146.60 μW/cm(2) for 28 days. On 29th day, the animals were tested for emotionality and locomotion. Elevated plus maze (EPM) test revealed that, percentage of entries into the open arm, percentage of time spent on the open arm and distance travelled on the open arm were significantly reduced in the RF-EMR exposed rats. Rearing frequency and grooming frequency were also decreased in the RF-EMR exposed rats. Defecation boli count during the EPM test was more with the RF-EMR group. No statistically significant difference was found in total distance travelled, total arm entries, percentage of closed arm entries and parallelism index in the RF-EMR exposed rats compared to controls. Results indicate that mobile phone radiation could affect the emotionality of rats without affecting the general locomotion.

  12. BiLBIQ A Biologically Inspired Robot with Walking and Rolling Locomotion

    CERN Document Server

    King, Ralf Simon

    2013-01-01

    The book ‘BiLBIQ: A biologically inspired Robot with walking and rolling locomotion’ deals with implementing a locomotion behavior observed in the biological archetype Cebrennus villosus to a robot prototype whose structural design needs to be developed.   The biological sample is investigated as far as possible and compared to other evolutional solutions within the framework of nature’s inventions. Current achievements in robotics are examined and evaluated for their relation and relevance to the robot prototype in question. An overview of what is state of the art in actuation ensures the choice of the hardware available and most suitable for this project. Through a constant consideration of the achievement of two fundamentally different ways of locomotion with one and the same structure, a robot design is developed and constructed taking hardware constraints into account. The development of a special leg structure that needs to resemble and replace body elements of the biological archetype is a speci...

  13. Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot.

    Science.gov (United States)

    Jia, Wenchuan; Huang, Dandan; Luo, Xin; Pu, Huayan; Chen, Xuedong; Bai, Ou

    2012-01-01

    Artificial intelligence and bionic control have been applied in electroencephalography (EEG)-based robot system, to execute complex brain-control task. Nevertheless, due to technical limitations of the EEG decoding, the brain-computer interface (BCI) protocol is often complex, and the mapping between the EEG signal and the practical instructions lack of logic associated, which restrict the user's actual use. This paper presents a strategy that can be used to control a quadruped locomotion robot by user's instinctive action, based on five kinds of movement related neurophysiological signal. In actual use, the user drives or imagines the limbs/wrists action to generate EEG signal to adjust the real movement of the robot according to his/her own motor reflex of the robot locomotion. This method is easy for real use, as the user generates the brain-control signal through the instinctive reaction. By adopting the behavioral control of learning and evolution based on the proposed strategy, complex movement task may be realized by instinctive brain-control.

  14. To solve the specific emissions of locomotive diesel engines. Final report

    International Nuclear Information System (INIS)

    Korhonen, R.; Maeaettaenen, M.

    1999-01-01

    Ministry of Transport has made a goal to create an uniform system to make it possible to compare emissions of different transport forms. Kymenlaakso Polytechnic was supported by the Mobile Research Programme to measure the specific emissions of locomotive diesel engines. VR Osakeyhtioe has also supported economically the research work. During the research specific emissions of three diesel engines used in locomotives and calculated according to ISO 8178 standard were measured. In all, emissions of 14 engines were measured. For 12 engines measurements were made after the engine shop repair and for two engines before the repairing. Gaseous emissions: nitric oxide, carbon monoxide, carbon dioxide and total hydrocarbons contents were measured. Based on measured emissions and sulphur contents of the oil the weighted emissions were calculated in units g/kWh and g/kg fuel . Particular emissions were measured with dilution method and specific emissions were calculated in same units as for gaseous emissions

  15. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, M-Y; Chang, K-H [Department of E. E., Southern Taiwan University, 1 Nantai St., YungKang City, Tainan County 71005, Taiwan (China); Lia, Y-S [Executive Director Office, ITRI, Southern Taiwan Innovation Park, Tainan County, Taiwan (China)], E-mail: myshieh@mail.stut.edu.tw

    2008-02-15

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface.

  16. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    International Nuclear Information System (INIS)

    Shieh, M-Y; Chang, K-H; Lia, Y-S

    2008-01-01

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface

  17. A remotely-controlled locomotive IC driven by electrolytic bubbles and wireless powering.

    Science.gov (United States)

    Hsieh, Jian-Yu; Kuo, Po-Hung; Huang, Yi-Chun; Huang, Yu-Jie; Tsai, Rong-Da; Wang, Tao; Chiu, Hung-Wei; Wang, Yao-Hung; Lu, Shey-Shi

    2014-12-01

    A batteryless remotely-controlled locomotive IC utilizing electrolytic bubbles as propelling force is realized in 0.35 μm CMOS technology. Without any external components, such as magnets and on-board coils, the bare IC is wirelessly powered and controlled by a 10 MHz ASK modulated signal with RS232 control commands to execute movement in four moving directions and with two speeds. The receiving coil and electrolysis electrodes are all integrated on the locomotive chip. The experiment successfully demonstrated that the bare IC moved on the surface of an electrolyte with a speed up to 0.3 mm/s and change moving directions according to the commands. The total power consumptions of the chip are 207.4 μW and 180 μ W while the output electrolysis voltages are 2 V and 1.3 V, respectively.

  18. Using Computational and Mechanical Models to Study Animal Locomotion

    OpenAIRE

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locom...

  19. Markerless 3D motion capture for animal locomotion studies

    OpenAIRE

    William Irvin Sellers; Eishi Hirasaki

    2014-01-01

    ABSTRACT Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional na...

  20. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast...... on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models...... allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show...

  1. Continuum limbed robots for locomotion

    Science.gov (United States)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  2. Locomotion and the Cost of Hunting in Large, Stealthy Marine Carnivores.

    Science.gov (United States)

    Williams, Terrie M; Fuiman, Lee A; Davis, Randall W

    2015-10-01

    Foraging by large (>25 kg), mammalian carnivores often entails cryptic tactics to surreptitiously locate and overcome highly mobile prey. Many forms of intermittent locomotion from stroke-and-glide maneuvers by marine mammals to sneak-and-pounce behaviors by terrestrial canids, ursids, and felids are involved. While affording proximity to vigilant prey, these tactics are also associated with unique energetic costs and benefits to the predator. We examined the energetic consequences of intermittent locomotion in mammalian carnivores and assessed the role of these behaviors in overall foraging efficiency. Behaviorally-linked, three-axis accelerometers were calibrated to provide instantaneous locomotor behaviors and associated energetic costs for wild adult Weddell seals (Leptonychotes weddellii) diving beneath the Antarctic ice. The results were compared with previously published values for other marine and terrestrial carnivores. We found that intermittent locomotion in the form of extended glides, burst-and-glide swimming, and rollercoaster maneuvers while hunting silverfish (Pleuragramma antarcticum) resulted in a marked energetic savings for the diving seals relative to continuously stroking. The cost of a foraging dive by the seals decreased by 9.2-59.6%, depending on the proportion of time gliding. These energetic savings translated into exceptionally low transport costs during hunting (COTHUNT) for diving mammals. COTHUNT for Weddell seals was nearly six times lower than predicted for large terrestrial carnivores, and demonstrates the importance of turning off the propulsive machinery to facilitate cost-efficient foraging in highly active, air-breathing marine predators. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  3. The motor system plays the violin: a musical metaphor inferred from the oscillatory activity of the α-motoneuron pools during locomotion.

    Science.gov (United States)

    Chiovetto, Enrico

    2011-04-01

    Despite substantial advances in the field, particularly resulting from physiological studies in animals, the neural mechanisms underlying the generation of many motor behaviors in humans remain unclear. A recent study (Cappellini G et al. J Neurophysiol 104: 3064-3073, 2010) sheds more light on this topic. Like the string of a violin, the α-motoneuron pools in the spinal cord during locomotion show continuous and oscillatory patterns of activation. In this report, the implications and relevance of this finding are discussed in a general framework that includes neurophysiology, optimal control theory, and robotics.

  4. Gaze Strategies in Skateboard Trick Jumps: Spatiotemporal Constraints in Complex Locomotion

    Science.gov (United States)

    Klostermann, André; Küng, Philip

    2017-01-01

    Purpose: This study aimed to further the knowledge on gaze behavior in locomotion by studying gaze strategies in skateboard jumps of different difficulty that had to be performed either with or without an obstacle. Method: Nine experienced skateboarders performed "Ollie" and "Kickflip" jumps either over an obstacle or over a…

  5. Nonlinear control methods for planar carangiform robot fish locomotion

    OpenAIRE

    Morgansen, Kristi A.; Duindam, Vincent; Mason, Richard J.; Burdick, Joel W.; Murray, Richard M.

    2001-01-01

    Considers the design of motion control algorithms for robot fish. We present modeling, control design, and experimental trajectory tracking results for an experimental planar robotic fish system that is propelled using carangiform-like locomotion. Our model for the fish's propulsion is based on quasi-steady fluid flow. Using this model, we propose gaits for forward and turning trajectories and analyze system response under such control strategies. Our models and predictions are verified by ex...

  6. Tamoxifen Promotes Axonal Preservation and Gait Locomotion Recovery after Spinal Cord Injury in Cats

    Directory of Open Access Journals (Sweden)

    Braniff de la Torre Valdovinos

    2016-01-01

    Full Text Available We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats. On the contrary, in the untreated animals, their myelin sheet was reduced to 28% at 30 days after injury (DAI, in both the ipsilateral and contralateral regions of the spinal cord. Additionally, we made hindlimb kinematics experiments to study the effects of tamoxifen on cat locomotion after the injury: at 4, 16, and 30 DAI. We observed that the ipsilateral hindlimb angular displacement (AD of the pendulum-like movements (PLM during gait locomotion was recovered to almost normal values in treated cats. Contralateral PLM acquired similar values to those obtained in intact cats. At 4 DAI, untreated animals showed a compensatory increment of PLM occurring in the contralateral hindlimb, which was partially recovered at 30 DAI. Our findings indicate that tamoxifen exerts a neuroprotective effect and preserves or produces myelinated axons, which could benefit the locomotion recovery in injured cats.

  7. Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, M.; Heath, G.

    2009-03-01

    With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

  8. MTU engines for locomotives satisfying the EU stage IIIB emission standard; MTU-Lokomotivantriebe fuer die Emissionsstufe EU IIIB

    Energy Technology Data Exchange (ETDEWEB)

    Wintruff, Ingo; Reich, Christian; Geiselmann, Wolfgang; Gottschalch, Harald; Jansen, Eddy [MTU Friedrichshafen GmbH, Friedrichshafen (Germany)

    2011-07-01

    The emission limits for diesel locomotives inside the European Union are included within the scope of Directive 97/68/EC, which is sometimes referred to as the ''non-road directive''. The pollutants limited by it are NO{sub x}, particulates, CO and HCs. The aim, through the directive, is to reduce railway emissions by a factor of ten by the year 2020. The EU stage IIIB standard is due to take effect on 1 January 2012. This envisages a further drastic reduction in limit values compared with EU stage IIIA, which is applicable today. For diesel locomotives, EU stage IIIA only came into force as recently as 2009. The manufacturers of engines and locomotives are thus having to face up to the huge challenge of getting the technologies needed for EU stage IIIB ready for the production line within a period of only three years. MTU has succeeded in developing engines for diesel locomotives that comply with the EU stage IIIB emission standard, which appreciably lower emissions compared with engines satisfying EU stage IIIA, thanks to the incorporation of the most modern technologies available, and has even gone as far as preparing them for the EU stage IV, the next one to come into force. (orig.)

  9. Effects of shell morphology on mechanics of zebra and quagga mussel locomotion.

    Science.gov (United States)

    Peyer, Suzanne M; Hermanson, John C; Lee, Carol Eunmi

    2011-07-01

    Although zebra mussels (Dreissena polymorpha) initially colonized shallow habitats within the North American Great Lakes, quagga mussels (Dreissena bugensis) are becoming dominant in both shallow- and deep-water habitats. Shell morphology differs among zebra, shallow quagga and deep quagga mussels but functional consequences of such differences are unknown. We examined effects of shell morphology on locomotion for the three morphotypes on hard (typical of shallow habitats) and soft (characteristic of deep habitats) sedimentary substrates. We quantified morphology using the polar moment of inertia, a parameter used in calculating kinetic energy that describes shell area distribution and resistance to rotation. We quantified mussel locomotion by determining the ratio of rotational (K(rot)) to translational kinetic energy (K(trans)). On hard substrate, K(rot):K(trans) of deep quagga mussels was fourfold greater than for the other morphotypes, indicating greater energy expenditure in rotation relative to translation. On soft substrate, K(rot):K(trans) of deep quagga mussels was approximately one-third of that on hard substrate, indicating lower energy expenditure in rotation on soft substrate. Overall, our study demonstrates that shell morphology correlates with differences in locomotion (i.e. K(rot):K(trans)) among morphotypes. Although deep quagga mussels were similar to zebra and shallow quagga mussels in terms of energy expenditure on sedimentary substrate, their morphology was energetically maladaptive for linear movement on hard substrate. As quagga mussels can possess two distinct morphotypes (i.e. shallow and deep morphs), they might more effectively utilize a broader range of substrates than zebra mussels, potentially enhancing their ability to colonize a wider range of habitats.

  10. Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Gwin, Jeremy; Frenette, Douglas

    2010-01-01

    This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy (DOE) Order DOE O 5400.5, 'Radiation Protection of the Public and the Environment'). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the

  11. Robotic Bipedal Running : Increasing disturbance rejection

    NARCIS (Netherlands)

    Karssen, J.G.D.

    2013-01-01

    The goal of the research presented in this thesis is to increase the understanding of the human running gait. The understanding of the human running gait is essential for the development of devices, such as prostheses and orthoses, that enable disabled people to run or that enable able people to

  12. Effects of Weaning and Spatial Enrichment on Behavior of Turkish Saanen Goat Kids

    Directory of Open Access Journals (Sweden)

    Cemil Tölü

    2016-06-01

    Full Text Available As is in all economic activities, the highest yield per unit area is the main goal in animal production, while addressing the temperamental needs of animals often is ignored. Animal welfare is not only an ethical fact; it also has an economic value. Spatial environmental enrichment contributes positively to animal welfare by addressing their behavioral and mental requirements. The present study was conducted to determine the effects of weaning and spatial environmental arrangements on behaviors of goat-kids. Experimental groups were arranged in structured and unstructured spatial environments. Roughage feeder, semi-automatic concentrate feeder, bunk, bridge, and wood block were placed in the structured environment. No equipment was placed in the unstructured environment and paddock sides were enclosed with an iron sheet to prevent bipedal stance and to provide environmental isolation. In the study 10 male and 10 female Turkish Saanen goat kids were used in each group. Spatial environmental arrangements did not have significant impacts on the growth performance of kids (p>0.05. All objects in the structured group were accepted by the kids. Average use ratios of roughage feeder, semi-automatic concentrate feeder, bunk, bridge and wood block were observed as 19.3%, 14.0%, 12.6%, 3.8%, and 0.7%, respectively. There were significant differences between before- and after-weaning in use of all objects except for underneath bridge (p≤0.05. Concentrate feed consumption, locomotion, and resting behaviors in kids showed significant differences by structural group and growth period. Roughage consumption was similar between groups, while it differed by growth period (p≤0.05. Interaction frequency was significantly higher in structured group (p = 0.0023. Playing behavior significantly differentiated based on the growth period rather than on groups (p≤0.05. Playing behavior significantly decreased after weaning. Abnormal oral activity was significantly

  13. Development of Independent Locomotion in Children with a Severe Visual Impairment

    Science.gov (United States)

    Hallemans, Ann; Ortibus, Els; Truijen, Steven; Meire, Francoise

    2011-01-01

    Locomotion of children and adults with a visual impairment (ages 1-44, n = 28) was compared to that of age-related individuals with normal vision (n = 60). Participants walked barefoot at preferred speed while their gait was recorded by a Vicon[R] system. Walking speed, heading angle, step frequency, stride length, step width, stance phase…

  14. Evaluating alternative gait strategies using evolutionary robotics.

    Science.gov (United States)

    Sellers, William I; Dennis, Louise A; W -J, Wang; Crompton, Robin H

    2004-05-01

    Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids.

  15. The role of vortices in animal locomotion in fluids

    Directory of Open Access Journals (Sweden)

    Dvořák R.

    2014-12-01

    Full Text Available The aim of this paper is to show the significance of vortices in animal locomotion in fluids on two deliberately chosen examples. The first example concerns lift generation by bird and insect wings, the second example briefly mentiones swimming and walking on water. In all the examples, the vortices generated by the moving animal impart the necessary momentum to the surrounding fluid, the reaction to which is the force moving or lifting the animal.

  16. Distributed Recurrent Neural Forward Models with Neural Control for Complex Locomotion in Walking Robots

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin

    2015-01-01

    here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated......Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental...... conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain...

  17. Rolling towards a cleaner future: the development of Canadian locomotive emissions regulations

    International Nuclear Information System (INIS)

    2010-12-01

    In 2006, the Government of Canada published a notice of intent that it would develop regulations aimed at reducing anthropogenic criteria air contaminants and greenhouse gas emissions. The Government now intends to develop railway emissions regulations for criteria air contaminants under the Railway Safety Act. The Railway Safety Act not only provides the legislative basis for developing regulations governing railways, it also gives the authority for developing the rules governing federally regulated railroads to the Minister of Transport. For the future, Transport Canada will be responsible for developing regulations governing the rail sector. The transportation sector is a substantial emitter of criteria air contaminants, so rail transportation is a key element of the current work. This paper seeks to give a framework for consultations with stakeholders and facilitate dialogue. It collects feedback from stakeholders on the design of a Canadian regulatory regime for locomotive-generated criteria air contaminant emissions. Canadian railways have managed locomotive air contaminant emissions since 1995.

  18. Uniqueness of human running coordination: The integration of modern and ancient evolutionary innovations

    Directory of Open Access Journals (Sweden)

    John eKiely

    2016-04-01

    Full Text Available Running is a pervasive activity across human cultures and a cornerstone of contemporary health, fitness and sporting activities. Yet for the overwhelming predominance of human existence running was an essential prerequisite for survival. A means to hunt, and a means to escape when hunted. In a very real sense humans have evolved to run. Yet curiously, perhaps due to running’s cultural ubiquity and the natural ease with which we learn to run, we rarely consider the uniqueness of human bipedal running within the animal kingdom. Our unique upright, single stance, bouncing running gait imposes a unique set of coordinative difficulties. Challenges demanding we precariously balance our fragile brains in the very position where they are most vulnerable to falling injury while simultaneously retaining stability, steering direction of travel, and powering the upcoming stride: all within the abbreviated time-frames afforded by short, violent ground contacts separated by long flight times. These running coordination challenges are solved through the tightly-integrated blending of primitive evolutionary legacies, conserved from reptilian and vertebrate lineages, and comparatively modern, more exclusively human, innovations. The integrated unification of these top-down and bottom-up control processes bestows humans with an agile control system, enabling us to readily modulate speeds, change direction, negotiate varied terrains and to instantaneously adapt to changing surface conditions. The seamless integration of these evolutionary processes is facilitated by pervasive, neural and biological, activity-dependent adaptive plasticity. Over time, and with progressive exposure, this adaptive plasticity shapes neural and biological structures to best cope with regularly imposed movement challenges. This pervasive plasticity enables the gradual construction of a robust system of distributed coordinated control, comprised of processes that are so deeply

  19. The coordination between mechanical and chemical subsystems initiates locomotion of Physarum plasmodial fragments

    Science.gov (United States)

    Zhang, Shun; Guy, Robert; Del Alamo, Juan Carlos

    2017-11-01

    Physarum polycephalum is a multinucleated slime mold whose endoplasm flows periodically driven by the contraction of its ectoplasm, a dense shell of F-actin cross-linked by myosin molecular motors and attached to the cell membrane. We find that physarum fragments smaller than 100 microns remain round and stay in place. However, larger fragments break symmetry leading to sustained forward locomotion, in process that is reminiscent of an interfacial instability that seems to settle around two different limit cycles (traveling waves and standing waves). We use both theory and experiments to study how coordination emerges between the different mechanical and chemical subsystems of the fragment to initiate locomotion. The role of many involved factors, such as fragment size, substratum adhesiveness, rheological properties, actin polymerization and traction stresses are investigated, and we find they agree well with our predictive model.

  20. Fluid Flow Simulation and Energetic Analysis of Anomalocarididae Locomotion

    Science.gov (United States)

    Mikel-Stites, Maxwell; Staples, Anne

    2014-11-01

    While an abundance of animal locomotion simulations have been performed modeling the motions of living arthropods and aquatic animals, little quantitative simulation and reconstruction of gait parameters has been done to model the locomotion of extinct animals, many of which bear little physical resemblance to their modern descendants. To that end, this project seeks to analyze potential swimming patterns used by the anomalocaridid family, (specifically Anomalocaris canadensis, a Cambrian Era aquatic predator), and determine the most probable modes of movement. This will serve to either verify or cast into question the current assumed movement patterns and properties of these animals and create a bridge between similar flexible-bodied swimmers and their robotic counterparts. This will be accomplished by particle-based fluid flow simulations of the flow around the fins of the animal, as well as an energy analysis of a variety of sample gaits. The energy analysis will then be compared to the extant information regarding speed/energy use curves in an attempt to determine which modes of swimming were most energy efficient for a given range of speeds. These results will provide a better understanding of how these long-extinct animals moved, possibly allowing an improved understanding of their behavioral patterns, and may also lead to a novel potential platform for bio-inspired underwater autonomous vehicles (UAVs).

  1. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    International Nuclear Information System (INIS)

    Zhang, Chao; Liao, Qiang; Chen, Rong; Zhu, Xun

    2015-01-01

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated

  2. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  3. The impact of the type of operation on the parameters of a shunting diesel locomotive with hybrid power plant

    Directory of Open Access Journals (Sweden)

    Falendysh Anatoliy

    2017-01-01

    Full Text Available In designing a traction vehicle it is necessary to take into account the type of field operation it is meant for. It was found out that during shunting operation a ChME3 diesel locomotive is in idling mode for almost half of its general running time. That is why, the introduction of a less powerful engine along with an energy storage device for shunting operations at a shunting diesel locomotive is appropriate. The calculations were made using a modernized shunting diesel locomotive ChME3 with hybrid transmission of power as an example. The dependences of the general running time of a diesel locomotive on the position of the engine driver controller under performing shunting, transportation and hump operation were given in percentages. For every operation mode there was calculated the optimum power of a diesel-generator plant and the optimum energy capacity of an energy storage system taking into account the above-mentioned dependences. It was found out that due to the introduction of a hybrid drive for the section discussed above and the corresponding mass of a train the aggregate fuel consumption will be reduced by 25% and the efficiency of travel will increase by one third.

  4. Neuromodulation of the neural circuits controlling the lower urinary tract.

    Science.gov (United States)

    Gad, Parag N; Roy, Roland R; Zhong, Hui; Gerasimenko, Yury P; Taccola, Giuliano; Edgerton, V Reggie

    2016-11-01

    The inability to control timely bladder emptying is one of the most serious challenges among the many functional deficits that occur after a spinal cord injury. We previously demonstrated that electrodes placed epidurally on the dorsum of the spinal cord can be used in animals and humans to recover postural and locomotor function after complete paralysis and can be used to enable voiding in spinal rats. In the present study, we examined the neuromodulation of lower urinary tract function associated with acute epidural spinal cord stimulation, locomotion, and peripheral nerve stimulation in adult rats. Herein we demonstrate that electrically evoked potentials in the hindlimb muscles and external urethral sphincter are modulated uniquely when the rat is stepping bipedally and not voiding, immediately pre-voiding, or when voiding. We also show that spinal cord stimulation can effectively neuromodulate the lower urinary tract via frequency-dependent stimulation patterns and that neural peripheral nerve stimulation can activate the external urethral sphincter both directly and via relays in the spinal cord. The data demonstrate that the sensorimotor networks controlling bladder and locomotion are highly integrated neurophysiologically and behaviorally and demonstrate how these two functions are modulated by sensory input from the tibial and pudental nerves. A more detailed understanding of the high level of interaction between these networks could lead to the integration of multiple neurophysiological strategies to improve bladder function. These data suggest that the development of strategies to improve bladder function should simultaneously engage these highly integrated networks in an activity-dependent manner. Copyright © 2016. Published by Elsevier Inc.

  5. Dynamic legged locomotion in robots and animals

    Science.gov (United States)

    Raibert, Marc; Playter, Robert; Ringrose, Robert; Bailey, Dave; Leeser, Karl

    1995-01-01

    This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: (1) Is cockroach locomotion dynamic? To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that 'Groucho Running,' a type of dynamic walking, seems feasible at cockroach scale. (2) How do bipeds shift weight between the legs? We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. (3) 3D biped gymnastics: The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. (4) Passively stabilized layout somersault: We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical 'doll' model and computer simulation to illustrate the point. (5) Twisting: Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.

  6. Influence of AC system design on the realisation of tractive efforts by high adhesion locomotives

    Science.gov (United States)

    Spiryagin, Maksym; Wolfs, Peter; Cole, Colin; Stichel, Sebastian; Berg, Mats; Manfred, Plöchl

    2017-08-01

    The main task for heavy haul railway operators is to reduce the cost of exported minerals and enhance the long-term viability of rail transport operations through increasing productivity by running longer and heavier trains. The common opinion is that this is achievable by means of implementation of high adhesion locomotives with advanced AC traction technologies. Modern AC high adhesion locomotives are very complex mechatronic systems and can be designed with two alternative traction topologies of either bogie or individual axle controls. This paper describes a modelling approach for these two types of AC traction systems with the application of an advanced co-simulation methodology, where an electrical system and a traction algorithm are modelled in Matlab/Simulink, and a mechanical system is modelled in a multibody software package. Although the paper concentrates on the analysis of the functioning for these two types of traction control systems, the choice of reference slip values also has an influence on the performance of both systems. All these design variations and issues have been simulated for various adhesion conditions at the wheel-rail interface and their influence on the high traction performance of a locomotive equipped with two three-axle bogies has been discussed.

  7. Locomotion and Grasping impairment in preschoolers with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Francesca Fulceri

    2015-08-01

    Full Text Available Objective: To investigate expressiveness of motor impairment in autism spectrum disorder (ASD and its correlation with developmental and clinical features of ASD. Method: Thirty-five male preschoolers with ASD completed the Peabody Developmental Motor Scales-2 (PDMS-2; Folio and Fewell, 2000 and underwent a multidisciplinary assessment including medical examination, standardized assessment of cognitive abilities, administration of Autism_Diagnostic_Observation_Schedule (ADOS and a parent interview about adaptive skills. Results: Results revealed a substantial impairment in locomotion and grasping skills. Both fine and gross motor skills were significantly correlated with non verbal IQ and adaptive behaviours (p<0.01 but not with chronological age or ADOS scores. Children with weaker motor skills have greater cognitive and adaptive behaviours deficits. Conclusions: Motor development in ASD can be detected at preschool age and locomotion and grasping skills are substantially the most impaired area. These findings support the need to assess motor skills in preschoolers with ASD in addition to other developmental skill areas. Along with the increasingly acknowledged importance of motor skills for subsequent social, cognitive, and communicative development our findings support the need to consider motor intervention as a key area in therapeutic program to improve outcome in preschoolers with ASD.

  8. Effects of wearing lower leg compression sleeves on locomotion economy.

    Science.gov (United States)

    Kurz, Eduard; Anders, Christoph

    2018-09-01

    The purpose of this investigation was to assess the effect of compression sleeves on muscle activation cost during locomotion. Twenty-two recreationally active men (age: 25 ± 3 years) ran on a treadmill at four different speeds (ordered sequence of 2.8, 3.3, 2.2, and 3.9 m/s). The tests were performed without (control situation, CON) and while wearing specially designed lower leg compression sleeves (SL). Myoelectric activity of five lower leg muscles (tibialis anterior, fibularis longus, lateral and medial head of gastrocnemius, and soleus) was captured using Surface EMG. To assess muscle activation cost, the cumulative muscle activity per distance travelled (CMAPD) of the CON and SL situations was determined. Repeated measures analyses of variance were performed separately for each muscle. The analyses revealed a reduced lower leg muscle activation cost with respect to test situation for SL for all muscles (p  0.18). The respective significant reductions of CMAPD values during SL ranged between 4% and 16% and were largest at 2.8 m/s. The findings presented point towards an improved muscle activation cost while wearing lower leg compression sleeves during locomotion that have potential to postpone muscle fatigue.

  9. An evaluation of the use of mobile source emissions trading: Locomotive case study

    International Nuclear Information System (INIS)

    West, W.R.; Brazell, M.M.

    1993-01-01

    There are many proposals for generating mobil source credits for use by stationary and other sources. This paper examines the benefits and practicality of including locomotive rail emissions in proposed emissions trading programs in california. In particular, this paper examines (1) if trading of locomotive rail emissions will result in lower compliance costs for railroads than traditional open-quotes command and controlclose quotes approaches, and (2) if emissions trading programs provide large enough incentives to entice railroads to seek to meet or exceed expected emissions reduction open-quotes command and controlclose quotes targets. The paper also examines under what circumstances stationary sources would be willing to purchase mobile source credits from railroads, in order to offset some of the stationary source's emissions reductions requirements. Stated simply, this analysis examines whether proposed trading programs offer enough benefits to both trading partners to warrant their use

  10. Kinesthetic Force Feedback and Belt Control for the Treadport Locomotion Interface.

    Science.gov (United States)

    Hejrati, Babak; Crandall, Kyle L; Hollerbach, John M; Abbott, Jake J

    2015-01-01

    This paper describes an improved control system for the Treadport immersive locomotion interface, with results that generalize to any treadmill that utilizes an actuated tether to enable self-selected walking speed. A new belt controller is implemented to regulate the user's position; when combined with the user's own volition, this controller also enables the user to naturally self-select their walking speed as they would when walking over ground. A new kinesthetic-force-feedback controller is designed for the tether that applies forces to the user's torso. This new controller is derived based on maintaining the user's sense of balance during belt acceleration, rather than by rendering an inertial force as was done in our prior work. Based on the results of a human-subjects study, the improvements in both controllers significantly contribute to an improved perception of realistic walking on the Treadport. The improved control system uses intuitive dynamic-system and anatomical parameters and requires no ad hoc gain tuning. The control system simply requires three measurements to be made for a given user: the user's mass, the user's height, and the height of the tether attachment point on the user's torso.

  11. Trabecular evidence for a human-like gait in Australopithecus africanus.

    Directory of Open Access Journals (Sweden)

    Meir M Barak

    Full Text Available Although the earliest known hominins were apparently upright bipeds, there has been mixed evidence whether particular species of hominins including those in the genus Australopithecus walked with relatively extended hips, knees and ankles like modern humans, or with more flexed lower limb joints like apes when bipedal. Here we demonstrate in chimpanzees and humans a highly predictable and sensitive relationship between the orientation of the ankle joint during loading and the principal orientation of trabecular bone struts in the distal tibia that function to withstand compressive forces within the joint. Analyses of the orientation of these struts using microCT scans in a sample of fossil tibiae from the site of Sterkfontein, of which two are assigned to Australopithecus africanus, indicate that these hominins primarily loaded their ankles in a relatively extended posture like modern humans and unlike chimpanzees. In other respects, however, trabecular properties in Au africanus are distinctive, with values that mostly fall between those of chimpanzees and humans. These results indicate that Au. africanus, like Homo, walked with an efficient, extended lower limb.

  12. Closed-loop EMG-informed model-based analysis of human musculoskeletal mechanics on rough terrains

    NARCIS (Netherlands)

    Varotto, C.; Sawacha, Z.; Gizzi, L; Farina, D.; Sartori, M.

    2017-01-01

    This work aims at estimating the musculoskeletal forces acting in the human lower extremity during locomotion on rough terrains. We employ computational models of the human neuro-musculoskeletal system that are informed by multi-modal movement data including foot-ground reaction forces, 3D marker

  13. Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots.

    Science.gov (United States)

    Qian, Xiaojie; Chen, Qiaomei; Yang, Yang; Xu, Yanshuang; Li, Zhen; Wang, Zhenhua; Wu, Yahe; Wei, Yen; Ji, Yan

    2018-05-27

    Stimuli-responsive materials offer a distinguished platform to build tether-free compact soft robots, which can combine sensing and actuation without a linked power supply. In the past, tubular soft robots have to be made by multiple components with various internal channels or complex cavities assembled together. Moreover, robust processing, complex locomotion, simple structure, and easy recyclability represent major challenges in this area. Here, it is shown that those challenges can be tackled by liquid crystalline elastomers with allyl sulfide functional groups. The light-controlled exchange reaction between allyl sulfide groups allows flexible processing of tubular soft robots/actuators, which does not need any assisting materials. Complex locomotion demonstrated here includes reversible simultaneous bending and elongation; reversible diameter expansion; and omnidirectional bending via remote infrared light control. Different modes of actuation can be programmed into the same tube without the routine assembly of multiple tubes as used in the past. In addition, the exchange reaction also makes it possible to use the same single tube repeatedly to perform different functions by erasing and reprogramming. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Kinesiology-Based Robot Foot Design for Human-Like Walking

    Directory of Open Access Journals (Sweden)

    SangJoo Kwon

    2012-12-01

    Full Text Available Compared with the conventional flat foot, the flexible foot is advantageous in implementing human-like walking and much reduces energy consumption. In this paper, from an anatomical and kinesiological point of view, a flexible foot with toes and heels is investigated for a bipedal robot and three critical design parameters for walking stability are drawn, which include stiffness of toes and heels, frontal toe position, and ankle joint position. In addition, a human-like walking trajectory compatible with the flexible foot is proposed by mimicking a human walking pattern. First of all, the zero moment point (ZMP trajectory continuously moves forward without stopping, even in the single support phase. Secondly, the centre of mass (CoM trajectory includes vertical motion similar to that seen in human beings. Thirdly, the ankle trajectory follows the rotational motion of a human foot while being lifted from and landing on the ground. Through the simulation study, it is shown that the suggested design parameters can be applied as useful indices for the mechanical design of biped feet; interestingly, the vertical motion of the centre of mass tends to compensate for the transient response in the initial walking step.

  15. Modeling and simulation of normal and hemiparetic gait

    Science.gov (United States)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  16. OPTIMUM DISTRIBUTION OF REPAIRS IN ТS-8 OF ELECTRIC LOCOMOTIVES VL80С BETWEEN REPAIR DEPOTS IN THE REPUBLIC OF KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Seidulla ABDULLAYEV

    2017-06-01

    Full Text Available The article presents the solution for the problem of optimal distribution of electric locomotives in repair enterprises for carrying out repairs in the frame of technical service - 8 (ТS-8 and increased technical service - 8 (ITS-8. The aim of the study is to improve the efficacy of a rolling stock with a simultaneous decrease in the total expenses connected with the repair of locomotives and their transportation in repair enterprises. This is possible due to a reduction in the requirement for repairs by optimization of a resource before change of wheel bandages in electric locomotives VL80С that promotes an increase in their between-repairs run.

  17. Locomotion of a bioinspired flyer powered by one pair of pitching foils

    Science.gov (United States)

    Zhang, Xiang; He, Guowei; Wang, Shizhao; Zhang, Xing

    2018-01-01

    We numerically investigate the flight dynamics and aerodynamics of a two-dimensional model for the jellyfishlike ornithopter recently devised by Ristroph and Childress [L. Ristroph and S. Childress, J. R. Soc. Interface 11, 20130992 (2014), 10.1098/rsif.2013.0992]. This simplified model is composed of two rigid thin foils which are forced to pitch in antiphase fashion. The Navier-Stokes equations for the fluid and the dynamics equations for the flyer are solved together in the simulations. We first consider the constrained-flying condition where the flyer model is only allowed to move in the vertical direction. The influences of the control parameters on the hovering performance are studied. With the variations in parameter values, three different locomotion states, i.e., ascending, descending, and approximate hovering, are identified. The wake structures corresponding to these three locomotion states are explored. It is found that the approximate hovering state cannot persist due to the occurrence of wake symmetry breaking after long-time simulation. We then consider the free-flying condition where the motions in three degrees of freedom are allowed. We study the postural stability of a flyer, with its center of gravity located at the geometric center. The responses of the flyer at different locomotion states to physical and numerical perturbations are examined. Our results show that the ascending state is recoverable after the perturbation. The descending state is irrecoverable after the perturbation and a mixed fluttering and tumbling motion which resembles that of a falling card emerges. The approximate hovering state is also irrecoverable and it eventually transits to the ascending state after the perturbation. The research sheds light on the lift-producing mechanism and stability of the flyer and the results are helpful in guiding the design and optimization of the jellyfishlike flying machine.

  18. Research on Standard and Automatic Judgment of Press-fit Curve of Locomotive Wheel-set Based on AAR Standard

    Science.gov (United States)

    Lu, Jun; Xiao, Jun; Gao, Dong Jun; Zong, Shu Yu; Li, Zhu

    2018-03-01

    In the production of the Association of American Railroads (AAR) locomotive wheel-set, the press-fit curve is the most important basis for the reliability of wheel-set assembly. In the past, Most of production enterprises mainly use artificial detection methods to determine the quality of assembly. There are cases of miscarriage of justice appear. For this reason, the research on the standard is carried out. And the automatic judgment of press-fit curve is analysed and designed, so as to provide guidance for the locomotive wheel-set production based on AAR standard.

  19. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders.

    Science.gov (United States)

    Dominici, Nadia; Keller, Urs; Vallery, Heike; Friedli, Lucia; van den Brand, Rubia; Starkey, Michelle L; Musienko, Pavel; Riener, Robert; Courtine, Grégoire

    2012-07-01

    Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and balance independently during natural walking behaviors in rats. In evaluation mode, the robotic interface affords detailed assessments of pattern generation and dynamic equilibrium after spinal cord injury (SCI) and stroke. In enabling mode,the robot acts as a propulsive or postural neuroprosthesis that instantly promotes unexpected locomotor capacities including overground walking after complete SCI, stair climbing following partial SCI and precise paw placement shortly after stroke. In training mode, robot-enabled rehabilitation, epidural electrical stimulation and monoamine agonists reestablish weight-supported locomotion, coordinated steering and balance in rats with a paralyzing SCI. This new robotic technology and associated concepts have broad implications for both assessing and restoring motor functions after CNS disorders, both in animals and in humans.

  20. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.

    Science.gov (United States)

    Marras, Stefano; Porfiri, Maurizio

    2012-08-07

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its 'engineered' member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a 'dummy'. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot-animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.