WorldWideScience

Sample records for human bacterial infections

  1. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  2. The Human Skin Microbiome Associates with the Outcome of and Is Influenced by Bacterial Infection

    OpenAIRE

    van Rensburg, Julia J.; Lin, Huaiying; Gao, Xiang; Toh, Evelyn; Fortney, Kate R.; Ellinger, Sheila; Zwickl, Beth; Janowicz, Diane M.; Katz, Barry P.; Nelson, David E.; Dong, Qunfeng; Spinola, Stanley M.

    2015-01-01

    ABSTRACT The influence of the skin microbiota on host susceptibility to infectious agents is largely unexplored. The skin harbors diverse bacterial species that may promote or antagonize the growth of an invading pathogen. We developed a human infection model for Haemophilus ducreyi in which human volunteers are inoculated on the upper arm. After inoculation, papules form and either spontaneously resolve or progress to pustules. To examine the role of the skin microbiota in the outcome of H. ...

  3. Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin.

    Directory of Open Access Journals (Sweden)

    Christoph Schaudinn

    Full Text Available Current research on wound infections is primarily conducted on animal models, which limits direct transferability of these studies to humans. Some of these limitations can be overcome by using-otherwise discarded-skin from cosmetic surgeries. Superficial wounds are induced in fresh ex vivo skin, followed by intradermal injection of Pseudomonas aeruginosa under the wound. Subsequently, the infected skin is incubated for 20 hours at 37°C and the CFU/wound are determined. Within 20 hours, the bacteria count increased from 107 to 109 bacteria per wound, while microscopy revealed a dense bacterial community in the collagen network of the upper wound layers as well as numerous bacteria scattered in the dermis. At the same time, IL-1alpha and IL-1beta amounts increased in all infected wounds, while-due to bacteria-induced cell lysis-the IL-6 and IL-8 concentrations rose only in the uninfected samples. High-dosage ciprofloxacin treatment resulted in a decisive decrease in bacteria, but consistently failed to eradicate all bacteria. The main benefits of the ex vivo wound model are the use of healthy human skin, a quantifiable bacterial infection, a measureable donor-dependent immune response and a good repeatability of the results. These properties turn the ex vivo wound model into a valuable tool to examine the mechanisms of host-pathogen interactions and to test antimicrobial agents.

  4. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    International Nuclear Information System (INIS)

    Welling, M.; Feitsma, H.I.J.; Calame, W.; Ensing, G.J.; Goedemans, W.; Pauwels, E.K.J.

    1994-01-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P 99m Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P 99m Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than 99m Tc-labelled unpurified immunoglobulin. (orig.)

  5. The Human Skin Microbiome Associates with the Outcome of and Is Influenced by Bacterial Infection.

    Science.gov (United States)

    van Rensburg, Julia J; Lin, Huaiying; Gao, Xiang; Toh, Evelyn; Fortney, Kate R; Ellinger, Sheila; Zwickl, Beth; Janowicz, Diane M; Katz, Barry P; Nelson, David E; Dong, Qunfeng; Spinola, Stanley M

    2015-09-15

    The influence of the skin microbiota on host susceptibility to infectious agents is largely unexplored. The skin harbors diverse bacterial species that may promote or antagonize the growth of an invading pathogen. We developed a human infection model for Haemophilus ducreyi in which human volunteers are inoculated on the upper arm. After inoculation, papules form and either spontaneously resolve or progress to pustules. To examine the role of the skin microbiota in the outcome of H. ducreyi infection, we analyzed the microbiomes of four dose-matched pairs of "resolvers" and "pustule formers" whose inoculation sites were swabbed at multiple time points. Bacteria present on the skin were identified by amplification and pyrosequencing of 16S rRNA genes. Nonmetric multidimensional scaling (NMDS) using Bray-Curtis dissimilarity between the preinfection microbiomes of infected sites showed that sites from the same volunteer clustered together and that pustule formers segregated from resolvers (P = 0.001, permutational multivariate analysis of variance [PERMANOVA]), suggesting that the preinfection microbiomes were associated with outcome. NMDS using Bray-Curtis dissimilarity of the endpoint samples showed that the pustule sites clustered together and were significantly different than the resolved sites (P = 0.001, PERMANOVA), suggesting that the microbiomes at the endpoint differed between the two groups. In addition to H. ducreyi, pustule-forming sites had a greater abundance of Proteobacteria, Bacteroidetes, Micrococcus, Corynebacterium, Paracoccus, and Staphylococcus species, whereas resolved sites had higher levels of Actinobacteria and Propionibacterium species. These results suggest that at baseline, resolvers and pustule formers have distinct skin bacterial communities which change in response to infection and the resultant immune response. Human skin is home to a diverse community of microorganisms, collectively known as the skin microbiome. Some resident

  6. Transmigration of polymorphnuclear neutrophils and monocytes through the human blood-cerebrospinal fluid barrier after bacterial infection in vitro.

    Science.gov (United States)

    Steinmann, Ulrike; Borkowski, Julia; Wolburg, Hartwig; Schröppel, Birgit; Findeisen, Peter; Weiss, Christel; Ishikawa, Hiroshi; Schwerk, Christian; Schroten, Horst; Tenenbaum, Tobias

    2013-02-28

    Bacterial invasion through the blood-cerebrospinal fluid barrier (BCSFB) during bacterial meningitis causes secretion of proinflammatory cytokines/chemokines followed by the recruitment of leukocytes into the CNS. In this study, we analyzed the cellular and molecular mechanisms of polymorphonuclear neutrophil (PMN) and monocyte transepithelial transmigration (TM) across the BCSFB after bacterial infection. Using an inverted transwell filter system of human choroid plexus papilloma cells (HIBCPP), we studied leukocyte TM rates, the migration route by immunofluorescence, transmission electron microscopy and focused ion beam/scanning electron microscopy, the secretion of cytokines/chemokines by cytokine bead array and posttranslational modification of the signal regulatory protein (SIRP) α via western blot. PMNs showed a significantly increased TM across HIBCPP after infection with wild-type Neisseria meningitidis (MC58). In contrast, a significantly decreased monocyte transmigration rate after bacterial infection of HIBCPP could be observed. Interestingly, in co-culture experiments with PMNs and monocytes, TM of monocytes was significantly enhanced. Analysis of paracellular permeability and transepithelial electrical resistance confirmed an intact barrier function during leukocyte TM. With the help of the different imaging techniques we could provide evidence for para- as well as for transcellular migrating leukocytes. Further analysis of secreted cytokines/chemokines showed a distinct pattern after stimulation and transmigration of PMNs and monocytes. Moreover, the transmembrane glycoprotein SIRPα was deglycosylated in monocytes, but not in PMNs, after bacterial infection. Our findings demonstrate that PMNs and monoctyes differentially migrate in a human BCSFB model after bacterial infection. Cytokines and chemokines as well as transmembrane proteins such as SIRPα may be involved in this process.

  7. Bacterial biofilm and associated infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jamal

    2018-01-01

    Full Text Available Microscopic entities, microorganisms that drastically affect human health need to be thoroughly investigated. A biofilm is an architectural colony of microorganisms, within a matrix of extracellular polymeric substance that they produce. Biofilm contains microbial cells adherent to one-another and to a static surface (living or non-living. Bacterial biofilms are usually pathogenic in nature and can cause nosocomial infections. The National Institutes of Health (NIH revealed that among all microbial and chronic infections, 65% and 80%, respectively, are associated with biofilm formation. The process of biofilm formation consists of many steps, starting with attachment to a living or non-living surface that will lead to formation of micro-colony, giving rise to three-dimensional structures and ending up, after maturation, with detachment. During formation of biofilm several species of bacteria communicate with one another, employing quorum sensing. In general, bacterial biofilms show resistance against human immune system, as well as against antibiotics. Health related concerns speak loud due to the biofilm potential to cause diseases, utilizing both device-related and non-device-related infections. In summary, the understanding of bacterial biofilm is important to manage and/or to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm formation and its implications in human health and disease.

  8. Correlation between the neutrophil-lymphocyte count ratio and bacterial infection in patient with human immunodeficiency virus

    Science.gov (United States)

    Kusnadi, D.; Liwang, M. N. I.; Katu, S.; Mubin, A. H.; Halim, R.

    2018-03-01

    Parameters for starting antibiotic therapy such as CRP andleukocytosis are considered non-specific. Previous studies have shown the Neutrophil-Lymphocyte Count Ratio (NLCR) can serve as the basis of bacterial infection, the level of infection, and the basis of antibiotic therapy. Compared with the Procalcitonin parameter, this NLCR is rapid, an inexpensive and requires no additional sampling. To determine the correlation between The Neutrophil-LymphocyteCount Ratio to bacterial infection in HIV patients. This study was a cross-sectional observational approach to HIV subject at Wahidin Sudirohusodo and Hasanuddin University Hospital. The subjects performed routine blood, microbiology test,and blood Procalcitonin levels tests. Then performed NLCR calculations based on routine blood results. The subjects then grouped the presence or absence of bacterial infection.In 146 study subjects, there were 78 (53.4%) with bacterial infections and 68 (46.6%) without bacterial infection as controls. Subjects with bacterial infections had higher total neutrophils (84.83) compared with non-bacterial infections. Subjects with bacterial infections had total lymphocytes with an average of 8.51 lower than non-bacterial infections. Subjects with bacterial infections had higher NLCR values with an average of 12.80. The Neutrophil-Lymphocyte Count Ratio can become a marker of bacterial infection in HIV patients.

  9. Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections.

    Science.gov (United States)

    Gauthier, David T

    2015-01-01

    Human contact with and consumption of fishes presents hazards from a range of bacterial zoonotic infections. Whereas many bacterial pathogens have been presented as fish-borne zoonoses on the basis of epidemiological and phenotypic evidence, genetic identity between fish and human isolates is not frequently examined or does not provide support for transmission between these hosts. In order to accurately assess the zoonotic risk from exposure to fishes in the context of aquaculture, wild fisheries and ornamental aquaria, it is important to critically examine evidence of linkages between bacteria infecting fishes and humans. This article reviews bacteria typically presented as fish-borne zoonoses, and examines the current strength of evidence for this classification. Of bacteria generally described as fish-borne zoonoses, only Mycobacterium spp., Streptococcus iniae, Clostridium botulinum, and Vibrio vulnificus appear to be well-supported as zoonoses in the strict sense. Erysipelothrix rhusiopathiae, while transmissible from fishes to humans, does not cause disease in fishes and is therefore excluded from the list. Some epidemiological and/or molecular linkages have been made between other bacteria infecting both fishes and humans, but more work is needed to elucidate routes of transmission and the identity of these pathogens in their respective hosts at the genomic level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Intestinal Bacterial Communities of Trypanosome-Infected and Uninfected Glossina palpalis palpalis from Three Human African Trypanomiasis Foci in Cameroon

    Directory of Open Access Journals (Sweden)

    Franck Jacob

    2017-08-01

    Full Text Available Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene. Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont, Serratia, and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis. The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia, were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status.

  11. Characterization of KIR2DS1+ decidual Natural Killer cells in healthy and viral/bacterialinfected human pregnancy

    OpenAIRE

    Crespo, Ângela Pascoal da Costa

    2016-01-01

    Tese de doutoramento em Biociências, na área de especialização de Biologia Celular e Molecular, apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra Human pregnancy is a challenge for the maternal immune system, which must maintain tolerance to a semi-foreign entity (the fetus) while keeping immunity against viral, bacterial and parasite infections. While the mechanisms involved in placental immune tolerance have been addressed f...

  12. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    direct or indirect evidence of a compatible bacterial pathogen. Inflammation may be .... cardinal features (fever, confusion, headache and neck stiffness). .... specificity, inappropriate indications or poor sampling technique may diminish this ...

  13. Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC Class II-dependent manner.

    Directory of Open Access Journals (Sweden)

    Katherine J Kasper

    2014-05-01

    Full Text Available Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS, how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6 mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC -II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.

  14. Pasteurization Procedures for Donor Human Milk Affect Body Growth, Intestinal Structure, and Resistance against Bacterial Infections in Preterm Pigs.

    Science.gov (United States)

    Li, Yanqi; Nguyen, Duc Ninh; de Waard, Marita; Christensen, Lars; Zhou, Ping; Jiang, Pingping; Sun, Jing; Bojesen, Anders Miki; Lauridsen, Charlotte; Lykkesfeldt, Jens; Dalsgaard, Trine Kastrup; Bering, Stine Brandt; Sangild, Per Torp

    2017-06-01

    Background: Holder pasteurization (HP) destroys multiple bioactive factors in donor human milk (DM), and UV-C irradiation (UVC) is potentially a gentler method for pasteurizing DM for preterm infants. Objective: We investigated whether UVC-treated DM improves gut maturation and resistance toward bacterial infections relative to HP-treated DM. Methods: Bacteria, selected bioactive components, and markers of antioxidant capacity were measured in unpasteurized donor milk (UP), HP-treated milk, and UVC-treated milk (all from the same DM pool). Fifty-seven cesarean-delivered preterm pigs (91% gestation; ratio of males to females, 30:27) received decreasing volumes of parental nutrition (average 69 mL · kg -1 · d -1 ) and increasing volumes of the 3 DM diets ( n = 19 each, average 89 mL · kg -1 · d -1 ) for 8-9 d. Body growth, gut structure and function, and systemic bacterial infection were evaluated. Results: A high bacterial load in the UP (6×10 5 colony forming units/mL) was eliminated similarly by HP and UVC treatments. Relative to HP-treated milk, both UVC-treated milk and UP showed greater activities of lipase and alkaline phosphatase and concentrations of lactoferrin, secretory immunoglobulin A, xanthine dehydrogenase, and some antioxidant markers (all P < 0.05). The pigs fed UVC-treated milk and pigs fed UP showed higher relative weight gain than pigs fed HP-treated milk (5.4% and 3.5%), and fewer pigs fed UVC-treated milk had positive bacterial cultures in the bone marrow (28%) than pigs fed HP-treated milk (68%) ( P < 0.05). Intestinal health was also improved in pigs fed UVC-treated milk compared with those fed HP-treated milk as indicated by a higher plasma citrulline concentration (36%) and villus height (38%) ( P < 0.05) and a tendency for higher aminopeptidase N (48%) and claudin-4 (26%) concentrations in the distal intestine ( P < 0.08). The gut microbiota composition was similar among groups except for greater proportions of Enterococcus in pigs

  15. Mucin dynamics in intestinal bacterial infection.

    Directory of Open Access Journals (Sweden)

    Sara K Lindén

    Full Text Available Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17 in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05. Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.

  16. Sustainable strategies for treatment of bacterial infections

    DEFF Research Database (Denmark)

    Molin, Søren

    2014-01-01

    Resistance to antibiotics and the consequential failures of treatment based on antibiotics makes microbial infections a major threat to human health. This problem combined with rapidly increasing life-style disease problems challenge our healtcare system as well as the pharma industry, and if we do...... not in a foreseeable future develop novel approaches and strategies to combat bacterial infections, many people will be at risk of dying from even trivial infections for which we until recently had highly effective antibiotics. We have for a number of years investigated chronic bacterial lung infections in patients...... suffering from cystic fibrosis. These infections are optimal model scenarios for studies of antibiotic resistance development and microbial adaptation, and we suggest that this information should be useful when designing new anti-microbial strategies. In this respect it will be important to choose...

  17. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection.

    Directory of Open Access Journals (Sweden)

    Martin S Davey

    2011-05-01

    Full Text Available Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8. In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN-γ and tumor necrosis factor (TNF-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1, and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD-associated bacterial peritonitis--characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity--show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in

  18. Human Neutrophil Clearance of Bacterial Pathogens Triggers Anti-Microbial γδ T Cell Responses in Early Infection

    Science.gov (United States)

    Roberts, Gareth W.; Heuston, Sinéad; Brown, Amanda C.; Chess, James A.; Toleman, Mark A.; Gahan, Cormac G. M.; Hill, Colin; Parish, Tanya; Williams, John D.; Davies, Simon J.; Johnson, David W.; Topley, Nicholas; Moser, Bernhard; Eberl, Matthias

    2011-01-01

    Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-γ and tumor necrosis factor (TNF)-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in early

  19. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection

    NARCIS (Netherlands)

    Bartfeld, Sina; Bayram, Tülay; van de Wetering, Marc; Huch, Meritxell; Begthel, Harry; Kujala, Pekka; Vries, Robert; Peters, Peter J; Clevers, Hans

    BACKGROUND & AIMS: We previously established long-term, 3-dimensional culture of organoids from mouse tissues (intestine, stomach, pancreas, and liver) and human intestine and pancreas. Here we describe conditions required for long-term 3-dimensional culture of human gastric stem cells. The

  20. Rheumatoid arthritis and bacterial infections

    Directory of Open Access Journals (Sweden)

    N L Prokopjeva

    2008-01-01

    Full Text Available To study features of bacterial infections course in pts with rheumatoid arthritis (RA and changes of laboratory measures after focus of infection sanation. Material and methods. 46 pts with definite rheumatoid arthritis were examined at the time of comorbid infection (Cl detection and after infection focus sanation. Bacteriological test with evaluation of flora sensitivity to antibiotics by disco-diffusion method was performed at baseline and after the course of antibacterial therapy to assess its efficacy. Hemogram, serum fibrinogen, rheumatoid factor, circulating immune complexes (CIC, C-reactive protein levels were assessed. Serum interleukin (IL 1(3, IL6 and neopterin concentrations were examined by immune-enzyme assay in a part of pts. Typical clinical features of Cl were present in only 28 (60,9% pts. 13 (28,3% pts had fever, 12 (26,0% — leukocytosis, 15 (32,6% — changes of leucocyte populations. Some laboratory measures (thrombocytes, fibrinogen, CIC, neopterin levels significantly decreased (p<0,05 after infection focus sanation without correction of disease modifying therapy. Cl quite often develop as asymptomatic processes most often in pts with high activity and can induce disturbances promoting appearance of endothelial dysfunction, atherothrombosis and reduction of life duration. So timely detection and proper sanation of infection focuses should be performed in pts with RA

  1. A rapid crosstalk of human gammadelta T cells and monocytes drives the acute inflammation in bacterial infections.

    Directory of Open Access Journals (Sweden)

    Matthias Eberl

    2009-02-01

    Full Text Available Vgamma9/Vdelta2 T cells are a minor subset of T cells in human blood and differ from other T cells by their immediate responsiveness to microbes. We previously demonstrated that the primary target for Vgamma9/Vdelta2 T cells is (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, an essential metabolite produced by a large range of pathogens. Here we wished to study the consequence of this unique responsiveness in microbial infection. The majority of peripheral Vgamma9/Vdelta2 T cells shares migration properties with circulating monocytes, which explains the presence of these two distinct blood cell types in the inflammatory infiltrate at sites of infection and suggests that they synergize in anti-microbial immune responses. Our present findings demonstrate a rapid and HMB-PP-dependent crosstalk between Vgamma9/Vdelta2 T cells and autologous monocytes that results in the immediate production of inflammatory mediators including the cytokines interleukin (IL-6, interferon (IFN-gamma, tumor necrosis factor (TNF-alpha, and oncostatin M (OSM; the chemokines CCL2, CXCL8, and CXCL10; and TNF-related apoptosis-inducing ligand (TRAIL. Moreover, under these co-culture conditions monocytes differentiate within 18 hours into inflammatory dendritic cells (DCs with antigen-presenting functions. Addition of further microbial stimuli (lipopolysaccharide, peptidoglycan induces CCR7 and enables these inflammatory DCs to trigger the generation of CD4(+ effector alphabeta T cells expressing IFN-gamma and/or IL-17. Importantly, our in vitro model replicates the responsiveness to microbes of effluent cells from peritoneal dialysis (PD patients and translates directly to episodes of acute PD-associated bacterial peritonitis, where Vgamma9/Vdelta2 T cell numbers and soluble inflammatory mediators are elevated in patients infected with HMB-PP-producing pathogens. Collectively, these findings suggest a direct link between invading pathogens, microbe

  2. Mycobacterium tuberculosis Cell Wall Fragments Released upon Bacterial Contact with the Human Lung Mucosa Alter the Neutrophil Response to Infection.

    Science.gov (United States)

    Scordo, Julia M; Arcos, Jesús; Kelley, Holden V; Diangelo, Lauren; Sasindran, Smitha J; Youngmin, Ellie; Wewers, Mark D; Wang, Shu-Hua; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B

    2017-01-01

    In 2016, the World Health Organization reported that one person dies of tuberculosis (TB) every 21 s. A host environment that Mycobacterium tuberculosis ( M.tb ) finds during its route of infection is the lung mucosa bathing the alveolar space located in the deepest regions of the lungs. We published that human lung mucosa, or alveolar lining fluid (ALF), contains an array of hydrolytic enzymes that can significantly alter the M.tb surface during infection by cleaving off parts of its cell wall. This interaction results in two different outcomes: modifications on the M.tb cell wall surface and release of M.tb cell wall fragments into the environment. Typically, one of the first host immune cells at the site of M.tb infection is the neutrophil. Neutrophils can mount an extracellular and intracellular innate immune response to M.tb during infection. We hypothesized that exposure of neutrophils to ALF-induced M.tb released cell wall fragments would prime neutrophils to control M.tb infection better. Our results show that ALF fragments activate neutrophils leading to an increased production of inflammatory cytokines and oxidative radicals. However, neutrophil exposure to these fragments reduces production of chemoattractants (i.e., interleukin-8), and degranulation, with the subsequent reduction of myeloperoxidase release, and does not induce cytotoxicity. Unexpectedly, these ALF fragment-derived modulations in neutrophil activity do not further, either positively or negatively, contribute to the intracellular control of M.tb growth during infection. However, secreted products from neutrophils primed with ALF fragments are capable of regulating the activity of resting macrophages. These results indicate that ALF-induced M.tb fragments could further contribute to the control of M.tb growth and local killing by resident neutrophils by switching on the total oxidative response and limiting migration of neutrophils to the infection site.

  3. Respiratory bacterial infections in cystic fibrosis

    DEFF Research Database (Denmark)

    Ciofu, Oana; Hansen, Christine R; Høiby, Niels

    2013-01-01

    PURPOSE OF REVIEW: Bacterial respiratory infections are the main cause of morbidity and mortality in patients with cystic fibrosis (CF). Pseudomonas aeruginosa remains the main pathogen in adults, but other Gram-negative bacteria such as Achromobacter xylosoxidans and Stenotrophomonas maltophilia...... respiratory tract (nasal sampling) should be investigated and both infection sites should be treated....

  4. Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling

    Directory of Open Access Journals (Sweden)

    Takehara Tadamichi

    2006-03-01

    Full Text Available Abstract Background Porphyromonas gingivalis is the foremost oral pathogen of adult periodontitis in humans. However, the mechanisms of bacterial invasion and the resultant destruction of the gingival tissue remain largely undefined. Results We report host-P. gingivalis interactions in primary human gingival fibroblast (HGF cells. Quantitative immunostaining revealed the need for a high multiplicity of infection for optimal infection. Early in infection (2–12 h, P. gingivalis activated the proinflammatory transcription factor NF-kappa B, partly via the PI3 kinase/AKT pathway. This was accompanied by the induction of cellular anti-apoptotic genes, including Bfl-1, Boo, Bcl-XL, Bcl2, Mcl-1, Bcl-w and Survivin. Late in infection (24–36 h the anti-apoptotic genes largely shut down and the pro-apoptotic genes, including Nip3, Hrk, Bak, Bik, Bok, Bax, Bad, Bim and Moap-1, were activated. Apoptosis was characterized by nuclear DNA degradation and activation of caspases-3, -6, -7 and -9 via the intrinsic mitochondrial pathway. Use of inhibitors revealed an anti-apoptotic function of NF-kappa B and PI3 kinase in P. gingivalis-infected HGF cells. Use of a triple protease mutant P. gingivalis lacking three major gingipains (rgpA rgpB kgp suggested a role of some or all these proteases in myriad aspects of bacteria-gingival interaction. Conclusion The pathology of the gingival fibroblast in P. gingivalis infection is affected by a temporal shift from cellular survival response to apoptosis, regulated by a number of anti- and pro-apoptotic molecules. The gingipain group of proteases affects bacteria-host interactions and may directly promote apoptosis by intracellular proteolytic activation of caspase-3.

  5. Update on bacterial nosocomial infections.

    Science.gov (United States)

    Bereket, W; Hemalatha, K; Getenet, B; Wondwossen, T; Solomon, A; Zeynudin, A; Kannan, S

    2012-08-01

    With increasing use of antimicrobial agents and advance in lifesaving medical practices which expose the patients for invasive procedures, are associated with the ever increasing of nosocomial infections. Despite an effort in hospital infection control measures, health care associated infections are associated with significant morbidity and mortality adding additional health care expenditure which may leads to an economic crisis. The problem is further complicated with the emergence of difficult to treat multidrug resistant (MDR) microorganism in the hospital environment. Virtually every pathogen has the potential to cause infection in hospitalized patients but only limited number of both gram positive and gram negative bacteria are responsible for the majority of nosocomial infection. Among them Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Enterococci takes the leading. Many intrinsic and extrinsic factors predispose hospitalized patients for these pathogens. Following simple hospital hygienic practices and strictly following standard medical procedures greatly reduces infection to a significant level although not all nosocomial infections are avoidable. The clinical spectrum caused by nosocomial pathogens depend on body site of infection, the involving pathogen and the patient's underlying condition. Structural and non structural virulence factors associated with the bacteria are responsible for the observed clinical manifestation. Bacteria isolation and characterization from appropriate clinical materials with antimicrobial susceptibility testing is the standard of laboratory diagnosis.

  6. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  7. Secondary Bacterial Infections Associated with Influenza Pandemics

    Science.gov (United States)

    Morris, Denise E.; Cleary, David W.; Clarke, Stuart C.

    2017-01-01

    Lower and upper respiratory infections are the fourth highest cause of global mortality (Lozano et al., 2012). Epidemic and pandemic outbreaks of respiratory infection are a major medical concern, often causing considerable disease and a high death toll, typically over a relatively short period of time. Influenza is a major cause of epidemic and pandemic infection. Bacterial co/secondary infection further increases morbidity and mortality of influenza infection, with Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus reported as the most common causes. With increased antibiotic resistance and vaccine evasion it is important to monitor the epidemiology of pathogens in circulation to inform clinical treatment and development, particularly in the setting of an influenza epidemic/pandemic. PMID:28690590

  8. Secondary Bacterial Infections Associated with Influenza Pandemics

    Directory of Open Access Journals (Sweden)

    Denise E. Morris

    2017-06-01

    Full Text Available Lower and upper respiratory infections are the fourth highest cause of global mortality (Lozano et al., 2012. Epidemic and pandemic outbreaks of respiratory infection are a major medical concern, often causing considerable disease and a high death toll, typically over a relatively short period of time. Influenza is a major cause of epidemic and pandemic infection. Bacterial co/secondary infection further increases morbidity and mortality of influenza infection, with Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus reported as the most common causes. With increased antibiotic resistance and vaccine evasion it is important to monitor the epidemiology of pathogens in circulation to inform clinical treatment and development, particularly in the setting of an influenza epidemic/pandemic.

  9. Pasteurization Procedures for Donor Human Milk Affect Body Growth, Intestinal Structure, and Resistance against Bacterial Infections in Preterm Pigs

    DEFF Research Database (Denmark)

    Li, Yanqi; Duc Ninh Nguyen; de Waard, Marita

    2017-01-01

    Background: Holder pasteurization (HP) destroys multiple bioactive factors in donor human milk (DM), and UV-C irradiation (UVC) is potentially a gentler method for pasteurizing DM for preterm infants. Objective: We investigated whether UVC-treated DM improves gut maturation and resistance toward...

  10. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    of the bacterial genes. We have investigated the invasiveness of primary chicken embryo intestinal cells (CEICs) by C. jejuni strains of human and chicken origins and the production of pro-inflammatory cytokines as well as the expression of the bacterial virulence-associated genes during co-cultivation. Results C......-free media from another co-cultivation experiment also increased the expression of the virulence-associated genes in the C. jejuni chicken isolate, indicating that the expression of bacterial genes is regulated by component(s) secreted upon co-cultivation of bacteria and CEICs. Conclusion We show that under...... in vitro culture condition C. jejuni strains of both human and chicken origins can invade avian host cells with a pro-inflammatory response and that the virulence-associated genes of C. jejuni may play a role in this process....

  11. Common bacterial urinary tract infections in women.

    Science.gov (United States)

    Cimino, J E

    1976-09-01

    Unfortunately, there is no general consensus as to how long patients with bacteriuria or urinary tract infections should be monitored and certainly there is no agreement on how long recurrent episodes should be treated beyond ten days to two weeks. The most important points to remember are: 1. Culture the urine both at the time of therapy and during follow-up. The patient should be examined periodically for the presence of bacteruria. If bacteria cannot be eradicated, at least the physician is aware of the organism most likely causing the patient's symptoms. 2. Do not subject the patient with frequent recurrent (chronic) and complicated infections to continual antibacterial therapy, but rather, manage the acute episodes. 3. Use prophylaxis, particularly single bed-time doses for dysuria and frequency symptoms. 4. Screen for bacteriuria during pregnancy. 5. Avoid the use of catheters except where absolutely necessary. 6. Avoid systemic prophylaxis of infection in patients with catheters; rather, use closed-system drainage with antibacteri-irrigation. It is to be hoped within the next few years, studies now underway will allow specific recommendations regarding the management of asymptomatic bacteruria, the duration of therapy for recurrent infections, the prevention and treatment of L-form bacterial infections, and indications for urologic procedures.

  12. Bacterial infections associated with allogenic bone transplantation

    Directory of Open Access Journals (Sweden)

    Stepanović Željko Lj.

    2015-01-01

    Full Text Available Background/Aim. Bone allografts are frequently used in orthopedic reconstructive procedures carrying a high risk for recipients. To assess the nature and frequency of allograft contamination and associated surgical infection the case records from our institutional bone bank were reviewed. Methods. We retrospectively analyzed the microbiology of discarded bone allografts and the surgical site of the recipients. A case series of patients who acquired surgical site infection after allogenic bone transplantation was presented. Swab culturing was conducted on 309 femoral heads from living donors who underwent partial and total hip arthroplasty between January 2007 and December 2013. To prevent potential bone allograft contamination we used saline solution of 2.0 mg/ml of amikacin during thawing. The overall infection rate was analyzed in 197 recipients. Results. Of the 309 donated femoral heads, 37 were discarded due to bacterial contamination, giving the overall contamination rate of 11.97%. The postoperative survey of 213 bone allotransplantations among 197 recipients showed the infection rate of 2.03%. The coagulase-negative Staphylococcus was the most commonly identified contaminant of bone allografts and recipient surgical sites. Conclusion. The allograft contamination rate and the infection rate among recipients in our institution are in accordance with the international standards. The coagulase-negative Staphylococcus was the most commonly identified contaminant of bone allografts and recipient surgical sites. There is no strong evidence that surgical site infections were associated with bone allograft utilization. We plan further improvements in allograft handling and decontamination with highly concentrated antibiotic solutions in order to reduce infection risk for recipients.

  13. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue.

    Directory of Open Access Journals (Sweden)

    James A Cotton

    Full Text Available Giardia duodenalis (syn. G. intestinalis, G. lamblia is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn's disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time

  14. Role of the chronic bacterial infection in urinary bladder carcinogenesis

    International Nuclear Information System (INIS)

    Higgy, N.A.

    1985-01-01

    The purpose of this thesis was to determine whether or not bacterial infection of the urinary bladder had a role in urinary bladder carcinogenesis. To investigate this proposition, four separate studies were conducted. The first study developed an experimental animal model where bacterial infection of the urinary bladder could be introduced and maintained for a period in excess of one year. The method of infection, inoculation of bacteria (Escherichia coli type 04) subserosally into the vesical wall, successfully caused persistent infection in the majority of animals. In the second study the temporal effects of bacterial infection on the induction of urothelial ornithine decarboxylase (ODC) and 3 H-thymidine uptake and DNA synthesis were examined. Bacterial infection of the urinary bladder induced urothelial ODC with a peak in enzyme activity 6 hr after infection. 3 H-Thymidine uptake and DNA synthesis peaked 48 hr after infection and coincided with the urothelial hyperplasia that occurred in response to the infection. In the third study the specific bladder carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) was given to rats concurrent with the urinary bacterial infection. In the fourth study rats were administered sodium nitrate and either dibutylamine or piperazine in the drinking water. The infected group developed bladder tumors while none were detected in the non-infected rats. From these studies it may be concluded that bacterial infection may have a significant role in the process of urinary bladder carcinogenesis

  15. Bacteriophage therapy to combat bacterial infections in poultry.

    Science.gov (United States)

    Wernicki, Andrzej; Nowaczek, Anna; Urban-Chmiel, Renata

    2017-09-16

    Infections in poultry are an economic and health problem in Europe and worldwide. The most common infections are associated with salmonellosis, colibacillosis, campylobacteriosis, and others. The prevalence of Campylobacter-positive poultry flocks in European countries varies from 18% to 90%. In the United States, the prevalence of infected flocks is nearly 90%. A similar percentage of infection has been noted for salmonellosis (about 75-90%) and E. coli (90-95%). The occurence of Clostridium perfringens is a major problem for the poultry industry, with some estimates suggesting colonization of as many as 95% of chickens, resulting in clinical or subclinical infections. In the US, annual economic losses due to Salmonella infections run from $1.188 billion to over $11.588 billion, based on an estimated 1.92 million cases. Similar costs are observed in the case of other types of infections. In 2005 economic losses in the the poultry industry due to mortalities reached 1,000,000 USD.Infections caused by these pathogens, often through poultry products, are also a serious public health issue.The progressive increase in the number of multi-drug resistant bacteria and the complete ban on the use of antibiotics in livestock feed in the EU, as well as the partial ban in the US, have led to the growth of research on the use of bacteriophages to combat bacterial infections in humans and animals.The high success rate and safety of phage therapy in comparison with antibiotics are partly due to their specificity for selected bacteria and the ability to infect only one species, serotype or strain. This mechanism does not cause the destruction of commensal bacterial flora. Phages are currently being used with success in humans and animals in targeted therapies for slow-healing infections. They have also found application in the US in eliminating pathogens from the surface of foods of animal and plant origin. At a time of growing antibiotic resistance in bacteria and the resulting

  16. Plant innate immunity against human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Maeli eMelotto

    2014-08-01

    Full Text Available Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens.

  17. Bacterial infections of pulp and periodontal origin.

    Science.gov (United States)

    González-Moles, Miguel Angel; González, Nabila M

    2004-01-01

    The anatomical and structural characteristics of the pulp make this structure prone to altering as a result of, for instance, periodontal conditions (proximity), iatrogenic alterations, infections and involvement of vascular and nerve structures (it is surrounded by hard tissues that prevent expansion), to name just a few. Pulpitis is a process that courses with pain of varying intensity that allows us to determine the location of the lesion in clinical terms. Its evolution varies and may even progress to pulpar necrosis that in turn, produces neuritis-like pain. Diagnosis is established by means of clinical symptomatology and supported by X-rays, palpation of tissues at painful sites, application of electrical stimuli, heat, etc. Periodontitis is a bacterial infection originating in the apex. The most important form is the so-called acute apical periodontitis that arises as a result of a prior episode of pulpitis. It is characterized by acute pain located in the tooth, accompanied by the feeling of having a long-tooth. The patient refers being unable to chew on that side; there may be painful mobility of the tooth and an outflow of pus that alleviates symptoms. X-rays do not provide a lot of information, but may attest to a widening of the apical space. This pathology may disseminate to surrounding tissues, leading to conditions of considerable severity.

  18. Fungi that Infect Humans.

    Science.gov (United States)

    Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R

    2017-06-01

    Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.

  19. Nanosized Selenium: A Novel Platform Technology to Prevent Bacterial Infections

    Science.gov (United States)

    Wang, Qi

    As an important category of bacterial infections, healthcare-associated infections (HAIs) are considered an increasing threat to the safety and health of patients worldwide. HAIs lead to extended hospital stays, contribute to increased medical costs, and are a significant cause of morbidity and mortality. In the United States, infections encountered in the hospital or a health care facility affect more than 1.7 million patients, cost 35.7 billion to 45 billion, and contribute to 88,000 deaths in hospitals annually. The most conventional and widely accepted method to fight against bacterial infections is using antibiotics. However, because of the widespread and sometimes inappropriate use of antibiotics, many strains of bacteria have rapidly developed antibiotic resistance. Those new, stronger bacteria pose serious, worldwide threats to public health and welfare. In 2014, the World Health Organization (WHO) reported antibiotic resistance as a global serious threat that is no longer a prediction for the future but is now reality. It has the potential to affect anyone, of any age, in any country. The most effective strategy to prevent antibiotic resistance is minimizing the use of antibiotics. In recent years, nanomaterials have been investigated as one of the potential substitutes of antibiotics. As a result of their vastly increased ratio of surface area to volume, nanomaterials will likely exert a stronger interaction with bacteria which may affect bacterial growth and propagation. A major concern of most existing antibacterial nanomaterials, like silver nanoparticles, is their potential toxicity. But selenium is a non-metallic material and a required nutrition for the human body, which is recommended by the FDA at a 53 to 60 μg daily intake. Nanosized selenium is considered to be healthier and less toxic compared with many metal-based nanomaterials due to the generation of reactive oxygen species from metals, especially heavy metals. Therefore, the objectives of

  20. Bacterial infections in cynomolgus monkeys given small molecule immunomodulatory antagonists.

    Science.gov (United States)

    Price, Karen D

    2010-01-01

    Opportunistic infections (OIs) during the course of non-clinical toxicity studies can serve as a clinical indicator of immunosuppression. In monkeys, severity may be magnified since the possibility for fecal-oral and cage-to-cage transmission of bacteria exists, reserve capacity is low, and clinical signs of infection are not easily detected until the infectious process is well underway. This review summarizes a case study presented at the HESI-ILSI ITC-Sponsored workshop on Naturally Occurring Infections in Non-human Primates and Immunotoxicity Implications. It gives an overview on the impact of bacterial infections in monkeys on the development and regulatory assessment of three closely-related representative small molecule immunomodulatory (anti-inflammatory) drug candidates all inhibiting the same drug target. The infections, which sometimes progressed to bacteremia and death, originally manifested in the skin, upper respiratory tract, gastrointestinal tract, and less frequently as soft tissue abscesses. Infections were sporadic and not observed in all studies despite coverage of equivalent or higher systemic exposures or longer durations of treatment. To address concerns regarding inconsistency in the presentation and type of findings and their potential relationship to infection, steps were taken to identify causative agents (via culture, microscopy), implement various intervention and treatment regimens (supportive care, antibiotics, drug holiday), demonstrate reversibility of clinical and immune effects, and study major immune components/mechanisms affected (cytokine/stress protein profiling, immune cell phenotyping, and humoral/innate immune cell function tests). Appropriate diagnosis and characterization of the infection was critical to discrimination of these findings as a secondary pharmacologic effect rather than a direct drug-related target organ effect, and also guided clinical protocol design and regulatory acceptance.

  1. Bacterial Uropathogens in Urinary Tract Infection and Antibiotic ...

    African Journals Online (AJOL)

    BACKGROUND: Urinary tract infection (UTI) is one of the most common bacterial infections encountered by clinicians in developing countries. Area-specific monitoring studies aimed to gain knowledge about the type of pathogens responsible for urinary tract infections and their resistance patterns may help the clinician to ...

  2. Controlled Human Infection for Vaccination Against Streptococcus Pyogenes

    Science.gov (United States)

    2018-04-26

    Streptococcus Pyogenes Pharyngitis; Streptococcus Pharyngitis; Strep Throat; Streptococcus Pyogenes Infection; Group A Streptococcus: B Hemolytic Pharyngitis; Group A Streptococcal Infection; Gram-Positive Bacterial Infections; Bacterial Infections

  3. [Infections of the oral mucosa II. Bacterial, mycotic and viral infections].

    Science.gov (United States)

    Reichart, P A

    1999-11-01

    Non-specific infections of the oral mucosa are rare; however, they may present during HIV infection in the form of gingivo-periodontal lesions. In some of these Candida albicans may play a role in the pathogenesis. Sexually transmitted bacterial infections such as gonorrhoea and syphilis are frequently associated with HIV infection. Since penicillin resistance is frequent in gonorrhoea, the cephalosporines are mainly used for treatment. Syphilis increases the risk for transmission of HIV. Lues maligna with oral manifestations has been described. For this, penicillin G is the therapy of choice. Tuberculosis, characterized by multitherapy resistance, is associated with HIV infections world-wide; oral manifestations are rare. Oral candidiasis during HIV infection is often characterized by therapy resistance against fluconazole and a shift in species, with Candida glabrata and Candida krusei as the emerging species. The azoles are still the mainstay of therapy, particularly fluconazole. Herpes simplex (HSV) infections run an atypical course during HIV disease; resistance against acyclovir is a clinical problem. The association of HSV infection with erythema exudativum multiforme has been clearly shown. Oral hairy leukoplakia caused by Epstein Barr virus is a characteristic infection during immunosuppression. Cytomegalovirus infection is also observed in immunodeficient patients. Cases of ganciclovir resistance have been described. Human herpes virus 8 (HHV 8) is associated with Kaposi's sarcoma. Therapeutic trials have focussed on the inhibition of HHV 8 replication. Over 100 different genotypes of human papillomaviruses are known; some can cause infections of the oral mucosa. Characteristic lesions caused by different HPV genotypes are verruca vulgaris, condyloma acuminatum and focal epithelial hyperplasia.

  4. Drug resistance patterns of bacterial isolates from infected wounds ...

    African Journals Online (AJOL)

    unhcc

    The resistance rate of S. aureus for penicillin was at 69.7%. Conclusions: High ... January 2013 to 30 December 2015 was conducted. BRHRLC is one of ... Wound infection, bacterial isolates, culture and antimicrobial susceptibility 113. Ethiop. J. Health ... Socio-demographic characteristic of patients and types of bacterial ...

  5. Diagnostic Utility of Broad Range Bacterial 16S rRNA Gene PCR with Degradation of Human and Free Bacterial DNA in Bloodstream Infection Is More Sensitive Than an In-House Developed PCR without Degradation of Human and Free Bacterial DNA

    Directory of Open Access Journals (Sweden)

    Petra Rogina

    2014-01-01

    Full Text Available We compared a commercial broad range 16S rRNA gene PCR assay (SepsiTest to an in-house developed assay (IHP. We assessed whether CD64 index, a biomarker of bacterial infection, can be used to exclude patients with a low probability of systemic bacterial infection. From January to March 2010, 23 patients with suspected sepsis were enrolled. CD64 index, procalcitonin, and C-reactive protein were measured on admission. Broad range 16S rRNA gene PCR was performed from whole blood (SepsiTest or blood plasma (IHP and compared to blood culture results. Blood samples spiked with Staphylococcus aureus were used to assess sensitivity of the molecular assays in vitro. CD64 index was lower in patients where possible sepsis was excluded than in patients with microbiologically confirmed sepsis (P=0.004. SepsiTest identified more relevant pathogens than blood cultures (P=0.008; in three patients (13% results from blood culture and SepsiTest were congruent, whereas in four cases (17.4% relevant pathogens were detected by SepsiTest only. In vitro spiking experiments suggested equal sensitivity of SepsiTest and IHP. A diagnostic algorithm using CD64 index as a decision maker to perform SepsiTest shows improved detection of pathogens in patients with suspected blood stream infection and may enable earlier targeted antibiotic therapy.

  6. Concomitant Bacterial Meningitis in Infants With Urinary Tract Infection.

    Science.gov (United States)

    Thomson, Joanna; Cruz, Andrea T; Nigrovic, Lise E; Freedman, Stephen B; Garro, Aris C; Ishimine, Paul T; Kulik, Dina M; Uspal, Neil G; Grether-Jones, Kendra L; Miller, Aaron S; Schnadower, David; Shah, Samir S; Aronson, Paul L; Balamuth, Fran

    2017-09-01

    To determine age-stratified prevalence of concomitant bacterial meningitis in infants ≤60 days with a urinary tract infection, we performed a 23-center, retrospective study of 1737 infants with urinary tract infection. Concomitant bacterial meningitis was rare, but more common in infants 0-28 days of age [0.9%; 95% confidence interval (CI): 0.4%-1.9%) compared with infants 29-60 days of age (0.2%; 95% CI: 0%-0.8%).

  7. bacterial uropathogens in urinary tract infection and antibiotic

    African Journals Online (AJOL)

    User

    2011-07-02

    Jul 2, 2011 ... BACKGROUND: Urinary tract infection (UTI) is one of the most common bacterial infections ... leaves the clinicians with very few alternative options of drugs for the treatment of UTIs. As drug resistance ... can be asymptomatic or symptomatic, UTIs that .... pregnancy and stage of pregnancy, age groups and.

  8. Emerging infectious diseases with cutaneous manifestations: Viral and bacterial infections.

    Science.gov (United States)

    Nawas, Zeena Y; Tong, Yun; Kollipara, Ramya; Peranteau, Andrew J; Woc-Colburn, Laila; Yan, Albert C; Lupi, Omar; Tyring, Stephen K

    2016-07-01

    Given increased international travel, immigration, and climate change, bacterial and viral infections that were once unrecognized or uncommon are being seen more frequently in the Western Hemisphere. A delay in diagnosis and treatment of these diseases can lead to significant patient morbidity and mortality. However, the diagnosis and management of these infections is fraught with a lack of consistency because there is a dearth of dermatology literature on the cutaneous manifestations of these infections. We review the epidemiology, cutaneous manifestations, diagnosis, and management of these emerging bacterial and viral diseases. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  9. TBK1 protects vacuolar integrity during intracellular bacterial infection.

    Directory of Open Access Journals (Sweden)

    Andrea L Radtke

    2007-03-01

    Full Text Available TANK-binding kinase-1 (TBK1 is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella, more extensive bacterial proliferation was observed in tbk1(-/- than tbk1(+/+ cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1(-/-cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity.

  10. TBK1 Protects Vacuolar Integrity during Intracellular Bacterial Infection

    Science.gov (United States)

    Radtke, Andrea L; Delbridge, Laura M; Balachandran, Siddharth; Barber, Glen N; O'Riordan, Mary X. D

    2007-01-01

    TANK-binding kinase-1 (TBK1) is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella), more extensive bacterial proliferation was observed in tbk1−/− than tbk1+/+ cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1−/−cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity. PMID:17335348

  11. DMPD: Role of Nods in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17379560 Role of Nods in bacterial infection. Bourhis LL, Werts C. Microbes Infect.... 2007 Apr;9(5):629-36. Epub 2007 Jan 27. (.png) (.svg) (.html) (.csml) Show Role of Nods in bacterial infect...ion. PubmedID 17379560 Title Role of Nods in bacterial infection. Authors Bourhis LL, Werts C. Publication M

  12. AEROBIC BACTERIAL ISOLATES FROM INFECTED WOUNDS

    African Journals Online (AJOL)

    boaz

    most frequently reported as the cause of delay wound healing (6-9, 3). ... All isolates were resistant to Ampicillin, Amoxicillin- clavulanate and .... Ulcer bed infection. Report of a case of enlarging venous leg ulcer colonized by ... Ann. Burns Fire.

  13. Gram-Negative Bacterial Wound Infections

    Science.gov (United States)

    2014-05-01

    Bovine Tuberculosis in Cattle Farms in Zaria and Kaduna and Possible Transmission Through Milk P. N. Mbianga, V. J. Umoh, A. I. 0, K. C. A; Ahmadu...Pathogenic Escherichia coli R. M. Ramirez, M-X. Haro, P. Miranda, S-H. Sanchez, L-E. Vidales; Univ. Aut6noma de Zacatecas, Zacatecas, Mexico 517...isolates. Subsequently, five representative isolates were tested in murine pulmonary and Galleria mellonella models of infection. Infections with one strain

  14. 75 FR 52755 - Draft Guidance for Industry on Acute Bacterial Skin and Skin Structure Infections: Developing...

    Science.gov (United States)

    2010-08-27

    ... antimicrobial drugs for the treatment of acute bacterial skin and skin structure infections (ABSSSI), impetigo... of antimicrobial drugs for the treatment of ABSSSI, impetigo, and minor cutaneous abscesses. This... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-D-0433...

  15. Liver abscess caused by periodontal bacterial infection with Fusobacterium necrophorum.

    Science.gov (United States)

    Yoneda, Masato; Kato, Shingo; Mawatari, Hironori; Kirikoshi, Hiroyuki; Imajo, Kento; Fujita, Koji; Endo, Hiroki; Takahashi, Hirokazu; Inamori, Masahiko; Kobayashi, Noritoshi; Kubota, Kensuke; Saito, Satoru; Tohnai, Iwai; Watanuki, Kei; Wada, Koichiro; Maeda, Shin; Nakajima, Atsushi

    2011-02-01

    Liver abscess is recognized as a life-threatening disease. However, even in recent years, approximately 50% of liver abscess cases are considered to be cryptogenic. Here, we report a case of liver abscess associated with periodontal bacterial infection by Fusobacterium necrophorum, which is commonly found in the oropharyngeal flora. A 36-year-old man presented with fever and contrast-enhanced abdominal computed tomography revealed multiple liver abscesses. F.necrophorum was isolated from oral smears, liver aspirates and blood samples. Liver abscesses caused by periodontal bacterial infection are rare, however, the incidence is expected to increase in the future, as periodontitis is extremely common and is on the rise as one of the most common chronic infections in the world. A systemic survey including periodontitis may be required for the exact diagnosis of the source of infection. © 2011 The Japan Society of Hepatology.

  16. common bacterial isolates from infected eyes abstract

    African Journals Online (AJOL)

    LIVINGSTON

    to open as a result of the accumulation of exudates during the night. ... Bacteria were isolated most on the eye infections of the conjunctiva 222(66.70%), then the cornea ..... risk after their maternal immunity has disappeared and before their ...

  17. Using Natural Products to Treat Resistant and Persistent Bacterial Infections

    Science.gov (United States)

    Deering, Robert W.

    Antimicrobial resistance is a growing threat to human health both worldwide and in the United States. Most concerning is the emergence of multi-drug resistant (MDR) bacterial pathogens, especially the 'ESKAPE' pathogens for which treatment options are dwindling. To complicate the problem, approvals of antibiotic drugs are extremely low and many research and development efforts in the pharmaceutical industry have ceased, leaving little certainty that critical new antibiotics are nearing the clinic. New antibiotics are needed to continue treating these evolving infections. In addition to antibiotics, approaches that aim to inhibit or prevent antimicrobial resistance could be useful. Also, studies that improve our understanding of bacterial pathophysiology could lead to new therapies for infectious disease. Natural products, especially those from the microbial world, have been invaluable as resources for new antibacterial compounds and as insights into bacterial physiology. The goal of this dissertation is to find new ways to treat resistant bacterial infections and learn more about the pathophysiology of these bacteria. Investigations of natural products to find molecules able to be used as new antibiotics or to modulate resistance and other parts of bacterial physiology are crucial aspects of the included studies. The first included study, which is reported in chapter two, details a chemical investigation of a marine Pseudoalteromonas sp. Purification efforts of the microbial metabolites were guided by testing against a resistance nodulation of cell division model of efflux pumps expressed in E. coli. These pumps play an important role in the resistance of MDR Gram negative pathogens such as Pseudomonas aeruginosa and Enterobacteriaceae. Through this process, 3,4-dibromopyrrole-2,5-dione was identified as a potent inhibitor of the RND efflux pumps and showed synergistic effects against the E. coli strain with common antibiotics including fluoroquinolones, beta

  18. Reaction of Musa balbisiana to Banana bacterial wilt infection ...

    African Journals Online (AJOL)

    The expression of NPR1, a marker gene of the systemic acquired resistance plant defence system provides preliminary evidence that this may be the major form of resistance in Musa balbisiana to bacterial wilt infection. Keywords: NPR1, PR proteins, Uganda, Xanthomonas campestris. African Crop Science Journal, Vol.

  19. Serious bacterial infections in febrile young children: Lack of value ...

    African Journals Online (AJOL)

    Fever is both a marker of insignificant viral infection, as well as more serious bacterial sepsis. Therefore ... febrile children under the age of 5 years (with an axillary temperature ≥38°C) who presented to Steve Biko Academic Hospital, Pretoria, with signs and symptoms of pneumonia, meningitis and/or generalised sepsis.

  20. Nasopharyngeal polymicrobial colonization during health, viral upper respiratory infection and upper respiratory bacterial infection.

    Science.gov (United States)

    Xu, Qingfu; Wischmeyer, Jareth; Gonzalez, Eduardo; Pichichero, Michael E

    2017-07-01

    We sought to understand how polymicrobial colonization varies during health, viral upper respiratory infection (URI) and acute upper respiratory bacterial infection to understand differences in infection-prone vs. non-prone patients. Nasopharyngeal (NP) samples were collected from 74 acute otitis media (AOM) infection-prone and 754 non-prone children during 2094 healthy visits, 673 viral URI visits and 631 AOM visits. Three otopathogens Streptococcus pneumoniae (Spn), Nontypeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis (Mcat) were identified by culture. NP colonization rates of multiple otopathogens during health were significantly lower than during viral URI, and during URI they were lower than at onset of upper respiratory bacterial infection in both AOM infection-prone and non-prone children. AOM infection-prone children had higher polymicrobial colonization rates than non-prone children during health, viral URI and AOM. Polymicrobial colonization rates of AOM infection-prone children during health were equivalent to that of non-prone children during viral URI, and during viral URI were equivalent to that of non-prone during AOM infection. Spn colonization was positively associated with NTHi and Mcat colonization during health, but negatively during AOM infection. The infection-prone patients more frequently have multiple potential bacterial pathogens in the NP than the non-prone patients. Polymicrobial interaction in the NP differs during health and at onset of infection. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  1. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Science.gov (United States)

    Furuse, Yuki; Finethy, Ryan; Saka, Hector A; Xet-Mull, Ana M; Sisk, Dana M; Smith, Kristen L Jurcic; Lee, Sunhee; Coers, Jörn; Valdivia, Raphael H; Tobin, David M; Cullen, Bryan R

    2014-01-01

    MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  2. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    Full Text Available MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  3. Bacterial infections in cirrhosis: Role of proton pump inhibitors and intestinal permeability

    NARCIS (Netherlands)

    L.G. van Vlerken (Lotte); E.J. Huisman (Ellen); B. van Hoek (Bart); W. Renooij (W.); F.W.M. de Rooij (Felix); P.D. Siersema (Peter); K.J. van Erpecum (Karel)

    2012-01-01

    textabstractBackground Cirrhotic patients are at considerable risk for bacterial infections, possibly through increased intestinal permeability and bacterial overgrowth. Proton pump inhibitors (PPIs) may increase infection risk. We aimed to explore the potential association between PPI use and

  4. Obstructive jaundice promotes bacterial translocation in humans.

    Science.gov (United States)

    Kuzu, M A; Kale, I T; Cöl, C; Tekeli, A; Tanik, A; Köksoy, C

    1999-01-01

    Significant bacterial translocation was demonstrated following experimental biliary obstruction, however very little is known about the importance and the prevalence of gut-origin sepsis in obstructive jaundice patients. Therefore, the aim of this study was to investigate the concept of gut-origin sepsis in obstructive jaundiced patients and its clinical importance. Twenty-one patients requiring laparotomy for obstructive jaundice (group I) and thirty patients operated on electively mainly for chronic cholecystitis (group II) were studied. Peritoneal swab, mesenteric lymph node, portal venous blood, liver wedge biopsy and bile were sampled for culture immediately after opening the peritoneum. Additionally, peripheral blood samples were taken pre- and post-operatively from all patients. Post-operatively, patients were monitored for infectious complications. The mean serum bilirubin concentration, gamma glutamyl transferase and alkaline phosphatase levels in jaundiced patients before therapeutic intervention were significantly higher than in control patients. Five patients demonstrated bacterial translocation in group I (24%), whereas only one did so in group II (3.5%, p jaundice significantly promotes bacterial translocation in humans, however, its clinical importance has yet to be defined.

  5. Severe bacterial infections in patients with non-transfusion-dependent thalassemia: prevalence and clinical risk factors

    Directory of Open Access Journals (Sweden)

    Nattiya Teawtrakul

    2015-10-01

    Conclusion: The prevalence of bacterial infection in patients with NTDT was found to be moderate. Time after splenectomy >10 years, deferoxamine therapy, and iron overload may be clinical risk factors for severe bacterial infection in patients with NTDT. Bacterial infection should be recognized in splenectomized patients with NTDT, particularly those who have an iron overload.

  6. Acute Sleep Deprivation Enhances Post-Infection Sleep and Promotes Survival during Bacterial Infection in Drosophila

    Science.gov (United States)

    Kuo, Tzu-Hsing; Williams, Julie A.

    2014-01-01

    Study Objectives: Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. Setting: Laboratory. Participants: Drosophila melanogaster. Methods and Results: Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. Conclusions: Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection. Citation: Kuo TH, Williams JA. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila. SLEEP 2014;37(5):859-869. PMID:24790264

  7. A Perfect Storm: Increased Colonization and Failure of Vaccination Leads to Severe Secondary Bacterial Infection in Influenza Virus-Infected Obese Mice

    Directory of Open Access Journals (Sweden)

    Erik A. Karlsson

    2017-09-01

    Full Text Available Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae. Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. Both viral and bacterial titers were increased in the upper respiratory tract and lungs of obese animals as early as days 1 and 2 post-bacterial infection, leading to a significant decrease in lung function. This increased bacterial load correlated with extensive cellular damage and upregulation of platelet-activating factor receptor, a host receptor central to pneumococcal invasion. Importantly, while vaccination of obese mice against either influenza virus or pneumococcus failed to confer protection, antibiotic treatment was able to resolve secondary bacterial infection-associated mortality. Overall, secondary bacterial pneumonia could be a widespread, unaddressed public health problem in an increasingly obese population.

  8. Viral infection of the pregnant cervix predisposes to ascending bacterial infection

    Science.gov (United States)

    Racicot, Karen; Cardenas, Ingrid; Wünsche, Vera; Aldo, Paulomi; Guller, Seth; Means, Robert; Romero, Roberto; Mor, Gil

    2014-01-01

    Preterm birth is the major cause of neonatal mortality and morbidity, and bacterial infections that ascend from the lower female reproductive tract (FRT) are the most common route of uterine infection leading to preterm birth. The uterus and growing fetus are protected from ascending infection by the cervix, which controls and limits microbial access by the production of mucus, cytokines and anti-microbial peptides (AMPs). If this barrier is compromised, bacteria may enter the uterine cavity leading to preterm birth. Using a mouse model, we demonstrate, for the first time, that viral infection of the cervix, during pregnancy, reduces the capacity of the FRT to prevent bacterial infection of the uterus. This is due to differences in susceptibility of the cervix to infection by virus during pregnancy and the associated changes in TLR and AMP expression and function. We suggest that preterm labor is a polymicrobial disease, which requires a multifactorial approach for its prevention and treatment. PMID:23752614

  9. Associations between bacterial infections and blood pressure in pregnancy.

    Science.gov (United States)

    Petry, Clive J; Ong, Ken K; Hughes, Ieuan A; Acerini, Carlo L; Dunger, David B

    2017-10-01

    To test the hypothesis that bacterial infections in pregnancy are related to maternal blood pressure. Bacterial infection was assessed using antibiotic usage as a surrogate and its association with blood pressure in pregnancy tested in the Cambridge Baby Growth Study. Antibiotic usage in pregnancy was self-reported in questionnaires. Blood pressure measurements at four time points in pregnancy were collected from the hospital notes of 622 women. Using all the available blood pressure readings (adjusted for weeks gestation) antibiotic usage was associated with a higher mean arterial blood pressure across pregnancy: antibiotics used 85(84, 87)mmHg vs. no antibiotics used 83 (83, 84) mmHg (β=2.3 (0.6, 4.0) mmHg, p=9.6×10 -3 , from 621 individuals). Further analysis revealed that antibiotic usage was associated with diastolic (β=2.3 (0.6, 4.0) mmHg; p=7.0×10 -3 ) more than systolic blood pressure (β=1.4(-0.9, 3.7)mmHg; p=0.2). The effect size associated with antibiotic usage appeared to rise slightly after the first trimester. Bacterial infection in pregnancy, as assessed by self-reported antibiotic usage, is associated with small rises in blood pressure. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. Bacterial sensitivity to fosfomycin in pregnant women with urinary infection

    Directory of Open Access Journals (Sweden)

    Rodrigo Batista Souza

    2015-05-01

    Full Text Available The aim this study was to determine the in vitro susceptibility to fosfomycin of bacteria isolated from urine samples of pregnant women with urinary tract infection. Samples of urine culture with bacterial growth of pregnant women were collected from clinical laboratories in Tubarão, state of Santa Catarina, Brazil, between September 2012 and May 2013. In the experimental stage, the colonies were tested for sensitivity to fosfomycin by using the Kirby–Bauer method. The following information relating to the samples was also collected: patients’ age, colony count, type(s of identified bacterial(s and result of the antimicrobial sensitivity test. Student's t-test was used for mean comparison. A total of 134 samples were selected for the study. The age of the subjects ranged from 15 to 40 years (mean 26.7. Escherichia coli (Gram-negative and Staphylococcus aureus (Gram-positive were the most commonly identified species. In 89% of cases, the microorganisms were sensitive to fosfomycin. E. coli and S. aureus were the main species of bacteria responsible for urinary tract infections in women in the study area. The most prevalent microorganisms in pregnant women with urinary tract infection were susceptible to fosfomycin.

  11. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations

    International Nuclear Information System (INIS)

    Welling, M.M.; Pauwels, E.K.J.; Paulusma-Annema, A.; Nibbering, P.H.; Balter, H.S.

    2000-01-01

    The aim of this study was to select technetium-99m labelled peptides that can discriminate between bacterial infections and sterile inflammations. For this purpose, we first assessed the binding of various 99m Tc-labelled natural or synthetic peptides, which are based on the sequence of the human antimicrobial peptide ubiquicidin (UBI) or human lactoferrin (hLF), to bacteria and to leucocytes in vitro. In order to select peptides that preferentially bind to bacteria over host cells, radiolabelled peptides were injected into mice intraperitoneally infected with Klebsiella pneumoniae (K. pneumoniae) and the amount of radioactivity associated with the bacteria and with the leucocytes was quantitated. The next phase focussed on discrimination between bacterial infections and sterile inflammatory processes using 99m Tc-labelled peptides in mice intramuscularly infected with various bacteria (e.g. multi-drug-resistant Staphylococcus aureus) and in animals that had been injected with lipopolysaccharides (LPS) of bacterial origin to create a sterile inflammatory process. Also, we studied the distribution of 99m Tc-labelled UBI 29-41 and UBI 18-35 in rabbits having an experimental thigh muscle infection with K. pneumoniae and in rabbits injected with LPS. Based on the results of our in vitro and in vivo binding assays, two peptides, i.e. UBI 29-41 and UBI 18-35, were selected as possible candidates for infection imaging. The radiolabelled peptides can detect infections with both gram-positive and gram-negative bacteria in mice as early as 5-30 min after injection, with a target-to-non-target (T/NT) ratio between 2 and 3; maximum T/NT ratios were seen within 1 h after injection. In rabbits, high T/NT ratios (>5) for 99m Tc-labelled UBI 29-41 were observed from 1 h after injection. No accumulation of the selected 99m Tc-labelled UBI-derived peptides was observed in thighs of mice and rabbits previously injected with LPS. Scintigraphic investigation into the biodistribution of

  12. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    Background Campylobacter jejuni is a major cause of inflammatory diarrhoea in humans and is considered a commensal of the gastroenteric tract of the avian host. However, little is known about the interaction between C. jejuni and the avian host including the cytokine responses and the expression...

  13. [Clinical efficacy of flomoxef in neonatal bacterial infection].

    Science.gov (United States)

    Sakata, H; Hirano, Y; Maruyama, S

    1993-03-01

    One hundred and seventy one neonates were treated with flomoxef (FMOX) and the clinical efficacy and safety were evaluated. The ages of the patients ranged from 0 to 28 days, and their body weights from 450 to 4300 g. Dose levels were 12.4 to 24.9 mg/kg every 8 or 12 hours for 1 to 10 days. Fifty two patients who responded to the FMOX treatment included 5 neonates with sepsis, 17 with suspected sepsis, 9 with urinary tract infections, 12 with pneumonia, 8 with intrauterine infections, and 1 with omphalitis. The other neonates could not be retrospectively diagnosed as bacterial infections. Of 52 patients, clinical results were excellent in 15, good in 34, fair in 1, and poor in 2. And the FMOX treatment was effective in 13 out of 14 patients in which causative bacteria were identified. The drug was well tolerated, but 6 neonates out of 33 over 5 days old had diarrhea. From these results, empiric treatment with FMOX against neonatal bacterial infection was as clinically useful as that of combination with ampicillin and gentamicin or cefotaxime and ampicillin in our neonatal intensive care unit. But, as this study did not include neonate with meningitis, efficacy to meningitis was not evaluated.

  14. BACTERIAL INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANT RECIPIENTS

    Directory of Open Access Journals (Sweden)

    Elisa Balletto

    2015-07-01

    Full Text Available Bacterial infections are major complications after Hematopoietic Stem Cell Transplant (HSCT. They consist mainly of bloodstream infections (BSI, followed by pneumonia and gastrointestinal infections, including typhlitis and Clostridium difficile infection. Microbiological data come mostly from BSI. Coagulase negative staphylococci and Enterobacteriaceae are the most frequent pathogens causing approximately 25% of BSI each, followed by enterococci, P. aeruginosa and viridans streptococci. Bacterial pneumonia is frequent after HSCT, and Gram-negatives are predominant. Clostridium difficile infection affects approximately 15% of HSCT recipients, being more frequent in case of allogeneic than autologous HSCT. The epidemiology and the prevalence of resistant strains vary significantly between transplant centres. In some regions, multi-drug resistant Gram-negative rods are increasingly frequent. In others, vancomycin-resistant enterococci are predominant. In the era of an increasing resistance to antibiotics, the efficacy of fluoroquinolone prophylaxis and standard treatment of febrile neutropenia have been questioned. Therefore, thorough evaluation of local epidemiology is mandatory in order to decide the need for prophylaxis and the choice of the best regimen for empirical treatment of febrile neutropenia. For the latter, individualised approach has been proposed, consisting of either escalation or de-escalation strategy. De-escalation strategy is recommended is resistant bacteria should be covered upfront, mainly in patients with severe clinical presentation and previous infection or colonisation with a resistant pathogens. Non-pharmacological interventions, such as screening for resistant bacteria, applying isolation and contact precautions should be put in place in order to limit the spread of MDR bacteria. Antimicrobial stewardship program should be implemented in transplant centres.

  15. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila.

    Science.gov (United States)

    Kuo, Tzu-Hsing; Williams, Julie A

    2014-05-01

    Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. Laboratory. Drosophila melanogaster. Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection.

  16. Ischaemia-modified albumin: a marker of bacterial infection in hospitalized patients with cirrhosis.

    Science.gov (United States)

    Giannone, Ferdinando A; Domenicali, Marco; Baldassarre, Maurizio; Bartoletti, Michele; Naldi, Marina; Laggetta, Maristella; Bertucci, Carlo; Colecchia, Antonio; Viale, Pierluigi; Bernardi, Mauro; Caraceni, Paolo

    2015-11-01

    Patients with cirrhosis present structural changes of human serum albumin (HSA) affecting non-oncotic functions. Ischaemia-modified albumin (IMA), which reflects the capacity to bind cobalt, has been associated to patient mortality during acute-on-chronic liver failure. This study aimed to assess whether circulating IMA is elevated in advanced cirrhosis and its relationship with severity of cirrhosis and specific complications. A total of 127 cirrhotic patients hospitalized for an acute complication of the disease and 44 healthy controls were enrolled. Plasma IMA and IMA to albumin ratio (IMAr) were measured with a cobalt-binding assay. HSA isoforms carrying post-transcriptional molecular changes were assessed with HPLC-ESI-MS. The effect of endotoxemia on IMA was evaluated in rats with CCl4 -cirrhosis. IMA/IMAr is significantly higher in cirrhotic patients than in controls, but no correlations were found with prognostic scores. IMA did not correlate with the altered HSA isoforms. Ascites, renal impairment and hepatic encephalopathy did not influence IMA/IMAr levels. In contrast, IMA/IMAr is significantly higher in infected than non-infected patients. ROC curves showed that IMA/IMAr had similar discriminating performances for bacterial infection as C-reactive protein (CRP). Moreover, CRP and IMA were independently associated with bacterial infection. Consistently, endotoxin injection significantly increased IMA in cirrhotic, but not in healthy rats. IMA is elevated in patients with advanced cirrhosis. The IMA level does not correlate with disease severity scores, but it is specifically associated to bacterial infection, showing a discriminating performance similar to CRP. Further investigations to assess IMA as a novel diagnostic test for bacterial infection are advocated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Antimicrobial Nanoparticle for the Treatment of Bacterial Infection

    Science.gov (United States)

    Pornpattananangkul, Dissaya

    Liposomes are spherical lipid vesicles with bilayered membrane structure, which have been recognized as one of the most widely used carriers for delivering a myriad of pharmaceuticals. Liposomes can carry both hydrophilic and hydrophobic agents with high efficiency and protect them from undesired effects of external conditions. However, the applications of liposomes are usually limited by their instability during storage. They are inclined to fuse with one another immediately after preparation, resulting in undesired mixing, increase in size, and payload loss. To overcome this limitation, this dissertation will focus on the technology to stabilize liposomes during storage and destabilize at specific conditions in order to allow controllable therapeutic release, as well as demonstrate their application to treat one of the bacterial infection diseases, acne vulgaris. The first area of this research is stimuli-responsive liposomes development, where the liposomes are stabilized by introducing gold nanoparticles to adsorb to their surface. As a result, the liposomes are prevented from fusing with one another and undesirable payload release during storage or physiological environments. Moreover, therapeutic is controllably released depending on environment conditions, such as acidic pH and bacterial virulence factor. In case of acid-responsive liposomes, the bound gold nanoparticles can effectively prevent liposomes from fusing with one another at neutral pH value, while at acidic environment (e.g. pHhuman skin are typically acidic. Demonstrated by fluorescent and antimicrobial experiments, the bound gold nanoparticles effectively prevent LipoLA from fusing with one another at neutral pH value. However, at acidic condition, the gold particles detatch from LipoLA surface, allowing the fusion with P.acnes membrane and lauric acid delivery, resulting in a complete killing effect. The stimuli-responsive liposomes presented here provide a new, safe, and effective approach to

  18. Contribution of Bacterial Infection to Male Infertility in Nigerians

    Directory of Open Access Journals (Sweden)

    Emokpae MA

    2009-05-01

    Full Text Available There is disagreement as to the influence of certain microbial infection on male infertility and such agents are ignored. The incidence of these microbial agents in seminal fluid isolates is on the increase. This study therefore evaluates the prevalence of male factor infertility and contribution of microbial infection to male infertility in Kano, northern Nigeria. Seminal fluid analysis in five hundred males who were investigated for infertility was evaluated using the 5th generation SQ AII C-P sperm quality analyzer and the Neubaeur counting chamber. The result indicates that 58.2% had sperm density less than twenty million per millilitre. The oligospermic subjects (sperm density 2-19 millions/ml were 27.6%, severe oligospermic (sperm density less than 2 million 13.2% and azoospermia, 17.4%. Asthenospermia (motility less than 50% decrease from 44.8% in oligospermia to 24.0% in severe oligospermia. Teratospermia (abnormal morphology greater than 50% also deteriorated from 46.3% to 35.4% in oligospermic and severe oligospermic males respectively. Seminal fluid infection increases with decreasing sperm density, motility and morphology. The prevalence of abnormal sperm indices and bacterial infection is high and Staphylococcus aureus infection should be treated and no longer ignored in the management of male factor infertility.

  19. Fibrinous pericarditis secondary to bacterial infection in a cat.

    Science.gov (United States)

    Tagawa, Michihito; Kurashima, Chihiro; Shimbo, Genya; Omura, Hiroshi; Koyama, Kenji; Horiuchi, Noriyuki; Kobayashi, Yoshiyasu; Kawamoto, Keiko; Miyahara, Kazuro

    2017-06-10

    A three-year-old spayed domestic short-haired cat presented for evaluation of weight loss, cardiomegaly and pleural effusion. Echocardiographic examination demonstrated a thickened pericardium with mild pericardial effusion and a large volume of pleural effusion characterized by exudate. Although the cat was treated with antibiotics, the clinical symptoms did not improve. The cat developed dyspnea and died on day 7. Necropsy revealed a large amount of modified transudates ascites, pleural effusion and markedly dilated pericardium. Histopathological examination revealed severe exudation of fibrin and granulation tissue in a thick layer of the epicardium. The cat was diagnosed with fibrinous pericarditis secondary to bacterial infection.

  20. Evaluation of localized bacterial infection using radioisotope-labeled nucleosides imaging modality

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Lee, Yong Jin; Lee, Tae Sup; Kim, Kwang Il; Lee, Kyo Chul; An, Gwang II; Cheon, Gi Jeong; Lim, Sang Moo [KIRAMS, Seoul (Korea, Republic of); Lim, Sang Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Conventional diagnostic methods for infections are difficult to distinguish localized bacterial infections from sites of sterile inflammation. For this reason, the importance of developing methods to image bacterial infections is widely recognized. In this study to acquire bacterial infection imaging with radiolabeled nucleosides, in vitro bacterial thymidine kinase (tk) activities of Salmonella typhimurium with [{sup 18}F]FLT and [{sup 125}I]IVDU were measured and localized infections model in BALB/c mice was imaged with [{sup 18}F]FLT or [{sup 125}I]FIAU

  1. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection.

    Science.gov (United States)

    Bikard, David; Hatoum-Aslan, Asma; Mucida, Daniel; Marraffini, Luciano A

    2012-08-16

    Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Coxiella burnetii: host and bacterial responses to infection.

    Science.gov (United States)

    Waag, David M

    2007-10-16

    Designation as a Category B biothreat agent has propelled Coxiella burnetii from a relatively obscure, underappreciated, "niche" microorganism on the periphery of bacteriology, to one of possibly great consequence if actually used in acts of bioterrorism. Advances in the study of this microorganism proceeded slowly, primarily because of the difficulty in studying this obligate intracellular pathogen that must be manipulated under biosafety level-3 conditions. The dogged determination of past and current C. burnetii researchers and the application of modern immunological and molecular techniques have more clearly defined the host and bacterial response to infection. This review is intended to provide a basic introduction to C. burnetii and Q fever, while emphasizing immunomodulatory properties, both positive and negative, of Q fever vaccines and C. burnetii infections.

  3. Preventing Bacterial Infections using Metal Oxides Nanocoatings on Bone Implant

    Science.gov (United States)

    Duceac, L. D.; Straticiuc, S.; Hanganu, E.; Stafie, L.; Calin, G.; Gavrilescu, S. L.

    2017-06-01

    Nowadays bone implant removal is caused by infection that occurs around it possibly acquired after surgery or during hospitalization. The purpose of this study was to reveal some metal oxides applied as coatings on bone implant thus limiting the usual antibiotics-resistant bacteria colonization. Therefore ZnO, TiO2 and CuO were synthesized and structurally and morphologically analized in order to use them as an alternative antimicrobial agents deposited on bone implant. XRD, SEM, and FTIR characterization techniques were used to identify structure and texture of these nanoscaled metal oxides. These metal oxides nanocoatings on implant surface play a big role in preventing bacterial infection and reducing surgical complications.

  4. Bacterial Urease and its Role in Long-Lasting Human Diseases

    Science.gov (United States)

    Konieczna, Iwona; Żarnowiec, Paulina; Kwinkowski, Marek; Kolesińska, Beata; Frączyk, Justyna; Kamiński, Zbigniew; Kaca, Wiesław

    2012-01-01

    Urease is a virulence factor found in various pathogenic bacteria. It is essential in colonization of a host organism and in maintenance of bacterial cells in tissues. Due to its enzymatic activity, urease has a toxic effect on human cells. The presence of ureolytic activity is an important marker of a number of bacterial infections. Urease is also an immunogenic protein and is recognized by antibodies present in human sera. The presence of such antibodies is connected with progress of several long-lasting diseases, like rheumatoid arthritis, atherosclerosis or urinary tract infections. In bacterial ureases, motives with a sequence and/or structure similar to human proteins may occur. This phenomenon, known as molecular mimicry, leads to the appearance of autoantibodies, which take part in host molecules destruction. Detection of antibodies-binding motives (epitopes) in bacterial proteins is a complex process. However, organic chemistry tools, such as synthetic peptide libraries, are helpful in both, epitope mapping as well as in serologic investigations. In this review, we present a synthetic report on a molecular organization of bacterial ureases - genetic as well as structural. We characterize methods used in detecting urease and ureolytic activity, including techniques applied in disease diagnostic processes and in chemical synthesis of urease epitopes. The review also provides a summary of knowledge about a toxic effect of bacterial ureases on human body and about occurrence of anti-urease antibodies in long-lasting diseases. PMID:23305365

  5. Combating multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Xu, Ze-Qi; Flavin, Michael T; Flavin, John

    2014-02-01

    Multidrug-resistant (MDR) bacterial infections, especially those caused by Gram-negative pathogens, have emerged as one of the world's greatest health threats. The development of novel antibiotics to treat MDR Gram-negative bacteria has, however, stagnated over the last half century. This review provides an overview of recent R&D activities in the search for novel antibiotics against MDR Gram-negatives. It provides emphasis in three key areas. First, the article looks at new analogs of existing antibiotic molecules such as β-lactams, tetracyclines, and aminoglycoside as well as agents against novel bacterial targets such as aminoacyl-tRNA synthetase and peptide deformylase. Second, it also examines alternative strategies to conventional approaches including cationic antimicrobial peptides, siderophores, efflux pump inhibitors, therapeutic antibodies, and renewed interest in abandoned treatments or those with limited indications. Third, the authors aim to provide an update on the current clinical development status for each drug candidate. The traditional analog approach is insufficient to meet the formidable challenge brought forth by MDR superbugs. With the disappointing results of the genomics approach for delivering novel targets and drug candidates, alternative strategies to permeate the bacterial cell membrane, enhance influx, disrupt efflux, and target specific pathogens via therapeutic antibodies are attractive and promising. Coupled with incentivized business models, governmental policies, and a clarified regulatory pathway, it is hoped that the antibiotic pipeline will be filled with an effective armamentarium to safeguard global health.

  6. Bacterial Infection of Fly Ovaries Reduces Egg Production and Induces Local Hemocyte Activation

    OpenAIRE

    Brandt, Stephanie M.; Schneider, David S.

    2007-01-01

    Morbidity, the state of being diseased, is an important aspect of pathogenesis that has gone relatively unstudied in fruit flies. Our interest is in characterizing how bacterial pathogenesis affects various physiologies of the fly. We chose to examine the fly ovary because we found bacterial infection had a striking effect on fly reproduction. We observed decreased egg laying after bacterial infection that correlated with increased bacterial virulence. We also found that bacteria colonized th...

  7. Incidence and Predictors of Bacterial infection in Febrile Children with Sickle Cell Disease.

    Science.gov (United States)

    Morrissey, Benita J; Bycroft, Thomas P; Almossawi, Ofran; Wilkey, Olufunke B; Daniels, Justin G

    2015-01-01

    Children with sickle cell disease are at increased risk of developing bacteremia and other serious bacterial infections. Fever is a common symptom in sickle cell disease and can also occur with sickle cell crises and viral infections. We aimed to evaluate the incidence and predictors of bacteremia and bacterial infection in children with sickle cell disease presenting with fever to a district hospital and sickle cell center in London. A retrospective analysis was performed on all attendances of children (aged under 16 years) with sickle cell disease presenting with a fever of 38.5 °C or higher over a 1-year period. Confirmed bacterial infection was defined as bacteremia, bacterial meningitis, urinary tract infection (UTI), pneumonia, osteomyelitis or other bacterial infection with positive identification of organism. Children were defined as having a suspected bacterial infection if a bacterial infection was suspected clinically, but no organism was identified. Over a 1-year period there were 88 episodes analyzed in 59 children. Bacteremia occurred in 3.4% of episodes and confirmed bacterial infection in 7.0%. Suspected bacterial infection occurred in 33.0%. One death occurred from Salmonella typhirium septicemia. C-reactive protein (CRP) level and white blood cell (WBC) count were both significantly associated with bacterial infection (p = 0.004 and 0.02, respectively.) In conclusion, bacterial infections continue to be a significant problem in children with sickle cell disease. C-reactive protein was significantly associated with bacterial infections, and could be included in clinical risk criteria for febrile children with sickle cell disease.

  8. Observations of Bacterial Behavior during Infection Using the ARGOS Method

    Science.gov (United States)

    Charest, A. J.; Algarni, S.; Iannacchione, G. S.

    2015-03-01

    This research employed the Area Recorded Generalized Optical Scattering (ARGOS) approach which allowed for the observation of bacterial changes in terms of individual particles and population dynamics in real time. This new approach allows for an aqueous environment to be manipulated while conducting time-specific measurements over an indefinite amount of time. This current study provides a more time-specific method in which the bacteria remained within the initial conditions and allows for more time precision than provided by analyzing concentrations of plaque-forming units (PFU). This study involved the bacteria (F-amp) during infection by bacteriophage (MS2). The relative total intensity allows for detailed measurements of the bacteria population over time. The bacteria characteristics were also evaluated such as the root mean square image difference (at specific wavevectors), fractal dimension and effective radius. The growth rate of the infected bacteria occurred at a rate higher than the uninfected bacteria similarly, the death rates were also higher for the infected bacteria than the uninfected bacteria. The present study indicates that bacteria may react to infection by increasing the rate of population growth.

  9. Prevalence and bacterial susceptibility of hospital acquired urinary tract infection

    Directory of Open Access Journals (Sweden)

    Dias Neto José Anastácio

    2003-01-01

    Full Text Available PURPOSE: Urinary tract infection is the most common nosocomially acquired infection. It is important to know the etiology and antibiotic susceptibility infectious agents to guide the initial empirical treatment. OBJECTIVE: To determine the prevalence of bacterial strains and their antibiotic susceptibility in nosocomially acquired urinary tract infection in a university hospital between January and June 2003. METHODS: We analyzed the data of 188 patients with positive urine culture (= 10(5 colony-forming units/mL following a period of 48 hours after admission. RESULTS: Half of patients were male. Mean age was 50.26 ± 22.7 (SD, range 3 months to 88 years. Gram-negative bacteria were the agent in approximately 80% of cases. The most common pathogens were E. coli (26%, Klebsiella sp. (15%, P. aeruginosa (15% and Enterococcus sp. (11%. The overall bacteria susceptibility showed that the pathogens were more sensible to imipenem (83%, second or third generation cephalosporin and aminoglycosides; and were highly resistant to ampicillin (27% and cefalothin (30%. It is important to note the low susceptibility to ciprofloxacin (42% and norfloxacin (43%. CONCLUSION: This study suggests that if one can not wait the results of urine culture, the best choices to begin empiric treatment are imipenem, second or third generation cephalosporin and aminoglycosides. Cefalothin and ampicillin are quite ineffective to treat these infections.

  10. "Bacterial infections in visceral leishmaniasis in Children’s Medical Center 1966-2000 "

    Directory of Open Access Journals (Sweden)

    "Tabatabaei P "

    2002-07-01

    Full Text Available Background: Bacterial infections are seen in patients with visceral leishmaniasis. This study was conducted to determine the incidence of such infections and the more common infections agents. Materials and Methods: During the 15-years period in a prospective study from 1986 to 2000, 123 patients with visceral leishmaniasis were studied in the Children Medical Center. Results: From all the cases, 41 (33 percent patients had Also bacterial infections. Respiratory tract, urinary system, Middle ear were the most common sites of infection. Conclusion: When bacterial Infection is suspected in these patients, empiric antibiotic therapy should be started immediately after appropriate diagnostic procedures are taken.

  11. Jamming bacterial communications: new strategies to combat bacterial infections and the development of biofilms

    DEFF Research Database (Denmark)

    Givskov, Michael Christian; Hentzer, Morten

    2006-01-01

    The growth and activity of microorganisms affect our lives in both positive and negative ways. We have, since early times, tried to combat unwanted microbes and utilize those expressing useful traits. Microorganisms can cause diseases and chronic infections in humans, animals, and plants. In medi......The growth and activity of microorganisms affect our lives in both positive and negative ways. We have, since early times, tried to combat unwanted microbes and utilize those expressing useful traits. Microorganisms can cause diseases and chronic infections in humans, animals, and plants...

  12. [Microbiological diagnosis of bacterial infection associated with delivery and postpartum].

    Science.gov (United States)

    Padilla-Ortega, Belén; Delgado-Palacio, Susana; García-Garrote, Fernando; Rodríguez-Gómez, Juan Miguel; Romero-Hernández, Beatriz

    2016-05-01

    The newborn may acquire infections during delivery due to maternal colonization of the birth canal, by microorganisms such as Streptococcus agalactiae that caused early neonatal infection, or acquisition through the placenta, amniotic fluid or birth products. After birth, the newborn that needs hospitalization can develop nosocomial infections during their care and exceptionally through lactation by infectious mastitis or incorrect handling of human milk, which does not require to stop breastfeeding in most cases. It is important and necessary to perform microbiological diagnosis for the correct treatment of perinatal infections, especially relevant in preterm infants with low or very low weight with high mortality rates. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  13. [Riddles in human tuberculous infection].

    Science.gov (United States)

    Tsuyuguchi, I

    2000-10-01

    Tuberculosis is indeed an infectious disease caused by Mycobacterium tuberculosis. However, only a small percentage of individuals infected develops overt disease, tuberculosis whereas the infected bacilli persist alive years long within the vast majority of persons infected but remained healthy. There are several riddles or enigmas in the natural history of M. tuberculosis infection in humans. Some of them are as follows: 1. What is the virulence of M. tuberculosis? 2. How does M. tuberculosis persist dormant within the host? 3. What determines the development of disease from remaining healthy after infection with M. tuberculosis? 4. What is the mechanism of "endogenous reactivation" of dormant M. tuberculosis within the host? 5. Can we expect more potent anti-TB vaccine than BCG in near future? Most of these issues cited above remain unsolved. What is urgently needed today to answer correctly to these questions is the production of appropriate animal model of tuberculosis infection which mimics human tuberculosis. Murine TB does not reflect human TB at all. What characterizes the mycobacterial organism is its armour-plated unique cell wall structure which is rich in lipid and carbohydrate. Cord factor or trehalose dimycolate (TDM), the main component of cell wall, has once been regarded as the virulence factor of mycobacteria. Cord factor is responsible for the pathogenesis of TB and cachexia or even death of the patients infected. However, cord factor in itself is not toxic but exerts its detrimental effect to the host through the excessive stimulation of the host's immune system to produce abundant varied cytokines including TNF-alpha. How to evade this embarrassing effect of mycobacterial cell wall component on the host immune system seems very important for the future development of better TB vaccine than the currently used BCG.

  14. Aspects of human chlamydial infections

    NARCIS (Netherlands)

    K.H. Tjiam

    1987-01-01

    textabstractThis thesis takes a closer look at three aspects of human chlamydial infections. With regard to diagnosis the influence of logistics on the sensitivity of the culture method is discussed, along with optimalization of the culture itself and an evaluation of new diagnostic methods.

  15. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis.

    Science.gov (United States)

    Telleria, Erich L; Sant'Anna, Maurício R Viana; Alkurbi, Mohammad O; Pitaluga, André N; Dillon, Rod J; Traub-Csekö, Yara M

    2013-01-11

    Phlebotomine insects harbor bacterial, viral and parasitic pathogens that can cause diseases of public health importance. Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the New World. Insects can mount a powerful innate immune response to pathogens. Defensin peptides take part in this response and are known to be active against Gram-positive and Gram-negative bacteria, and some parasites. We studied the expression of a defensin gene from Lutzomyia longipalpis to understand its role in sand fly immune response. We identified, sequenced and evaluated the expression of a L. longipalpis defensin gene by semi-quantitative RT-PCR. The gene sequence was compared to other vectors defensins and expression was determined along developmental stages and after exposure of adult female L. longipalpis to bacteria and Leishmania. Phylogenetic analysis showed that the L. longipalpis defensin is closely related to a defensin from the Old World sand fly Phlebotomus duboscqi. Expression was high in late L4 larvae and pupae in comparison to early larval stages and newly emerged flies. Defensin expression was modulated by oral infection with bacteria. The Gram-positive Micrococcus luteus induced early high defensin expression, whilst the Gram-negative entomopathogenic Serratia marcescens induced a later response. Bacterial injection also induced defensin expression in adult insects. Female sand flies infected orally with Leishmania mexicana showed no significant difference in defensin expression compared to blood fed insects apart from a lower defensin expression 5 days post Leishmania infection. When Leishmania was introduced into the hemolymph by injection there was no induction of defensin expression until 72 h later. Our results suggest that L. longipalpis modulates defensin expression upon bacterial and Leishmania infection, with patterns of expression that are distinct among bacterial species and routes of infection.

  16. Viral and atypical bacterial infections in the outpatient pediatric cystic fibrosis clinic

    DEFF Research Database (Denmark)

    Olesen, Hanne Vebert; Nielsen, Lars P; Schiotz, Peter Oluf

    2006-01-01

    BACKGROUND: Respiratory viral and atypical bacterial infections are associated with pulmonary exacerbations and hospitalisations in cystic fibrosis patients. We wanted to study the impact of such infections on children attending the outpatient clinic. METHODS: Seventy-five children were followed...

  17. Differences of serum procalcitonin levels between bacterial infection and flare in systemic lupus erythematosus patients

    Science.gov (United States)

    Patrick, J.; Marpaung, B.; Ginting, Y.

    2018-03-01

    Differentiate bacterial infections from flare in SLE patients is difficult to do because clinical symptoms of infection is similar to flare. SLE patients with infection require antibiotic therapy with decreased doses of immunosuppressant while in flare diseases require increased immunosuppressant. Procalcitonin (PCT), a biological marker, increased in serum patients with bacterial infections and expected to be a solution of problem. The aim of this study was to examine the function of PCT serum as marker to differentiate bacterial infection and flare in SLE patients. This cross-sectional study was conducted in Adam Malik Hospital from January-July 2017. We examined 80 patients SLE flare (MEX-SLEDAI>5), screen PCT and culture according to focal infection. Data were statistically analyzed. 80 SLE patients divided into 2 groups: bacterial infection group (31 patients) and non-infection/flare group (49 patients). Median PCT levels of bacterial infection group was 1.66 (0.04-8.45)ng/ml while flare group was 0.12 (0.02-0.81)ng/ml. There was significant difference of serum Procalcitonin level between bacterial infection and flare group in SLE patients (p=0.001). Procalcitonin serum levels can be used as a biomarker to differentiate bacterial infections and flare in SLE patients.

  18. Foreign Body Infection Models to Study Host-Pathogen Response and Antimicrobial Tolerance of Bacterial Biofilm

    Directory of Open Access Journals (Sweden)

    Justyna Nowakowska

    2014-08-01

    Full Text Available The number of implanted medical devices is steadily increasing and has become an effective intervention improving life quality, but still carries the risk of infection. These infections are mainly caused by biofilm-forming staphylococci that are difficult to treat due to the decreased susceptibility to both antibiotics and host defense mechanisms. To understand the particular pathogenesis and treatment tolerance of implant-associated infection (IAI animal models that closely resemble human disease are needed. Applications of the tissue cage and catheter abscess foreign body infection models in the mouse will be discussed herein. Both models allow the investigation of biofilm and virulence of various bacterial species and a comprehensive insight into the host response at the same time. They have also been proven to serve as very suitable tools to study the anti-adhesive and anti-infective efficacy of different biomaterial coatings. The tissue cage model can additionally be used to determine pharmacokinetics, efficacy and cytotoxicity of antimicrobial compounds as the tissue cage fluid can be aspirated repeatedly without the need to sacrifice the animal. Moreover, with the advance in innovative imaging systems in rodents, these models may offer new diagnostic measures of infection. In summary, animal foreign body infection models are important tools in the development of new antimicrobials against IAI and can help to elucidate the complex interactions between bacteria, the host immune system, and prosthetic materials.

  19. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    Science.gov (United States)

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M.; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host–pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host–pathogen interactions. PMID:25699030

  20. THE ROLE OF PROCALCITONIN IN BACTERIAL INFECTION RECOGNITION

    Directory of Open Access Journals (Sweden)

    Lucija Gabršek

    2001-12-01

    Full Text Available Background. Early recognition of bacterial infection and antibiotic treatment are very important in critically ill patients. Procalcitonin (PCT is a marker of bacterial infections accompanied by systemic inflammatory response. Higher values were also noticed with parasitical and fungal infections, but PCT is normal in viral and systemic diseases. The aim of this study was to assess whether PCT is better marker for bacterial infections than C-reactive protein (CRP and if they have a prognostic value.Methods. 34 patients were included into our retrospective study. All of them had clinical or laboratory signs of infection at the first PCT determination. We measured PCT, CRP, erythrocyte sedimentation rate (SR and leukocyte count. On the base of microbiological results we divided patients into three groups. Group A had patients with sterile cultures, group B included the ones with negative blood cultures, but from other cultures causative agents were identified. The patients in group C had positive blood cultures. Retrospectively we studied PCT and CRP values among groups and among survivors and non survivors.Results. An average median value of PCT in group A was 8.9 ± 13.3 ng/ml, in group B 5.3 ± 9.3 ng/ml and in group C 21.0 ± 25.0 ng/ml. In group B, the average median value of PCT was significantly higher than in group C (p = 0.019, but that was not the case in group A (p = 0.23. The average median values of CRP were 129.9 ± 67.4 mg/l in group A, 104.3 ± 60.1 mg/l in group B and 117.4 ± 46.1 mg/l in group C. Between groups, differences of CRP values were not statistically significant. The average initial value of PCT in group of non survivors (8.9 ± 49 was not significantly higher then in group of survivors (3.14 ± 55.4 (p = 0.48. The average final value was significantly higher (p = 0.0013 in group of non survivors (13.1 ± 23.9 ng/l than in group of survivors (0.55 ± 7.3 ng/ml. In both groups the average initial values of CRP did not

  1. Clinical indicators for bacterial co-infection in Ghanaian children with P. falciparum infection.

    Directory of Open Access Journals (Sweden)

    Maja Verena Nielsen

    Full Text Available Differentiation of infectious causes in severely ill children is essential but challenging in sub- Saharan Africa. The aim of the study was to determine clinical indicators that are able to identify bacterial co-infections in P. falciparum infected children in rural Ghana. In total, 1,915 severely ill children below the age of 15 years were recruited at Agogo Presbyterian Hospital in Ghana between May 2007 and February 2011. In 771 (40% of the children malaria parasites were detected. This group was analyzed for indicators of bacterial co-infections using bivariate and multivariate regression analyses with 24 socio-economic variables, 16 terms describing medical history and anthropometrical information and 68 variables describing clinical symptoms. The variables were tested for sensitivity, specificity, positive predictive value and negative predictive value. In 46 (6.0% of the children with malaria infection, bacterial co-infection was detected. The most frequent pathogens were non-typhoid salmonellae (45.7%, followed by Streptococcus spp. (13.0%. Coughing, dehydration, splenomegaly, severe anemia and leukocytosis were positively associated with bacteremia. Domestic hygiene and exclusive breastfeeding is negatively associated with bacteremia. In cases of high parasitemia (>10,000/μl, a significant association with bacteremia was found for splenomegaly (OR 8.8; CI 1.6-48.9, dehydration (OR 18.2; CI 2.0-166.0 and coughing (OR 9.0; CI 0.7-118.6. In children with low parasitemia, associations with bacteremia were found for vomiting (OR 4.7; CI 1.4-15.8, severe anemia (OR 3.3; CI 1.0-11.1 and leukocytosis (OR 6.8 CI 1.9-24.2. Clinical signs of impaired microcirculation were negatively associated with bacteremia. Ceftriaxone achieved best coverage of isolated pathogens. The results demonstrate the limitation of clinical symptoms to determine bacterial co-infections in P. falciparum infected children. Best clinical indicators are dependent on the

  2. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations

    Energy Technology Data Exchange (ETDEWEB)

    Welling, M.M.; Pauwels, E.K.J. [Dept. of Radiology, Leiden University Medical Center (LUMC) (Netherlands); Paulusma-Annema, A.; Nibbering, P.H. [Dept. of Infectious Diseases, Leiden University Medical Center (Netherlands); Balter, H.S. [Centro Investigaciones Nucleares, Univ. of the Republic Uruguay, Montevideo (Uruguay)

    2000-03-01

    The aim of this study was to select technetium-99m labelled peptides that can discriminate between bacterial infections and sterile inflammations. For this purpose, we first assessed the binding of various {sup 99m}Tc-labelled natural or synthetic peptides, which are based on the sequence of the human antimicrobial peptide ubiquicidin (UBI) or human lactoferrin (hLF), to bacteria and to leucocytes in vitro. In order to select peptides that preferentially bind to bacteria over host cells, radiolabelled peptides were injected into mice intraperitoneally infected with Klebsiella pneumoniae (K. pneumoniae) and the amount of radioactivity associated with the bacteria and with the leucocytes was quantitated. The next phase focussed on discrimination between bacterial infections and sterile inflammatory processes using {sup 99m}Tc-labelled peptides in mice intramuscularly infected with various bacteria (e.g. multi-drug-resistant Staphylococcus aureus) and in animals that had been injected with lipopolysaccharides (LPS) of bacterial origin to create a sterile inflammatory process. Also, we studied the distribution of {sup 99m}Tc-labelled UBI 29-41 and UBI 18-35 in rabbits having an experimental thigh muscle infection with K. pneumoniae and in rabbits injected with LPS. Based on the results of our in vitro and in vivo binding assays, two peptides, i.e. UBI 29-41 and UBI 18-35, were selected as possible candidates for infection imaging. The radiolabelled peptides can detect infections with both gram-positive and gram-negative bacteria in mice as early as 5-30 min after injection, with a target-to-non-target (T/NT) ratio between 2 and 3; maximum T/NT ratios were seen within 1 h after injection. In rabbits, high T/NT ratios (>5) for {sup 99m}Tc-labelled UBI 29-41 were observed from 1 h after injection. No accumulation of the selected {sup 99m}Tc-labelled UBI-derived peptides was observed in thighs of mice and rabbits previously injected with LPS. Scintigraphic investigation

  3. Molecularly specific detection of bacterial lipoteichoic acid for diagnosis of prosthetic joint infection of the bone.

    Science.gov (United States)

    Pickett, Julie E; Thompson, John M; Sadowska, Agnieszka; Tkaczyk, Christine; Sellman, Bret R; Minola, Andrea; Corti, Davide; Lanzavecchia, Antonio; Miller, Lloyd S; Thorek, Daniel Lj

    2018-01-01

    Discriminating sterile inflammation from infection, especially in cases of aseptic loosening versus an actual prosthetic joint infection, is challenging and has significant treatment implications. Our goal was to evaluate a novel human monoclonal antibody (mAb) probe directed against the Gram-positive bacterial surface molecule lipoteichoic acid (LTA). Specificity and affinity were assessed in vitro. We then radiolabeled the anti-LTA mAb and evaluated its effectiveness as a diagnostic imaging tool for detecting infection via immunoPET imaging in an in vivo mouse model of prosthetic joint infection (PJI). In vitro and ex vivo binding of the anti-LTA mAb to pathogenic bacteria was measured with Octet, ELISA, and flow cytometry. The in vivo PJI mouse model was assessed using traditional imaging modalities, including positron emission tomography (PET) with [ 18 F]FDG and [ 18 F]NaF as well as X-ray computed tomography (CT), before being evaluated with the zirconium-89-labeled antibody specific for LTA ([ 89 Zr]SAC55). The anti-LTA mAb exhibited specific binding in vitro to LTA-expressing bacteria. Results from imaging showed that our model could reliably simulate infection at the surgical site by bioluminescent imaging, conventional PET tracer imaging, and bone morphological changes by CT. One day following injection of both the radiolabeled anti-LTA and isotype control antibodies, the anti-LTA antibody demonstrated significantly greater ( P  infected prosthesis sites over either the same antibody at sterile prosthesis sites or of control non-specific antibody at infected prosthesis sites. Taken together, the radiolabeled anti-LTA mAb, [ 89 Zr]SAC55, may serve as a valuable diagnostic molecular imaging probe to help distinguish between sterile inflammation and infection in the setting of PJI. Future studies are needed to determine whether these findings will translate to human PJI.

  4. C-reactive protein velocity to distinguish febrile bacterial infections from non-bacterial febrile illnesses in the emergency department

    OpenAIRE

    Paran, Yael; Yablecovitch, Doron; Choshen, Guy; Zeitlin, Ina; Rogowski, Ori; Ben-Ami, Ronen; Katzir, Michal; Saranga, Hila; Rosenzweig, Tovit; Justo, Dan; Orbach, Yaffa; Halpern, Pinhas; Berliner, Shlomo

    2009-01-01

    Introduction C-reactive protein (CRP) is a real-time and low-cost biomarker to distinguish febrile bacterial infections from non-bacterial febrile illnesses. We hypothesised that measuring the velocity of the biomarker instead of its absolute serum concentration could enhance its ability to differentiate between these two conditions. Methods We prospectively recruited adult patients (age ? 18 years) who presented to the emergency department with fever. We recorded their data regarding the ons...

  5. Circulating Chemokine Levels in Febrile Infants With Serious Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Hsiu-Lin Chen

    2009-12-01

    Full Text Available Early diagnosis of serious bacterial infections (SBI in febrile young infants based on clinical symptoms and signs is difficult. This study aimed to evaluate the diagnostic values of circulating chemokines and C-reactive protein (CRP levels in febrile young infants < 3 months of age with suspected SBI. We enrolled 43 febrile young infants < 3 months of age with clinically suspected SBI who were admitted to the neonatal intensive care unit or complete nursing unit of the pediatric department of Kaohsiung Medical University Hospital between December 2006 and July 2007. Blood was drawn from the patients at admission, and complete blood counts, plasma levels of CRP, granulocyte colony-stimulating factor (G-CSF, and chemokines, including interleukin-8 (IL-8, macrophage inflammatory protein-1α, macrophage inflammatory protein-1β, monokine induced by interferon-γ, and monocyte chemotactic protein-1 were measured. Patients’ symptoms and signs, length of hospital stay, main diagnosis, and results of routine blood tests and microbiological culture results were recorded. Twenty-six infants (60.5% were diagnosed with SBI, while 17 (39.5% had no evidence of SBI based on the results of bacterial cultures. CRP, IL-8 and G-CSF levels were significantly higher in the infants with SBI than in those without SBI. Plasma levels of other chemokines were not significantly different between the groups. The area under the receiver-operating characteristic (ROC curve for differentiating between the presence and absence of SBI was 0.79 for CRP level. Diagnostic accuracy was further improved by combining CRP and IL-8, when the area under the ROC curve increased to 0.91. CRP levels were superior to IL-8 and G-CSF levels for predicting SBI in febrile infants at initial survey. IL-8 levels could be used as an additional diagnostic tool in the initial evaluation of febrile young infants, allowing clinicians to treat these patients more appropriately.

  6. An overview of the role of bacterial infection in male infertility

    Directory of Open Access Journals (Sweden)

    Hamed Fanaei

    2013-03-01

    Full Text Available An important cause of male infertility is the bacterial infections of the genitourinary tract. These infections affect sperm cell function and whole spermatogenesis and also cause deterioration in spermatogenesis, obstruction of the seminal tract, and impairment of spermatozoa function. The most important bacteria associated with genitourinary tract infections include chlamydia trachomatis, Neisseria gonorrhoeae, and genital mycoplasma species. Inappropriate or delayed therapy of the bacterial infections of the genitourinary tract will lead to reduced fertility and, subsequently in severe cases, infertility. In other words, a good understanding of the interaction between bacterial infections and the reproductive system plays an important role in the treatment of infertile men. In this review article, we will discuss clinical and laboratory findings related to the bacterial infection of the genitourinary tract and its effects on male infertility.

  7. Lipocalin 2 Imparts Selective Pressure on Bacterial Growth in the Bladder and Is Elevated in Women with Urinary Tract Infection

    Science.gov (United States)

    Steigedal, Magnus; Marstad, Anne; Haug, Markus; Damås, Jan K.; Strong, Roland K.; Roberts, Pacita L.; Himpsl, Stephanie D.; Stapleton, Ann; Hooton, Thomas M.; Mobley, Harry L. T.; Hawn, Thomas R.

    2014-01-01

    Competition for iron is a critical component of successful bacterial infections, but the underlying in vivo mechanisms are poorly understood. We have previously demonstrated that lipocalin 2 (LCN2) is an innate immunity protein that binds to bacterial siderophores and starves them for iron, thus representing a novel host defense mechanism to infection. In the present study we show that LCN2 is secreted by the urinary tract mucosa and protects against urinary tract infection (UTI). We found that LCN2 was expressed in the bladder, ureters, and kidneys of mice subject to UTI. LCN2 was protective with higher bacterial numbers retrieved from bladders of Lcn2-deficient mice than from wild-type mice infected with the LCN2-sensitive Escherichia coli strain H9049. Uropathogenic E. coli mutants in siderophore receptors for salmochelin, aerobactin, or yersiniabactin displayed reduced fitness in wild-type mice, but not in mice deficient of LCN2, demonstrating that LCN2 imparts a selective pressure on bacterial growth in the bladder. In a human cohort of women with recurrent E. coli UTIs, urine LCN2 levels were associated with UTI episodes and with levels of bacteriuria. The number of siderophore systems was associated with increasing bacteriuria during cystitis. Our data demonstrate that LCN2 is secreted by the urinary tract mucosa in response to uropathogenic E. coli challenge and acts in innate immune defenses as a colonization barrier that pathogens must overcome to establish infection. PMID:25398327

  8. Imaging of bacterial infections of the sacroiliac joint

    International Nuclear Information System (INIS)

    Groves, C.; Cassar-Pullicino, V.

    2004-01-01

    Infection of the sacroiliac joint can be pyogenic or granulomatous and is usually unilateral. There are a number of predisposing conditions including drug abuse and intra articular steroid injection, but in 44% of cases, no definite predisposing factors can be identified. Considerable delay between presentation and diagnosis is recognized. The clinical picture may be non-specific and variable, and clinical suspicion may be low due to the relatively low incidence of the condition. This is compounded by difficulties in clinical examination of the SIJs. The diagnosis is based on a history suggestive of infection, clinical or radiographic localization to the SIJs, and a positive blood culture or joint aspirate. The pathology of pyogenic sacroiliitis is reviewed with respect to the anatomy of the SIJ, and the differential diagnoses considered. The imaging findings, and relative merits of all the modalities are discussed with particular consideration given to changes over the course of the disease. Imaging strategies are evaluated and proposed. As the commonest presenting symptom is low back pain, consideration should be given to the addition of a STIR sequence covering the SIJs on all routine lumbar spine MR examinations. MR imaging is the most sensitive and specific imaging modality, while CT-guided arthrocentesis improves diagnostic confidence. Tc 99 MDP blood pool imaging mirrors the clinical features of resolution, and scintigraphy may be the best method to monitor response to treatment. Targeted antibiotic therapy usually leads to a full recovery. A high incidence of clinical suspicion, with MR imaging at an early stage are the essential prerequisites to an accurate diagnosis of bacterial sacroiliitis. (orig.) [de

  9. [Human papillomavirus infection and adolescence].

    Science.gov (United States)

    Sam Soto, Selene; de la Peña y Carranza, Alejandro Ortiz; Plascencia, Josefina Lira

    2011-04-01

    Infection with human papillomavirus has increased dramatically in recent years. The highest prevalence rates are among adolescents and young women, reflecting changes in sexual behavior associated with biological factors in adolescent development. Adolescents who begin sexual activity early are at greater risk of precursor lesions and cervical cancer. There are adolescents with special circumstances, where no early decision should be delayed cervical cytology and in whom it is important to initiate consultations and periodic reviews with a preventive approach. Cervical cancer can be avoided when the diagnosis and treatment of precursor lesions is early. Despite efforts at sex education based on "safe sex" with the correct use of condoms has not been able to reduce the incidence of infections with human papillomavirus in adolescents. While better than nothing, condom use is not 100% reliable. Studies show that consistent and correct use provides protection against the human papillomavirus only 70%. In Mexico, reported an overall ratio of actual use of condoms from 24.6%. It is clear that the physician who provides care for adolescents plays a fundamental role in sex education. The key to future prevention of cervical cancer and its precursor lesions could be the vaccination.

  10. Candida Infections and Human Defensins.

    Science.gov (United States)

    Polesello, Vania; Segat, Ludovica; Crovella, Sergio; Zupin, Luisa

    2017-01-01

    Candida species infections are an important worldwide health issue since they do not only affect immunocompromised patients but also healthy individuals. The host developed different mechanisms of protection against Candida infections; specifically the immune system and the innate immune response are the first line of defence. Defensis are a group of antimicrobial peptides, components of the innate immunity, produced at mucosal level and known to be active against bacteria, virus but also fungi. The aim of the current work was to review all previous studies in literature that analysed defensins in the context of Candida spp. infections, in order to investigate and clarify the exact mechanisms of defensins anti-fungal action. Several studies were identified from 1985 to 2017 (9 works form years 1985 to 1999, 44 works ranging from 2000 to 2009 and 35 from 2010 to 2017) searched in two electronic databases (PubMed and Google Scholar). The main key words used for the research were "Candida", "Defensins"," Innate immune system","fungi". The findings of the reviewed studies highlight the pivotal role of defensins antimicrobial peptides in the immune response against Candida infections, since they are able to discriminate host cell from fungi: defensins are able to recognize the pathogens cell wall (different in composition from the human ones), and to disrupt it through membrane permeabilization. However, further research is needed to explain completely defensins' mechanisms of action to fight C. albicans (and other Candida spp.) infections, being the information fragmentary and only in part elucidated. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. DMPD: The role of Toll-like receptors and Nod proteins in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15476921 The role of Toll-like receptors and Nod proteins in bacterial infection. P...of Toll-like receptors and Nod proteins in bacterial infection. PubmedID 15476921 Title The role of Toll-like receptors and Nod prote...ins in bacterial infection. Authors Philpott DJ, Girardi

  12. Bacterial Biofilms and Catheters: A Key to Understanding Bacterial Strategies in Catheter-Associated Urinary Tract Infection

    Directory of Open Access Journals (Sweden)

    J Curtis Nickel

    1992-01-01

    Full Text Available Despite major technological improvements in catheter drainage systems, the indwelling Foley catheter remains the most common cause of nosocomial infection in medical practice. By approaching this common complicated urinary tract infection from the perspective of the biofilm strategy bacteria appear to use to overcome obstacles to produce bacteriuria, one appreciates a new understanding of these infections. An adherent biofilm of bacteria in their secretory products ascends the luminal and external surface of the catheter and drainage system from a contaminated drainage spigot or urethral meatus into the bladder. If the intraluminal route of bacterial ascent is delayed by strict sterile closed drainage or addition of internal modifications to the system, the extraluminal or urethral route assumes greater importance in the development of bacteriuria, but takes significantly longer. Bacterial growth within these thick coherent biofilms confers a large measure of relative resistance to antibiotics even though the individual bacterium remains sensitive, thus accounting for the failure of antibiotic therapy. With disruption of the protective mucous layer of the bladder by mechanical irritation, the bacteria colonizing the catheter can adhere to the bladder’s mucosal surface and cause infection. An appreciation of the role of bacterial biofilms in these infections should suggest future directions for research that may ultimately reduce the risk of catheter-associated infection.

  13. Viral vs. bacterial pulmonary infections in chidren. Is roentgenographic differentiation possible

    International Nuclear Information System (INIS)

    Swischuk, L.E.; Hayden, C.K. Jr.

    1986-01-01

    This study was conducted to determine whether one could identify viral and bacterial pulmonary infections with confidence. It has been our impression for some time that one could differentiate viral from bacterial pulmonary infections on the basis of roentgenographic findings alone and test this hypothesis, we conducted this study where the roentgenographic findings first were categorized as being due to viral or bacterial infection and then compared with clinical results. The overall accuracy was just over 90% and our method of analysis is presented. (orig.)

  14. Predictors of serious bacterial infections in pediatric burn patients with fever.

    Science.gov (United States)

    Vyles, David; Sinha, Madhumita; Rosenberg, David I; Foster, Kevin N; Tran, Melissa; Drachman, David

    2014-01-01

    To determine predictors of serious bacterial infections in pediatric burn patients with fever (core temp ≥38.5°C), the authors conducted a retrospective review of medical records of pediatric (0-18 years) patients admitted to the Arizona Burn Center between 2008 and 2011 with greater than 5% TBSA and inpatient hospitalization for ≥72 hours. The study group comprised patients with a febrile episode during their inpatient stay. Serious bacterial infection (the primary outcome variable) was defined as: bacteremia, urinary tract infection, meningitis (blood, urine, or cerebrospinal fluid culture positive for a pathogen respectively), pneumonia, line, and wound infection. A generalized estimating equation analysis was done to predict the presence or absence of serious bacterial infection. Of 1082 pediatric burn patients hospitalized during the study period, 353 met the study eligibility criteria. A total of 108 patients (30.6%) had at least one fever episode (fever group). No difference in demographic characteristics was noted between the fever and no-fever groups; significant differences were observed for: third-degree TBSA, second-degree TBSA, total operating room visits, length of stay, Injury Severity Score, and death. A total of 47.2% of the patients had one or more episodes of fever with serious bacterial infection. In a generalized estimating equation predictive model, presence of a central line, second-, and third-degree TBSA were predictive of serious bacterial infection in burn patients with fever. In this study, individual clinical variables such as tachypnea and tachycardia were not predictive of serious bacterial infections, but the presence of a central line, and larger TBSA were significant predictors of serious bacterial infections. Younger age (P =.08) and ventilator support (P =.057) also approached significance as predictors of serious bacterial infections.

  15. Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology.

    Science.gov (United States)

    Reyes, Leticia; Herrera, David; Kozarov, Emil; Roldán, Silvia; Progulske-Fox, Ann

    2013-04-01

    The objective of this review was to perform a systematic evaluation of the literature reporting current scientific evidence for periodontal bacteria as contributors to atherosclerosis. Literature from epidemiological, clinical and experimental studies concerning periodontal bacteria and atherosclerosis were reviewed. Gathered data were categorized into seven "proofs" of evidence that periodontal bacteria: 1) disseminate from the oral cavity and reach systemic vascular tissues; 2) can be found in the affected tissues; 3) live within the affected site; 4) invade affected cell types in vitro; 5) induce atherosclerosis in animal models of disease; 6) non-invasive mutants of periodontal bacteria cause significantly reduced pathology in vitro and in vivo; and 7) periodontal isolates from human atheromas can cause disease in animal models of infection. Substantial evidence for proofs 1 to 6 was found. However, proof 7 has not yet been fulfilled. Despite the lack of evidence that periodontal bacteria obtained from human atheromas can cause atherosclerosis in animal models of infection, attainment of proofs 1 to 6 provides support that periodontal pathogens can contribute to atherosclerosis. © 2013 European Federation of Periodontology and American Academy of Periodontology.

  16. Initial insights into bacterial succession during human decomposition.

    Science.gov (United States)

    Hyde, Embriette R; Haarmann, Daniel P; Petrosino, Joseph F; Lynne, Aaron M; Bucheli, Sibyl R

    2015-05-01

    Decomposition is a dynamic ecological process dependent upon many factors such as environment, climate, and bacterial, insect, and vertebrate activity in addition to intrinsic properties inherent to individual cadavers. Although largely attributed to microbial metabolism, very little is known about the bacterial basis of human decomposition. To assess the change in bacterial community structure through time, bacterial samples were collected from several sites across two cadavers placed outdoors to decompose and analyzed through 454 pyrosequencing and analysis of variable regions 3-5 of the bacterial 16S ribosomal RNA (16S rRNA) gene. Each cadaver was characterized by a change in bacterial community structure for all sites sampled as time, and decomposition, progressed. Bacteria community structure is variable at placement and before purge for all body sites. At bloat and purge and until tissues began to dehydrate or were removed, bacteria associated with flies, such as Ignatzschineria and Wohlfahrtimonas, were common. After dehydration and skeletonization, bacteria associated with soil, such as Acinetobacter, were common at most body sites sampled. However, more cadavers sampled through multiple seasons are necessary to assess major trends in bacterial succession.

  17. Procalcitonin and C-reactive protein as markers of bacterial infection in patients with solid tumours

    DEFF Research Database (Denmark)

    Diness, Laura V; Maraldo, Maja V; Mortensen, Christiane E

    2014-01-01

    INTRODUCTION: The diagnosis of bacterial infections in patients with solid tumours can be difficult as both the tumour and its treatment can cause symptoms and signs similar to those of infections. Many patients with solid tumours therefore receive antibiotic treatment without having a bacterial......, but with no signs of infection. RESULTS: Of the 41 admitted patients, 25 were classified as having an infection (either microbiologically or radioo-gically verified). Among the 25 cases with infection, PCT was within the normal range in 11 cases and only elevated in 14. As nearly half of the patients with infection...... had PCT within the normal range, PCT is not suited to exclude an infection. CRP was elevated in 20 patients out of the 25. CONCLUSION: PCT within the normal range cannot exclude an infection and does not appear to be superior to CRP to exclude an infection in patients with solid tumours. FUNDING...

  18. Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms

    Directory of Open Access Journals (Sweden)

    Zhijun Song

    2013-06-01

    Full Text Available Prosthesis-related infection is a serious complication for patients after orthopedic joint replacement, which is currently difficult to treat with antibiotic therapy. Consequently, in most cases, removal of the infected prosthesis is the only solution to cure the infection. It is, therefore, important to understand the comprehensive interaction between the microbiological situation and the host immune responses that lead to prosthesis infections. Evidence indicates that prosthesis infections are actually biofilm-correlated infections that are highly resistant to antibiotic treatment and the host immune responses. The authors reviewed the related literature in the context of their clinical experience, and discussed the possible etiology and mechanism leading to the infections, especially problems related to bacterial biofilm, and prophylaxis and treatment of infection, including both microbiological and surgical measures. Recent progress in research into bacterial biofilm and possible future treatment options of prosthesis-related infections are discussed.

  19. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection.

    Science.gov (United States)

    Uppu, Divakara S S M; Samaddar, Sandip; Ghosh, Chandradhish; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta

    2016-01-01

    Bacterial biofilms represent the root-cause of chronic or persistent infections in humans. Gram-negative bacterial infections due to nosocomial and opportunistic pathogens such as Acinetobacter baumannii are more difficult to treat because of their inherent and rapidly acquiring resistance to antibiotics. Due to biofilm formation, A. baumannii has been noted for its apparent ability to survive on artificial surfaces for an extended period of time, therefore allowing it to persist in the hospital environment. Here we report, maleic anhydride based novel cationic polymers appended with amide side chains that disrupt surface established multi-drug resistant A. baumannii biofilms. More importantly, these polymers significantly (p polymers also show potent antibacterial efficacy against methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterococci (VRE) and multi-drug resistant clinical isolates of A. baumannii with minimal toxicity to mammalian cells. We observe that optimal hydrophobicity dependent on the side chain chemical structure of these polymers dictate the selective toxicity to bacteria. Polymers interact with the bacterial cell membranes by causing membrane depolarization, permeabilization and energy depletion. Bacteria develop rapid resistance to erythromycin and colistin whereas no detectable development of resistance occurs against these polymers even after several passages. These results suggest the potential use of these polymeric biomaterials in disinfecting biomedical device surfaces after the infection has become established and also for the topical treatment of chronic bacterial infections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Human immunodeficiency virus (HIV) infection in tuberculosis ...

    African Journals Online (AJOL)

    Human immunodeficiency virus (HIV) infection in tuberculosis patients in Addis ... METHODS: A cross-sectional survey whereby blood sample was collected ... of co-infection appeared to have increased compared to previous studies, 6.6%, ...

  1. Association of RNA Biosignatures With Bacterial Infections in Febrile Infants Aged 60 Days or Younger

    Science.gov (United States)

    Mahajan, Prashant; Kuppermann, Nathan; Mejias, Asuncion; Suarez, Nicolas; Chaussabel, Damien; Casper, T. Charles; Smith, Bennett; Alpern, Elizabeth R.; Anders, Jennifer; Atabaki, Shireen M.; Bennett, Jonathan E.; Blumberg, Stephen; Bonsu, Bema; Borgialli, Dominic; Brayer, Anne; Browne, Lorin; Cohen, Daniel M.; Crain, Ellen F.; Cruz, Andrea T.; Dayan, Peter S.; Gattu, Rajender; Greenberg, Richard; Hoyle, John D.; Jaffe, David M.; Levine, Deborah A.; Lillis, Kathleen; Linakis, James G.; Muenzer, Jared; Nigrovic, Lise E.; Powell, Elizabeth C.; Rogers, Alexander J.; Roosevelt, Genie; Ruddy, Richard M.; Saunders, Mary; Tunik, Michael G.; Tzimenatos, Leah; Vitale, Melissa; Dean, J. Michael; Ramilo, Octavio

    2016-01-01

    IMPORTANCE Young febrile infants are at substantial risk of serious bacterial infections; however, the current culture-based diagnosis has limitations. Analysis of host expression patterns (“RNA biosignatures”) in response to infections may provide an alternative diagnostic approach. OBJECTIVE To assess whether RNA biosignatures can distinguish febrile infants aged 60 days or younger with and without serious bacterial infections. DESIGN, SETTING, AND PARTICIPANTS Prospective observational study involving a convenience sample of febrile infants 60 days or younger evaluated for fever (temperature >38° C) in 22 emergency departments from December 2008 to December 2010 who underwent laboratory evaluations including blood cultures. A random sample of infants with and without bacterial infections was selected for RNA biosignature analysis. Afebrile healthy infants served as controls. Blood samples were collected for cultures and RNA biosignatures. Bioinformatics tools were applied to define RNA biosignatures to classify febrile infants by infection type. EXPOSURE RNA biosignatures compared with cultures for discriminating febrile infants with and without bacterial infections and infants with bacteremia from those without bacterial infections. MAIN OUTCOMES AND MEASURES Bacterial infection confirmed by culture. Performance of RNA biosignatures was compared with routine laboratory screening tests and Yale Observation Scale (YOS) scores. RESULTS Of 1883 febrile infants (median age, 37 days; 55.7%boys), RNA biosignatures were measured in 279 randomly selected infants (89 with bacterial infections—including 32 with bacteremia and 15 with urinary tract infections—and 190 without bacterial infections), and 19 afebrile healthy infants. Sixty-six classifier genes were identified that distinguished infants with and without bacterial infections in the test set with 87%(95%CI, 73%-95%) sensitivity and 89% (95%CI, 81%-93%) specificity. Ten classifier genes distinguished

  2. Association between prenatal exposure to bacterial infection and risk of schizophrenia

    DEFF Research Database (Denmark)

    Sørensen, Holger J; Mortensen, Erik Lykke; Reinisch, June M

    2009-01-01

    . Post hoc analyses showed that upper respiratory tract and gonococcal infections were associated with elevated risk of the disease. An association between risk of schizophrenia and prenatal exposure to bacterial infections might be mediated through transplacental passage of maternally produced cytokines......Recent research suggests that prenatal exposure to nonviral infection may be associated with increased risk of schizophrenia, and we hypothesized an association between maternal bacterial infection during pregnancy and elevated offspring risk of schizophrenia. Data on maternal infections from......-34 and 45-47 years, respectively. The effect of prenatal exposure to bacterial infections was adjusted for prenatal exposure to analgesics and parental social status. In a risk set of 7941 individuals, 85 cases (1.1%) of ICD-8 schizophrenia were identified by the age of 32-34 years and 153 cases (1...

  3. Bacterial infection of the lower respiratory tract in 34 horses.

    Science.gov (United States)

    Racklyeft, D J; Love, D N

    2000-08-01

    To investigate associations between the bacteriology and aspects of history, clinical presentation, outcome and pathology of lower respiratory tract disease of 34 horses. Detailed aerobic and anaerobic bacteriological investigations were performed on clinical specimens from horses with pneumonia, lung abscessation and necrotic pneumonia with or without pleurisy in an attempt to identify those bacteria that might contribute to the initiation and progression of infection. Bacteria were cultured from 33 of the 34 horses. In ten cases, only aerobic/facultatively anaerobic isolates were cultured while aerobic/facultatively anaerobic bacteria and obligately anaerobic bacteria were isolated in the other 23 cases. Moderate to large numbers of anaerobic bacteria were isolated only when the estimated duration of illness was at least five days. Bacteria were not cultured from 12 of the pleural fluid samples but were always cultured from pulmonary samples (either transtracheal aspirates from live horses or pulmonary lesions at necropsy). Streptococcus equi subsp zooepidemicus was isolated in the three cases where only one bacterial species was cultured. In the other 30 cases, multiple species were isolated. These included most often and in greatest numbers, Streptococcus equi subsp zooepidemicus, Pasteurellaceae, Escherichia coli, anaerobic cocci, Eubacterium fossor, Bacteroides tectum, Prevotella heparinolytica, Fusobacterium spp, and pigmented members of the genera Prevotella and Porphyromonas. Aerobic/facultatively anaerobic organisms were isolated from 97% of horses, while obligately anaerobic organisms were cultured from 68% of horses. There was no association between the isolation of any specific bacterium and the outcome of disease. However, obligately anaerobic bacteria (such as anaerobic cocci, Bacteroides tectum, P heparinolytica and Fusobacterium spp) and the facultatively anaerobic species Escherichia coli, were recovered more commonly from horses that died or were

  4. Tracking bacterial infection into macrophages by a novel red-emission pH sensor

    OpenAIRE

    Jin, Yuguang; Tian, Yanqing; Zhang, Weiwen; Jang, Sei-Hum; Jen, Alex K.-Y.; Meldrum, Deirdre R.

    2010-01-01

    The relationship between bacteria and host phagocytic cells is a key to the induction of immunity. To visualize and monitor bacterial infection, we developed a novel bacterial membrane permeable pH sensor for noninvasive monitoring of bacterial entry into murine macrophages. The pH sensor was constructed using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) as an electron-withdrawing group and aniline as an electron donating group. A piperazine moiety was u...

  5. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen.

    Directory of Open Access Journals (Sweden)

    Ashkan Javid

    Full Text Available Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.

  6. Bacterial Infection of Fly Ovaries Reduces Egg Production and Induces Local Hemocyte Activation

    Science.gov (United States)

    Brandt, Stephanie M.; Schneider, David S.

    2009-01-01

    Summary Morbidity, the state of being diseased, is an important aspect of pathogenesis that has gone relatively unstudied in fruit flies. Our interest is in characterizing how bacterial pathogenesis affects various physiologies of the fly. We chose to examine the fly ovary because we found bacterial infection had a striking effect on fly reproduction. We observed decreased egg laying after bacterial infection that correlated with increased bacterial virulence. We also found that bacteria colonized the ovary in a previously undescribed manner; bacteria were found in the posterior of the ovary, adjacent to the lateral oviduct. This local infection in the ovary resulted in melanization and activation of the cellular immune response at the site of infection. PMID:17400292

  7. Procalcitonin and albumin as prognostic biomarkers in elderly patients with a risk of bacterial infection.

    Science.gov (United States)

    Higashikawa, Toshihiro; Okuro, Masashi; Ishigami, Keiichirou; Mae, Kunihiro; Sangen, Ryusho; Mizuno, Takurou; Usuda, Daisuke; Saito, Atushi; Kasamaki, Yuji; Fukuda, Akihiro; Saito, Hitoshi; Morimoto, Shigeto; Kanda, Tsugiyasu

    2018-01-01

    Aim This study was performed to investigate serum procalcitonin (PCT) and albumin (Alb) as prognostic biomarkers in elderly patients at risk of bacterial infection. Methods Serum PCT was measured in 270 hospitalized patients (mean age, 77.4 years) with suspected bacterial infection. The PCT-negative (2.5 g/dL), no significant difference in survival was observed between the PCT-positive and -negative groups. However, within the Alb-negative group (≤2.5 g/dL), the survival rate was significantly lower in the PCT-positive than -negative group. PCT was strongly associated with CRP and Alb, and having both PCT positivity and Alb negativity was a prognostic factor for elderly people at risk of bacterial infection. Conclusions Combined measurement of PCT with Alb is expected to be a valuable tool to assess prognosis in elderly people at risk of bacterial infection.

  8. Fish losses due to bacterial flora and infections of fishes in Kainji ...

    African Journals Online (AJOL)

    This paper assesses the losses incurred as a result of bacterial flora and infection in captured and cultured fish. The role played by these bacterial flora on the overall quality and health of fish is discussed. Bacteria have been reported to cause diseases in ponds and increase in the spoilage rate of raw and preserved fish in ...

  9. Molecular diagnosis of bacterial vaginosis: Does adjustment for total bacterial load or human cellular content improve diagnostic performance?

    Science.gov (United States)

    Plummer, E L; Garland, S M; Bradshaw, C S; Law, M G; Vodstrcil, L A; Hocking, J S; Fairley, C K; Tabrizi, S N

    2017-02-01

    We investigated the utility of quantitative PCR assays for diagnosis of bacterial vaginosis and found that while the best model utilized bacterial copy number adjusted for total bacterial load (sensitivity=98%, specificity=93%, AUC=0.95[95%CI=0.93,0.97]), adjusting for total bacterial or human cell load did not consistently increase the diagnostic performance of the assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. New insights into valve-related intramural and intracellular bacterial diversity in infective endocarditis.

    Science.gov (United States)

    Oberbach, Andreas; Schlichting, Nadine; Feder, Stefan; Lehmann, Stefanie; Kullnick, Yvonne; Buschmann, Tilo; Blumert, Conny; Horn, Friedemann; Neuhaus, Jochen; Neujahr, Ralph; Bagaev, Erik; Hagl, Christian; Pichlmaier, Maximilian; Rodloff, Arne Christian; Gräber, Sandra; Kirsch, Katharina; Sandri, Marcus; Kumbhari, Vivek; Behzadi, Armirhossein; Behzadi, Amirali; Correia, Joao Carlos; Mohr, Friedrich Wilhelm; Friedrich, Maik

    2017-01-01

    In infective endocarditis (IE), a severe inflammatory disease of the endocardium with an unchanged incidence and mortality rate over the past decades, only 1% of the cases have been described as polymicrobial infections based on microbiological approaches. The aim of this study was to identify potential biodiversity of bacterial species from infected native and prosthetic valves. Furthermore, we compared the ultrastructural micro-environments to detect the localization and distribution patterns of pathogens in IE. Using next-generation sequencing (NGS) of 16S rDNA, which allows analysis of the entire bacterial community within a single sample, we investigated the biodiversity of infectious bacterial species from resected native and prosthetic valves in a clinical cohort of 8 IE patients. Furthermore, we investigated the ultrastructural infected valve micro-environment by focused ion beam scanning electron microscopy (FIB-SEM). Biodiversity was detected in 7 of 8 resected heart valves. This comprised 13 bacterial genera and 16 species. In addition to 11 pathogens already described as being IE related, 5 bacterial species were identified as having a novel association. In contrast, valve and blood culture-based diagnosis revealed only 4 species from 3 bacterial genera and did not show any relevant antibiotic resistance. The antibiotics chosen on this basis for treatment, however, did not cover the bacterial spectra identified by our amplicon sequencing analysis in 4 of 8 cases. In addition to intramural distribution patterns of infective bacteria, intracellular localization with evidence of bacterial immune escape mechanisms was identified. The high frequency of polymicrobial infections, pathogen diversity, and intracellular persistence of common IE-causing bacteria may provide clues to help explain the persistent and devastating mortality rate observed for IE. Improved bacterial diagnosis by 16S rDNA NGS that increases the ability to tailor antibiotic therapy may

  11. Elevated carbon monoxide in the exhaled breath of mice during a systemic bacterial infection.

    Directory of Open Access Journals (Sweden)

    Alan G Barbour

    Full Text Available Blood is the specimen of choice for most laboratory tests for diagnosis and disease monitoring. Sampling exhaled breath is a noninvasive alternative to phlebotomy and has the potential for real-time monitoring at the bedside. Improved instrumentation has advanced breath analysis for several gaseous compounds from humans. However, application to small animal models of diseases and physiology has been limited. To extend breath analysis to mice, we crafted a means for collecting nose-only breath samples from groups and individual animals who were awake. Samples were subjected to gas chromatography and mass spectrometry procedures developed for highly sensitive analysis of trace volatile organic compounds (VOCs in the atmosphere. We evaluated the system with experimental systemic infections of severe combined immunodeficiency Mus musculus with the bacterium Borrelia hermsii. Infected mice developed bacterial densities of ∼10(7 per ml of blood by day 4 or 5 and in comparison to uninfected controls had hepatosplenomegaly and elevations of both inflammatory and anti-inflammatory cytokines. While 12 samples from individual infected mice on days 4 and 5 and 6 samples from uninfected mice did not significantly differ for 72 different VOCs, carbon monoxide (CO was elevated in samples from infected mice, with a mean (95% confidence limits effect size of 4.2 (2.8-5.6, when differences in CO2 in the breath were taken into account. Normalized CO values declined to the uninfected range after one day of treatment with the antibiotic ceftriaxone. Strongly correlated with CO in the breath were levels of heme oxygenase-1 protein in serum and HMOX1 transcripts in whole blood. These results (i provide further evidence of the informativeness of CO concentration in the exhaled breath during systemic infection and inflammation, and (ii encourage evaluation of this noninvasive analytic approach in other various other rodent models of infection and for utility in

  12. Bacterial infection increases risk of carcinogenesis by targeting mitochondria

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A.B.; Desler, Claus; Rasmussen, Lene Juel

    2017-01-01

    pathways, and compares the impact of the bacterial alteration of mitochondrial function to that of cancer. Bacterial virulence factors have been demonstrated to induce mutations of mitochondrial DNA (mtDNA) and to modulate DNA repair pathways of the mitochondria. Furthermore, virulence factors can induce...... or impair the intrinsic apoptotic pathway. The effect of bacterial targeting of mitochondria is analogous to behavior of mitochondria in a wide array of tumours, and this strongly suggests that mitochondrial targeting of bacteria is a risk factor for carcinogenesis....

  13. Reptiles as Reservoirs of Bacterial Infections: Real Threat or Methodological Bias?

    Science.gov (United States)

    Zancolli, Giulia; Mahsberg, Dieter; Sickel, Wiebke; Keller, Alexander

    2015-10-01

    Bacterial infections secondary to snakebites and human pathogens (e.g., Salmonella) have been linked to the oral microbiota of snakes and pet reptiles. Based on culture-dependent studies, it is speculated that snakes' oral microbiota reflects the fecal flora of their ingested preys. However, cultured-based techniques have been shown to be limited as they fail to identify unculturable microorganisms which represent the vast majority of the microbial diversity. Here, we used culture-independent high-throughput sequencing to identify reptile-associated pathogens and to characterize the oral microbial community of five snakes, one gecko, and two terrapins. Few potential human pathogens were detected at extremely low frequencies. Moreover, bacterial taxa represented in the snake's oral cavity bore little resemblance to their preys' fecal microbiota. Overall, we found distinct, highly diverse microbial communities with consistent, species-specific patterns contrary to previous culture-based studies. Our study does not support the widely held assumption that reptiles' oral cavity acts as pathogen reservoir and provides important insights for future research.

  14. Bacterial metabolism of human polymorphonuclear leukocyte-derived arachidonic acid.

    Science.gov (United States)

    Sorrell, T C; Muller, M; Sztelma, K

    1992-05-01

    Evidence for transcellular bacterial metabolism of phagocyte-derived arachidonic acid was sought by exposing human blood polymorphonuclear leukocytes, prelabelled with [3H]arachidonic acid, to opsonized, stationary-phase Pseudomonas aeruginosa (bacteria-to-phagocyte ratio of 50:1) for 90 min at 37 degrees C. Control leukocytes were stimulated with the calcium ionophore A23187 (5 microM) for 5 min. Radiochromatograms of arachidonic acid metabolites, extracted from A23187-stimulated cultures and then separated by reverse-phase high-performance liquid chromatography, revealed leukotriene B4, its omega-oxidation products, and 5-hydroxy-eicosatetraenoic acid. In contrast, two major metabolite peaks, distinct from known polymorphonuclear leukocyte arachidonic acid products by high-performance liquid chromatography or by thin-layer chromatography, were identified in cultures of P. aeruginosa with [3H]arachidonic acid-labelled polymorphonuclear leukocytes. Respective chromatographic characteristics of these novel products were identical to those of two major metabolite peaks produced by incubation of stationary-phase P. aeruginosa with [3H]arachidonic acid. Production of the metabolites was dependent upon pseudomonal viability. UV spectral data were consistent with a conjugated diene structure. Metabolism of arachidonic acid by P. aeruginosa was not influenced by the presence of catalase, superoxide dismutase, nordihydroguaiaretic acid, ethanol, dimethyl sulfoxide, or ferrous ions but was inhibited by carbon monoxide, ketoconazole, and 1,2-epoxy-3,3,3-trichloropropane. Our data suggest that pseudomonal metabolism of polymorphonuclear leukocyte-derived arachidonic acid occurs during phagocytosis, probably by enzymatic epoxidation and hydroxylation via an oxygenase. By this means, potential proinflammatory effects of arachidonic acid or its metabolites may be modulated by P. aeruginosa at sites of infection in vivo.

  15. Human Infection in Wild Mountain Gorillas

    Centers for Disease Control (CDC) Podcasts

    This podcast discusses a study about the transmission of Human Metapneumovirus Infection to wild mountain gorillas in Rwanda in 2009, published in the April 2011 issue of Emerging Infectious Diseases. Dr. Ian Lipkin, Director of the Center for Infection and Immunity and Dr. Gustavo Palacios, investigator in the Center of Infection & Immunity share details of this study.

  16. Analysis of Endothelial Adherence of Bartonella henselae and Acinetobacter baumannii Using a Dynamic Human Ex Vivo Infection Model

    OpenAIRE

    Weidensdorfer, Marko; Chae, Ju Ik; Makobe, Celestine; Stahl, Julia; Averhoff, Beate; Müller, Volker; Schürmann, Christoph; Brandes, Ralf P.; Wilharm, Gottfried; Ballhorn, Wibke; Christ, Sara; Linke, Dirk; Fischer, Doris; Göttig, Stephan; Kempf, Volkhard A. J.

    2016-01-01

    Bacterial adherence determines the virulence of many human-pathogenic bacteria. Experimental approaches elucidating this early infection event in greater detail have been performed using mainly methods of cellular microbiology. However, in vitro infections of cell monolayers reflect the in vivo situation only partially, and animal infection models are not available for many human-pathogenic bacteria. Therefore, ex vivo infection of human organs might represent an attractive method to overcome...

  17. Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization

    Science.gov (United States)

    Hyre, Amanda N.; Kavanagh, Kylie; Kock, Nancy D.; Donati, George L.

    2016-01-01

    ABSTRACT Urinary tract infection (UTI) is a major global infectious disease affecting millions of people annually. Human urinary copper (Cu) content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC). UPEC upregulates the expression of Cu efflux genes during clinical UTI in patients as an adaptive response to host-derived Cu. Whether Cu is mobilized to urine as a host response to UTI and its role in protection against UTI remain unresolved. To address these questions, we tested the hypothesis that Cu is a host effector mobilized to urine during UTI to limit bacterial growth. Our results reveal that Cu is mobilized to urine during UTI caused by the major uropathogens Proteus mirabilis and Klebsiella pneumoniae, in addition to UPEC, in humans. Ceruloplasmin, a Cu-containing ferroxidase, is found at higher levels in UTI urine than in healthy control urine and serves as the molecular source of urinary Cu during UTI. Our results demonstrate that ceruloplasmin decreases the bioavailability of iron in urine by a transferrin-dependent mechanism. Experimental UTI with UPEC in nonhuman primates recapitulates the increased urinary Cu content observed during clinical UTI. Furthermore, Cu-deficient mice are highly colonized by UPEC, indicating that Cu is involved in the limiting of bacterial growth within the urinary tract. Collectively, our results indicate that Cu is a host effector that is involved in protection against pathogen colonization of the urinary tract. Because urinary Cu levels are amenable to modulation, augmentation of the Cu-based host defense against UTI represents a novel approach to limiting bacterial colonization during UTI. PMID:28031261

  18. Bacterial expression of human kynurenine 3-monooxygenase: solubility, activity, purification.

    Science.gov (United States)

    Wilson, K; Mole, D J; Binnie, M; Homer, N Z M; Zheng, X; Yard, B A; Iredale, J P; Auer, M; Webster, S P

    2014-03-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington's disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Bacterial expression of human kynurenine 3-monooxygenase: Solubility, activity, purification☆

    Science.gov (United States)

    Wilson, K.; Mole, D.J.; Binnie, M.; Homer, N.Z.M.; Zheng, X.; Yard, B.A.; Iredale, J.P.; Auer, M.; Webster, S.P.

    2014-01-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington’s disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. PMID:24316190

  20. Bacterial infections and hepatic encephalopathy in liver cirrhosis-prophylaxis and treatment.

    Science.gov (United States)

    Piotrowski, Damian; Boroń-Kaczmarska, Anna

    2017-09-01

    Infections are common among patients with liver cirrhosis. They occur more often in cirrhotic patient groups than in the general population and result in higher mortality. One reason for this phenomenon is bacterial translocation from the intestinal lumen that occurs as a consequence of intestinal bacterial overgrowth, increased permeability and decreased motility. The most common infections in cirrhotic patients are spontaneous bacterial peritonitis and urinary tract infections, followed by pneumonia, skin and soft tissue infections. Intestinal bacterial overgrowth is also responsible for hyperammonemia, which leads to hepatic encephalopathy. All of these complications make this group of patients at high risk for mortality. The role of antibiotics in liver cirrhosis is to treat and in some cases to prevent the development of infectious complications. Based on our current knowledge, antibiotic prophylaxis should be administered to patients with gastrointestinal hemorrhage, low ascitic fluid protein concentration combined with liver or renal failure, and spontaneous bacterial peritonitis as a secondary prophylaxis, as well as after hepatic encephalopathy episodes (also as a secondary prophylaxis). In some cases, the use of non-antibiotic prophylaxis can also be considered. Current knowledge of the treatment of infections allows the choice of a preferred antibiotic for empiric therapy depending on the infection location and whether the source of the disease is nosocomial or community-acquired. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  1. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection

    Science.gov (United States)

    Chen, Zhuo; Zhang, Yaxin; Wang, Dong; Li, Linsen; Zhou, Shanyong; Huang, Joy H.; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2016-01-01

    Photodynamic antimicrobial chemotherapy (PACT) is an effective method for killing bacterial cells in view of the increasing problem of multiantibiotic resistance. We herein reported the PACT effect on bacteria involved in skin infections using a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-Lys). Compared with its anionic ZnPc counterpart, ZnPc-Lys showed an enhanced antibacterial efficacy in vitro and in an animal model of localized infection. Meanwhile, ZnPc-Lys was observed to significantly reduce the wound skin blood flow during wound healing, indicating an anti-inflammation activity. This study provides new insight on the mechanisms of PACT in bacterial skin infection.

  2. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor.

    Science.gov (United States)

    Prado Acosta, Mariano; Ruzal, Sandra M; Cordo, Sandra M

    2016-11-01

    Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation.

    Science.gov (United States)

    Boix-Amorós, Alba; Collado, Maria C; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 10(6) bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, "planktonic" state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system.

  4. Prevalence of Selected Bacterial Infections Associated with the Use of Animal Waste in Louisiana

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2005-04-01

    Full Text Available Human health is a major concern when considering the disposal of large quantities of animal waste. Health concerns could arise from exposure to pathogens and excess nitrogen associated with this form of pollution. The objective was to collect and analyze health data related to selected bacterial infections associated with the use of animal waste in Louisiana. An analysis of adverse health effects has been conducted based on the incidence/prevalence rates of campylobacteriosis, E. coli O157:H7 infection, salmonellosis and shigellosis. The number of reported cases increased during the summer months. Analysis of health data showed that reported disease cases of E. coli O157:H7 were highest among Caucasian infants in the 0-4 year old age category and in Caucasian children in the 5-9 year old age category. Fatalities resulting from salmonellosis are low and increases sharply with age. The number of reported cases of shigellosis was found to be higher in African American males and females than in Caucasians. The high rate of identification in the younger population may result from the prompt seeking of medical care, as well as the frequent ordering of stool examination when symptoms become evident among this group of the population. The association with increasing age and fatality due to salmonellosis could be attributed to declining health and weaker immune systems often found in the older population. It is concluded that both animal waste and non-point source pollution may have a significant impact on human health.

  5. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens.

    Science.gov (United States)

    Powell, Jennifer R; Ausubel, Frederick M

    2008-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the relationship between the animal innate immune system and a variety of bacterial and fungal pathogens. Extensive genetic and molecular tools are available in C. elegans, facilitating an in-depth analysis of host defense factors and pathogen virulence factors. Many of these factors are conserved in insects and mammals, indicating the relevance of the nematode model to the vertebrate innate immune response. Here, we describe pathogen assays for a selection of the most commonly studied bacterial and fungal pathogens using the C. elegans model system.

  6. Different sterilization methods for overcoming internal bacterial infection in sunflower seeds

    Directory of Open Access Journals (Sweden)

    Taški-Ajduković Ksenija J.

    2005-01-01

    Full Text Available During culture of protoplasts in agarose droplets, permanent problem was bacterial infection. It was assumed that the seeds are the origin of infection, so different sterilization methods were tested in order to overcome this problem. Germination, infection of seeds and hypocotyls and their growth were examined. Based on these parameters, the best result was obtained with the combined use of 5% commercial bleach and dry heating at 45°C.

  7. Toxoplasma gondii infection in humans in China

    Directory of Open Access Journals (Sweden)

    He Shenyi

    2011-08-01

    Full Text Available Abstract Toxoplasmosis is a zoonotic infection of humans and animals, caused by the opportunistic protozoan Toxoplasma gondii, a parasite belonging to the phylum Apicomplexa. Infection in pregnant women may lead to abortion, stillbirth or other serious consequences in newborns. Infection in immunocompromised patients can be fatal if not treated. On average, one third of people are chronically infected worldwide. Although very limited information from China has been published in the English journals, T. gondii infection is actually a significant human health problem in China. In the present article, we reviewed the clinical features, transmission, prevalence of T. gondii infection in humans in China, and summarized genetic characterizations of reported T. gondii isolates. Educating the public about the risks associated with unhealthy food and life style habits, tracking serological examinations to special populations, and measures to strengthen food and occupational safety are discussed.

  8. Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies.

    Science.gov (United States)

    Kanwar, Indulata; Sah, Abhishek K; Suresh, Preeti K

    2017-01-01

    Oral diseases like dental caries and periodontal disease are directly associated with the capability of bacteria to form biofilm. Periodontal diseases have been associated to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Biofilm is a complex bacterial community that is highly resistant to antibiotics and human immunity. Biofilm communities are the causative agents of biological developments such as dental caries, periodontitis, peri-implantitis and causing periodontal tissue breakdown. The review recapitulates the latest advancements in treatment of clinical biofilm infections and scientific investigations, while these novel anti-biofilm strategies are still in nascent phases of development, efforts dedicated to these technologies could ultimately lead to anti-biofilm therapies that are superior to the current antibiotic treatment. This paper provides a review of the literature focusing on the studies on biofilm in the oral cavity, formation of dental plaque biofilm, drug resistance of bacterial biofilm and the antibiofilm approaches as biofilm preventive agents in dentistry, and their mechanism of biofilm inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Susceptibility of metallic magnesium implants to bacterial biofilm infections.

    Science.gov (United States)

    Rahim, Muhammad Imran; Rohde, Manfred; Rais, Bushra; Seitz, Jan-Marten; Mueller, Peter P

    2016-06-01

    Magnesium alloys have promising mechanical and biological properties as biodegradable medical implant materials for temporary applications during bone healing or as vascular stents. Whereas conventional implants are prone to colonization by treatment resistant microbial biofilms in which bacteria are embedded in a protective matrix, magnesium alloys have been reported to act antibacterial in vitro. To permit a basic assessment of antibacterial properties of implant materials in vivo an economic but robust animal model was established. Subcutaneous magnesium implants were inoculated with bacteria in a mouse model. Contrary to the expectations, bacterial activity was enhanced and prolonged in the presence of magnesium implants. Systemic antibiotic treatments were remarkably ineffective, which is a typical property of bacterial biofilms. Biofilm formation was further supported by electron microscopic analyses that revealed highly dense bacterial populations and evidence for the presence of extracellular matrix material. Bacterial agglomerates could be detected not only on the implant surface but also at a limited distance in the peri-implant tissue. Therefore, precautions may be necessary to minimize risks of metallic magnesium-containing implants in prospective clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1489-1499, 2016. © 2016 Wiley Periodicals, Inc.

  10. Impact of bacterial infections on aging and cancer

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A B; Madsen, Claus Desler; Rasmussen, Lene Juel

    2014-01-01

    DNA repair subunits of major DNA repair pathways and increase production of reactive oxygen species (ROS). Defects in DNA repair cause mutations and genomic instability and are found in several cancers as well as in progeroid syndromes. This review describes our contemporary view on how bacterial...

  11. A Survey of Bacterial and Fungal Oppurtunistic Infections among ...

    African Journals Online (AJOL)

    The bacterial pathogens were isolated using Blood and Chocolate agar plates and identified biochemically except the Acid Fast Bacilli (AFB) which was tested in all the HIV positive samples by Ziehl Neelson staining technique. The fungal pathogens were isolated using Sabouraud Dextrose Agar (SDA) with antibiotics and ...

  12. A novel bacterial transport mechanism of Acinetobacter baumannii via activated human neutrophils through interleukin-8.

    Science.gov (United States)

    Kamoshida, Go; Tansho-Nagakawa, Shigeru; Kikuchi-Ueda, Takane; Nakano, Ryuichi; Hikosaka, Kenji; Nishida, Satoshi; Ubagai, Tsuneyuki; Higashi, Shouichi; Ono, Yasuo

    2016-12-01

    Hospital-acquired infections as a result of Acinetobacter baumannii have become problematic because of high rates of drug resistance. Although neutrophils play a critical role in early protection against bacterial infection, their interactions with A. baumannii remain largely unknown. To elucidate the interactions between A. baumannii and human neutrophils, we cocultured these cells and analyzed them by microscopy and flow cytometry. We found that A. baumannii adhered to neutrophils. We next examined neutrophil and A. baumannii infiltration into Matrigel basement membranes by an in vitro transmigration assay. Neutrophils were activated by A. baumannii, and invasion was enhanced. More interestingly, A. baumannii was transported together by infiltrating neutrophils. Furthermore, we observed by live cell imaging that A. baumannii and neutrophils moved together. In addition, A. baumannii-activated neutrophils showed increased IL-8 production. The transport of A. baumannii was suppressed by inhibiting neutrophil infiltration by blocking the effect of IL-8. A. baumannii appears to use neutrophils for transport by activating these cells via IL-8. In this study, we revealed a novel bacterial transport mechanism that A. baumannii exploits human neutrophils by adhering to and inducing IL-8 release for bacterial portage. This mechanism might be a new treatment target. © Society for Leukocyte Biology.

  13. Comparative study of bacterial infection prevalence between cirrhotic patients with and without upper gastrointestinal bleeding

    Directory of Open Access Journals (Sweden)

    Delvone Almeida

    Full Text Available Bacterial infection is a frequent complication in patients with chronic liver disease, mainly during the advanced stages. There is evidence that the main factors that contribute to a predisposition to infection in cirrhotic patients are related to hepatic failure with consequent immunodeficiency. Invasive procedures (diagnostic or therapeutic can predispose to bacterial infections, and upper gastrointestinal bleeding (UGB is considered a potentially important risk factor. A group of cirrhotic patients (child B and C Pugh groups were evaluated retrospectively by chart reviews regarding the prevalence of bacterial infection during hospitalization to determine whether UGB was a risk factor. An infection was considered present if a specific organ system was identified or if fever (>38ºC persisted for more than 24 hours with associated leukocytosis. Spontaneous bacterial peritonitis was based on classical criteria. Eighty-nine patients were evaluated. Fourty-six patients presented with UGB, and 43 patients had no UGB (control. There were infections recorded in 25/46 (54% patients with UGB, and 15/43 (35% in those without UGB (p=0.065. The ratio of the number of infections/admitted patients, was significantly larger in the group with UGB (0.78 ± 0.89 vs. 0.39 ± 0.62; p=0.028 since patients had more than one infection. In the UGB group compared to non UGB group, ascites was more frequent (67% vs. 42%; p=0.027; they were more likely to have undergone endoscopic procedures (p<0.001 and the mean ± SD for platelets count was smaller (96,114 ± 57,563 vs. 145,674 ± 104,083; p=0.007. The results show that UGB is an important contribution to bacterial infection among Child B and C cirrhotic patients.

  14. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.; Hentzer, Morten

    2004-01-01

    Introduction: Antibiotics are used to treat bacterial infections by killing the bacteria or inhibiting their growth, but resistance to antibiotics can develop readily. The discovery that bacterial quorum-sensing regulates bacterial virulence as well as the formation of biofilms opens up new ways...... to control certain bacterial infections. Furanone compounds capable of inhibiting bacterial quorum-sensing systems have been isolated from the marine macro alga Delisea pulchra. Objectives: Two synthetic furanones were tested for their ability to attenuate bacterial virulence in the mouse models of chronic...

  15. The role of bacterial biofilms in chronic infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas

    2013-01-01

    wounds, chronic otitis media and implant- and catheter-associated infections, affect millions of people in the developed world each year and many deaths occur as a consequence. In general, bacteria have two life forms during growth and proliferation. In one form, the bacteria exist as single, independent...... cells (planktonic) whereas in the other form, bacteria are organized into sessile aggregates. The latter form is commonly referred to as the biofilm growth phenotype. Acute infections are assumed to involve planktonic bacteria, which are generally treatable with antibiotics, although successful......Acute infections caused by pathogenic bacteria have been studied extensively for well over 100 years. These infections killed millions of people in previous centuries, but they have been combated effectively by the development of modern vaccines, antibiotics and infection control measures. Most...

  16. Pneumothorax in human immunodeficiency virus infection

    Directory of Open Access Journals (Sweden)

    Sibes Kumar Das

    2015-01-01

    Full Text Available Pneumothorax occurs more frequently in people with Human immunodeficiency virus infection in comparison with the general population. In most cases it is secondary the underlying pulmonary disorder, especially pulmonary infections. Though Pneumocystis jiroveci pneumonia is most common pulmonary infection associated with pneumothorax, other infections, non-infective etiology and iatrogenic causes are also encountered. Pneumothorax in these patients are associated with persistent bronchopleural fistula, prolonged hospital stay, poor success with intercostal tube drain, frequent requirement of surgical intervention and increased mortality. Optimal therapeutic approach in these patients is still not well-defined.

  17. Polymer-Ag nanocomposites with enhanced antimicrobial activity against bacterial infection.

    Science.gov (United States)

    Mei, Lin; Lu, Zhentan; Zhang, Xinge; Li, Chaoxing; Jia, Yanxia

    2014-09-24

    Herein, a nontoxic nanocomposite is synthesized by reduction of silver nitrate in the presence of a cationic polymer displaying strong antimicrobial activity against bacterial infection. These nanocomposites with a large concentration of positive charge promote their adsorption to bacterial membranes through electrostatic interaction. Moreover, the synthesized nanocomposites with polyvalent and synergistic antimicrobial effects can effectively kill both Gram-positive and Gram-negative bacteria without the emergence of bacterial resistance. Morphological changes obtained by transmission electron microscope observation show that these nanocomposites can cause leakage and chaos of intracellular contents. Analysis of the antimicrobial mechanism confirms that the lethal action of nanocomposites against the bacteria started with disruption of the bacterial membrane, subsequent cellular internalization of the nanoparticles, and inhibition of intracellular enzymatic activity. This novel antimicrobial material with good cytocompatibility promotes healing of infected wounds in diabetic rats, and has a promising future in the treatment of other infectious diseases.

  18. Preponderance of bacterial isolates in urine of HIV-positive malaria-infected pregnant women with urinary tract infection.

    Science.gov (United States)

    Ako-Nai, Kwashie Ajibade; Ebhodaghe, Blessing Itohan; Osho, Patrick; Adejuyigbe, Ebun; Adeyemi, Folasade Mubiat; Kassim, Olakunle O

    2014-12-15

    This study examined HIV and malaria co-infection as a risk factor for urinary tract infections (UTIs) in pregnancy. The study group included 74 pregnant women, 20 to 42 years of age, who attended the antenatal clinic at the Specialist Hospital at Akure, Ondo State, Nigeria. Forty-four of the pregnant women were either HIV seropositive with malaria infection (HIV+Mal+) or HIV seropositive without malaria (HIV+Mal-). The remaining thirty pregnant women served as controls and included women HIV seronegative but with malaria (HIV-Mal+) and women HIV seronegative without malaria. UTI was indicated by a bacterial colony count of greater than 10⁵/mL of urine, using cysteine lactose electrolyte deficient medium (CLED) as the primary isolation medium. Bacterial isolates were characterized using convectional bacteriological methods, and antibiotics sensitivity tests were carried out using the disk diffusion method. A total of 246 bacterial isolates were recovered from the cultures, with a mean of 3.53 isolates per subject. Women who were HIV+Mal+ had the most diverse group of bacterial isolates and the highest frequency of UTIs. The bacterial isolates from the HIV+Mal+ women also showed the highest degree of antibiotic resistance. While pregnancy and HIV infection may each represent a risk factor for UTI, HIV and malaria co-infection may increase its frequency in pregnancy. The higher frequency of multiple antibiotic resistance observed among the isolates, particularly isolates from HIV+Mal+ subjects, poses a serious public health concern as these strains may aggravate the prognosis of both UTI and HIV infection.

  19. Bacterial Hyaluronidase Promotes Ascending GBS Infection and Preterm Birth

    Science.gov (United States)

    Vornhagen, Jay; Quach, Phoenicia; Boldenow, Erica; Merillat, Sean; Whidbey, Christopher; Ngo, Lisa Y.; Adams Waldorf, K. M.

    2016-01-01

    ABSTRACT Preterm birth increases the risk of adverse birth outcomes and is the leading cause of neonatal mortality. A significant cause of preterm birth is in utero infection with vaginal microorganisms. These vaginal microorganisms are often recovered from the amniotic fluid of preterm birth cases. A vaginal microorganism frequently associated with preterm birth is group B streptococcus (GBS), or Streptococcus agalactiae. However, the molecular mechanisms underlying GBS ascension are poorly understood. Here, we describe the role of the GBS hyaluronidase in ascending infection and preterm birth. We show that clinical GBS strains associated with preterm labor or neonatal infections have increased hyaluronidase activity compared to commensal strains obtained from rectovaginal swabs of healthy women. Using a murine model of ascending infection, we show that hyaluronidase activity was associated with increased ascending GBS infection, preterm birth, and fetal demise. Interestingly, hyaluronidase activity reduced uterine inflammation but did not impact placental or fetal inflammation. Our study shows that hyaluronidase activity enables GBS to subvert uterine immune responses, leading to increased rates of ascending infection and preterm birth. These findings have important implications for the development of therapies to prevent in utero infection and preterm birth. PMID:27353757

  20. Bacterial Hyaluronidase Promotes Ascending GBS Infection and Preterm Birth

    Directory of Open Access Journals (Sweden)

    Jay Vornhagen

    2016-06-01

    Full Text Available Preterm birth increases the risk of adverse birth outcomes and is the leading cause of neonatal mortality. A significant cause of preterm birth is in utero infection with vaginal microorganisms. These vaginal microorganisms are often recovered from the amniotic fluid of preterm birth cases. A vaginal microorganism frequently associated with preterm birth is group B streptococcus (GBS, or Streptococcus agalactiae. However, the molecular mechanisms underlying GBS ascension are poorly understood. Here, we describe the role of the GBS hyaluronidase in ascending infection and preterm birth. We show that clinical GBS strains associated with preterm labor or neonatal infections have increased hyaluronidase activity compared to commensal strains obtained from rectovaginal swabs of healthy women. Using a murine model of ascending infection, we show that hyaluronidase activity was associated with increased ascending GBS infection, preterm birth, and fetal demise. Interestingly, hyaluronidase activity reduced uterine inflammation but did not impact placental or fetal inflammation. Our study shows that hyaluronidase activity enables GBS to subvert uterine immune responses, leading to increased rates of ascending infection and preterm birth. These findings have important implications for the development of therapies to prevent in utero infection and preterm birth.

  1. Associations of the vaginal microbiota with HIV infection, bacterial vaginosis, and demographic factors.

    Science.gov (United States)

    Chehoud, Christel; Stieh, Daniel J; Bailey, Aubrey G; Laughlin, Alice L; Allen, Shannon A; McCotter, Kerrie L; Sherrill-Mix, Scott A; Hope, Thomas J; Bushman, Frederic D

    2017-04-24

    We sought to investigate the effects of HIV infection on the vaginal microbiota and associations with treatment and demographic factors. We thus compared vaginal microbiome samples from HIV-infected (HIV+) and HIV-uninfected (HIV-) women collected at two Chicago area hospitals. We studied vaginal microbiome samples from 178 women analyzed longitudinally (n = 324 samples) and collected extensive data on clinical status and demographic factors. We used 16S rRNA gene sequencing to characterize the bacterial lineages present, then UniFrac, Shannon diversity, and other measures to compare community structure with sample metadata. Differences in microbiota measures were modest in the comparison of HIV+ and HIV- samples, in contrast to several previous studies, consistent with effective antiretroviral therapy. Proportions of healthy Lactobacillus species were not higher in HIV- patients overall, but were significantly higher when analyzed within each hospital in isolation. Rates of bacterial vaginosis were higher among African-American women and HIV+ women. Bacterial vaginosis was associated with higher frequency of HIV+. Unexpectedly, African-American women were more likely to switch bacterial vaginosis status between sampling times; switching was not associated with HIV+ status. The influence of HIV infection on the vaginal microbiome was modest for this cohort of well suppressed urban American women, consistent with effective antiretroviral therapy. HIV+ was found to be associated with bacterial vaginosis. Although bacterial vaginosis has previously been associated with HIV transmission, most of the women studied here became HIV+ many years before our test for bacterial vaginosis, thus implicating additional mechanisms linking HIV infection and bacterial vaginosis.

  2. Prevalence of Bacterial Vaginosis and Associated Risk Factors among Women Complaining of Genital Tract Infection

    OpenAIRE

    Bitew, Adane; Abebaw, Yeshiwork; Bekele, Delayehu; Mihret, Amete

    2017-01-01

    Background. Bacterial vaginosis is a global concern due to the increased risk of acquisition of sexually transmitted infections. Objectives. To determine the prevalence of bacterial vaginosis and bacteria causing aerobic vaginitis. Methods. A cross-sectional study was conducted among 210 patients between September 2015 and July 2016 at St. Paul’s Hospital. Gram-stained vaginal swabs were examined microscopically and graded as per Nugent’s procedure. Bacteria causing aerobic vaginitis were cha...

  3. Spontaneous Bacterial Peritonitis Caused by Infection with Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Michael Vincent F. Tablang

    2008-11-01

    Full Text Available Spontaneous bacterial peritonitis is a severe and life-threatening complication in patients with ascites caused by advanced liver disease. The organisms most commonly involved are coliform bacteria and third-generation cephalosporins are the empiric antibiotics of choice. This is an uncommon case of spontaneous bacterial peritonitis caused by Listeria monocytogenes in a female patient with liver cirrhosis from autoimmune hepatitis. She did not improve with ceftriaxone and her course was complicated by hepatic encephalopathy, seizures and multi-organ failure. This case emphasizes that a high index of suspicion should be maintained for timely diagnosis and treatment. Listerial peritonitis should be suspected in patients with end-stage liver disease and inadequate response to conventional antibiotics within 48–72 h. Ampicillin/sulbactam should be initiated while awaiting results of ascitic fluid or blood culture.

  4. Risk of bacterial cross infection associated with inspiration through flow-based spirometers.

    Science.gov (United States)

    Bracci, Massimo; Strafella, Elisabetta; Croce, Nicola; Staffolani, Sara; Carducci, Annalaura; Verani, Marco; Valentino, Matteo; Santarelli, Lory

    2011-02-01

    Bacterial contamination of spirometers has been documented in water-sealed devices, mouthpieces, and connection tubes. Little information is available about bacterial contamination of flow-based apparatuses such as turbine-type spirometers and pneumotachographs. Inspiration through contaminated equipment is a potential source of cross infection. To investigate bacteria mobilization (ie, bacteria detachment and aerosolization from the instrument) during routine spirometric testing, 2 types of flow-based spirometers were used. Bacteria mobilization during artificial inspiration through in-line filters or cardboard mouthpieces was evaluated. Nine hundred workers undergoing periodic spirometric testing were enrolled at the occupational physician office in 30 sessions of 30 subjects each. The participants were asked to perform a forced vital capacity test in a turbine-type spirometer and in an unheated pneumotachograph fitted with disposable in-line filters or cardboard mouthpieces. To evaluate bacterial mobilization, an artificial inspiration was performed and bacterial growth determined. The bacterial growth analysis was assessed after the first and the thirtieth spirometric tests of each session without disinfecting the instruments between tests. In addition, instrument bacterial contamination was evaluated. No significant bacterial mobilization and instrument contamination were found in spirometric tests executed with in-line filters. Conversely, a significant bacterial mobilization and instrument contamination were observed in tests performed with cardboard mouthpieces. Differences between the 2 spirometers were not significant. In-line filters may effectively reduce the risk of bacterial cross infection. Inspiration through flow-based spirometers fitted with disposable cardboard mouthpieces is completely safe when combined with spirometer disinfection/sterilization between subjects. Copyright © 2011 Association for Professionals in Infection Control and

  5. Findings of bacterial microflora in piglets infected with conventional swine plague

    Directory of Open Access Journals (Sweden)

    Prodanov Jasna

    2002-01-01

    Full Text Available Piglets infected with the conventional swine plague virus as a result of secondary bacterial infections sometimes show an insufficiently clear clinical and pathoanatomical picture, which is why the very procedure of diagnosis is complex and the final diagnosis unreliable. That is why these investigations were aimed at examining the presence of bacterial microflora in diseased and dead pilgets which were found to have the viral antigen for CSP using the fluorescent antibody technique, in cases where the pathomorphological finding was not characteristic for conventional swine plague. Autopsies of dead piglets most often showed changes in the digestive tract and lungs, with resulting technopathy and diseases of infective nature. Such findings on knowledge of a present bacterial microflora are especially important in cases when conventional swine plague is controlled on farms and an announcement that the disease has been contained is in the offing.

  6. Human Papillomaviruses and genital co-infections in gynaecological outpatients

    Directory of Open Access Journals (Sweden)

    Nicosia Rosa

    2009-02-01

    Full Text Available Abstract Background High grade HPV infections and persistence are the strongest risk factors for cervical cancer. Nevertheless other genital microorganisms may be involved in the progression of HPV associated lesions. Methods Cervical samples were collected to search for human Papillomavirus (HPV, bacteria and yeast infections in gynaecologic outpatients. HPV typing was carried out by PCR and sequencing on cervical brush specimens. Chlamydia trachomatis was identified by strand displacement amplification (SDA and the other microorganisms were detected by conventional methods. Results In this cross-sectional study on 857 enrolled outpatients, statistical analyses revealed a significant association of HPV with C. trachomatis and Ureaplasma urealyticum (at high density detection, whereas no correlation was found between HPV infection and bacterial vaginosis, Streptococcus agalactiae, yeasts, Trichomonas vaginalis and U. urealyticum. Mycoplasma hominis was isolated only in a few cases both in HPV positive and negative women and no patient was infected with Neisseria gonorrhoeae. Conclusion Although bacterial vaginosis was not significantly associated with HPV, it was more common among the HPV positive women. A significant association between HPV and C. trachomatis was found and interestingly also with U. urealyticum but only at a high colonization rate. These data suggest that it may be important to screen for the simultaneous presence of different microorganisms which may have synergistic pathological effects.

  7. [Investigation of bacterial and viral etiology in community acquired central nervous system infections with molecular methods].

    Science.gov (United States)

    Kahraman, Hasip; Tünger, Alper; Şenol, Şebnem; Gazi, Hörü; Avcı, Meltem; Örmen, Bahar; Türker, Nesrin; Atalay, Sabri; Köse, Şükran; Ulusoy, Sercan; Işıkgöz Taşbakan, Meltem; Sipahi, Oğuz Reşat; Yamazhan, Tansu; Gülay, Zeynep; Alp Çavuş, Sema; Pullukçu, Hüsnü

    2017-07-01

    In this multicenter prospective cohort study, it was aimed to evaluate the bacterial and viral etiology in community-acquired central nervous system infections by standart bacteriological culture and multiplex polymerase chain reaction (PCR) methods. Patients hospitalized with central nervous system infections between April 2012 and February 2014 were enrolled in the study. Demographic and clinical information of the patients were collected prospectively. Cerebrospinal fluid (CSF) samples of the patients were examined by standart bacteriological culture methods, bacterial multiplex PCR (Seeplex meningitis-B ACE Detection (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Listeria monocytogenes, Group B streptococci) and viral multiplex PCR (Seeplex meningitis-V1 ACE Detection kits herpes simplex virus-1 (HSV1), herpes simplex virus-2 (HSV2), varicella zoster virus (VZV), cytomegalovirus (CMV), Epstein Barr virus (EBV) and human herpes virus 6 (HHV6)) (Seeplex meningitis-V2 ACE Detection kit (enteroviruses)). Patients were classified as purulent meningitis, aseptic meningitis and encephalitis according to their clinical, CSF (leukocyte level, predominant cell type, protein and glucose (blood/CSF) levels) and cranial imaging results. Patients who were infected with a pathogen other than the detection of the kit or diagnosed as chronic meningitis and other diseases during the follow up, were excluded from the study. A total of 79 patients (28 female, 51 male, aged 42.1 ± 18.5) fulfilled the study inclusion criteria. A total of 46 patients were classified in purulent meningitis group whereas 33 were in aseptic meningitis/encephalitis group. Pathogens were detected by multiplex PCR in 41 patients. CSF cultures were positive in 10 (21.7%) patients (nine S.pneumoniae, one H.influenzae) and PCR were positive for 27 (58.6%) patients in purulent meningitis group. In this group one type of bacteria were detected in 18 patients (14 S.pneumoniae, two N

  8. Statin Treatment and Mortality in Bacterial Infections – A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Björkhem-Bergman, Linda; Bergman, Peter; Andersson, Jan; Lindh, Jonatan D.

    2010-01-01

    Background Several studies have reported improved survival in severe bacterial infections among statin treated patients. In addition, statins have been ascribed beneficial anti-inflammatory effects. The aim of this study was to evaluate the effect of statin-treatment on mortality in patients with bacterial infections, by means of a systematic review and a meta-analysis. Methodology and Principal Findings Studies investigating the association between statin use and mortality in patients with bacterial disease were identified in a systematic literature review and a meta-analysis was performed to calculate the overall odds ratio of mortality in statin users. The literature search identified 947 citations from which 40 relevant studies were extracted. In all, 15 studies comprising 113 910 patients were included in the final analysis. Statin use was associated with a significantly (pstatin treatment was no longer significant, with an OR of 0.79 (95% CI 0.58–1.07). Conclusion/Significance According to the meta-analysis of observational studies presented here, patients on statin therapy seem to have a better outcome in bacterial infections. However, the association did not reach statistical significance after adjustment for apparent publication bias. Thus, there is a great need for randomised controlled trials investigating the possible beneficial effect of statins in bacterial infections. PMID:20502712

  9. The role of T cell subsets and cytokines in the regulation of intracellular bacterial infection

    Directory of Open Access Journals (Sweden)

    Oliveira S.C.

    1998-01-01

    Full Text Available Cellular immune responses are a critical part of the host's defense against intracellular bacterial infections. Immunity to Brucella abortus crucially depends on antigen-specific T cell-mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. T lymphocytes that proliferate in response to B. abortus were characterized for phenotype and cytokine activity. Human, murine, and bovine T lymphocytes exhibited a type 1 cytokine profile, suggesting an analogous immune response in these different hosts. In vivo protection afforded by a particular cell type is dependent on the antigen presented and the mechanism of antigen presentation. Studies using MHC class I and class II knockout mice infected with B. abortus have demonstrated that protective immunity to brucellosis is especially dependent on CD8+ T cells. To target MHC class I presentation we transfected ex vivo a murine macrophage cell line with B. abortus genes and adoptively transferred them to BALB/c mice. These transgenic macrophage clones induced partial protection in mice against experimental brucellosis. Knowing the cells required for protection, vaccines can be designed to activate the protective T cell subset. Lastly, as a new strategy for priming a specific class I-restricted T cell response in vivo, we used genetic immunization by particle bombardment-mediated gene transfer

  10. Viral Inhibition of Bacterial Phagocytosis by Human Macrophages: Redundant Role of CD36.

    Directory of Open Access Journals (Sweden)

    Grace E Cooper

    Full Text Available Macrophages are essential to maintaining lung homoeostasis and recent work has demonstrated that influenza-infected lung macrophages downregulate their expression of the scavenger receptor CD36. This receptor has also been shown to be involved in phagocytosis of Streptococcus pneumoniae, a primary agent associated with pneumonia secondary to viral infection. The aim of this study was to investigate the role of CD36 in the effects of viral infection on macrophage phagocytic function. Human monocyte-derived macrophages (MDM were exposed to H3N2 X31 influenza virus, M37 respiratory syncytial virus (RSV or UV-irradiated virus. No infection of MDM was seen upon exposure to UV-irradiated virus but incubation with live X31 or M37 resulted in significant levels of viral detection by flow cytometry or RT-PCR respectively. Infection resulted in significantly diminished uptake of S. pneumoniae by MDM and significantly decreased expression of CD36 at both the cell surface and mRNA level. Concurrently, there was a significant increase in IFNβ gene expression in response to infection and we observed a significant decrease in bacterial phagocytosis (p = 0.031 and CD36 gene expression (p = 0.031 by MDM cultured for 24 h in 50IU/ml IFNβ. Knockdown of CD36 by siRNA resulted in decreased phagocytosis, but this was mimicked by transfection reagent alone. When MDM were incubated with CD36 blocking antibodies no effect on phagocytic ability was observed. These data indicate that autologous IFNβ production by virally-infected cells can inhibit bacterial phagocytosis, but that decreased CD36 expression by these cells does not play a major role in this functional deficiency.

  11. Human Infection with Burkholderia thailandensis, China, 2013.

    Science.gov (United States)

    Chang, Kai; Luo, Jie; Xu, Huan; Li, Min; Zhang, Fengling; Li, Jin; Gu, Dayong; Deng, Shaoli; Chen, Ming; Lu, Weiping

    2017-08-01

    Burkholderia thailandensis infection in humans is uncommon. We describe a case of B. thailandensis infection in a person in China, a location heretofore unknown for B. thailandensis. We identified the specific virulence factors of B. thailandensis, which may indicate a transition to a new virulent form.

  12. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... people has ranged from mild to severe. Avian Influenza Transmission Avian Influenza Transmission Infographic [555 KB, 2 pages] Spanish [ ... important for public health. Signs and Symptoms of Avian Influenza A Virus Infections in Humans The reported signs ...

  13. Bacterial Infections Following Splenectomy for Malignant and Nonmalignant Hematologic Diseases

    Science.gov (United States)

    Leone, Giuseppe; Pizzigallo, Eligio

    2015-01-01

    Splenectomy, while often necessary in otherwise healthy patients after major trauma, finds its primary indication for patients with underlying malignant or nonmalignant hematologic diseases. Indications of splenectomy for hematologic diseases have been reducing in the last few years, due to improved diagnostic and therapeutic tools. In high-income countries, there is a clear decrease over calendar time in the incidence of all indication splenectomy except nonmalignant hematologic diseases. However, splenectomy, even if with different modalities including laparoscopic splenectomy and partial splenectomy, continue to be a current surgical practice both in nonmalignant hematologic diseases, such as Immune Thrombocytopenic Purpura (ITP), Autoimmune Hemolytic Anemia (AIHA), Congenital Hemolytic Anemia such as Spherocytosis, Sickle Cell Anemia and Thalassemia and Malignant Hematological Disease, such as lymphoma. Today millions of people in the world are splenectomized. Splenectomy, independently of its cause, induces an early and late increase in the incidence of venous thromboembolism and infections. Infections remain the most dangerous complication of splenectomy. After splenectomy, the levels of antibody are preserved but there is a loss of memory B cells against pneumococcus and tetanus, and the loss of marginal zone monocytes deputed to immunological defense from capsulated bacteria. Commonly, the infections strictly correlated to the absence of the spleen or a decreased or absent splenic function are due to encapsulated bacteria that are the most virulent pathogens in this set of patients. Vaccination with polysaccharide and conjugate vaccines again Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis should be performed before the splenectomy. This practice reduces but does not eliminate the occurrence of overwhelming infections due to capsulated bacteria. At present, most of infections found in splenectomized patients are due to Gram

  14. Comparing the bacterial diversity of acute and chronic dental root canal infections.

    Directory of Open Access Journals (Sweden)

    Adriana L Santos

    Full Text Available This study performed barcoded multiplex pyrosequencing with a 454 FLX instrument to compare the microbiota of dental root canal infections associated with acute (symptomatic or chronic (asymptomatic apical periodontitis. Analysis of samples from 9 acute abscesses and 8 chronic infections yielded partial 16S rRNA gene sequences that were taxonomically classified into 916 bacterial species-level operational taxonomic units (OTUs (at 3% divergence belonging to 67 genera and 13 phyla. The most abundant phyla in acute infections were Firmicutes (52%, Fusobacteria (17% and Bacteroidetes (13%, while in chronic infections the dominant were Firmicutes (59%, Bacteroidetes (14% and Actinobacteria (10%. Members of Fusobacteria were much more prevalent in acute (89% than in chronic cases (50%. The most abundant/prevalent genera in acute infections were Fusobacterium and Parvimonas. Twenty genera were exclusively detected in acute infections and 18 in chronic infections. Only 18% (n = 165 of the OTUs at 3% divergence were shared by acute and chronic infections. Diversity and richness estimators revealed that acute infections were significantly more diverse than chronic infections. Although a high interindividual variation in bacterial communities was observed, many samples tended to group together according to the type of infection (acute or chronic. This study is one of the most comprehensive in-deep comparisons of the microbiota associated with acute and chronic dental root canal infections and highlights the role of diverse polymicrobial communities as the unit of pathogenicity in acute infections. The overall diversity of endodontic infections as revealed by the pyrosequencing technique was much higher than previously reported for endodontic infections.

  15. Human Infection with Rickettsia felis, Kenya

    Science.gov (United States)

    2010-07-01

    Human Infection with Rickettsia felis, Kenya Allen L. Richards, Ju Jiang, Sylvia Omulo, Ryan Dare, Khalif Abdirah~a~, P:bdile Ali, Shanaaz K...infection with obligate intracellular rickettsiae , which are transmitted to humans by arthropod vectors (e.g., lice, fleas, ticks, and mites... Rickettsiae are associated with arthropods for a least a part of their life cycle and are passed to other arthropods by transovarial transmission or

  16. A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans.

    Directory of Open Access Journals (Sweden)

    Ilka Engelmann

    Full Text Available While Caenorhabditis elegans specifically responds to infection by the up-regulation of certain genes, distinct pathogens trigger the expression of a common set of genes. We applied new methods to conduct a comprehensive and comparative study of the transcriptional response of C. elegans to bacterial and fungal infection. Using tiling arrays and/or RNA-sequencing, we have characterized the genome-wide transcriptional changes that underlie the host's response to infection by three bacterial (Serratia marcescens, Enterococcus faecalis and otorhabdus luminescens and two fungal pathogens (Drechmeria coniospora and Harposporium sp.. We developed a flexible tool, the WormBase Converter (available at http://wormbasemanager.sourceforge.net/, to allow cross-study comparisons. The new data sets provided more extensive lists of differentially regulated genes than previous studies. Annotation analysis confirmed that genes commonly up-regulated by bacterial infections are related to stress responses. We found substantial overlaps between the genes regulated upon intestinal infection by the bacterial pathogens and Harposporium, and between those regulated by Harposporium and D. coniospora, which infects the epidermis. Among the fungus-regulated genes, there was a significant bias towards genes that are evolving rapidly and potentially encode small proteins. The results obtained using new methods reveal that the response to infection in C. elegans is determined by the nature of the pathogen, the site of infection and the physiological imbalance provoked by infection. They form the basis for future functional dissection of innate immune signaling. Finally, we also propose alternative methods to identify differentially regulated genes that take into account the greater variability in lowly expressed genes.

  17. Perinatal Exposure to Environmental Tobacco Smoke (ETS Enhances Susceptibility to Viral and Secondary Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Jocelyn A. Claude

    2012-10-01

    Full Text Available Studies suggest childhood exposure to environmental tobacco smoke (ETS leads to increased incidence of infections of the lower respiratory tract. The objective of this study was to determine whether perinatal exposure to ETS increases the incidence, morbidity and severity of respiratory influenza infection and whether a secondary bacterial challenge at the peak of a pre-existing viral infection creates an enhanced host-pathogen susceptibility to an opportunistic infection. Timed-pregnant female Balb/c mice were exposed to either ETS for 6 h/day, 7 d/week beginning on gestation day 14 and continuing with the neonates to 6 weeks of age. Control animals were exposed to filtered air (FA. At the end of exposure, mice were intranasally inoculated with a murine-adapted influenza A. One week later, an intranasal inoculation of S. aureus bacteria was administered. The respective treatment groups were: bacteria only, virus only or virus+bacteria for both FA and ETS-exposed animals for a total of six treatment groups. Animal behavior and body weights were documented daily following infection. Mice were necropsied 1-day post-bacterial infection. Bronchoalveolar lavage fluid (BALF cell analysis demonstrated perinatal exposure to ETS, compared to FA, leads to delayed but enhanced clinical symptoms and enhanced total cell influx into the lungs associated with viral infection followed by bacterial challenge. Viral infection significantly increases the number of neutrophils entering the lungs following bacterial challenge with either FA or ETS exposure, while the influx of lymphocytes and monocytes is significantly enhanced only by perinatal ETS exposure. There is a significant increase in peribronchiolar inflammation following viral infection in pups exposed to ETS compared with pups exposed to FA, but no change is noted in the degree of lung injury between FA and ETS-exposed animals following bacterial challenge. The data suggests perinatal exposure to ETS

  18. Humanized Mouse Models of Staphylococcus aureus Infection

    Directory of Open Access Journals (Sweden)

    Dane Parker

    2017-05-01

    Full Text Available Staphylococcus aureus is a successful human pathogen that has adapted itself in response to selection pressure by the human immune system. A commensal of the human skin and nose, it is a leading cause of several conditions: skin and soft tissue infection, pneumonia, septicemia, peritonitis, bacteremia, and endocarditis. Mice have been used extensively in all these conditions to identify virulence factors and host components important for pathogenesis. Although significant effort has gone toward development of an anti-staphylococcal vaccine, antibodies have proven ineffective in preventing infection in humans after successful studies in mice. These results have raised questions as to the utility of mice to predict patient outcome and suggest that humanized mice might prove useful in modeling infection. The development of humanized mouse models of S. aureus infection will allow us to assess the contribution of several human-specific virulence factors, in addition to exploring components of the human immune system in protection against S. aureus infection. Their use is discussed in light of several recently reported studies.

  19. Bacterial pattern and antibiotic sensitivity in children and adolescents with infected atopic dermatitis

    Science.gov (United States)

    Samosir, C. T.; Ruslie, R. H.; Rusli, R. E.

    2018-03-01

    Atopic dermatitis (AD) is a pruritic and chronic inflammatory skin disease which affected approximately 20% in children. Bacterial infection is common in AD patients and correlates directly with AD severity. A cross-sectional study was conducted to evaluate the prevalence of bacterial skin infection in AD patients and its relation with severity of AD and also to study bacteria in the infected AD and its antibiotic sensitivity. Samples were 86 children and adolescents with an AD in Helvetia Community Health Center Medan from March 2016 until February 2017. Index of SCORing Atopic Dermatitis (SCORAD) was used to evaluate the severity of AD. Lesion and nonlesional skinwere swabbed to take sterile cultures. All bacteria noted and tested for antibiotic sensitivity. Datawere by using Chi-Square and Mann Whitney test with 95% CI and p-value<0.05 was considered statistically significant. Fifty-six AD patients (65.1%) were bacterial infected. There was a significant relationship between severity of AD and bacterial infection (p = 0.006). Staphylococcus aureus was the leading bacteria from all degrees of AD severity. Isolated Staphylococcus aureuswas sensitive to amoxicillin-clavulanate (93.3%), clindamycin (90%), erythromycin (90%), and gentamicin (90%), while sensitivity to tetracycline was low (20%).

  20. Proinflammatory effects of bacterial lipoprotein on human neutrophil activation status, function and cytotoxic potential in vitro.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    Bacterial lipoprotein (BLP) is the most abundant protein in gram-negative bacterial cell walls, heavily outweighing lipopolysaccharide (LPS). Herein we present findings demonstrating the potent in vitro effects of BLP on neutrophil (PMN) activation status, function, and capacity to transmigrate an endothelial monolayer. PMNs are the principal effectors of the initial host response to injury or infection and constitute a significant threat to invading bacterial pathogens. The systemic inflammatory response syndrome (SIRS) is characterised by significant host tissue injury mediated, in part, by uncontrolled regulation of PMN cytotoxic activity. We found that BLP-activated human PMN as evidenced by increased CD11b\\/CD18 (Mac-1) expression. Up-regulation of PMN Mac-1 in response to BLP occurred independently of membrane-bound CD14 (mCD14). A similar up-regulation of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells was observed whilst E-Selectin expression was unaffected. PMN transmigration across a human umbilical vein endothelial cell (HUVEC) monolayer was markedly increased after treating either PMN\\'s or HUVEC independently with BLP. This increased transmigration did not occur as a result of any direct effect of BLP on HUVEC monolayer permeability, assessed objectively using the passage of FITC-labeled Dextran-70. BLP primed PMN for enhanced respiratory burst and superoxide anion production in response to PMA, but did not influence phagocytosis of opsonized Escherichia coli. BLP far exceeds LPS as a gram-negative bacterial wall component, these findings therefore implicate BLP as an additional putative mediator of SIRS arising from gram-negative infection.

  1. Bacterial infections in alcoholic and nonalcoholic liver cirrhosis

    DEFF Research Database (Denmark)

    Sargenti, Konstantina; Prytz, Hanne; Bertilsson, Sara

    2015-01-01

    .001), this relationship was not significant after adjustment for confounders in Cox regression analysis (P=0.056). Resistance to piperacilin-tazobactam and carbapenems was more common in infections occurring in alcoholic versus nonalcoholic cirrhosis (13 vs. 5%, P=0.057 and 12 vs. 2%, P=0.009). Alcoholic etiology...

  2. Healthcare-associated viral and bacterial infections in dentistry

    NARCIS (Netherlands)

    Laheij, A.M.G.A.; Kistler, J.O.; Belibasakis, G.N.; Valimaa, H.; de Soet, J.J.

    2012-01-01

    Infection prevention in dentistry is an important topic that has gained more interest in recent years and guidelines for the prevention of cross-transmission are common practice in many countries. However, little is known about the real risks of cross-transmission, specifically in the dental

  3. Bacterial aetiology in lower respiratory tract infections : Relevance in outpatients

    NARCIS (Netherlands)

    Teepe, J.

    2017-01-01

    Lower respiratory tract infection (LRTI) is one of the leading reasons for consulting in primary care. Today, a general practitioner faces the challenge of distinguishing between patients with a mild self-limiting disease to whom antibiotics would do more harm than good and those who would benefit

  4. Biomarker-based classification of bacterial and fungal whole-blood infections in a genome-wide expression study

    Directory of Open Access Journals (Sweden)

    Andreas eDix

    2015-03-01

    Full Text Available Sepsis is a clinical syndrome that can be caused by bacteria or fungi. Early knowledge on the nature of the causative agent is a prerequisite for targeted anti-microbial therapy. Besides currently used detection methods like blood culture and PCR-based assays, the analysis of the transcriptional response of the host to infecting organisms holds great promise. In this study, we aim to examine the transcriptional footprint of infections caused by the bacterial pathogens Staphylococcus aureus and Escherichia coli and the fungal pathogens Candida albicans and Aspergillus fumigatus in a human whole-blood model. Moreover, we use the expression information to build a random forest classifier to classify if a sample contains a bacterial, fungal, or mock-infection. After normalizing the transcription intensities using stably expressed reference genes, we filtered the gene set for biomarkers of bacterial or fungal blood infections. This selection is based on differential expression and an additional gene relevance measure. In this way, we identified 38 biomarker genes, including IL6, SOCS3, and IRG1 which were already associated to sepsis by other studies. Using these genes, we trained the classifier and assessed its performance. It yielded a 96% accuracy (sensitivities >93%, specificities >97% for a 10-fold stratified cross-validation and a 92% accuracy (sensitivities and specificities >83% for an additional test dataset comprising Cryptococcus neoformans infections. Furthermore, the classifier is robust to Gaussian noise, indicating correct class predictions on datasets of new species. In conclusion, this genome-wide approach demonstrates an effective feature selection process in combination with the construction of a well-performing classification model. Further analyses of genes with pathogen-dependent expression patterns can provide insights into the systemic host responses, which may lead to new anti-microbial therapeutic advances.

  5. Procalcitonin Identifies Cell Injury, Not Bacterial Infection, in Acute Liver Failure.

    Directory of Open Access Journals (Sweden)

    Jody A Rule

    Full Text Available Because acute liver failure (ALF patients share many clinical features with severe sepsis and septic shock, identifying bacterial infection clinically in ALF patients is challenging. Procalcitonin (PCT has proven to be a useful marker in detecting bacterial infection. We sought to determine whether PCT discriminated between presence and absence of infection in patients with ALF.Retrospective analysis of data and samples of 115 ALF patients from the United States Acute Liver Failure Study Group randomly selected from 1863 patients were classified for disease severity and ALF etiology. Twenty uninfected chronic liver disease (CLD subjects served as controls.Procalcitonin concentrations in most samples were elevated, with median values for all ALF groups near or above a 2.0 ng/mL cut-off that generally indicates severe sepsis. While PCT concentrations increased somewhat with apparent liver injury severity, there were no differences in PCT levels between the pre-defined severity groups-non-SIRS and SIRS groups with no documented infections and Severe Sepsis and Septic Shock groups with documented infections, (p = 0.169. PCT values from CLD patients differed from all ALF groups (median CLD PCT value 0.104 ng/mL, (p ≤0.001. Subjects with acetaminophen (APAP toxicity, many without evidence of infection, demonstrated median PCT >2.0 ng/mL, regardless of SIRS features, while some culture positive subjects had PCT values <2.0 ng/mL.While PCT appears to be a robust assay for detecting bacterial infection in the general population, there was poor discrimination between ALF patients with or without bacterial infection presumably because of the massive inflammation observed. Severe hepatocyte necrosis with inflammation results in elevated PCT levels, rendering this biomarker unreliable in the ALF setting.

  6. Porcine models of non-bacterial thrombotic endocarditis (NBTE) and infective endocarditis (IE) caused by Staphylococcus aureus: a preliminary study.

    Science.gov (United States)

    Christiansen, Johanna G; Jensen, Henrik E; Johansen, Louise K; Kochl, Janne; Koch, Jørgen; Aalbaek, Bent; Nielsen, Ole L; Leifsson, Páll S

    2013-05-01

    Non-bacterial thrombotic endocarditis (NBTE) and, in particular, infective endocarditis (IE), are serious and potentially life-threatening diseases. An increasingly important agent of human IE is Staphylococcus aureus, which typically causes an acute endocarditis with high mortality. The study aim was to evaluate the pig as a model for non-bacterial as well as S. aureus-associated endocarditis, as these models would have several advantages compared to other laboratory animal models. Fourteen animals underwent surgery with placement of a plastic catheter in the left side of the heart. Six of the pigs did not receive a bacterial inoculation and were used to study the development of NBTE. The remaining eight pigs were inoculated intravenously once or twice with S. aureus, 10(5)-10(7) cfu/kg body weight. Two bacterial strains were used: S54F9 (porcine) and NCTC8325-4 (human). Clinical examination, echocardiography and bacterial blood cultures were used to diagnose and monitor the development of endocarditis. Animals were euthanized at between two and 15 days after catheter placement, and tissue samples were collected for bacteriology and histopathology. Pigs inoculated with 10(7) cfu/kg of S. aureus strain S54F9 developed clinical, echocardiographic and pathologic signs of IE. All other pigs, except one, developed NBTE. Serial blood cultures withdrawn after inoculation were positive in animals with IE, and negative in all other animals. S. aureus endocarditis was successfully induced in pigs with an indwelling cardiac catheter after intravenous inoculation of 10(7) cfu/kg of S. aureus strain S54F9. The model simulates typical pathological, clinical and diagnostic features seen in the human disease. Furthermore, NBTE was induced in all but one of the pigs without IE. Thus, the pig model can be used in future studies of the pathogenesis, diagnosis and therapy of NBTE and S. aureus endocarditis.

  7. From bacterial to human dihydrouridine synthase: automated structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Fiona, E-mail: fiona.whelan@york.ac.uk; Jenkins, Huw T., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Griffiths, Samuel C. [University of Oxford, Headington, Oxford OX3 7BN (United Kingdom); Byrne, Robert T. [Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich (Germany); Dodson, Eleanor J.; Antson, Alfred A., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-06-30

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.

  8. From bacterial to human dihydrouridine synthase: automated structure determination

    International Nuclear Information System (INIS)

    Whelan, Fiona; Jenkins, Huw T.; Griffiths, Samuel C.; Byrne, Robert T.; Dodson, Eleanor J.; Antson, Alfred A.

    2015-01-01

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer

  9. Getting “Inside” Type I IFNs: Type I IFNs in Intracellular Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Deann T. Snyder

    2017-01-01

    Full Text Available Type I interferons represent a unique and complex group of cytokines, serving many purposes during innate and adaptive immunity. Discovered in the context of viral infections, type I IFNs are now known to have myriad effects in infectious and autoimmune disease settings. Type I IFN signaling during bacterial infections is dependent on many factors including whether the infecting bacterium is intracellular or extracellular, as different signaling pathways are activated. As such, the repercussions of type I IFN induction can positively or negatively impact the disease outcome. This review focuses on type I IFN induction and downstream consequences during infection with the following intracellular bacteria: Chlamydia trachomatis, Listeria monocytogenes, Mycobacterium tuberculosis, Salmonella enterica serovar Typhimurium, Francisella tularensis, Brucella abortus, Legionella pneumophila, and Coxiella burnetii. Intracellular bacterial infections are unique because the bacteria must avoid, circumvent, and even co-opt microbial “sensing” mechanisms in order to reside and replicate within a host cell. Furthermore, life inside a host cell makes intracellular bacteria more difficult to target with antibiotics. Because type I IFNs are important immune effectors, modulating this pathway may improve disease outcomes. But first, it is critical to understand the context-dependent effects of the type I IFN pathway in intracellular bacterial infections.

  10. Widespread bacterial infection affecting Rana temporaria tadpoles in mountain areas

    Directory of Open Access Journals (Sweden)

    Rocco Tiberti

    2011-06-01

    Full Text Available Periodic mass die-offs of Rana temporaria tadpole populations have occurred in the ponds of prealpine mountain areas of Brescia (northern Italy since the early 2000s. The author reports some observational data and analytical results from three sites: tadpoles from mortality events had erythema, especially on the legs, suggestive of septicemia. Bacterial culture of these tadpoles revealed Aeromonas hydrophila and Aeromonas sobria, two organisms often associated with Red leg disease. Egg mass counts from 29 pastureland ponds did not revealed breeding activity declines over five years in the Monte Guglielmo area. Aeromonas hydrophila and Aeromonas sobria usually behave as opportunistic bacteria that can become pathogenic after suppression of the immune system by endogenous or exogenous stressors. Thus, a plurality of environmental factors may contribute to mortality events; some of them are discussed, including loss of high altitude breeding ponds resulting in overcrowding and poor water quality in remaining ponds and the presence of other pathogens.

  11. Subclinical human papillomavirus infection of the cervix

    International Nuclear Information System (INIS)

    Al-Waiz, M.; Al-Saadi, Rabab N.; Al-Saadi, Zahida A.; Al-Rawi, Faiza A.

    2001-01-01

    A prospective study to investigate a group of Iraqi woman with proved genital vulval warts, to seek evidence of human papillomavirus infection in apparently normal looking cervixes and to investigate the natural history of infection. From December 1997 to August 1998, 20 women with vulval warts were enrolled along with 20 aged-matched control cases without warts. Their ages ranged between 19-48 years with a mean of 30.4 years, (+/- standard deviation = 2.3) for patients and 18-48 years with a mean of 29.7 (+/- standard deviation = 2.7) for the control group. General and gynecological examinations were carried out. Cervical swabs for associated genital infection, papilloma smears, speculoscopy and directed punch biopsies were carried out to detect subclinical human papillomavirus infections of the cervix and associated intraepithelial neoplasm. Cytology results showed that 11 (55%) of patients had evidence of cervical infection by human papillomavirus, 6 (30%) showed mild dysplastic changes, 3 (15%) showed moderate dysplastic changes, whilst 2 (10%) showed no dysplastic changes. Speculoscopy and acetowhitening was positive in 11 (55%) and collated histological results showed evidence of human papillomavirus infection in 9 patients (45%). As for the control group one case (5%) had evidence of human papillomavirus infection. Subclinical human papillomavirus infection is more common than was previously thought among Iraqi women. It may appear alone or in association with vulval or exophytic cervical warts, or both, and may be more common than the clinically obvious disease. Speculoscopy as an adjunctive method to colposcopy was found to be a simple and an easy to perform technique. Its combination with cytology gave relatively good results when it was used as a triage instrument, and may have a more promising performance in the future. (author)

  12. PREVALENCE OF INFECTION WITH HUMAN HERPESVIRUS ...

    African Journals Online (AJOL)

    human herpesvirus 8 (HHV 8): Distribution of infection in Kaposi's sarcoma risk groups and evidence of sexual transmission. Nat Med 1996; 2: 918-924. 14. Kedes OH, Ganem 0, Ameli N, Bacchetti p. Greenblatt R The prevalence of serum antibody to human herpesvirus 8 (Kaposi sarcoma-associated hepesvirus) among ...

  13. Diagnostic markers of serious bacterial infections in febrile infants younger than 90 days old.

    Science.gov (United States)

    Nosrati, Adi; Ben Tov, Amir; Reif, Shimon

    2014-02-01

    The aim of this study was to assess correlations between demographic, clinical and laboratory characteristics and the risk of serious bacterial infection (SBI) in febrile urinary tract infection (43 infants; 90% of all SBI), three infants had bacteremia, one had bacterial pneumonia and one had bacterial meningitis. Significant independent clinical predictors for the diagnosis of SBI included duration of fever, absence of rhinitis and the absence of lung and skin manifestations. Significant independent laboratory predictors were absolute neutrophil count (ANC), platelets, blood urea nitrogen and C-reactive protein (CRP) level. On receiver operating characteristic curve analysis, the CRP area under the curve (0.819) was significantly superior to ANC and leukocyte count. Of the clinical and laboratory variables selected for evaluation, qualitative CRP was the strongest independent predictor for diagnosing SBI and a significantly better diagnostic marker than clinical characteristics, ANC and white blood cell count. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  14. Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections

    Directory of Open Access Journals (Sweden)

    Adrian eRangel-Vega

    2015-04-01

    Full Text Available Bacterial infections remain one of the leading causes of death worldwide, and the therapeutic outlook for these infections is worsening, due the rise of antibiotic resistant strains. The pharmaceutical industry has produced few new types of antibiotics in more than a decade. Researchers are taking several approaches towards developing new classes of antibiotics, including (1 focusing on new targets and processes, such as bacterial cell-cell communication that upregulates virulence; (2 designing inhibitors of bacterial resistance, such as blockers of multi-drug efflux pumps; and (3 using alternative antimicrobials such as bacteriophages. In addition, the strategy of finding new uses for existing drugs is beginning to produce results: antibacterial properties have been discovered in existing anticancer, antifungal, anthelmintic, and anti-inflammatory drugs. In this work we discuss the antimicrobial properties of gallium based compounds, 5-fluorouracil, ciclopirox, diflunisal, and some other FDA-approved drugs.

  15. Hypovitaminosis A coupled to secondary bacterial infection in beef cattle

    Directory of Open Access Journals (Sweden)

    He Xiuyuan

    2012-11-01

    Full Text Available Abstract Background Vitamin A is essential for normal growth, development, reproduction, cell proliferation, cell differentiation, immune function and vision. Hypovitaminosis A can lead to a series of pathological damage in animals. This report describes the case of hypovitaminosis A associated with secondary complications in calves. Case presentation From February to March in 2011, 2-and 3-month old beef calves presented with decreased eyesight, apparent blindness and persistent diarrhea occurred in a cattle farm of Hubei province, China. Based on history inspection and clinical observation, we made a tentative diagnosis of hypovitaminosis A. The disease was confirmed as a congenital vitamin A deficiency by determination of the concentrations of vitamin A in serum and feed samples. Furthermore, pathological and microbiological examination showed that the disease was associated with pathogenic Escherichia coli (E. coli infection and mucosal barriers damage in intestines. The corresponding treatments were taken immediately, and the disease was finally under control for a month. Conclusions To our knowledge, this is the first report of hypovitaminosis A coupled to secondary infection of E. coli in beef cattle, advancing our knowledge of how vitamin A affects infection and immunity in animals. This study could also be contributed to scientific diagnosis and treatments of complex hypovitaminosis A in cattle.

  16. Delayed metamorphosis and recurrence of bacterial infection in irradiated Rana clamitans tadpoles

    International Nuclear Information System (INIS)

    Hart, D.R.

    1982-03-01

    X-ray doses of 5 and 10 Gy (1 Gy/min) given to premetamorphic Green Frog (Rana clamitans) tadpoles delayed their metamorphosis relative to unirradiated controls. Previous pathogenic bacterial infections recurred in irradiated animals prior to metamorphic climax. Limited mortality occurred during metamorphic climax, 80-105 days after irradiation

  17. Responses of the coastal bacterial community to viral infection of the algae Phaeocystis globosa

    NARCIS (Netherlands)

    Sheik, A.R.; Brussaard, C.P.D.; Lavik, G.; Lam, P.; Musat, N.; Krupke, A.; Littmann, S.; Strous, M.; Kuypers, M.M.M.

    2014-01-01

    The release of organic material upon algal cell lyses has a key role in structuring bacterial communities and affects the cycling of biolimiting elements in the marine environment. Here we show that already before cell lysis the leakage or excretion of organic matter by infected yet intact algal

  18. Responses of the coastal bacterial community to viral infection of the algae

    NARCIS (Netherlands)

    Sheik, A.R.; Brussaard, C.P.D.; Lavik, G.; Lam, P.; Musat, N.; Krupke, A.; Littmann, S.; Strous, M.; Kuypers, M.M.M.

    2014-01-01

    The release of organic material upon algal cell lyses has a key role in structuring bacterial communities and affects the cycling of biolimiting elements in the marine environment. Here we show that already before cell lysis the leakage or excretion of organic matter by infected yet intact algal

  19. Acute bacterial infections of the lower respiratory tract in children from low-income countries

    NARCIS (Netherlands)

    Fleer, A; Wolf, B.H.M.

    Acute bacterial infection of the lower respiratory tract is a major cause of morbidity and mortality in children and is responsible for 4 million childhood deaths each year. Most of these deaths are caused by pneumonia and occur in the youngest children in the poorest parts of the world. Severe

  20. A predictive model to estimate the risk of serious bacterial infections in febrile infants

    NARCIS (Netherlands)

    Berger, RMF; Berger, MY; vanSteenselMoll, HA; DzoljicDanilovic, G; DerksenLubsen, G

    Low risk criteria have been defined to identify febrile infants unlikely to have serious bacterial infection (SBI). Using these criteria approximately 40% of all febrile infants can be defined as being at low risk. Of the remaining infants (60%) only 10%-20% have an SBI. No adequate criteria exists

  1. Bacterial co-infections in a captive Python bivittatus with septicemia

    African Journals Online (AJOL)

    ADEYEYE

    2016-05-27

    May 27, 2016 ... *Correspondence: Tel.: +60 1116689774, E-mail: usuba5050@yahoo.com. Abstract. This case reports bacterial co-infection in a dead albino python (Python bivittatus). The snake was brought in dead to the Universiti Veterinary Hospital, Universiti Putra Malaysia. Necropsy was conducted and organ.

  2. Experimental infection of plants with an herbivore-associated bacterial endosymbiont influences herbivore host selection behavior.

    Directory of Open Access Journals (Sweden)

    Thomas Seth Davis

    Full Text Available Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum to psyllids infected with "Candidatus Liberibacter solanacearum" or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1 plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2 herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3 plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance.

  3. Besifloxacin: a novel anti-infective for the treatment of bacterial conjunctivitis

    Directory of Open Access Journals (Sweden)

    Timothy L Comstock

    2010-03-01

    Full Text Available Timothy L Comstock1, Paul M Karpecki2, Timothy W Morris3, Jin-Zhong Zhang41Global Medical Affairs, Pharmaceuticals, Bausch and Lomb, Inc., Rochester, NY, USA; 2Koffler Vision Group, Lexington, KY, USA; 3Research and Development Microbiology and Sterilization Sciences, Bausch and Lomb, Inc., Rochester, NY, USA; 4Global Preclinical Development, Bausch and Lomb, Inc., Rochester, NY, USAAbstract: Bacterial conjunctivitis, commonly known as pink eye, is demographically unbiased in its prevalence and can be caused by a variety of aerobic and anaerobic bacteria. Timely empiric treatment with a broad-spectrum anti-infective, such as a topical fluoroquinolone, is critical in preventing potentially irreversible ocular damage. However, the rise in ocular methicillin-resistant Staphylococcus aureus isolates and the patterns of fluoroquinolone resistance for patients with other ocular bacterial infections mandate the need for new agents targeted for ocular use. Besifloxacin, a novel broad-spectrum fluoroquinolone, is approved for the treatment of bacterial conjunctivitis. It has a uniquely balanced dual-targeting activity that inhibits both DNA gyrase and topoisomerase IV and is associated with a lower incidence of resistance development. Besifloxacin is not marketed in other formulations, ensuring that its exposure is limited to bacterial populations in and around the eye. This specifically precludes any bacterial exposure to besifloxacin resulting from systemic use, which further reduces the likelihood of emergence of bacterial resistance. In vitro, besifloxacin has demonstrated equivalent or superior activity compared with other commonly used topical antibiotics. In clinical trials, besifloxacin has consistently demonstrated efficacy and safety in the treatment of patients with bacterial conjunctivitis. Besifloxacin is considered safe and is well tolerated with no observed contraindications.Keywords: conjunctivitis, fluoroquinolones, besifloxacin

  4. New Parameters to Quantitatively Express the Invasiveness of Bacterial Strains from Implant-Related Orthopaedic Infections into Osteoblast Cells

    Directory of Open Access Journals (Sweden)

    Davide Campoccia

    2018-04-01

    Full Text Available Complete eradication of bacterial infections is often a challenging task, especially in presence of prosthetic devices. Invasion of non-phagocytic host cells appears to be a critical mechanism of microbial persistence in host tissues. Hidden within host cells, bacteria elude host defences and antibiotic treatments that are intracellularly inactive. The intracellular invasiveness of bacteria is generally measured by conventional gentamicin protection assays. The efficiency of invasion, however, markedly differs across bacterial species and adjustments to the titre of the microbial inocula used in the assays are often needed to enumerate intracellular bacteria. Such changes affect the standardisation of the method and hamper a direct comparison of bacteria on a same scale. This study aims at investigating the precise relation between inoculum, in terms of multiplicity of infection (MOI, and internalised bacteria. The investigation included nine Staphylococcus aureus, seven Staphylococcus epidermidis, five Staphylococcus lugdunensis and two Enterococcus faecalis clinical strains, which are co-cultured with MG63 human osteoblasts. Unprecedented insights are offered on the relations existing between MOI, number of internalised bacteria and per cent of internalised bacteria. New parameters are identified that are of potential use for qualifying the efficiency of internalization and compare the behaviour of bacterial strains.

  5. New Parameters to Quantitatively Express the Invasiveness of Bacterial Strains from Implant-Related Orthopaedic Infections into Osteoblast Cells.

    Science.gov (United States)

    Campoccia, Davide; Montanaro, Lucio; Ravaioli, Stefano; Cangini, Ilaria; Testoni, Francesca; Visai, Livia; Arciola, Carla Renata

    2018-04-03

    Complete eradication of bacterial infections is often a challenging task, especially in presence of prosthetic devices. Invasion of non-phagocytic host cells appears to be a critical mechanism of microbial persistence in host tissues. Hidden within host cells, bacteria elude host defences and antibiotic treatments that are intracellularly inactive. The intracellular invasiveness of bacteria is generally measured by conventional gentamicin protection assays. The efficiency of invasion, however, markedly differs across bacterial species and adjustments to the titre of the microbial inocula used in the assays are often needed to enumerate intracellular bacteria. Such changes affect the standardisation of the method and hamper a direct comparison of bacteria on a same scale. This study aims at investigating the precise relation between inoculum, in terms of multiplicity of infection (MOI), and internalised bacteria. The investigation included nine Staphylococcus aureus , seven Staphylococcus epidermidis , five Staphylococcus lugdunensis and two Enterococcus faecalis clinical strains, which are co-cultured with MG63 human osteoblasts. Unprecedented insights are offered on the relations existing between MOI, number of internalised bacteria and per cent of internalised bacteria. New parameters are identified that are of potential use for qualifying the efficiency of internalization and compare the behaviour of bacterial strains.

  6. Man's best friend: How humans can develop Dirofilaria immitis infections

    Directory of Open Access Journals (Sweden)

    Devin Malik

    2016-01-01

    Full Text Available Canine heartworm, Dirofilaria immitis, is a nematode parasite that infects dogs by way of mosquito bite. Rarely, humans play accidental hosts to this parasite and are not a suitable environment for the nematode to live. As the parasite dies in the pulmonary vessels it embolizes the vessels causing infarction and eventual nodule formation in the lungs. In the right clinical context, a nodule can be considered malignant prompting invasive tissue sampling. We describe a case of a 48-year-old man who was found to have multiple asymptomatic scattered pulmonary nodules during imaging workup for an insulinoma. Fine needle biopsy of the largest nodule revealed a necrotic granuloma, lab testing and culture ruled out fungal and bacterial causes. Clinically, this picture was consistent with D. immitis infection.

  7. Coxiella Burnetii: Host and Bacterial Responses to Infection

    Science.gov (United States)

    2007-10-16

    sheep, and pos- ibly cows [8,9]. In the laboratory, C. burnetii is routinely ultured in chicken embryo yolk sacs, in cell cultures, and can e recovered...rickettsial diseases in man, PAHO Science Publication Num- ber 147. Wahington, DC: Pan American Health Organization; 1966. p. 528–31. 84] Bell JF, Lackman DB...and immunological properties of Coxiella burnetii vaccines in C57BL/10ScN endotoxin-nonresponder mice. Infect Immun 1982;35(3):1091–102. 92] Fries LF

  8. Bacterial Infection Increases Reproductive Investment in Burying Beetles

    Directory of Open Access Journals (Sweden)

    Catherine E. Reavey

    2015-10-01

    Full Text Available The Nicrophorus genus lives and breeds in a microbe rich environment. As such, it would be expected that strategies should be in place to counter potentially negative effects of the microbes common to this environment. In this study, we show the response of Nicrophorus vespilloides to the common soil bacterium, Bacillus subtilis. Phenoloxidase (PO levels are not upregulated in response to the challenge and the bacteria are observed to multiply within the haemolymph of the host. Despite the growth of B. subtilis, survival is not affected, either in virgin or in breeding beetles. Some limit on bacterial growth in the haemolymph does seem to be occurring, suggesting mechanisms of resistance, in addition to tolerance mechanisms. Despite limited detrimental effects on the individual, the challenge by Bacillus subtilis appears to act as a cue to increase reproductive investment. The challenge may indicate a suite of negative environmental conditions that could compromise future breeding opportunities. This could act as a cue to increase parental investment in the current bout.

  9. A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta

    Science.gov (United States)

    Whidbey, Christopher; Harrell, Maria Isabel; Burnside, Kellie; Ngo, Lisa; Becraft, Alexis K.; Iyer, Lakshminarayan M.; Aravind, L.; Hitti, Jane

    2013-01-01

    Microbial infection of the amniotic fluid is a significant cause of fetal injury, preterm birth, and newborn infections. Group B Streptococcus (GBS) is an important human bacterial pathogen associated with preterm birth, fetal injury, and neonatal mortality. Although GBS has been isolated from amniotic fluid of women in preterm labor, mechanisms of in utero infection remain unknown. Previous studies indicated that GBS are unable to invade human amniotic epithelial cells (hAECs), which represent the last barrier to the amniotic cavity and fetus. We show that GBS invades hAECs and strains lacking the hemolysin repressor CovR/S accelerate amniotic barrier failure and penetrate chorioamniotic membranes in a hemolysin-dependent manner. Clinical GBS isolates obtained from women in preterm labor are hyperhemolytic and some are associated with covR/S mutations. We demonstrate for the first time that hemolytic and cytolytic activity of GBS is due to the ornithine rhamnolipid pigment and not due to a pore-forming protein toxin. Our studies emphasize the importance of the hemolytic GBS pigment in ascending infection and fetal injury. PMID:23712433

  10. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.

    Science.gov (United States)

    Pati, Rashmirekha; Mehta, Ranjit Kumar; Mohanty, Soumitra; Padhi, Avinash; Sengupta, Mitali; Vaseeharan, Baskarlingam; Goswami, Chandan; Sonawane, Avinash

    2014-08-01

    Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt bacterial cell membrane integrity, reduce cell surface hydrophobicity and down-regulate the transcription of oxidative stress-resistance genes in bacteria. ZnO-NP treatment also augmented the intracellular bacterial killing by inducing reactive oxygen species production and co-localization with Mycobacterium smegmatis-GFP in macrophages. Moreover, ZnO-NPs disrupted biofilm formation and inhibited hemolysis by hemolysin toxin producing S. aureus. Intradermal administration of ZnO-NPs significantly reduced the skin infection, bacterial load and inflammation in mice, and also improved infected skin architecture. We envision that this study offers novel insights into antimicrobial actions of ZnO-NPs and also demonstrates ZnO-NPs as a novel class of topical anti-infective agent for the treatment of skin infections. This in-depth study demonstrates properties of ZnO nanoparticles in infection prevention and treatment in several skin infection models, dissecting the potential mechanisms of action of these nanoparticles and paving the way to human applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. M13 virus based detection of bacterial infections in living hosts.

    Science.gov (United States)

    Bardhan, Neelkanth M; Ghosh, Debadyuti; Belcher, Angela M

    2014-08-01

    We report a first method for using M13 bacteriophage as a multifunctional scaffold for optically imaging bacterial infections in vivo. We demonstrate that M13 virus conjugated with hundreds of dye molecules (M13-Dye) can target and distinguish pathogenic infections of F-pili expressing and F-negative strains of E. coli. Further, in order to tune this M13-Dye complex suitable for targeting other strains of bacteria, we have used a 1-step reaction for creating an anti-bacterial antibody-M13-Dye probe. As an example, we show anti-S. aureus-M13-Dye able to target and image infections of S. aureus in living hosts, with a 3.7× increase in fluorescence over background. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Traditional insulin-use practices and the incidence of bacterial contamination and infection.

    Science.gov (United States)

    Borders, L M; Bingham, P R; Riddle, M C

    1984-01-01

    While complex procedures are usually recommended to prevent infection at insulin injection sites, adherence to these procedures is imperfect and their value incompletely established. Among 254 adult insulin users in two clinic populations, the reported prevalence of complete performance of four traditional insulin-use practices (handwashing, vial prep, skin prep, discarding of plastic syringes after one use) was 29%, and none of the individual practices considered was performed regularly by more than two-thirds of the subjects. Even so, there was no infection at 2828 injection sites, and there was no significant bacterial contamination of insulin or syringes. These findings fail to support the view that traditional practices provide protection to insulin users against infection or bacterial growth in insulin or syringes. The authors suggest that modification of traditional teaching methods would do no harm, and that benefits could include financial savings, improved client success with self-care, and enhanced health care provider credibility.

  13. First human systemic infection caused by Spiroplasma.

    Science.gov (United States)

    Aquilino, Ana; Masiá, Mar; López, Pilar; Galiana, Antonio J; Tovar, Juan; Andrés, María; Gutiérrez, Félix

    2015-02-01

    Spiroplasma species are organisms that normally colonize plants and insects. We describe the first case of human systemic infection caused by Spiroplasma bacteria in a patient with hypogammaglobulinemia undergoing treatment with biological disease-modifying antirheumatic agents. Spiroplasma turonicum was identified through molecular methods in several blood cultures. The infection was successfully treated with doxycycline plus levofloxacin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Cytokine patterns in paediatric patients presenting serious gastrointestinal and respiratory bacterial infections

    Science.gov (United States)

    Palacios-Martínez, Monika; Rodríguez-Cruz, Leonor; Cortés-Bejar, Consuelo Del Carmen; Valencia-Chavarría, Fernando; Martínez-Gómez, Daniel; González-Torres, María Cristina

    2014-01-01

    In the adaptive immune response, the types of cytokines produced define whether there is a cellular (T1) or a humoral (T2) response. Specifically, in the T1 response, interleukin 2 (IL-2), interferon γ (IFN-γ) and tumor necrosis factor β (TNF-β) are produced, whereas in the T2 response, IL-4, IL-5, IL- 6, IL-10 and IL-13 are primarily produced. Cytokines are primarily involved in the regulation of immune system cells. The aim of the present study was to evaluate the cytokine patterns (Type 1/Type 2) and TNF-α expression levels in children with severe gastrointestinal and respiratory bacterial infections. The enzyme-linked immunosorbent assay (ELISA) technique was used to identify the cytokines and the infectious agents. The results obtained demonstrated that, in general, children with bacterial infections experienced an increase in IL-2, IFN-γ and IL-4 concentrations and a decrease in TNF-α, IL-5 and IL-6 concentrations when compared to healthy children. Specifically, type 1 cytokines and an increased TNF-α concentration were found in children with gastrointestinal infections. However, patients with respiratory infections showed increased concentrations of both T2 (IL-4, IL-6 and IL-10) and T1 (IL-2 and IFN-γ) components. Thus, it was concluded that children with gastrointestinal infections exclusively developed a T1 response, whereas children with respiratory infections developed a T1/T2 response to fight the infection. PMID:26155128

  15. Empiric Antibiotic Use and Susceptibility in Infants With Bacterial Infections: A Multicenter Retrospective Cohort Study.

    Science.gov (United States)

    Feldman, Elana A; McCulloh, Russell J; Myers, Angela L; Aronson, Paul L; Neuman, Mark I; Bradford, Miranda C; Alpern, Elizabeth R; Balamuth, Frances; Blackstone, Mercedes M; Browning, Whitney L; Hayes, Katie; Korman, Rosalynne; Leazer, Rianna C; Nigrovic, Lise E; Marble, Richard; Roben, Emily; Williams, Derek J; Tieder, Joel S

    2017-07-20

    To assess hospital differences in empirical antibiotic use, bacterial epidemiology, and antimicrobial susceptibility for common antibiotic regimens among young infants with urinary tract infection (UTI), bacteremia, or bacterial meningitis. We reviewed medical records from infants <90 days old presenting to 8 US children's hospitals with UTI, bacteremia, or meningitis. We used the Pediatric Health Information System database to identify cases and empirical antibiotic use and medical record review to determine infection, pathogen, and antimicrobial susceptibility patterns. We compared hospital-level differences in antimicrobial use, pathogen, infection site, and antimicrobial susceptibility. We identified 470 infants with bacterial infections: 362 (77%) with UTI alone and 108 (23%) with meningitis or bacteremia. Infection type did not differ across hospitals ( P = .85). Empirical antibiotic use varied across hospitals ( P < .01), although antimicrobial susceptibility patterns for common empirical regimens were similar. A third-generation cephalosporin would have empirically treated 90% of all ages, 89% in 7- to 28-day-olds, and 91% in 29- to 89-day-olds. The addition of ampicillin would have improved coverage in only 4 cases of bacteremia and meningitis. Ampicillin plus gentamicin would have treated 95%, 89%, and 97% in these age groups, respectively. Empirical antibiotic use differed across regionally diverse US children's hospitals in infants <90 days old with UTI, bacteremia, or meningitis. Antimicrobial susceptibility to common antibiotic regimens was similar across hospitals, and adding ampicillin to a third-generation cephalosporin minimally improves coverage. Our findings support incorporating empirical antibiotic recommendations into national guidelines for infants with suspected bacterial infection. Copyright © 2017 by the American Academy of Pediatrics.

  16. Human Infection in Wild Mountain Gorillas

    Centers for Disease Control (CDC) Podcasts

    2011-04-25

    This podcast discusses a study about the transmission of Human Metapneumovirus Infection to wild mountain gorillas in Rwanda in 2009, published in the April 2011 issue of Emerging Infectious Diseases. Dr. Ian Lipkin, Director of the Center for Infection and Immunity and Dr. Gustavo Palacios, investigator in the Center of Infection & Immunity share details of this study.  Created: 4/25/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 5/2/2011.

  17. Oxygen tension level and human viral infections

    Energy Technology Data Exchange (ETDEWEB)

    Morinet, Frédéric, E-mail: frederic.morinet@sls.aphp.fr [Centre des Innovations Thérapeutiques en Oncologie et Hématologie (CITOH), CHU Saint-Louis, Paris (France); Université Denis Diderot, Sorbonne Paris Cité Paris, Paris (France); Casetti, Luana [Institut Cochin INSERM U1016, Paris (France); François, Jean-Hugues; Capron, Claude [Institut Cochin INSERM U1016, Paris (France); Laboratoire d' Hématologie, Hôpital Ambroise Paré, Boulogne (France); Université de Versailles Saint-Quentin en Yvelynes, Versailles (France); Pillet, Sylvie [Laboratoire de Bactériologie-Virologie-Hygiène, CHU de Saint-Etienne, Saint-Etienne (France); Université de Lyon et Université de Saint-Etienne, Jean Monnet, GIMAP EA3064, F-42023 Saint-Etienne, Lyon (France)

    2013-09-15

    The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.

  18. Scintigraphic images of bacterial infection using aptamers directly labeled with {sup 99m}Tc

    Energy Technology Data Exchange (ETDEWEB)

    Santos, S.R.; Correa, C.R.; Andrade, A.S.R., E-mail: sararoberta7@hotmail.com, E-mail: crisrcorrea@gmail.com, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barros, A.L.B.; Diniz, S.O.F.; Cardoso, V.N., E-mail: brancodebarros@yahoo.com.br, E-mail: valbertcardoso@yahoo.com.br, E-mail: simoneodilia@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Farmacia. Departamento de Analises Clinicas e Toxicologicas

    2015-07-01

    Staphylococcus aureus is specie of great medical importance and is the most commonly agent found in infections of soft tissues, bone infections and bone prostheses. In this study, aptamers selected to S. aureus were labeled by the direct method with {sup 99m}Tc and used for bacterial infection identification by scintigraphy. The radiolabeled aptamers radiochemical purity and stability were assessed by thin-layer chromatography (TLC). Three groups of Swiss mice (n=6) were used for the scintigraphic imaging studies. The first group was infected intramuscularly in the right thigh with S. aureus, the second group with C. albicans and the third group received zymosan to induce aseptic inflammation. After 24 h, radiolabeled aptamers (18 MBq) were injected by the tail vein. Scintigraphic images were acquired at 1 h and 4 h postinjection. The radiolabeling yield with {sup 99m}Tc was over 90%. The radiolabeled aptamers were stable in 0.9% saline, plasma and cysteine excess. The scintigraphic image profiles showed high uptake in the kidneys and bladder in all groups, indicating a main renal excretion consistent with the hydrophilic nature of the molecule. No accumulation of radioactivity was observed in the thyroid, stomach, liver and spleen, indicating acceptable levels of radiochemical impurities. The group infected with S. aureus showed a visible uptake in the infected right thigh at 1 h post-injection. For the control groups (C. albicans and zymosan) visible differences between the right and left thighs were not observed. The radiolabeled aptamers were able to distinguish aseptic inflammation from bacterial infection and bacterial from fungal infection. (author)

  19. Scintigraphic images of bacterial infection using aptamers directly labeled with 99mTc

    International Nuclear Information System (INIS)

    Santos, S.R.; Correa, C.R.; Andrade, A.S.R.; Barros, A.L.B.; Diniz, S.O.F.; Cardoso, V.N.

    2015-01-01

    Staphylococcus aureus is specie of great medical importance and is the most commonly agent found in infections of soft tissues, bone infections and bone prostheses. In this study, aptamers selected to S. aureus were labeled by the direct method with 99m Tc and used for bacterial infection identification by scintigraphy. The radiolabeled aptamers radiochemical purity and stability were assessed by thin-layer chromatography (TLC). Three groups of Swiss mice (n=6) were used for the scintigraphic imaging studies. The first group was infected intramuscularly in the right thigh with S. aureus, the second group with C. albicans and the third group received zymosan to induce aseptic inflammation. After 24 h, radiolabeled aptamers (18 MBq) were injected by the tail vein. Scintigraphic images were acquired at 1 h and 4 h postinjection. The radiolabeling yield with 99m Tc was over 90%. The radiolabeled aptamers were stable in 0.9% saline, plasma and cysteine excess. The scintigraphic image profiles showed high uptake in the kidneys and bladder in all groups, indicating a main renal excretion consistent with the hydrophilic nature of the molecule. No accumulation of radioactivity was observed in the thyroid, stomach, liver and spleen, indicating acceptable levels of radiochemical impurities. The group infected with S. aureus showed a visible uptake in the infected right thigh at 1 h post-injection. For the control groups (C. albicans and zymosan) visible differences between the right and left thighs were not observed. The radiolabeled aptamers were able to distinguish aseptic inflammation from bacterial infection and bacterial from fungal infection. (author)

  20. Bacterial Infections across the Ants: Frequency and Prevalence of Wolbachia, Spiroplasma, and Asaia

    Directory of Open Access Journals (Sweden)

    Stefanie Kautz

    2013-01-01

    Full Text Available Bacterial endosymbionts are common across insects, but we often lack a deeper knowledge of their prevalence across most organisms. Next-generation sequencing approaches can characterize bacterial diversity associated with a host and at the same time facilitate the fast and simultaneous screening of infectious bacteria. In this study, we used 16S rRNA tag encoded amplicon pyrosequencing to survey bacterial communities of 310 samples representing 221 individuals, 176 colonies and 95 species of ants. We found three distinct endosymbiont groups—Wolbachia (Alphaproteobacteria: Rickettsiales, Spiroplasma (Firmicutes: Entomoplasmatales, and relatives of Asaia (Alphaproteobacteria: Rhodospirillales—at different infection frequencies (at the ant species level: 22.1%, 28.4%, and 14.7%, resp. and relative abundances within bacterial communities (1.0%–99.9%. Spiroplasma was particularly enriched in the ant genus Polyrhachis, while Asaia relatives were most prevalent in arboreal ants of the genus Pseudomyrmex. While Wolbachia and Spiroplasma have been surveyed in ants before, Asaia, an acetic acid bacterium capable of fixing atmospheric nitrogen, has received much less attention. Due to sporadic prevalence across all ant taxa investigated, we hypothesize facultative associations for all three bacterial genera. Infection patterns are discussed in relation to potential adaptation of specific bacteria in certain ant groups.

  1. Community acquired urinary tract infection: etiology and bacterial susceptibility

    Directory of Open Access Journals (Sweden)

    Dias Neto José Anastácio

    2003-01-01

    Full Text Available PURPOSE: Urinary tract infections (UTI are one of the most common infectious diseases diagnosed. UTI account for a large proportion of antibacterial drug consumption and have large socio-economic impacts. Since the majority of the treatments begins or is done completely empirically, the knowledge of the organisms, their epidemiological characteristics and their antibacterial susceptibility that may vary with time is mandatory. OBJECTIVE: The aim of this study was to report the prevalence of uropathogens and their antibiotic susceptibility of the community acquired UTI diagnosed in our institution and to provide a national data. METHODS: We analyzed retrospectively the results of urine cultures of 402 patients that had community acquired urinary tract infection in the year of 2003. RESULTS: The mean age of the patients in this study was 45.34 ± 23.56 (SD years. There were 242 (60.2% females and 160 (39.8% males. The most commonly isolated organism was Escherichia coli (58%. Klebsiella sp. (8.4% and Enterococcus sp.(7.9% were reported as the next most common organisms. Of all bacteria isolated from community acquired UTI, only 37% were sensitive to ampicillin, 51% to cefalothin and 52% to trimethoprim/sulfamethoxazole. The highest levels of susceptibility were to imipenem (96%, ceftriaxone (90%, amikacin (90%, gentamicin (88%, levofloxacin (86%, ciprofloxacin (73%, nitrofurantoin (77% and norfloxacin (75%. CONCLUSION: Gram-negative agents are the most common cause of UTI. Fluoroquinolones remains the choice among the orally administered antibiotics, followed by nitrofurantoin, second and third generation cephalosporins. For severe disease that require parenteral antibiotics the choice should be aminoglycosides, third generation cephalosporins, fluoroquinolones or imipenem, which were the most effective.

  2. Peptide inhibition of human cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Morris Cindy A

    2011-02-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB, a major glycoprotein of HCMV that is highly conserved across the Herpesviridae family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection. Results Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS, several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF were infected with the Towne-GFP strain of HCMV (0.5 MOI, preincubated with peptides at a range of concentrations (78 nm to 100 μM, and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100

  3. Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose: a pilot study.

    Science.gov (United States)

    van Geffen, Wouter H; Bruins, Marcel; Kerstjens, Huib A M

    2016-06-16

    Respiratory infections, viral or bacterial, are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). A rapid, point-of-care, and easy-to-use tool distinguishing viral and bacterial from other causes would be valuable in routine clinical care. An electronic nose (e-nose) could fit this profile but has never been tested in this setting before. In a single-center registered trial (NTR 4601) patients admitted with AECOPD were tested with the Aeonose(®) electronic nose, and a diagnosis of viral or bacterial infection was obtained by bacterial culture on sputa and viral PCR on nose swabs. A neural network with leave-10%-out cross-validation was used to assess the e-nose data. Forty three patients were included. In the bacterial infection model, 22 positive cases were tested versus the negatives; and similarly 18 positive cases were tested in the viral infection model. The Aeonose was able to distinguish between COPD-subjects suffering from a viral infection and COPD patients without infection, showing an area under the curve (AUC) of 0.74. Similarly, for bacterial infections, an AUC of 0.72 was obtained. The Aeonose e-nose yields promising results in 'smelling' the presence or absence of a viral or bacterial respiratory infection during an acute exacerbation of COPD. Validation of these results using a new and large cohort is required before introduction into clinical practice.

  4. Development of aptamers for use as radiopharmaceuticals in the bacterial infection identification

    International Nuclear Information System (INIS)

    Ferreira, Ieda Mendes

    2013-01-01

    The difficulty in early detection of specific foci caused by bacteria in the bacterial infection has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy had the advantage that a whole body image could be obtained, since specific tracers were available. This study aims to obtain aptamers specific for bacteria identification for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as 99 mTc, 18 F and 32 P. In this study, aptamers anti-peptidoglycan, the main component of the bacterial outer cell wall, were obtained through SELEX. Whole cells of Staphylococcus aureus were also used to perform the SELEX to cells (cell-SELEX). The selection of aptamers was performed by two different procedures (A and B). The A process has been accomplished by 15 SELEX rounds in which the separation of the oligonucleotides bound to the peptidoglycan of unbound ones was performed by filtration. In the B process 15 SELEX rounds were performed using the centrifugation for this separation, followed by 5 rounds cell-SELEX. The SELEX started with a pool of ssDNA (single stranded DNA). For A process, initially a library of ssDNA was incubated with peptidoglycan and the amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reation). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 selection rounds the selected oligonucleotides were cloned

  5. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish

    Directory of Open Access Journals (Sweden)

    Hetron Mweemba Munang’andu

    2018-04-01

    Full Text Available Aquaculture is one of the most rapidly expanding farming systems in the world. Its rapid expansion has brought with it several pathogens infecting different fish species. As a result, there has been a corresponding expansion in vaccine development to cope with the increasing number of infectious diseases in aquaculture. The success of vaccine development for bacterial diseases in aquaculture is largely attributed to empirical vaccine designs based on inactivation of whole cell (WCI bacteria vaccines. However, an upcoming challenge in vaccine design is the increase of intracellular bacterial pathogens that are not responsive to WCI vaccines. Intracellular bacterial vaccines evoke cellular mediated immune (CMI responses that “kill” and eliminate infected cells, unlike WCI vaccines that induce humoral immune responses whose protective mechanism is neutralization of extracellular replicating pathogens by antibodies. In this synopsis, I provide an overview of the intracellular bacterial pathogens infecting different fish species in aquaculture, outlining their mechanisms of invasion, replication, and survival intracellularly based on existing data. I also bring into perspective the current state of CMI understanding in fish together with its potential application in vaccine development. Further, I highlight the immunological pitfalls that have derailed our ability to produce protective vaccines against intracellular pathogens for finfish. Overall, the synopsis put forth herein advocates for a shift in vaccine design to include CMI-based vaccines against intracellular pathogens currently adversely affecting the aquaculture industry.

  6. Bacterial communications in implant infections: a target for an intelligence war.

    Science.gov (United States)

    Costerton, J W; Montanaro, L; Arciola, C R

    2007-09-01

    The status of population density is communicated among bacteria by specific secreted molecules, called pheromones or autoinducers, and the control mechanism is called "quorum-sensing". Quorum-sensing systems regulate the expression of a panel of genes, allowing bacteria to adapt to modified environmental conditions at a high density of population. The two known different quorum systems are described as the LuxR-LuxI system in gram-negative bacteria, which uses an N-acyl-homoserine lactone (AHL) as signal, and the agr system in gram-positive bacteria, which uses a peptide-tiolactone as signal and the RNAIII as effector molecules. Both in gram-negative and in gram-positive bacteria, quorum-sensing systems regulate the expression of adhesion mechanisms (biofilm and adhesins) and virulence factors (toxins and exoenzymes) depending on population cell density. In gram-negative Pseudomonas aeruginosa, analogs of signaling molecules such as furanone analogs, are effective in attenuating bacterial virulence and controlling bacterial infections. In grampositive Staphylococcus aureus, the quorum-sensing RNAIII-inhibiting peptide (RIP), tested in vitro and in animal infection models, has been proved to inhibit virulence and prevent infections. Attenuation of bacterial virulence by quorum-sensing inhibitors, rather than by bactericidal or bacteriostatic drugs, is a highly attractive concept because these antibacterial agents are less likely to induce the development of bacterial resistance.

  7. Combinations of bacterial species associated with symptomatic endodontic infections in a Chinese population.

    Science.gov (United States)

    Qi, Z; Cao, H; Jiang, H; Zhao, J; Tang, Z

    2016-01-01

    To use microarrays to detect 11 selected bacteria in infected root canals, revealing bacterial combinations that are associated with clinical symptoms and signs of primary endodontic infections in a Chinese population. DNA was extracted from 90 samples collected from the root canals of teeth with primary endodontic infections in a Chinese population, and the 16S rRNA gene was amplified by polymerase chain reaction (PCR). The PCR products were hybridized to microarrays containing specific oligonucleotide probes targeting 11 species, and the arrays were screened with a confocal laser scanner. Pearson's chi-squared test and cluster analysis were performed to investigate the associations between the bacterial combinations and clinical symptoms and signs using SAS 8.02. Seventy-seven samples (86%) yielded at least one of the 11 target species. Parvimonas micra (56%), Porphyromonas endodontalis (51%), Tannerella forsythia (48%), Prevotella intermedia (44%) and Porphyromonas gingivalis (37%) were the most prevalent taxa and were often concomitant. The following positive associations were found between the bacterial combinations and clinical features: P. endodontalis and T. forsythia with abscess; P. gingivalis and P. micra with sinus tract; P. gingivalis and P. endodontalis or P. micra and P. endodontalis with abscess and sinus tract; and the combination of P. endodontalis, P. micra, T. forsythia and P. gingivalis with sinus tract (P endodontalis, T. forsythia and P. gingivalis may contribute to abscesses or sinus tracts of endodontic origin with bacterial synergism in a Chinese population. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Aptamers: Novel Molecules as Diagnostic Markers in Bacterial and Viral Infections?

    Directory of Open Access Journals (Sweden)

    Flávia M. Zimbres

    2013-01-01

    Full Text Available Worldwide the entire human population is at risk of infectious diseases of which a high degree is caused by pathogenic protozoans, worms, bacteria, and virus infections. Moreover the current medications against pathogenic agents are losing their efficacy due to increasing and even further spreading drug resistance. Therefore, there is an urgent need to discover novel diagnostic as well as therapeutic tools against infectious agents. In view of that, the Systematic Evolution of Ligands by Exponential Enrichment (SELEX represents a powerful technology to target selectively pathogenic factors as well as entire bacteria or viruses. SELEX uses a large combinatorial oligonucleic acid library (DNA or RNA which is processed a by high-flux in vitro screen of iterative cycles. The selected ligands, termed aptamers, are characterized by high specificity and affinity to their target molecule, which are already exploited in diagnostic and therapeutic applications. In this minireview we will discuss the current status of the SELEX technique applied on bacterial and viral pathogens.

  9. Antimicrobial Resistance in Invasive Bacterial Infections in Hospitalized Children, Cambodia, 2007-2016.

    Science.gov (United States)

    Fox-Lewis, Andrew; Takata, Junko; Miliya, Thyl; Lubell, Yoel; Soeng, Sona; Sar, Poda; Rith, Kolthida; McKellar, Gregor; Wuthiekanun, Vanaporn; McGonagle, Erin; Stoesser, Nicole; Moore, Catrin E; Parry, Christopher M; Turner, Claudia; Day, Nicholas P J; Cooper, Ben S; Turner, Paul

    2018-05-01

    To determine trends, mortality rates, and costs of antimicrobial resistance in invasive bacterial infections in hospitalized children, we analyzed data from Angkor Hospital for Children, Siem Reap, Cambodia, for 2007-2016. A total of 39,050 cultures yielded 1,341 target pathogens. Resistance rates were high; 82% each of Escherichia coli and Klebsiella pneumoniae isolates were multidrug resistant. Hospital-acquired isolates were more often resistant than community-acquired isolates; resistance trends over time were heterogeneous. K. pneumoniae isolates from neonates were more likely than those from nonneonates to be resistant to ampicillin-gentamicin and third-generation cephalosporins. In patients with community-acquired gram-negative bacteremia, third-generation cephalosporin resistance was associated with increased mortality rates, increased intensive care unit admissions, and 2.26-fold increased healthcare costs among survivors. High antimicrobial resistance in this setting is a threat to human life and the economy. In similar low-resource settings, our methods could be reproduced as a robust surveillance model for antimicrobial resistance.

  10. Acute bacterial skin and skin structure infections in internal medicine wards: old and new drugs.

    Science.gov (United States)

    Falcone, Marco; Concia, Ercole; Giusti, Massimo; Mazzone, Antonino; Santini, Claudio; Stefani, Stefania; Violi, Francesco

    2016-08-01

    Skin and soft tissue infections (SSTIs) are a common cause of hospital admission among elderly patients, and traditionally have been divided into complicated and uncomplicated SSTIs. In 2010, the FDA provided a new classification of these infections, and a new category of disease, named acute bacterial skin and skin structure infections (ABSSSIs), has been proposed as an independent clinical entity. ABSSSIs include three entities: cellulitis and erysipelas, wound infections, and major cutaneous abscesses This paper revises the epidemiology of SSTIs and ABSSSIs with regard to etiologies, diagnostic techniques, and clinical presentation in the hospital settings. Particular attention is owed to frail patients with multiple comorbidities and underlying significant disease states, hospitalized on internal medicine wards or residing in nursing homes, who appear to be at increased risk of infection due to multi-drug resistant pathogens and treatment failures. Management of ABSSSIs and SSTIs, including evaluation of the hemodynamic state, surgical intervention and treatment with appropriate antibiotic therapy are extensively discussed.

  11. Use of Multiplex PCR for Diagnosis of Bacterial Infection Respiratory Mixed

    Directory of Open Access Journals (Sweden)

    Al-ssum, R. M.

    2010-01-01

    Full Text Available Atypical bacteria grow very slowly in culture or they do not grow at all leading to delays in detection and diagnosis. PCR multiplex was performed on template DNAs extracted from seventy three collected specimens. Thirty seven showed positive indication for the presence of bacterial infection. The incidence of Mycoplasma pneumoniae, Chlamydia pneumonia and Legionella pneumophila as a single infecting agent was 31.5%, 27.5% and 20 % respectively. Dual agent infection caused by Mycoplasma + Chlamydia, Mycoplasma + Legionella and Legionella + Chlamydia was 24%, 20% and 15% respectively. Triple agent infection caused by Legionella + Mycoplasma + Chlamydia was 17.5%. The etiology of the infection was M. pneumoniae, L. pneumophila or C. pneumoniae as a single etiology or in combination of two or three organisms.

  12. Bacterial infections in horses: a retrospective study at the University Equine Clinic of Bern.

    Science.gov (United States)

    Panchaud, Y; Gerber, V; Rossano, A; Perreten, V

    2010-04-01

    Bacterial infections present a major challenge in equine medicine. Therapy should be based on bacteriological diagnosis to successfully minimize the increasing number of infections caused by multidrug-resistant bacteria. The present study is a retrospective analysis of bacteriological results from purulent infections in horses admitted at the University Equine Clinic of Bern from 2004 to 2008. From 378 samples analyzed, 557 isolates were identified, of which Staphylococcus aureus, Streptococcus equi subsp. zooepidemicus and coliforms were the most common. Special attention was paid to infections with methicillin-resistant S. aureus (MRSA) ST398 and a non-MRSA, multidrug-resistant S. aureus clone ST1 (BERN100). Screening of newly-admitted horses showed that 2.2 % were carriers of MRSA. Consequent hygiene measures taken at the Clinic helped to overcome a MRSA outbreak and decrease the number of MRSA infections.

  13. Prostatic stones: evidence of a specific chemistry related to infection and presence of bacterial imprints.

    Directory of Open Access Journals (Sweden)

    Arnaud Dessombz

    Full Text Available Prostatic stones are a common condition in older men in industrialized countries. However, aging appears not to be the unique pathogenesis of these calcifications. Our morpho-constitutional investigation of 23 stone samples suggested that infection has a significant role in the lithogenic process of prostate calcifications, even without detection of infection by clinical investigation. Most stones (83% showed bacterial imprints and/or chemical composition, suggestive of a long-term infection process. Chronic infection may induce persistent inflammation of the tissue and secondarily, a cancerization process within a few years. Thus, the discovery of prostate calcifications by computerized tomodensitometry, for example, might warrant further investigation and management to search for chronic infection of the prostate gland.

  14. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Quaglino, Fabio; Bianco, Piero A

    2014-07-21

    Endophytic bacteria benefit host plant directly or indirectly, e.g. by biocontrol of the pathogens. Up to now, their interactions with the host and with other microorganisms are poorly understood. Consequently, a crucial step for improving the knowledge of those relationships is to determine if pathogens or plant growing season influence endophytic bacterial diversity and dynamic. Four healthy, four phytoplasma diseased and four recovered (symptomatic plants that spontaneously regain a healthy condition) grapevine plants were sampled monthly from June to October 2010 in a vineyard in north-western Italy. Metagenomic DNA was extracted from sterilized leaves and the endophytic bacterial community dynamic and diversity were analyzed by taxon specific real-time PCR, Length-Heterogeneity PCR and genus-specific PCR. These analyses revealed that both sampling date and phytoplasma infection influenced the endophytic bacterial composition. Interestingly, in June, when the plants are symptomless and the pathogen is undetectable (i) the endophytic bacterial community associated with diseased grapevines was different from those in the other sampling dates, when the phytoplasmas are detectable inside samples; (ii) the microbial community associated with recovered plants differs from that living inside healthy and diseased plants. Interestingly, LH-PCR database identified bacteria previously reported as biocontrol agents in the examined grapevines. Of these, Burkholderia, Methylobacterium and Pantoea dynamic was influenced by the phytoplasma infection process and seasonality. Results indicated that endophytic bacterial community composition in grapevine is correlated to both phytoplasma infection and sampling date. For the first time, data underlined that, in diseased plants, the pathogen infection process can decrease the impact of seasonality on community dynamic. Moreover, based on experimental evidences, it was reasonable to hypothesize that after recovery the restructured

  15. Prevalence of Bacterial Vaginosis and Associated Risk Factors among Women Complaining of Genital Tract Infection

    Directory of Open Access Journals (Sweden)

    Adane Bitew

    2017-01-01

    Full Text Available Background. Bacterial vaginosis is a global concern due to the increased risk of acquisition of sexually transmitted infections. Objectives. To determine the prevalence of bacterial vaginosis and bacteria causing aerobic vaginitis. Methods. A cross-sectional study was conducted among 210 patients between September 2015 and July 2016 at St. Paul’s Hospital. Gram-stained vaginal swabs were examined microscopically and graded as per Nugent’s procedure. Bacteria causing aerobic vaginitis were characterized, and their antimicrobial susceptibility pattern was determined. Results. The overall prevalence of bacterial vaginosis was 48.6%. Bacterial vaginosis was significantly associated with number of pants used per day (p=0.001 and frequency of vaginal bathing (p=0.045. Of 151 bacterial isolates, 69.5% were Gram-negative and 30.5% were Gram-positive bacteria. The overall drug resistance level of Gram-positive bacteria was high against penicillin, tetracycline, and erythromycin. Cefoxitin and tobramycin were the most active drugs against Gram-positive bacteria. The overall drug resistance level of Gram-negative bacteria was high against tetracycline, ampicillin, and amoxicillin. Amikacin and tobramycin were the most active drugs against Gram-negative bacteria. Conclusions. The prevalence of bacterial vaginosis was high and was affected by individual hygiene. Routine culture of vaginal samples should be performed on patients with vaginitis and the drug susceptibility pattern of each isolate should be determined.

  16. Prevalence of Bacterial Vaginosis and Associated Risk Factors among Women Complaining of Genital Tract Infection.

    Science.gov (United States)

    Bitew, Adane; Abebaw, Yeshiwork; Bekele, Delayehu; Mihret, Amete

    2017-01-01

    Bacterial vaginosis is a global concern due to the increased risk of acquisition of sexually transmitted infections. To determine the prevalence of bacterial vaginosis and bacteria causing aerobic vaginitis. A cross-sectional study was conducted among 210 patients between September 2015 and July 2016 at St. Paul's Hospital. Gram-stained vaginal swabs were examined microscopically and graded as per Nugent's procedure. Bacteria causing aerobic vaginitis were characterized, and their antimicrobial susceptibility pattern was determined. The overall prevalence of bacterial vaginosis was 48.6%. Bacterial vaginosis was significantly associated with number of pants used per day ( p = 0.001) and frequency of vaginal bathing ( p = 0.045). Of 151 bacterial isolates, 69.5% were Gram-negative and 30.5% were Gram-positive bacteria. The overall drug resistance level of Gram-positive bacteria was high against penicillin, tetracycline, and erythromycin. Cefoxitin and tobramycin were the most active drugs against Gram-positive bacteria. The overall drug resistance level of Gram-negative bacteria was high against tetracycline, ampicillin, and amoxicillin. Amikacin and tobramycin were the most active drugs against Gram-negative bacteria. The prevalence of bacterial vaginosis was high and was affected by individual hygiene. Routine culture of vaginal samples should be performed on patients with vaginitis and the drug susceptibility pattern of each isolate should be determined.

  17. New Paenibacillus larvae bacterial isolates from honey bee colonies infected with American foulbrood disease in Egypt.

    Science.gov (United States)

    Masry, Saad Hamdy Daif; Kabeil, Sanaa Soliman; Hafez, Elsayed Elsayed

    2014-03-04

    The American foulbrood disease is widely distributed all over the world and causes a serious problem for the honeybee industry. Different infected larvae were collected from different apiaries, ground in phosphate saline buffer (PSB) and bacterial isolation was carried out on nutrient agar medium. Different colonies were observed and were characterized biologically. Two bacterial isolates (SH11 and SH33) were subjected to molecular identification using 16S rRNA gene and the sequence analysis revealed that the two isolates are Paenibacillus larvae with identity not exceeding 83%. The DNA sequence alignment between the other P. larvae bacterial strains and the two identified bacterial isolates showed that all the examined bacterial strains have the same ancestor, i.e. they have the same origin. The SH33 isolate was closely related to the P. larvae isolated from Germany, whereas the isolate SH11 was close to the P. larvae isolated from India. The phylogenetic tree constructed for 20 different Bacillus sp. and the two isolates SH11 and SH33 demonstrated that the two isolates are Bacillus sp. and they are new isolates. The bacterial isolates will be subjected to more tests for more confirmations.

  18. Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus).

    Science.gov (United States)

    Leydet, Brian F; Liang, Fang-Ting

    2013-04-01

    There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one A. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and B. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen

    Directory of Open Access Journals (Sweden)

    Shahzadi Shamaila

    2016-04-01

    Full Text Available Enteric bacterial human pathogens, i.e., Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Klebsiella pneumoniae, are the major cause of diarrheal infections in children and adults. Their structure badly affects the human immune system. It is important to explore new antibacterial agents instead of antibiotics for treatment. This project is an attempt to explain how gold nanoparticles affect these bacteria. We investigated the important role of the mean particle size, and the inhibition of a bacterium is dose-dependent. Ultra Violet (UV-visible spectroscopy revealed the size of chemically synthesized gold nanoparticle as 6–40 nm. Atomic force microscopy (AFM analysis confirmed the size and X-ray diffractometry (XRD analysis determined the polycrystalline nature of gold nanoparticles. The present findings explained how gold nanoparticles lyse Gram-negative and Gram-positive bacteria.

  20. Macrophage origin limits functional plasticity in helminth-bacterial co-infection.

    Directory of Open Access Journals (Sweden)

    Dominik Rückerl

    2017-03-01

    Full Text Available Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2 similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell.

  1. Asymptomatic cattle naturally infected with Mycobacterium bovis present exacerbated tissue pathology and bacterial dissemination.

    Directory of Open Access Journals (Sweden)

    Álvaro Menin

    Full Text Available Rational discovery of novel immunodiagnostic and vaccine candidate antigens to control bovine tuberculosis (bTB requires knowledge of disease immunopathogenesis. However, there remains a paucity of information on the Mycobacterium bovis-host immune interactions during the natural infection. Analysis of 247 naturally PPD+ M. bovis-infected cattle revealed that 92% (n = 228 of these animals were found to display no clinical signs, but presented severe as well as disseminated bTB-lesions at post-mortem examination. Moreover, dissemination of bTB-lesions positively correlated with both pathology severity score (Spearman r = 0.48; p<0.0001 and viable tissue bacterial loads (Spearman r = 0.58; p = 0.0001. Additionally, granuloma encapsulation negatively correlated with M. bovis growth as well as pathology severity, suggesting that encapsulation is an effective mechanism to control bacterial proliferation during natural infection. Moreover, multinucleated giant cell numbers were found to negatively correlate with bacterial counts (Spearman r = 0.25; p = 0.03 in lung granulomas. In contrast, neutrophil numbers in the granuloma were associated with increased M. bovis proliferation (Spearman r = 0.27; p = 0.021. Together, our findings suggest that encapsulation and multinucleated giant cells control M. bovis viability, whereas neutrophils may serve as a cellular biomarker of bacterial proliferation during natural infection. These data integrate host granuloma responses with mycobacterial dissemination and could provide useful immunopathological-based biomarkers of disease severity in natural infection with M. bovis, an important cattle pathogen.

  2. Bacterial infections in Lilongwe, Malawi: aetiology and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Makoka Mwai H

    2012-03-01

    Full Text Available Abstract Background Life-threatening infections present major challenges for health systems in Malawi and the developing world because routine microbiologic culture and sensitivity testing are not performed due to lack of capacity. Use of empirical antimicrobial therapy without regular microbiologic surveillance is unable to provide adequate treatment in the face of emerging antimicrobial resistance. This study was conducted to determine antimicrobial susceptibility patterns in order to inform treatment choices and generate hospital-wide baseline data. Methods Culture and susceptibility testing was performed on various specimens from patients presenting with possible infectious diseases at Kamuzu Central Hospital, Lilongwe, Malawi. Results Between July 2006 and December 2007 3104 specimens from 2458 patients were evaluated, with 60.1% from the adult medical service. Common presentations were sepsis, meningitis, pneumonia and abscess. An etiologic agent was detected in 13% of patients. The most common organisms detected from blood cultures were Staphylococcus aureus, Escherichia coli, Salmonella species and Streptococcus pneumoniae, whereas Streptococcus pneumoniae and Cryptococcus neoformans were most frequently detected from cerebrospinal fluid. Haemophilus influenzae was rarely isolated. Resistance to commonly used antibiotics was observed in up to 80% of the isolates while antibiotics that were not commonly in use maintained susceptibility. Conclusions There is widespread resistance to almost all of the antibiotics that are empirically used in Malawi. Antibiotics that have not been widely introduced in Malawi show better laboratory performance. Choices for empirical therapy in Malawi should be revised accordingly. A microbiologic surveillance system should be established and prudent use of antimicrobials promoted to improve patient care.

  3. Human papilomavirus infection in couples. A discussion

    Directory of Open Access Journals (Sweden)

    O. V. Lysenko

    2016-01-01

    Full Text Available In the Russian literature, insufficient attention is given to the study of the flow of human papillomavirus infection in couples. The aim of the study was to establish the frequency of infection with oncogenic HPV types and clinical manifestations of human papillomavirus infection in regular sexual partners. Surveyed 38 couples who are regular sexual partners in the past three years and denying unauthorized sex. PVI revealed at 70.9 per cent of women who had contact with an infected partner and 79.8 per cent of men. The average age for first sexual intercourse in women was 18.2 years, men - 16.7 years. 80% of men before marriage had more than 5 sexual partners. In 37 of 38 pairs of HPV types of high oncogenic risk coincide. The most frequently detected HPV type 16, are a few less - HPV 51, 31 and 39. Clinical manifestation of HPV infection among sexual partners of the 38 couples not identified, subclinical form of infection in women and men after colposcopy and peniscopy were found with equal frequency (18.4% and (15,8%, respectively. The descriptions of peniscopy in men with HPV of high oncogenic risk was done.

  4. Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.

    Science.gov (United States)

    Herberg, Jethro A; Kaforou, Myrsini; Wright, Victoria J; Shailes, Hannah; Eleftherohorinou, Hariklia; Hoggart, Clive J; Cebey-López, Miriam; Carter, Michael J; Janes, Victoria A; Gormley, Stuart; Shimizu, Chisato; Tremoulet, Adriana H; Barendregt, Anouk M; Salas, Antonio; Kanegaye, John; Pollard, Andrew J; Faust, Saul N; Patel, Sanjay; Kuijpers, Taco; Martinón-Torres, Federico; Burns, Jane C; Coin, Lachlan J M; Levin, Michael

    Because clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial infection is missed in others. To identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children. Febrile children presenting to participating hospitals in the United Kingdom, Spain, the Netherlands, and the United States between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation as having definite bacterial infection, definite viral infection, or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n = 24) and inflammatory diseases (n = 48) and on published gene expression datasets. A 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis. Definite bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group and in the indeterminate infection group. The discovery group of 240 children (median age, 19 months; 62% male) included 52 with definite bacterial infection, of whom 36 (69%) required intensive care, and 92 with definite viral infection, of whom 32 (35%) required intensive care. Ninety-six children had indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript

  5. DMPD: Lipopolysaccharide sensing an important factor in the innate immune response toGram-negative bacterial infections: benefits and hazards of LPShypersensitivity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available se toGram-negative bacterial infections: benefits and hazards of LPShypersensitivity. Freudenberg MA, Tchapt...portant factor in the innate immune response toGram-negative bacterial infections: benefits and hazards of L...une response toGram-negative bacterial infections: benefits and hazards of LPShyp

  6. Human immunodeficiency virus infection and the liver.

    Science.gov (United States)

    Crane, Megan; Iser, David; Lewin, Sharon R

    2012-03-27

    Liver disease in human immunodeficiency virus (HIV)-infected individuals encompasses the spectrum from abnormal liver function tests, liver decompensation, with and without evidence of cirrhosis on biopsy, to non-alcoholic liver disease and its more severe form, non-alcoholic steatohepatitis and hepatocellular cancer. HIV can infect multiple cells in the liver, leading to enhanced intrahepatic apoptosis, activation and fibrosis. HIV can also alter gastro-intestinal tract permeability, leading to increased levels of circulating lipopolysaccharide that may have an impact on liver function. This review focuses on recent changes in the epidemiology, pathogenesis and clinical presentation of liver disease in HIV-infected patients, in the absence of co-infection with hepatitis B virus or hepatitis C virus, with a specific focus on issues relevant to low and middle income countries.

  7. Review of moxifloxacin hydrochloride ophthalmic solution in the treatment of bacterial eye infections

    Directory of Open Access Journals (Sweden)

    Darlene Miller

    2008-03-01

    Full Text Available Darlene MillerAbrams Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Anne Bates Leach Eye Hospital, Miller School of Medicine-University of Miami, FL, USAAbstract: Moxifloxacin hydrochloride ophthalmic solution 0.5% (Vigamox® is the ocular formulation/adaptation of moxifloxacin. Moxifloxacin is a broad spectrum 8-methoxyfluoroquinolone which terminates bacterial growth by binding to DNA gyrase (topoisomerase II and topoisomerase IV, essential bacterial enzymes involved in the replication, translation, repair and recombination of deoxyribonucleic acid. Affinity for both enzymes improves potency and reduces the probability of selecting resistant bacterial subpopulations. Vigamox is a bactericidal, concentration dependent, anti-infective. It is preservative free, and well tolerated with minimal ocular side effects. It provides increased penetration into ocular tissues and fluids with improved activity against Streptococci and Staphylococci species and moderate to excellent activity against clinically relevant, gram- negative ocular pathogens.Keywords: moxifloxacin, vigamox, pharmacodynamic indices, minimal inhibitory concentrations

  8. SECONDARY BACTERIAL INFECTION IN ADULT PATIENTS WITH PROLONGED AND SEVERE DENGUE FEVER

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2016-05-01

    Full Text Available INTRODUCTION Generally, in dengue shock syndrome antibiotics are not advised. But unrecognised bacterial infection is likely to contribute to morbidity and mortality, probably because of increased vascular permeability. OBJECTIVES To assess the incidence of secondary bacterial infection in adult patients with prolonged and severe dengue fever. METHODS A prospective study was conducted recruiting patients with confirmed acute dengue infection who had prolonged fever (>5 days. Prior to institution of antibiotic therapy, two sets of blood cultures were taken from patients. Demographic, clinical, haematological and biochemical parameters were recorded. Severity of fever & associated symptoms assessed. Ultrasonography done to find out development of ascites and pleural effusions. RESULTS Sixty patients (60.0% males with a mean age of 33.5 years (SD 12.1 were studied. The average duration of fever was 6.9 days (SD 1.6. Fifteen patients (25% had bacterial isolates in their blood cultures; Staphylococcus aureus (n=3, coliforms (n=7, pseudomonas (n=2 and 3 had mixed growths. The culture positive group had severe body aches and joints paint at admission and high grade fever, third space fluid accumulation and significant drop in platelets compared to culture-negative group. CONCLUSIONS A quarter of dengue patients with prolonged fever had a bacterial isolate. Culture-positive patients appeared more ill with body aches and had higher degrees of fever during the course of the illness. Increased vascular permeability may predispose to bacterial seepage into blood. Although white cell count is not helpful in detecting bacteraemia in dengue fever, low platelet count and severe symptoms at presentation may be helpful.

  9. A novel host-proteome signature for distinguishing between acute bacterial and viral infections.

    Directory of Open Access Journals (Sweden)

    Kfir Oved

    Full Text Available Bacterial and viral infections are often clinically indistinguishable, leading to inappropriate patient management and antibiotic misuse. Bacterial-induced host proteins such as procalcitonin, C-reactive protein (CRP, and Interleukin-6, are routinely used to support diagnosis of infection. However, their performance is negatively affected by inter-patient variability, including time from symptom onset, clinical syndrome, and pathogens. Our aim was to identify novel viral-induced host proteins that can complement bacterial-induced proteins to increase diagnostic accuracy. Initially, we conducted a bioinformatic screen to identify putative circulating host immune response proteins. The resulting 600 candidates were then quantitatively screened for diagnostic potential using blood samples from 1002 prospectively recruited patients with suspected acute infectious disease and controls with no apparent infection. For each patient, three independent physicians assigned a diagnosis based on comprehensive clinical and laboratory investigation including PCR for 21 pathogens yielding 319 bacterial, 334 viral, 112 control and 98 indeterminate diagnoses; 139 patients were excluded based on predetermined criteria. The best performing host-protein was TNF-related apoptosis-inducing ligand (TRAIL (area under the curve [AUC] of 0.89; 95% confidence interval [CI], 0.86 to 0.91, which was consistently up-regulated in viral infected patients. We further developed a multi-protein signature using logistic-regression on half of the patients and validated it on the remaining half. The signature with the highest precision included both viral- and bacterial-induced proteins: TRAIL, Interferon gamma-induced protein-10, and CRP (AUC of 0.94; 95% CI, 0.92 to 0.96. The signature was superior to any of the individual proteins (P<0.001, as well as routinely used clinical parameters and their combinations (P<0.001. It remained robust across different physiological systems

  10. Hindlimb suspension and SPE-like radiation impairs clearance of bacterial infections.

    Directory of Open Access Journals (Sweden)

    Minghong Li

    Full Text Available A major risk of extended space travel is the combined effects of weightlessness and radiation exposure on the immune system. In this study, we used the hindlimb suspension model of microgravity that includes the other space stressors, situational and confinement stress and alterations in food intake, and solar particle event (SPE-like radiation to measure the combined effects on the ability to control bacterial infections. A massive increase in morbidity and decrease in the ability to control bacterial growth was observed using 2 different types of bacteria delivered by systemic and pulmonary routes in 3 different strains of mice. These data suggest that an astronaut exposed to a strong SPE during extended space travel is at increased risk for the development of infections that could potentially be severe and interfere with mission success and astronaut health.

  11. Platelet concentrates: reducing the risk of transfusion-transmitted bacterial infections

    Directory of Open Access Journals (Sweden)

    de Korte D

    2014-06-01

    Full Text Available Dirk de Korte,1 Jan H Marcelis2 1Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, 2Department of Microbiology, St Elisabeth Hospital, Tilburg, the Netherlands Abstract: The introduction of a combination of interventions during collection of whole-blood or platelet concentrates has been successful in lowering the degree of bacterial contamination in the final product, the platelet concentrate, by 50%–75%. These interventions were improved donor questionnaires, best-practice skin disinfection, and diversion of first blood volume. These interventions have reduced the number of bacteria present in the platelet concentrates. In combination with screening for bacterial contamination of platelet concentrates with a culture method, the degree of transfusion-transmitted bacterial infection has been reduced significantly. Due to the very low initial bacteria counts upon collection of the products, the need for improved sensitivity of early screenings tests or highly selective point-of-issue tests remains. The latter should be rapid and easy to perform. An alternative approach might be the implementation of pathogen-inactivation methods for cellular blood products to reduce the amount of pathogens. However, these methods are costly, and so far not proved to be cost-effective, especially in countries with an already-low incidence of transfusion-transmitted infections by viruses, parasites, or bacteria. Keywords: blood products, bacterial contamination, screening, point of issue, pathogen inactivation

  12. Disruption of bacterial balance in the gut of Portunus trituberculatus induced by Vibrio alginolyticus infection

    Science.gov (United States)

    Xia, Mengjie; Pei, Feng; Mu, Changkao; Ye, Yangfang; Wang, Chunlin

    2018-04-01

    Gut microbiota impacts the health of crustaceans. Vibrio alginolyticus is a main causative pathogen that induces the vibriosis in farmed swimming crabs, Portunus trituberculatus. However, it remains unknown whether gut bacteria perform functions during the progression of vibriosis. In this study, 16S rRNA gene amplicon sequencing was used to investigate temporal alteration of gut bacterial community in swimming crabs in response to 72-h V. alginolyticus challenge. Our results show that V. alginolyticus infection resulted in dynamic changes of bacterial community composition in swimming crabs. Such changes were highlighted by the overwhelming overabundance of Vibrio and a signifi cant fluctuation in the gut bacteria including the bacteria with high relative abundance and especially those with low relative abundance. These findings reveal that crab vibriosis gradually develops with the infection time of V. alginolyticus and tightly relates to the dysbiosis of gut bacterial community structure. This work contributes to our appreciation of the importance of the balance of gut bacterial community structure in maintaining the health of crustaceans.

  13. Bacterial infection in deep paraspinal muscles in a parturient following epidural analgesia.

    Science.gov (United States)

    Yang, Ying-Wei; Chen, Wei-Ting; Chen, Jui-Yuan; Lee, She-Chin; Chang, Yi; Wen, Yeong-Ray

    2011-06-01

    We report a case of paraspinal muscle infection shortly after epidural analgesia for labor pain in a nulliparous parturient who was subjected to emergent Cesarean section because of fetal distress. Epidural morphine was administered for 3 days for postoperative pain control. She began to have constant lower back pain on postpartum Day 4. Magnetic resonance image study revealed a broad area of subcutaneous edema with a continuum along the catheter trajectory deep to the paraspinal muscles. An injection-related bacterial infection was suspected; the patient was treated with intravenous antibiotics and was soon cured uncomplicatedly. Epidural analgesia is effective to control labor pain and, in general, it is safe. However, the sequelae of complicated infection may be underestimated. We herein report a case complicated by iatrogenic infection, discuss the causes, and give suggestions for prevention. Copyright © 2011. Published by Elsevier B.V.

  14. A novel 3D skin explant model to study anaerobic bacterial infection

    DEFF Research Database (Denmark)

    Maboni, Grazieli; Davenport, Rebecca; Sessford, Kate

    2017-01-01

    of the tissue structure and the cell types present in the host environment. A 3D skin culture model can be set up using tissues acquired from surgical procedures or post slaughter, making it a cost effective and attractive alternative to animal experimentation. The majority of 3D culture models have been......Skin infection studies are often limited by financial and ethical constraints, and alternatives, such as monolayer cell culture, do not reflect many cellular processes limiting their application. For a more functional replacement, 3D skin culture models offer many advantages such as the maintenance...... bacterium and the causative agent of footrot. The mechanism of infection and host immune response to D. nodosus is poorly understood. Here we present a novel 3D skin ex vivo model to study anaerobic bacterial infections using ovine skin explants infected with D. nodosus. Our results demonstrate that D...

  15. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette

    2009-01-01

    The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other...... parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we studied gene expression changes in peripheral lymphoid tissues as compared to hepatic expression changes, 14-18 h after lung...... with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14-18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase...

  16. Cranberry juice-- a well-characterized folk-remedy against bacterial urinary tract infection.

    Science.gov (United States)

    Nowack, Rainer

    2007-01-01

    Cranberry (Vaccinium macrocarpon) is a North-American folk remedy for treating and preventing infection. Research has identified an anti-adhesive mechanism of cranberry-proanthocyanidins that inhibit docking of bacteria on tissues "in vitro". This efficacy mechanism can be traced in the patient's urine following oral intake of cranberry juice. The efficacy of cranberry juice and extracts as a prophylactic agent against recurrent urinary infections is well documented in women. The anti-adhesion effect of cranberry-proanthocyandins can also be applied for treatment of other common diseases of bacterial pathogenesis, e.g. Helicobacter pylori-associated gastritis and dental caries/periodontal disease.

  17. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Golda-Cepa, M., E-mail: golda@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Syrek, K. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Brzychczy-Wloch, M. [Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow (Poland); Sulka, G.D. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kotarba, A., E-mail: kotarba@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  18. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    International Nuclear Information System (INIS)

    Golda-Cepa, M.; Syrek, K.; Brzychczy-Wloch, M.; Sulka, G.D.; Kotarba, A.

    2016-01-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  19. The effect of vacuum-assisted closure in bacterial clearance of the infected abdomen.

    Science.gov (United States)

    Pliakos, Ioannis; Michalopoulos, Nikolaos; Papavramidis, Theodossis S; Arampatzi, Stergiani; Diza-Mataftsi, Eudoxia; Papavramidis, Spiros

    2014-02-01

    Laparostomy with vacuum-assisted closure (VAC) plays an important role in improving survival in the presence of abdominal infection. We conducted a study of the qualitative changes in the bacterial flora of the peritoneal cavity in patients with severe abdominal infection treated with laparostomy and a VAC device. Thirty-nine patients with severe abdominal infection treated with abdominal opening and VAC were registered in a clinical study. When an incidence of 53.8% of hospital-acquired peritoneal infection (HAPI) was found in the study patient population, it was decided to divide the patients in two groups according to whether or not they developed a HAPI. The patients' outcomes were then analyzed. The durations of abdominal opening (p=0.04), length of stay in the intensive care unit (ICU) (p=0.01), and of hospitalization (p=0.04) were significantly greater in patients with HAPI than in those without it, whereas mortality did not differ on the basis of these three variables. Superinfection is common in laparostomy done with a VAC device for managing severe abdominal infection. The data in the present study show that VAC does not alter the quality of the bacterial burden in primary abdominal contamination, nor does it seem to prevent a high incidence of HAPI. However, VAC is as effective in reducing mortality among patients with HAPI as among those without it.

  20. Human papilloma virus infection and psoriasis: Did human papilloma virus infection trigger psoriasis?

    Science.gov (United States)

    Jain, Sonia P; Gulhane, Sachin; Pandey, Neha; Bisne, Esha

    2015-01-01

    Psoriasis is an autoimmune chronic inflammatory skin disease known to be triggered by streptococcal and HIV infections. However, human papilloma virus infection (HPV) as a triggering factor for the development of psoriasis has not been reported yet. We, hereby report a case of plaque type with inverse psoriasis which probably could have been triggered by genital warts (HPV infection) and discuss the possible pathomechanisms for their coexistence and its management.

  1. Saffold virus infection associated with human myocarditis

    DEFF Research Database (Denmark)

    Nielsen, Trine Skov; Nielsen, Alex Yde; Banner, Jytte

    2016-01-01

    BACKGROUND: Saffold virus was described in 2007 as one of the first human viruses within the genus cardioviruses. Cardioviruses may cause severe infections of the myocardium in animals, and several studies have associated saffold virus with human disease. As a result, saffold virus has been...... isolated from different anatomical compartments, including the myocardium, but, until now, it has not been possible to demonstrate the accompanying histopathological signs of inflammation. OBJECTIVES: The aim of the study was to examine if saffold virus is capable of causing invasive infection in the human...... myocardium. STUDY DESIGN: Using real-time PCR, we retrospectively examined formalin-fixed paraffin embedded cardiac tissue specimens from 150 deceased individuals diagnosed with myocarditis at autopsy. The results were compared with histological findings. RESULTS AND CONCLUSIONS: Saffold virus was detected...

  2. The effects of vaccination and immunity on bacterial infection dynamics in vivo.

    Directory of Open Access Journals (Sweden)

    Chris Coward

    2014-09-01

    Full Text Available Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body.

  3. Rock bream (Oplegnathus fasciatus) IL-12p40: identification, expression, and effect on bacterial infection.

    Science.gov (United States)

    Zhang, Lu; Zhang, Bao-Cun; Hu, Yong-Hua

    2014-08-01

    IL-12p40, also called IL-12β, is a subunit of the proinflammatory cytokines interleukin (IL)-12 and IL-23. In teleost, IL-12p40 homologues have been identified in several species, however, the biological function of fish IL-12p40 is essentially unknown. In this work, we reported the identification and analysis of an IL-12p40, OfIL-12p40, from rock bream (Oplegnathus fasciatus). OfIL-12p40 is composed of 361 amino acids and possesses a conserved IL-12p40 domain and a WSxWS signature motif characteristic of known IL-12p40. Constitutive expression of OfIL-12p40 occurred in multiple tissues and was highest in kidney. Experimental infection with bacterial pathogen upregulated the expression of OfIL-12p40 in kidney and spleen in a time-dependent manner. Purified recombinant OfIL-12p40 (rOfIL-12p40) stimulated the respiratory burst activity of peripheral blood leukocytes in a dose-dependent manner. rOfIL-12p40 also enhanced the resistance of rock bream against bacterial infection and upregulated the expression of innate immune genes in kidney. Taken together, these results indicate that OfIL-12p40 possesses cytokine-like property and plays a role in immune defense against bacterial infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Emerging treatment options for acute bacterial skin and skin structure infections: focus on intravenous delafloxacin

    Directory of Open Access Journals (Sweden)

    Righi E

    2018-04-01

    Full Text Available Elda Righi, Alessia Carnelutti, Antonio Vena, Matteo Bassetti Infectious Diseases Division, Santa Maria della Misericordia University Hospital, Udine, Italy Abstract: The increase in hospitalization due to acute bacterial skin and skin structure infections (ABSSSI caused by resistant pathogens supports the need for new treatment options. Antimicrobial options for ABSSSI that provide broad-spectrum coverage, including gram-negative pathogens and multidrug-resistant gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA, are limited. Delafloxacin is a novel fluoroquinolone available as intravenous and oral formulations and is characterized by an increased efficacy in acidic environments and activity on bacterial biofilm. Delafloxacin displays enhanced in vitro activity against MRSA, and enterococci, while maintaining efficacy against gram-negative pathogens and anaerobes. Delafloxacin has been studied for the treatment of ABSSSI and respiratory infections. Phase III studies have demonstrated noninferiority of delafloxacin compared to vancomycin, linezolid, tigecycline, and the combination of vancomycin plus aztreonam in the treatment of ABSSSI. Due to its favorable pharmacokinetic characteristics, the wide spectrum of action, and the potential for sequential therapy, delafloxacin represents a promising option in the empirical and targeted treatment of ABSSSI, both in hospital- and in community-based care. Keywords: bacterial skin and skin structure infections, multidrug-resistant bacteria, methicillin-resistant Staphylococcus aureus, delafloxacin

  5. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda; Kirienko, Natalia V; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M

    2012-01-01

    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  6. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    Full Text Available The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  7. Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Tanner M Johanns

    2010-08-01

    Full Text Available The pathogenesis of persistent infection is dictated by the balance between opposing immune activation and suppression signals. Herein, virulent Salmonella was used to explore the role and potential importance of Foxp3-expressing regulatory T cells in dictating the natural progression of persistent bacterial infection. Two distinct phases of persistent Salmonella infection are identified. In the first 3-4 weeks after infection, progressively increasing bacterial burden was associated with delayed effector T cell activation. Reciprocally, at later time points after infection, reductions in bacterial burden were associated with robust effector T cell activation. Using Foxp3(GFP reporter mice for ex vivo isolation of regulatory T cells, we demonstrate that the dichotomy in infection tempo between early and late time points is directly paralleled by drastic changes in Foxp3(+ Treg suppressive potency. In complementary experiments using Foxp3(DTR mice, the significance of these shifts in Treg suppressive potency on infection outcome was verified by enumerating the relative impacts of regulatory T cell ablation on bacterial burden and effector T cell activation at early and late time points during persistent Salmonella infection. Moreover, Treg expression of CTLA-4 directly paralleled changes in suppressive potency, and the relative effects of Treg ablation could be largely recapitulated by CTLA-4 in vivo blockade. Together, these results demonstrate that dynamic regulation of Treg suppressive potency dictates the course of persistent bacterial infection.

  8. Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis

    Directory of Open Access Journals (Sweden)

    Matt S. Conover

    2016-04-01

    Full Text Available Uropathogenic Escherichia coli (UPEC is the primary etiological agent of over 85% of community-acquired urinary tract infections (UTIs. Mouse models of infection have shown that UPEC can invade bladder epithelial cells in a type 1 pilus-dependent mechanism, avoid a TLR4-mediated exocytic process, and escape into the host cell cytoplasm. The internalized UPEC can clonally replicate into biofilm-like intracellular bacterial communities (IBCs of thousands of bacteria while avoiding many host clearance mechanisms. Importantly, IBCs have been documented in urine from women and children suffering acute UTI. To understand this protected bacterial niche, we elucidated the transcriptional profile of bacteria within IBCs using microarrays. We delineated the upregulation within the IBC of genes involved in iron acquisition, metabolism, and transport. Interestingly, lacZ was highly upregulated, suggesting that bacteria were sensing and/or utilizing a galactoside for metabolism in the IBC. A ΔlacZ strain displayed significantly smaller IBCs than the wild-type strain and was attenuated during competitive infection with a wild-type strain. Similarly, a galK mutant resulted in smaller IBCs and attenuated infection. Further, analysis of the highly upregulated gene yeaR revealed that this gene contributes to oxidative stress resistance and type 1 pilus production. These results suggest that bacteria within the IBC are under oxidative stress and, consistent with previous reports, utilize nonglucose carbon metabolites. Better understanding of the bacterial mechanisms used for IBC development and establishment of infection may give insights into development of novel anti-virulence strategies.

  9. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    International Nuclear Information System (INIS)

    Liu, Shijie; Shao, Chen; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao

    2015-01-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml"−"1, compared with the free Ce6 value of 29.85 μg ml"−"1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects. (paper)

  10. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  11. A Novel 3D Skin Explant Model to Study Anaerobic Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Grazieli Maboni

    2017-09-01

    Full Text Available Skin infection studies are often limited by financial and ethical constraints, and alternatives, such as monolayer cell culture, do not reflect many cellular processes limiting their application. For a more functional replacement, 3D skin culture models offer many advantages such as the maintenance of the tissue structure and the cell types present in the host environment. A 3D skin culture model can be set up using tissues acquired from surgical procedures or post slaughter, making it a cost effective and attractive alternative to animal experimentation. The majority of 3D culture models have been established for aerobic pathogens, but currently there are no models for anaerobic skin infections. Footrot is an anaerobic bacterial infection which affects the ovine interdigital skin causing a substantial animal welfare and financial impact worldwide. Dichelobacter nodosus is a Gram-negative anaerobic bacterium and the causative agent of footrot. The mechanism of infection and host immune response to D. nodosus is poorly understood. Here we present a novel 3D skin ex vivo model to study anaerobic bacterial infections using ovine skin explants infected with D. nodosus. Our results demonstrate that D. nodosus can invade the skin explant, and that altered expression of key inflammatory markers could be quantified in the culture media. The viability of explants was assessed by tissue integrity (histopathological features and cell death (DNA fragmentation over 76 h showing the model was stable for 28 h. D. nodosus was quantified in all infected skin explants by qPCR and the bacterium was visualized invading the epidermis by Fluorescent in situ Hybridization. Measurement of pro-inflammatory cytokines/chemokines in the culture media revealed that the explants released IL1β in response to bacteria. In contrast, levels of CXCL8 production were no different to mock-infected explants. The 3D skin model realistically simulates the interdigital skin and has

  12. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response.

    Directory of Open Access Journals (Sweden)

    Henrik Jakobsen

    Full Text Available The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.

  13. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response.

    Science.gov (United States)

    Jakobsen, Henrik; Bojer, Martin S; Marinus, Martin G; Xu, Tao; Struve, Carsten; Krogfelt, Karen A; Løbner-Olesen, Anders

    2013-01-01

    The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.

  14. In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET

    International Nuclear Information System (INIS)

    Langer, Oliver; Brunner, Martin; Zeitlinger, Markus; Mueller, Ulrich; Lackner, Edith; Joukhadar, Christian; Mueller, Markus; Ziegler, Sophie; Minar, Erich; Dobrozemsky, Georg; Mitterhauser, Markus; Wadsak, Wolfgang; Dudczak, Robert; Kletter, Kurt

    2005-01-01

    The suitability of the 18 F-labelled fluoroquinolone antibiotic ciprofloxacin ([ 18 F]ciprofloxacin) for imaging of bacterial infections with positron emission tomography (PET) was assessed in vitro and in vivo. For the in vitro experiments, suspensions of various E. colistrains were incubated with different concentrations of [ 18 F]ciprofloxacin (0.01-5.0 μg/ml) and radioactivity retention was measured in a gamma counter. For the in vivo experiments, 725 ± 9 MBq [ 18 F]ciprofloxacin was injected intravenously into four patients with microbiologically proven bacterial soft tissue infections of the lower extremities and time-radioactivity curves were recorded in infected and uninfected tissue for 5 h after tracer injection. Binding of [ 18 F]ciprofloxacin to bacterial cells was rapid, non-saturable and readily reversible. Moreover, bacterial binding of the agent was similar in ciprofloxacin-resistant and ciprofloxacin-susceptible clinical isolates. These findings suggest that non-specific binding rather than specific binding to bacterial type II topoisomerase enzymes is the predominant mechanism of bacterial retention of the radiotracer. PET studies in the four patients with microbiologically proven bacterial soft tissue infections demonstrated locally increased radioactivity uptake in infected tissue, with peak ratios between infected and uninfected tissue ranging from 1.8 to 5.5. Radioactivity was not retained in infected tissue and appeared to wash out with a similar elimination half-life as in uninfected tissue, suggesting that the kinetics of [ 18 F]ciprofloxacin in infected tissue are governed by increased blood flow and vascular permeability due to local infection rather than by a binding process. Taken together, our results indicate that [ 18 F]ciprofloxacin is not suited as a bacteria-specific infection imaging agent for PET. (orig.)

  15. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC

    Directory of Open Access Journals (Sweden)

    Nadine Lemaître

    2017-07-01

    Full Text Available The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria.

  16. The red flour beetle as a model for bacterial oral infections.

    Directory of Open Access Journals (Sweden)

    Barbara Milutinović

    Full Text Available Experimental infection systems are important for studying antagonistic interactions and coevolution between hosts and their pathogens. The red flour beetle Tribolium castaneum and the spore-forming bacterial insect pathogen Bacillus thuringiensis (Bt are widely used and tractable model organisms. However, they have not been employed yet as an efficient experimental system to study host-pathogen interactions. We used a high throughput oral infection protocol to infect T. castaneum insects with coleopteran specific B. thuringiensis bv. tenebrionis (Btt bacteria. We found that larval mortality depends on the dietary spore concentration and on the duration of exposure to the spores. Furthermore, differential susceptibility of larvae from different T. castaneum populations indicates that the host genetic background influences infection success. The recovery of high numbers of infectious spores from the cadavers indicates successful replication of bacteria in the host and suggests that Btt could establish infectious cycles in T. castaneum in nature. We were able to transfer plasmids from Btt to a non-pathogenic but genetically well-characterised Bt strain, which was thereafter able to successfully infect T. castaneum, suggesting that factors residing on the plasmids are important for the virulence of Btt. The availability of a genetically accessible strain will provide an ideal model for more in-depth analyses of pathogenicity factors during oral infections. Combined with the availability of the full genome sequence of T. castaneum, this system will enable analyses of host responses during infection, as well as addressing basic questions concerning host-parasite coevolution.

  17. Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose : a pilot study

    NARCIS (Netherlands)

    van Geffen, Wouter H; Bruins, Marcel; Kerstjens, Huib A M

    2016-01-01

    Respiratory infections, viral or bacterial, are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). A rapid, point-of-care, and easy-to-use tool distinguishing viral and bacterial from other causes would be valuable in routine clinical care. An electronic nose

  18. Parasite Infection, Carcinogenesis and Human Malignancy

    Directory of Open Access Journals (Sweden)

    Hoang van Tong

    2017-02-01

    Full Text Available Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity.

  19. Bacterial isolates and their antimicrobial susceptibility patterns among pediatric patients with urinary tract infections.

    Science.gov (United States)

    Ayelign, Birhanu; Abebe, Betelehem; Shibeshi, Adugna; Meshesha, Sosina; Shibabaw, Tewodros; Addis, Zelalem; Gelaw, Aschalew; Dagnew, Mulat

    2018-01-01

    Urinary tract infection is a common pediatric problem with the potential to produce long-term morbidity. Therefore, appropriate diagnosis and prompt treatment is required. However, studies about magnitude of uropathogenicity and antimicrobial resistance pattern of pediatric urinary tract infection (UTI) are lacking in resource limited countries including Ethiopia. This study was aimed to determine bacterial isolates, antimicrobial susceptibility pattern among pediatric patients with UTI. A cross- sectional study was conducted. Pathogenic bacterial isolates were identified by culture and biochemical methods following standard procedures. Antimicrobial susceptibility testing of the isolates for commonly used antibiotics was done using the standard disc diffusion method on Muller Hinton agar. Associations between dependent and independent variables were measured using chi-square test and within 95% confidence interval. P values pediatric patients were included in the study, and 82 (26.45%) bacterial isolates were detected. Gram- negative bacteria were predominant etiologic agents of UTI in this study. E. coli was the most frequently occurring pathogen (n=45; 54.88%) followed by S. aureus and P.aeruginosa (n=8; 9.75% for both), P. vulgaris , P.aeruginosa (n=4; 4.88%, for both) and Enterococcus species (n=3; 3.66%). All K. pneumoniae , P. mirabilis , and K. ozanae straines were 100% resistance to ampicillin, followed by P. aeruginosa (87.5%) and E. coli (69%). While all Gram- positive bacterial isolates were 100% sensitive to ciprofloxacin. Malnutrition, history of catherization and previous history of UTI were independently associated with UTI (p=0.000). There was a high prevalence of uropathogenic bacteria and drug resistance particularly to ampicillin (72%) and tetracycline (37.80%). This condition indicates that antibiotic selection should be based on knowledge of the local prevalence of bacterial organisms and antibiotic sensitivities rather than empirical

  20. Human bocavirus infection as a cause of severe acute respiratory tract infection in children.

    Science.gov (United States)

    Moesker, F M; van Kampen, J J A; van der Eijk, A A; van Rossum, A M C; de Hoog, M; Schutten, M; Smits, S L; Bodewes, R; Osterhaus, A D M E; Fraaij, P L A

    2015-10-01

    In 2005 human bocavirus (HBoV) was discovered in respiratory tract samples of children. The role of HBoV as the single causative agent for respiratory tract infections remains unclear. Detection of HBoV in children with respiratory disease is frequently in combination with other viruses or bacteria. We set up an algorithm to study whether HBoV alone can cause severe acute respiratory tract infection (SARI) in children. The algorithm was developed to exclude cases with no other likely cause than HBoV for the need for admission to the paediatric intensive care unit (PICU) with SARI. We searched for other viruses by next-generation sequencing (NGS) in these cases and studied their HBoV viral loads. To benchmark our algorithm, the same was applied to respiratory syncytial virus (RSV)-positive patients. From our total group of 990 patients who tested positive for a respiratory virus by means of RT-PCR, HBoV and RSV were detected in 178 and 366 children admitted to our hospital. Forty-nine HBoV-positive patients and 72 RSV-positive patients were admitted to the PICU. We found seven single HBoV-infected cases with SARI admitted to PICU (7/49, 14%). They had no other detectable virus by NGS. They had much higher HBoV loads than other patients positive for HBoV. We identified 14 RSV-infected SARI patients with a single RSV infection (14/72, 19%). We conclude that our study provides strong support that HBoV can cause SARI in children in the absence of viral and bacterial co-infections. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. Value of serum PCT in early diagnosis of bacterial infection in patients with liver failure

    Directory of Open Access Journals (Sweden)

    WANG Chuanmin

    2017-06-01

    Full Text Available ObjectiveTo investigate the value of serum procalcitonin (PCT in early diagnosis of bacterial infection in patients with liver failure. MethodsA total of 463 patients with hepatitis B were selected from January to December, 2014, in the Department of Infectious Diseases, Taihe Hospital. According to the degree of liver injury, the patients were divided into four groups: mild liver injury group (n=120, moderate liver injury group (n=222, sever liver injury group (n=53, and liver failure group (n=68. Serum PCT was measured for all patients, and the white blood cell count (WBC and high-sensitivity C-reactive protein (hsCRP were measured for patients with liver failure. The clinical manifestations were observed and recorded. The t test was used for comparison of normally distributed continuous data, while the Kruskal-Wallis H test was used for non-normally distributed continuous data; the Mann-Whitney U test was used for pairwise comparison of continuous data. The chi-square test was used for comparison of categorical data. The receiver operating characteristic (ROC curve was used for the analysis of predictive value. ResultsThe liver failure group had a significantly higher PCT level than the severe liver injury group, moderate liver injury group, and mild liver injury group (0.81[0.34-2.15] vs 0.53[0.21-1.59], 0.35[010-1.18], and 0.17[0.10-0.60], χ2=25.091, P<0.05. The liver failure patients with PCT levels of <0.25 ng/ml (n=10, 0.25-0.5 ng/ml (n=10, and >0.5 ng/ml (n=48 had infection rates of 20%, 30%, and 66.7%, respectively, with a significant difference between the patients with a PCT level of >0.5 ng/ml and those with PCT levels of <0.25 ng/ml and 0.25-0.5 ng/ml (χ2=5631,4650,P=0018,0031. Among the liver failure patients, the infection cases had significantly higher PCT, WBC, and hsCRP than the non-infection cases (PCT: 3.72±1.33 ng/ml vs 0.34±0.12 ng/ml, t=-2.547, P=0.015; hsCRP: 16.70±7.03 mg

  2. Post-splenectomy infections in chronic schistosomiasis as a consequence of bacterial translocation

    Directory of Open Access Journals (Sweden)

    Kedma de Magalhães Lima

    2015-06-01

    Full Text Available INTRODUCTION : Bacterial translocation is the invasion of indigenous intestinal bacteria through the gut mucosa to normally sterile tissues and internal organs. Schistosomiasis may cause alterations in the immune system and damage to the intestines, portal system and mesenteric lymph nodes. This study investigated bacterial translocation and alterations in the intestinal microbiota and mucosa in schistosomiasis and splenectomized mice. METHODS : Forty female 35-day-old Swiss Webster mice were divided into the following four groups with 10 animals each: schistosomotic (ESF, splenectomized schistosomotic (ESEF, splenectomized (EF and control (CF. Infection was achieved by introduction of 50 Schistosoma mansoni (SLM cercariae through the skin. At 125 days after birth, half of the parasitized and unparasitized mice were subjected to splenectomy. Body weights were recorded for one week after splenectomy; then, the mice were euthanized to study bacterial translocation, microbiota composition and intestinal morphometry. RESULTS : We observed significant reductions in the weight increases in the EF, ESF and ESEF groups. There were increases of at least 1,000 CFU of intestinal microbiota bacteria in these groups compared with the CF. The EF, ESF and ESEF mice showed decreases in the heights and areas of villi and the total villus areas (perimeter. We observed frequent co-infections with various bacterial genera. CONCLUSIONS : The ESEF mice showed a higher degree of sepsis. This finding may be associated with a reduction in the immune response associated with the absence of the spleen and a reduction in nutritional absorption strengthened by both of these factors (Schistosoma infection and splenectomy.

  3. Study on types of vaginitis and association between bacterial vaginosis and urinary tract infection in pregnant women

    OpenAIRE

    Lamichhane, Pramila; Joshi, Dev Raj; Subedi, Yagya Prasad; Thapa, Rekha; Acharya, Ganesh Prasad; Lamsal, Apsana; Upadhaya, Sweety; Pokhrel, Sandip

    2014-01-01

    AbstractIntroduction:  Infectious vaginitis which includes bacterial vaginosis, vulvovaginal candidiasis and trichomoniasis are common disorder in women.  Both vaginitis and Urinary Tract Infection during pregnancy have risk to lives of both the mother and fetus. Present study was done to assess type of vaginitis and to evaluate the risk of urinary tract infections in pregnant women with bacterial vaginosis.Methods: Cross sectional descriptive study of 230 pregnant women was done from 1st Jul...

  4. Fungal and Bacterial Infection Mitigation with Antibiotic and Antifungal Loaded Biopolymer Sponges

    Science.gov (United States)

    Parker, Ashley Cox

    Musculoskeletal injuries are some of the most prevalent injuries in both civilian and military populations and their infections can be difficult to treat, often resulting in multiple surgeries and increased costs. In both previous and recent military operations, extremity injuries have been the most common battlefield injuries and many involve complex, open fractures. These extremity injuries are especially susceptible to multiple pathogenic, and sometimes drug resistant, bacteria and fungi. Fungal infections have recently become increasingly problematic in both military and civilian populations and have significantly higher amputation rates than those from bacterial infections. Many of these bacterial and fungal strains adhere to tissue and implanted orthopaedic hardware within wounds, forming biofilms. These problematic, often polymicrobial, infections threaten the health of the patient, but the risk also exists of spreading within hospitals to become prominent resistant infections. Local antimicrobial delivery releases high levels of antimicrobials directly to injured wound tissue, overcoming sub-bactericidal or subfungicidal antimicrobial levels present in the avascular wound zones. This research will determine the ability of modified chitosan sponges, buffered with sodium acetate or blended with polyethylene glycol (PEG), to act as short term adjunctive therapies to initial surgical treatment for delivering both antibiotics and/or antifungals for early abatement of infection. The objective of this work was to evaluate both types of modified sponges for in vitro and in vivo material characteristics and device functionality. In vitro analysis demonstrated both the buffered and PEG modified chitosan sponges exhibited increased degradation and functional cytocompatibility. The chitosan/PEG sponges were able to be loaded with hydrophobic antifungals and the sponges released in vitro biologically active concentrations, alone or in combination with the antibiotic

  5. Bacterial Infection Potato Tuber Soft Rot Disease Detection Based on Electronic Nose

    Directory of Open Access Journals (Sweden)

    Chang Zhiyong

    2017-11-01

    Full Text Available Soft rot is a severe bacterial disease of potatoes, and soft rot infection can cause significant economic losses during the storage period of potatoes. In this study, potato soft rot was selected as the research object, and a type of potato tuber soft rot disease early detection method based on the electronic nose technology was proposed. An optimized bionic electronic nose gas chamber and a scientific and reasonable sampling device were designed to detect a change in volatile substances of the infected soft rot disease of potato tuber. The infection of soft rot disease in potato tuber samples was detected and identified by using the RBF NN algorithm and SVM algorithm. The results revealed that the proposed bionic electronic nose system can be utilized for early detection of potato tuber soft rot disease. Through comparison and analysis, the recognition rate using the SVM algorithm reached up to 89.7%, and the results were superior to the RBF NN algorithm.

  6. Synthesis and biodistribution of 99mTc-Vancomycin in a model of bacterial infection

    International Nuclear Information System (INIS)

    Roohi, S.; Mushtaq, A.; Malik, S.A.

    2005-01-01

    Vancomycin Hydrochloride is an antibiotic produced by the growth of certain strains of Streptomyces orientalis. As vancomycin hydrochloride is poorly absorbed after oral administration; it is given intravenously for therapy of systemic infections. Vancomycin was labeled with technetium-99m pertechnetate using SnCl 2 . 2H 2 O as reducing agent. The labeling efficiency depends on ligand/reductant ratio, pH, and volume of reaction mixture. Radiochemical purity and stability of 99m Tc-Vancomycin was determined by thin layer chromatography. Biodistribution studies of 99m Tc-Vancomycin were performed in a model of bacterial infection in Sprague-Dawley rats. A significantly higher accumulation of 99m Tc-Vancomycin was seen at sites of S. aureus infected animals. Whereas uptake of 99m Tc-Vancomycin in turpentine inflamed rats were quite low. (orig.)

  7. Osteomyelitis in a Paleozoic reptile: ancient evidence for bacterial infection and its evolutionary significance

    Science.gov (United States)

    Reisz, Robert R.; Scott, Diane M.; Pynn, Bruce R.; Modesto, Sean P.

    2011-06-01

    We report on dental and mandibular pathology in Labidosaurus hamatus, a 275 million-year-old terrestrial reptile from North America and associate it with bacterial infection in an organism that is characterized by reduced tooth replacement. Analysis of the surface and internal mandibular structure using mechanical and CT-scanning techniques permits the reconstruction of events that led to the pathology and the possible death of the individual. The infection probably occurred as a result of prolonged exposure of the dental pulp cavity to oral bacteria, and this exposure was caused by injury to the tooth in an animal that is characterized by reduced tooth replacement cycles. In these early reptiles, the reduction in tooth replacement is an evolutionary innovation associated with strong implantation and increased oral processing. The dental abscess observed in L. hamatus, the oldest known infection in a terrestrial vertebrate, provides clear evidence of the ancient association between terrestrial vertebrates and their oral bacteria.

  8. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  9. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal

    Science.gov (United States)

    Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763

  10. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal.

    Directory of Open Access Journals (Sweden)

    Xavier Martini

    Full Text Available The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama. CLas is the putative causal agent of huanglongbing (HLB, which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies.

  11. Staphylococcus aureus-induced G2/M phase transition delay in host epithelial cells increases bacterial infective efficiency.

    Directory of Open Access Journals (Sweden)

    Ludmila Alekseeva

    Full Text Available Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration.

  12. Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models.

    Science.gov (United States)

    Kuklin, Nelly A; Pancari, Gregory D; Tobery, Timothy W; Cope, Leslie; Jackson, Jesse; Gill, Charles; Overbye, Karen; Francis, Kevin P; Yu, Jun; Montgomery, Donna; Anderson, Annaliesa S; McClements, William; Jansen, Kathrin U

    2003-09-01

    Staphylococcal infections associated with catheter and prosthetic implants are difficult to eradicate and often lead to chronic infections. Development of novel antibacterial therapies requires simple, reliable, and relevant models for infection. Using bioluminescent Staphylococcus aureus, we have adapted the existing foreign-body and deep-wound mouse models of staphylococcal infection to allow real-time monitoring of the bacterial colonization of catheters or tissues. This approach also enables kinetic measurements of bacterial growth and clearance in each infected animal. Persistence of infection was observed throughout the course of the study until termination of the experiment at day 16 in a deep-wound model and day 21 in the foreign-body model, providing sufficient time to test the effects of antibacterial compounds. The usefulness of both animal models was assessed by using linezolid as a test compound and comparing bioluminescent measurements to bacterial counts. In the foreign-body model, a three-dose antibiotic regimen (2, 5, and 24 h after infection) resulted in a decrease in both luminescence and bacterial counts recovered from the implant compared to those of the mock-treated infected mice. In addition, linezolid treatment prevented the formation of subcutaneous abscesses, although it did not completely resolve the infection. In the thigh model, the same treatment regimen resulted in complete resolution of the luminescent signal, which correlated with clearance of the bacteria from the thighs.

  13. Optimization of linezolid treatment regimens for Gram-positive bacterial infections based on pharmacokinetic/pharmacodynamic analysis.

    Science.gov (United States)

    Yang, Minjie; Zhang, Jing; Chen, Yuancheng; Liang, Xiaoyu; Guo, Yan; Yu, Jicheng; Zhu, Demei; Zhang, Yingyuan

    2017-01-01

    To optimize linezolid treatment regimens for Gram-positive bacterial infections based on pharmacokinetic/pharmacodynamic analysis. The minimum inhibitory concentration (MIC) distribution of 572 Gram-positive strains from patients with clinically confirmed infections was analyzed. Using the Monte Carlo simulation method, the cumulative fraction of response and probability of target attainment were determined for linezolid regimens of 600 mg q.12h and q.8h Results: Linezolid dosage of 600 mg q.12h yielded >90% cumulative fraction of response and probability of target attainment for staphylococcal infections with an MIC of ≤1 mg/l, enterococcal infections with higher MIC values required 600 mg q.8h. Linezolid 600 mg q.12h is still the clinically recommended empirical dosage for Gram-positive bacterial infections. However, as bacterial MICs increase, 600 mg q.8h may be required to achieve better efficacy.

  14. Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections

    International Nuclear Information System (INIS)

    Le, Anh-Tuan; Le, Thi Tam; Nguyen, Van Quy; Tran, Huy Hoang; Dang, Duc Anh; Tran, Quang Huy; Vu, Dinh Lam

    2012-01-01

    In this work we have demonstrated a powerful disinfectant ability of colloidal silver nanoparticles (NPs) for the prevention of gastrointestinal bacterial infections. The silver NPs colloid was synthesized by a UV-enhanced chemical precipitation. Two gastrointestinal bacterial strains of Escherichia coli (ATCC 43888-O157:k-:H7) and Vibrio cholerae (O1) were used to verify the antibacterial activity of the as-prepared silver NPs colloid by means of surface disinfection assay in agar plates and turbidity assay in liquid media. Transmission electron microscopy was also employed to analyze the ultrastructural changes of bacterial cells caused by silver NPs. Noticeably, our silver NPs colloid displayed a highly effective bactericidal effect against two tested gastrointestinal bacterial strains at a silver concentration as low as ∼3 mg l −1 . More importantly, the silver NPs colloid showed an enhancement of antibacterial activity and long-lasting disinfectant effect as compared to conventional chloramin B (5%) disinfection agent. These advantages of the as-prepared colloidal silver NPs make them very promising for environmental treatments contaminated with gastrointestinal bacteria and other infectious pathogens. Moreover, the powerful disinfectant activity of silver-containing materials can also help in controlling and preventing further outbreak of diseases. (paper)

  15. Clinical evaluation of technetium-99m infecton for the localisation of bacterial infection

    International Nuclear Information System (INIS)

    Britton, K.E.; Vinjamuri, S.; Hall, A.V.; Solanki, K.; Siraj, Q.H.; Bomanji, J.; Das, S.

    1997-01-01

    The aim of the study was to distinguish infection from inflammation in patients with suspected infection using technetium-99m Infecton. Ninety-nine patients (102 studies) referred for infection evaluation underwent imaging with 400 MBq 99m Tc-Infecton at 1 and 4 h. Most patients had appropriate microbiological tests and about half (56) had radiolabelled white cell scans as well. No adverse effects were noted in any patient. The clinical efficacy of 99m Tc-Infecton depended in part on whether imaging was undertaken during antibiotic therapy for infection or not. In consultation with the microbiologist, 5-14 days of appropriate and successful antibiotic therapy was considered adequate to classify some results as true-negatives. The figures for sensitivity and specificity of 99m Tc-Infecton for active or unsuccessfully treated infection were 83% and 91% respectively. It is concluded that 99m Tc-Infecton imaging contributed to the differential diagnosis of inflammation. It is being used as the first imaging modality when bacterial infection is suspected. (orig.). With 2 figs., 1 tab

  16. Liver is the major source of elevated serum lipocalin-2 levels after bacterial infection or partial hepatectomy

    DEFF Research Database (Denmark)

    Xu, Ming-Jiang; Feng, Dechun; Wu, Hailong

    2015-01-01

    cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL-6 activation of the STAT3 signaling pathway. Thus, hepatocyte-derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration....... or E. coli. These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with interleukin (IL)-6 stimulated hepatocytes to produce LCN2 in vitro and in vivo. Hepatocyte-specific ablation of the IL...

  17. Isolation, identification, and pathological effects of beach sand bacterial extract on human skin keratinocytes in vitro

    Directory of Open Access Journals (Sweden)

    Fazli Subhan

    2018-01-01

    Full Text Available Background Beaches are recreational spots for people. However, beach sand contains harmful microbes that affect human health, and there are no established methods for either sampling and identifying beach-borne pathogens or managing the quality of beach sand. Method This study was conducted with the aim of improving human safety at beaches and augmenting the quality of the beach experience. Beach sand was used as a resource to isolate bacteria due to its distinctive features and the biodiversity of the beach sand biota. A selected bacterial isolate termed FSRS was identified as Pseudomonas stutzeri using 16S rRNA sequencing and phylogenetic analysis, and the sequence was deposited in the NCBI GenBank database under the accession number MF599548. The isolated P. stutzeri bacterium was cultured in Luria–Bertani growth medium, and a crude extract was prepared using ethyl acetate to examine the potential pathogenic effect of P. stutzeri on human skin. A human skin keratinocyte cell line (HaCaT was used to assess cell adhesion, cell viability, and cell proliferation using a morphological analysis and a WST-1 assay. Result The crude P. stutzeri extract inhibited cell adhesion and decreased cell viability in HaCaT cells. We concluded that the crude extract of P. stutzeri FSRS had a strong pathological effect on human skin cells. Discussion Beach visitors frequently get skin infections, but the exact cause of the infections is yet to be determined. The beach sand bacterium P. stutzeri may, therefore, be responsible for some of the dermatological problems experienced by people visiting the beach.

  18. Serum sCD30: A promising biomarker for predicting the risk of bacterial infection after kidney transplantation.

    Science.gov (United States)

    Fernández-Ruiz, Mario; Parra, Patricia; López-Medrano, Francisco; Ruiz-Merlo, Tamara; González, Esther; Polanco, Natalia; Origüen, Julia; San Juan, Rafael; Andrés, Amado; Aguado, José María

    2017-04-01

    The transmembrane glycoprotein CD30 contributes to regulate the balance between Th 1 and Th 2 responses. Previous studies have reported conflicting results on the utility of its soluble form (sCD30) to predict post-transplant infection. Serum sCD30 was measured by a commercial ELISA assay at baseline and post-transplant months 1, 3, and 6 in 100 kidney transplant (KT) recipients (279 monitoring points). The impact of sCD30 levels on the incidence of overall, bacterial and opportunistic infection during the first 12 months after transplantation was assessed by Cox regression. There were no differences in serum sCD30 according to the occurrence of overall or opportunistic infection. However, sCD30 levels were higher in patients with bacterial infection compared to those without at baseline (P=.038) and months 1 (Ptransplantation (P=.006). Patients with baseline sCD30 levels ≥13.5 ng/mL had lower 12-month bacterial infection-free survival (35.0% vs 80.0%; PsCD30 levels ≥13.5 ng/mL remained as an independent risk factor for bacterial infection (adjusted hazard ratio [aHR]: 4.65; 95% confidence interval [CI]: 2.05-10.53; sCD30 levels ≥6.0 ng/mL at month 1 acted as a risk factor for subsequent bacterial infection (aHR: 5.29; 95% CI: 1.11-25.14; P=.036). Higher serum sCD30 levels were associated with an increased risk of bacterial infection after KT. We hypothesize that this biomarker reflects a Th 2 -polarized T-cell response, which exerts a detrimental effect on the immunity against bacterial pathogens. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Bacterial infection identification by an anti-peptidoglycan aptamer labeled with Technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Antero Silva Ribeiro; Ferreira, Iêda Mendes [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barros, Andre Luis Branco de; Cardoso, Valbert Nascimento [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Full text: Introduction: A variety of radiopharmaceuticals is used to detect infection, but long-term clinical use has shown that the majority of them cannot distinguish between inflammation and infection. Nuclear medicine clinics are still awaiting the optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. Material and Methods: An aptamer for the peptidoglycan (main constituent of bacterial cell walls) termed Antibac1 was selected in a previous work. In the present study, this aptamer were labeled with {sup 99m}Tc and evaluated for bacterial infections identification by scintigraphy. All protocols were approved by the local Ethics Committee for Animal Experimentation of the Federal University of Minas Gerais (CETEA / UFMG), Protocol number 108/2014. Labeling with {sup 99m}Tc was performed by the direct method and the complex stability was evaluated in saline, plasma and presence of cysteine. The biodistribution and scintigraphic imaging studies with the {sup 99m}Tc-Antibac1 were carried out in two distinct experimental infection models: Swiss mice infected in the right thigh with Staphylococcus aureus or Candida albicans. {sup 99m}Tc radiolabeled library, consisting of oligonucleotides with random sequences, was used as a control in both experimental models. The direct radiolabeling allowed radiolabel yields above 90%. Results: A high complex stability was obtained in saline solution and plasma, but 51% of transchelation was verified after 24 h in the presence of cysteine. Scintigraphic images of S. aureus infected mice that received the {sup 99m}Tc-Antibac1 showed target to non-target ratios of 4.7 ± 0.90 and 4.6 ± 0.10 at 1.5 and 3.0 h, respectively. These values were statistically higher than

  20. Bacterial infection identification by an anti-peptidoglycan aptamer labeled with Technetium-99m

    International Nuclear Information System (INIS)

    Andrade, Antero Silva Ribeiro; Ferreira, Iêda Mendes; Barros, Andre Luis Branco de; Cardoso, Valbert Nascimento

    2017-01-01

    Full text: Introduction: A variety of radiopharmaceuticals is used to detect infection, but long-term clinical use has shown that the majority of them cannot distinguish between inflammation and infection. Nuclear medicine clinics are still awaiting the optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. Material and Methods: An aptamer for the peptidoglycan (main constituent of bacterial cell walls) termed Antibac1 was selected in a previous work. In the present study, this aptamer were labeled with 99m Tc and evaluated for bacterial infections identification by scintigraphy. All protocols were approved by the local Ethics Committee for Animal Experimentation of the Federal University of Minas Gerais (CETEA / UFMG), Protocol number 108/2014. Labeling with 99m Tc was performed by the direct method and the complex stability was evaluated in saline, plasma and presence of cysteine. The biodistribution and scintigraphic imaging studies with the 99m Tc-Antibac1 were carried out in two distinct experimental infection models: Swiss mice infected in the right thigh with Staphylococcus aureus or Candida albicans. 99m Tc radiolabeled library, consisting of oligonucleotides with random sequences, was used as a control in both experimental models. The direct radiolabeling allowed radiolabel yields above 90%. Results: A high complex stability was obtained in saline solution and plasma, but 51% of transchelation was verified after 24 h in the presence of cysteine. Scintigraphic images of S. aureus infected mice that received the 99m Tc-Antibac1 showed target to non-target ratios of 4.7 ± 0.90 and 4.6 ± 0.10 at 1.5 and 3.0 h, respectively. These values were statistically higher than found for the 99m Tc

  1. [Transfusion-transmitted bacterial infection of a apheresis platelet concentrate with Streptococcus gallolyticus: Analysis of one case].

    Science.gov (United States)

    Le Niger, C; Dalbies, F; Narbonne, V; Hery-Arnaud, G; Virmaux, M; Léostic, C; Hervé, F; Liétard, C

    2014-06-01

    Bacterial infections are uncommon complications of the blood products transfusion but they are potentially serious. Many advances have been done over the past few years to guarantee the microbiological security of blood products as the donors selection with a medical talk, the derivation of the first 30 millilitres blood during the donation, the deleucocytation of blood products… But in spite of these advances, cases of bacterial infection always remain. The purpose of this study was to point out the platelet concentrate's transfusion-transmitted bacterial infection with Streptococcus gallolyticus and the unusual consequence for the donor by uncovering an asymptomatic rectal neoplastic tumor. This study as raised as to whether the usefulness of systematic bacterial inactivation in the platelets concentrates. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Liberia.

    Science.gov (United States)

    Rosa, Bruce A; Supali, Taniawati; Gankpala, Lincoln; Djuardi, Yenny; Sartono, Erliyani; Zhou, Yanjiao; Fischer, Kerstin; Martin, John; Tyagi, Rahul; Bolay, Fatorma K; Fischer, Peter U; Yazdanbakhsh, Maria; Mitreva, Makedonka

    2018-02-28

    The human intestine and its microbiota is the most common infection site for soil-transmitted helminths (STHs), which affect the well-being of ~ 1.5 billion people worldwide. The complex cross-kingdom interactions are not well understood. A cross-sectional analysis identified conserved microbial signatures positively or negatively associated with STH infections across Liberia and Indonesia, and longitudinal samples analysis from a double-blind randomized trial showed that the gut microbiota responds to deworming but does not transition closer to the uninfected state. The microbiomes of individuals able to self-clear the infection had more alike microbiome assemblages compared to individuals who remained infected. One bacterial taxon (Lachnospiracae) was negatively associated with infection in both countries, and 12 bacterial taxa were significantly associated with STH infection in both countries, including Olsenella (associated with reduced gut inflammation), which also significantly reduced in abundance following clearance of infection. Microbial community gene abundances were also affected by deworming. Functional categories identified as associated with STH infection included arachidonic acid metabolism; arachidonic acid is the precursor for pro-inflammatory leukotrienes that threaten helminth survival, and our findings suggest that some modulation of arachidonic acid activity in the STH-infected gut may occur through the increase of arachidonic acid metabolizing bacteria. For the first time, we identify specific members of the gut microbiome that discriminate between moderately/heavily STH-infected and non-infected states across very diverse geographical regions using two different statistical methods. We also identify microbiome-encoded biological functions associated with the STH infections, which are associated potentially with STH survival strategies, and changes in the host environment. These results provide a novel insight of the cross

  3. Genetic battle between Helicobacter pylori and humans. The mechanism underlying homologous recombination in bacteria, which can infect human cells.

    Science.gov (United States)

    Hanada, Katsuhiro; Yamaoka, Yoshio

    2014-10-01

    Helicobacter pylori is a gram-negative pathogenic bacterium that colonises the human stomach. The chronic infection it causes results in peptic ulcers and gastric cancers. H. pylori can easily establish a chronic infection even if the immune system attacks this pathogen with oxidative stress agents and immunoglobulins. This is attributed to bacterial defence mechanisms against these stresses. As a defence mechanism against oxidative stresses, in bacterial genomes, homologous recombination can act as a repair pathway of DNA's double-strand breaks (DSBs). Moreover, homologous recombination is also involved in the antigenic variation in H. pylori. Gene conversion alters genomic structures of babA and babB (encoding outer membrane proteins), resulting in escape from immunoglobulin attacks. Thus, homologous recombination in bacteria plays an important role in the maintenance of a chronic infection. In addition, H. pylori infection causes DSBs in human cells. Homologous recombination is also involved in the repair of DSBs in human cells. In this review, we describe the roles of homologous recombination with an emphasis on the maintenance of a chronic infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Gene expression-based classifiers identify Staphylococcus aureus infection in mice and humans.

    Directory of Open Access Journals (Sweden)

    Sun Hee Ahn

    Full Text Available Staphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the host's inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection and was validated in outbred mice (AUC>0.97. A S. aureus classifier derived from a cohort of 94 human subjects distinguished S. aureus blood stream infection (BSI from healthy subjects (AUC 0.99 and E. coli BSI (AUC 0.84. Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84. Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.92, respectively. The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues.

  5. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC.

    Science.gov (United States)

    Lemaître, Nadine; Liang, Xiaofei; Najeeb, Javaria; Lee, Chul-Jin; Titecat, Marie; Leteurtre, Emmanuelle; Simonet, Michel; Toone, Eric J; Zhou, Pei; Sebbane, Florent

    2017-07-25

    The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria. IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of Lpx

  6. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC

    Energy Technology Data Exchange (ETDEWEB)

    Lemaître, Nadine; Liang, Xiaofei; Najeeb, Javaria; Lee, Chul-Jin; Titecat, Marie; Leteurtre, Emmanuelle; Simonet, Michel; Toone, Eric J.; Zhou, Pei; Sebbane, Florent; Nacy, Carol A.

    2017-07-25

    ABSTRACT

    The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effectivein vitroagainst a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacteriumYersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria.

    IMPORTANCEThe rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are activein vitroagainst a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad

  7. Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia

    Directory of Open Access Journals (Sweden)

    Püntener Ursula

    2012-06-01

    Full Text Available Abstract Background Systemic infection leads to generation of inflammatory mediators that result in metabolic and behavioural changes. Repeated or chronic systemic inflammation leads to a state of innate immune tolerance: a protective mechanism against overactivity of the immune system. In this study, we investigated the immune adaptation of microglia and brain vascular endothelial cells in response to systemic inflammation or bacterial infection. Methods Mice were given repeated doses of lipopolysaccharide (LPS or a single injection of live Salmonella typhimurium. Inflammatory cytokines were measured in serum, spleen and brain, and microglial phenotype studied by immunohistochemistry. To assess priming of the innate immune response in the brain, mice were infected with Salmonella typhimurium and subsequently challenged with a focal unilateral intracerebral injection of LPS. Results Repeated systemic LPS challenges resulted in increased brain IL-1β, TNF-α and IL-12 levels, despite attenuated systemic cytokine production. Each LPS challenge induced significant changes in burrowing behaviour. In contrast, brain IL-1β and IL-12 levels in Salmonella typhimurium-infected mice increased over three weeks, with high interferon-γ levels in the circulation. Behavioural changes were only observed during the acute phase of the infection. Microglia and cerebral vasculature display an activated phenotype, and focal intracerebral injection of LPS four weeks after infection results in an exaggerated local inflammatory response when compared to non-infected mice. Conclusions These studies reveal that the innate immune cells in the brain do not become tolerant to systemic infection, but are primed instead. This may lead to prolonged and damaging cytokine production that may have a profound effect on the onset and/or progression of pre-existing neurodegenerative disease.

  8. Tracking bacterial infection of macrophages using a novel red-emission pH sensor.

    Science.gov (United States)

    Jin, Yuguang; Tian, Yanqing; Zhang, Weiwen; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R

    2010-10-01

    The relationship between bacteria and host phagocytic cells is key to the induction of immunity. To visualize and monitor bacterial infection, we developed a novel bacterial membrane permeable pH sensor for the noninvasive monitoring of bacterial entry into murine macrophages. The pH sensor was constructed using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) as an electron-withdrawing group and aniline as an electron-donating group. A piperazine moiety was used as the pH-sensitive group. Because of the strong electron-donating and -withdrawing units conjugated in the sensing moiety M, the fluorophore emitted in the red spectral window, away from the autofluorescence regions of the bacteria. Following the engulfment of sensor-labeled bacteria by macrophages and their subsequent merger with host lysosomes, the resulting low-pH environment enhances the fluorescence intensity of the pH sensors inside the bacteria. Time-lapse analysis of the fluorescent intensity suggested significant heterogeneity of bacterial uptake among macrophages. In addition, qRT-PCR analysis of the bacterial 16 S rRNA gene expression within single macrophage cells suggested that the 16 S rRNA of the bacteria was still intact 120 min after they had been engulfed by macrophages. A toxicity assay showed that the pH sensor has no cytotoxicity towards either E. coli or murine macrophages. The sensor shows good repeatability, a long lifetime, and a fast response to pH changes, and can be used for a variety of bacteria.

  9. Hypoxia determines survival outcomes of bacterial infection through HIF-1α-dependent reprogramming of leukocyte metabolism

    OpenAIRE

    Thompson, A.A.R.; Dickinson, R.S.; Murphy, F.; Thomson, J.P.; Marriott, H.M.; Tavares, A.; Willson, J.; Williams, L.; Lewis, A.; Mirchandani, A.; Coelho, P.D.S.; Doherty, C.; Ryan, E.; Watts, E.; Morton, N.M.

    2017-01-01

    Hypoxia and bacterial infection frequently coexist, in both acute and chronic clinical settings, and typically result in adverse clinical outcomes. To ameliorate this morbidity, we investigated the interaction between hypoxia and the host response. In the context of acute hypoxia, both Staphylococcus aureus and Streptococcus pneumoniae infections rapidly induced progressive neutrophil-mediated morbidity and mortality, with associated hypothermia and cardiovascular compromise. Preconditioning ...

  10. The Mathematical Biology of Human Infections

    Directory of Open Access Journals (Sweden)

    Martin A. Nowak

    1999-12-01

    Full Text Available Humans are constant victims of infectious diseases. Biomedical research during this century has led to important insights into the molecular details of immune defense. Yet, many questions relating to disease require a quantitative understanding of the complex systems that arise from the nonlinear interactions between populations of immune cells and infectious agents. Exploration of such questions has lead to a newly emerging field of mathematical biology describing the spread of infectious agents both within and between infected individuals. This essay will discuss simple and complex models of evolution, and the propagation of virus and prion infections. Such models provide new perspectives for our understanding of infectious disease and provide guidelines for interpreting experimental observation; they also define what needs to be measured to improve understanding.

  11. The bacterial parasite Pasteuria ramosa is not killed if it fails to infect: implications for coevolution.

    Science.gov (United States)

    King, Kayla C; Auld, Stuart K J R; Wilson, Philip J; James, Janna; Little, Tom J

    2013-02-01

    Strong selection on parasites, as well as on hosts, is crucial for fueling coevolutionary dynamics. Selection will be especially strong if parasites that encounter resistant hosts are destroyed and diluted from the local environment. We tested whether spores of the bacterial parasite Pasteuria ramosa were passed through the gut (the route of infection) of their host, Daphnia magna, and whether passaged spores remained viable for a "second chance" at infecting a new host. In particular, we tested if this viability (estimated via infectivity) depended on host genotype, whether or not the genotype was susceptible, and on initial parasite dose. Our results show that Pasteuria spores generally remain viable after passage through both susceptible and resistant Daphnia. Furthermore, these spores remained infectious even after being frozen for several weeks. If parasites can get a second chance at infecting hosts in the wild, selection for infection success in the first instance will be reduced. This could also weaken reciprocal selection on hosts and slow the coevolutionary process.

  12. Usefulness of clinical data and rapid diagnostic tests to identify bacterial etiology in adult respiratory infections

    Directory of Open Access Journals (Sweden)

    Pilar Toledano-Sierra

    2015-01-01

    Full Text Available Respiratory tract infections are a common complaint and most of them, such as common cold and laryngitis, are viral in origin, so antibiotic use should be exceptional. However, there are other respiratory tract infections (sinusitis, pharyngitis, lower respiratory tract infections, and exacerbations of chronic obstructive pulmonary disease where a bacterial etiology is responsible for a non-negligible percentage, and antibiotics are often empirically indicated. The aim of the study is to identify the strength of the data obtained from the symptoms, physical examination and rapid diagnostic methods in respiratory infections in which antibiotic use is frequently proposed in order to improve diagnosis and influence the decision to prescribe these drugs. The review concludes that history, physical examination and rapid tests are useful to guide the need for antibiotic treatment in diseases such as acute sinusitis, acute pharyngitis, exacerbation of lower respiratory tract infection and chronic obstructive pulmonary disease. However, no isolated data is accurate enough by itself to confirm or rule out the need for antibiotics. Therefore, clinical prediction rules bring together history and physical examination, thereby improving the accuracy of the decision to indicate or not antibiotics.

  13. Study of Bacterial Infections Among Patients Receiving Kidney Transplant in Mashhad, Iran.

    Science.gov (United States)

    Mansury, Davood; Khaledi, Azad; Ghazvini, Kiarash; Sabbagh, Mahin Ghorban; Zare, Hosna; Rokni-Hosseini, Mohammad Hossein; Vazini, Hossein

    2017-11-15

    Over the past 2 decades, significant advances have been made in the management of infections after transplant; however, transplant recipients are still at high risk of infectious complications. This study aimed to evaluate the prevalence of bacterial infections and antimicrobial resistance patterns in kidney transplant recipients. This cross-sectional study included 356 patients who received kidney transplants, regardless of the underlying disease, from 2013 to 2015 at the Montaserieh Transplant Hospital (Mashhad, Iran). Clinical samples collected from patients were sent to the microbiology laboratory for culture processing. Typing of bacteria was conducted, and susceptibility testing was performed according to the Clinical and Laboratory Standards Institute guideline by use the of disk diffusion agar method. Data were then analyzed by SPSS software (SPSS: An IBM Company, IBM Corporation, Armonk, NY, USA) using chi-square test. Among 356 kidney recipients (206 men and 150 women), 115 (32.3%) received transplants from living donors and 241 (67.7%) received transplants from deceased donors. Of 356 total patients, 112 patients (31.5%) had an infection at various times after transplant. The most common gram-negative and gram-positive isolated bacteria were Escherichia coli and coagulase-negative Staphylococcus, with prevalence rates of 66.1% and 48.6%. Most of the isolates were resistant against selected antibiotics. Because of the high prevalence of infection among transplant patients, infection prevention should receive more attention, and antibiotic susceptibility should be determined before treatment.

  14. Immunostimulation using bacterial antigens – mechanism ofaction and clinical practice inviral respiratory tract infections

    Directory of Open Access Journals (Sweden)

    Wojciech Feleszko

    2015-12-01

    Full Text Available Recurrent respiratory tract infections constitute a significant problem in the practice of a general practitioner and paediatrician. Antibiotic resistance of bacterial strains, which has been growing for years, prompts the search for alternative ways of combating pathogens. One of them is the usage of preparations based on cell lysis of various bacterial strains. Bacterial lysates have been available in Europe for many years. In preclinical trials, they are characterised by the capability of reducing infections caused by bacteria and viruses that are not the components of the preparations. A range of clinical trials have demonstrated their usefulness in reducing the frequency of seasonal respiratory tract infections and antibiotic use. Moreover, patients with chronic obstructive pulmonary disease gain an additional advantage in the form of the reduction of the risk of hospitalization due to disease exacerbations and a positive influence on the survival curve. The action of bacterial lysates is based on oral immunostimulation of gut-associated lymphoid tissue, which results in increased antibody production. Moreover, they activate a range of mucosal mechanisms of non-specific immunity, mainly by enhancing the activity of TLR-dependent mechanisms. The efficacy of this group of drugs has been confirmed in a range of clinical trials, systematic reviews and meta-analyses. Recent studies also indicate their immunoregulatory potential, suggesting that they might be used in the future in preventing allergies, asthma and autoimmune diseases. To conclude, physicians (paediatricians, laryngologists, pulmonologists should consider reducing the use of antibiotics in their daily practice. Instead, they should offer preparations that promote the immune system, thus controlling infections in a better way.

  15. Reactions of human dental pulp cells to capping agents in the presence or absence of bacterial exposure.

    Science.gov (United States)

    Cai, Shiwei; Zhang, Wenjian; Tribble, Gena; Chen, Wei

    2017-01-01

    An ideal pulp-capping agent needs to have good biocompatibility and promote reparative dentinogenesis. Although the effects of capping agents on healthy pulp are known, limited data regarding their effects on bacterial contaminated pulp are available. This study aimed to evaluate the reaction of contaminated pulps to various capping agents to assist clinicians in making informed decisions. Human dental pulp (HDP) cell cultures were developed from extracted human molars. The cells were exposed to a bacterial cocktail comprising Porphyromonas gingivalis, Prevotella intermedia, and Streptococcus gordonii before being cocultured with capping agents such as mineral trioxide aggregate (MTA) Portland cement (PC), and Dycal. HDP cell proliferation was assayed by MTS colorimetric cell proliferation assay, and its differentiation was evaluated by real-time PCR for detecting alkaline phosphatase, dentin sialophosphoprotein, and osteocalcin expressions. MTA and PC had no apparent effect, whereas Dycal inhibited HDP cell proliferation. PC stimulated HDP cell differentiation, particularly when they were exposed to bacteria. MTA and Dycal inhibited differentiation, regardless of bacterial infection. In conclusion, PC was the most favorable agent, followed by MTA, and Dycal was the least favorable agent for supporting the functions of bacterial compromised pulp cells.

  16. “Collinsella vaginalis” sp. nov., a new bacterial species cultivated from human female genital tract

    Directory of Open Access Journals (Sweden)

    Khoudia Diop

    2016-12-01

    Full Text Available We present a brief description of “Collinsella vaginalis” strain P2666 (=CSUR P2666, a new bacterium that was cultivated from the vaginal sample of a 26-year-old woman affected from bacterial vaginosis. Keywords: “Collinsella vaginalis”, Culturomics, Vaginal flora, Bacterial vaginosis, Human microbiota

  17. Retrospective Analysis of Bacterial and Viral Co-Infections in Pneumocystis spp. Positive Lung Samples of Austrian Pigs with Pneumonia.

    Directory of Open Access Journals (Sweden)

    Christiane Weissenbacher-Lang

    Full Text Available Aim of this study was the retrospective investigation of viral (porcine circovirus type 2 (PCV2, porcine reproductive and respiratory syndrome virus (PRRSV, torque teno sus virus type 1 and 2 (TTSuV1, TTSuV2 and bacterial (Bordetella bronchiseptica (B. b., Mycoplasma hyopneumoniae (M. h., and Pasteurella multocida (P. m. co-infections in 110 Pneumocystis spp. positive lung samples of Austrian pigs with pneumonia. Fifty-one % were positive for PCV2, 7% for PRRSV, 22% for TTSuV1, 48% for TTSuV2, 6% for B. b., 29% for M. h., and 21% for P. m. In 38.2% only viral, in 3.6% only bacterial and in 40.0% both, viral and bacterial pathogens were detected. In 29.1% of the cases a co-infection with 1 pathogen, in 28.2% with 2, in 17.3% with 3, and in 7.3% with 4 different infectious agents were observed. The exposure to Pneumocystis significantly decreased the risk of a co-infection with PRRSV in weaning piglets; all other odds ratios were not significant. Four categories of results were compared: I = P. spp. + only viral co-infectants, II = P. spp. + both viral and bacterial co-infectants, III = P. spp. + only bacterial co-infectants, and IV = P. spp. single infection. The evaluation of all samples and the age class of the weaning piglets resulted in a predomination of the categories I and II. In contrast, the suckling piglets showed more samples of category I and IV. In the group of fattening pigs, category II predominated. Suckling piglets can be infected with P. spp. early in life. With increasing age this single infections can be complicated by co-infections with other respiratory diseases.

  18. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection

    Science.gov (United States)

    Gupta, Akash; Saleh, Neveen M.; Das, Riddha; Landis, Ryan F.; Bigdeli, Arafeh; Motamedchaboki, Khatereh; Rosa Campos, Alexandre; Pomeroy, Kenneth; Mahmoudi, Morteza; Rotello, Vincent M.

    2017-06-01

    Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. Antibiotic treatment of resistant infections further contributes to the rapidly increasing number of antibiotic-resistant species and strains. Synthetic macromolecules such as nanoparticles (NPs) exhibit broad-spectrum activity against MDR species, however lack of specificity towards bacteria relative to their mammalian hosts limits their widespread therapeutic application. Here, we demonstrate synergistic antimicrobial therapy using hydrophobically functionalized NPs and fluoroquinolone antibiotics for treatment of MDR bacterial strains. An 8-16-fold decrease in antibiotic dosage is achieved in presence of engineered NPs to combat MDR strains. This strategy demonstrates the potential of using NPs to ‘revive’ antibiotics that have been rendered ineffective due to the development of resistance by pathogenic bacteria.

  19. [Strategy for choosing antibiotics for treating bacterial infections associated with chronic tick-borne encephalitis].

    Science.gov (United States)

    Malenko, G V; Pogodina, V V; Frolova, M P; Ivannikova, T A

    1996-01-01

    The capacity of wide-spectrum antibiotics kefzol and ristomycin to activate the persisting tick-borne encephalitis (TBE) virus and cause an exacerbation of chronic process was investigated in Syrian hamsters in whom a prolonged (77 to 270 days) persistent TBE infection was induced by three TBE strains: Vasilchenko, V-383, and 205. The degree of antibiotic-induced activation was assessed using the criteria characterizing the reproduction and peculiarities of persisting TBE virus, immunodepression, and morphologic changes in the central nervous system. Effects of kefzol and ristomycin were compared with those of 8 antibiotics studied previously. Ristomycin, levomycetin (chloramphycin), penicillin, ampicillin (ampital), and levoridan were referred to drugs devoid of evident provoking effect. Kefzol (cefamezin), florimycin (viomycin), and kanamycin (kanamytrex) were characterized as weak activators and streptomycin and tetracycline as potent activators of the persisting TBE virus. These data may be used when selecting alternative agents for therapy of secondary bacterial infections concomitant with TBE.

  20. [Application of sumamed in treatment of bacterial vaginal infections during pregnancy].

    Science.gov (United States)

    Nikolov, A; Shopova, E; Nashar, S; Dimitrov, A

    2008-01-01

    To study the efficacy of Sumamed in cases of endogenous bacterial vaginal infections during third trimester of pregnancy. 34 women in last trimester of pregnancy with Streptococcus group B, Streptococcus group A, alpha hemolytic Streptococci, S. aureus infections and intermediate state of vaginal ecosystem (Nugent score 4-6) were treated with Sumamed (Azithromycin, 500 mg. p.o. for 3 days). Patients were separated in two groups. First group included 19 women with symptomatic and microbiologically proven recurrent vaginal infection during last 6 months. Second group included 15 symptom free pregnant women, in whom, pathogenic bacteria were found on vaginal swab and culture. Culture revealed 2 cases of Streptococcus group A infection in the second study group. Streptococcus group B was isolated in 19 patients--11 group 1 and 8--group 2. S. aureus was found in 6 patients from group 1 and 3 patients from group 2. Alpha hemolytic streptococci were cultured in 4 cases--2 from group 1 and 2 from group 2. Isolated microorganisms showed in vitro sensibility toward Sumamed. After treatment completion, control swab and culture was performed in 26 cases (14 group 1 and 12 group 2 patients). In group 1 in 12 (85,7%) patients no pathological microorganisms were cultured, Nugent scores were between 0-3 and no subjective symptoms were reported. 2 (14,3%) patients had Candida infection. In the second group 10 patients (83,5%) had normal vaginal microbiology, 2(16,5%) remained with intermediate vaginal microflora state. No newborn infections and cases of endometritis were found in both study groups. Sumamed is an efficacious treatment in cases of streptococcal and staphylococcal vaginal infections during pregnancy. Application of Sumamed results in alleviation of clinical symptoms and in sanitation of birth canal.

  1. Differential bacterial load on components of total knee prosthesis in patients with prosthetic joint infection.

    Science.gov (United States)

    Holinka, Johannes; Pilz, Magdalena; Hirschl, Alexander M; Graninger, Wolfgang; Windhager, Reinhard; Presterl, Elisabeth

    2012-10-01

    The purpose of our study was to evaluate and quantify the bacterial adherence on different components of total knee prosthesis with the sonication culture method. Explanted components of all patients with presumptive prosthetic or implant infection were treated by sonication separately in sterile containers to dislodge the adherent bacteria from the surfaces and cultured. The bacterial load of the different knee components (femur, tibia, PE-inlay and patella) was evaluated by counting of colony-forming units (CFU) dislodged from the components surfaces using the sonication culture method. Overall, 27 patients had positive sonication cultures of explanted total knee prostheses. Microorganisms were detected from 88 of 100 explanted components. Twenty femoral components were culture positive and 7 negative, 23 tibial components as well as 23 polyethylene (PE) platforms had positive microorganism detection from the surface. Staphylococcus epidermidis adhered to the highest number of components whereas Staphylococcus aureus yielded the highest load of CFU in the sonication cultures. Although not significant, PE-inlays and tibial components were most often affected. The highest CFU count was detected in polyethylene components. The sonication culture method is a reliable method to detect bacteria from the components. Additionally, the results demonstrate that bacterial adherence is not affecting a single component of knee prosthesis only. Thus, in septic revision surgery partial prosthetic exchange or exchange of single polyethylene components alone may be not sufficient.

  2. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis

    Directory of Open Access Journals (Sweden)

    Cheng-Yen Kao

    2016-02-01

    Full Text Available Helicobacter pylori pathogenesis and disease outcomes are mediated by a complex interplay between bacterial virulence factors, host, and environmental factors. After H. pylori enters the host stomach, four steps are critical for bacteria to establish successful colonization, persistent infection, and disease pathogenesis: (1 Survival in the acidic stomach; (2 movement toward epithelium cells by flagella-mediated motility; (3 attachment to host cells by adhesins/receptors interaction; (4 causing tissue damage by toxin release. Over the past 20 years, the understanding of H. pylori pathogenesis has been improved by studies focusing on the host and bacterial factors through epidemiology researches and molecular mechanism investigations. These include studies identifying the roles of novel virulence factors and their association with different disease outcomes, especially the bacterial adhesins, cag pathogenicity island, and vacuolating cytotoxin. Recently, the development of large-scale screening methods, including proteomic, and transcriptomic tools, has been used to determine the complex gene regulatory networks in H. pylori. In addition, a more available complete genomic database of H. pylori strains isolated from patients with different gastrointestinal diseases worldwide is helpful to characterize this bacterium. This review highlights the key findings of H. pylori virulence factors reported over the past 20 years.

  3. Colonization and infection by Helicobacter pylori in humans.

    Science.gov (United States)

    Andersen, Leif Percival

    2007-11-01

    When Helicobacter pylori arrives in the human stomach, it may penetrate the mucin layer and adhere to the gastric epithelial cells or it may pass through the stomach without colonizing the mucosa. In this paper, the colonization process and the ensuing immunological response will be briefly described. Urease production is necessary for H. pylori to establish a pH-neutral microenvironment around the bacteria. The flagella enable the bacteria to move and the shape of H. pylori makes it possible to penetrate the mucin layer where it comes into contact with the gastric epithelial cells. H. pylori contains several adhesins that enable it to adhere to the epithelial cells. This adherence activates IL-8 which, together with bacterial antigens, attracts polymorphs and monocytes and causes acute gastritis. Antigen-presenting cells activate lymphocytes and other mononuclear cells that are attracted to the inflamed mucosa, causing chronic superficial gastritis and initiating a cytotoxic or an antigen-producing Th response. The infection is established within a few weeks after the primary exposure to H. pylori. After this initial colonization, many chemical, biochemical, and immunologic reactions take place that are of importance in the progress of the infection and the development of disease.

  4. Echinococcus ortleppi Infections in Humans and Cattle, France

    Science.gov (United States)

    Umhang, Gérald; Arbez-Gindre, Francine; Mantion, Georges; Delabrousse, Eric; Millon, Laurence; Boué, Franck

    2014-01-01

    In 2011 and 2012, liver infections caused by Echinococcus ortleppi tapeworms were diagnosed in 2 humans in France. In 2012, a nationwide slaughterhouse survey identified 7 E. ortleppi infections in cattle. The foci for these infections were spatially distinct. The prevalence of E. ortleppi infections in France may be underestimated. PMID:25417697

  5. Parasite Infection, Carcinogenesis and Human Malignancy.

    Science.gov (United States)

    van Tong, Hoang; Brindley, Paul J; Meyer, Christian G; Velavan, Thirumalaisamy P

    2017-02-01

    Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Microbiological diagnosis of human papilloma virus infection.

    Science.gov (United States)

    Mateos-Lindemann, Maria Luisa; Pérez-Castro, Sonia; Rodríguez-Iglesias, Manuel; Pérez-Gracia, Maria Teresa

    2017-11-01

    Infection with human papillomavirus (HPV) is the leading cause of sexually transmitted infection worldwide. This virus generally causes benign lesions, such as genital warts, but persistent infection may lead to cervical cancer, anal cancer, vaginal cancer, and oropharyngeal cancer, although less frequently. Cervical cancer is a severe disease with a high mortality in some countries. Screening with cytology has been very successful in the last few years, but nowadays there are numerous studies that confirm that cytology should be replaced with the detection of HPV as a first line test in population based screening. There are several commercially available FDA approved tests for screening of cervical cancer. A new strategy, based on individual detection of the high risk genotypes HPV16 and HPV18, present in 70% of cervical cancer biopsies, has been proposed by some experts, and is going to be implemented in most countries in the future. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  7. Detection of antibodies to bacterial cell wall peptidoglycan in human sera

    International Nuclear Information System (INIS)

    Heymer, B.; Schleifer, K.H.; Read, S.; Zabriskie, J.B.; Krause, R.M.

    1976-01-01

    A radioimmunoassay has been developed for the measurement of antibodies to peptidoglycan in human sera including patients with rheumatic feaver and juvenile rheumatoid arthritis. The assay is based on the percentage of binding of the hapten 125 I-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala, the major peptide determinant of peptidoglycan. Because of differences in the avidity of the antibodies in different sera, the amount of antibody was expressed as pentapeptide hapten-binding capacity (pentapeptide-HBC in ng/ml of serum). Fourteen out of 105 normal blood donors had a pentapeptide-HBC value greater than or equal to 75 ng/ml serum. Values in healthy children 5 to 18 years of age were less than or equal to 50 ng/ml. Sixty-eight percent of the individuals with rheumatic fever had values greater than or equal to 75 ng/ml, an indication that streptococcal infections can stimulate an immune response to peptidoglycan. Thirty-five percent of the patients with juvenile rheumatoid arthritis had values greater than or equal to 75 ng/ml. Such a finding points to a possible association between bacterial infections and juvenile rheumatoid arthritis

  8. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivative for bacterial skin infection

    Science.gov (United States)

    Chen, Zhuo; Zhang, Yaxin; Li, Linsen; Zhou, Shanyong; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2014-09-01

    Folliculitis, furunculosis and acne vulgaris are very common skin disorders of the hair follicles and are associated with large grease-producing (sebaceous) glands. Although the detailed mechanisms involved these skin disorders are not fully understood, it is believed that the bacteria Propionibacterium acnes and Staphylococcus aureus are the key pathogenic factors involved. Conventional treatments targeting the pathogenic factors include a variety of topical and oral medications such as antibiotics. The wide use of antibiotics leads to bacterial resistance, and hence there is a need for new alternatives in above bacterial skin treatment. Photodynamic antimicrobial chemotherapy (PACT) is based on an initial photosensitization of the infected area, followed by irradiation with visible light, producing singlet oxygen which is cytotoxic to bacteria. Herein we reported a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys)5) and its PACT effect for the bacteria involved in these skin infections. Our results demonstrated strong bactericidal effects of this photosensitizer on both strains of the bacteria, suggesting ZnPc-(Lys)5 as a promising antimicrobial photosensitizer for the treatment of infectious diseases caused by these bacteria.

  9. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Zou, Lili; Lu, Jun; Wang, Jun; Ren, Xiaoyuan; Zhang, Lanlan; Gao, Yu; Rottenberg, Martin E; Holmgren, Arne

    2017-08-01

    Multidrug-resistant (MDR) Gram-negative bacteria account for a majority of fatal infections, and development of new antibiotic principles and drugs is therefore of outstanding importance. Here, we report that five most clinically difficult-to-treat MDR Gram-negative bacteria are highly sensitive to a synergistic combination of silver and ebselen. In contrast, silver has no synergistic toxicity with ebselen on mammalian cells. The silver and ebselen combination causes a rapid depletion of glutathione and inhibition of the thioredoxin system in bacteria. Silver ions were identified as strong inhibitors of Escherichia coli thioredoxin and thioredoxin reductase, which are required for ribonucleotide reductase and DNA synthesis and defense against oxidative stress. The bactericidal efficacy of silver and ebselen was further verified in the treatment of mild and acute MDR E. coli peritonitis in mice. These results demonstrate that thiol-dependent redox systems in bacteria can be targeted in the design of new antibacterial drugs. The silver and ebselen combination offers a proof of concept in targeting essential bacterial systems and might be developed for novel efficient treatments against MDR Gram-negative bacterial infections. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  10. Bacterial urinary tract infection among pregnant women in Sana'a City Yemen

    International Nuclear Information System (INIS)

    Al-Ghalibi, S.M.; Al-Moayad, E.; Al-Jaufy, A.

    2007-01-01

    Urinary tract infection (UTI) is considered to be the most common bacterial infection during pregnancy. This study was designed to determine the prevalence of UTI among pregnant women, to identify the risk factors associated with UTI, to isolate and identify bacteria that are responsible for UTI and to determine the activity of some antibiotics against isolated bacteria. A total of 400 midstream urine specimens were collected from pregnant women (PW) and non-pregnant women (NPW). Identification and antibiotic sensitivity tests were made for the isolated bacteria. The prevalence rates of UTI in PW and NPW were 24.3% and 18.0% respectively. The association between pregnancy and UTI was not statistically significant (P=0.19). The higher prevalence rate of UTI was found in the age group 21-25 years old. However, there was no statistical significant association between age and UTI. The second trimester and third trimester were associated with higher prevalence of UTI (38.3%) and (37.0%), respectively but it was not statistically significant. High frequency of urination and lower abdominal pain were the most common symptoms. There was no statistical association between UTI and contraceptive use. The most common isolates were S. aureus and E.Coli, while the most effective antibiotics for most bacterial isolates were ciprofloxacin, ofloxacin and norofloxacin. (author)

  11. Roles of the host oxidative immune response and bacterial antioxidant rubrerythrin during Porphyromonas gingivalis infection.

    Directory of Open Access Journals (Sweden)

    Piotr Mydel

    2006-07-01

    Full Text Available The efficient clearance of microbes by neutrophils requires the concerted action of reactive oxygen species and microbicidal components within leukocyte secretory granules. Rubrerythrin (Rbr is a nonheme iron protein that protects many air-sensitive bacteria against oxidative stress. Using oxidative burst-knockout (NADPH oxidase-null mice and an rbr gene knockout bacterial strain, we investigated the interplay between the phagocytic oxidative burst of the host and the oxidative stress response of the anaerobic periodontal pathogen Porphyromonas gingivalis. Rbr ensured the proliferation of P. gingivalis in mice that possessed a fully functional oxidative burst response, but not in NADPH oxidase-null mice. Furthermore, the in vivo protection afforded by Rbr was not associated with the oxidative burst responses of isolated neutrophils in vitro. Although the phagocyte-derived oxidative burst response was largely ineffective against P. gingivalis infection, the corresponding oxidative response to the Rbr-positive microbe contributed to host-induced pathology via potent mobilization and systemic activation of neutrophils. It appeared that Rbr also provided protection against reactive nitrogen species, thereby ensuring the survival of P. gingivalis in the infected host. The presence of the rbr gene in P. gingivalis also led to greater oral bone loss upon infection. Collectively, these results indicate that the host oxidative burst paradoxically enhances the survival of P. gingivalis by exacerbating local and systemic inflammation, thereby contributing to the morbidity and mortality associated with infection.

  12. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy.

    Science.gov (United States)

    Gafter-Gvili, Anat; Fraser, Abigail; Paul, Mical; Vidal, Liat; Lawrie, Theresa A; van de Wetering, Marianne D; Kremer, Leontien C M; Leibovici, Leonard

    2012-01-18

    Bacterial infections are a major cause of morbidity and mortality in patients who are neutropenic following chemotherapy for malignancy. Trials have shown the efficacy of antibiotic prophylaxis in reducing the incidence of bacterial infections but not in reducing mortality rates. Our systematic review from 2006 also showed a reduction in mortality. This updated review aimed to evaluate whether there is still a benefit of reduction in mortality when compared to placebo or no intervention. We searched the Cochrane Cancer Network Register of Trials (2011), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 2, 2011), MEDLINE (1966 to March 2011), EMBASE (1980 to March 2011), abstracts of conference proceedings and the references of identified studies. Randomised controlled trials (RCTs) or quasi-RCTs comparing different types of antibiotic prophylaxis with placebo or no intervention, or another antibiotic, to prevent bacterial infections in afebrile neutropenic patients. Two authors independently appraised the quality of each trial and extracted data from the included trials. Analyses were performed using RevMan 5.1 software. One-hundred and nine trials (involving 13,579 patients) that were conducted between the years 1973 to 2010 met the inclusion criteria. When compared with placebo or no intervention, antibiotic prophylaxis significantly reduced the risk of death from all causes (46 trials, 5635 participants; risk ratio (RR) 0.66, 95% CI 0.55 to 0.79) and the risk of infection-related death (43 trials, 5777 participants; RR 0.61, 95% CI 0.48 to 0.77). The estimated number needed to treat (NNT) to prevent one death was 34 (all-cause mortality) and 48 (infection-related mortality).Prophylaxis also significantly reduced the occurrence of fever (54 trials, 6658 participants; RR 0.80, 95% CI 0.74 to 0.87), clinically documented infection (48 trials, 5758 participants; RR 0.65, 95% CI 0.56 to 0.76), microbiologically documented infection

  13. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy

    Science.gov (United States)

    Gafter-Gvili, Anat; Fraser, Abigail; Paul, Mical; Vidal, Liat; Lawrie, Theresa A; van de Wetering, Marianne D; Kremer, Leontien CM; Leibovici, Leonard

    2014-01-01

    Background Bacterial infections are a major cause of morbidity and mortality in patients who are neutropenic following chemotherapy for malignancy. Trials have shown the efficacy of antibiotic prophylaxis in reducing the incidence of bacterial infections but not in reducing mortality rates. Our systematic review from 2006 also showed a reduction in mortality. Objectives This updated review aimed to evaluate whether there is still a benefit of reduction in mortality when compared to placebo or no intervention. Search methods We searched the Cochrane Cancer Network Register of Trials (2011), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 2, 2011), MEDLINE (1966 to March 2011), EMBASE (1980 to March 2011), abstracts of conference proceedings and the references of identified studies. Selection criteria Randomised controlled trials (RCTs) or quasi-RCTs comparing different types of antibiotic prophylaxis with placebo or no intervention, or another antibiotic, to prevent bacterial infections in afebrile neutropenic patients. Data collection and analysis Two authors independently appraised the quality of each trial and extracted data from the included trials. Analyses were performed using RevMan 5.1 software. Main results One-hundred and nine trials (involving 13,579 patients) that were conducted between the years 1973 to 2010 met the inclusion criteria. When compared with placebo or no intervention, antibiotic prophylaxis significantly reduced the risk of death from all causes (46 trials, 5635 participants; risk ratio (RR) 0.66, 95% CI 0.55 to 0.79) and the risk of infection-related death (43 trials, 5777 participants; RR 0.61, 95% CI 0.48 to 0.77). The estimated number needed to treat (NNT) to prevent one death was 34 (all-cause mortality) and 48 (infection-related mortality). Prophylaxis also significantly reduced the occurrence of fever (54 trials, 6658 participants; RR 0.80, 95% CI 0.74 to 0.87), clinically documented infection

  14. Risk factors and features of recurrent bacterial complications of upper respiratory tract viral infections in children

    Directory of Open Access Journals (Sweden)

    Karpenko A.V.

    2017-10-01

    Full Text Available The aim of the study was to determine risk factors for recurrent bacterial complications of the upper respiratory tract viral infection (URTI in children, as well as the clinical and immunological features of the course of such complications. We enrolled 214 children aged 3-18 years with URTIs complicated with acute otitis media or acute bacterial rhinosinusitis. Frequency of bacterial complications of URI in 128 children was low (group I and in 86 children it met the criteria of recurrent course (group II. In addition to the standard examination, lysozyme levels in the oropharyngeal secretion were determined three times during the disease. It was found that children of group II were characterized by an early debut of respiratory morbidity (at the age of 6.00 (4.00, 12.00 months against 13.00 (4.50, 16.00 months in children of group I (p<0,0001, as well as a longer duration of catarrhal and intoxication syndromes in similar forms of the disease. The most significant risk factors for the formation of the recurring complication pattern were maternal smoking (OR=2.73, 95% CI [1.34, 5.48], along with gastroenterological pathology and frequent URTI in the mother and a shortened period of breastfeeding. In children with recurrent bacterial complications of URTI, there was an impaired local resistance of the upper respiratory tract mucous membranes (as a decrease in the concentrations of lysozyme in all periods of the disease, which persisted after recovery.

  15. Flow Cytometry Study of Lymphocyte Subsets in Malnourished and Well-Nourished Children with Bacterial Infections

    Science.gov (United States)

    Nájera, Oralia; González, Cristina; Toledo, Guadalupe; López, Laura; Ortiz, Rocío

    2004-01-01

    Protein-energy malnutrition is the primary cause of immune deficiency in children across the world. It has been related to changes in peripheral T-lymphocyte subsets. The aim of the present study was to evaluate the effects of infection and malnutrition on the proportion of peripheral-lymphocyte subsets in well-nourished non-bacterium-infected (WN), well-nourished bacterium-infected (WNI), and malnourished bacterium-infected (MNI) children by flow cytometry. A prospectively monitored cohort of 15 MNI, 12 WNI, and 17 WN children was studied. All the children were 3 years old or younger and had only bacterial infections. Results showed a significant decrease in the proportion of T CD3+ (P < 0.05 for relative and P < 0.03 for absolute values), CD4+ (P < 0.01 for relative and absolute values), and CD8+ (P < 0.05 for relative values) lymphocyte subsets in WNI children compared to the results seen with WN children. Additionally, B lymphocytes in MNI children showed significant lower values (CD20+ P < 0.02 for relative and P < 0.05 for absolute values) in relation to the results seen with WNI children. These results suggest that the decreased proportions of T-lymphocyte subsets observed in WNI children were associated with infection diseases and that the incapacity to increase the proportion of B lymphocyte was associated with malnutrition. This low proportion of B lymphocytes may be associated with the mechanisms involved in the immunodeficiency of malnourished children. PMID:15138185

  16. Bilateral endogenous Candida albicans subretinal abscess with suspected mixed bacterial infection

    Directory of Open Access Journals (Sweden)

    Arai Y

    2014-10-01

    Full Text Available Yusuke Arai,1 Yukihiro Sato,1 Atsushi Yoshida,1 Hidetoshi Kawashima,1 Toshikatsu Kaburaki,2 Harumi Gomi3 1Department of Ophthalmology, Jichi Medical University, Tochigi, Japan; 2Department of Ophthalmology, The University of Tokyo, Graduate School of Medicine, Tokyo, Japan; 3Center for Clinical Infectious Diseases, Jichi Medical University, Tochigi, Japan Purpose: Candida albicans subretinal abscess is extremely rare. To our knowledge, only one unilateral case has been reported. Herein, we report one bilateral case. Mixed bacterial infection was also suspected based on broad-range real-time polymerase chain reaction.Methods: A 64-year-old man being treated with oral corticosteroids for interstitial pneumonia visited us for visual loss in the left eye. Best corrected visual acuity (BCVA was 20/20 in the right eye and 8/200 in the left eye. Funduscopy revealed round yellowish-white subretinal lesions with retinal hemorrhage in both eyes.Results: Broad-range polymerase chain reaction of the vitreous fluid from the left eye showed a high copy count of bacterial 16s ribosome RNA. Despite large doses of antibiotics, the abscess expanded and vision decreased to light perception in the left eye. Exenteration of the left eye was performed followed by microscopic examination showing Gram-negative bacilli, and C. albicans was also cultured. Antibiotics and the maximum doses of antifungal drugs were administered. However, the abscess in the right eye expanded, and BCVA decreased to 2/200. Vitrectomy and silicone oil tamponade were performed. Vitreous fluid culture revealed C. albicans. At 16 months follow-up, BCVA was stable at 4/200 with healing of the subretinal abscess under silicone oil.Conclusion: Since C. albicans subretinal abscess is extremely rare and there was a concurrent mixed bacterial infection, diagnostic procedures in our bilateral case were more complicated than usual. C. albicans infection should be included in the differential diagnosis

  17. Bacterial lipoprotein delays apoptosis in human neutrophils through inhibition of caspase-3 activity: regulatory roles for CD14 and TLR-2.

    LENUS (Irish Health Repository)

    Power, Colm P

    2012-02-03

    The human sepsis syndrome resulting from bacterial infection continues to account for a significant proportion of hospital mortality. Neutralizing strategies aimed at individual bacterial wall products (such as LPS) have enjoyed limited success in this arena. Bacterial lipoprotein (BLP) is a major constituent of the wall of diverse bacterial forms and profoundly influences cellular function in vivo and in vitro, and has been implicated in the etiology of human sepsis. Delayed polymorphonuclear cell (PMN) apoptosis is a characteristic feature of human sepsis arising from Gram-negative or Gram-positive bacterial infection. Bacterial wall product ligation and subsequent receptor-mediated events upstream of caspase inhibition in neutrophils remain incompletely understood. BLP has been shown to exert its cellular effects primarily through TLR-2, and it is now widely accepted that lateral associations with the TLRs represent the means by which CD14 communicates intracellular messages. In this study, we demonstrate that BLP inhibits neutrophil mitochondrial membrane depolarization with a subsequent reduction in caspase-3 processing, ultimately leading to a significant delay in PMN apoptosis. Pretreatment of PMNs with an anti-TLR-2 mAb or anti-CD14 mAb prevented BLP from delaying PMN apoptosis to such a marked degree. Combination blockade using both mAbs completely prevented the effects of BLP (in 1 and 10 ng\\/ml concentrations) on PMN apoptosis. At higher concentrations of BLP, the antiapoptotic effects were observed, but were not as pronounced. Our findings therefore provide the first evidence of a crucial role for both CD14 and TLR-2 in delayed PMN apoptosis arising from bacterial infection.

  18. Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates.

    Science.gov (United States)

    Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L

    2014-10-01

    Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection.

  19. Bacterial Pathogens and Antimicrobial Resistance Patterns in Pediatric Urinary Tract Infections: A Four-Year Surveillance Study (2009–2012)

    OpenAIRE

    Mirsoleymani, Seyed Reza; Salimi, Morteza; Shareghi Brojeni, Masoud; Ranjbar, Masoud; Mehtarpoor, Mojtaba

    2014-01-01

    The aims of this study were to assess the common bacterial microorganisms causing UTI and their antimicrobial resistance patterns in Bandar Abbas (Southern Iran) during a four-year period. In this retrospective study, samples with a colony count of ≥105 CFU/mL bacteria were considered positive; for these samples, the bacteria were identified, and the profile of antibiotic susceptibility was characterized. From the 19223 samples analyzed, 1513 (7.87%) were positive for bacterial infection. UTI...

  20. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection.

    Directory of Open Access Journals (Sweden)

    Samuel A Shelburne

    2010-03-01

    Full Text Available Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS suggested that the transcriptional regulator catabolite control protein A (CcpA influences many of the same genes as the control of virulence (CovRS two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both DeltaccpA and DeltacovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection.

  1. Duration of fever and markers of serious bacterial infection in young febrile children.

    Science.gov (United States)

    Pratt, Amanda; Attia, Magdy W

    2007-02-01

    Despite the drastic change in the evaluation of the febrile young child due to the decreased incidence of serious bacterial infections (SBI) effected by Haemophilus influenza type B and pneumococcal vaccine, there remains a small role for blood work in the evaluation of these patients. Bacterial markers including white blood cell (WBC) count, absolute neutrophil count (ANC) and C-reactive protein (CRP) have been studied and are widely used as predictors of SBI in febrile children. It has been suggested that CRP values should be interpreted cautiously when fever has been present predictors of SBI in relation to duration of fever. Patients who presented to a pediatric emergency department between the ages of 1 and 36 months, with fever > or =39 degrees C and no source of infection had a complete blood count (CBC) blood culture, and CRP level drawn. A urinalysis and/or urine culture was obtained when age and gender appropriate. A chest X-ray was performed at the discretion of the treating physician. The study subjects were enrolled prospectively and then divided into two groups based on duration of fever of 12 h, and compared. One hundred and twenty-eight patients were originally enrolled. Nine patients were excluded. Seventeen patients (14%) had SBI. One patient (urinary tract infections. Forty-five patients presented with fever 12 h. Area under the curve (AUC) for WBC, ANC and CRP was significantly larger in patients with SBI presenting with fever >12 h (0.85, 0.83, 0.92 respectively) compared to patients with SBI who presented with fever for 12 h as shown by the AUC. CRP performed better than WBC and ANC in both scenarios.

  2. New prediction model for diagnosis of bacterial infection in febrile infants younger than 90 days.

    Science.gov (United States)

    Vujevic, Matea; Benzon, Benjamin; Markic, Josko

    2017-01-01

    Vujevic M, Benzon B, Markic J. New prediction model for diagnosis of bacterial infection in febrile infants younger than 90 days. Turk J Pediatr 2017; 59: 261-268. Due to non-specific clinical presentation in febrile infants, extensive laboratory testing is often carried out to distinguish simple viral disease from serious bacterial infection (SBI). Objective of this study was to compare efficacy of different biomarkers in early diagnosis of SBI in infants Pediatrics, University Hospital Centre Split with suspicion of having SBI were included in this study. Retrospective cohort analysis of data acquired from medical records was performed. Out of 181 enrolled patients, SBI was confirmed in 70. Most common diagnosis was urinary tract infection (68.6%), followed by pneumonia (12.9%), sepsis (11.4%), gastroenterocolitis (5.7%) and meningitis (1.4%). Male gender was shown to be a risk factor for SBI in this population (p=0.008). White blood cell count (WBC), absolute neutrophil count (ANC) and C-reactive protein (CRP) were confirmed as the independent predictors of SBI, with CRP as the best one. Two prediction models built by combining biomarkers and clinical variables were selected as optimal with sensitivities of 74.3% and 75.7%, and specificities of 88.3% and 86%. Evidently, CRP is a more superior biomarker in diagnostics of SBI comparing to WBC and ANC. Prediction models were shown to be better in predicting SBI than independent biomarkers. Although both showed high sensitivity and specificity, their true strength should be determined using validation cohort.

  3. Importance of Bacterial Replication and Alveolar Macrophage-Independent Clearance Mechanisms during Early Lung Infection with Streptococcus pneumoniae

    Science.gov (United States)

    Camberlein, Emilie; Cohen, Jonathan M.; José, Ricardo; Hyams, Catherine J.; Callard, Robin; Chimalapati, Suneeta; Yuste, Jose; Edwards, Lindsey A.; Marshall, Helina; van Rooijen, Nico; Noursadeghi, Mahdad

    2015-01-01

    Although the importance of alveolar macrophages for host immunity during early Streptococcus pneumoniae lung infection is well established, the contribution and relative importance of other innate immunity mechanisms and of bacterial factors are less clear. We have used a murine model of S. pneumoniae early lung infection with wild-type, unencapsulated, and para-amino benzoic acid auxotroph mutant TIGR4 strains to assess the effects of inoculum size, bacterial replication, capsule, and alveolar macrophage-dependent and -independent clearance mechanisms on bacterial persistence within the lungs. Alveolar macrophage-dependent and -independent (calculated indirectly) clearance half-lives and bacterial replication doubling times were estimated using a mathematical model. In this model, after infection with a high-dose inoculum of encapsulated S. pneumoniae, alveolar macrophage-independent clearance mechanisms were dominant, with a clearance half-life of 24 min compared to 135 min for alveolar macrophage-dependent clearance. In addition, after a high-dose inoculum, successful lung infection required rapid bacterial replication, with an estimated S. pneumoniae doubling time of 16 min. The capsule had wide effects on early lung clearance mechanisms, with reduced half-lives of 14 min for alveolar macrophage-independent and 31 min for alveolar macrophage-dependent clearance of unencapsulated bacteria. In contrast, with a lower-dose inoculum, the bacterial doubling time increased to 56 min and the S. pneumoniae alveolar macrophage-dependent clearance half-life improved to 42 min and was largely unaffected by the capsule. These data demonstrate the large effects of bacterial factors (inoculum size, the capsule, and rapid replication) and alveolar macrophage-independent clearance mechanisms during early lung infection with S. pneumoniae. PMID:25583525

  4. Molecular monitoring of succession of bacterial communities in human neonates

    NARCIS (Netherlands)

    Favier, C.; Vaughan, E.E.; Vos, de W.M.; Akkermans, A.D.L.

    2002-01-01

    The establishment of bacterial communities in two healthy babies was examined for more than the first 10 months of life by monitoring 16S ribosomal DNA (rDNA) diversity in fecal samples by PCR and denaturing gradient gel electrophoresis (DGGE) and by analyzing the sequences of the major ribotypes.

  5. Effect of long-term voluntary exercise wheel running on susceptibility to bacterial pulmonary infections in a mouse model

    DEFF Research Database (Denmark)

    van de Weert-van Leeuwen, Pauline B; de Vrankrijker, Angélica M M; Fentz, Joachim

    2013-01-01

    moderate exercise has many health benefits, healthy mice showed increased bacterial (P. aeruginosa) load and symptoms, after regular voluntary exercise, with perseverance of the phagocytic capacity of monocytes and neutrophils. Whether patients, suffering from bacterial infectious diseases, should......Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim...... of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa) affects lung bacteriology, sickness severity and phagocyte immune function in mice. Balb/c mice were randomly placed in a cage with or without a running wheel. After 28...

  6. Radiosynthesis and preclinical studies of 177Lu-labeled sulfadiazine. A possible theranostic agent for deep-seated bacterial infection

    International Nuclear Information System (INIS)

    Syed Ali Raza Naqvi; Rashid Rasheed; Muhammad Tauqeer Ahmed; Ameer Fawad Zahoor

    2017-01-01

    Sulfadiazine acts through inhibition of bacterial dihydropteroate synthetase. The radio-labeling of sulfadiazine with lutetium-177 ( 177 Lu) is expected to serve as a theranostic agent for deep-seated bacterial infections. The radiosynthesis of 177 Lu-sulfadiazine indicated a > 95% yield under optimized reaction conditions, and promising stability was found in blood serum. Biodistribution data in the absence of infection revealed minimal accumulation in key body organs. Kidneys were the main excretory organs, showed an uptake of 1.76 ± 0.09% ID/g organ at 6-h post-injection. Biodistribution, scintigraphic data, glomerular filtration rate, and cytotoxicity results encourage clinical investigation of 177 Lu-sulfadiazine as a novel theranostic agent for deep-seated bacterial infection. (author)

  7. Clinical significance of the infection-free interval in the management of acute bacterial exacerbations of chronic bronchitis.

    Science.gov (United States)

    Chodosh, Sanford

    2005-06-01

    Rational and appropriate antibiotic use for patients with acute exacerbation of chronic bronchitis (AECB) is a major concern, as approximately half of these patients do not have a bacterial infection. Typically, the result of antimicrobial therapy for patients with acute bacterial exacerbation of chronic bronchitis (ABECB) is not eradication of the pathogen but resolution of the acute symptoms. However, the length of time before the next bacterial exacerbation can be another important variable, as the frequency of exacerbations will affect the overall health of the patient and the rate of lung deterioration over time. Clinical trials comparing antimicrobial therapies commonly measure resolution of symptoms in AECB patients as the primary end point, regardless of whether the exacerbation is documented as bacterial in nature. Ideally, the scientific approach to assessing the efficacy of antibiotic therapy for ABECB should include a measurement of acute bacterial eradication rates in patients with documented bronchial bacterial infection followed by measurement of the infection-free interval (IFI), ie, the time to the next ABECB. The use of these variables can provide a standard for comparing various antimicrobial therapies. As we learn more about how antibiotics can affect the IFI, treatment decisions should be adapted to ensure optimal management of ABECB for the long-term.

  8. Bacterial Human Virulence Genes across Diverse Habitats As Assessed by In silico Analysis of Environmental Metagenomes

    DEFF Research Database (Denmark)

    Søborg, Ditte A; Hendriksen, Niels B; Kilian, Mogens

    2016-01-01

    of natural environments in the evolution of bacterial virulence. Twenty four bacterial virulence genes were analyzed in 46 diverse environmental metagenomic datasets, representing various soils, seawater, freshwater, marine sediments, hot springs, the deep-sea, hypersaline mats, microbialites, gutless worms......The occurrence and distribution of clinically relevant bacterial virulence genes across natural (non-human) environments is not well understood. We aimed to investigate the occurrence of homologs to bacterial human virulence genes in a variety of ecological niches to better understand the role...... in non-human environments point to an important ecological role of the genes for the activity and survival of environmental bacteria. Furthermore, the high degree of sequence conservation between several of the environmental and clinical genes suggests common ancestral origins....

  9. Modeling the integration of bacterial rRNA fragments into the human cancer genome.

    Science.gov (United States)

    Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C

    2016-03-21

    Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.

  10. Low virulence bacterial infections in cervical intervertebral discs: a prospective case series.

    Science.gov (United States)

    Chen, Yilei; Wang, Xianjun; Zhang, Xuyang; Ren, Hong; Huang, Bao; Chen, Jian; Liu, Junhui; Shan, Zhi; Zhu, Zhihai; Zhao, Fengdong

    2018-04-19

    A prospective cross-sectional case series study. To investigate the prevalence of low virulence disc infection and its associations with characteristics of patients or discs in the cervical spine. Low virulence bacterial infections could be a possible cause of intervertebral disc degeneration and/or back pain. Controversies are continuing over whether these bacteria, predominantly Propionibacterium acnes (P. acnes), represent infection or contamination. However, the current studies mainly focus on the lumbar spine, with very limited data on the cervical spine. Thirty-two patients (20 men and 12 women) who underwent anterior cervical fusion for degenerative cervical spondylosis or traumatic cervical cord injury were enrolled. Radiological assessments included X-ray, CT, and MRI of the cervical spine. Endplate Modic changes, intervertebral range of motion, and disc herniation type were evaluated. Disc and muscle tissues were collected under strict sterile conditions. Samples were enriched in tryptone soy broth and subcultured under anaerobic conditions, followed by identification of the resulting colonies by the PCR method. Sixty-six intervertebral discs were excised from thirty-two patients. Positive disc cultures were noted in eight patients (25%) and in nine discs (13.6%). The muscle biopsy (control) cultures were negative in 28 patients and positive in 4 patients (12.5%); three of whom had a negative disc culture. Seven discs (10.6%) were positive for coagulase-negative Staphylococci (CNS) and two discs were positive for P. acnes (3.0%). A younger patient age and the extrusion or sequestration type of disc herniation, which represented a complete annulus fibrous failure, were associated with positive disc culture. Our data show that CNS is more prevalent than P. acnes in degenerative cervical discs. The infection route in cervical discs may be predominantly through an annulus fissure. Correlation between these infections and clinical symptoms is uncertain

  11. The Bacterial Pathogen Xylella fastidiosa Affects the Leaf Ionome of Plant Hosts during Infection

    Science.gov (United States)

    De La Fuente, Leonardo; Parker, Jennifer K.; Oliver, Jonathan E.; Granger, Shea; Brannen, Phillip M.; van Santen, Edzard; Cobine, Paul A.

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  12. α-Intercalated cells defend the urinary system from bacterial infection.

    Science.gov (United States)

    Paragas, Neal; Kulkarni, Ritwij; Werth, Max; Schmidt-Ott, Kai M; Forster, Catherine; Deng, Rong; Zhang, Qingyin; Singer, Eugenia; Klose, Alexander D; Shen, Tian Huai; Francis, Kevin P; Ray, Sunetra; Vijayakumar, Soundarapandian; Seward, Samuel; Bovino, Mary E; Xu, Katherine; Takabe, Yared; Amaral, Fábio E; Mohan, Sumit; Wax, Rebecca; Corbin, Kaitlyn; Sanna-Cherchi, Simone; Mori, Kiyoshi; Johnson, Lynne; Nickolas, Thomas; D'Agati, Vivette; Lin, Chyuan-Sheng; Qiu, Andong; Al-Awqati, Qais; Ratner, Adam J; Barasch, Jonathan

    2014-07-01

    α-Intercalated cells (A-ICs) within the collecting duct of the kidney are critical for acid-base homeostasis. Here, we have shown that A-ICs also serve as both sentinels and effectors in the defense against urinary infections. In a murine urinary tract infection model, A-ICs bound uropathogenic E. coli and responded by acidifying the urine and secreting the bacteriostatic protein lipocalin 2 (LCN2; also known as NGAL). A-IC-dependent LCN2 secretion required TLR4, as mice expressing an LPS-insensitive form of TLR4 expressed reduced levels of LCN2. The presence of LCN2 in urine was both necessary and sufficient to control the urinary tract infection through iron sequestration, even in the harsh condition of urine acidification. In mice lacking A-ICs, both urinary LCN2 and urinary acidification were reduced, and consequently bacterial clearance was limited. Together these results indicate that A-ICs, which are known to regulate acid-base metabolism, are also critical for urinary defense against pathogenic bacteria. They respond to both cystitis and pyelonephritis by delivering bacteriostatic chemical agents to the lower urinary system.

  13. Proanthocyanidins-Will they effectively restrain conspicuous bacterial strains devolving on urinary tract infection?

    Science.gov (United States)

    Jagannathan, Venkataseshan; Viswanathan, Pragasam

    2018-05-18

    Struvite or infection stones are one of the major clinical burdens among urinary tract infection, which occur due to the interaction between microbes and urine mineral components. Numerous urinary tract infection (UTI) causing microbes regulate through biofilm formation for survival from host defense, it is often found difficult in its eradication with simple anti-microbial agents and also the chance of recurrence and resistance development is significantly high. Cranberry consumption and maintenance of urinary tract health have been supported by clinical, epidemiological, and mechanistic studies. It predominantly contains proanthocyanidins that belong to the class of polyphenols with repeating catechin and epicatechin monomeric units. Numerous studies have correlated proanthocyanidin consumption and prevention of bacterial adhesion to uroepithelial cells. Quorum sensing (QS) is the prime mechanism that drives bacteria to coordinate biofilm development and virulence expression. Reports have shown that proanthocyanidins are effective in disrupting cell-cell communication by quenching signal molecules. Overall, this review assesses the merits of proanthocyanidins and its effective oppression on adherence, motility, QS, and biofilm formation of major UTI strains such as Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis by comparing and evaluating results from many significant findings. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    Directory of Open Access Journals (Sweden)

    Leonardo De La Fuente

    Full Text Available Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen.

  15. Decreased microbiota diversity associated with urinary tract infection in a trial of bacterial interference.

    Science.gov (United States)

    Horwitz, Deborah; McCue, Tyler; Mapes, Abigail C; Ajami, Nadim J; Petrosino, Joseph F; Ramig, Robert F; Trautner, Barbara W

    2015-09-01

    Patients with long-term indwelling catheters are at high risk of catheter-associated urinary tract infection (CAUTI). We hypothesized that colonizing the bladder with a benign Escherichia coli strain (E. coli HU2117, a derivative of E. coli 83972) would prevent CAUTI in older, catheterized adults. Adults with chronic, indwelling urinary catheters received study catheters that had been pre-coated with E. coli HU2117. We monitored the cultivatable organisms in the bladder for 28 days or until loss of E. coli HU2117. Urine from 4 subjects was collected longitudinally for 16S rRNA gene profiling. Eight of the ten subjects (average age 70.9 years) became colonized with E. coli HU2117, with a mean duration of 57.7 days (median: 28.5, range 0-266). All subjects also remained colonized by uropathogens. Five subjects suffered invasive UTI, 3 febrile UTI and 2 urosepsis/bacteremia, all associated with overgrowth of a urinary pathogen. Colonization with E. coli HU2117 did not impact bacterial bladder diversity, but subjects who developed infections had less diverse bladder microbiota. Colonization with E. coli HU2117 did not prevent bladder colonization or subsequent invasive disease by uropathogens. Microbial diversity may play a protective role against invasive infection of the catheterized bladder. ClinicalTrials.gov, NCT00554996 http://clinicaltrials.gov/ct2/show/NCT00554996. Published by Elsevier Ltd.

  16. Human Immunodeficiency Virus Infection in Pregnancy

    Directory of Open Access Journals (Sweden)

    Yasemin Arikan

    1998-01-01

    Full Text Available The incidence and prevalence of human immunodeficiency virus (HIV infection in women of child-bearing age continue to increase both internationally and in Canada. The care of HIV-infected pregnant women is complex, and multiple issues must be addressed, including the current and future health of the woman, minimization of the risk of maternal-infant HIV transmission, and maintenance of the well-being of the fetus and neonate. Vertical transmission of HIV can occur in utero, intrapartum and postpartum, but current evidence suggests that the majority of transmission occurs toward end of term, or during labour and delivery. Several maternal and obstetrical factors influence transmission rates, which can be reduced by optimal medical and obstetrical care. Zidovudine therapy has been demonstrated to reduce maternal-infant transmission significantly, but several issues, including the short and long term safety of antiretrovirals and the optimal use of combination antiretroviral therapy in pregnancy, remain to be defined. It is essential that health care workers providing care to these women fully understand the natural history of HIV disease in pregnancy, the factors that affect vertical transmission and the management issues during pregnancy. Close collaboration among a multidisciplinary team of knowledgeable health professionals and, most importantly, the woman herself can improve both maternal and infant outcomes.

  17. New treatments for human papillomavirus infection.

    Science.gov (United States)

    Muñoz-Santos, C; Pigem, R; Alsina, M

    2013-12-01

    Human papillomavirus infection is very common. In this article, we review the latest developments in the treatment of lesions caused by this virus, with a particular focus on anogenital warts. Sinecatechins and new imiquimod formulations are among the most significant new developments. Others include photodynamic therapy and intralesional immunotherapy, but there is insufficient evidence to recommend their routine use. Finally, while therapeutic vaccines and inhibitory molecules appear to hold great promise, they are still in the early phases of investigation. More studies are needed, and these should have similar designs, larger samples, and sufficiently long follow-up periods to enable the direct comparison of the short-term and long-term effectiveness of different treatment options. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  18. Soluble granzymes are released during human endotoxemia and in patients with severe infection due to gram-negative bacteria

    NARCIS (Netherlands)

    Lauw, F. N.; Simpson, A. J.; Hack, C. E.; Prins, J. M.; Wolbink, A. M.; van Deventer, S. J.; Chaowagul, W.; White, N. J.; van der Poll, T.

    2000-01-01

    Extracellular release of granzymes is considered to reflect the involvement of cytotoxic T lymphocytes and NK cells in various disease states. To obtain insight into granzyme release during bacterial infection, granzyme levels were measured during experimental human endotoxemia and in patients with

  19. Skin bacterial flora as a potential risk factor predisposing to late bacterial infection after cross-linked hyaluronic acid gel augmentation.

    Science.gov (United States)

    Netsvyetayeva, Irina; Marusza, Wojciech; Olszanski, Romuald; Szyller, Kamila; Krolak-Ulinska, Aneta; Swoboda-Kopec, Ewa; Sierdzinski, Janusz; Szymonski, Zachary; Mlynarczyk, Grazyna

    2018-01-01

    Cross-linked hyaluronic acid (HA) gel is widely used in esthetic medicine. Late bacterial infection (LBI) is a rare, but severe complication after HA augmentation. The aim of this study was to determine whether patients who underwent the HA injection procedure and developed LBI had qualitatively different bacterial flora on the skin compared to patients who underwent the procedure without any complications. The study group comprised 10 previously healthy women with recently diagnosed, untreated LBI after HA augmentation. The control group comprised 17 healthy women who had a similar amount of HA injected with no complications. To assess the difference between the two groups, their skin flora was cultured from nasal swabs, both before and after antibiotic treatment in the study group. A significant increase in the incidence of Staphylococcus epidermidis was detected in the control group ( P =0.000) compared to the study group. The study group showed a significantly higher incidence of Staphylococcus aureus ( P =0.005), Klebsiella pneumoniae ( P =0.006), Klebsiella oxytoca ( P =0.048), and Staphylococcus haemolyticus ( P =0.048) compared to the control group. The bacterial flora on the skin differed in patients with LBI from the control group. The control group's bacterial skin flora was dominated by S. epidermidis . Patients with LBI had a bacterial skin flora dominated by potentially pathogenic bacteria.

  20. When is bacterial vaginosis not bacterial vaginosis?--a case of cervical carcinoma presenting as recurrent vaginal anaerobic infection.

    OpenAIRE

    Hudson, M M; Tidy, J A; McCulloch, T A; Rogstad, K E

    1997-01-01

    Vaginal anaerobic infection is the most common cause of vaginal discharge in women. We present a case of recurrent vaginal anaerobic infection and cervical carcinoma and discuss the association of the two conditions. More frequent cytology/colposcopy may be indicated in women who give a history of recurrent or persistent vaginal anaerobic infection.

  1. AZF Microdeletions in Human Semen Infected with Bacteria

    Directory of Open Access Journals (Sweden)

    Hayfa H Hassani

    2011-11-01

    Full Text Available Bacterial infections are associated with infertility in men. This study was aimed to investigate microdeletions on Yq chromosome in semen infected with bacteria by using bacteriological, biochemical, and serological assays. The investigation showed that 107 of 300 (84.80% semen samples collected from infertile men with primary or secondary infertility were infected with different species of bacteria. Chlamydia trachomatis and Neisseria gonorrheae were the most frequently diagnosed bacteria in the infected semen samples. The percentages of infections of semen samples with C. trachomatis and N. gonorrhea were 42.31% and 35.28% respectively. Genomic DNA from each semen sample infected with predominant bacteria was analyzed for AZF deletions by using multiplex PCR. Different patterns of AZF microdeletions were obtained. It can be concluded that sexually transmitted bacteria may contribute in microdeletions of Yq chromosome by indirectly producing reactive oxygen species and causing gene defect in AZF regions.

  2. Bacterial agents and antibiotic sensitivity in children with urinary infection in two hospitals of Popayan, Colombia

    Directory of Open Access Journals (Sweden)

    Carolina Álvarez-Czeczotta

    2012-06-01

    Full Text Available Introduction: Urinary Tract Infection (UTI is a common condition in children. Isolation of bacteria and early management is a priority in order to contribute to the reduction of morbidity and avoid bacterial resistance. Objectives: To identify bacterial etiologic agents and antibiotic sensitivity in children (1 month to 5 years of age with UTI in two hospitals of Popayán, Colombia. Materials and methods: We conducted a cross-sectional study in children aged 1 month to 5 years of age who consulted the emergency services of two hospitals with clinical suspicion of UTI. The sample was 123 children. Using an instrument collected demographic variables, signs and symptoms, results of urinalysis, urine culture, sensitivity testing, treatment, and UTI classification. We determined the frequency and proportions of sociodemographic and clinical variables, bacterial agents and antibiotic resistance. Data was analyzed using SPSS 11.5 program. Results: We included 129 children diagnosed with UTI with positive urine culture, bladder catheter taken with 97.7% of cases. 74.8% of patients were female. Escherichia coli was the seed that was isolated more frequently (95.4%, then Sp Proteus (2.4%, and Klebsiella pneumoniae (1.6%. The antibiotics to which the bacteria showed adequate sensitivity were: ceftriaxone, amikacin, gentamicin, ciprofloxacin, nitrofurantoin, cefuroxime and cephalexin. Showed low sensitivity: ampicillin and trimethoprim sulfa. Conclusions: Escherichia coli was the bacteria that cause of UTI in our study population. For initial empiric treatment of hospitalized patients would recommend parenteral drug third generation cephalosporins (ceftriaxone and aminoglycosides (amikacin, gentamicin. For outpatient management, oral antibiotics showed greater sensitivity were nalidixic acid, cefuroxime and cephalexin.

  3. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    Directory of Open Access Journals (Sweden)

    Roja Rani Pallavali

    Full Text Available Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS, Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100% were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence

  4. Label-free bimodal waveguide immunosensor for rapid diagnosis of bacterial infections in cirrhotic patients.

    Science.gov (United States)

    Maldonado, Jesús; González-Guerrero, Ana Belén; Domínguez, Carlos; Lechuga, Laura M

    2016-11-15

    Spontaneous bacterial peritonitis is an acute bacterial infection of ascitic fluid; it has a high incidence in cirrhotic patients and it is associated with high mortality. In such a situation, early diagnosis and treatment is crucial for the survival of the patient. However, bacterial analysis in ascitic fluid is currently based on culture methods, which are time-consuming and laborious. We report here the application of a photonic interferometer biosensor based on a bimodal waveguide (BiMW) for the rapid and label-free detection of bacteria directly in ascitic fluid. The device consists of a straight waveguide in which two modes of the same polarization interfere while interacting with the external medium through their evanescent fields. A bimolecular event occurring on the sensor area of the device (e.g. capturing bacteria) will differently affect each light mode, inducing a variation in the phase of the light exiting at the output of the waveguide. In this work, we demonstrate the quantitative detection of Bacillus cereus in buffer medium and Escherichia coli in undiluted ascitic fluid from cirrhotic patients. In the case of Bacillus cereus detection, the device was able to specifically detect bacteria at relevant concentrations in 12.5min and in the case of Escherichia coli detection, the analysis time was 25min. Extrapolation of the data demonstrated that the detection limits of the biosensor could reach few bacteria per milliliter. Based on the results obtained, we consider that the BiMW biosensor is positioned as a promising new clinical tool for user-friendly, cost-effective and real-time microbiological analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. CISH controls bacterial burden early after infection with Mycobacterium tuberculosis in mice.

    Science.gov (United States)

    Carow, Berit; Gao, Yu; Terán, Graciela; Yang, Xuexian O; Dong, Chen; Yoshimura, Akihiko; Rottenberg, Martin E

    2017-12-01

    CISH gene has been associated with increased susceptibility to human tuberculosis. We found that cish -/- mice had higher M. tuberculosis load in spleens and lungs up to 2.5 weeks after infection but not later compared to controls. Cish mRNA levels were increased in lungs at early and late time points after M. tuberculosis infection. In relation, the titers of inos and tnf mRNA in lungs were reduced early after infection of cish -/- mice. The transfer of cish -/- and control T cells conferred rag1 -/- mice similar protection to infection with M. tuberculosis. Macrophages showed increased cish mRNA levels after M. tuberculosis infection in vitro. However, mycobacterial uptake and growth in cish -/- and control macrophages was similar. Thus, we here show that CISH mediates control of M. tuberculosis in mice early after infection via regulation of innate immune mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Co-trimoxazole alone for prevention of bacterial infection in patients with acute leukaemia.

    Science.gov (United States)

    Starke, I D; Donnelly, P; Catovsky, D; Darrell, J; Johnson, S A; Goldman, J M; Galton, D A

    1982-01-02

    43 patients undergoing treatment for acute leukaemia were randomised to receive either co-trimoxazole alone or co-trimoxazole with framycetin and colistin as antibacterial prophylaxis during periods of neutropenia. There were no significant differences between the two treatment groups in the time before the onset of the first fever, the number of episodes of fever or of septicaemia per patient, the number of neutropenic days during which patients remained afebrile or did not require systemic antibiotics, or the number of resistant organisms acquired. Co-trimoxazole alone is cheaper and easier to take than co-trimoxazole with framycetin and colistin, and it is therefore preferable to the three-drug combination for the prophylaxis of bacterial infection.

  7. Bacterial isolates from burn wound infections and their antibiograms: A eight-year study

    Directory of Open Access Journals (Sweden)

    Mehta Manjula

    2007-01-01

    Full Text Available Background: Infection is an important cause of mortality in burns. Rapidly emerging nosocomial pathogens and the problem of multi-drug resistance necessitates periodic review of isolation patterns and antibiogram in the burn ward. Aim: Keeping this in mind, the present retrospective study from wounds of patients admitted to burns unit was undertaken to determine the bacteriological profile and the resistance pattern from the burn ward over a period of three years (June 2002 to May 2005 and was compared with the results obtained during the previous five years (June 1997-May 2002, to ascertain any change in the bacteriological profile and antimicrobial resistance pattern. Materials and Methods: Bacterial isolates from 268 wound swabs taken from burn patients were identified by conventional biochemical methods and antimicrobial susceptibility was performed. Statistical comparison of bacterial isolates and their resistance pattern with previous five years data was done using c2 test. Results and Conclusions: During the period from 2002 to 2005 Pseudomonas species was the commonest pathogen isolated (51.5% followed by Acinetobacter species (14.28%, Staph. aureus (11.15%, Klebsiella species (9.23% and Proteus species (2.3%. When compared with the results of the previous five years i.e., 1997 to 2002, Pseudomonas species was still the commonest pathogen in the burns unit. However, the isolation of this organism and other gram-negative organisms had decreased in comparison to previous years. Newer drugs were found to be effective.

  8. Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections.

    Science.gov (United States)

    Bodier-Montagutelli, Elsa; Morello, Eric; L'Hostis, Guillaume; Guillon, Antoine; Dalloneau, Emilie; Respaud, Renaud; Pallaoro, Nikita; Blois, Hélène; Vecellio, Laurent; Gabard, Jérôme; Heuzé-Vourc'h, Nathalie

    2017-08-01

    Bacterial respiratory tract infections (RTIs) are increasingly difficult to treat due to evolving antibiotic resistance. In this context, bacteriophages (or phages) are part of the foreseen alternatives or combination therapies. Delivering phages through the airways seems more relevant to accumulate these natural antibacterial viruses in proximity to their bacterial host, within the infectious site. Areas covered: This review addresses the potential of phage therapy to treat RTIs and discusses preclinical and clinical results of phages administration in this context. Recent phage formulation and aerosolization attempts are also reviewed, raising technical challenges to achieve efficient pulmonary deposition via inhalation. Expert opinion: Overall, the inhalation of phages as antibacterial treatment seems both clinically relevant and technically feasible. Several crucial points still need to be investigated, such as phage product pharmacokinetics and immunogenicity. Furthermore, given phage-specific features, appropriate regulatory and manufacturing guidelines will need to be defined. Finally, randomized controlled clinical trials should be carried out to establish phage therapy's clinical positioning in the antimicrobial arsenal against RTIs.

  9. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection

    Directory of Open Access Journals (Sweden)

    Kempashanaiah Nanjundappa

    2011-08-01

    Full Text Available Abstract Background Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. However, the use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. A phage that kills the target cell but is incapable of host cell lysis would alleviate these concerns without compromising efficacy. Results We developed a recombinant lysis-deficient Staphylococcus aureus phage P954, in which the endolysin gene was rendered nonfunctional by insertional inactivation. P954, a temperate phage, was lysogenized in S. aureus strain RN4220. The native endolysin gene on the prophage was replaced with an endolysin gene disrupted by the chloramphenicol acetyl transferase (cat gene through homologous recombination using a plasmid construct. Lysogens carrying the recombinant phage were detected by growth in presence of chloramphenicol. Induction of the recombinant prophage did not result in host cell lysis, and the phage progeny were released by cell lysis with glass beads. The recombinant phage retained the endolysin-deficient genotype and formed plaques only when endolysin was supplemented. The host range of the recombinant phage was the same as that of the parent phage. To test the in vivo efficacy of the recombinant endolysin-deficient phage, immunocompromised mice were challenged with pathogenic S. aureus at a dose that results in 80% mortality (LD80. Treatment with the endolysin-deficient phage rescued mice from the fatal S. aureus infection. Conclusions A recombinant endolysin-deficient staphylococcal phage has been developed that is lethal to methicillin-resistant S. aureus without causing bacterial cell lysis. The phage was able to multiply in lytic mode utilizing a heterologous endolysin expressed from a plasmid in the propagation host

  10. Human papilloma virus infection and cervical dysplasia.

    Science.gov (United States)

    Melinte-Popescu, Alina; Costăchescu, Gh

    2012-01-01

    Pap testing is considered to be the best screening tool for cervical cancer but there is currently great interest in the possible application of human papilloma virus (HPV) testing to supplement Pap screening for cervical cancer. To determine the prevalence of high-risk HPV types in the studied population and to explore the association between high-risk HPV types and cervical dysplasia. Cross-sectional study conducted at the Iasi Cuza Voda Obstetrics-Gynecology Hospital and Suceava County Hospital. 332 women who underwent colposcopy for cervical lesions between 2006 and 2011 were included in this study. The overall prevalence of HPV was 57.23%. HPV prevalence differs significantly in the three age groups up to 50 years. It was highest in patients below the age of 40 and progressively lower with advancing age. The overall prevalence of cervical dysplasia was 56.62%. The prevalence of cervical dysplasia was highest in the age groups up to 40 years. The most important determinant of HPV infection is age. Persistence of HPV appears to be associated with progression to squamous intraepithelial lesion. Dysplasia is often missed in a cervical sample either because of human error in screening and interpretation, or because of suboptimal quality of Pap smear. Incorporation of HPV testing into the present Pap screening program has the potential of making screening for cervical cancer more effective, and a necessary prelude to assessing this is by determining the prevalence of the high-risk types.

  11. Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae.

    Science.gov (United States)

    Cornman, Robert Scott; Lopez, Dawn; Evans, Jay D

    2013-01-01

    American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and a general immunity is achieved by larvae as they age, the basis of which has not been identified. To quickly identify a pool of candidate genes responsive to P. larvae infection, we sequenced transcripts from larvae inoculated with P. larvae at 12 hours post-emergence and incubated for 72 hours, and compared expression levels to a control cohort. We identified 75 genes with significantly higher expression and six genes with significantly lower expression. In addition to several antimicrobial peptides, two genes encoding peritrophic-matrix domains were also up-regulated. Extracellular matrix proteins, proteases/protease inhibitors, and members of the Osiris gene family were prevalent among differentially regulated genes. However, analysis of Drosophila homologs of differentially expressed genes revealed spatial and temporal patterns consistent with developmental asynchrony as a likely confounder of our results. We therefore used qPCR to measure the consistency of gene expression changes for a subset of differentially expressed genes. A replicate experiment sampled at both 48 and 72 hours post infection allowed further discrimination of genes likely to be involved in host response. The consistently responsive genes in our test set included a hymenopteran-specific protein tyrosine kinase, a hymenopteran specific serine endopeptidase, a cytochrome P450 (CYP9Q1), and a homolog of trynity, a zona pellucida domain protein. Of the known honey bee antimicrobial peptides, apidaecin was responsive at both time-points studied whereas hymenoptaecin was more consistent in its level of change between biological replicates and had the greatest increase in expression by RNA-seq analysis.

  12. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection.

    Directory of Open Access Journals (Sweden)

    Leigh A Baxt

    Full Text Available Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min., the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG. Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.

  13. Helicobacter pylori Infection Causes Characteristic DNA Damage Patterns in Human Cells

    Directory of Open Access Journals (Sweden)

    Max Koeppel

    2015-06-01

    Full Text Available Infection with the human pathogen Helicobacter pylori (H. pylori is a major risk factor for gastric cancer. Since the bacterium exerts multiple genotoxic effects, we examined the circumstances of DNA damage accumulation and identified regions within the host genome with high susceptibility to H. pylori-induced damage. Infection impaired several DNA repair factors, the extent of which depends on a functional cagPAI. This leads to accumulation of a unique DNA damage pattern, preferentially in transcribed regions and proximal to telomeres, in both gastric cell lines and primary gastric epithelial cells. The observed pattern correlates with focal amplifications in adenocarcinomas of the stomach and partly overlaps with known cancer genes. We thus demonstrate an impact of a bacterial infection directed toward specific host genomic regions and describe underlying characteristics that make such regions more likely to acquire heritable changes during infection, which could contribute to cellular transformation.

  14. Fosfomycin i.v. for Treatment of Severely Infected Patients

    Science.gov (United States)

    2017-07-27

    Bacterial Infections; Bone Diseases, Infectious; Osteomyelitis; Central Nervous System Bacterial Infections; Meningitis, Bacterial; Encephalitis; Brain Abscess; Urinary Tract Infections; Respiratory Tract Infections; Pneumonia, Bacterial; Skin Diseases, Bacterial; Soft Tissue Infections; Intraabdominal Infections; Sepsis; Bacteremia; Endocarditis, Bacterial

  15. Hypoxia determines survival outcomes of bacterial infection through HIF-1alpha dependent re-programming of leukocyte metabolism *

    OpenAIRE

    Thompson, A.A.R.; Dickinson, R.S.; Murphy, F.; Thomson, J. P.; Marriott, H.M.; Tavares, A.; Willson, J.; Williams, L.; Lewis, A.; Mirchandani, A.; Dos Santos Coelho, P.; Doherty, C.; Ryan, E.; Watts, E.; Morton, N. M.

    2017-01-01

    Hypoxia and bacterial infection frequently co-exist, in both acute and chronic clinical settings, and typically result in adverse clinical outcomes. To ameliorate this morbidity, we investigated the interaction between hypoxia and the host response. In the context of acute hypoxia, both S. aureus and S. pneumoniae infections rapidly induced progressive neutrophil mediated morbidity and mortality, with associated hypothermia and cardiovascular compromise. Preconditioning animals through longer...

  16. Suggested guidelines for using systemic antimicrobials in bacterial skin infections: part?2? antimicrobial choice, treatment regimens and compliance

    OpenAIRE

    Beco, L.; Guagu?re, E.; M?ndez, C. Lorente; Noli, C.; Nuttall, T.; Vroom, M.

    2013-01-01

    Systemic antimicrobials are critically important in veterinary healthcare, and resistance is a major concern. Antimicrobial stewardship will be important in maintaining clinical efficacy by reducing the development and spread of antimicrobial resistance. Bacterial skin infections are one of the most common reasons for using systemic antimicrobials in dogs and cats. Appropriate management of these infections is, therefore, crucial in any policy for responsible antimicrobial use. The goals of t...

  17. Human immunodeficiency virus infection presenting as a fatal case ...

    African Journals Online (AJOL)

    MJP

    2015-06-25

    Jun 25, 2015 ... original work is properly cited. Human immunodeficiency virus infection presenting as a fatal ... of neurological symptoms by an infection (upper respiratory tract infection or diarrhea), in a smaller proportion of .... cerebrospinal fluid findings of albumino-cytology dissociation.[6]. However, albumino-cytology.

  18. Infection Imaging With 18F-FDS and First-in-Human Evaluation

    International Nuclear Information System (INIS)

    Yao, Shaobo; Xing, Haiqun; Zhu, Wenjia; Wu, Zhanhong; Zhang, Yingqiang; Ma, Yanru; Liu, Yimin; Huo, Li; Zhu, Zhaohui; Li, Zibo; Li, Fang

    2016-01-01

    Purpose: The noninvasive imaging of bacterial infections is critical in order to reduce mortality and morbidity caused by these diseases. The recently reported 18 F-FDS ( 18 F-2-fluorodeoxy sorbitol) as a PET (positron emission tomography) tracer can be used to image Enterobacteriaceae-specific infections and provides a potential alternative to this problem compared with other probes for imaging infections. In this study, automatic synthesis, validation of 18 F-FDS and a first-in-human study were performed and discussed. Methods: A multifunctional synthesis module was employed for the radiosynthesis of 18 F-FDG ( 18 F-2-fluorodeoxy glucose) and 18 F-FDS starting from 18 F ion using two-pot three-step fully automated reactions. The behavior of 18 F-FDS as an in vivo imaging probe for infections was evaluated in an Escherichia coli mouse infection model. The first detailed pharmacokinetic and biodistribution parameters were obtained from healthy human volunteers. Results: The uptake of 18 F-FDS in an E. coli mouse-myositis infection model was easily differentiated from other organs and normal muscle. Intensive lesion uptake declined after antibiotic treatment. In the pilot human study, no adverse effects due to 18 F-FDS were observed up to 24 h post-injection. The radiotracer was rapidly cleared from the circulation and excreted mainly through the urinary system. Conclusion: We conclude that 18 F-FDS PET holds great potential for appropriate and effective for the imaging of bacterial infections in vivo. These preliminary results indicate that further clinical studies are warranted.

  19. Placental Inflammatory Changes and Bacterial Infection in Premature Neonates with Respiratory Failure

    Directory of Open Access Journals (Sweden)

    S. A. Perepelitsa

    2012-01-01

    Full Text Available Objective: to reveal a relationship of placental inflammatory changes to bacterial infection in premature neonates with respiratory failure. Material and methods. Bronchoalveolar aspirate was bacteriologically studied in 157 premature neonates with respiratory distress syndrome (NRDS; the total and differential leukocyte counts were measured in their peripheral blood. The levels of the cytokines IL-1^3, IL-4, IL-6, and TNF-a were studied in different biological fluids of mothers and their babies; the placentas were also morphologically examined. Results. An analysis of bacterial cultures from the tracheobronchial tree revealed no growth of bacterial microflora in 61.8% of cases, Enterococcus faecalis and Staphylococcus epidermidis were isolated in 6.4 and 8.3% of the infants, respectively; Staphylococcus haemolyticus, Staphylococcus capitis, Enterobacter agglomerans, and hemolytic group A Streptococcus were seen in 1.9% each; moreover, 1.3% of the newborn infants were found to have Bacillus spp., Staphylococcus aureus, Escherichia coli, Acinetobacter spp., and Serratia marcescens. Other microorganisms and a microbial association were encountered in 8.9% of cases. Placental morphological examination revealed different inflammatory changes concurrent with chronic and acute placental insufficiency. The investigation demonstrated that the maternal peripheral plasma levels of IL-1^, IL-4, IL-6, and TNF-a were within the physiological range at the end of the first period of delivery. The amniotic fluid displayed elevated IL-6 and TNF-a concentrations and normal IL-4 and IL-1e levels, suggesting that there was an intrauterine inflammatory process. Conclusion. Premature birth is associated with various placental inflammatory changes, which causes intrauterine stimulation of macrophages in the chorionic villi. Specific immune defense mechanisms that prevent the development of a fetal infectious process, i.e. the maternal infectious process, may induce

  20. The potential of methylethylpiridinol in treatment of bacterial infections caused by Klebsiella pneumoniae (experimental study

    Directory of Open Access Journals (Sweden)

    V. M. Brykhanov

    2016-01-01

    Full Text Available Aim. Investigated the activity of methylethylpiridinol (6-methyl-2-ethyl-pyridin-3-ol hydrochloride in the comprehensive treatment of the experimental bacterial infection caused by Klebsiella pneumoniae.Materials and methods. The study was conducted on clinical isolates of Klebsiella pneumoniae. At the first stage of the study (in vitro studied the effect of methylethylpiridinol in concentrations 0,25–4 mM on the growth of the strain and the activity of the sublethal concentrations of antibiotics – gentamicin, ciprofloxacin, tetracycline, ceftazidime. In the second stage of the study (in vivo in rats Wistar simulated bacterial peritonitis by intraperitoneal injection of a suspension of Klebsiella pneumoniae and investigated the effect of methylethylpiridinol (80 mg/kg on the effectiveness of antibiotic therapy with gentamicin (30 mg/kg, ciprofloxacin (50 mg/kg, ceftazidime (120 mg/kg or tetracycline (80 mg/kg. The animal blood plasma was determined ceruloplasmin concentration (marker of the intensity of infectious-inflammatory process and thiobarbiturate-jet products, erythrocytes – the concentration of reduced glutathione, catalase and glutathione peroxidase.Results. It is found that a methylethylpiridinol inhibits the development of periodic bacterial cultures, but exhibits a pronounced antagonism with respect to gentamicin. Antioxidant slightly increases the activity of ciprofloxacin and tetracycline. The bacteriostatic effect of antioxidant reduces the action of ceftazidime in vitro. In conditions of chemotherapy by using of gentamicin and ciprofloxacin additional injection of methylethylpiridinol leads to the preservation of ceruloplasmin level to the level of non-treated animals without showing the antioxidant effect. Ceftazidime exhibits antioxidant effect, reduces the introduction of methylethylpiridinol. The antioxidant properties of methylethylpiridinol did not appear in the application of

  1. Acute Bacterial Meningitis and Systemic Abscesses due to Streptococcus dysgalactiae subsp. equisimilis Infection

    Directory of Open Access Journals (Sweden)

    M. Jourani

    2017-01-01

    Full Text Available Disseminated abscesses due to group G β-hemolytic Streptococcus dysgalactiae were observed in a 57-year-old cirrhotic patient with the skin being the putative way of entry for the pathogen. S. dysgalactiae is a rare agent in human infections responsible for acute pyogenic meningitis. The mortality rate associated with S. dysgalactiae bacteraemia and meningitis may be as high as 50%, particularly in the presence of endocarditis or brain abscesses. In our patient, main sites of infections were meningitis and ventriculitis, spondylodiscitis, septic arthritis, and soft-tissue infections. In contrast, no endocarditis was evidenced. Cirrhosis-related immune suppression was considered as a pathophysiological cofactor for the condition. Fortunately, clinical status improved after long-term (3 months antimicrobial therapy.

  2. Bacterial infections in patients with liver cirrhosis: clinical characteristics and the role of C-reactive protein

    Science.gov (United States)

    Deutsch, Melanie; Manolakopoulos, Spilios; Andreadis, Ioannis; Giannaris, Markos; Kontos, George; Kranidioti, Hariklia; Pirounaki, Maria; Koskinas, John

    2018-01-01

    Background: The diagnosis of bacterial infection in cirrhotic patients may be difficult, because of the absence of classical signs such as fever and raised white blood cell count. The role of C-reactive protein (CRP) in this context has not been clearly defined. Methods: Clinical and laboratory characteristics of 210 consecutive cirrhotic patients with (n=100) or without (n=110) bacterial infection were compared with a control group of non-cirrhotic patients with infection (n=106). Results: Significantly fewer patients with cirrhosis had a body temperature ≥37°C when presenting with bacterial infection (56% cirrhotic vs. 85.5% non-cirrhotic patients, P=0.01). Mean leukocyte count was 6.92 × 103/mm3 in patients with cirrhosis and infection, 5.75 × 103/mm3 (P=0.02) in cirrhotic patients without infection, and 11.28 × 103/mm3 in non-cirrhotic patients with infection (P10 mg/L indicated the presence of infection with a sensitivity of 68%, a specificity of 84.5% and an area under the receiver operating characteristic curve of 0.8197. CRP cutoff level differed according to the severity of the liver disease: Child-Pugh score (CPS) A: 21.3 mg/L, B: 17 mg/L, and C: 5.78 mg/L. Conclusions: CRP at admission could help diagnose infection in cirrhotic patients. Since the severity of liver disease seems to affect the CRP values, lower CRP levels might indicate infection. Clinical suspicion is necessary to avoid delay in diagnosis and initiate antibiotic treatment. PMID:29333070

  3. Bacterial infections in patients with liver cirrhosis: clinical characteristics and the role of C-reactive protein.

    Science.gov (United States)

    Deutsch, Melanie; Manolakopoulos, Spilios; Andreadis, Ioannis; Giannaris, Markos; Kontos, George; Kranidioti, Hariklia; Pirounaki, Maria; Koskinas, John

    2018-01-01

    The diagnosis of bacterial infection in cirrhotic patients may be difficult, because of the absence of classical signs such as fever and raised white blood cell count. The role of C-reactive protein (CRP) in this context has not been clearly defined. Clinical and laboratory characteristics of 210 consecutive cirrhotic patients with (n=100) or without (n=110) bacterial infection were compared with a control group of non-cirrhotic patients with infection (n=106). Significantly fewer patients with cirrhosis had a body temperature ≥37°C when presenting with bacterial infection (56% cirrhotic vs. 85.5% non-cirrhotic patients, P=0.01). Mean leukocyte count was 6.92 × 10 3 /mm 3 in patients with cirrhosis and infection, 5.75 × 10 3 /mm 3 (P=0.02) in cirrhotic patients without infection, and 11.28 × 10 3 /mm 3 in non-cirrhotic patients with infection (P10 mg/L indicated the presence of infection with a sensitivity of 68%, a specificity of 84.5% and an area under the receiver operating characteristic curve of 0.8197. CRP cutoff level differed according to the severity of the liver disease: Child-Pugh score (CPS) A: 21.3 mg/L, B: 17 mg/L, and C: 5.78 mg/L. CRP at admission could help diagnose infection in cirrhotic patients. Since the severity of liver disease seems to affect the CRP values, lower CRP levels might indicate infection. Clinical suspicion is necessary to avoid delay in diagnosis and initiate antibiotic treatment.

  4. Target Product Profile for a Diagnostic Assay to Differentiate between Bacterial and Non-Bacterial Infections and Reduce Antimicrobial Overuse in Resource-Limited Settings: An Expert Consensus.

    Directory of Open Access Journals (Sweden)

    Sabine Dittrich

    Full Text Available Acute fever is one of the most common presenting symptoms globally. In order to reduce the empiric use of antimicrobial drugs and improve outcomes, it is essential to improve diagnostic capabilities. In the absence of microbiology facilities in low-income settings, an assay to distinguish bacterial from non-bacterial causes would be a critical first step. To ensure that patient and market needs are met, the requirements of such a test should be specified in a target product profile (TPP. To identify minimal/optimal characteristics for a bacterial vs. non-bacterial fever test, experts from academia and international organizations with expertise in infectious diseases, diagnostic test development, laboratory medicine, global health, and health economics were convened. Proposed TPPs were reviewed by this working group, and consensus characteristics were defined. The working group defined non-severely ill, non-malaria infected children as the target population for the desired assay. To provide access to the most patients, the test should be deployable to community health centers and informal health settings, and staff should require 90% and >80% for sensitivity and specificity, respectively. Other key characteristics, to account for the challenging environment at which the test is targeted, included: i time-to-result <10 min (but maximally <2 hrs; ii storage conditions at 0-40°C, ≤90% non-condensing humidity with a minimal shelf life of 12 months; iii operational conditions of 5-40°C, ≤90% non-condensing humidity; and iv minimal sample collection needs (50-100μL, capillary blood. This expert approach to define assay requirements for a bacterial vs. non-bacterial assay should guide product development, and enable targeted and timely efforts by industry partners and academic institutions.

  5. Optimization of serious bacterial infections intensive therapy in children in Anesthesiology and Intensive Care Department

    Directory of Open Access Journals (Sweden)

    M. Yu. Kurochkin

    2014-08-01

    Full Text Available Effective selection of antibiotics in children with severe bacterial infections is often difficult because of microflora resistance. Extracorporeal detoxication methods, particularly discrete plasmapheresis are usually used for septic shock and total organ failure prevention. The aim of research. To conduct microbiological monitoring and to study a dynamics of medium molecular peptides in discrete plasmapheresis for intensive care optimization in children with severe bacterial infections in Anesthesiology and Intensive Care Department (AICU. Materials and methods. We investigated respiratory tract microflora by bacteriological method in 120 newborns and 30 children from 1 month with severe bacterial infections at admission and during prolonged stay in AICU. Discrete plasmapheresis was held in four children. Dynamic of medium molecular peptides was studied at admission, before discrete plasmapheresis and after it. Statistical data processing was performed using the Microsoft Excel software package. Results. It was found that in AICU in older children in admission grampositive and gramnegative flora was defined in equal quantity. The best sensitivity of the respiratory tract microflora was for the glycopeptides, oxazolidinones , II generation cephalosporins and macrolides, more than 60% - for aminoglycosides and lincosamides. However, when children spent more than 7-14 days in the department, nosocomial microflora was represented primarily by gram-negative organisms (80%, especially Pseudomonas aeruginosa. It was found to be inappropriate to use cephalosporins and macrolides in AICU for older children after their long stay there; the sensitivity to aminoglycosides was less than 60%, to anti-pseudomonal carbapenems not more than 30%. In AICU of newborns grampositive flora was found in 95%, mostly Staphylococcus haemolyticus. It was entirely sensitive for glycopeptides, oxazolidinones, fluoroquinolones, carbapenems, and also for co-trimoxazole and

  6. Laboratory changes and levels of biomarkers in localized bacterial infections and sepsis in children

    Directory of Open Access Journals (Sweden)

    Larysa Pypa

    2017-08-01

    Full Text Available Background. The success of sepsis treatment depends on early diagnosis of the generalization of bacterial infection, but the nonspecificity of clinical manifestations often makes the diagnosis delayed. Therefore, the search for highly specific and sensitive biomarkers for early diagnosis of sepsis is relevant. The aim of our research is investigate the laboratory features and diagnostic value of a number of modern biomarkers for the diagnosis of sepsis in children. Materials and methods. of general laboratory studies and determination of CRP level were performed in 115 children with generalized and localized forms of bacterial infections. The main group (47 children - children with sepsis, a comparison group (68 children - with a localized bacterial infection of various localization. The age of children was from 1 month. up to 18 years. Grouping was performed according to the presence of signs and symptoms of SIRS and organ dysfunction. Determination of the level of procalcitonin and TNF-α was performed in 31 children of the main group, 45 children in the comparison group and 30 children in the control group (children without signs of inflammation. Prespepsin levels were determined in 16 main group children,14 in the comparison group and26 in the control group. Results. During the study, it was found that the level of leukocytosis was much higher and continued 2.6 times longer in the main group than in the children of the comparison group (p <0.01.Anemia was found in 76.6% of the children in the main group, while in the comparator group, the anemia syndrome was diagnosed 3.7 times less frequently. In the study of CRP in the main group, its level reached 44.7 mg / l and 28.3 mg / l in the comparison group, the specificity and sensitivity for diagnosis of sepsis was 46.8% and 51.5% respectively. The mean TNF-α level in children in the main group was 280.3 pg / ml CI 95% [243.9-316.7], which was 1.5 times higher than in children with a localized

  7. Deciphering the bacterial microbiome of citrus plants in response to ‘Candidatus Liberibacter asiaticus’-infection and antibiotic treatment

    Science.gov (United States)

    Huanglongbing (HLB), the most devastating citrus disease worldwide, is vectored by phloem-feeding insects, and the pathogen in the USA is Candidatus Liberibacter asiaticus (Las). The bacterial microbiome of citrus after Las-infection and treatments with ampicillin (Amp) and gentamicin (Gm) was chara...

  8. A systematic literature review of the economic implications of acute bacterial skin and skin structure infections (ABSSSIs)

    NARCIS (Netherlands)

    Degener, F.; Ivanescu, C.; Casamayor, M.; Postma, M.

    2015-01-01

    Objectives: During the years, acute bacterial skin and skin structure infections (ABSSSIs) have seen an increase in incidence in many parts of the western world. Additionally, the treatment of ABSSSIs, generally consisting of surgical debridement or drainage and empiric antibiotics in the hospital,

  9. Bacterial canker on kiwifruit in Italy: Anatomical changes in the wood and in the primary infection sites

    NARCIS (Netherlands)

    Renzi, M.; Copini, P.; Taddei, A.R.; Rossetti, A.; Gallipoli, L.; Mazzaglia, A.; Balestra, G.M.

    2012-01-01

    The bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae is a severe threat to kiwifruit production worldwide. Many aspects of P. syringae pv. actinidiae biology and epidemiology still require in-depth investigation. The infection by and spread of P. syringae pv. actinidiae in

  10. Effect of auto-skin grafting on bacterial infection of wound in rats inflicted with combined radiation-burn injury

    International Nuclear Information System (INIS)

    Ran Xinze; Yan Yongtang; Wei Shuqing

    1992-01-01

    Rats were exposed to 6 Gy whole body γ-ray irradiation from a 60 Co source followed by light radiation burn (15% TBSA, full thickness burn) from a 5 kw bromo-tungsten lamp. The effect of auto-skin grafting on invasive bacterial infection of wound in the rats with combined radiation-burn injury was studied, In the control group inflicted with combined radiation-burn injury but without skin grafting, bacteria were found on and in the eschars at 24th hour after injury, and in the subeschar tissue on 3rd day. Tremendous bacterial multiplication occurred from 7th to 15th day, and the amount of bacteria in the internal organs increased along with the increase of subeschar infection. At the same time, no bacterial infection was found in internal organs in auto-skin grafted group at 24th hour after injury. The results show that skin grafting can decrease or prevent bacterial infection in both subeschar tissue and internal organs

  11. Effect of long-term voluntary exercise wheel running on susceptibility to bacterial pulmonary infections in a mouse model.

    Directory of Open Access Journals (Sweden)

    Pauline B van de Weert-van Leeuwen

    Full Text Available Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa affects lung bacteriology, sickness severity and phagocyte immune function in mice. Balb/c mice were randomly placed in a cage with or without a running wheel. After 28 days, mice were intranasally infected with P. aeruginosa. Our study showed that regular exercise resulted in a higher sickness severity score and bacterial (P. aeruginosa loads in the lungs. The phagocytic capacity of monocytes and neutrophils from spleen and lungs was not affected. Although regular moderate exercise has many health benefits, healthy mice showed increased bacterial (P. aeruginosa load and symptoms, after regular voluntary exercise, with perseverance of the phagocytic capacity of monocytes and neutrophils. Whether patients, suffering from bacterial infectious diseases, should be encouraged to engage in exercise and physical activities with caution requires further research.

  12. Effect of gut bacterial isolates from Apis mellifera jemenitica on Paenibacillus larvae infected bee larvae.

    Science.gov (United States)

    Al-Ghamdi, Ahmad; Ali Khan, Khalid; Javed Ansari, Mohammad; Almasaudi, Saad B; Al-Kahtani, Saad

    2018-02-01

    The probiotic effects of seven newly isolated gut bacteria, from the indegenous honey bees of Saudi Arabia were investigated. In vivo bioassays were used to investigate the effects of each gut bacterium namely, Fructobacillus fructosus (T1), Proteus mirabilis (T2), Bacillus licheniformis (T3), Lactobacillus kunkeei (T4), Bacillus subtilis (T5), Enterobacter kobei (T6), and Morganella morganii (T7) on mortality percentage of honey bee larvae infected with P. larvae spores along with negative control (normal diet) and positive control (normal diet spiked with P. larvae spores). Addition of gut bacteria to the normal diet significantly reduced the mortality percentage of the treated groups. Mortality percentage in all treated groups ranged from 56.67% up to 86.67%. T6 treated group exhibited the highest mortality (86.67%), whereas T4 group showed the lowest mortality (56.67%). Among the seven gut bacterial treatments, T4 and T3 decreased the mortality 56.67% and 66.67%, respectively, whereas, for T2, T6, and T7 the mortality percentage was equal to that of the positive control (86.67%). Mortality percentages in infected larval groups treated with T1, and T5 were 78.33% and 73.33% respectively. Most of the mortality occurred in the treated larvae during days 2 and 3. Treatments T3 and T4 treatments showed positive effects and reduced mortality.

  13. Effect of gut bacterial isolates from Apis mellifera jemenitica on Paenibacillus larvae infected bee larvae

    Directory of Open Access Journals (Sweden)

    Ahmad Al-Ghamdi

    2018-02-01

    Full Text Available The probiotic effects of seven newly isolated gut bacteria, from the indegenous honey bees of Saudi Arabia were investigated. In vivo bioassays were used to investigate the effects of each gut bacterium namely, Fructobacillus fructosus (T1, Proteus mirabilis (T2, Bacillus licheniformis (T3, Lactobacillus kunkeei (T4, Bacillus subtilis (T5, Enterobacter kobei (T6, and Morganella morganii (T7 on mortality percentage of honey bee larvae infected with P. larvae spores along with negative control (normal diet and positive control (normal diet spiked with P. larvae spores. Addition of gut bacteria to the normal diet significantly reduced the mortality percentage of the treated groups. Mortality percentage in all treated groups ranged from 56.67% up to 86.67%. T6 treated group exhibited the highest mortality (86.67%, whereas T4 group showed the lowest mortality (56.67%. Among the seven gut bacterial treatments, T4 and T3 decreased the mortality 56.67% and 66.67%, respectively, whereas, for T2, T6, and T7 the mortality percentage was equal to that of the positive control (86.67%. Mortality percentages in infected larval groups treated with T1, and T5 were 78.33% and 73.33% respectively. Most of the mortality occurred in the treated larvae during days 2 and 3. Treatments T3 and T4 treatments showed positive effects and reduced mortality.

  14. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections12

    Science.gov (United States)

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. PMID:25593145

  15. Microfluidic system for the identification of bacterial pathogens causing urinary tract infections

    Science.gov (United States)

    Becker, Holger; Hlawatsch, Nadine; Haraldsson, Tommy; van der Wijngaart, Wouter; Lind, Anders; Malhotra-Kumar, Surbi; Turlej-Rogacka, Agata; Goossens, Herman

    2015-03-01

    Urinary tract infections (UTIs) are among the most common bacterial infections and pose a significant healthcare burden. The growing trend in antibiotic resistance makes it mandatory to develop diagnostic kits which allow not only the determination of a pathogen but also the antibiotic resistances. We have developed a microfluidic cartridge which takes a direct urine sample, extracts the DNA, performs an amplification using batch-PCR and flows the sample over a microarray which is printed into a microchannel for fluorescence detection. The cartridge is injection-molded out of COP and contains a set of two-component injection-molded rotary valves to switch between input and to isolate the PCR chamber during thermocycling. The hybridization probes were spotted directly onto a functionalized section of the outlet microchannel. We have been able to successfully perform PCR of E.coli in urine in this chip and perform a fluorescence detection of PCR products. An upgraded design of the cartridge contains the buffers and reagents in blisters stored on the chip.

  16. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections

    Science.gov (United States)

    Lebeaux, David; Chauhan, Ashwini; Rendueles, Olaya; Beloin, Christophe

    2013-01-01

    The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them. PMID:25437038

  17. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes.

    Science.gov (United States)

    Hu, Yongfei; Yang, Xi; Li, Jing; Lv, Na; Liu, Fei; Wu, Jun; Lin, Ivan Y C; Wu, Na; Weimer, Bart C; Gao, George F; Liu, Yulan; Zhu, Baoli

    2016-11-15

    Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological constraints. We also found

  18. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las, affects host preference behavior of its psyllid (Diaphorina citri Kuwayama vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of

  19. Intravaginal practices, bacterial vaginosis, and HIV infection in women: individual participant data meta-analysis.

    Directory of Open Access Journals (Sweden)

    Nicola Low

    2011-02-01

    Full Text Available Identifying modifiable factors that increase women's vulnerability to HIV is a critical step in developing effective female-initiated prevention interventions. The primary objective of this study was to pool individual participant data from prospective longitudinal studies to investigate the association between intravaginal practices and acquisition of HIV infection among women in sub-Saharan Africa. Secondary objectives were to investigate associations between intravaginal practices and disrupted vaginal flora; and between disrupted vaginal flora and HIV acquisition.We conducted a meta-analysis of individual participant data from 13 prospective cohort studies involving 14,874 women, of whom 791 acquired HIV infection during 21,218 woman years of follow-up. Data were pooled using random-effects meta-analysis. The level of between-study heterogeneity was low in all analyses (I(2 values 0.0%-16.1%. Intravaginal use of cloth or paper (pooled adjusted hazard ratio [aHR] 1.47, 95% confidence interval [CI] 1.18-1.83, insertion of products to dry or tighten the vagina (aHR 1.31, 95% CI 1.00-1.71, and intravaginal cleaning with soap (aHR 1.24, 95% CI 1.01-1.53 remained associated with HIV acquisition after controlling for age, marital status, and number of sex partners in the past 3 months. Intravaginal cleaning with soap was also associated with the development of intermediate vaginal flora and bacterial vaginosis in women with normal vaginal flora at baseline (pooled adjusted odds ratio [OR] 1.24, 95% CI 1.04-1.47. Use of cloth or paper was not associated with the development of disrupted vaginal flora. Intermediate vaginal flora and bacterial vaginosis were each associated with HIV acquisition in multivariable models when measured at baseline (aHR 1.54 and 1.69, p<0.001 or at the visit before the estimated date of HIV infection (aHR 1.41 and 1.53, p<0.001, respectively.This study provides evidence to suggest that some intravaginal practices increase

  20. Linezolid Decreases Susceptibility to Secondary Bacterial Pneumonia Post-Influenza Infection in Mice Through its Effects on Interferon-γ

    Science.gov (United States)

    Breslow-Deckman, Jessica M.; Mattingly, Cynthia M.; Birket, Susan E.; Hoskins, Samantha N.; Ho, Tam N.; Garvy, Beth A.; Feola, David J.

    2013-01-01

    Influenza infection predisposes patients to secondary bacterial pneumonia that contributes significantly to morbidity and mortality. While this association is well documented, the mechanisms that govern this synergism are poorly understood. A window of hyporesponsiveness following influenza infection has been associated with a substantial increase in local and systemic IFNγ concentrations. Recent data suggests that the oxazolidinone antibiotic linezolid decreases IFNγ and TNFα production in vitro from stimulated peripheral blood mononuclear cells. We therefore sought to determine whether linezolid would reverse immune hyporesponsiveness after influenza infection in mice through its effects on IFNγ. In vivo dose response studies demonstrated that oral linezolid administration sufficiently decreased bronchoalveolar lavage fluid levels of IFNγ at day 7 post-influenza infection in a dose-dependent manner. The drug also decreased morbidity as measured by weight loss compared to vehicle-treated controls. When mice were challenged intranasally with S. pneumoniae 7 days after infection with influenza, linezolid pre-treatment led to decreased IFNγ and TNFα production, decreased weight loss, and lower bacterial burdens at 24 hours post bacterial infection in comparison to vehicle-treated controls. To determine whether these effects were due to suppression of IFNγ, linezolid-treated animals were given intranasal instillations of recombinant IFNγ before challenge with S. pneumoniae. This partially reversed the protective effects observed in the linezolid-treated mice, suggesting that the modulatory effects of linezolid are mediated partially by its ability to blunt IFNγ production. These results suggest that IFNγ, and potentially TNFα, may be useful drug targets for prophylaxis against secondary bacterial pneumonia following influenza infection. PMID:23833238

  1. Utility of the serum C-reactive protein for detection of occult bacterial infection in children.

    Science.gov (United States)

    Isaacman, Daniel J; Burke, Bonnie L

    2002-09-01

    To assess the utility of serum C-reactive protein (CRP) as a screen for occult bacterial infection in children. Febrile children ages 3 to 36 months who visited an urban children's hospital emergency department and received a complete blood cell count and blood culture as part of their evaluation were prospectively enrolled from February 2, 2000, through May 30, 2001. Informed consent was obtained for the withdrawal of an additional 1-mL aliquot of blood for use in CRP evaluation. Logistic regression and receiver operator characteristic (ROC) curves were modeled for each predictor to identify optimal test values, and were compared using likelihood ratio tests. Two hundred fifty-six patients were included in the analysis, with a median age of 15.3 months (range, 3.1-35.2 months) and median temperature at triage 40.0 degrees C (range, 39.0 degrees C-41.3 degrees C). Twenty-nine (11.3%) cases of occult bacterial infection (OBI) were identified, including 17 cases of pneumonia, 9 cases of urinary tract infection, and 3 cases of bacteremia. The median white blood cell count in this data set was 12.9 x 10(3)/ micro L [corrected] (range, 3.6-39.1 x10(3)/ micro L) [corrected], the median absolute neutrophil count (ANC) was 7.12 x 10(3)/L [corrected] (range, 0.56-28.16 x10(3)/L) [corrected], and the median CRP level was 1.7 mg/dL (range, 0.2-43.3 mg/dL). The optimal cut-off point for CRP in this data set (4.4 mg/dL) achieved a sensitivity of 63% and a specificity of 81% for detection of OBI in this population. Comparing models using cut-off values from individual laboratory predictors (ANC, white blood cell count, and CRP) that maximized sensitivity and specificity revealed that a model using an ANC of 10.6 x10(3)/L [corrected] (sensitivity, 69%; specificity, 79%) was the best predictive model. Adding CRP to the model insignificantly increased sensitivity to 79%, while significantly decreasing specificity to 50%. Active monitoring of emergency department blood cultures

  2. Metabonomic investigation of human Schistosoma mansoni infection

    DEFF Research Database (Denmark)

    Balog, Crina I.A.; Meissner, Axel; Göraler, Sibel

    2011-01-01

    in their urinary profiles. The potential molecular markers of S. mansoni infection were found to be primarily linked to changes in gut microflora, energy metabolism and liver function. These findings are in agreement with data from earlier studies on S. mansoni infection in experimental animals and thus provide....... Investigation of the host-parasite interaction at the molecular level and identification of biomarkers of infection and infection-related morbidity would be of value for improved strategies for treatment and morbidity control. To this end, we conducted a nuclear magnetic resonance (NMR) based metabonomics study...... corroborating evidence for the existence of metabolic response specific for this infection....

  3. Evaluation by biodistribution of two anti-peptidoglycan aptamers labeled with Technetium-99m for in vivo bacterial infection identification

    International Nuclear Information System (INIS)

    Ferreira, Iêda M.; Lacerda, Camila M.S.; Santos, Sara R.; Andrade, Antero S.R. de; Fernandes, Simone O.; Barros, André B. de; Cardoso, Valbert N.

    2017-01-01

    Nuclear medicine clinics are still awaiting optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. In the present study, two aptamers for peptidoglycan (termed Antibac1 and Antibac2) were labeled with 99m Tc and evaluated for bacterial infection identification by biodistribution. The direct labeling method with 99m Tc allowed radiolabel yields higher than 90% and the complexes were stable in saline, plasma and cysteine excess. The 99m Tc-Antibac1 in the group infected with S. aureus presented a target/non-target ratio (T/NT) of 2.81 ± 0.67, significantly higher than verified for the 99m Tc-library (control): 1.52 ± 0.07. A radiolabeled library of oligonucleotides with random sequences was used as a control for monitoring nonspecific uptake at the site of infection. In the model with C. albicans infection the T/NT ratio for 99m Tc-Antibac1 was 1.46 ± 0.11, similar that obtained for the 99m Tc-library in the same model: 1.52 ± 0.05. The 99m Tc-Antibac2 in the group infected with S. aureus showed a T/NT ratio of 2.61 ± 0.66, statistically higher than achieved for the 99m Tc-library: 1.52 ± 0.07. In the group infected with C. albicans this ratio for 99m Tc-Antibac2 was 1.75 ± 0.19, also statistically higher in relation to the 99m Tc-library: 1.52 ± 0.05. Both aptamers were effective in identifying bacterial infection foci, but only 99m Tc-Antibac1 showed no cross reactivity for fungal cells. (author)

  4. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds

    Science.gov (United States)

    Pfalzgraff, Anja; Brandenburg, Klaus; Weindl, Günther

    2018-01-01

    Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market. PMID:29643807

  5. Diagnostic testing for serious bacterial infections in infants aged 90 days or younger with bronchiolitis.

    Science.gov (United States)

    Liebelt, E L; Qi, K; Harvey, K

    1999-05-01

    %, and history of apnea were associated with laboratory testing for bacterial infections.

  6. Changes in Composition of the Gut Bacterial Microbiome after Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection in a Pediatric Heart Transplant Patient.

    Science.gov (United States)

    Flannigan, Kyle L; Rajbar, Taylor; Moffat, Andrew; McKenzie, Leanna S; Dicke, Frank; Rioux, Kevin; Workentine, Matthew L; Louie, Thomas J; Hirota, Simon A; Greenway, Steven C

    2017-01-01

    The microbiome is increasingly recognized as an important influence on human health and many of the comorbidities that affect patients after solid organ transplantation (SOT) have been shown to involve changes in gut bacterial populations. Thus, microbiome changes in an individual patient may have important health implications after SOT but this area remains understudied. We describe changes in the composition of the fecal microbiome from a pediatric heart transplant recipient before and >2.5 years after he underwent repeated fecal microbiota transplantation (FMT) for recurrent Clostridium difficile infection (CDI). With both documented episodes of CDI, there was marked loss of bacterial diversity with overgrowth of Proteobacteria (>98.9% of phyla identified) associated with symptomatic colitis that was corrected after FMT. We hypothesize that a second CDI occurring after FMT was related to incomplete restoration of normal bowel flora post-FMT with relative deficiencies of the phyla Firmicutes and Bacteroidetes and the families Lachnospiraceae and Ruminococcaceae . Following the second FMT, there was a gradual shift in gut bacterial composition coincident with the recipient developing lymphonodular hyperplasia of the colon and painless hematochezia that resolved with discontinuation of mycophenolate mofetil (MMF). This case documents dynamic changes in the bacterial microbiome after FMT and suggests that MMF may influence the gut microbiome with consequences for the patient.

  7. The Value of the “Lab-Score” Method in Identifying Febrile Infants at Risk for Serious Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Moldovan Diana Aniela

    2015-03-01

    Full Text Available Introduction: Most children with fever without source will have a self limited viral infection though a small percent will develop a serious bacterial infection (SBI like urinary tract infection, pneumonia, bacteraemia, meningitis or sepsis. The challenge facing practitioners is to distinguish between these two groups and currently biomarkers, like C-reactive protein (CRP and Procalcitonin (PCT, are available for this purpose. The aim of the current study was to identify SBI in infants with fever without an identifiable cause using the recently introduced “Lab-score” combining C-reactive protein, procalcitonin and urine dipstick results.

  8. High prevalence of human parvovirus 4 infection in HBV and HCV infected individuals in shanghai.

    Science.gov (United States)

    Yu, Xuelian; Zhang, Jing; Hong, Liang; Wang, Jiayu; Yuan, Zhengan; Zhang, Xi; Ghildyal, Reena

    2012-01-01

    Human parvovirus 4 (PARV4) has been detected in blood and diverse tissues samples from HIV/AIDS patients who are injecting drug users. Although B19 virus, the best characterized human parvovirus, has been shown to co-infect patients with hepatitis B or hepatitis C virus (HBV, HCV) infection, the association of PARV4 with HBV or HCV infections is still unknown.The aim of this study was to characterise the association of viruses belonging to PARV4 genotype 1 and 2 with chronic HBV and HCV infection in Shanghai.Serum samples of healthy controls, HCV infected subjects and HBV infected subjects were retrieved from Shanghai Center for Disease Control and Prevention (SCDC) Sample Bank. Parvovirus-specific nested-PCR was performed and results confirmed by sequencing. Sequences were compared with reference sequences obtained from Genbank to derive phylogeny trees.The frequency of parvovirus molecular detection was 16-22%, 33% and 41% in healthy controls, HCV infected and HBV infected subjects respectively, with PARV4 being the only parvovirus detected. HCV infected and HBV infected subjects had a significantly higher PARV4 prevalence than the healthy population. No statistical difference was found in PARV4 prevalence between HBV or HCV infected subjects. PARV4 sequence divergence within study groups was similar in healthy subjects, HBV or HCV infected subjects.Our data clearly demonstrate that PARV4 infection is strongly associated with HCV and HBV infection in Shanghai but may not cause increased disease severity.

  9. Human Infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013

    NARCIS (Netherlands)

    Memish, Ziad A.; Cotten, Matthew; Meyer, Benjamin; Watson, Simon J.; Alsahafi, Abdullah J.; Al Rabeeah, Abdullah A.; Corman, Victor Max; Sieberg, Andrea; Makhdoom, Hatem Q.; Assiri, Abdullah; Al Masri, Malaki; Aldabbagh, Souhaib; Bosch, Berend Jan|info:eu-repo/dai/nl/273306049; Beer, Martin; Müller, Marcel A.; Kellam, Paul; Drosten, Christian

    2014-01-01

    We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species

  10. Epidemiological studies on viral infections and co-infections : Human immunodeficiency virus, hepatitis C virus and human papillomavirus

    NARCIS (Netherlands)

    van Santen, D.K.

    2018-01-01

    The research described in this thesis aimed to increase our understanding of the incidence, disease progression and treatment of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and human papillomavirus (HPV) infections and co-infections in key populations. Chapter 1 contains an overview

  11. Role of trophallaxis in the dispersal of radioactive I131 and of bacterial infections in the termite, Bifiditermes beesoni

    International Nuclear Information System (INIS)

    Khan, K.I.; Jafri, R.H.; Ahmad, M.

    1981-01-01

    Dispersal and localisation of radioactive iodine (I 131 ) through trophallaxis was studied in various organs of healthy or bacteria-infected pseudergates of Bifiditermes beesoni. The breakdown of the defence system by bacterial pathogens was also studied by means of I 131 . Individual groups of pseudergates of B. beesoni were infected by various bacterial pathogens, i.e. Thuricide-HP (commercial preparation of Bacillus thuringiensis), B. thuringiensis 11-toumanoffi, B. thuringiensis serotype 3a, 3b, Pseudomonas fluorescens and Serratia marcescens, respectively. Healthy pseudergates retained more radioactivity in their guts and less in their exoskeletons. However, bacteria-infected 'donor' and 'recipient' pseudergates and soldiers retained less radioactivity in their guts and more in their exoskeletons. The flow of radioactivity from gut towards exoskeleton or other parts of B. beesoni pseudergates occurred after destruction and breakdown of the inestinal defence system of the host. (orig.) [de

  12. Effect of respiratory syncytial virus (RSV) infection on the adherence of pathogenic bacteria to human epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Faden, H.; Hong, J.J.; Ogra, P.L.

    1986-03-01

    The effect of RSV infection on the adherence of Streptococcus pneumoniae (SP), Haemophilus influenzae (HI) and Staphylococcus aureus (SA) to human epithelial cells was determined. RSV-infected Hep-2 cell cultures at different stages of expression of surface viral antigens and bacteria labeled with /sup 3/H-thymidine were employed to examine the kinetics of bacterial adherence to virus-infected cells. RSV infection did not alter the magnitude of adherence of HI or SA to HEp-2 cells. However, adherence of SP to HEp-2 cells was significantly (P < 0.01) enhanced by prior RSV infection. The degree of adherence was directly related to the amount of viral antigen expressed on the cell surface. The adherence was temperature dependent, with maximal adherence observed at 37/sup 0/C. Heat-inactivation of SP did not alter adherence characteristics. These data suggest that RSV infection increases adherence of SP to the surface of epithelial cells in vitro. Since attachment of bacteria to mucosal surfaces is the first step in many infections, it is suggested that viral infections of epithelial cells render them more susceptible to bacterial adherence. Thus, RSV infection in vivo may predispose children to SP infections, such as in otitis media, by increasing colonization with SP.

  13. Milk Oligosaccharides Inhibit Human Rotavirus Infectivity in MA104 Cells.

    Science.gov (United States)

    Laucirica, Daniel R; Triantis, Vassilis; Schoemaker, Ruud; Estes, Mary K; Ramani, Sasirekha

    2017-09-01

    Background: Oligosaccharides in milk act as soluble decoy receptors and prevent pathogen adhesion to the infant gut. Milk oligosaccharides reduce infectivity of a porcine rotavirus strain; however, the effects on human rotaviruses are less well understood. Objective: In this study, we determined the effect of specific and abundant milk oligosaccharides on the infectivity of 2 globally dominant human rotavirus strains. Methods: Four milk oligosaccharides-2'-fucosyllactose (2'FL), 3'-sialyllactose (3'SL), 6'-sialyllactose (6'SL), and galacto-oligosaccharides-were tested for their effects on the infectivity of human rotaviruses G1P[8] and G2P[4] through fluorescent focus assays on African green monkey kidney epithelial cells (MA104 cells). Oligosaccharides were added at different time points in the infectivity assays. Infections in the absence of oligosaccharides served as controls. Results: When compared with infections in the absence of glycans, all oligosaccharides substantially reduced the infectivity of both human rotavirus strains in vitro; however, virus strain-specific differences in effects were observed. Compared with control infections, the maximum reduction in G1P[8] infectivity was seen with 2'FL when added after the onset of infection (62% reduction, P rotaviruses in MA104 cells, primarily through an effect on the virus. Although breastfed infants are directly protected, the addition of specific oligosaccharides to infant formula may confer these benefits to formula-fed infants. © 2017 American Society for Nutrition.

  14. Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection

    Directory of Open Access Journals (Sweden)

    Vidlak Debbie

    2012-06-01

    Full Text Available Abstract Although IL-17A (commonly referred to as IL-17 has been implicated in the pathogenesis of central nervous system (CNS autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R knockout (KO mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25. In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT cell and gamma-delta (γδ T cell infiltrates during Staphylococcus aureus-induced brain abscess formation. Specifically, when compared with wild-type (WT animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following S. aureus infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1high infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection.

  15. Intermittent fasting promotes bacterial clearance and intestinal IgA production in Salmonella typhimurium-infected mice.

    Science.gov (United States)

    Godínez-Victoria, M; Campos-Rodriguez, R; Rivera-Aguilar, V; Lara-Padilla, E; Pacheco-Yepez, J; Jarillo-Luna, R A; Drago-Serrano, M E

    2014-05-01

    The impact of intermittent fasting versus ad libitum feeding during Salmonella typhimurium infection was evaluated in terms of duodenum IgA levels, bacterial clearance and intestinal and extra-intestinal infection susceptibility. Mice that were intermittently fasted for 12 weeks or fed ad libitum were infected with S. typhimurium and assessed at 7 and 14 days post-infection. Next, we evaluated bacterial load in the faeces, Peyer's patches, spleen and liver by plate counting, as well as total and specific intestinal IgA and plasmatic corticosterone levels (by immunoenzymatic assay) and lamina propria IgA levels in plasma cells (by cytofluorometry). Polymeric immunoglobulin receptor, α- and J-chains, Pax-5 factor, pro-inflammatory cytokine (tumour necrosis factor-α and interferon-γ) and anti-inflammatory cytokine (transforming growth factor-β) mRNA levels were assessed in mucosal and liver samples (by real-time PCR). Compared with the infected ad libitum mice, the intermittently fasted infected animals had (1) lower intestinal and systemic bacterial loads; (2) higher SIgA and IgA plasma cell levels; (3) higher mRNA expression of most intestinal parameters; and (4) increased or decreased corticosterone levels on day 7 and 14 post-infection, respectively. No contribution of liver IgA was observed at the intestinal level. Apparently, the changes following metabolic stress induced by intermittent fasting during food deprivation days increased the resistance to S. typhimurium infection by triggering intestinal IgA production and presumably, pathogen elimination by phagocytic inflammatory cells. © 2014 John Wiley & Sons Ltd.

  16. Investigation of 6-[¹⁸F]-fluoromaltose as a novel PET tracer for imaging bacterial infection.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available Despite advances in the field of nuclear medicine, the imaging of bacterial infections has remained a challenge. The existing reagents suffer from poor sensitivity and specificity. In this study we investigate the potential of a novel PET (positron emission tomography tracer that overcomes these limitations.6-[¹⁸F]-fluoromaltose was synthesized. Its behavior in vitro was evaluated in bacterial and mammalian cultures. Detailed pharmacokinetic and biodistribution profiles for the tracer were obtained from a murine model.6-[¹⁸F]-fluoromaltose is taken up by multiple strains of pathogenic bacteria. It is not taken up by mammalian cancer cell lines. 6-[¹⁸F]-fluoromaltose is retained in infected muscles in a murine model of bacterial myositis. It does not accumulate in inflamed tissue.We have shown that 6-[¹⁸F]-fluoromaltose can be used to image bacterial infection in vivo with high specificity. We believe that this class of agents will have a significant impact on the clinical management of patients.

  17. Selection of aptamers for use as radiopharmaceuticals in bacterial infection diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ieda Mendes; Faria, Ligia Santana de; Correa, Cristiane Rodrigues; Andrade, Antero Silva Ribeiro de, E-mail: imendesf@yahoo.com.br, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The difficulty in early detection of specific foci in the bacterial infection caused by bacteria has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy has the advantage that an image of the whole body could be obtained. This study aims to obtain aptamers specific bacteria for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as {sup 99m}Tc, {sup 18}F and {sup 32}P. In this study aptamers anti-peptidoglycan, the main component of the outer cell wall of bacteria, were obtained through SELEX. The SELEX started with a pool of ssDNA that had 10{sup 15}different sequences (library), each oligo has two fixed regions merging a portion of 25 random nucleotides. Initially, the library of ssDNA was incubated with peptidoglycan, for 1h at 37 dec C with stirring. Subsequently, amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reaction). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 rounds of selection the oligonucleotides were cloned using TOPO plasmid and Escherichia coli strain Top10F'. The plasmid DNA from 40 colonies were extracted and quantified. The plasmids were sequenced using the sequencing MegaBase, and two different aptamers sequences were obtained from all clones. The aptamers obtained were synthesized and subsequently labeled with {sup 32}P in the 5' end. The labeled aptamers were incubated

  18. Selection of aptamers for use as radiopharmaceuticals in bacterial infection diagnosis

    International Nuclear Information System (INIS)

    Ferreira, Ieda Mendes; Faria, Ligia Santana de; Correa, Cristiane Rodrigues; Andrade, Antero Silva Ribeiro de

    2013-01-01

    The difficulty in early detection of specific foci in the bacterial infection caused by bacteria has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy has the advantage that an image of the whole body could be obtained. This study aims to obtain aptamers specific bacteria for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as 99m Tc, 18 F and 32 P. In this study aptamers anti-peptidoglycan, the main component of the outer cell wall of bacteria, were obtained through SELEX. The SELEX started with a pool of ssDNA that had 10 15 different sequences (library), each oligo has two fixed regions merging a portion of 25 random nucleotides. Initially, the library of ssDNA was incubated with peptidoglycan, for 1h at 37 dec C with stirring. Subsequently, amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reaction). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 rounds of selection the oligonucleotides were cloned using TOPO plasmid and Escherichia coli strain Top10F'. The plasmid DNA from 40 colonies were extracted and quantified. The plasmids were sequenced using the sequencing MegaBase, and two different aptamers sequences were obtained from all clones. The aptamers obtained were synthesized and subsequently labeled with 32 P in the 5' end. The labeled aptamers were incubated with 10 7 Staphylococcus aureus

  19. Autophagy and bacterial clearance: a not so clear picture

    OpenAIRE

    Mostowy, Serge

    2012-01-01

    Autophagy, an intracellular degradation process highly conserved from yeast to humans, is viewed as an important defence mechanism to clear intracellular bacteria. However, recent work has shown that autophagy may have different roles during different bacterial infections that restrict bacterial replication (antibacterial autophagy), act in cell autonomous signalling (non-bacterial autophagy) or support bacterial replication (pro-bacterial autophagy). This review will focus on newfound intera...

  20. Neopterin and human immunodeficiency virus infection

    DEFF Research Database (Denmark)

    Hofmann, B

    1993-01-01

    Neopterin concentrations increase in serum and urine within the first week of infection with HIV and remain increased throughout the infection. In particular, changes in neopterin concentration precede decreases in CD4 T cell numbers and the development of clinical disease, and they can be used t...

  1. Laboratory diagnosis of persistent human chlamydial infection

    Directory of Open Access Journals (Sweden)

    Mirja ePuolakkainen

    2013-12-01

    Full Text Available Diagnostic assays for persistent chlamydial infection are much needed to conduct high-quality, large-scale studies investigating the persistent state in vivo, its disease associations and the response to therapy. Yet in most studies the distinction between acute and persistent infection is based on the interpretation of the data obtained by the assays developed to diagnose acute infections or on complex assays available for research only and/or difficult to establish for clinical use. Novel biomarkers for detection of persistent chlamydial infection are urgently needed. Chlamydial whole genome proteome arrays are now available and they can identify chlamydial antigens that are differentially expressed between acute infection and persistent infection. Utilizing these data will lead to the development of novel diagnostic assays. Carefully selected specimens from well-studied patient populations are clearly needed in the process of translating the proteomic data into assays useful for clinical practice. Before such antigens are identified and validated assays become available, we face a challenge of deciding whether the persistent infection truly induced appearance of the proposed marker or do we just base our diagnosis of persistent infection on the presence of the suggested markers. Consequently, we must bear this in mind when interpreting the available data.

  2. Human cytomegalovirus infections in premature infants by ...

    African Journals Online (AJOL)

    Freezing breast milk may be protective for the preterm infant until the titer of CMV antibody increases. However clinical importance of CMV infection in premature infants by breast-feeding is still unclear. This minireview focuses on recent advances in the study of CMV infection in premature infants by breastfeeding.

  3. The biology of human immunodeficiency virus infection.

    Science.gov (United States)

    Kotler, Donald P

    2004-08-01

    The aim of this article is to review the basic biology of infection with HIV-1 and the development of the acquired immunodeficiency syndrome. The discussion will include epidemiology, general description of the retroviruses, pathogenesis of the immune deficiency, clinical consequences, treatment, and treatment outcomes. Aspects of the infection that affect protein and energy balance will be identified.

  4. Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection.

    Science.gov (United States)

    Midani, Firas S; Weil, Ana A; Chowdhury, Fahima; Begum, Yasmin A; Khan, Ashraful I; Debela, Meti D; Durand, Heather K; Reese, Aspen T; Nimmagadda, Sai N; Silverman, Justin D; Ellis, Crystal N; Ryan, Edward T; Calderwood, Stephen B; Harris, Jason B; Qadri, Firdausi; David, Lawrence A; LaRocque, Regina C

    2018-04-12

    Cholera is a public health problem worldwide and the risk factors for infection are only partially understood. We prospectively studied household contacts of cholera patients to compare those who were infected with those who were not. We constructed predictive machine learning models of susceptibility using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. We found that machine learning models based on gut microbiota predicted V. cholerae infection as well as models based on known clinical and epidemiological risk factors. A 'predictive gut microbiota' of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.

  5. Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans

    Science.gov (United States)

    von Bernuth, Horst; Picard, Capucine; Puel, Anne; Casanova, Jean-Laurent

    2013-01-01

    Most Toll-like-receptors (TLRs) and interleukin-1 receptors (IL-1Rs) signal via myeloid differentiation primary response 88 (MyD88) and interleukin-1 receptor-associated kinase 4 (IRAK-4). The combined roles of these two receptor families in the course of experimental infections have been assessed in MyD88- and IRAK-4-deficient mice for almost fifteen years. These animals have been shown to be susceptible to 46 pathogens: 27 bacteria, 8 viruses, 7 parasites, and 4 fungi. Humans with inborn MyD88 or IRAK-4 deficiency were first identified in 2003. They suffer from naturally occurring life-threatening infections caused by a small number of bacterial species, although the incidence and severity of these infections decrease with age. Mouse TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be vital to combat a wide array of experimentally administered pathogens at most ages. By contrast, human TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be effective in the natural setting against only a few bacteria and is most important in infancy and early childhood. The roles of TLRs and IL-1Rs in protective immunity deduced from studies in mutant mice subjected to experimental infections should therefore be reconsidered in the light of findings for natural infections in humans carrying mutations as discussed in this review. PMID:23255009

  6. Multi-scale fluorescence imaging of bacterial infections in animal models

    Science.gov (United States)

    Bixler, Joel N.; Kong, Ying; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2013-03-01

    Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), currently affects roughly one-third of the world's population. Drug resistant strains of Mtb decrease the effectiveness of current therapeutics and demand the development of new antimicrobial therapies. In addition, the current vaccine, Bacille Calmette Guérin (BCG), has variable efficacy for disease prevention in different populations. Animal studies are often limited by the need to sacrifice at discrete time points for pathology and tissue homogenization, which greatly reduces spatial and temporal resolution. Optical imaging offers the potential for a minimally-invasive solution to imaging on a macroscopic and microscopic scale, allowing for high resolution study of infection. We have integrated a fluorescence microendoscope into a whole-animal optical imaging system, allowing for simultaneous microscopic and macroscopic imaging of tdTomato expressing BCG in vivo. A 535 nm LED was collimated and launched into a 10,000 element fiber bundle with an outer diameter of 0.66 mm. The fiber bundle can be inserted through an intra-tracheal catheter into the lung of a mouse. Fluorescence emission can either be (1) collected by the bundle and imaged onto the surface of a CCD camera for localized detection or (2) the fluorescence can be imaged by the whole animal imaging system providing macroscopic information. Results from internal localized excitation and external whole body detection indicate the potential for imaging bacterial infections down to 100 colony forming units. This novel imaging technique has the potential to allow for functional studies, enhancing the ability to assess new therapeutic agents.

  7. Value of bacterial culture of vaginal swabs in diagnosis of vaginal infections

    Directory of Open Access Journals (Sweden)

    Nenadić Dane

    2015-01-01

    Full Text Available Bacground/Aim. Vaginal and cervical swab culture is still very common procedure in our country’s everyday practice whereas simple and rapid diagnostic methods have been very rarely used. The aim of this study was to show that the employment of simple and rapid diagnostic tools [vaginal fluid wet mount microscopy (VFWMM, vaginal pH and potassium hydroxide (KOH test] offers better assessment of vaginal environment than standard microbiologic culture commonly used in Serbia. Methods. This prospective study included 505 asymptomatic pregnant women undergoing VFWMM, test with 10% KOH, determination of vaginal pH and standard culture of cervicovaginal swabs. Combining findings from the procedures was used to make diagnoses of bacterial vaginosis (BV and vaginitis. In addition, the number of polymorphonuclear leukocytes (PMN was determined in each sample and analyzed along with other findings. Infections with Candida albicans and Trichomonas vaginalis were confirmed or excluded by microscopic examination. Results. In 36 (6% patients cervicovaginal swab cultures retrieved several aerobes and facultative anaerobes, whereas in 52 (11% women Candida albicans was isolated. Based on VFWMM findings and clinical criteria 96 (19% women had BV, 19 (4% vaginitis, and 72 (14% candidiasis. Of 115 women with BV and vaginitis, pH 4.5 was found in 5, and of 390 with normal findings 83 (21% had vaginal pH 4.5. Elevated numbers of PMN were found in 154 (30% women - in 83 (54% of them VFWMM was normal. Specificity and sensitivity of KOH test and vaginal pH determination in defining pathological vaginal flora were 95% and 81%, and 79% and 91%, respectively. Conclusion. Cervicovaginal swab culture is expensive but almost non-informative test in clinical practice. The use of simpler and rapid methods as vaginal fluid wet mount microscopy, KOH test and vaginal pH offers better results in diagnosis, and probably in the treatment and prevention of sequels of vaginal

  8. Value of bacterial culture of vaginal swabs in diagnosis of vaginal infections.

    Science.gov (United States)

    Nenadić, Dane; Pavlović, Miloš D

    2015-06-01

    Vaginal and cervical swab culture is still very common procedure in our country's everyday practice whereas simple and rapid diagnostic methods have been very rarely used. The aim of this study was to show that the employment of simple and rapid diagnostic tools [vaginal fluid wet mount microscopy (VFWMM), vaginal pH and potassium hydroxide (KOH) test] offers better assessment of vaginal environment than standard microbiologic culture commonly used in Serbia. This prospective study included 505 asymptomatic pregnant women undergoing VFWMM, test with 10% KOH, determination of vaginal pH and standard culture of cervicovaginal swabs. Combining findings from the procedures was used to make diagnoses of bacterial vaginosis (BV) and vaginitis. In addition, the number of polymorphonuclear leukocytes (PMN) was determined in each sample and analyzed along with other findings. Infections with Candida albicans and Trichomonas vaginalis were confirmed or excluded by microscopic examination. In 36 (6%) patients cervicovaginal swab cultures retrieved several aerobes and facultative anaerobes, whereas in 52 (11%) women Candida albicans was isolated. Based on VFWMM findings and clinical criteria 96 (19%) women had BV, 19 (4%) vaginitis, and 72 (14%) candidiasis. Of 115 women with BV and vaginitis, pH 4.5 was found in 5, and of 390 with normal findings 83 (21%) had vaginal pH 4.5. Elevated numbers of PMN were found in 154 (30%) women--in 83 (54%) of them VFWMM was normal. Specificity and sensitivity of KOH test and vaginal pH determination in defining pathological vaginal flora were 95% and 81%, and 79% and 91%, respectively. Cervicovaginal swab culture is expensive but almost non-informative test in clinical practice. The use of simpler and rapid methods as vaginal fluid wet mount microscopy, KOH test and vaginal pH offers better results in diagnosis, and probably in the treatment and prevention of sequels of vaginal infections.

  9. Predictive model for serious bacterial infections among infants younger than 3 months of age.

    Science.gov (United States)

    Bachur, R G; Harper, M B

    2001-08-01

    To develop a data-derived model for predicting serious bacterial infection (SBI) among febrile infants /=38.0 degrees C seen in an urban emergency department (ED) were retrospectively identified. SBI was defined as a positive culture of urine, blood, or cerebrospinal fluid. Tree-structured analysis via recursive partitioning was used to develop the model. SBI or No-SBI was the dichotomous outcome variable, and age, temperature, urinalysis (UA), white blood cell (WBC) count, absolute neutrophil count, and cerebrospinal fluid WBC were entered as potential predictors. The model was tested by V-fold cross-validation. Of 5279 febrile infants studied, SBI was diagnosed in 373 patients (7%): 316 urinary tract infections (UTIs), 17 meningitis, and 59 bacteremia (8 with meningitis, 11 with UTIs). The model sequentially used 4 clinical parameters to define high-risk patients: positive UA, WBC count >/=20 000/mm(3) or /=39.6 degrees C, and age <13 days. The sensitivity of the model for SBI is 82% (95% confidence interval [CI]: 78%-86%) and the negative predictive value is 98.3% (95% CI: 97.8%-98.7%). The negative predictive value for bacteremia or meningitis is 99.6% (95% CI: 99.4%-99.8%). The relative risk between high- and low-risk groups is 12.1 (95% CI: 9.3-15.6). Sixty-six SBI patients (18%) were misclassified into the lower risk group: 51 UTIs, 14 with bacteremia, and 1 with meningitis. Decision-tree analysis using common clinical variables can reasonably predict febrile infants at high-risk for SBI. Sequential use of UA, WBC count, temperature, and age can identify infants who are at high risk of SBI with a relative risk of 12.1 compared with lower-risk infants.

  10. [Pharmacokinetic and clinical experience with flomoxef in bacterial infection in children].

    Science.gov (United States)

    Hosoda, T; Ichioka, T; Miyao, M

    1987-08-01

    Pharmacokinetic and clinical studies were performed on flomoxef (FMOX, 6315-S), a new oxacephem antibiotic, as follows. 1. Pharmacokinetics Serum concentrations of FMOX were measured in 2 cases given 20 mg/kg bolus injection. In the 2 cases, peak concentrations of the drug were 44.3 and 197 micrograms/ml at 15 minutes, T1/2 (beta) were 0.76 and 0.47 hour and AUC were 44.8 and 169.5 micrograms.hr/ml, respectively. Urinary recovery rates for these cases during 6 hours were 83.1 and 54.9%, respectively. The extremely high peak serum concentration in one case may be attributed to dehydration. 2. Clinical efficacy FMOX was administrated intravenously to 12 patients, 6 with pneumonia, 2 with cellulitis, 1 each with bronchitis, tonsillitis, purulent lymphadenitis and subcutaneous abscess, in doses of 55.0-120.0 mg/kg (average 82.2 mg/kg) t.i.d. for 4-13 days (average 6.2 days). The overall efficacy rate was 100%, with excellent responses in 10 and good in 2. Bacteriological efficacy was excellent; 4 of 5 strains were eradicated and 1 strain was decreased. No clinical side effect was observed. Laboratory abnormality was observed in 1 case with transient eosinophilia. The above results suggested that FMOX would be an useful antibiotic for treating pediatric bacterial infections.

  11. Cockroaches ’ bacterial infections in wards of hospitals, Hamedan city, west of Iran

    Directory of Open Access Journals (Sweden)

    Nejati Jalil

    2012-10-01

    Full Text Available Objective: To identify the relationship between different species of cockroaches with their bacterial infection in different wards of Hamedan county hospitals, western Iran. Methods: Using sticky trap, hand collection and glass trap, 250 cockroaches were collected from 14 wards of 5 hospitals. After having their identification determined by detection key, all of them were used to isolate bacteria from cuticle and alimentary tract. Results: From four identified species, Blatella germanica were the most common in all of the wards (88.8% and next was the Periplaneta Americana (8%. 20 bacteria species isolated from cockroaches' surface and 21 from digestive organ. Escherichia coli were the most predominant bacteria isolated from external surface (26.5 % as well as alimentary tract (30.8%. The frequency of investigated bacteria on cockroaches' body surface was not significantly different between Periplaneta Americana and Blattella germanica except for Kllebsiella oxytoca (P<0.001 and Providensia Spp (P=0.035. Also, frequency of detected bacteria in cockroaches' digestive organ was not significantly different between these two species. Furthermore, the frequency of bacteria isolated from the cockroaches' external surface was not significantly different from that of digestive organ except for shigella disantery (P<0.001, Pseudomonas aeroginosa (P<0.001 and Klebsiella oxytoca (P=0.01 3. Conclusions: Since cockroaches can carry pathogenic bacteria, so their existence in the hospitals could be a serious public health problem. It is suggested to compile programs in order to control cockroaches especially in the hospitals.

  12. Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection.

    Science.gov (United States)

    Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne

    2005-04-15

    The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.

  13. Hyperspectral image analysis for rapid and accurate discrimination of bacterial infections: A benchmark study.

    Science.gov (United States)

    Arrigoni, Simone; Turra, Giovanni; Signoroni, Alberto

    2017-09-01

    With the rapid diffusion of Full Laboratory Automation systems, Clinical Microbiology is currently experiencing a new digital revolution. The ability to capture and process large amounts of visual data from microbiological specimen processing enables the definition of completely new objectives. These include the direct identification of pathogens growing on culturing plates, with expected improvements in rapid definition of the right treatment for patients affected by bacterial infections. In this framework, the synergies between light spectroscopy and image analysis, offered by hyperspectral imaging, are of prominent interest. This leads us to assess the feasibility of a reliable and rapid discrimination of pathogens through the classification of their spectral signatures extracted from hyperspectral image acquisitions of bacteria colonies growing on blood agar plates. We designed and implemented the whole data acquisition and processing pipeline and performed a comprehensive comparison among 40 combinations of different data preprocessing and classification techniques. High discrimination performance has been achieved also thanks to improved colony segmentation and spectral signature extraction. Experimental results reveal the high accuracy and suitability of the proposed approach, driving the selection of most suitable and scalable classification pipelines and stimulating clinical validations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Transient Oral Human Cytomegalovirus Infections Indicate Inefficient Viral Spread from Very Few Initially Infected Cells.

    Science.gov (United States)

    Mayer, Bryan T; Krantz, Elizabeth M; Swan, David; Ferrenberg, James; Simmons, Karen; Selke, Stacy; Huang, Meei-Li; Casper, Corey; Corey, Lawrence; Wald, Anna; Schiffer, Joshua T; Gantt, Soren

    2017-06-15

    Cytomegalovirus (CMV) is acquired by the oral route in children, and primary infection is associated with abundant mucosal replication, as well as the establishment of latency in myeloid cells that results in lifelong infection. The efficiency of primary CMV infection in humans following oral exposure, however, is unknown. We consistently detected self-limited, low-level oral CMV shedding events, which we termed transient CMV infections, in a prospective birth cohort of 30 highly exposed CMV-uninfected infants. We estimated the likelihood of transient oral CMV infections by comparing their observed frequency to that of established primary infections, characterized by persistent high-level shedding, viremia, and seroconversion. We developed mathematical models of viral dynamics upon initial oral CMV infection and validated them using clinical shedding data. Transient infections comprised 76 to 88% of oral CMV shedding events. For this high percentage of transient infections to occur, we identified two mathematical prerequisites: a very small number of initially infected oral cells (1 to 4) and low viral infectivity (<1.5 new cells infected/cell). These observations indicate that oral CMV infection in infants typically begins with a single virus that spreads inefficiently to neighboring cells. Thus, although the incidence of CMV infection is high during infancy, our data provide a mechanistic framework to explain why multiple CMV exposures are typically required before infection is successfully established. These findings imply that a sufficiently primed immune response could prevent CMV from establishing latent infection in humans and support the achievability of a prophylactic CMV vaccine. IMPORTANCE CMV infects the majority of the world's population and is a major cause of birth defects. Developing a vaccine to prevent CMV infection would be extremely valuable but would be facilitated by a better understanding of how natural human CMV infection is acquired. We

  15. Effect of respiratory syncytial virus (RSV) infection on the adherence of pathogenic bacteria to human epithelial cells

    International Nuclear Information System (INIS)

    Faden, H.; Hong, J.J.; Ogra, P.L.

    1986-01-01

    The effect of RSV infection on the adherence of Streptococcus pneumoniae (SP), Haemophilus influenzae (HI) and Staphylococcus aureus (SA) to human epithelial cells was determined. RSV-infected Hep-2 cell cultures at different stages of expression of surface viral antigens and bacteria labeled with 3 H-thymidine were employed to examine the kinetics of bacterial adherence to virus-infected cells. RSV infection did not alter the magnitude of adherence of HI or SA to HEp-2 cells. However, adherence of SP to HEp-2 cells was significantly (P 0 C. Heat-inactivation of SP did not alter adherence characteristics. These data suggest that RSV infection increases adherence of SP to the surface of epithelial cells in vitro. Since attachment of bacteria to mucosal surfaces is the first step in many infections, it is suggested that viral infections of epithelial cells render them more susceptible to bacterial adherence. Thus, RSV infection in vivo may predispose children to SP infections, such as in otitis media, by increasing colonization with SP

  16. Dynamics of Vaginal Bacterial Communities in Women Developing Bacterial Vaginosis, Candidiasis, or No Infection, Analyzed by PCR-Denaturing Gradient Gel Electrophoresis and Real-Time PCR▿

    Science.gov (United States)

    Vitali, Beatrice; Pugliese, Ciro; Biagi, Elena; Candela, Marco; Turroni, Silvia; Bellen, Gert; Donders, Gilbert G. G.; Brigidi, Patrizia

    2007-01-01

    The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA. PMID:17644631

  17. Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis, or no infection, analyzed by PCR-denaturing gradient gel electrophoresis and real-time PCR.

    Science.gov (United States)

    Vitali, Beatrice; Pugliese, Ciro; Biagi, Elena; Candela, Marco; Turroni, Silvia; Bellen, Gert; Donders, Gilbert G G; Brigidi, Patrizia

    2007-09-01

    The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA.

  18. Clinical and molecular epidemiology of human rhinovirus infections in patients with hematologic malignancy.

    Science.gov (United States)

    Jacobs, Samantha E; Lamson, Daryl M; Soave, Rosemary; Guzman, Brigitte Huertas; Shore, Tsiporah B; Ritchie, Ellen K; Zappetti, Dana; Satlin, Michael J; Leonard, John P; van Besien, Koen; Schuetz, Audrey N; Jenkins, Stephen G; George, Kirsten St; Walsh, Thomas J

    2015-10-01

    Human rhinoviruses (HRVs) are common causes of upper respiratory tract infection (URTI) in hematologic malignancy (HM) patients. Predictors of lower respiratory tract infection (LRTI) including the impact of HRV species and types are poorly understood. This study aims to describe the clinical and molecular epidemiology of HRV infections among HM patients. From April 2012-March 2013, HRV-positive respiratory specimens from symptomatic HM patients were molecularly characterized by analysis of partial viral protein 1 (VP1) or VP4 gene sequence. HRV LRTI risk-factors and outcomes were analyzed using multivariable logistic regression. One hundred and ten HM patients presented with HRV URTI (n=78) and HRV LRTI (n=32). Hypoalbuminemia (OR 3.0; 95% CI, 1.0-9.2; p=0.05) was independently associated with LRTI, but other clinical and laboratory markers of host immunity did not differ between patients with URTI versus LRTI. Detection of bacterial co-pathogens was common in LRTI cases (25%). Among 92 typeable respiratory specimens, there were 58 (64%) HRV-As, 12 (13%) HRV-Bs, and 21 (23%) HRV-Cs, and one Enterovirus 68. LRTI rates among HRV-A (29%), HRV-B (17%), and HRV-C (29%) were similar. HRV-A infections occurred year-round while HRV-B and HRV-C infections clustered in the late fall and winter. HRVs are associated with LRTI in HM patients. Illness severity is not attributable to specific HRV species or types. The frequent detection of bacterial co-pathogens in HRV LRTIs further substantiates the hypothesis that HRVs predispose to bacterial superinfection of the lower airways, similar to that of other community-acquired respiratory viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and lysozyme can prime host tissue surfaces for bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Matteo Maria Emiliano Metruccio

    2016-06-01

    Full Text Available Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release Outer Membrane Vesicles (OMVs in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to PBS controls (~100 fold. TEM and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (~4-fold, P < 0.01. Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections.

  20. Human prosthetic joint infections are associated with myeloid-derived suppressor cells (MDSCs): Implications for infection persistence.

    Science.gov (United States)

    Heim, Cortney E; Vidlak, Debbie; Odvody, Jessica; Hartman, Curtis W; Garvin, Kevin L; Kielian, Tammy

    2017-11-15

    Prosthetic joint infection (PJI) is a devastating complication of joint arthroplasty surgery typified by biofilm formation. Currently, mechanisms whereby biofilms persist and evade immune-mediated clearance in immune competent patients remain largely ill-defined. Therefore, the current study characterized leukocyte infiltrates and inflammatory mediator expression in tissues from patients with PJI compared to aseptic loosening. CD33 + HLA-DR - CD66b + CD14 -/low granulocytic myeloid-derived suppressor cells (G-MDSCs) were the predominant leukocyte population at sites of human PJI compared to aseptic tissues. MDSCs inhibit T cell proliferation, which coincided with reduced T cells in PJIs compared to aseptic tissues. IL-10, IL-6, and CXCL1 were significantly elevated in PJI tissues and have been implicated in MDSC inhibitory activity, expansion, and recruitment, respectively, which may account for their preferential increase in PJIs. This bias towards G-MDSC accumulation during human PJI could account for the chronicity of these infections by preventing the pro-inflammatory, antimicrobial actions of immune effector cells. Animal models of PJI have revealed a critical role for MDSCs and IL-10 in promoting infection persistence; however, whether this population is prevalent during human PJI and across distinct bacterial pathogens remains unknown. This study has identified that granulocytic-MDSC infiltrates are unique to human PJIs caused by distinct bacteria, which are not associated with aseptic loosening of prosthetic joints. Better defining the immune status of human PJIs could lead to novel immune-mediated approaches to facilitate PJI clearance in combination with conventional antibiotics. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Establishment of human papillomavirus infection requires cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Dohun Pyeon

    2009-02-01

    Full Text Available Human papillomaviruses (HPVs are DNA viruses associated with major human cancers. As such there is a strong interest in developing new means, such as vaccines and microbicides, to prevent HPV infections. Developing the latter requires a better understanding of the infectious life cycle of HPVs. The HPV infectious life cycle is closely linked to the differentiation state of the stratified epithelium it infects, with progeny virus only made in the terminally differentiating suprabasal compartment. It has long been recognized that HPV must first establish its infection within the basal layer of stratified epithelium, but why this is the case has not been understood. In part this restriction might reflect specificity of expression of entry receptors. However, this hypothesis could not fully explain the differentiation restriction of HPV infection, since many cell types can be infected with HPVs in monolayer cell culture. Here, we used chemical biology approaches to reveal that cell cycle progression through mitosis is critical for HPV infection. Using infectious HPV16 particles containing the intact viral genome, G1-synchronized human keratinocytes as hosts, and early viral gene expression as a readout for infection, we learned that the recipient cell must enter M phase (mitosis for HPV infection to take place. Late M phase inhibitors had no effect on infection, whereas G1, S, G2, and early M phase cell cycle inhibitors efficiently prevented infection. We conclude that host cells need to pass through early prophase for successful onset of transcription of the HPV encapsidated genes. These findings provide one reason why HPVs initially establish infections in the basal compartment of stratified epithelia. Only this compartment of the epithelium contains cells progressing through the cell cycle, and therefore it is only in these cells that HPVs can establish their infection. By defining a major condition for cell susceptibility to HPV infection, these

  2. Potential Cellular Signatures of Viral Infections in Human Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    J. Mikovits

    2001-01-01

    Full Text Available Expression profiling of cellular genes was performed using a 10,000 cDNA human gene array in order to identify expression changes following chronic infection of human hematopoietic cells with Kapsosi’s Sarcoma -associated Virus (KSHV also known as Human Herpesvirus 8 (HHV8 and Human T cell leukemia virus-1 (HTLV-1. We performed cell-free {\\it in vitro} infection of primary bone marrow derived CD34+ cells using semi-purified HHV8 and a mature IL-2 dependent T cell line, KIT 225, using highly concentrated viral stocks prepared from an infectious molecular clone of HTLV-1. Thirty days post infection, mRNA was isolated from infected cultures and uninfected controls and submitted for microarray analysis. More than 400 genes were differentially expressed more than two-fold following HHV8 infection of primary bone marrow derived CD34+ cells. Of these 400, interferon regulatory factor 4 (IRF4, cyclin B2, TBP-associated factor, eukaryotic elongation factor and pim 2 were up-regulated more than 3.5 fold. In contrast, less than 100 genes were differentially expressed more than two-fold following chronic infection of a mature T cell line with HTLV-1. Of these, only cdc7 was up-regulated more than 3.5 fold. These data may provide insight into cellular signatures of infection useful for diagnosis of infection as well as potential targets for therapeutic intervention.

  3. Knowledge of Human Papillomavirus Infection and Acceptability of ...

    African Journals Online (AJOL)

    Introduction: Human papillomavirus (HPV) is one of the most common sexually transmitted infections and has been implicated in over 70% of cases of cervical cancer. This study assessed the knowledge of HPV infection and acceptability of HPV vaccination among nursing students in Benin City. Methodology: A ...

  4. The Prevalence of Human Immunodeficiency Virus Infection among ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    Agboghoroma et al. HIV Infection Diagnosed in Women in Labour. African Journal of Reproductive Health September 2015; 19 (3):137. ORIGINAL RESEARCH ARTICLE. The Prevalence of Human Immunodeficiency Virus Infection among. Pregnant Women in Labour with Unknown Status and those with. Negative status ...

  5. Impact of Neonatal Intensive Care Unit Admission on Bacterial Colonization of Donated Human Milk.

    Science.gov (United States)

    Elmekkawi, Amir; O'Connor, Deborah L; Stone, Debbie; Yoon, Eugene W; Larocque, Michael; McGeer, Allison; Unger, Sharon

    2018-05-01

    Unpasteurized human donor milk typically contains a variety of bacteria. The impact of neonatal intensive care unit (NICU) admission of the donor's infant and duration of lactation on bacterial contamination of human milk is unknown. Research aim: This study aimed (a) to describe the frequency/concentration of skin commensal bacteria and pathogens in unpasteurized human donor milk and (b) to assess the impact of NICU admission and (c) the duration of milk expression on bacterial colonization of donated milk. The authors conducted a retrospective cohort study of human milk donated to the Rogers Hixon Ontario Human Milk Bank from January 2013 to June 2014. Milk samples from each donor were cultured every 2 weeks. The study included 198 donor mothers, of whom 63 had infants admitted to the NICU. Of 1,289 cultures obtained, 1,031 (80%) had detectable bacterial growth and 363 (28%) yielded bacterial growth in excess of 10 7 cfu/L, a local threshold for allowable bacteria prior to pasteurization. The mean (standard deviation) donation period per donor was 13.0 (7.5) weeks. Milk from mothers with NICU exposure had significantly higher concentrations of commensals, but not pathogens, at every time period compared with other mothers. For every 1-month increase in donation from all donors, the odds ratio of presence of any commensal in milk increased by 1.13 (95% confidence interval [1.03, 1.23]) and any pathogen by 1.31 (95% confidence interval [1.20, 1.43]). Commensal bacteria were more abundant in donor milk expressed from mothers exposed to neonatal intensive care. Bacterial contamination increased over the milk donation period.

  6. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    Science.gov (United States)

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  7. Effects of high hydrostatic pressure on bacterial growth on human ossicles explanted from cholesteatoma patients.

    Directory of Open Access Journals (Sweden)

    Steffen Dommerich

    Full Text Available BACKGROUND: High hydrostatic pressure (HHP treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. METHODOLOGY: Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. PRINCIPAL FINDINGS: A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion.

  8. Effects of High Hydrostatic Pressure on Bacterial Growth on Human Ossicles Explanted from Cholesteatoma Patients

    Science.gov (United States)

    Ostwald, Jürgen; Lindner, Tobias; Zautner, Andreas Erich; Arndt, Kathleen; Pau, Hans Wilhelm; Podbielski, Andreas

    2012-01-01

    Background High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. Methodology Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. Principal Findings A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of Gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion. PMID:22291908

  9. [Observations on human parvovirus B19 infection diagnosed in 2011].

    Science.gov (United States)

    Mihály, Ilona; Trethon, András; Arányi, Zsuzsanna; Lukács, Adrienne; Kolozsi, Tímea; Prinz, Gyula; Marosi, Anikó; Lovas, Nóra; Dobner, Ilona Sarolta; Prinz, Géza; Szalai, Zsuzsanna; Pék, Tamás

    2012-12-09

    The incidence of human parvovirus B19 infection is unknown. A retrospective analysis of clinical and laboratory findings was carried out in patients diagnosed with human parvovirus B19 infection in 2011 in a virologic laboratory of a single centre in Hungary. Clinical and laboratory data of patients with proven human parvovirus B19 infection were analysed using in- and out-patient files. In 2011, 72 patients proved to have human parvovirus B19 infection with the use of enzyme immunoassay. The clinical diagnoses of these patients were as follows: human parvovirus B19 infection (30.6%), transient aplastic crisis (16.7%), arthritis (8.3%) and acute hepatitis (4.1%). Symptoms of each of the four phases of the infection occurred in various combinations with the exception of the monophase of cheek exanthema. This occurred without the presence of other symptoms in some cases. Leading symptoms and signs were exanthema (in 74.6% of cases), haematological disorders (in 69% of cases), fever (in 54.9% of cases) and arthritis (in 33.8% of cases). Several atypical dermatological symptoms were also observed. Acute arthritis without exanthema was noted in 8 patients. Of the 72 patients with proven human parvovirus B19 infection there were 7 pregnant women, and one of them had hydrops foetalis resulting spontaneous abortion. In 16 patients (22.5%) human parvovirus B19 IgG was undetectable despite an optimal time for testing. The observations of this study may contribute to a better recognition of clinical symptoms of human parvovirus B19 infection.

  10. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  11. [Co-occurence of indol-producing bacterial strains in the vagina of women infected with Chlamydia trachomatis].

    Science.gov (United States)

    Romanik, Małgorzata; Martirosian, Gayane; Wojciechowska-Wieja, Anna; Cieślik, Katarzyna; Kaźmierczak, Wojciech

    2007-08-01

    The aim of this study was to determine if cervicitis, caused by Chlamydia trachomatis (C. trachomatis), has an influence on the frequency of occurrence of selected aerobic and anaerobic bacterial strains, connected with etiology of aerobic vaginitis (AV) and bacterial vaginosis (BV). Indole-producing bacteria have received particular attention due to their possibly inductive role in chronic cervicitis caused by C. trachomatis. The swabs from vagina and cervical canal have been obtained from 122 women (aged 18-40). The presence of C. trachomatis antigen had been detected and diagnosed with the help of direct immunofluorescence, BV with Amesl and Nugent criteria, whereas the AV with Donders criteria. The identification of the bacterial strains isolated from vagina has been performed according to classical microbiological diagnostics. Disruption of vaginal microflora (4-10 in Nugent score) was determined in 11,5% of observed women. AV was diagnosed in 4.5% women with chlamydial cervicitis, BV was diagnosed in 10.9% and 5.45% of these women, on the basis of Amsel and Nugent criteria respectively. Indole-producing bacterial strains connected with BV and AV (Peptostreptococcus anaerobius, Propionibacterium acnes, Escherichia coli) have been isolated significantly more often from vagina of women infected with C trachomatis (p = 0.0405, chi2 = 4.20) and these findings confirm co-importance of indole-producing bacterial strains in cervicitis caused by C trachomatis .

  12. CD64 on monocytes and granulocytes in severe acute bronchiolitis: Pilot study on its usefulness as a bacterial infection biomarker.

    Science.gov (United States)

    García-Salido, Alberto; Serrano-González, Ana; Casado-Flores, Juan; Sierra-Colomina, Montserrat; de Azagra-Garde, Amelia Martínez; García-Teresa, María Ángeles; Melen, Gustavo J; Ramírez-Orellana, Manuel

    2018-02-27

    The CD64 receptor has been described as a biomarker of bacterial infection. We speculated that CD64 surface expression on monocytes and granulocytes of children with severe acute bronchiolitis (SAB) could be altered in cases of probable bacterial infection (PBI) determined using classical biomarkers (procalcitonin and C-reactive protein, leukocyte count, and radiographic findings). A prospective observational pilot study was conducted from October 2015 to February 2016 in children admitted for pediatric critical care. A blood sample was taken in the first 24 hours of admission, and CD64 was measured by flow cytometry. The values obtained were analyzed and correlated with traditional biomarkers of PBI. Thirty-two children were included; a correlation was found between CD64 expression and the PBI criteria. CD64 surface expression was higher in children with PBI (area under the receiver operating characteristic curve of 0.73; P = 0.042) and the percentage of CD64 + granulocytes was higher in children with PBI. This is the first study to describe CD64 surface expression on monocytes and granulocytes in SAB, finding CD64 values to be higher in children with PBI. Larger clinical studies are needed to elucidate the real accuracy of CD64 as a biomarker of bacterial infection. ©2018 Society for Leukocyte Biology.

  13. Bacterial and protozoal pathogens found in ticks collected from humans in Corum province of Turkey.

    Directory of Open Access Journals (Sweden)

    Djursun Karasartova

    2018-04-01

    Full Text Available Tick-borne diseases are increasing all over the word, including Turkey. The aim of this study was to determine the bacterial and protozoan vector-borne pathogens in ticks infesting humans in the Corum province of Turkey.From March to November 2014 a total of 322 ticks were collected from patients who attended the local hospitals with tick bites. Ticks were screened by real time-PCR and PCR, and obtained amplicons were sequenced. The dedected tick was belonging to the genus Hyalomma, Haemaphysalis, Rhipicephalus, Dermacentor and Ixodes. A total of 17 microorganism species were identified in ticks. The most prevalent Rickettsia spp. were: R. aeschlimannii (19.5%, R. slovaca (4.5%, R. raoultii (2.2%, R. hoogstraalii (1.9%, R. sibirica subsp. mongolitimonae (1.2%, R. monacensis (0.31%, and Rickettsia spp. (1.2%. In addition, the following pathogens were identified: Borrelia afzelii (0.31%, Anaplasma spp. (0.31%, Ehrlichia spp. (0.93%, Babesia microti (0.93%, Babesia ovis (0.31%, Babesia occultans (3.4%, Theileria spp. (1.6%, Hepatozoon felis (0.31%, Hepatozoon canis (0.31%, and Hemolivia mauritanica (2.1%. All samples were negative for Francisella tularensis, Coxiella burnetii, Bartonella spp., Toxoplasma gondii and Leishmania spp.Ticks in Corum carry a large variety of human and zoonotic pathogens that were detected not only in known vectors, but showed a wider vector diversity. There is an increase in the prevalence of ticks infected with the spotted fever group and lymphangitis-associated rickettsiosis, while Ehrlichia spp. and Anaplasma spp. were reported for the first time from this region. B. microti was detected for the first time in Hyalomma marginatum infesting humans. The detection of B. occultans, B. ovis, Hepatozoon spp., Theileria spp. and Hemolivia mauritanica indicate the importance of these ticks as vectors of pathogens of veterinary importance, therefore patients with a tick infestation should be followed for a variety of pathogens

  14. Two atypical cases of Kingella kingae invasive infection with concomitant human rhinovirus infection.

    Science.gov (United States)

    Basmaci, Romain; Ilharreborde, Brice; Doit, Catherine; Presedo, Ana; Lorrot, Mathie; Alison, Marianne; Mazda, Keyvan; Bidet, Philippe; Bonacorsi, Stéphane

    2013-09-01

    We describe two atypical cases of Kingella kingae infection in children diagnosed by PCR, one case involving a soft tissue abscess and one case a femoral Brodie abscess. Both patients had concomitant human rhinovirus infection. K. kingae strains, isolated from an oropharyngeal swab, were characterized by multilocus sequence typing and rtxA sequencing.

  15. Serodiagnosis of Helicobacter pylori infection in patients with human immunodeficiency virus infection

    DEFF Research Database (Denmark)

    Nielsen, H; Andersen, L P

    1995-01-01

    In contrast to the established role of Helicobacter pylori gastritis in gastritis and duodenal ulcer in general, conflicting results have been reported in patients with human immunodeficiency virus (HIV) infection and the acquired immunodeficiency syndrome. The seroprevalence during early HIV...

  16. Comparison of commercially-available preservatives for maintaining the integrity of bacterial DNA in human milk.

    Science.gov (United States)

    Lackey, Kimberly A; Williams, Janet E; Price, William J; Carrothers, Janae M; Brooker, Sarah L; Shafii, Bahman; McGuire, Mark A; McGuire, Michelle K

    2017-10-01

    Inhibiting changes to bacteria in human milk between sample collection and analysis is necessary for unbiased characterization of the milk microbiome. Although cold storage is considered optimal, alternative preservation is sometimes necessary. The objective of this study was to compare the effectiveness of several commercially-available preservatives with regard to maintaining bacterial DNA in human milk for delayed microbiome analysis. Specifically, we compared Life Technologies' RNAlater® stabilization solution, Biomatrica's DNAgard® Saliva, Advanced Instruments' Broad Spectrum Microtabs II™, and Norgen Biotek Corporation's Milk DNA Preservation and Isolation Kit. Aliquots of 8 pools of human milk were treated with each preservative. DNA was extracted immediately and at 1, 2, 4, and 6wk, during which time milk was held at 37°C. The V1-V3 region of the bacterial 16S rRNA gene was amplified and sequenced. Changes in bacterial community structure and diversity over time were evaluated. Comparable to other studies, the most abundant genera were Streptococcus (33.3%), Staphylococcus (14.0%), Dyella (6.3%), Pseudomonas (3.0%), Veillonella (2.5%), Hafnia (2.0%), Prevotella (1.7%), Rhodococcus (1.6%), and Granulicatella (1.4%). Overall, use of Norgen's Milk DNA Preservation and Isolation Kit best maintained the consistency of the bacterial community structure. Total DNA, diversity, and evenness metrics were also highest in samples preserved with this method. When collecting human milk for bacterial community analysis in field conditions where cold storage is not available, our results suggest that Norgen's Milk DNA Preservation and Isolation Kit may be a useful method, at least for a period of 2weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2010-08-01

    Full Text Available Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  18. Covalent Immobilization of Enoxacin onto Titanium Implant Surfaces for Inhibiting Multiple Bacterial Species Infection and In Vivo Methicillin-Resistant Staphylococcus aureus Infection Prophylaxis.

    Science.gov (United States)

    Nie, Bin'en; Long, Teng; Ao, Haiyong; Zhou, Jianliang; Tang, Tingting; Yue, Bing

    2017-01-01

    Infection is one of the most important causes of titanium implant failure in vivo A developing prophylactic method involves the immobilization of antibiotics, especially vancomycin, onto the surface of the titanium implant. However, these methods have a limited effect in curbing multiple bacterial infections due to antibiotic specificity. In the current study, enoxacin was covalently bound to an amine-functionalized Ti surface by use of a polyethylene glycol (PEG) spacer, and the bactericidal effectiveness was investigated in vitro and in vivo The titanium surface was amine functionalized with 3-aminopropyltriethoxysilane (APTES), through which PEG spacer molecules were covalently immobilized onto the titanium, and then the enoxacin was covalently bound to the PEG, which was confirmed by X-ray photoelectron spectrometry (XPS). A spread plate assay, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to characterize the antimicrobial activity. For the in vivo study, Ti implants were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) and implanted into the femoral medullary cavity of rats. The degree of infection was assessed by radiography, micro-computed tomography, and determination of the counts of adherent bacteria 3 weeks after surgery. Our data demonstrate that the enoxacin-modified PEGylated Ti surface effectively prevented bacterial colonization without compromising cell viability, adhesion, or proliferation in vitro Furthermore, it prevented MRSA infection of the Ti implants in vivo Taken together, our results demonstrate that the use of enoxacin-modified Ti is a potential approach to the alleviation of infections of Ti implants by multiple bacterial species. Copyright © 2016 American Society for Microbiology.

  19. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort.

    Science.gov (United States)

    Lee, Jung Eun; Lee, Sunghee; Lee, Heetae; Song, Yun-Mi; Lee, Kayoung; Han, Min Ji; Sung, Joohon; Ko, GwangPyo

    2013-01-01

    Human papillomavirus (HPV) is the most important causative agent of cervical cancers worldwide. However, our understanding of how the vaginal microbiota might be associated with HPV infection is limited. In addition, the influence of human genetic and physiological factors on the vaginal microbiota is unclear. Studies on twins and their families provide the ideal settings to investigate the complicated nature of human microbiota. This study investigated the vaginal microbiota of 68 HPV-infected or uninfected female twins and their families using 454-pyrosequencing analysis targeting the variable region (V2-V3) of the bacterial 16S rRNA gene. Analysis of the vaginal microbiota from both premenopausal women and HPV-discordant twins indicated that HPV-positive women had significantly higher microbial diversity with a lower proportion of Lactobacillus spp. than HPV-negative women. Fusobacteria, including Sneathia spp., were identified as a possible microbiological marker associated with HPV infection. The vaginal microbiotas of twin pairs were significantly more similar to each other than to those from unrelated individuals. In addition, there were marked significant differences from those of their mother, possibly due to differences in menopausal status. Postmenopausal women had a lower proportion of Lactobacillus spp. and a significantly higher microbiota diversity. This study indicated that HPV infection was associated with the composition of the vaginal microbiota, which is influenced by multiple host factors such as genetics and menopause. The potential biological markers identified in this study could provide insight into HPV pathogenesis and may represent biological targets for diagnostics.

  20. Experimental infection of human volunteers with Haemophilus ducreyi: fifteen years of clinical data and experience.

    Science.gov (United States)

    Janowicz, Diane M; Ofner, Susan; Katz, Barry P; Spinola, Stanley M

    2009-06-01

    Haemophilus ducreyi causes chancroid, which facilitates transmission of human immunodeficiency virus type 1. To better understand the biology of H. ducreyi, we developed a human inoculation model. In the present article, we describe clinical outcomes for 267 volunteers who were infected with H. ducreyi. There was a relationship between papule formation and estimated delivered dose. The outcome (either pustule formation or resolution) of infected sites for a given subject was not independent; the most important determinants of pustule formation were sex and host effects. When 41 subjects were infected a second time, their outcomes segregated toward their initial outcome, confirming the host effect. Subjects with pustules developed local symptoms that required withdrawal from the study after a mean of 8.6 days. There were 191 volunteers who had tissue biopsy performed, 173 of whom were available for follow-up analysis; 28 (16.2%) of these developed hypertrophic scars, but the model was otherwise safe. Mutant-parent trials confirmed key features in H. ducreyi pathogenesis, and the model has provided an opportunity to study differential human susceptibility to a bacterial infection.

  1. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects.

    Directory of Open Access Journals (Sweden)

    Ece A Mutlu

    2014-02-01

    Full Text Available HIV progression is characterized by immune activation and microbial translocation. One factor that may be contributing to HIV progression could be a dysbiotic microbiome. We therefore hypothesized that the GI mucosal microbiome is altered in HIV patients and this alteration correlates with immune activation in HIV. 121 specimens were collected from 21 HIV positive and 22 control human subjects during colonoscopy. The composition of the lower gastrointestinal tract mucosal and luminal bacterial microbiome was characterized using 16S rDNA pyrosequencing and was correlated to clinical parameters as well as immune activation and circulating bacterial products in HIV patients on ART. The composition of the HIV microbiome was significantly different than that of controls; it was less diverse in the right colon and terminal ileum, and was characterized by loss of bacterial taxa that are typically considered commensals. In HIV samples, there was a gain of some pathogenic bacterial taxa. This is the first report characterizing the terminal ileal and colonic mucosal microbiome in HIV patients with next generation sequencing. Limitations include use of HIV-infected subjects on HAART therapy.