WorldWideScience

Sample records for human b-cell growth

  1. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  2. Growth-inhibitory effect of TGF-B on human fetal adrenal cells in primary monolayer culture.

    Science.gov (United States)

    Riopel, L; Branchaud, C L; Goodyer, C G; Adkar, V; Lefebvre, Y

    1989-08-01

    We examined the effects of transforming-growth factor-B (TGF-B) on growth ([3H]-thymidine uptake) and function (dehydroepiandrosterone sulfate [DHAS] and cortisol production) of human fetal zone adrenal cells. Results indicate that TGF-B significantly inhibits, in a dose-related manner, both basal and epidermal growth factor (EGF)-stimulated cell growth: IC50 = 0.1-0.25 ng/ml. EGF is ineffective in overcoming the inhibitory effect of TGF-B, suggesting a noncompetitive antagonism between the two factors. Also, the inhibitory effect of TGF-B is additive to that of adrenocorticotropic hormone (ACTH). On the other hand, TGF-B (1 ng/ml) does not significantly change basal or ACTH-stimulated DHAS or cortisol secretion. We conclude that, unlike its effect on other steroid-producing cells, TGF-B inhibits growth of fetal zone cells and does not appear to have a significant inhibitory effect on steroidogenesis.

  3. Overexpression of the human BCL-2 gene product results in growth enhancement of Epstein-Barr virus-immortalized B cells

    International Nuclear Information System (INIS)

    Tsujimoto, Yoshihide

    1989-01-01

    The biological activity of the human BCL-2 gene product was analyzed in an Epstein-Barr virus (EBV)-infected human lymphoblastoid B-cell line transfected with BCL-2 sequences driven by the simian virus 40 promoter and enhancer. Overproduction of the BCL-2 protein conferred a selective growth advantage to the EBV-infected B cells as compared with control transfectants in low-serum medium and also after seeding at limiting dilution but did not render the cells tumorigenic in athymic nude mice. This growth enhancement was also seen in cells transfected with the BCL-2 gene with its own promoter juxtaposed to the immunoglobulin heavy chain gene enhancer, which represents the translocated form of the BCL-2 gene observed in follicular lymphomas with the t(14;18) translocation. The growth advantage of EBV-infected B cells overproducing the BCL-2 protein is neither due to the enhanced growth factor production nor due to an enhanced sensitivity of the BCL-2 transfectants to interleukins 1 or 6, although both lymphokines are known to stimulate proliferation of EBV-infected B-cell lines. The growth advantage of EBV-infected B-cell lines. The growth advantage of EBV-infected B cells by overproduction of the BCL-2 protein suggests the direct involvement of the BCL-2 gene product in the pathogenesis of follicular lymphoma

  4. Jumonji/Arid1b (Jarid1b) protein modulates human esophageal cancer cell growth

    Science.gov (United States)

    KANO, YOSHIHIRO; KONNO, MASAMITSU; OHTA, KATSUYA; HARAGUCHI, NAOTSUGU; NISHIKAWA, SHIMPEI; KAGAWA, YOSHINORI; HAMABE, ATSUSHI; HASEGAWA, SHINICHIRO; OGAWA, HISATAKA; FUKUSUMI, TAKAHITO; NOGUCHI, YUKO; OZAKI, MIYUKI; KUDO, TOSHIHIRO; SAKAI, DAISUKE; SATOH, TAROH; ISHII, MASARU; MIZOHATA, EIICHI; INOUE, TAKESHI; MORI, MASAKI; DOKI, YUICHIRO; ISHII, HIDESHI

    2013-01-01

    Although esophageal cancer is highly heterogeneous and the involvement of epigenetic regulation of cancer stem cells is highly suspected, the biological significance of epigenetically modified molecules that regulate different subpopulations remains to be firmly established. Using esophageal cancer cells, we investigated the functional roles of the H3K4 demethylase Jumonji/Arid1b (Jarid1b) (Kdm5b/Plu-1/Rbp2-h1), an epigenetic factor that is required for continuous cell growth in melanoma. JARID1B knockdown resulted in the suppression of esophageal cancer cell growth, sphere formation and invasion ability and was associated with loss of epithelial marker expression. However, these inhibitory effects observed on tumor formation were reverted subsequent to subcutaneous inoculation of these cells into immune-deficient mice. These results indicated that JARID1B plays a role in maintaining cancer stem cells in the esophagus and justifies the rationale for studying the effects of continuous inhibition of this epigenetic factor in esophageal cancer. PMID:24649241

  5. Human Papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization

    Science.gov (United States)

    Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.; Marker, Daniel F.; Schreiner, Cynthia N.; Strickland, David A.; Wilton, Katelynn M.; Mondal, Sumona; Woodworth, Craig D.

    2012-01-01

    The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expression of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone. PMID:22284893

  6. Interleukin-2 production by human leukemia cell lines of pre-B cell origin

    International Nuclear Information System (INIS)

    Holan, V.; Minowada, J.

    1993-01-01

    Cells of 7 tested human leukemia cell lines of pre-B cell origin (as characterized by immunophenotyping and by the expression of cytoplasmic micro chains, but not by surface immunoglobulins) produced after stimulation with bacterial lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) a lymphokine activity which supported the growth of the interleukin-2 (IL-2)-dependent CTLL-2 cell line. Three pieces of evidence indicate that the secreted lymphokine was functionally and antigenically very similar, if not identical, to human IL-2: (1) The lymphokine supported the growth of murine IL-2-dependent CTLL-2 cells, which did not respond to human lymphokines other than IL-2, but it did not stimulate the growth of murine IL-3-dependent FDC-P2 cells, (2) the biological activity of the lymphokine was was inhibited by monoclonal antibody (mAb) anti-human-IL-2, and (3) the proliferation of IL-2-dependent cells in the presence of the active materials was completely inhibited by the inclusion of the anti-mouse-IL-2 receptor (IL-2R) mAb. Since leukemia cells of immature B-cell origin also synthesize IL-2R, the human pre-B cell leukemias could represent another type of hematological malignancy where the autocrine processes of IL-2 production and utilization are involved in the expansion of the disease. (author)

  7. ITE inhibits growth of human pulmonary artery endothelial cells.

    Science.gov (United States)

    Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun; Zhou, Chi; Lei, Wei; Zheng, Jing; Huang, Shi-An

    2017-10-01

    Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.

  8. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng; Jordan, Ashley; Kluz, Thomas [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Sun, Hong; Cartularo, Laura A. [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States)

    2016-02-15

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.

  9. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A.; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.

  10. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  11. Inhibition of growth of human breast cancer cells in culture by neutron capture using liposomes containing 10B.

    Science.gov (United States)

    Yanagië, H; Kobayashi, H; Takeda, Y; Yoshizaki, I; Nonaka, Y; Naka, S; Nojiri, A; Shinnkawa, H; Furuya, Y; Niwa, H; Ariki, K; Yasuhara, H; Eriguchi, M

    2002-03-01

    Cell destruction in boron neutron capture therapy is effected by nuclear reaction between 10B and thermal neutrons with the release of alpha-particles (4He) and lithium-7 ions (7Li). 4He kills cells within 10 microm of the site of 4He generation, therefore it is theoretically possible to destroy tumour cells without affecting adjacent healthy tissue, given selective delivery of compounds containing 10B. Liposomes wore prepared by vortex dispersion of solutions containing 10B compounds with dried lipid films and the effects of those compounds on human breast cancer cells in culture were examined after thermal neutral irradiation. [3H]-TdR incorporation by MRKnu/nu-1 cells treated with 10B-containing liposomes showed 40% suppression compared with liposomes without 10B, at 2 x 1012 n/cm2 thermal neutron fluence. Inhibition of tumour cell growth with liposomes prepared with 100 mm 10B-compound was as significant as with those made with 500 ppm 10B solution. The concentration of 10B in liposomes was 76.5 +/- 3.4 microg/mL. Boronated liposomes can thus deliver sufficient 10B atoms to this line of breast cancer cells in culture to effect cytotoxicity and suppression of growth after thermal neutron irradiation.

  12. Recombinant human interleukin 2 acts as a B cell growth and differentiation promoting factor

    OpenAIRE

    Emmrich, F.; Moll, Heidrun; Simon, Markus M.

    2009-01-01

    Human B cells appropriately activated by a B cell mitogen are rendered susceptible to human Interleukin 2 (IL-2) as demonstrated with recombinant human IL-2 (rec. h IL-2). They show increased proliferation and drastically enhanced immunoglobulin secretion. Susceptibility to IL-2 is accompanied with the expression of the IL-2 receptor (Tac antigen) on B cells. The data suggest that IL-2 is one of the lymphokines directly involved in the activation of B lymphocytes.

  13. BMP-6 inhibits growth of mature human B cells; induction of Smad phosphorylation and upregulation of Id1

    Directory of Open Access Journals (Sweden)

    Kersten Christian

    2005-05-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs belong to the TGF-β superfamily and are secreted proteins with pleiotropic roles in many different cell types. A potential role of BMP-6 in the immune system has been implied by various studies of malignant and rheumatoid diseases. In the present study, we explored the role of BMP-6 in normal human peripheral blood B cells. Results The B cells were found to express BMP type I and type II receptors and BMP-6 rapidly induced phosphorylation of Smad1/5/8. Furthermore, Smad-phosphorylation was followed by upregulation of Id1 mRNA and Id1 protein, whereas Id2 and Id3 expression was not affected. Furthermore, we found that BMP-6 had an antiproliferative effect both in naïve (CD19+CD27- and memory B cells (CD19+CD27+ stimulated with anti-IgM alone or the combined action of anti-IgM and CD40L. Additionally, BMP-6 induced cell death in activated memory B cells. Importantly, the antiproliferative effect of BMP-6 in B-cells was completely neutralized by the natural antagonist, noggin. Furthermore, B cells were demonstrated to upregulate BMP-6 mRNA upon stimulation with anti-IgM. Conclusion In mature human B cells, BMP-6 inhibited cell growth, and rapidly induced phosphorylation of Smad1/5/8 followed by an upregulation of Id1.

  14. Epidermal Growth Factor Cytoplasmic Domain Affects ErbB Protein Degradation by the Lysosomal and Ubiquitin-Proteasome Pathway in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Aleksandra Glogowska

    2012-05-01

    Full Text Available The cytoplasmic domains of EGF-like ligands, including EGF cytoplasmic domain (EGFcyt, have important biological functions. Using specific constructs and peptides of human EGF cytoplasmic domain, we demonstrate that EGFcyt facilitates lysosomal and proteasomal protein degradation, and this coincided with growth inhibition of human thyroid and glioma carcinoma cells. EGFcyt and exon 22–23-encoded peptide (EGF22.23 enhanced procathepsin B (procathB expression and procathB-mediated lysosomal degradation of EGFR/ErbB1 as determined by inhibitors for procathB and the lysosomal ATPase inhibitor BafA1. Presence of mbEGFctF, EGFcyt, EGF22.23, and exon 23-encoded peptides suppressed the expression of the deubiqitinating enzyme ubiquitin C-terminal hydrolase-L1 (UCH-L1. This coincided with hyperubiquitination of total cellular proteins and ErbB1/2 and reduced proteasome activity. Upon small interfering RNA-mediated silencing of endogenously expressed UCH-L1, a similar hyperubiquitinylation phenotype, reduced ErbB1/2 content, and attenuated growth was observed. The exon 23-encoded peptide region of EGFcyt was important for these biologic actions. Structural homology modeling of human EGFcyt showed that this molecular region formed an exposed surface loop. Peptides derived from this EGFcyt loop structure may aid in the design of novel peptide therapeutics aimed at inhibiting growth of cancer cells.

  15. Cloning, overexpression, purification of bacteriocin enterocin-B and structural analysis, interaction determination of enterocin-A, B against pathogenic bacteria and human cancer cells.

    Science.gov (United States)

    Ankaiah, Dasari; Palanichamy, Esakkiraj; Antonyraj, Christian Bharathi; Ayyanna, Repally; Perumal, Venkatesh; Ahamed, Syed Ibrahim Basheer; Arul, Venkatesan

    2018-05-02

    In this present study, a gene (ent-B) encoding the bacteriocin enterocin-B was cloned, overexpressed and purified from Enterococcus faecium por1. The molecular weight of the bacteriocin enterocin-B was observed around 7.2 kDa and exhibited antimicrobial activity against several human pathogenic bacteria. The antimicrobial activity of cloned enterocin-B was increased effectively by combining with another bacteriocin enterocin-A from the same microorganism. Protein-protein docking and molecular dynamics simulation studies revealed that the bacteriocin enterocin-B is interacting with enterocin-A and formation of a heterodimer (enterocin A + B). The heterodimer of bacteriocin enterocin-A + B exhibited potential anti-bacterial, anti-biofilm activity against Staphylococcus aureus, Acinetobacter baumannii, Listeria monocytogenes and Escherichia coli. The bacteriocin enterocin-B, A and heterodimer of bacteriocin enterocin A + B showed no haemolysis on human RBC cells. This is the first report that the cell growth inhibitory activity of the bacteriocin enterocin B against HeLa, HT-29 and AGS human cancer cells and this cell growth inhibitory activity was significantly increased when cancer cells treated with the heterodimer of bacteriocins enterocin-A + B. The cell growth inhibitory activity of the bacteriocin enterocin-B and the heterodimer of bacteriocin enterocin-A + B were not observed in non-cancerous INT-407 cells (intestinal epithelial cells). Copyright © 2018. Published by Elsevier B.V.

  16. Immunomodulating effects of heparin on human B cell proliferation

    International Nuclear Information System (INIS)

    Wasik, Maria; Stepien-Sopniewska, Barbara; Gorski, Andrzej

    1993-01-01

    Recent data indicate that heparin may act as an immunomodulator. In this paper we have analyzed the effect of this agent on human B cell proliferation ''in vitro'' induced by ''S. aureus'' Cowan. The action of heparin is complex, but there was a trend for inhibition of B cell responses obtained from defibrinated but not heparinized blood samples. This suggest that heparin interacts with platelet products (growth factors, cytokines) and the results of such interactions determine the final effect. (author). 6 refs, 4 figs

  17. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.

    Science.gov (United States)

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.

  18. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    Science.gov (United States)

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast division stimulation. It also suggests that the effects of bFGF on different cell types with

  19. Inhibitory effect of snake venom toxin on NF-κB activity prevents human cervical cancer cell growth via increase of death receptor 3 and 5 expression.

    Science.gov (United States)

    Lee, Hye Lim; Park, Mi Hee; Hong, Ji Eun; Kim, Dae Hwan; Kim, Ji Young; Seo, Hyen Ok; Han, Sang-Bae; Yoon, Joo Hee; Lee, Won Hyoung; Song, Ho Sueb; Lee, Ji In; Lee, Ung Soo; Song, Min Jong; Hong, Jin Tae

    2016-02-01

    We previously found that snake venom toxin inhibits nuclear factor kappa B (NF-κB) activity in several cancer cells. NF-κB is implicated in cancer cell growth and chemoresistance. In our present study, we investigated whether snake venom toxin (SVT) inhibits NF-κB, thereby preventing human cervical cancer cell growth (Ca Ski and C33A). SVT (0-12 μg/ml) inhibited the growth of cervical cancer cells by the induction of apoptotic cell death. These inhibitory effects were associated with the inhibition of NF-κB activity. However, SVT dose dependently increased the expression of death receptors (DRs): DR3, DR5 and DR downstream pro-apoptotic proteins. Exploration of NF-κB inhibitor (Phenylarsine oxide, 0.1 μM) synergistically further increased SVT-induced DR3 and DR5 expressions accompanied with further inhibition of cancer cells growth. Moreover, deletion of DR3 and DR5 by small interfering RNA significantly abolished SVT-induced cell growth inhibitory effects, as well as NF-κB inactivation. Using TNF-related apoptosis-inducing ligand resistance cancer cells (A549 and MCF-7), we also found that SVT enhanced the susceptibility of chemoresistance of these cancer cells through down-regulation of NF-κB, but up-regulation of DR3 and DR5. In vivo study also showed that SVT (0.5 and 1 mg/kg) inhibited tumor growth accompanied with inactivation of NF-κB. Thus, our present study indicates that SVT could be applicable as an anticancer agent for cervical cancer, or as an adjuvant agent for chemoresistant cancer cells.

  20. JNK-associated scattered growth of YD-10B oral squamous carcinoma cells while maintaining the epithelial phenotype

    International Nuclear Information System (INIS)

    Lee, Gayoung; Kim, Hyun-Man

    2017-01-01

    Cell scattering of epithelial carcinoma cancer cells is one of the critical event in tumorigenesis. Cells losing epithelial cohesion detach from aggregated epithelial cell masses and may migrate to fatal organs through metastasis. The present study investigated the molecular mechanism by which squamous cell carcinoma cells grow scattered at the early phase of transformation while maintaining the epithelial phenotype. We studied YD-10B cells, which are established from human oral squamous cell carcinoma, because the cells grow scattered without the development of E-cadherin junctions (ECJs) under routine culture conditions despite the high expression of functional E-cadherin. The functionality of their E-cadherin was demonstrated in that YD-10B cells developed ECJs, transiently or persistently, when they were cultured on substrates coated with a low amount of fibronectin or to confluence. The phosphorylation of JNK was up-regulated in YD-10B cells compared with that in human normal oral keratinocyte cells or human squamous cell carcinoma cells, which grew aggregated along with well-organized ECJs. The suppression of JNK activity induced the aggregated growth of YD-10B cells concomitant with the development of ECJs. These results indicate for the first time that inherently up-regulated JNK activity induces the scattered growth of the oral squamous cell carcinoma cells through down-regulating the development of ECJ despite the expression of functional E-cadherin, a hallmark of the epithelial phenotype. - Highlights: • JNK dissociates YD-10B oral squamous cell carcinoma cells. • JNK suppresses the development of E-cadherin junctions of oral carcinoma cells. • Suppression of JNK activity reverses the scattered growth of oral carcinoma cells.

  1. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (T FH ) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of T FH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on T FH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate T FH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing T FH cell maturation. In cocultures they differentiated B cells into CD138 + plasma and IgD - CD27 + memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented T FH cell development. Added to T FH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3 + CXCR5 + PD-1 + follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on T FH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control T FH cell maturation, expand follicular regulatory T cells, and inhibit the T FH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the T FH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells

    International Nuclear Information System (INIS)

    Liu Yanxia; Song Zhihua; Zhao Yang; Qin Han; Cai Jun; Zhang Hong; Yu Tianxin; Jiang Siming; Wang Guangwen; Ding Mingxiao; Deng Hongkui

    2006-01-01

    Traditionally, undifferentiated human embryonic stem cells (hESCs) are maintained on mouse embryonic fibroblast (MEF) cells or on matrigel with an MEF-conditioned medium (CM), which hampers the clinical applications of hESCs due to the contamination by animal pathogens. Here we report a novel chemical-defined medium using DMEM/F12 supplemented with N2, B27, and basic fibroblast growth factor (bFGF) [termed NBF]. This medium can support prolonged self-renewal of hESCs. hESCs cultured in NBF maintain an undifferentiated state and normal karyotype, are able to form embryoid bodies in vitro, and differentiate into three germ layers and extraembryonic cells. Furthermore, we find that hESCs cultured in NBF possess a low apoptosis rate and a high proliferation rate compared with those cultured in MEF-CM. Our findings provide a novel, simplified chemical-defined culture medium suitable for further therapeutic applications and developmental studies of hESCs

  3. Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation

    Directory of Open Access Journals (Sweden)

    Duangmano Suwit

    2012-10-01

    Full Text Available Abstract Background Cucurbitacin B, an oxygenated tetracyclic triterpenoid compound extracted from the Thai medicinal plant Trichosanthes cucumerina L., has been reported to have several biological activities including anti-inflammatory, antimicrobial and anticancer. Cucurbitacin B is great of interest because of its biological activity. This agent inhibits growth of various types of human cancer cells lines. Methods In this study, we explored the novel molecular response of cucurbitacin B in human breast cancer cells, MCF-7 and MDA-MB-231. The growth inhibitory effect of cucurbitacin B on breast cancer cells was assessed by MTT assay. The effects of cucurbitacin B on microtubules morphological structure and tubulin polymerization were analyzed using immunofluorescence technique and tubulin polymerization assay kit, respectively. Proteomic analysis was used to identify the target-specific proteins that involved in cucurbitacin B treatment. Some of the differentially expressed genes and protein products were validated by real-time RT-PCR and western blot analysis. Cell cycle distributions and apoptosis were investigated using flow cytometry. Results Cucurbitacin B exhibited strong antiproliferative effects against breast cancer cells in a dose-dependent manner. We show that cucurbitacin B prominently alters the cytoskeletal network of breast cancer cells, inducing rapid morphologic changes and improper polymerization of the microtubule network. Moreover, the results of 2D-PAGE, real-time RT-PCR, and western blot analysis revealed that the expression of nucleophosmin/B23 and c-Myc decreased markedly after cucurbitacin B treatment. Immunofluorescence microscopy showed that cucurbitacin B induced translocation of nucleophosmin/B23 from the nucleolus to nucleoplasm. Treatment with cucurbitacin B resulted in cell cycle arrest at G2/M phase and the enhancement of apoptosis. Conclusions Our findings suggest that cucurbitacin B may inhibit the

  4. Effect of 5-azacytidine and galectin-1 on growth and differentiation of the human b lymphoma cell line bl36

    Directory of Open Access Journals (Sweden)

    Joubert-Caron Raymonde

    2001-12-01

    Full Text Available Abstract Background 5-AzaCytidine (AzaC is a DNA demethylating drugs that has been shown to inhibit cell growth and to induce apoptosis in certain cancer cells. Induced expression of the galectin1 (Gal1 protein, a galactoside-binding protein distributed widely in immune cells, has been described in cultured hepatoma-derived cells treated with AzaC and this event may have a role in the effect of the drug. According to this hypothesis, we investigated the effect of AzaC and Gal1 on human lymphoid B cells phenotype. Methods The effect of AzaC and Gal1 on cell growth and phenotype was determined on the Burkitt lymphoma cell line BL36. An immunocytochemical analysis for detection of Gal1 protein expression was performed in AzaC-treated cells. To investigate the direct effects of Gal1, recombinant Gal1 was added to cells. Results Treatment of lymphoid B cells with AzaC results in: i a decrease in cell growth with an arrest of the cell cycle at G0/G1 phase, ii phenotypic changes consistent with a differentiated phenotype, and iii the expression of p16, a tumor-suppressor gene whose expression was dependent of its promoter demethylation, and of Gal1. A targeting of Gal 1 to the plasma membrane follows its cytosolic expression. To determine which of the effects of AzaC might be secondary to the induction of Gal1, recombinant Gal1 was added to BL36 cells. Treated cells displayed growth inhibition and phenotypic changes consistent with a commitment toward differentiation. Conclusions Altered cell growth and expression of the cell surface plasma cell antigen, CD138 are detectable in BL36 cells treated by AzaC as well as by Gal1. It seems that AzaC-induced Gal1 expression and consequent binding of Gal1 on its cell membrane receptor may be, in part, involved in AzaC-induced plasmacytic differentiation.

  5. Growth inhibitory effects of the dual ErbB1/ErbB2 tyrosine kinase inhibitor PKI-166 on human prostate cancer xenografts.

    Science.gov (United States)

    Mellinghoff, Ingo K; Tran, Chris; Sawyers, Charles L

    2002-09-15

    Experiments with human prostate cancer cell lines have shown that forced overexpression of the ErbB2-receptor tyrosine kinase (RTK) promotes androgen-independent growth and increases androgen receptor-transcriptional activity in a ligand-independent fashion. To investigate the relationship between ErbB-RTK signaling and androgen in genetically unmanipulated human prostate cancer, we performed biochemical and biological studies with the dual ErbB1/ErbB2 RTK inhibitor PKI-166 using human prostate cancer xenograft models with isogenic sublines reflecting the transition from androgen-dependent to androgen-independent growth. In the presence of low androgen concentrations, PKI-166 showed profound growth-inhibitory effects on tumor growth, which could be partially reversed by androgen add-back. At physiological androgen concentrations, androgen withdrawal greatly enhanced the ability of PKI-166 to retard tumor growth. The level of extracellular signal-regulated kinase activation correlated with the response to PKI-166 treatment, whereas the expression levels of ErbB1 and ErbB2 did not. These results suggest that ErbB1/ErbB2 RTKs play an important role in the biology of androgen-independent prostate cancer and provide a rationale for clinical evaluation of inhibitors targeted to this pathway.

  6. Interaction of Staphylococci with Human B cells.

    Directory of Open Access Journals (Sweden)

    Tyler K Nygaard

    Full Text Available Staphylococcus aureus is a leading cause of human infections worldwide. The pathogen produces numerous molecules that can interfere with recognition and binding by host innate immune cells, an initial step required for the ingestion and subsequent destruction of microbes by phagocytes. To better understand the interaction of this pathogen with human immune cells, we compared the association of S. aureus and S. epidermidis with leukocytes in human blood. We found that a significantly greater proportion of B cells associated with S. epidermidis relative to S. aureus. Complement components and complement receptors were important for the binding of B cells with S. epidermidis. Experiments using staphylococci inactivated by ultraviolet radiation and S. aureus isogenic deletion mutants indicated that S. aureus secretes molecules regulated by the SaeR/S two-component system that interfere with the ability of human B cells to bind this bacterium. We hypothesize that the relative inability of B cells to bind S. aureus contributes to the microbe's success as a human pathogen.

  7. Lactobacillus paracasei subsp. paracasei B21060 suppresses human T-cell proliferation.

    Science.gov (United States)

    Peluso, Ilaria; Fina, Daniele; Caruso, Roberta; Stolfi, Carmine; Caprioli, Flavio; Fantini, Massimo Claudio; Caspani, Giorgio; Grossi, Enzo; Di Iorio, Laura; Paone, Francesco Maria; Pallone, Francesco; Monteleone, Giovanni

    2007-04-01

    Recent studies have shown that probiotics are beneficial in T-cell-mediated inflammatory diseases. The molecular mechanism by which probiotics work remains elusive, but accumulating evidence indicates that probiotics can modulate immune cell responses. Since T cells express receptors for bacterial products or components, we examined whether different strains of lactobacilli directly regulate the functions of human T cells. CD4(+) T cells were isolated from blood and intestinal lamina propria (LP) of normal individuals and patients with inflammatory bowel disease (IBD). Mononuclear cells were also isolated from Peyer's patches. Cells were activated with anti-CD3/CD2/CD28 in the presence or absence of Lactobacillus paracasei subsp. paracasei B21060, L. paracasei subsp. paracasei F19, or L. casei subsp. casei DG. Cell proliferation and death, Foxp3, intracellular pH, and cytokine production were evaluated by flow cytometry. We showed that L. paracasei subsp. paracasei B21060 but neither L. paracasei subsp. paracasei F19 nor L. casei subsp. casei DG inhibited blood CD4(+) T-cell growth. This effect was associated with no change in cell survival, expression of Foxp3, or production of gamma interferon, interleukin-4 (IL-4), IL-5, and IL-10. L. paracasei subsp. paracasei B21060-mediated blockade of CD4(+) T-cell proliferation required a viable bacterium and was associated with decreased MCT-1 expression and low intracellular pH. L. paracasei subsp. paracasei B21060 also inhibited the growth of Peyer's patch mononuclear cells, normal lymphocytes, and IBD CD4(+) LP lymphocytes without affecting cytokine production. The data show that L. paracasei subsp. paracasei B21060 blocks T-cell growth, thus suggesting a mechanism by which these probiotics could interfere with T-cell-driven immune responses.

  8. Cystatin E/M Suppresses Tumor Cell Growth through Cytoplasmic Retention of NF-κB

    Science.gov (United States)

    Soh, Hendrick; Venkatesan, Natarajan; Veena, Mysore S.; Ravichandran, Sandhiya; Zinabadi, Alborz; Basak, Saroj K.; Parvatiyar, Kislay; Srivastava, Meera; Liang, Li-Jung; Gjertson, David W.; Torres, Jorge Z.; Moatamed, Neda A.

    2016-01-01

    We and others have shown that the cystatin E/M gene is inactivated in primary human tumors, pointing to its role as a tumor suppressor gene. However, the molecular mechanism of tumor suppression is not yet understood. Using plasmid-directed cystatin E/M gene overexpression, a lentivirus-mediated tetracycline-inducible vector system, and human papillomavirus 16 (HPV 16) E6 and E7 gene-immortalized normal human epidermal keratinocytes, we demonstrated intracellular and non-cell-autonomous apoptotic growth inhibition of tumor cell lines and that growth inhibition is associated with cytoplasmic retention of NF-κB. We further demonstrated decreased phosphorylation of IκB kinase (IKKβ) and IκBα in the presence of tumor necrosis factor alpha (TNF-α), confirming the role of cystatin E/M in the regulation of the NF-κB signaling pathway. Growth suppression of nude mouse xenograft tumors carrying a tetracycline-inducible vector system was observed with the addition of doxycycline in drinking water, confirming that the cystatin E/M gene is a tumor suppressor gene. Finally, immunohistochemical analyses of cervical carcinoma in situ and primary tumors have shown a statistically significant inverse relationship between the expression of cystatin E/M and cathepsin L and a direct relationship between the loss of cystatin E/M expression and nuclear expression of NF-κB. We therefore propose that the cystatin E/M suppressor gene plays an important role in the regulation of NF-κB. PMID:27090639

  9. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhuang

    Full Text Available Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  10. Troglitazone inhibits cell growth and induces apoptosis of B-cell acute lymphoblastic leukemia cells with t(14;18).

    Science.gov (United States)

    Takenokuchi, M; Saigo, K; Nakamachi, Y; Kawano, S; Hashimoto, M; Fujioka, T; Koizumi, T; Tatsumi, E; Kumagai, S

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear receptor superfamily, has been detected in several human leukemia cells. Recent studies reported that PPARgamma ligands inhibit cell proliferation and induce apoptosis in both normal and malignant B-lineage cells. We investigated the expression of PPARgamma and the effects of PPARgamma ligands on UTree-O2, Bay91 and 380, three B-cell acute lymphoblastic leukemia (B-ALL) cell lines with t(14;18), which show a poor prognosis, accompanying c-myc abnormality. Western blot analysis identified expression of PPARgamma protein and real-time PCR that of PPARgamma mRNA on the three cell lines. Troglitazone (TGZ), a synthetic PPARgamma ligand, inhibited cell growth in these cell lines in a dose-dependent manner, which was associated with G(1) cell cycle arrest and apoptosis. We also found this effect PPARgamma independent since PPARgamma antagonists failed to reverse this effect. We assessed the expression of c-myc, an apoptosis-regulatory gene, since c-myc abnormality was detected in most B-ALL cells with t(14;18). TGZ was found to dose-dependently downregulate the expression of c-myc mRNA and c-myc protein in the three cell lines. These results suggest that TGZ inhibits cell growth via induction of G(1) cell cycle arrest and apoptosis in these cell lines and that TGZ-induced apoptosis, at least in part, may be related to the downregulation of c-myc expression. Moreover, the downregulation of c-myc expression by TGZ may depend on a PPARgamma-independent mechanism. Further studies indicate that PPARgamma ligands may serve as a therapeutic agent in B-ALL with t(14;18).

  11. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant

    DEFF Research Database (Denmark)

    Frogne, Thomas; Benjaminsen, Rikke; Sonne-Hansen, Katrine

    2008-01-01

    cell lines concomitant with inhibition of Erk and unaltered Akt activation. In concert, inhibition of Erk with U0126 preferentially reduced growth of resistant cell lines. Treatment with ErbB3 neutralizing antibodies inhibited ErbB3 activation and resulted in a modest but statistically significant...... activation was observed only in the parental MCF-7 cells. The downstream kinases pAkt and pErk were increased in five of seven and in all seven resistant cell lines, respectively. Treatment with the EGFR inhibitor gefitinib preferentially inhibited growth and reduced the S phase fraction in the resistant...... growth inhibition of two resistant cell lines. These data indicate that ligand activated ErbB3 and EGFR, and Erk signaling play important roles in fulvestrant resistant cell growth. Furthermore, the decreased level of ErbB4 in resistant cells may facilitate heterodimerization of ErbB3 with EGFR and ErbB2...

  12. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    International Nuclear Information System (INIS)

    Ramasharma, K.; Li, C.H.

    1987-01-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and α-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin

  13. Hydroxysteroid sulfotransferase SULT2B1b promotes hepatocellular carcinoma cells proliferation in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiaoming Yang

    Full Text Available Hydroxysteroid sulfotransferase 2B1b (SULT2B1b is highly selective for the addition of sulfate groups to 3β-hydroxysteroids. Although previous reports have suggested that SULT2B1b is correlated with cell proliferation of hepatocytes, the relationship between SULT2B1b and the malignant phenotype of hepatocarcinoma cells was not clear. In the present study, we found that SULT2B1 was comparatively higher in the human hepatocarcinoma tumorous tissues than their adjacent tissues. Besides, SULT2B1b overexpression promoted the growth of the mouse hepatocarcinoma cell line Hepa1-6, while Lentivirus-mediated SULT2B1b interference inhibited growth as assessed by the CCK-8 assay. Likewise, inhibition of SULT2B1b expression induced cell-cycle arrest and apoptosis in Hepa1-6 cells by upregulating the expression of FAS, downregulating the expression of cyclinB1, BCL2 and MYC in vitro and in vivo at both the transcript and protein levels. Knock-down of SULT2B1b expression significantly suppressed tumor growth in nude mouse xenografts. Moreover, proliferation rates and SULT2B1b expression were highly correlated in the human hepatocarcinoma cell lines Huh-7, Hep3B, SMMC-7721 and BEL-7402 cells. Knock-down of SULT2B1b inhibited cell growth and cyclinB1 levels in human hepatocarcinoma cells and suppressed xenograft growth in vivo. In conclusion, SULT2B1b expression promotes proliferation of hepatocellular carcinoma cells in vitro and in vivo, which may contribute to the progression of HCC.

  14. Lymphoma and the control of B cell growth and differentiation.

    Science.gov (United States)

    Rui, Lixin; Goodnow, Christopher C

    2006-05-01

    It is now widely accepted that lymphomagenesis is a multistep transformation process. A number of genetic changes and environmental and infectious factors contributing to the development and malignant progression of B-cell lymphoproliferative disorders are well documented. Reciprocal chromosomal translocations involving the immunoglobulin loci are a hallmark of most mature B cell lymphomas and lead to dysregulated expression of proto-oncogenes (c-myc) important for cell proliferation or genes involved in cell cycle progression (cyclin D1), differentiation block (bcl-6, PAX5) and cell survival (bcl-2, NF-kappaB). In addition, genetic alterations that inactivate tumor suppressor genes (p53, p16) have been frequently detected in some lymphoma tissues. Many of these genes are normally regulated by signals from the B cell antigen receptor. The high prevalence of bacterial and viral infection in lymphoma patients supports the hypothesis that infectious agents may play a contributory role in the development and evolution of B cell lymphoproliferative disorders by either directly inducing polyclonal B cell hyperactivation (EBV, HCV), or providing a chronic antigenic stimulus (EBV, HCV, HBV, H. pylori), or mimicking B cell antigen receptor signaling (EBV, HCV, HHV8), although whether these are causative factors or they are secondary to genetic changes in lymphomagenesis remains to be defined. Stimulatory signals from reactive T cells, local cytokines and growth factors can also contribute, to some extent, to the progression of transformation. Modulation of B cell antigen receptor signaling therefore emerges as a potentially powerful strategy for controlling the growth of certain B cell lymphomas.

  15. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: nude mouse models

    International Nuclear Information System (INIS)

    Hara, H.; Seon, B.K.

    1987-01-01

    In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Ascitic and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment

  16. Epigenetic inactivation of Notch-Hes pathway in human B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Kuang, Shao-Qing; Fang, Zhihong; Zweidler-McKay, Patrick A; Yang, Hui; Wei, Yue; Gonzalez-Cervantes, Emilio A; Boumber, Yanis; Garcia-Manero, Guillermo

    2013-01-01

    The Notch pathway can have both oncogenic and tumor suppressor roles, depending on cell context. For example, Notch signaling promotes T cell differentiation and is leukemogenic in T cells, whereas it inhibits early B cell differentiation and acts as a tumor suppressor in B cell leukemia where it induces growth arrest and apoptosis. The regulatory mechanisms that contribute to these opposing roles are not understood. Aberrant promoter DNA methylation and histone modifications are associated with silencing of tumor suppressor genes and have been implicated in leukemogenesis. Using methylated CpG island amplification (MCA)/DNA promoter microarray, we identified Notch3 and Hes5 as hypermethylated in human B cell acute lymphoblastic leukemia (ALL). We investigated the methylation status of other Notch pathway genes by bisulfite pyrosequencing. Notch3, JAG1, Hes2, Hes4 and Hes5 were frequently hypermethylated in B leukemia cell lines and primary B-ALL, in contrast to T-ALL cell lines and patient samples. Aberrant methylation of Notch3 and Hes5 in B-ALL was associated with gene silencing and was accompanied by decrease of H3K4 trimethylation and H3K9 acetylation and gain of H3K9 trimethylation and H3K27 trimethylation. 5-aza-2'-deoxycytidine treatment restored Hes5 expression and decreased promoter hypermethylation in most leukemia cell lines and primary B-ALL samples. Restoration of Hes5 expression by lentiviral transduction resulted in growth arrest and apoptosis in Hes5 negative B-ALL cells but not in Hes5 expressing T-ALL cells. These data suggest that epigenetic modifications are implicated in silencing of tumor suppressor of Notch/Hes pathway in B-ALL.

  17. Akt2 and nucleophosmin/B23 function as an oncogenic unit in human lung cancer cells

    International Nuclear Information System (INIS)

    Kim, Chung Kwon; Nguyen, Truong L.X.; Lee, Sang Bae; Park, Sang Bum; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2011-01-01

    The signaling network of protein kinase B(PKB)/Akt has been implicated in survival of lung cancer cells. However, understanding the relative contribution of the different isoform of Akt network is nontrival. Here, we report that Akt2 is highly expressed in human lung adenocarcinoma cell line A549 cells. Suppression of Akt2 expression in A549 cells results in notable inhibition of cell poliferation, soft agar growth, and invasion, accompanying by a decrease of nucleophosmin/B23 protein. Overexpression of Akt1 restores cancerous growth of A549 cells in B23-knockdown (KD) cells while Akt2 overexpression did not restore proliferating potential in cells with downregulated B23, thus suggesting Akt2 requires B23 to drive proliferation of lung cancer cell. Loss of functional Akt2 and B23 has similar defects on cell proliferation, apoptotic resistance and cell cycle regulation, while loss of Akt1 has less defects on cell proliferation, survial and cell cycle progression in A549 cells. Moreover, overexpression of B23 rescues the proliferative block induced as a consequence of loss of Akt2. Thus our data suggest that Akt2/B23 functions as an oncogenic unit to drive tumorigenesis of A549 lung cancer cells.

  18. Epigenetic inactivation of Notch-Hes pathway in human B-cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Shao-Qing Kuang

    Full Text Available The Notch pathway can have both oncogenic and tumor suppressor roles, depending on cell context. For example, Notch signaling promotes T cell differentiation and is leukemogenic in T cells, whereas it inhibits early B cell differentiation and acts as a tumor suppressor in B cell leukemia where it induces growth arrest and apoptosis. The regulatory mechanisms that contribute to these opposing roles are not understood. Aberrant promoter DNA methylation and histone modifications are associated with silencing of tumor suppressor genes and have been implicated in leukemogenesis. Using methylated CpG island amplification (MCA/DNA promoter microarray, we identified Notch3 and Hes5 as hypermethylated in human B cell acute lymphoblastic leukemia (ALL. We investigated the methylation status of other Notch pathway genes by bisulfite pyrosequencing. Notch3, JAG1, Hes2, Hes4 and Hes5 were frequently hypermethylated in B leukemia cell lines and primary B-ALL, in contrast to T-ALL cell lines and patient samples. Aberrant methylation of Notch3 and Hes5 in B-ALL was associated with gene silencing and was accompanied by decrease of H3K4 trimethylation and H3K9 acetylation and gain of H3K9 trimethylation and H3K27 trimethylation. 5-aza-2'-deoxycytidine treatment restored Hes5 expression and decreased promoter hypermethylation in most leukemia cell lines and primary B-ALL samples. Restoration of Hes5 expression by lentiviral transduction resulted in growth arrest and apoptosis in Hes5 negative B-ALL cells but not in Hes5 expressing T-ALL cells. These data suggest that epigenetic modifications are implicated in silencing of tumor suppressor of Notch/Hes pathway in B-ALL.

  19. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells.

    Science.gov (United States)

    Vander Griend, Donald J; D'Antonio, Jason; Gurel, Bora; Antony, Lizamma; Demarzo, Angelo M; Isaacs, John T

    2010-01-01

    The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR-mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell-dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways. We utilized clinical samples, animal models and a series of AR-positive human prostate cancer cell lines to evaluate AR-mediated growth stimulation of prostate CICs. The present studies document that stromal AR expression is not required for prostate cancer growth, since tumor stroma surrounding AR-positive human prostate cancer metastases (N = 127) are characteristically AR-negative. This lack of a requirement for AR expression in tumor stromal cells is also documented by the fact that human AR-positive prostate cancer cells grow equally well when xenografted in wild-type versus AR-null nude mice. AR-dependent growth stimulation was documented to involve secretion, extracellular binding, and signaling by autocrine growth factors. Orthotopic xenograft animal studies documented that the cellautonomous autocrine growth factors which stimulate prostate CIC growth are not the andromedins secreted by normal prostate stromal cells. Such cell autonomous and extracellular autocrine signaling is necessary but not sufficient for the optimal growth of prostate CICs based upon the response to anti-androgen plus/or minus preconditioned media. AR-induced growth stimulation of human prostate CICs requires AR-dependent intracellular pathways. The identification of such AR-dependent intracellular pathways offers new leads for the development of effective therapies for prostate cancer. (c) 2009 Wiley-Liss, Inc.

  20. KDM2B overexpression correlates with poor prognosis and regulates glioma cell growth

    Directory of Open Access Journals (Sweden)

    Wang Y

    2018-01-01

    Full Text Available Yiwei Wang,1 Jin Zang,1 Dongyong Zhang,2 Zhenxiang Sun,1 Bo Qiu,2 Xiaojie Wang1 1Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City, 2Department of Neurosurgery, First Affiliated Hospital of China Medical University, Heping District, Shenyang City, Liaoning Province, ChinaBackground: Gliomas are one of the most lethal cancers in the human central nervous system. Despite clinical treatment advancements, the prognosis of patients with glioma remains poor. KDM2B is a histone lysine demethylase, which has been observed in multiple tumors. But the concrete role of KDM2B in gliomas remains to be further illustrated.Methods: The KDM2B expression in gliomas was detected with immunohistochemistry and Western blot assay. Furthermore, knockdown of KDM2B in U87 and U251 glioma cell lines, the proliferation capacity was evaluated by cell viability assay, colon formation assay and flow cytometry in vitro. Western blot assay was used to analyze the p21, EZH2 and cyclinD1 changes followed by knockdown of KDM2B.Results: KDM2B was upregulated in tissues of glioma patients, and the expression was correlated to cancer progression. Downregulation of KDM2B in U87 and U251 glioma cell lines inhibited cell proliferation and arrested cell cycle in G0/G1 phase. In addition, silencing KDM2B promoted the upregulation of p21 while reduced the expression of EZH2 and cyclinD1.Conclusion: Taken together, our results revealed that KDM2B might influence gliomas growth and act as a novel therapeutic target for glioma patients.Keywords: EZH2, glioma, KDM2B, P21

  1. Laminin enhances the growth of human neural stem cells in defined culture media

    Directory of Open Access Journals (Sweden)

    Lathia Justin D

    2008-07-01

    Full Text Available Abstract Background Human neural stem cells (hNSC have the potential to provide novel cell-based therapies for neurodegenerative conditions such as multiple sclerosis and Parkinson's disease. In order to realise this goal, protocols need to be developed that allow for large quantities of hNSC to be cultured efficiently. As such, it is important to identify factors which enhance the growth of hNSC. In vivo, stem cells reside in distinct microenvironments or niches that are responsible for the maintenance of stem cell populations. A common feature of niches is the presence of the extracellular matrix molecule, laminin. Therefore, this study investigated the effect of exogenous laminin on hNSC growth. Results To measure hNSC growth, we established culture conditions using B27-supplemented medium that enable neurospheres to grow from human neural cells plated at clonal densities. Limiting dilution assays confirmed that neurospheres were derived from single cells at these densities. Laminin was found to increase hNSC numbers as measured by this neurosphere formation. The effect of laminin was to augment the proliferation/survival of the hNSC, rather than promoting the undifferentiated state. In agreement, apoptosis was reduced in dissociated neurospheres by laminin in an integrin β1-dependent manner. Conclusion The addition of laminin to the culture medium enhances the growth of hNSC, and may therefore aid their large-scale production.

  2. Microtubules Growth Rate Alteration in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Irina B. Alieva

    2010-01-01

    Full Text Available To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC and “fast” (three times as much growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  3. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation.

    Science.gov (United States)

    Ha, V L; Luong, A; Li, F; Casero, D; Malvar, J; Kim, Y M; Bhatia, R; Crooks, G M; Parekh, C

    2017-11-01

    The initial stages of T-cell differentiation are characterized by a progressive commitment to the T-cell lineage, a process that involves the loss of alternative (myelo-erythroid, NK, B) lineage potentials. Aberrant differentiation during these stages can result in T-cell acute lymphoblastic leukemia (T-ALL). However, the mechanisms regulating the initial stages of human T-cell differentiation are obscure. Through loss of function studies, we showed BCL11B, a transcription factor recurrently mutated T-ALL, is essential for T-lineage commitment, particularly the repression of NK and myeloid potentials, and the induction of T-lineage genes, during the initial stages of human T-cell differentiation. In gain of function studies, BCL11B inhibited growth of and induced a T-lineage transcriptional program in T-ALL cells. We found previously unknown differentiation stage-specific DNA binding of BCL11B at multiple T-lineage genes; target genes showed BCL11B-dependent expression, suggesting a transcriptional activator role for BCL11B at these genes. Transcriptional analyses revealed differences in the regulatory actions of BCL11B between human and murine thymopoiesis. Our studies show BCL11B is a key regulator of the initial stages of human T-cell differentiation and delineate the BCL11B transcriptional program, enabling the dissection of the underpinnings of normal T-cell differentiation and providing a resource for understanding dysregulations in T-ALL.

  4. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    International Nuclear Information System (INIS)

    Brunetto de Farias, Caroline; Heinen, Tiago Elias; Pereira dos Santos, Rafael; Abujamra, Ana Lucia; Schwartsmann, Gilberto

    2012-01-01

    Highlights: ► BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. ► TrkB inhibition potentiated the antitumor effect of cetuximab. ► BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  5. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    International Nuclear Information System (INIS)

    Zhou Yijun; Wang Jiahe; Zhang Jin

    2006-01-01

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-κB, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-κB, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease

  6. Neurotrophin Signaling via TrkB and TrkC Receptors Promotes the Growth of Brain Tumor-initiating Cells*

    Science.gov (United States)

    Lawn, Samuel; Krishna, Niveditha; Pisklakova, Alexandra; Qu, Xiaotao; Fenstermacher, David A.; Fournier, Michelle; Vrionis, Frank D.; Tran, Nam; Chan, Jennifer A.; Kenchappa, Rajappa S.; Forsyth, Peter A.

    2015-01-01

    Neurotrophins and their receptors are frequently expressed in malignant gliomas, yet their functions are largely unknown. Previously, we have shown that p75 neurotrophin receptor is required for glioma invasion and proliferation. However, the role of Trk receptors has not been examined. In this study, we investigated the importance of TrkB and TrkC in survival of brain tumor-initiating cells (BTICs). Here, we show that human malignant glioma tissues and also tumor-initiating cells isolated from fresh human malignant gliomas express the neurotrophin receptors TrkB and TrkC, not TrkA, and they also express neurotrophins NGF, BDNF, and neurotrophin 3 (NT3). Specific activation of TrkB and TrkC receptors by ligands BDNF and NT3 enhances tumor-initiating cell viability through activation of ERK and Akt pathways. Conversely, TrkB and TrkC knockdown or pharmacologic inhibition of Trk signaling decreases neurotrophin-dependent ERK activation and BTIC growth. Further, pharmacological inhibition of both ERK and Akt pathways blocked BDNF, and NT3 stimulated BTIC survival. Importantly, attenuation of BTIC growth by EGFR inhibitors could be overcome by activation of neurotrophin signaling, and neurotrophin signaling is sufficient for long term BTIC growth as spheres in the absence of EGF and FGF. Our results highlight a novel role for neurotrophin signaling in brain tumor and suggest that Trks could be a target for combinatorial treatment of malignant glioma. PMID:25538243

  7. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells.

    Science.gov (United States)

    Lawn, Samuel; Krishna, Niveditha; Pisklakova, Alexandra; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Vrionis, Frank D; Tran, Nam; Chan, Jennifer A; Kenchappa, Rajappa S; Forsyth, Peter A

    2015-02-06

    Neurotrophins and their receptors are frequently expressed in malignant gliomas, yet their functions are largely unknown. Previously, we have shown that p75 neurotrophin receptor is required for glioma invasion and proliferation. However, the role of Trk receptors has not been examined. In this study, we investigated the importance of TrkB and TrkC in survival of brain tumor-initiating cells (BTICs). Here, we show that human malignant glioma tissues and also tumor-initiating cells isolated from fresh human malignant gliomas express the neurotrophin receptors TrkB and TrkC, not TrkA, and they also express neurotrophins NGF, BDNF, and neurotrophin 3 (NT3). Specific activation of TrkB and TrkC receptors by ligands BDNF and NT3 enhances tumor-initiating cell viability through activation of ERK and Akt pathways. Conversely, TrkB and TrkC knockdown or pharmacologic inhibition of Trk signaling decreases neurotrophin-dependent ERK activation and BTIC growth. Further, pharmacological inhibition of both ERK and Akt pathways blocked BDNF, and NT3 stimulated BTIC survival. Importantly, attenuation of BTIC growth by EGFR inhibitors could be overcome by activation of neurotrophin signaling, and neurotrophin signaling is sufficient for long term BTIC growth as spheres in the absence of EGF and FGF. Our results highlight a novel role for neurotrophin signaling in brain tumor and suggest that Trks could be a target for combinatorial treatment of malignant glioma. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Extinct type of human parvovirus B19 persists in tonsillar B cells

    OpenAIRE

    Pyöriä, Lari; Toppinen, Mari; Mantyla, Elina; Hedman, Lea; Aaltonen, Leena-Maija; Vihinen-Ranta, Maija; Ilmarinen, Taru; Soderlund-Venermo, Maria; Hedman, Klaus; Perdomo, Maria

    2017-01-01

    Parvovirus B19 (B19V) DNA persists lifelong in human tissues, but the cell type harbouring it remains unclear. We here explore B19V DNA distribution in B, T and monocyte cell lineages of recently excised tonsillar tissues from 77 individuals with an age range of 2?69 years. We show that B19V DNA is most frequent and abundant among B cells, and within them we find a B19V genotype that vanished from circulation >40 years ago. Since re-infection or re-activation are unlikely with this virus type...

  9. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  10. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Brunetto de Farias, Caroline [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Heinen, Tiago Elias; Pereira dos Santos, Rafael [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Abujamra, Ana Lucia [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Schwartsmann, Gilberto [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); and others

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  11. Effect of beta-carotene-rich tomato lycopene beta-cyclase ( tlcy-b) on cell growth inhibition in HT-29 colon adenocarcinoma cells.

    Science.gov (United States)

    Palozza, Paola; Bellovino, Diana; Simone, Rossella; Boninsegna, Alma; Cellini, Francesco; Monastra, Giovanni; Gaetani, Sancia

    2009-07-01

    Lycopene beta-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of beta-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced beta-carotene release and therefore cell growth inhibition. To induce with purified beta-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that beta-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with beta-carotene in promoting cell growth arrest.

  12. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Varga, Nóra; Veréb, Zoltán; Rajnavölgyi, Éva; Német, Katalin; Uher, Ferenc; Sarkadi, Balázs; Apáti, Ágota

    2011-01-01

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  13. Ontogeny of human IgE?expressing B cells and plasma cells

    OpenAIRE

    Ramadani, F.; Bowen, H.; Upton, N.; Hobson, P. S.; Chan, Y.?C.; Chen, J.?B.; Chang, T. W.; McDonnell, J. M.; Sutton, B. J.; Fear, D. J.; Gould, H. J.

    2016-01-01

    BACKGROUND: IgE-expressing (IgE+) plasma cells (PCs) provide a continuous source of allergen specific IgE that is central to allergic responses. The extreme sparsity of IgE+ cells in vivo has confined their study almost entirely to mouse models.OBJECTIVE: To characterise the development pathway of human IgE+ PCs and to determine the ontogeny of human IgE+ PCs.METHODS: To generate human IgE+ cells we cultured tonsil B cells with IL-4 and anti-CD40. Using FACS and RT-PCR we examined the phenoty...

  14. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Ying; Gao, Yan, E-mail: gaoyanhdhos@126.com

    2014-05-09

    Highlights: • miR-181b is upregulated in human ovarian cancer tissues. • miR-181b promotes ovarian cancer cell proliferation and invasion. • LATS2 is a direct target of miR-181b. • LATS2 is involved in miR-181b-induced ovarian cancer cell growth and invasion. - Abstract: MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.

  15. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    Science.gov (United States)

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  16. Human CD40 ligand-expressing type 3 innate lymphoid cells induce IL-10-producing immature transitional regulatory B cells.

    Science.gov (United States)

    Komlósi, Zsolt I; Kovács, Nóra; van de Veen, Willem; Kirsch, Anna Isabella; Fahrner, Heinz Benedikt; Wawrzyniak, Marcin; Rebane, Ana; Stanic, Barbara; Palomares, Oscar; Rückert, Beate; Menz, Günter; Akdis, Mübeccel; Losonczy, György; Akdis, Cezmi A

    2017-09-20

    Type 3 innate lymphoid cells (ILC3s) are involved in maintenance of mucosal homeostasis; however, their role in immunoregulation has been unknown. Immature transitional regulatory B (itBreg) cells are innate-like B cells with immunosuppressive properties, and the in vivo mechanisms by which they are induced have not been fully clarified. We aimed to investigate the ILC3-B-cell interaction that probably takes place in human tonsils. ILC3s were isolated from peripheral blood and palatine tonsils, expanded, and cocultured with naive B cells. Tonsillar ILC3s and regulatory B cells were visualized with immunofluorescence histology. ILC3 frequencies were measured in tonsil tissue of allergic and nonallergic patients and in peripheral blood of allergic asthmatic patients and healthy control subjects. A mutually beneficial relationship was revealed between ILC3s and B cells: ILC3s induced IL-15 production in B cells through B cell-activating factor receptor, whereas IL-15, a potent growth factor for ILC3s, induced CD40 ligand (CD40L) expression on circulating and tonsillar ILC3s. IL-15-activated CD40L + ILC3s helped B-cell survival, proliferation, and differentiation of IL-10-secreting, PD-L1-expressing functional itBreg cells in a CD40L- and B cell-activating factor receptor-dependent manner. ILC3s and regulatory B cells were in close connection with each other in palatine tonsils. ILC3 frequency was reduced in tonsil tissue of allergic patients and in peripheral blood of allergic asthmatic patients. Human CD40L + ILC3s provide innate B-cell help and are involved in an innate immunoregulatory mechanism through induction of itBreg cell differentiation, which takes place in palatine tonsils in vivo. This mechanism, which can contribute to maintenance of immune tolerance, becomes insufficient in allergic diseases. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. HSC extrinsic sex-related and intrinsic autoimmune disease-related human B-cell variation is recapitulated in humanized mice.

    Science.gov (United States)

    Borsotti, Chiara; Danzl, Nichole M; Nauman, Grace; Hölzl, Markus A; French, Clare; Chavez, Estefania; Khosravi-Maharlooei, Mohsen; Glauzy, Salome; Delmotte, Fabien R; Meffre, Eric; Savage, David G; Campbell, Sean R; Goland, Robin; Greenberg, Ellen; Bi, Jing; Satwani, Prakash; Yang, Suxiao; Bathon, Joan; Winchester, Robert; Sykes, Megan

    2017-10-24

    B cells play a major role in antigen presentation and antibody production in the development of autoimmune diseases, and some of these diseases disproportionally occur in females. Moreover, immune responses tend to be stronger in female vs male humans and mice. Because it is challenging to distinguish intrinsic from extrinsic influences on human immune responses, we used a personalized immune (PI) humanized mouse model, in which immune systems were generated de novo from adult human hematopoietic stem cells (HSCs) in immunodeficient mice. We assessed the effect of recipient sex and of donor autoimmune diseases (type 1 diabetes [T1D] and rheumatoid arthritis [RA]) on human B-cell development in PI mice. We observed that human B-cell levels were increased in female recipients regardless of the source of human HSCs or the strain of immunodeficient recipient mice. Moreover, mice injected with T1D- or RA-derived HSCs displayed B-cell abnormalities compared with healthy control HSC-derived mice, including altered B-cell levels, increased proportions of mature B cells and reduced CD19 expression. Our study revealed an HSC-extrinsic effect of recipient sex on human B-cell reconstitution. Moreover, the PI humanized mouse model revealed HSC-intrinsic defects in central B-cell tolerance that recapitulated those in patients with autoimmune diseases. These results demonstrate the utility of humanized mouse models as a tool to better understand human immune cell development and regulation.

  18. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  19. Nuclear Factor κB is required for tumor growth inhibition mediated by enavatuzumab (PDL192, a humanized monoclonal antibody to TweakR

    Directory of Open Access Journals (Sweden)

    James W. Purcell

    2014-01-01

    Full Text Available TweakR is a TNF receptor family member, whose natural ligand is the multifunctional cytokine TWEAK. The growth inhibitory activity observed following TweakR stimulation in certain cancer cell lines and the overexpression of TweakR in many solid tumor types led to the development of enavatuzumab (PDL192, a humanized IgG1 monoclonal antibody to TweakR. The purpose of this study was to determine the mechanism of action of enavatuzumab’s tumor growth inhibition and to provide insight into the biology behind TweakR as a cancer therapeutic target. A panel of 105 cancer lines was treated with enavatuzumab in vitro; and 29 cell lines of varying solid tumor backgrounds had >25% growth inhibition in response to the antibody. Treatment of sensitive cell lines with enavatuzumab resulted in the in vitro and in vivo (xenograft activation of both classical (p50, p65 and non-classical (p52, RelB NFκB pathways. Using NFκB DNA binding functional ELISAs and microarray analysis, we observed increased activation of NFκB subunits and NFκB regulated genes in sensitive cells over that observed in resistant cell lines. Inhibiting NFκB subunits (p50, p65, RelB, p52 and upstream kinases (IKK1, IKK2 with siRNA and chemical inhibitors consistently blocked enavatuzumab’s activity. Furthermore, enavatuzumab treatment resulted in NFκB-dependent reduction in cell-division as seen by the activation of the cell cycle inhibitor p21 both in vitro and in vivo. The finding that NFκB drives the growth inhibitory activity of enavatuzumab suggests that targeting TweakR with enavatuzumab may represent a novel cancer treatment strategy.

  20. NF-kappa B signaling pathway is involved in growth inhibition, G2/M arrest and apoptosis induced by Trichostatin A in human tongue carcinoma cells

    NARCIS (Netherlands)

    Yao, Jun; Duan, Li; Fan, Mingwen; Wu, Xinxing

    2006-01-01

    The HDAC inhibitor Trichostatin A (TSA) exhibits antiturnour activity in various tumour cells. However, little is known about the effect of TSA on growth of human tongue carcinoma cells. In this study, we observed that TSA concentration-dependently inhibited growth of human tongue carcinoma Tca8113

  1. Differentiation of human B lymphocyte subpopulations induced by an alloreactive helper T-cell clone

    International Nuclear Information System (INIS)

    Anderson, S.J.; Hummell, D.S.; Lawton, A.R.

    1988-01-01

    We have used cloned alloreactive helper T cells to determine if direct T cell-B cell interaction can induce differentiation of human peripheral blood B cells which do not respond to pokeweed mitogen (PWM). T-cell clone 2F8 was derived from a one-way mixed lymphocyte reaction. 2F8 cells are T3+T4+T8-IL-2R+ and proliferate in response to irradiated stimulator cells, but not autologous cells, in the absence of exogenous interleukin-2. 2F8 cells provide allospecific help for polyclonal proliferation and differentiation of B cells in the absence of any other stimulus. The magnitude of this response is comparable to that of the response of the same B cells to PWM and fresh autologous T cells. 2F8 cells could also provide nonspecific help for unrelated donor B cells in the presence of PWM, with no requirement for costimulation by irradiated stimulator cells. Allospecific stimulation of B cells was completely inhibited by antibodies to class II major histocompatibility complex (MHC) framework determinants and was abrogated by 1000-rad irradiation. Cloned 2F8 T cells stimulated differentiation of both small, high-density B cells and larger B cells, generating up to 30% plasma cells with either fraction. B cells forming rosettes with mouse erythrocytes were also induced to differentiate by the helper T cell clone. As found previously, neither small, high-density B cells nor mouse rosette+ B cells responded well to PWM. Direct interaction with allospecific T cells induces differentiation of a broader spectrum of B cells than soluble growth and differentiation factors in conjunction with polyclonal activators such as PWM and protein A containing staphylococci

  2. A role for gut-associated lymphoid tissue in shaping the human B cell repertoire.

    Science.gov (United States)

    Vossenkämper, Anna; Blair, Paul A; Safinia, Niloufar; Fraser, Louise D; Das, Lisa; Sanders, Theodore J; Stagg, Andrew J; Sanderson, Jeremy D; Taylor, Kirstin; Chang, Fuju; Choong, Lee M; D'Cruz, David P; Macdonald, Thomas T; Lombardi, Giovanna; Spencer, Jo

    2013-08-26

    We have tracked the fate of immature human B cells at a critical stage in their development when the mature B cell repertoire is shaped. We show that a major subset of bone marrow emigrant immature human B cells, the transitional 2 (T2) B cells, homes to gut-associated lymphoid tissue (GALT) and that most T2 B cells isolated from human GALT are activated. Activation in GALT is a previously unknown potential fate for immature human B cells. The process of maturation from immature transitional B cell through to mature naive B cell includes the removal of autoreactive cells from the developing repertoire, a process which is known to fail in systemic lupus erythematosus (SLE). We observe that immature B cells in SLE are poorly equipped to access the gut and that gut immune compartments are depleted in SLE. Thus, activation of immature B cells in GALT may function as a checkpoint that protects against autoimmunity. In healthy individuals, this pathway may be involved in generating the vast population of IgA plasma cells and also the enigmatic marginal zone B cell subset that is poorly understood in humans.

  3. Rapamycin causes growth arrest and inhibition of invasion in human chondrosarcoma cells.

    Science.gov (United States)

    Song, Jian; Wang, Xiaobo; Zhu, Jiaxue; Liu, Jun

    2016-01-01

    Chondrosarcoma is a highly malignant tumor that is characterized by a potent capacity to invade locally and cause distant metastasis and notable for its lack of response to conventional chemotherapy or radiotherapy. Rapamycin, the inhibitor of mammalian target of rapamycin (mTOR), is a valuable drug with diverse clinical applications and regulates many cellular processes. However, the effects of rapamycin on cell growth and invasion of human chondrosarcoma cells are not well known. We determined the effect of rapamycin on cell proliferation, cell cycle arrest and invasion by using MTS, flow cytometry and invasion assays in two human chondrosarcoma cell lines, SW1353 and JJ012. Cell cycle regulatory and invasion-related genes' expression analysis was performed by quantitative RT-PCR (qRT-PCR). We also evaluated the effect of rapamycin on tumor growth by using mice xenograph models. Rapamycin significantly inhibited the cell proliferation, induced cell cycle arrest and decreased the invasion ability of human chondrosarcoma cells. Meanwhile, rapamycin modulated the cell cycle regulatory and invasion-related genes' expression. Furthermore, the tumor growth of mice xenograph models with human chondrosarcoma cells was significantly inhibited by rapamycin. These results provided further insight into the role of rapamycin in chondrosarcoma. Therefore, rapamycin targeted therapy may be a potential treatment strategy for chondrosarcoma.

  4. 1,25-dihydroxyvitamin D3 impairs NF-κB activation in human naive B cells

    International Nuclear Information System (INIS)

    Geldmeyer-Hilt, Kerstin; Heine, Guido; Hartmann, Bjoern; Baumgrass, Ria; Radbruch, Andreas; Worm, Margitta

    2011-01-01

    Highlights: → In naive B cells, VDR activation by calcitriol results in reduced NF-κB p105 and p50 protein expression. → Ligating the VDR with calcitriol causes reduced nuclear translocation of NF-κB p65. → Reduced nuclear amount of p65 after calcitriol incubation results in reduced binding of p65 on the p105 promoter. → Thus, vitamin D receptor signaling may reduce or prevent activation of B cells and unwanted immune responses, e.g. in IgE dependent diseases such as allergic asthma. -- Abstract: 1α,25-dihydroxyvitamin D 3 (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human naive B cells. Naive B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naive B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naive B cells, namely by reducing CD40 signaling.

  5. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kanayo [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Tanaka, Satoshi [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Yoshimoto, Tadashi [Department of Life Science, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka 572-8508 (Japan); Takaoka, Masanori [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan)

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  6. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  7. Restriction of human herpesvirus 6B replication by p53

    DEFF Research Database (Denmark)

    Øster, Bodil; Kofod-Olsen, Emil; Bundgaard, Bettina

    2008-01-01

    Human herpesvirus 6B (HHV-6B) induces significant accumulation of p53 in both the nucleus and cytoplasm during infection. Activation of p53 by DNA damage is known to induce either growth arrest or apoptosis; nevertheless, HHV-6B-infected cells are arrested in their cell cycle independently of p53...

  8. Rel/Nuclear factor-kappa B apoptosis pathways in human cervical cancer cells

    Science.gov (United States)

    Shehata, Marlene F

    2005-01-01

    Cervical cancer is considered a common yet preventable cause of death in women. It has been estimated that about 420 women out of the 1400 women diagnosed with cervical cancer will die during 5 years from diagnosis. This review addresses the pathogenesis of cervical cancer in humans with a special emphasis on the human papilloma virus as a predominant cause of cervical cancer in humans. The current understanding of apoptosis and regulators of apoptosis as well as their implication in carcinogenesis will follow. A special focus will be given to the role of Rel/NF-κB family of genes in the growth and chemotherapeutic treatment of the malignant HeLa cervical cells emphasizing on Xrel3, a cRel homologue. PMID:15857509

  9. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth

    Science.gov (United States)

    Ono, Masanori; Yin, Ping; Navarro, Antonia; Moravek, Molly B.; Coon, John S.; Druschitz, Stacy A.; Gottardi, Cara J.; Bulun, Serdar E.

    2014-01-01

    Objective Dysregulation of WNT signaling plays a central role in tumor cell growth and progression. Our goal was to assess the effect of three WNT/β-catenin pathway inhibitors, Inhibitor of β-Catenin And TCF4 (ICAT), niclosamide, and XAV939 on the proliferation of primary cultures of human uterine leiomyoma cells. Design Prospective study of human leiomyoma cells obtained from myomectomy or hysterectomy. Setting University research laboratory. Patient(s) Women (n=38) aged 27–53 years undergoing surgery. Intervention(s) Adenoviral ICAT overexpression or treatment with varying concentrations of niclosamide or XAV939. Main Outcome Measure(s) Cell proliferation, cell death, WNT/β-catenin target gene expression or reporter gene regulation, β-catenin levels and cellular localization. Result(s) ICAT, niclosamide, or XAV939 inhibit WNT/β-catenin pathway activation and exert anti-proliferative effects in primary cultures of human leiomyoma cells. Conclusion(s) Three WNT/β-catenin pathway inhibitors specifically block human leiomyoma growth and proliferation, suggesting that the canonical WNT pathway may be a potential therapeutic target for the treatment of uterine leiomyoma. Our findings provide rationale for further preclinical and clinical evaluation of ICAT, niclosamide, and XAV939 as candidate anti-tumor agents for uterine leiomyoma. PMID:24534281

  10. Effect of soy saponin on the growth of human colon cancer cells

    Science.gov (United States)

    Tsai, Cheng-Yu; Chen, Yue-Hwa; Chien, Yi-Wen; Huang, Wen-Hsuan; Lin, Shyh-Hsiang

    2010-01-01

    AIM: To investigate the effect of extracted soybean saponins on the growth of human colon cancer cells. METHODS: WiDr human colon cancer cells were treated with 150, 300, 600 or 1200 ppm of soy saponin to determine the effect on cell growth, cell morphology, alkaline phosphatase (AP) and protein kinase C (PKC) activities, and P53 protein, c-Fos and c-Jun gene expression. RESULTS: Soy saponin decreased the number of viable cells in a dose-dependent manner and suppressed 12-O-tetradecanol-phorbol-13-acetate-stimulated PKC activity (P saponins developed cytoplasmic vesicles and the cell membrane became rougher and more irregular in a dose-dependent manner, and eventually disassembled. At 600 and 1200 ppm, the activity of AP was increased (P saponin. CONCLUSION: Soy saponin may be effective in preventing colon cancer by affecting cell morphology, cell proliferation enzymes, and cell growth. PMID:20632438

  11. Carcino-embryonic antigen in monitoring the growth of human colon adenocarcinoma tumour cells SK-CO-1 and HT-29 in vitro and in nude mice

    DEFF Research Database (Denmark)

    Sölétormos, G; Fogh, J M; Sehested-Hansen, B

    1997-01-01

    A set of experimental model systems were designed to investigate (a) the inter-relationship between growth of two human cancer cell lines (SK-CO-1, HT-29) and carcino-embryonic antigen (CEA) kinetics; and (b) whether neoplastic growth or CEA concentration is modulated by human growth hormone (hGH...

  12. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  13. gamma-Glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver.

    Science.gov (United States)

    Obrador, Elena; Carretero, Julian; Ortega, Angel; Medina, Ignacio; Rodilla, Vicente; Pellicer, José A; Estrela, José M

    2002-01-01

    B16 melanoma (B16M) cells with high glutathione (GSH) content show rapid proliferation in vitro and high metastatic activity in the liver in vivo. gamma-Glutamyl transpeptidase (GGT)-mediated extracellular GSH cleavage and intracellular GSH synthesis were studied in vitro in B16M cells with high (F10) and low (F1) metastatic potential. GGT activity was modified by transfection with the human GGT gene (B16MF1/Tet-GGT cells) or by acivicin-induced inhibition. B16MF1/Tet-GGT and B16MF10 cells exhibited higher GSH content (35 +/- 6 and 40 +/- 5 nmol/10(6) cells, respectively) and GGT activity (89 +/- 9 and 37 +/- 7 mU/10(6) cells, respectively) as compared (P <.05) with B16MF1 cells (10 +/- 3 nmol GSH and 4 mU GGT/10(6) cells). Metastasis (number of foci/100 mm(3) of liver) increased in B16MF1 cells pretreated with GSH ester ( approximately 3-fold, P <.01), and decreased in B16MF1/Tet-GGT and B16MF10 cells pretreated with the GSH synthesis inhibitor L-buthionine (S,R)-sulphoximine ( approximately 5-fold and 2-fold, respectively, P <.01). Liver, kidney, brain, lung, and erythrocyte GSH content in B16MF1/Tet-GGT- or B16MF10-bearing mice decreased as compared with B16MF1- and non-tumor-bearing mice. Organic anion transporting polypeptide 1-independent sinusoidal GSH efflux from hepatocytes increased in B16MF1/Tet-GGT- or B16MF10-bearing mice ( approximately 2-fold, P <.01) as compared with non-tumor-bearing mice. Our results indicate that tumor GGT activity and an intertissue flow of GSH can regulate GSH content of melanoma cells and their metastatic growth in the liver.

  14. Evaluation of anticancer peptide VEGF111b secretion in HEK293 human cells

    Directory of Open Access Journals (Sweden)

    Morteza Sadeghi

    2017-04-01

    Full Text Available Background: VEGF111b is a new isoform of vascular endothelial growth factor (VEGF recently considered as a new anticancer drug. The aim of this study was to evaluate the VEGF111b secretion from HEK293 cell wall in order to commercial production of this recombinant factor. Materials and Methods: After the design of VEGF111b sequence using OLIGO software and NCBI gene bank data, it was cloned into the pBUD.cE4.1 vector. The pBUD.VEGF111b recombinant vector was transfected into HEK293 cells using lipofectamine kit. Forty-eight hours after the transfection the production of VEGF111b was estimated by Western blotting and Human anti VEGF antibody. The VEGF111b secretion into cell culture and cell lysate extract was measured using ELISA. Results: The correct cloning of VEGF111b into pBUD.cE4.1vector was confirmed using enzymatic digestion and gel electrophoresis. The observed production of recombinant peptide in HEK293 was confirmed with 12KDa band in cell lysate extract of Western blotting. The ELISA results at 450 nanometer absorbance for cell culture media and cell lysate extract were 19.20±2.81 pg/ml and 32.87±7.42 pg/ml, respectively. However, no VEGF111b expression was observed in negative controls. Conclusion: The findings of this study indicate the powerful ability of transformation and secretion of VEGF111b from HEK293 cell wall to cell culture media with no breaking and proteolytic digestion. It seems that the commercial production and purification of this therapeutic peptide from HEK293 cell culture would be possible with high efficiency.

  15. Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-kB pathway activation.

    Directory of Open Access Journals (Sweden)

    Erika Terzuoli

    Full Text Available Bradykinin (BK induces angiogenesis by promoting vessel permeability, growth and remodeling. This study aimed to demonstrate that the B2R antagonist, fasitibant, inhibits the BK pro-angiogenic effects.We assesed the ability of fasibitant to antagonize the BK stimulation of cultured human cells (HUVEC and circulating pro-angiogenic cells (PACs, in producing cell permeability (paracellular flux, migration and pseocapillary formation. The latter parameter was studied in vitro (matrigel assay and in vivo in mice (matrigel plug and in rat model of experimental osteoarthritis (OA. We also evaluated NF-κB activation in cultured cells by measuring its nuclear translocation and its downstream effectors such as the proangiogenic ciclooxygenase-2 (COX-2, prostaglandin E-2 and vascular endothelial growth factor (VEGF.HUVEC, exposed to BK (1-10 µM, showed increased permeability, disassembly of adherens and tight-junction, increased cell migration, and pseudocapillaries formation. We observed a significant increase of vessel density in the matrigel assay in mice and in rats OA model. Importantly, B2R stimulation elicited, both in HUVEC and PACs, NF-κB activation, leading to COX-2 overexpression, enhanced prostaglandin E-2 production. and VEGF output. The BK/NF-κB axis, and the ensuing amplification of inflammatory/angiogenic responses were fully prevented by fasitibant as well as by IKK VII, an NF-κB. Inhibitor.This work illustrates the role of the endothelium in the inflammation provoked by the BK/NF-κB axis. It also demonstates that B2R blockade by the antaogonist fasibitant, abolishes both the initial stimulus and its amplification, strongly attenuating the propagation of inflammation.

  16. The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo.

    Science.gov (United States)

    Eliassen, Liv Tone; Berge, Gerd; Leknessund, Arild; Wikman, Mari; Lindin, Inger; Løkke, Cecilie; Ponthan, Frida; Johnsen, John Inge; Sveinbjørnsson, Baldur; Kogner, Per; Flaegstad, Trond; Rekdal, Øystein

    2006-08-01

    Antimicrobial peptides have been shown to exert cytotoxic activity towards cancer cells through their ability to interact with negatively charged cell membranes. In this study the cytotoxic effect of the antimicrobial peptide, LfcinB was tested in a panel of human neuroblastoma cell lines. LfcinB displayed a selective cytotoxic activity against both MYCN-amplified and non-MYCN-amplified cell lines. Non-transformed fibroblasts were not substantially affected by LfcinB. Treatment of neuroblastoma cells with LfcinB induced rapid destabilization of the cytoplasmic membrane and formation of membrane blebs. Depolarization of the mitochondria membranes and irreversible changes in the mitochondria morphology was also evident. Immuno- and fluorescence-labeled LfcinB revealed that the peptide co-localized with mitochondria. Furthermore, treatment of neuroblastoma cells with LfcinB induced cleavage of caspase-6, -7 and -9 followed by cell death. However, neither addition of the pan-caspase inhibitor, zVAD-fmk, or specific caspase inhibitors could reverse the cytotoxic effect induced by LfcinB. Treatment of established SH-SY-5Y neuroblastoma xenografts with repeated injections of LfcinB resulted in significant tumor growth inhibition. These results revealed a selective destabilizing effect of LfcinB on two important targets in the neuroblastoma cells, the cytoplasmic- and the mitochondria membrane. Copyright (c) 2006 Wiley-Liss, Inc.

  17. bFGF influences human articular chondrocyte differentiation

    DEFF Research Database (Denmark)

    Schmal, H; Zwingmann, J; Fehrenbach, M

    2007-01-01

    BACKGROUND: The possible functional role of basic fibroblast growth factor (bFGF) in regulating the mitotic and metabolic activity of primary human articular chondrocytes was investigated. METHODS: [EF1]Chondrocytes were enzymatically isolated from femoral head cartilage, and were cultured in vitro......FGF concentrations in supernatants of primary human articular chondrocytes peaked immediately after isolation and then declined. In a dose-dependent manner, bFGF enhanced cell amplification and viability. BFGF induced a decrease in the apoptotic cell population, while the number of proliferating cells remained...... by 53%, which was correlated with diminished mRNA production. Monolayer cultured chondrocytes secreted significant amounts of aggrecan that decreased over time. Secretion of this cartilage-specific marker was further reduced by the addition of bFGF. DISCUSSION: These findings highlight the potential...

  18. Human B cells produce chemokine CXCL10 in the presence of Mycobacterium tuberculosis specific T cells

    DEFF Research Database (Denmark)

    Hoff, Soren T; Salman, Ahmed M; Ruhwald, Morten

    2015-01-01

    BACKGROUND: The role of B cells in human host response to Mycobacterium tuberculosis (Mtb) infection is still controversial, but recent evidence suggest that B cell follicle like structures within the lung may influence host responses through regulation of the local cytokine environment. A candid......BACKGROUND: The role of B cells in human host response to Mycobacterium tuberculosis (Mtb) infection is still controversial, but recent evidence suggest that B cell follicle like structures within the lung may influence host responses through regulation of the local cytokine environment...

  19. Saponin B, a novel cytostatic compound purified from Anemone taipaiensis, induces apoptosis in a human glioblastoma cell line.

    Science.gov (United States)

    Wang, Yuangang; Tang, Haifeng; Zhang, Yun; Li, Juan; Li, Bo; Gao, Zhenhui; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-11-01

    Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors. Saponin B, a novel compound isolated from the medicinal plant, Anemone taipaiensis, has been found to have a strong time- and dose-dependent cytostatic effect on human glioma cells and to suppress the growth of U87MG GBM cells. In this study, we investigated whether saponin B induces the apoptosis of glioblastoma cells and examined the underlying mechanism(s) of action of saponin B. Saponin B significantly suppressed U87MG cell proliferation. Flow cytometric analysis of DNA in the U87MG cells confirmed that saponin B blocked the cell cycle at the S phase. Furthermore, treatment of the U87MG cells with saponin B induced chromatin condensation and led to the formation of apoptotic bodies, as observed under a fluorescence microscope, and Annexin V/PI assay further suggested that phosphatidylserine (PS) externalization was apparent at higher drug concentrations. Treatment with saponin B activated the receptor-mediated pathway of apoptosis, as western blot analysis revealed the activation of Fas-l. Saponin B increased the Bax and caspase-3 ratio and decreased the protein expression of Bcl-2. The results from the present study demonstrate that the novel compound, saponin B, effectively induces the apoptosis of GBM cells and inhibits glioma cell growth and survival. Therefore, saponin B may be a potential candidate for the development of novel cancer therapeutics with antitumor activity against gliomas.

  20. Mechanisms underlying regulation of cell cycle and apoptosis by hnRNP B1 in human lung adenocarcinoma A549 cells.

    Science.gov (United States)

    Han, Juan; Tang, Feng-ming; Pu, Dan; Xu, Dan; Wang, Tao; Li, Weimin

    2014-01-01

    Overexpression of heterogeneous nuclear ribonucleoprotein B1 (hnRNP B1), a nuclear RNA binding protein, has been reported to occur in early-stage lung cancer and in premalignant lesions. DNA-dependent protein kinase (DNA-PK) is known to be involved in the repair of double-strand DNA breaks. Reduced capacity to repair DNA has been associated with the risk of lung cancer. We investigated a link between hnRNP B1 and DNA-PK and their effects on proliferation, cell cycle, and apoptosis in the human lung adenocarcinoma cell line A549. We found that hnRNP B1 and DNA-PK interact with each other in a complex fashion. Reducing hnRNP B1 expression in A549 cells with the use of RNAi led to upregulation of p53 activity through upregulation of DNA-PK activity but without inducing p53 expression. Further, suppression of hnRNP B1 in A549 cells slowed cell proliferation, promoted apoptosis, and induced cell cycle arrest at the G1 stage. The presence of NU7026 reduced the arrest of cells at the G1 stage and reduced the apoptosis rate while promoting cell growth. Taken together, our results demonstrate that by regulating DNA-PK activity, hnRNP B1 can affect p53-mediated cell cycle progression and apoptosis, resulting in greater cell survival and subsequent proliferation.

  1. Hydrogen sulfide-releasing naproxen suppresses colon cancer cell growth and inhibits NF-κB signaling

    Directory of Open Access Journals (Sweden)

    Kodela R

    2015-08-01

    Full Text Available Ravinder Kodela,1 Niharika Nath,2 Mitali Chattopadhyay,1 Diandra E Nesbitt,1 Carlos A Velázquez-Martínez,3 Khosrow Kashfi11Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, 2Department of Life Sciences, New York Institute of Technology, New York, NY, USA; 3Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada Abstract: Colorectal cancer (CRC is the second leading cause of death due to cancer and the third most common cancer in men and women in the USA. Nuclear factor kappa B (NF-κB is known to be activated in CRC and is strongly implicated in its development and progression. Therefore, activated NF-κB constitutes a bona fide target for drug development in this type of malignancy. Many epidemiological and interventional studies have established nonsteroidal anti-inflammatory drugs (NSAIDs as a viable chemopreventive strategy against CRC. Our previous studies have shown that several novel hydrogen sulfide-releasing NSAIDs are promising anticancer agents and are safer derivatives of NSAIDs. In this study, we examined the growth inhibitory effect of a novel H2S-releasing naproxen (HS-NAP, which has a repertoire as a cardiovascular-safe NSAID, for its effects on cell proliferation, cell cycle phase transitions, and apoptosis using HT-29 human colon cancer cells. We also investigated its effect as a chemopreventive agent in a xenograft mouse model. HS-NAP suppressed the growth of HT-29 cells by induction of G0/G1 arrest and apoptosis and downregulated NF-κB. Tumor xenografts in mice were significantly reduced in volume. The decrease in tumor mass was associated with a reduction of cell proliferation, induction of apoptosis, and decreases in NF-κB levels in vivo. Therefore, HS-NAP demonstrates strong anticancer potential in CRC. Keywords: nonsteroidal anti-inflammatory drugs, cell cycle, apoptosis, xenograft, NF-κB

  2. FGF-2b and h-PL Transform Duct and Non-Endocrine Human Pancreatic Cells into Endocrine Insulin Secreting Cells by Modulating Differentiating Genes

    Directory of Open Access Journals (Sweden)

    Giulia Donadel

    2017-10-01

    Full Text Available Background: Diabetes mellitus (DM is a multifactorial disease orphan of a cure. Regenerative medicine has been proposed as novel strategy for DM therapy. Human fibroblast growth factor (FGF-2b controls β-cell clusters via autocrine action, and human placental lactogen (hPL-A increases functional β-cells. We hypothesized whether FGF-2b/hPL-A treatment induces β-cell differentiation from ductal/non-endocrine precursor(s by modulating specific genes expression. Methods: Human pancreatic ductal-cells (PANC-1 and non-endocrine pancreatic cells were treated with FGF-2b plus hPL-A at 500 ng/mL. Cytofluorimetry and Immunofluorescence have been performed to detect expression of endocrine, ductal and acinar markers. Bromodeoxyuridine incorporation and annexin-V quantified cells proliferation and apoptosis. Insulin secretion was assessed by RIA kit, and electron microscopy analyzed islet-like clusters. Results: Increase in PANC-1 duct cells de-differentiation into islet-like aggregates was observed after FGF-2b/hPL-A treatment showing ultrastructure typical of islets-aggregates. These clusters, after stimulation with FGF-2b/hPL-A, had significant (p < 0.05 increase in insulin, C-peptide, pancreatic and duodenal homeobox 1 (PDX-1, Nkx2.2, Nkx6.1, somatostatin, glucagon, and glucose transporter 2 (Glut-2, compared with control cells. Markers of PANC-1 (Cytokeratin-19, MUC-1, CA19-9 were decreased (p < 0.05. These aggregates after treatment with FGF-2b/hPL-A significantly reduced levels of apoptosis. Conclusions: FGF-2b and hPL-A are promising candidates for regenerative therapy in DM by inducing de-differentiation of stem cells modulating pivotal endocrine genes.

  3. 1,25-dihydroxyvitamin D{sub 3} impairs NF-{kappa}B activation in human naive B cells

    Energy Technology Data Exchange (ETDEWEB)

    Geldmeyer-Hilt, Kerstin, E-mail: kerstin.hilt@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany); Heine, Guido, E-mail: guido.heine@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany); Deutsches Rheuma-Forschungszentrum Berlin, Chariteplatz 1, 10117 Berlin (Germany); Hartmann, Bjoern, E-mail: bjoern.hartmann@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany); Baumgrass, Ria, E-mail: baumgrass@drfz.de [Deutsches Rheuma-Forschungszentrum Berlin, Chariteplatz 1, 10117 Berlin (Germany); Radbruch, Andreas, E-mail: radbruch@drfz.de [Deutsches Rheuma-Forschungszentrum Berlin, Chariteplatz 1, 10117 Berlin (Germany); Worm, Margitta, E-mail: margitta.worm@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany)

    2011-04-22

    Highlights: {yields} In naive B cells, VDR activation by calcitriol results in reduced NF-{kappa}B p105 and p50 protein expression. {yields} Ligating the VDR with calcitriol causes reduced nuclear translocation of NF-{kappa}B p65. {yields} Reduced nuclear amount of p65 after calcitriol incubation results in reduced binding of p65 on the p105 promoter. {yields} Thus, vitamin D receptor signaling may reduce or prevent activation of B cells and unwanted immune responses, e.g. in IgE dependent diseases such as allergic asthma. -- Abstract: 1{alpha},25-dihydroxyvitamin D{sub 3} (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-{kappa}B p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-{kappa}B mediated activation of human naive B cells. Naive B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naive B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-{kappa}B activation by interference with NF-{kappa}B p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naive B cells, namely by reducing CD40 signaling.

  4. SerpinB1 Promotes Pancreatic β Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O’Donnell, Eileen; Kulkarni, Rohit N.

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  5. CD83 Antibody Inhibits Human B Cell Responses to Antigen as well as Dendritic Cell-Mediated CD4 T Cell Responses.

    Science.gov (United States)

    Wong, Kuan Y; Baron, Rebecca; Seldon, Therese A; Jones, Martina L; Rice, Alison M; Munster, David J

    2018-05-15

    Anti-CD83 Ab capable of Ab-dependent cellular cytotoxicity can deplete activated CD83 + human dendritic cells, thereby inhibiting CD4 T cell-mediated acute graft-versus-host disease. As CD83 is also expressed on the surface of activated B lymphocytes, we hypothesized that anti-CD83 would also inhibit B cell responses to stimulation. We found that anti-CD83 inhibited total IgM and IgG production in vitro by allostimulated human PBMC. Also, Ag-specific Ab responses to immunization of SCID mice xenografted with human PBMC were inhibited by anti-CD83 treatment. This inhibition occurred without depletion of all human B cells because anti-CD83 lysed activated CD83 + B cells by Ab-dependent cellular cytotoxicity and spared resting (CD83 - ) B cells. In cultured human PBMC, anti-CD83 inhibited tetanus toxoid-stimulated B cell proliferation and concomitant dendritic cell-mediated CD4 T cell proliferation and expression of IFN-γ and IL-17A, with minimal losses of B cells (80% of B cells but had no effect on CD4 T cell proliferation and cytokine expression. By virtue of the ability of anti-CD83 to selectively deplete activated, but not resting, B cells and dendritic cells, with the latter reducing CD4 T cell responses, anti-CD83 may be clinically useful in autoimmunity and transplantation. Advantages might include inhibited expansion of autoantigen- or alloantigen-specific B cells and CD4 T cells, thus preventing further production of pathogenic Abs and inflammatory cytokines while preserving protective memory and regulatory cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  6. Parvovirus B19 integration into human CD36+ erythroid progenitor cells.

    Science.gov (United States)

    Janovitz, Tyler; Wong, Susan; Young, Neal S; Oliveira, Thiago; Falck-Pedersen, Erik

    2017-11-01

    The pathogenic autonomous human parvovirus B19 (B19V) productively infects erythroid progenitor cells (EPCs). Functional similarities between B19V nonstructural protein (NS1), a DNA binding endonuclease, and the Rep proteins of Adeno-Associated Virus (AAV) led us to hypothesize that NS1 may facilitate targeted nicking of the human genome and B19 vDNA integration. We adapted an integration capture sequencing protocol (IC-Seq) to screen B19V infected human CD36+ EPCs for viral integrants, and discovered 40,000 unique B19V integration events distributed throughout the human genome. Computational analysis of integration patterns revealed strong correlations with gene intronic regions, H3K9me3 sites, and the identification of 41 base pair consensus sequence with an octanucleotide core motif. The octanucleotide core has homology to a single region of B19V, adjacent to the P6 promoter TATA box. We present the first direct evidence that B19V infection of erythroid progenitor cells disrupts the human genome and facilitates viral DNA integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells.

    Science.gov (United States)

    Huygens, Caroline; Liénart, Stéphanie; Dedobbeleer, Olivier; Stockis, Julie; Gauthy, Emilie; Coulie, Pierre G; Lucas, Sophie

    2015-08-14

    Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia

    NARCIS (Netherlands)

    Kroening, Sven; Neubauer, Emily; Wullich, Bernd; Aten, Jan; Goppelt-Struebe, Margarete

    2010-01-01

    Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 298:F796-F806, 2010. First published December 23, 2009;

  9. MicroRNA-29b-1 impairs in vitro cell proliferation, self‑renewal and chemoresistance of human osteosarcoma 3AB-OS cancer stem cells.

    Science.gov (United States)

    Di Fiore, Riccardo; Drago-Ferrante, Rosa; Pentimalli, Francesca; Di Marzo, Domenico; Forte, Iris Maria; D'Anneo, Antonella; Carlisi, Daniela; De Blasio, Anna; Giuliano, Michela; Tesoriere, Giovanni; Giordano, Antonio; Vento, Renza

    2014-11-01

    Osteosarcoma (OS) is the most common type of bone cancer, with a peak incidence in the early childhood. Emerging evidence suggests that treatments targeting cancer stem cells (CSCs) within a tumor can halt cancer and improve patient survival. MicroRNAs (miRNAs) have been implicated in the maintenance of the CSC phenotype, thus, identification of CSC-related miRNAs would provide information for a better understanding of CSCs. Downregulation of miRNA-29 family members (miR-29a/b/c; miR‑29s) was observed in human OS, however, little is known about the functions of miR-29s in human OS CSCs. Previously, during the characterization of 3AB-OS cells, a CSC line selected from human OS MG63 cells, we showed a potent downregulation of miR-29b. In this study, after stable transfection of 3AB-OS cells with miR-29b-1, we investigated the role of miR-29b-1 in regulating cell proliferation, sarcosphere-forming ability, clonogenic growth, chemosensitivity, migration and invasive ability of 3AB-OS cells, in vitro. We found that, miR-29b-1 overexpression consistently reduced both, 3AB-OS CSCs growth in two- and three-dimensional culture systems and their sarcosphere- and colony-forming ability. In addition, while miR-29b-1 overexpression sensitized 3AB-OS cells to chemotherapeutic drug-induced apoptosis, it did not influence their migratory and invasive capacities, thus suggesting a context-depending role of miR-29b-1. Using publicly available databases, we proceeded to identify potential miR-29b target genes, known to play a role in the above reported functions. Among these targets we analyzed CD133, N-Myc, CCND2, E2F1 and E2F2, Bcl-2 and IAP-2. We also analyzed the most important stemness markers as Oct3/4, Sox2 and Nanog. Real-time RT-PCR and western-blot analyses showed that miR-29b-1 negatively regulated the expression of these markers. Overall, the results show that miR-29b-1 suppresses stemness properties of 3AB-OS CSCs and suggest that developing miR-29b-1 as a novel

  10. The heat shock protein 90 inhibitor 17-AAG suppresses growth and induces apoptosis in human cholangiocarcinoma cells.

    Science.gov (United States)

    Zhang, Jianjun; Zheng, Zhichao; Zhao, Yan; Zhang, Tao; Gu, Xiaohu; Yang, Wei

    2013-11-01

    The aim of this study was to investigate the effects of 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a heat shock protein 90 (HSP90) inhibitor, on the proliferation, cell cycle, and apoptosis of human cholangiocarcinoma (CCA) cells. Cell proliferation and cell cycle distribution were measured by the MTT assay and flow cytometry analysis, respectively. Induction of apoptosis was determined by flow cytometry and Hoechst staining. The expressions of cleaved poly ADP-ribose polymerase (PARP), Bcl-2, Survivin, and Cyclin B1 were detected by Western blot analysis. The activity of caspase-3 was also examined. We found that 17-AAG inhibited cell growth and induced G2/M cell cycle arrest and apoptosis in CCA cells together with the down-regulation of Bcl-2, Survivin and Cyclin B1, and the up-regulation of cleaved PARP. Moreover, increased caspase-3 activity was also observed in CCA cells treated with 17-AAG. In conclusion, our data suggest that the inhibition of HSP90 function by 17-AAG may provide a promising therapeutic strategy for the treatment of human CCA.

  11. B-cell exposure to self-antigen induces IL-10 producing B cells as well as IL-6- and TNF-α-producing B-cell subsets in healthy humans

    DEFF Research Database (Denmark)

    Langkjær, Anina; Kristensen, Birte; Hansen, Bjarke E

    2012-01-01

    Human B cells are able to secrete IL-10 after stimulation with mitogens, but their ability to produce IL-10 and regulate T-cell responses after stimulation with self-antigens is unclear. We co-cultured thyroglobulin-pulsed B cells from healthy donors with autologous T cells and observed production...... of IL-10 and TGF-β, in addition to TNF-α and IL-6. Pulsing with foreign antigen, tetanus toxoid (TT), induced a Th1-response with minimal IL-10 production. After thyroglobulin-pulsing, 1.10±0.50% of B cells and 1.00±0.20% of CD4(+) T cells produced IL-10, compared to 0.29±0.19% of B cells (P=0.01) and 0.......13±0.15% of CD4(+) T cells (P=0.006) following TT-pulsing. Thyroglobulin-stimulated, IL-10-secreting B cells were enriched within CD5(+) and CD24(high) cells. While thyroglobulin-pulsed B cells induced only modest proliferation of CD4(+) T cells, B cells pulsed with TT induced vigorous proliferation. Thus, B...

  12. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor

    International Nuclear Information System (INIS)

    Auf, Gregor; Vajkoczy, Peter; Seno, Masaharu; Bikfalvi, Andreas; Minchenko, Dmitri; Minchenko, Oleksandr; Moenner, Michel; Jabouille, Arnaud; Delugin, Maylis; Guérit, Sylvaine; Pineau, Raphael; North, Sophie; Platonova, Natalia; Maitre, Marlène; Favereaux, Alexandre

    2013-01-01

    Epidermal growth factor (EGF) receptors contribute to the development of malignant glioma. Here we considered the possible implication of the EGFR ligand epiregulin (EREG) in glioma development in relation to the activity of the unfolded protein response (UPR) sensor IRE1α. We also examined EREG status in several glioblastoma cell lines and in malignant glioma. Expression and biological properties of EREG were analyzed in human glioma cells in vitro and in human tumor xenografts with regard to the presence of ErbB proteins and to the blockade of IRE1α. Inactivation of IRE1α was achieved by using either the dominant-negative strategy or siRNA-mediated knockdown. EREG was secreted in high amounts by U87 cells, which also expressed its cognate EGF receptor (ErbB1). A stimulatory autocrine loop mediated by EREG was evidenced by the decrease in cell proliferation using specific blocking antibodies directed against either ErbB1 (cetuximab) or EREG itself. In comparison, anti-ErbB2 antibodies (trastuzumab) had no significant effect. Inhibition of IRE1α dramatically reduced EREG expression both in cell culture and in human xenograft tumor models. The high-expression rate of EREG in U87 cells was therefore linked to IRE1α, although being modestly affected by chemical inducers of the endoplasmic reticulum stress. In addition, IRE1-mediated production of EREG did not depend on IRE1 RNase domain, as neither the selective dominant-negative invalidation of the RNase activity (IRE1 kinase active) nor the siRNA-mediated knockdown of XBP1 had significant effect on EREG expression. Finally, chemical inhibition of c-Jun N-terminal kinases (JNK) using the SP600125 compound reduced the ability of cells to express EREG, demonstrating a link between the growth factor production and JNK activation under the dependence of IRE1α. EREG may contribute to glioma progression under the control of IRE1α, as exemplified here by the autocrine proliferation loop mediated in U87 cells by the

  13. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand

    Science.gov (United States)

    Maddur, Mohan S.; Sharma, Meenu; Hegde, Pushpa; Stephen-Victor, Emmanuel; Pulendran, Bali; Kaveri, Srini V.; Bayry, Jagadeesh

    2015-01-01

    Dendritic cells (DCs) play a critical role in immune homeostasis by regulating the functions of various immune cells, including T and B cells. Notably, DCs also undergo education on reciprocal signalling by these immune cells and environmental factors. Various reports demonstrated that B cells have profound regulatory functions, although only few reports have explored the regulation of human DCs by B cells. Here we demonstrate that activated but not resting B cells induce maturation of DCs with distinct features to polarize Th2 cells that secrete interleukin (IL)-5, IL-4 and IL-13. B-cell-induced maturation of DCs is contact dependent and implicates signalling of B-cell activation molecules CD69, B-cell-activating factor receptor, and transmembrane activator and calcium-modulating cyclophilin ligand interactor. Mechanistically, differentiation of Th2 cells by B-cell-matured DCs is dependent on OX-40 ligand. Collectively, our results suggest that B cells have the ability to control their own effector functions by enhancing the ability of human DCs to mediate Th2 differentiation. PMID:24910129

  14. Exogenous and Endogeneous Disialosyl Ganglioside GD1b Induces Apoptosis of MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sun-Hyung Ha

    2016-04-01

    Full Text Available Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose polymerase, without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: β1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2 gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis.

  15. 92R Monoclonal Antibody Inhibits Human CCR9+ Leukemia Cells Growth in NSG Mice Xenografts.

    Science.gov (United States)

    Somovilla-Crespo, Beatriz; Martín Monzón, Maria Teresa; Vela, Maria; Corraliza-Gorjón, Isabel; Santamaria, Silvia; Garcia-Sanz, Jose A; Kremer, Leonor

    2018-01-01

    CCR9 is as an interesting target for the treatment of human CCR9 + -T cell acute lymphoblastic leukemia, since its expression is limited to immature cells in the thymus, infiltrating leukocytes in the small intestine and a small fraction of mature circulating T lymphocytes. 92R, a new mouse mAb (IgG2a isotype), was raised using the A-isoform of hCCR9 as immunogen. Its initial characterization demonstrates that binds with high affinity to the CCR9 N-terminal domain, competing with the previously described 91R mAb for receptor binding. 92R inhibits human CCR9 + tumor growth in T and B-cell deficient Rag2 -/- mice. In vitro assays suggested complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity as possible in vivo mechanisms of action. Unexpectedly, 92R strongly inhibited tumor growth also in a model with compromised NK and complement activities, suggesting that other mechanisms, including phagocytosis or apoptosis, might also be playing a role on 92R-mediated tumor elimination. Taken together, these data contribute to strengthen the hypothesis of the immune system's opportunistic nature.

  16. B-cell lymphoma 6 protein stimulates oncogenicity of human breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Qiang; Kong, Xiang-jun; Xu, Xiao-chun; Lobie, Peter E; Zhu, Tao; Wu, Zheng-sheng; Liu, Xue; Yan, Hong; He, Yin-huan; Ye, Shan; Cheng, Xing-wang; Zhu, Gui-lu; Wu, Wen-yong; Wang, Xiao-nan

    2014-01-01

    B-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system. This study investigated the role of BCL6 expression in breast cancer and its clinical significance in breast cancer patients. Expression of BCL6 protein was assessed using in situ hybridization and immunohistochemistry in 127 breast cancer patients and 50 patients with breast benign disease as well as in breast cell lines. Expression of BCL6 was restored or knocked down in two breast cancer cell lines (MCF-7 and T47D) using BCL6 cDNA and siRNA, respectively. The phenotypic change of these breast cancer cell lines was assessed using cell viability MTT, Transwell invasion, colony formation, and flow cytometry assays and in a xenograft mice model. Luciferase reporter gene, immunoblot, and qRT-PCR were used to investigate the molecular events after manipulated BCL6 expression in breast cancer cells. BCL6 protein was highly expressed in breast cancer cell lines and tissue specimens and expression of BCL6 protein was associated with disease progression and poor survival of breast cancer patients. In vitro, the forced expression of BCL6 results in increased proliferation, anchorage-independent growth, migration, invasion and survival of breast cancer cell lines, whereas knockdown of BCL6 expression reduced these oncogenic properties of breast cancer cells. Moreover, forced expression of BCL6 increased tumor growth and invasiveness in a nude mouse xenograft model. At the gene level, BCL6 was a target gene of miR-339-5p. Expression of BCL6 induced expression of CXCR4 and cyclinD1 proteins. The current study demonstrated the oncogenic property of BCL6 in breast cancer and further study could target BCL6 as a novel potential therapeutic strategy for breast cancer

  17. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  18. Ligand stimulation of ErbB4 and a constitutively-active ErbB4 mutant result in different biological responses in human pancreatic tumor cell lines

    International Nuclear Information System (INIS)

    Mill, Christopher P.; Gettinger, Kathleen L.; Riese, David J.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility, and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin 1β. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression.

  19. Microtubule and Cell Contact Dependency of ER-bound PTP1B Localization in Growth Cones

    Science.gov (United States)

    Fuentes, Federico

    2009-01-01

    PTP1B is an ER-bound protein tyrosine phosphatase implied in the regulation of cell adhesion. Here we investigated mechanisms involved in the positioning and dynamics of PTP1B in axonal growth cones and evaluated the role of this enzyme in axons. In growth cones, PTP1B consistently localizes in the central domain, and occasionally at the peripheral region and filopodia. Live imaging of GFP-PTP1B reveals dynamic excursions of fingerlike processes within the peripheral region and filopodia. PTP1B and GFP-PTP1B colocalize with ER markers and coalign with microtubules at the peripheral region and redistribute to the base of the growth cone after treatment with nocodazole, a condition that is reversible. Growth cone contact with cellular targets is accompanied by invasion of PTP1B and stable microtubules in the peripheral region aligned with the contact axis. Functional impairment of PTP1B causes retardation of axon elongation, as well as reduction of growth cone filopodia lifetime and Src activity. Our results highlight the role of microtubules and cell contacts in the positioning of ER-bound PTP1B to the peripheral region of growth cones, which may be required for the positive role of PTP1B in axon elongation, filopodia stabilization, and Src activity. PMID:19158394

  20. Blue light inhibits the growth of B16 melanoma cells

    International Nuclear Information System (INIS)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu

    2002-01-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm 2 ) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  1. Blue light inhibits the growth of B16 melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Kawashima, Yuzo [Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima (Japan)

    2002-05-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm{sup 2}) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  2. Danshen extract circumvents drug resistance and represses cell growth in human oral cancer cells.

    Science.gov (United States)

    Yang, Cheng-Yu; Hsieh, Cheng-Chih; Lin, Chih-Kung; Lin, Chun-Shu; Peng, Bo; Lin, Gu-Jiun; Sytwu, Huey-Kang; Chang, Wen-Liang; Chen, Yuan-Wu

    2017-12-29

    Danshen is a common traditional Chinese medicine used to treat neoplastic and chronic inflammatory diseases in China. However, the effects of Danshen on human oral cancer cells remain relatively unknown. This study investigated the antiproliferative effects of a Danshen extract on human oral cancer SAS, SCC25, OEC-M1, and KB drug-resistant cell lines and elucidated the possible underlying mechanism. We investigated the anticancer potential of the Danshen extract in human oral cancer cell lines and an in vivo oral cancer xenograft mouse model. The expression of apoptosis-related molecules was evaluated through Western blotting, and the concentration of in vivo apoptotic markers was measured using immunohistochemical staining. The antitumor effects of 5-fluorouracil and the Danshen extract were compared. Cell proliferation assays revealed that the Danshen extract strongly inhibited oral cancer cell proliferation. Cell morphology studies revealed that the Danshen extract inhibited the growth of SAS, SCC25, and OEC-M1 cells by inducing apoptosis. The Flow cytometric analysis indicated that the Danshen extract induced cell cycle G0/G1 arrest. Immunoblotting analysis for the expression of active caspase-3 and X-linked inhibitor of apoptosis protein indicated that Danshen extract-induced apoptosis in human oral cancer SAS cells was mediated through the caspase pathway. Moreover, the Danshen extract significantly inhibited growth in the SAS xenograft mouse model. Furthermore, the Danshen extract circumvented drug resistance in KB drug-resistant oral cancer cells. The study results suggest that the Danshen extract could be a potential anticancer agent in oral cancer treatment.

  3. RNA interference suppression of A100A4 reduces the growth and metastatic phenotype of human renal cancer cells via NF-kB-dependent MMP-2 and bcl-2 pathway.

    Science.gov (United States)

    Yang, X-C; Wang, X; Luo, L; Dong, D-H; Yu, Q-C; Wang, X-S; Zhao, K

    2013-06-01

    S100A4 is a well established marker and mediator of metastatic disease, but the exact mechanisms responsible for the metastasis promoting effects are less well defined. We tested a hypothesis that the S100A4 gene plays a role in the proliferation and invasiveness of human renal cancer cells (RCC) and may be associated with its metastatic spread. The small interference RNA vector pcDNA3.1-S100A4 siRNA was transfected in to the human renal cancer cell lines ACHN, Ketr-3, OS-RC-2, CaKi-2 and HTB-47, then treated with ABT-737 or BB94. Cell apoptosis and cell viability was detected by flow cytometry and MTT assay. Matrigel was used for cell motility and invasion assay. MMP-2, bcl-2 and S100A4 was detected by RT-PCR and western blot assay. NF-kB subunit p65 activity was detected by confocal microscopy assay. We then determine the effect S100A4 sliencing on tumor growth, lung metastasis development in vivo. Immunohistochemistry was used to detected the expression of S100A4, bcl-2, MMP-2, p65 and CD31. S100A4 silencing in ACHN cells by RNA interference significantly inhibited NF-kB and NF-kB-mediated MMP-2 and bcl-2 activation and cellular migration, proliferation, and promoted apoptosis. Furthermore, re-expression of S100A4 in S100A4-siRNA-transfected ACHN cells by transient S100A4 cDNA transfection restored the NF-kB and NF-kB-mediated MMP-2 and bcl-2 activation and their high migratory and cellular proliferative ability. An inhibitor ABT-737 (the Bcl-2 antagonist targets Bcl-2) against Bcl-2 suppressed cellular proliferation and promoted apoptosis induced by S100A4 re-expression in S100A4-siRNA-transfected ACHN cells. A inhibitor BB94 against MMPs to neutralize MMP-2 protein suppressed cellular invasion and migration induced by S100A4 re-expression in S100A4-siRNA-transfected ACHN cells. In the prevention model, S100A4 silencing inhibited primary tumor growth by (tumor weight) (76 ± 8%) and (tumor volum) (78 ± 4%) respectively and promoted apoptosis and the formation

  4. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    of modulating NCAM expression in vivo. In nude mice, NCAM-transfected cells developed tumors with longer latency periods and slower growth rates than tumors induced by NCAM-negative control cells, implying that NCAM may be involved not only in adhesive and motile behavior of tumor cells but also in their growth......-transfected cells. The fact that NCAM expression influences growth regulation attributes a pivotal role to this cell adhesion molecule during ontogenesis and tumor development.......A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...

  5. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [Foshan Maternal and Child Health Care Hospital, Foshan (China); Lei, Ting [Zhongshan People’s Hospital, Zhongshan (China); Xu, Congjie [Department of Urology, Pepole’s Hospital of Hainan Province, Haikou (China); Li, Huan; Ma, Wenmin; Yang, Yunxia; Fan, Shuming [Foshan Maternal and Child Health Care Hospital, Foshan (China); Liu, Yuchen, E-mail: s_ycliu1@stu.edu.cn [Anhui Medical University, Hefei (China)

    2013-08-23

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.

  6. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    International Nuclear Information System (INIS)

    Zhao, Jun; Lei, Ting; Xu, Congjie; Li, Huan; Ma, Wenmin; Yang, Yunxia; Fan, Shuming; Liu, Yuchen

    2013-01-01

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels were associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC

  7. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines

    International Nuclear Information System (INIS)

    Bronzert, D.A.; Pantazis, P.; Antoniades, H.N.; Kasid, A.; Davidson, N.; Dickson, R.B.; Lippman, M.E.

    1987-01-01

    The authors report that human breast cancer cells secrete a growth factor that is biologically and immunologically similar to platelet-derived growth factor (PDGF). Serum-free medium conditioned by estrogen-independent MDA-MB-231 or estrogen-dependent MCF-7 cells contains a mitogenic or competence activity that is capable of inducing incorporation of [ 3 H] thymidine into quiescent Swiss 3T3 cells in the presence of platelet-poor plasma. Like authentic PDGF, the PDGF-like activity produced by breast cancer cells is stable after acid and heat treatment (95 0 C) and inhibited by reducing agents. The mitogenic activity comigrates with a material of ≅30 kDa on NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with PDGF antiserum of proteins from metabolically labeled cell lysates and conditioned medium followed by analysis on nonreducing NaDodSO 4 /polyacrylamide gels identified proteins of 30 and 34 kDa. Upon reduction, the 30- and 34-kDa bands were converted to 15- and 16-kDa bands suggesting that the immunoprecipitated proteins were made up of two disulfide-linked polypeptides similar to PDGF. Hybridization studies with cDNA probes for the A chain PDGF and the B chain of PDGF/SIS identified transcripts for both PDGF chains in the MCF-7 and MDA-MB-231 cells. The data summarized above provide conclusive evidence for the synthesis and hormonally regulated secretion of a PDGF-like mitogen by breast carcinoma cells. Production of a PDGF-like growth factor by breast cancer cell lines may be important in mediating paracrine stimulation of tumor growth

  8. Human placenta secretes apolipoprotein B-100-containing lipoproteins

    DEFF Research Database (Denmark)

    Munk-Madsen, Eva; Lindegaard, Marie Louise Skakkebæk; Andersen, Claus B

    2004-01-01

    Supply of lipids from the mother is essential for fetal growth and development. In mice, disruption of yolk sac cell secretion of apolipoprotein (apo) B-containing lipoproteins results in embryonic lethality. In humans, the yolk sac is vestigial. Nutritional functions are instead established very...... lipoproteins secreted from placental tissue showed spherical particles with a diameter of 47 +/- 10 nm. These results demonstrate that human placenta expresses both apoB and MTP and consequently synthesize and secrete apoB-100-containing lipoproteins. Placental lipoprotein formation constitutes a novel pathway...

  9. Human adipose tissue-derived mesenchymal stem cells inhibit T-cell lymphoma growth in vitro and in vivo.

    Science.gov (United States)

    Ahn, Jin-Ok; Chae, Ji-Sang; Coh, Ye-Rin; Jung, Woo-Sung; Lee, Hee-Woo; Shin, Il-Seob; Kang, Sung-Keun; Youn, Hwa-Young

    2014-09-01

    Human mesenchymal stem cells (hMSCs) are thought to be one of the most reliable stem cell sources for a variety of cell therapies. This study investigated the anti-tumor effect of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) on EL4 murine T-cell lymphoma in vitro and in vivo. The growth-inhibitory effect of hAT-MSCs on EL4 tumor cells was evaluated using a WST-1 cell proliferation assay. Cell-cycle arrest and apoptosis were investigated by flow cytometry and western blot. To evaluate an anti-tumor effect of hAT-MSCs on T-cell lymphoma in vivo, CM-DiI-labeled hAT-MSCs were circumtumorally injected in tumor-bearing nude mice, and tumor size was measured. hAT-MSCs inhibited T-cell lymphoma growth by altering cell-cycle progression and inducing apoptosis in vitro. hAT-MSCs inhibited tumor growth in tumor-bearing nude mice and prolonged survival time. Immunofluorescence analysis showed that hAT-MSCs migrated to tumor sites. hAT-MSCs suppress the growth of T-cell lymphoma, suggesting a therapeutic option for T-cell lymphoma. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    International Nuclear Information System (INIS)

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E 2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G 0 /G 1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E 2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and

  11. Survivin inhibits anti-growth effect of p53 activated by aurora B

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Kim, Tae-Kyung; Lee, Joong-Seob; Oh, Se-Yeong; Kwak, Sungwook; Jin, Xun; Sohn, Jin-Young; Song, Min-Keun; Sohn, Young-Woo; Lee, Soo-Yeon; Pian, Xumin; Lee, Jang-Bo; Chung, Yong Gu; Choi, Young Ki; You, Seungkwon; Kim, Hyunggee

    2005-01-01

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53 -/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53 -/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  12. Interleukin 1 is an autocrine regulator of human endothelial cell growth

    International Nuclear Information System (INIS)

    Cozzolino, F.; Torcia, M.; Aldinucci, D.; Ziche, M.; Bani, D.; Almerigogna, F.; Stern, D.M.

    1990-01-01

    Proliferation of endothelial cells is regulated through the autocrine production of growth factors and the expression of cognate surface receptors. In this study, the authors demonstrate that interleukin 1 (IL-1) is an inhibitor of endothelial growth in vitro and in vivo. IL-1 arrested growing, cultured endothelial cells in G 1 phase; inhibition of proliferation was dose dependent and occurred in parallel with occupancy of endothelial surface IL-1 receptors. In an angiogenesis model, IL-1 could inhibit fibroblast growth factor-induced vessel formation. The autocrine nature of the IL-1 effect on endothelial proliferation was demonstrated by the observation that occupancy of cell-surface receptors by endogenous IL-1 depressed cell growth. The potential significance of this finding was emphasized by the detection of IL-1 in the native endothelium of human umbilical veins. A mechanism by which IL-1 may exert its inhibitory effect on endothelial cell growth was suggested by studies showing that IL-1 decreased the expression of high-affinity fibroblast growth factor binding sites on endothelium. These results point to a potentially important role of IL-1 in regulating blood vessel growth the suggest that autocrine production of inhibitory factors may be a mechanism controlling proliferation of normal cells

  13. TLR4 activates NF-κB in human ovarian granulosa tumor cells

    International Nuclear Information System (INIS)

    Woods, Dori C.; White, Yvonne A.R.; Dau, Caroline; Johnson, A.L.

    2011-01-01

    Highlights: → TLR4 is expressed in human ovarian granulosa tumor cells. → Acting through TLR4, LPS and HSP60 induce a NFκB signaling cascade in human ovarian granulosa tumor cells. → NFκB activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-κB) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to IκB degradation and activation of NF-κB. NF-κB activation was confirmed by nuclear localization of NF-κB p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-κB signaling attenuated LPS-induced TNFα plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-κB signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-κB does not sensitize GCTs to TRAIL or cisplatin.

  14. TLR4 activates NF-{kappa}B in human ovarian granulosa tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Dori C., E-mail: dwoods2@partners.org [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); White, Yvonne A.R. [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); Dau, Caroline [University of California, San Francisco, School of Dentistry, San Francisco, CA 94143 (United States); Johnson, A.L. [Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802 (United States)

    2011-06-17

    Highlights: {yields} TLR4 is expressed in human ovarian granulosa tumor cells. {yields} Acting through TLR4, LPS and HSP60 induce a NF{kappa}B signaling cascade in human ovarian granulosa tumor cells. {yields} NF{kappa}B activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-{kappa}B) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to I{kappa}B degradation and activation of NF-{kappa}B. NF-{kappa}B activation was confirmed by nuclear localization of NF-{kappa}B p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-{kappa}B signaling attenuated LPS-induced TNF{alpha} plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-{kappa}B signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-{kappa}B does not sensitize GCTs to TRAIL or cisplatin.

  15. Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors.

    Directory of Open Access Journals (Sweden)

    Mohammad Harun-Or-Rashid

    Full Text Available Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR system and extracellular signal-regulated kinase (ERK signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173 EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2, EGFR-inhibitor (AG1478, EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001, consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in

  16. Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration.

    Science.gov (United States)

    Gravel, Annie; Dubuc, Isabelle; Wallaschek, Nina; Gilbert-Girard, Shella; Collin, Vanessa; Hall-Sedlak, Ruth; Jerome, Keith R; Mori, Yasuko; Carbonneau, Julie; Boivin, Guy; Kaufer, Benedikt B; Flamand, Louis

    2017-07-15

    Human herpesviruses 6A/B (HHV-6A/B) can integrate their viral genomes in the telomeres of human chromosomes. The viral and cellular factors contributing to HHV-6A/B integration remain largely unknown, mostly due to the lack of efficient and reproducible cell culture models to study HHV-6A/B integration. In this study, we characterized the HHV-6A/B integration efficiencies in several human cell lines using two different approaches. First, after a short-term infection (5 h), cells were processed for single-cell cloning and analyzed for chromosomally integrated HHV-6A/B (ciHHV-6A/B). Second, cells were infected with HHV-6A/B and allowed to grow in bulk for 4 weeks or longer and then analyzed for the presence of ciHHV-6. Using quantitative PCR (qPCR), droplet digital PCR, and fluorescent in situ hybridization, we could demonstrate that HHV-6A/B integrated in most human cell lines tested, including telomerase-positive (HeLa, MCF-7, HCT-116, and HEK293T) and telomerase-negative cell lines (U2OS and GM847). Our results also indicate that inhibition of DNA replication, using phosphonoacetic acid, did not affect HHV-6A/B integration. Certain clones harboring ciHHV-6A/B spontaneously express viral genes and proteins. Treatment of cells with phorbol ester or histone deacetylase inhibitors triggered the expression of many viral genes, including U39 , U90 , and U100 , without the production of infectious virus, suggesting that the tested stimuli were not sufficient to trigger full reactivation. In summary, both integration models yielded comparable results and should enable the identification of viral and cellular factors contributing to HHV-6A/B integration and the screening of drugs influencing viral gene expression, as well as the release of infectious HHV-6A/B from the integrated state. IMPORTANCE The analysis and understanding of HHV-6A/B genome integration into host DNA is currently limited due to the lack of reproducible and efficient viral integration systems. In the

  17. Human Memory B Cells in Healthy Gingiva, Gingivitis, and Periodontitis.

    Science.gov (United States)

    Mahanonda, Rangsini; Champaiboon, Chantrakorn; Subbalekha, Keskanya; Sa-Ard-Iam, Noppadol; Rattanathammatada, Warattaya; Thawanaphong, Saranya; Rerkyen, Pimprapa; Yoshimura, Fuminobu; Nagano, Keiji; Lang, Niklaus P; Pichyangkul, Sathit

    2016-08-01

    The presence of inflammatory infiltrates with B cells, specifically plasma cells, is the hallmark of periodontitis lesions. The composition of these infiltrates in various stages of homeostasis and disease development is not well documented. Human tissue biopsies from sites with gingival health (n = 29), gingivitis (n = 8), and periodontitis (n = 21) as well as gingival tissue after treated periodontitis (n = 6) were obtained and analyzed for their composition of B cell subsets. Ag specificity, Ig secretion, and expression of receptor activator of NF-κB ligand and granzyme B were performed. Although most of the B cell subsets in healthy gingiva and gingivitis tissues were CD19(+)CD27(+)CD38(-) memory B cells, the major B cell component in periodontitis was CD19(+)CD27(+)CD38(+)CD138(+)HLA-DR(low) plasma cells, not plasmablasts. Plasma cell aggregates were observed at the base of the periodontal pocket and scattered throughout the gingiva, especially apically toward the advancing front of the lesion. High expression of CXCL12, a proliferation-inducing ligand, B cell-activating factor, IL-10, IL-6, and IL-21 molecules involved in local B cell responses was detected in both gingivitis and periodontitis tissues. Periodontitis tissue plasma cells mainly secreted IgG specific to periodontal pathogens and also expressed receptor activator of NF-κB ligand, a bone resorption cytokine. Memory B cells resided in the connective tissue subjacent to the junctional epithelium in healthy gingiva. This suggested a role of memory B cells in maintaining periodontal homeostasis. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest.

    Science.gov (United States)

    Gascoyne, Duncan M; Spearman, Hayley; Lyne, Linden; Puliyadi, Rathi; Perez-Alcantara, Marta; Coulton, Les; Fisher, Simon E; Croucher, Peter I; Banham, Alison H

    2015-01-01

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology.

  19. Halofuginone suppresses growth of human uterine leiomyoma cells in a mouse xenograft model.

    Science.gov (United States)

    Koohestani, Faezeh; Qiang, Wenan; MacNeill, Amy L; Druschitz, Stacy A; Serna, Vanida A; Adur, Malavika; Kurita, Takeshi; Nowak, Romana A

    2016-07-01

    Does halofuginone (HF) inhibit the growth of human uterine leiomyoma cells in a mouse xenograft model? HF suppresses the growth of human uterine leiomyoma cells in a mouse xenograft model through inhibiting cell proliferation and inducing apoptosis. Uterine leiomyomas are the most common benign tumors of the female reproductive tract. HF can suppress the growth of human uterine leiomyoma cells in vitro. The mouse xenograft model reflects the characteristics of human leiomyomas. Primary leiomyoma smooth muscle cells from eight patients were xenografted under the renal capsule of adult, ovariectomized NOD-scid IL2Rγ(null) mice (NSG). Mice were treated with two different doses of HF or vehicle for 4 weeks with six to eight mice per group. Mouse body weight measurements and immunohistochemical analysis of body organs were carried out to assess the safety of HF treatment. Xenografted tumors were measured and analyzed for cellular and molecular changes induced by HF. Ovarian steroid hormone receptors were evaluated for possible modulation by HF. Treatment of mice carrying human UL xenografts with HF at 0.25 or 0.50 mg/kg body weight for 4 weeks resulted in a 35-40% (P leiomyoma cells in an in vivo model, HF was administered to mice whose tolerance and metabolism of the drug may differ from that in humans. Also, the longer term effects of HF treatment are yet unclear. The results of this study showing the effectiveness of HF in reducing UL tumor growth by interfering with the main cellular processes regulating cell proliferation and apoptosis are in agreement with previous studies on the effects of HF on other fibrotic diseases. HF can be considered as a candidate for reducing the size of leiomyomas, particularly prior to surgery. This project was funded by NIH PO1HD057877 and R01 HD064402. Authors report no competing interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights

  20. Induction of cell-cell fusion from without by human herpesvirus 6B

    DEFF Research Database (Denmark)

    Pedersen, Simon Metz; Øster, Bodil; Bundgaard, Bettina

    2006-01-01

    Human herpesvirus (HHV) 6A induce fusion from without (FFWO), whereas HHV-6B is believed to be ineffective in this process. Here, we demonstrate that HHV-6B induces rapid fusion in both epithelial cells and lymphocytes. The fusion was identified 1 h postinfection, could be inhibited by antibodies...

  1. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    International Nuclear Information System (INIS)

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R.

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV

  2. Antibody repertoires in humanized NOD-scid-IL2Rγ(null mice and human B cells reveals human-like diversification and tolerance checkpoints in the mouse.

    Directory of Open Access Journals (Sweden)

    Gregory C Ippolito

    Full Text Available Immunodeficient mice reconstituted with human hematopoietic stem cells enable the in vivo study of human hematopoiesis. In particular, NOD-scid-IL2Rγ(null engrafted mice have been shown to have reasonable levels of T and B cell repopulation and can mount T-cell dependent responses; however, antigen-specific B-cell responses in this model are generally poor. We explored whether developmental defects in the immunoglobulin gene repertoire might be partly responsible for the low level of antibody responses in this model. Roche 454 sequencing was used to obtain over 685,000 reads from cDNA encoding immunoglobulin heavy (IGH and light (IGK and IGL genes isolated from immature, naïve, or total splenic B cells in engrafted NOD-scid-IL2Rγ(null mice, and compared with over 940,000 reads from peripheral B cells of two healthy volunteers. We find that while naïve B-cell repertoires in humanized mice are chiefly indistinguishable from those in human blood B cells, and display highly correlated patterns of immunoglobulin gene segment use, the complementarity-determining region H3 (CDR-H3 repertoires are nevertheless extremely diverse and are specific for each individual. Despite this diversity, preferential D(H-J(H pairings repeatedly occur within the CDR-H3 interval that are strikingly similar across all repertoires examined, implying a genetic constraint imposed on repertoire generation. Moreover, CDR-H3 length, charged amino-acid content, and hydropathy are indistinguishable between humans and humanized mice, with no evidence of global autoimmune signatures. Importantly, however, a statistically greater usage of the inherently autoreactive IGHV4-34 and IGKV4-1 genes was observed in the newly formed immature B cells relative to naïve B or total splenic B cells in the humanized mice, a finding consistent with the deletion of autoreactive B cells in humans. Overall, our results provide evidence that key features of the primary repertoire are shaped by

  3. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Science.gov (United States)

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  4. Modulation of clonogenicity, growth, and radiosensitivity of three human epidermoid tumor cell lines by a fibroblastic environment

    International Nuclear Information System (INIS)

    Gery, Bernard; Little, John B.; Coppey, Jacques

    1996-01-01

    Purpose: To develop a model vitro system to examine the influence of fibroblasts on the growth and survival of human tumor cells after exposure to ionizing radiation. Methods and Materials: The cell system consists of three epidermoid carcinoma cell lines derived from head and neck tumors having differing growth potentials and intrinsic radiosensitivities, as well as a low passage skin fibroblast strain from a normal human donor. The tumor cells were seeded for five days prior to exposure to radiation: (a) in the presence of different numbers of fibroblasts, (b) in conditioned medium from stationary fibroblast cultures, and (c) on an extracted fibroblastic matrix. Results: When grown with fibroblasts, all three tumor cell lines showed increased clonogenicity and increased radioresistance. The radioprotective effect was maximal at a density of approximately 10 5 fibroblasts/100 mm Petri dish, and was greatest in the intrinsically radiosensitive tumor cell line. On the other hand, the effects of incubation with conditioned medium or on a fibroblastic matrix varied among the tumor cell lines. Thus, the protective effect afforded by coculture with fibroblasts must involve several cellular factors related to the fibroblast itself. Conclusions: These observations emphasize the importance of cultural conditions on the apparent radiosensitivity of human tumor cell lines, and suggest that the fibroblastic connective tissue enveloping the malignant cells should be considered when the aim is to establish a radiopredictive assay from surgical tumors fragments

  5. Changes of cell growth and magnetosome biomineralization in Magnetospirillum magneticum AMB-1 after ultraviolet-B irradiation

    Directory of Open Access Journals (Sweden)

    Yinzhao eWang

    2013-12-01

    Full Text Available Effects of ultraviolet radiation on microorganisms are of great interest in field of microbiology and planetary sciences. In the present study, we used Magnetospirillum magneticum AMB-1 as a model organism to examine the influence of ultraviolet-B (UV-B radiation on cell growth and magnetite biomineralization of magnetotactic bacteria. Live AMB-1 cells were exposed to UV-B radiation for 60 s, 300 s and 900 s, which correspond to radiation doses of 120 J/m2, 600 J/m2 and 1800 J/m2, respectively. After irradiation, the amounts of cyclobutane pyrimidine dimers and reactive oxygen species of the cells were increased, and cell growth was stunted up to ~170 h, depending on the UV-B radiation doses. The UV-B irradiated cells also produced on average more magnetite crystals with larger grain sizes and longer chains, which results in changes of their magnetic properties.

  6. Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure.

    Science.gov (United States)

    Gram, Anna M; Sun, Chenglong; Landman, Sanne L; Oosenbrug, Timo; Koppejan, Hester J; Kwakkenbos, Mark J; Hoeben, Rob C; Paludan, Søren R; Ressing, Maaike E

    2017-11-01

    Most cells are believed to be capable of producing type I interferons (IFN I) as part of an innate immune response against, for instance, viral infections. In macrophages, IFN I is potently induced upon cytoplasmic exposure to foreign nucleic acids. Infection of these cells with herpesviruses leads to triggering of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic GMP-AMP (cGAMP) synthase (cGAS). Thereby, the stimulator of interferon genes (STING) and the downstream molecules TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) are sequentially activated culminating in IFN I secretion. Human gamma-herpesviruses, such as Epstein-Barr virus (EBV), exploit B cells as a reservoir for persistent infection. In this study, we investigated whether human B cells, similar to macrophages, engage the cytoplasmic DNA sensing pathway to induce an innate immune response. We found that the B cells fail to secrete IFN I upon cytoplasmic DNA exposure, although they express the DNA sensors cGAS and IFI16 and the signaling components TBK1 and IRF3. In primary human B lymphocytes and EBV-negative B cell lines, this deficiency is explained by a lack of detectable levels of the central adaptor protein STING. In contrast, EBV-transformed B cell lines did express STING, yet both these lines as well as STING-reconstituted EBV-negative B cells did not produce IFN I upon dsDNA or cGAMP stimulation. Our combined data show that the cytoplasmic DNA sensing pathway is dysfunctional in human B cells. This exemplifies that certain cell types cannot induce IFN I in response to cytoplasmic DNA exposure providing a potential niche for viral persistence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Morusin induces apoptosis and suppresses NF-κB activity in human colorectal cancer HT-29 cells

    International Nuclear Information System (INIS)

    Lee, J.-C.; Won, S.-J.; Chao, C.-L.; Wu, F.-L.; Liu, H.-S.; Ling Pin; Lin, C.-N.; Su, C.-L.

    2008-01-01

    Morusin is a pure compound isolated from root bark of Morusaustralis (Moraceae). In this study, we demonstrated that morusin significantly inhibited the growth and clonogenicity of human colorectal cancer HT-29 cells. Apoptosis induced by morusin was characterized by accumulation of cells at the sub-G 1 phase, fragmentation of DNA, and condensation of chromatin. Morusin also inhibited the phosphorylation of IKK-α, IKK-β and IκB-α, increased expression of IκB-α, and suppressed nuclear translocation of NF-κB and its DNA binding activity. Dephosphorylation of NF-κB upstream regulators PI3K, Akt and PDK1 was also displayed. In addition, activation of caspase-8, change of mitochondrial membrane potential, release of cytochrome c and Smac/DIABLO, and activation of caspase-9 and -3 were observed at the early time point. Downregulation in the expression of Ku70 and XIAP was exhibited afterward. Caspase-8 or wide-ranging caspase inhibitor suppressed morusin-induced apoptosis. Therefore, the antitumor mechanism of morusin in HT-29 cells may be via activation of caspases and inhibition of NF-κB

  8. The growth of human fibroblasts and A431 epidermoid carcinoma cells on gamma-irradiated human amnion collagen substrata.

    Science.gov (United States)

    Liu, B; Harrell, R; Lamb, D J; Dresden, M H; Spira, M

    1989-10-15

    Human fibroblasts and A431 human epidermoid carcinoma cells were cultured on gamma-irradiated human amnion collagen as well as on plastic dishes and non-irradiated collagen coated dishes. The morphology, attachment, growth and short-term cytotoxicity of these culture conditions have been determined. Both irradiated and non-irradiated amnion collagen enhanced the attachment and proliferation of fibroblasts as compared to the plastic dishes. No differences in these properties were observed for A431 cells cultured on irradiated collagen when compared with culture on non-irradiated collagen substrates. Cytotoxicity assays showed that irradiated and non-irradiated collagens were not cytotoxic for either fibroblasts or A431 cells. The results demonstrated that amnion collagen irradiated at doses of 0.25-2.0 Mrads is optimal for cell growth.

  9. Continuous signaling of CD79b and CD19 is required for the fitness of Burkitt lymphoma B cells.

    Science.gov (United States)

    He, Xiaocui; Kläsener, Kathrin; Iype, Joseena M; Becker, Martin; Maity, Palash C; Cavallari, Marco; Nielsen, Peter J; Yang, Jianying; Reth, Michael

    2018-04-18

    Expression of the B-cell antigen receptor (BCR) is essential not only for the development but also for the maintenance of mature B cells. Similarly, many B-cell lymphomas, including Burkitt lymphoma (BL), require continuous BCR signaling for their tumor growth. This growth is driven by immunoreceptor tyrosine-based activation motif (ITAM) and PI3 kinase (PI3K) signaling. Here, we employ CRISPR/Cas9 to delete BCR and B-cell co-receptor genes in the human BL cell line Ramos. We find that Ramos B cells require the expression of the BCR signaling component Igβ (CD79b), and the co-receptor CD19, for their fitness and competitive growth in culture. Furthermore, we show that in the absence of any other BCR component, Igβ can be expressed on the B-cell surface, where it is found in close proximity to CD19 and signals in an ITAM-dependent manner. These data suggest that Igβ and CD19 are part of an alternative B-cell signaling module that use continuous ITAM/PI3K signaling to promote the survival of B lymphoma and normal B cells. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  10. Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo

    Directory of Open Access Journals (Sweden)

    Deckard Lindsey A

    2011-04-01

    Full Text Available Abstract Background Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery, whole brain and spine irradiation, and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFκB is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Methods To test the importance of NFκB to medulloblastoma cell growth, the effects of multiple drugs that inhibit NFκB, pyrrolidine dithiocarbamate, diethyldithiocarbamate, sulfasalazine, curcumin and bortezomib, were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFκB was investigated in cultured cells, xenograft flank tumors, and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFκB, IκB, was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. Results We report high constitutive activity of the canonical NFκB pathway, as seen by Western analysis of the NFκB subunit p65, in medulloblastoma tumors compared to normal brain. The p65 subunit of NFκB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though, conversely, the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFκB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally, expression of a dominant negative form of the endogenous inhibitor of NFκB, dnIκB, resulted in poor xenograft tumor growth, with average tumor volumes

  11. Methylferulate from Tamarix aucheriana inhibits growth and enhances chemosensitivity of human colorectal cancer cells: possible mechanism of action.

    Science.gov (United States)

    Abaza, Mohamed Salah I; Afzal, Mohammad; Al-Attiyah, Raja'a J; Guleri, Radhika

    2016-10-01

    Natural products are valuable sources for anticancer agents. In the present study, methylferulate (MF) was identified for the first time from Tamarix aucheriana. Spectral data were used for identification of MF. The potential of MF to control cell growth, cell cycle, apoptosis, generation of reactive oxygen species (ROS), cancer cell invasion, nuclear factor kappa B (NFkB) DNA-binding activity and proteasomal activities, as well as the enhancement of chemosensitivity in human colorectal cancer cells, were evaluated. The possible molecular mechanism of MF's therapeutic efficacy was also assessed. Column chromatography and spectral data were used for isolation and identification of MF. MTT, immunofluorescence, flow cytometry, in vitro invasion, fluoremetry, EIA and Real time qPCR were used to measure antiproliferative, chemo-sensitizing effects and other biochemical parameters. MF showed a dose-dependent anti-proliferative effect on colorectal cancer cells (IC 50  = 1.73 - 1.9 mM) with a nonsignificant cytotoxicity toward normal human fibroblast. Colony formation inhibition (P ≤ 0.001, 0.0001) confirmed the growth inhibition by MF. MF arrested cell cycle progression in the S and G2/M phases; induced apoptosis and ROS generation; and inhibited NF-kB DNA-binding activity, proteasomal activities and cell invasion in colorectal cancer cells. MF up-regulated cyclin-dependent kinase inhibitors (p19 INK4D , p21 WAF1/CIP1 , p27 KIP1 ), pro-apoptotic gene expression (Bax, Bad, Apaf1, Bid, Bim, Smac) and caspases (caspase 2, 3, 6, 7, 8, 9). Moreover, MF down-regulated cyclin-dependent kinases (Cdk1, Cdk2) and anti-apoptotic gene expression (c-IAP-1, c-IAP-2, Bcl2,FLIP). In addition, MF differentially potentiated the sensitivity of colorectal cancer cells to standard chemotherapeutic drugs. MF showed a multifaceted anti-proliferative and chemosensitizing effects. These results suggest the chemotherapeutic and co-adjuvant potential of MF.

  12. Cloning of B cell-specific membrane tetraspanning molecule BTS possessing B cell proliferation-inhibitory function.

    Science.gov (United States)

    Suenaga, Tadahiro; Arase, Hisashi; Yamasaki, Sho; Kohno, Masayuki; Yokosuka, Tadashi; Takeuchi, Arata; Hattori, Takamichi; Saito, Takashi

    2007-11-01

    Lymphocyte proliferation is regulated by signals through antigen receptors, co-stimulatory receptors, and other positive and negative modulators. Several membrane tetraspanning molecules are also involved in the regulation of lymphocyte growth and death. We cloned a new B cell-specific tetraspanning (BTS) membrane molecule, which is similar to CD20 in terms of expression, structure and function. BTS is specifically expressed in the B cell line and its expression is increased after the pre-B cell stage. BTS is expressed in intracellular granules and on the cell surface. Overexpression of BTS in immature B cell lines induces growth retardation through inhibition of cell cycle progression and cell size increase without inducing apoptosis. This inhibitory function is mediated predominantly by the N terminus of BTS. The development of mature B cells is inhibited in transgenic mice expressing BTS, suggesting that BTS is involved in the in vivo regulation of B cells. These results indicate that BTS plays a role in the regulation of cell division and B cell growth.

  13. The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells.

    Science.gov (United States)

    van Keimpema, Martine; Grüneberg, Leonie J; Schilder-Tol, Esther J M; Oud, Monique E C M; Beuling, Esther A; Hensbergen, Paul J; de Jong, Johann; Pals, Steven T; Spaargaren, Marcel

    2017-03-01

    The forkhead transcription factor FOXP1 is generally regarded as an oncogene in activated B cell-like diffuse large B-cell lymphoma. Previous studies have suggested that a small isoform of FOXP1 rather than full-length FOXP1, may possess this oncogenic activity. Corroborating those studies, we herein show that activated B cell-like diffuse large B-cell lymphoma cell lines and primary activated B cell-like diffuse large B-cell lymphoma cells predominantly express a small FOXP1 isoform, and that the 5'-end of the Foxp1 gene is a common insertion site in murine lymphomas in leukemia virus- and transposon-mediated insertional mutagenesis screens. By combined mass spectrometry, (quantative) reverse transcription polymerase chain reaction/sequencing, and small interfering ribonucleic acid-mediated gene silencing, we determined that the small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma lacks the N-terminal 100 amino acids of full-length FOXP1. Aberrant overexpression of this FOXP1 isoform (ΔN100) in primary human B cells revealed its oncogenic capacity; it repressed apoptosis and plasma cell differentiation. However, no difference in potency was found between this small FOXP1 isoform and full-length FOXP1. Furthermore, overexpression of full-length FOXP1 or this small FOXP1 isoform in primary B cells and diffuse large B-cell lymphoma cell lines resulted in similar gene regulation. Taken together, our data indicate that this small FOXP1 isoform and full-length FOXP1 have comparable oncogenic and transcriptional activity in human B cells, suggesting that aberrant expression or overexpression of FOXP1, irrespective of the specific isoform, contributes to lymphomagenesis. These novel insights further enhance the value of FOXP1 for the diagnostics, prognostics, and treatment of diffuse large B-cell lymphoma patients. Copyright© Ferrata Storti Foundation.

  14. Preparation of antisera specific for human B cells by immunization of rabbits with immune complexes

    International Nuclear Information System (INIS)

    Welsh, K.I.; Turner, M.J.

    1976-01-01

    Three rabbit antisera are described which are specific without absorption (titer 1:100) for separated human B cells, as measured by complement and non-complement fixing assays. The method of production of these sera involved injections of rabbits with precipitin lines formed between 10μ1 of three separate detergent solubilized membrane preparations and 4μ1 aliquots of rabbit antisera to human B cells. In addition to being B cell specific, the three sera block the MLC reaction, inhibit aggregated IgG binding to B cells, and show differential degrees of B cell lysis when tested on a panel of separated B and T cells. These and other properties suggest that the target specificities of the antibodies are the human equivalent of the murine Ia antigens. (author)

  15. Inhibition of transcription factor NF-kappaB signaling proteins IKKbeta and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity.

    Science.gov (United States)

    Liang, Mei-Chih; Bardhan, Sujata; Pace, Emily A; Rosman, Diana; Beutler, John A; Porco, John A; Gilmore, Thomas D

    2006-02-28

    Transcription factor NF-kappaB is constitutively active in many human chronic inflammatory diseases and cancers. Epoxyquinone A monomer (EqM), a synthetic derivative of the natural product epoxyquinol A, has previously been shown to be a potent inhibitor of tumor necrosis factor-alpha (TNF-alpha)-induced activation of NF-kappaB, but the mechanism by which EqM inhibits NF-kappaB activation was not known. In this report, we show that EqM blocks activation of NF-kappaB by inhibiting two molecular targets: IkappaB kinase IKKbeta and NF-kappaB subunit p65. EqM inhibits TNF-alpha-induced IkappaBalpha phosphorylation and degradation by targeting IKKbeta, and an alanine substitution for Cys179 in the activation loop of IKKbeta makes it resistant to EqM-mediated inhibition. EqM also directly inhibits DNA binding by p65, but not p50; moreover, replacement of Cys38 in p65 with Ser abolishes EqM-mediated inhibition of DNA binding. Pretreatment of cells with reducing agent dithiothreitol dose-dependently reduces EqM-mediated inhibition of NF-kappaB, further suggesting that EqM directly modifies the thiol group of Cys residues in protein targets. Modifications of the exocyclic alkene of EqM substantially reduce EqM's ability to inhibit NF-kappaB activation. In the human SUDHL-4 lymphoma cell line, EqM inhibits both proliferation and NF-kappaB DNA binding, and activates caspase-3 activity. EqM also effectively inhibits the growth of human leukemia, kidney, and colon cancer cell lines in the NCI's tumor cell panel. Among six colon cancer cell lines, those with low amounts of constitutive NF-kappaB DNA-binding activity are generally more sensitive to growth inhibition by EqM. Taken together, these results suggest that EqM inhibits growth and induces cell death in tumor cells through a mechanism that involves inhibition of NF-kappaB activity at multiple steps in the signaling pathway.

  16. Acetylshikonin Inhibits Human Pancreatic PANC-1 Cancer Cell Proliferation by Suppressing the NF-κB Activity.

    Science.gov (United States)

    Cho, Seok-Cheol; Choi, Bu Young

    2015-09-01

    Acetylshikonin, a natural naphthoquinone derivative compound, has been used for treatment of inflammation and cancer. In the present study, we have investigated whether acetylshikonin could regulate the NF-κB signaling pathway, thereby leading to suppression of tumorigenesis. We observed that acetylshikonin significantly reduced proliferation of several cancer cell lines, including human pancreatic PANC-1 cancer cells. In addition, acetylshikonin inhibited phorbol 12-myristate 13-acetate (PMA) or tumor necrosis-α (TNF-α)-induced NF-κB reporter activity. Proteome cytokine array and real-time RT-PCR results illustrated that acetylshikonin inhibition of PMA-induced production of cytokines was mediated at the transcriptional level and it was associated with suppression of NF-κB activity and matrix metalloprotenases. Finally, we observed that an exposure of acetylshikonin significantly inhibited the anchorage-independent growth of PANC-1 cells. Together, our results indicate that acetylshikonin could serve as a promising therapeutic agent for future treatment of pancreatic cancer.

  17. Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth.

    Science.gov (United States)

    Gururajan, Murali; Dasu, Trivikram; Shahidain, Seif; Jennings, C Darrell; Robertson, Darrell A; Rangnekar, Vivek M; Bondada, Subbarao

    2007-01-01

    Curcumin (diferuloylmethane), a component of dietary spice turmeric (Curcuma longa), has been shown in recent studies to have therapeutic potential in the treatment of cancer, diabetes, arthritis, and osteoporosis. We investigated the ability of curcumin to modulate the growth of B lymphomas. Curcumin inhibited the growth of both murine and human B lymphoma in vitro and murine B lymphoma in vivo. We also demonstrate that curcumin-mediated growth inhibition of B lymphoma is through inhibition of the survival kinase Akt and its key target Bad. However, in vitro kinase assays show that Akt is not a direct target of curcumin. We identified a novel target for curcumin in B lymphoma viz spleen tyrosine kinase (Syk). Syk is constitutively activated in primary tumors and B lymphoma cell lines and curcumin down-modulates Syk activity accompanied by down-regulation of Akt activation. Moreover, we show that overexpression of Akt, a target of Syk, or Bcl-x(L), a target of Akt can overcome curcumin-induced apoptosis of B lymphoma cells. These observations suggest a novel growth promoting role for Syk in lymphoma cells.

  18. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  19. Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts

    International Nuclear Information System (INIS)

    Samoszuk, Michael; Tan, Jenny; Chorn, Guillaume

    2005-01-01

    Accumulating evidence suggests that fibroblasts play a pivotal role in promoting the growth of breast cancer cells. The objective of the present study was to characterize and validate an in vitro model of the interaction between small numbers of human breast cancer cells and human fibroblasts. We measured the clonogenic growth of small numbers of human breast cancer cells co-cultured in direct contact with serum-activated, normal human fibroblasts. Using DNA microarrays, we also characterized the gene expression profile of the serum-activated fibroblasts. In order to validate the in vivo relevance of our experiments, we then analyzed clinical samples of metastatic breast cancer for the presence of myofibroblasts expressing α-smooth muscle actin. Clonogenic growth of human breast cancer cells obtained directly from in situ and invasive tumors was dramatically and consistently enhanced when the tumor cells were co-cultured in direct contact with serum-activated fibroblasts. This effect was abolished when the cells were co-cultured in transwells separated by permeable inserts. The fibroblasts in our experimental model exhibited a gene expression signature characteristic of 'serum response' (i.e. myofibroblasts). Immunostaining of human samples of metastatic breast cancer tissue confirmed that myofibroblasts are in direct contact with breast cancer cells. Serum-activated fibroblasts promote the clonogenic growth of human breast cancer cells in vitro through a mechanism that involves direct physical contact between the cells. This model shares many important molecular and phenotypic similarities with the fibroblasts that are naturally found in breast cancers

  20. Human invariant NKT cell subsets differentially promote differentiation, antibody production, and T cell stimulation by B cells in vitro.

    OpenAIRE

    O'REILLY, VINCENT

    2013-01-01

    PUBLISHED Invariant NK T (iNKT) cells can provide help for B cell activation and Ab production. Because B cells are also capable of cytokine production, Ag presentation, and T cell activation, we hypothesized that iNKT cells will also influence these activities. Furthermore, subsets of iNKT cells based on CD4 and CD8 expression that have distinct functional activities may differentially affect B cell functions. We investigated the effects of coculturing expanded human CD4(+), CD8α(+), and ...

  1. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK.

    Science.gov (United States)

    Kar, Siddhartha; Wang, Meifang; Ham, Seung Wook; Carr, Brian I

    2006-10-01

    We previously synthesized a K-vitamin derivative, Cpd 5, which was a potent growth inhibitor of human tumor cells, including Hep3B hepatoma cells. However, being a quinone compound, Cpd 5 has the potential for generating toxic reactive oxygen species (ROS). We therefore synthesized a nonquinone sulfone derivative, H32, which has a sufone group substituting the quinone. The IC50 of H32 for Hep3B cells was found to be 2.5 microM, which was 2.5 and 3.2 times more potent than Cpd 5 and vitamin K3 respectively. It induced apoptosis in Hep3B cells but did not generate ROS when compared to Cpd 5. Interestingly, under similar culture conditions, normal rat hepatocytes were 14-fold more and 7-fold more resistant to the growth inhibitory effects of H32 than Hep3B and PLC/PRF5 cells respectively. H32 preferentially inhibited the activities of the cell cycle controlling Cdc25A phosphatase likely by binding to its catalytic cysteine. As a consequence, it induced inhibitory tyrosine phosphorylation of the Cdc25 substrate kinases Cdk2 and Cdk4 in Hep3B cells and the cells undergo an arrest in the G1 phase of the cell cycle. H32 also induced persistent phosphorylation of the MAPK protein ERK1/2, but marginal JNK1/2 and p38 phosphorylation. The ERK inhibitor U0126, added at least 30 min prior to H32, antagonized the growth inhibition induced by H32. However, the JNK and p38 inhibitors, JNKI-II and SB203580, were not able to antagonize H32 induced growth inhibition. Thus, H32 differentially inhibited growth of normal and liver tumor cells by preferentially inhibiting the actions of Cdc25 phosphatases and inducing persistent ERK phosphorylation.

  2. Fast growth associated with aberrant vasculature and hypoxia in fibroblast growth factor 8b (FGF8b) over-expressing PC-3 prostate tumour xenografts

    International Nuclear Information System (INIS)

    Tuomela, Johanna; Solin, Olof; Minn, Heikki; Härkönen, Pirkko L; Grönroos, Tove J; Valta, Maija P; Sandholm, Jouko; Schrey, Aleksi; Seppänen, Jani; Marjamäki, Päivi; Forsback, Sarita; Kinnunen, Ilpo

    2010-01-01

    Prostate tumours are commonly poorly oxygenated which is associated with tumour progression and development of resistance to chemotherapeutic drugs and radiotherapy. Fibroblast growth factor 8b (FGF8b) is a mitogenic and angiogenic factor, which is expressed at an increased level in human prostate tumours and is associated with a poor prognosis. We studied the effect of FGF8b on tumour oxygenation and growth parameters in xenografts in comparison with vascular endothelial growth factor (VEGF)-expressing xenografts, representing another fast growing and angiogenic tumour model. Subcutaneous tumours of PC-3 cells transfected with FGF8b, VEGF or empty (mock) vectors were produced and studied for vascularity, cell proliferation, glucose metabolism and oxygenation. Tumours were evaluated by immunohistochemistry (IHC), flow cytometry, use of radiolabelled markers of energy metabolism ([ 18 F]FDG) and hypoxia ([ 18 F]EF5), and intratumoral polarographic measurements of pO 2 . Both FGF8b and VEGF tumours grew rapidly in nude mice and showed highly vascularised morphology. Perfusion studies, pO 2 measurements, [ 18 F]EF5 and [ 18 F]FDG uptake as well as IHC staining for glucose transport protein (GLUT1) and hypoxia inducible factor (HIF) 1 showed that VEGF xenografts were well-perfused and oxygenised, as expected, whereas FGF8b tumours were as hypoxic as mock tumours. These results suggest that FGF8b-induced tumour capillaries are defective. Nevertheless, the growth rate of hypoxic FGF8b tumours was highly increased, as that of well-oxygenised VEGF tumours, when compared with hypoxic mock tumour controls. FGF8b is able to induce fast growth in strongly hypoxic tumour microenvironment whereas VEGF-stimulated growth advantage is associated with improved perfusion and oxygenation of prostate tumour xenografts

  3. Interleukin-17 is a potent immuno-modulator and regulator of normal human intestinal epithelial cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S [Children' s Hospital, Mucosal Immunology Laboratory, University of Bonn, Bonn (Germany); Beaulieu, J F [Department of Cell Biology/Anatomy, University of Sherbrooke, Sherbrooke (Canada); Ruemmele, F M [Children' s Hospital, Mucosal Immunology Laboratory, University of Bonn, Bonn (Germany) and INSERM EMI0212, Faculte de Medecine Necker, University Paris V, Paediatric Gastroenterology Unit, Department of Paediatrics, Hopital Necker-Enfants Malades, Assistance-Publique-Hopitaux de Paris, Paris (France)

    2005-11-18

    Upregulation of the T-cell derived cytokine interleukin (IL-17) was reported in the inflamed intestinal mucosa of patients with inflammatory bowel disorders. In this study, we analyzed the effect of IL-17 on human intestinal epithelial cell (HIEC) turnover and functions. Proliferation and apoptosis in response to IL-17 was monitored in HIEC (cell counts, [{sup 3}H]thymidine incorporation method, and annexinV-PI-apoptosis assay). Signalling pathways were analyzed by Western blots, electromobility shift assay, and immunofluorescence studies. IL-17 proved to be a potent inhibitor of HIEC proliferation without any pro-apoptotic/necrotic effect. The growth inhibitory effect of IL-17 was mediated via the p38 stress kinase. Consequently, the p38-SAPkinase-inhibitor SB203580 abrogated this anti-mitotic effect. In parallel, IL-17 provoked the degradation of I{kappa}B{alpha}, allowing nuclear translocation of the p65 NF-{kappa}B subunit and induction of the NF-{kappa}B-controlled genes IL-6 and -8. IL-17 potently blocks epithelial cell turnover while at the same time amplifying an inflammatory response in a positive feedback manner.

  4. Human osteoblast cells: isolation, characterization, and growth on polymers for musculoskeletal tissue engineering.

    Science.gov (United States)

    El-Amin, Saadiq F; Botchwey, Edward; Tuli, Richard; Kofron, Michelle D; Mesfin, Addisu; Sethuraman, Swaminathan; Tuan, Rocky S; Laurencin, Cato T

    2006-03-01

    We performed a detailed examination of the isolation, characterization, and growth of human osteoblast cells derived from trabecular bone. We further examined the morphology, phenotypic gene expression, mineralization,and growth of these human osteoblasts on polyester polymers used for musculoskeletal tissue engineering. Polylactic-co-glycolic acid [PLAGA (85:15, 50:50, 75:25)], and poly-lactic acid (L-PLA, D,L-PLA) were examined. The osteoblastic expression of key phenotypic markers osteocalcin, alkaline phosphatase, collagen, and bone sialoprotein at 4 and 8 weeks was examined. Reverse transcription-polymerase chain reaction studies revealed that trabecular-derived osteoblasts were positive for all markers evaluated with higher levels expressed over long-term culture. These cells also revealed mineralization and maturation as evidenced by energy dispersive X-ray analysis and scanning electron microscopy. Growth studies on PLAGA at 50:50,75:25, and 85:15 ratios and PLA in the L and DL isoforms revealed that human osteoblasts actively grew, with significantly higher cell numbers attached to scaffolds composed of PLAGA 50:50 in the short term and PLAGA 85:15 in the long term compared with PLA (p < 0.05). We believe human cell adhesion among these polymeric materials may be dependent on differences in cellular integrin expression and extracellular matrix protein elaboration. (c) 2005 Wiley Periodicals, Inc.

  5. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.; (UPENN-MED)

    2009-09-25

    The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.

  6. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    International Nuclear Information System (INIS)

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung

    2012-01-01

    Highlights: ► HBP sequence identified from HB-EGF has cell penetration activity. ► HBP inhibits the NF-κB dependent inflammatory responses. ► HBP directly blocks phosphorylation and degradation of IκBα. ► HBP inhibits nuclear translocation of NF-κB p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-α and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-α and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-κB-dependent inflammatory responses by directly blocking the phosphorylation and degradation of IκBα and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-κB. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  7. Effects of vinegar–egg on growth inhibition, differentiation human leukemic U937 cells and its immunomodulatory activity

    Directory of Open Access Journals (Sweden)

    Shiu-Yu Wang

    2018-04-01

    Full Text Available Vinegar and eggs have rich nutrients. In this study, the mixed form of both derived products, vinegar–egg solution and its products (vinegar–egg concentrate and vinegar–egg condensate were chosen for an assessment of their biological activity. To further our understanding regarding the anticancer and immunomodulatory effects of vinegar–egg, we investigated its effects on the proliferation and differentiation of U937 cells. Vinegar–egg was treated using spray drying, freeze drying and vacuum concentration and used to stimulate human mononuclear cells. The conditioned media obtained from these cultures by filtration were used to treat U937 cells. Three conditioned media inhibited U937 cell growth by 22.1–67.25% more effectively than PHA-treated control (22.53%. CD11b and CD14 expression on the treated U937 cells were 29.1–45.4% and 31.6–47.2%, respectively. High levels of cytokines IL-1β, IFN-γ and TNF-α were detected in the three conditioned media. Vinegar–egg stimulates human mononuclear cells to secrete cytokines, which inhibit the growth of U937 cells and induce their differentiation. Keywords: Cytokines, Differentiation, Immunomodulatory activity, Leukemic U937 cells, Vinegar–egg

  8. Vanillin Analogues o-Vanillin and 2,4,6-Trihydroxybenzaldehyde Inhibit NFĸB Activation and Suppress Growth of A375 Human Melanoma.

    Science.gov (United States)

    Marton, Annamária; Kúsz, Erzsébet; Kolozsi, Csongor; Tubak, Vilmos; Zagotto, Giuseppe; Buzás, Krisztina; Quintieri, Luigi; Vizler, Csaba

    2016-11-01

    Constitutive activation of nuclear factor kappa-B (NFĸB) is a hallmark of various cancer types, including melanoma. Chemotherapy may further increase tumour NFĸB activity, a phenomenon that, in turn, exacerbates drug resistance. This study aimed at preliminary screening of a panel of aromatic aldehydes, including vanillin, for cytotoxicity and suppression of tumour cell NFĸB activity. The cytotoxic and NFĸB-inhibitory effects of 10 aromatic aldehydes, including vanillin, were investigated in cultured A375 human melanoma cells. Each compound was assayed alone and in combination with the model NFĸB-activating drug doxorubicin. The most promising analogues were then tested alone and in combination with 4-hydroperoxycyclophosphamide in vitro, and with cyclophosphamide in mice bearing A375 xenografts. The vanillin analogues o-vanillin and 2,4,6-trihydroxybenzaldehyde exhibited cytotoxicity against cultured A375 cells, and inhibited doxorubicin- and 4-hydroperoxycyclophosphamide-induced NFĸB activation. They also suppressed A375 cell growth in mice. o-vanillin and 2,4,6-trihydroxybenzaldehyde deserve further evaluation as potential anticancer drugs. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    International Nuclear Information System (INIS)

    Story, M.T.

    1989-01-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue

  10. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species.

    Science.gov (United States)

    De Milito, Angelo; Iessi, Elisabetta; Logozzi, Mariantonia; Lozupone, Francesco; Spada, Massimo; Marino, Maria Lucia; Federici, Cristina; Perdicchio, Maurizio; Matarrese, Paola; Lugini, Luana; Nilsson, Anna; Fais, Stefano

    2007-06-01

    Proton pumps like the vacuolar-type H+ ATPase (V-ATPase) are involved in the control of cellular pH in normal and tumor cells. Treatment with proton pump inhibitors (PPI) induces sensitization of cancer cells to chemotherapeutics via modifications of cellular pH gradients. It is also known that low pH is the most suitable condition for a full PPI activation. Here, we tested whether PPI treatment in unbuffered culture conditions could affect survival and proliferation of human B-cell tumors. First, we showed that PPI treatment increased the sensitivity to vinblastine of a pre-B acute lymphoblastic leukemia (ALL) cell line. PPI, per se, induced a dose-dependent inhibition of proliferation of tumor B cells, which was associated with a dose- and time-dependent apoptotic-like cytotoxicity in B-cell lines and leukemic cells from patients with pre-B ALL. The effect of PPI was mediated by a very early production of reactive oxygen species (ROS), that preceded alkalinization of lysosomal pH, lysosomal membrane permeabilization, and cytosol acidification, suggesting an early destabilization of the acidic vesicular compartment. Lysosomal alterations were followed by mitochondrial membrane depolarization, release of cytochrome c, chromatin condensation, and caspase activation. However, inhibition of caspase activity did not affect PPI-induced cell death, whereas specific inhibition of ROS by an antioxidant (N-acetylcysteine) significantly delayed cell death and protected both lysosomal and mitochondrial membranes. The proapoptotic activity of PPI was consistent with a clear inhibition of tumor growth following PPI treatment of B-cell lymphoma in severe combined immunodeficient mice. This study further supports the importance of acidity and pH gradients in tumor cell homeostasis and suggests new therapeutic approaches for human B-cell tumors based on PPI.

  11. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    International Nuclear Information System (INIS)

    Li, Lin; Yue, Grace G.L.; Lau, Clara B.S.; Sun, Handong; Fung, Kwok Pui; Leung, Ping Chung; Han, Quanbin; Leung, Po Sing

    2012-01-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  12. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Yue, Grace G.L. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Lau, Clara B.S. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Sun, Handong [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, Yunnan (China); Fung, Kwok Pui [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Leung, Ping Chung [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Han, Quanbin, E-mail: simonhan@hkbu.edu.hk [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); School of Chinese Medicine, The Hong Kong Baptist University, Hong Kong (China); Leung, Po Sing, E-mail: psleung@cuhk.edu.hk [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China)

    2012-07-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  13. Radiation effects on cultured human lymphoid cells

    International Nuclear Information System (INIS)

    Johansson, L.; Nilsson, K.; Carlsson, J.; Larsson, B.; Jakobsson, P.

    1981-01-01

    The cloning efficiency of human normal and malignant lymphoid cells is usually low. Radiation effects in vitro on such cells can therefore not be analysed with conventional cloning. However, this problem can be circumscribed by using the growth extrapolation method. A panel of human leukemia-lymphoma cell-lines representing Epstein-Barr virus carrying lymphoblastoid cells of presumed non-neoplastic derivation and neoplastic T- and B-lymphocytes was used to test the efficiency of this method. The sensitivity to radiation could be determined for all these cell types. The growth extrapolation method gave generally the same result as conventional cloning demonstrated by comparison with one exceptional cell-line with capacity for cloning in agar. The sensitivity varied largely between the different cell types. A common feature was that none of the cell lines had a good capacity to accumulate sublethal radiation injury. (Auth.)

  14. Growth factor combination for chondrogenic induction from human mesenchymal stem cell

    International Nuclear Information System (INIS)

    Indrawattana, Nitaya; Chen Guoping; Tadokoro, Mika; Shann, Linzi H.; Ohgushi, Hajime; Tateishi, Tetsuya; Tanaka, Junzo; Bunyaratvej, Ahnond

    2004-01-01

    During the last decade, many strategies for cartilage engineering have been emerging. Stem cell induction is one of the possible approaches for cartilage engineering. The mesenchymal stem cells (MSCs) with their pluripotency and availability have been demonstrated to be an attractive cell source. It needs the stimulation with cell growth factors to make the multipluripotent MSCs differentiate into chondrogenic lineage. We have shown particular patterns of in vitro chondrogenesis induction on human bone marrow MSCs (hBMSCs) by cycling the growth factors. The pellet cultures of hBMSCs were prepared for chondrogenic induction. Growth factors: TGF-β3, BMP-6, and IGF-1 were used in combination for cell induction. Gene expression, histology, immunohistology, and real-time PCR methods were measured on days 21 after cell induction. As shown by histology and immunohistology, the induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, collagen type II and aggrecan. This study has demonstrated that cartilage tissue can be created from bone marrow mesenchymal stem cells. Interestingly, the combined growth factors TGF-β3 and BMP-6 or TGF-β3 and IGF-1 were more effective for chondrogenesis induction as shown by the real-time PCR assay. The combination of these growth factors may be the important key for in vitro chondrogenesis induction

  15. Genetic modification of human B-cell development: B-cell development is inhibited by the dominant negative helix loop helix factor Id3

    NARCIS (Netherlands)

    Jaleco, A. C.; Stegmann, A. P.; Heemskerk, M. H.; Couwenberg, F.; Bakker, A. Q.; Weijer, K.; Spits, H.

    1999-01-01

    Transgenic and gene targeted mice have contributed greatly to our understanding of the mechanisms underlying B-cell development. We describe here a model system that allows us to apply molecular genetic techniques to the analysis of human B-cell development. We constructed a retroviral vector with a

  16. Recombinant human parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes.

    Science.gov (United States)

    Ponnazhagan, S; Weigel, K A; Raikwar, S P; Mukherjee, P; Yoder, M C; Srivastava, A

    1998-06-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562-566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111-1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited and

  17. Recombinant Human Parvovirus B19 Vectors: Erythroid Cell-Specific Delivery and Expression of Transduced Genes

    Science.gov (United States)

    Ponnazhagan, Selvarangan; Weigel, Kirsten A.; Raikwar, Sudhanshu P.; Mukherjee, Pinku; Yoder, Mervin C.; Srivastava, Arun

    1998-01-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562–566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111–1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited

  18. Cancer Cell Growth Inhibitory Effect of Bee Venom via Increase of Death Receptor 3 Expression and Inactivation of NF-kappa B in NSCLC Cells

    Directory of Open Access Journals (Sweden)

    Kyung Eun Choi

    2014-07-01

    Full Text Available Our previous findings have demonstrated that bee venom (BV has anti-cancer activity in several cancer cells. However, the effects of BV on lung cancer cell growth have not been reported. Cell viability was determined with trypan blue uptake, soft agar formation as well as DAPI and TUNEL assay. Cell death related protein expression was determined with Western blotting. An EMSA was used for nuclear factor kappaB (NF-κB activity assay. BV (1–5 μg/mL inhibited growth of lung cancer cells by induction of apoptosis in a dose dependent manner in lung cancer cell lines A549 and NCI-H460. Consistent with apoptotic cell death, expression of DR3 and DR6 was significantly increased. However, deletion of DRs by small interfering RNA significantly reversed BV induced cell growth inhibitory effects. Expression of pro-apoptotic proteins (caspase-3 and Bax was concomitantly increased, but the NF-κB activity and expression of Bcl-2 were inhibited. A combination treatment of tumor necrosis factor (TNF-like weak inducer of apoptosis, TNF-related apoptosis-inducing ligand, docetaxel and cisplatin, with BV synergistically inhibited both A549 and NCI-H460 lung cancer cell growth with further down regulation of NF-κB activity. These results show that BV induces apoptotic cell death in lung cancer cells through the enhancement of DR3 expression and inhibition of NF-κB pathway.

  19. PSMB4 promotes multiple myeloma cell growth by activating NF-κB-miR-21 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peihao; Guo, Honggang [Department of Hematology, Navy General Hospital, Beijing 100048 (China); Li, Guangchao [School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006 (China); Han, Siqi [Department of Medical Oncology, Jinling Hospital, Nanjing 210002 (China); Luo, Fei [Department of Stomatology, Jinling Hospital, Nanjing 210002 (China); Liu, Yi, E-mail: liuyi2033@163.com [Department of Hematology, Navy General Hospital, Beijing 100048 (China)

    2015-03-06

    Proteasomal subunit PSMB4, was recently identified as potential cancer driver genes in several tumors. However, the regulatory mechanism of PSMB4 on carcinogenesis process remains unclear. In this study, we investigated the expression and roles of PSMB4 in multiple myeloma (MM). We found a significant up-regulation of PSMB4 in MM plasma and cell lines. Ectopic overexpression of PSMB4 promoted cell growth and colony forming ability of MM cells, whereas inhibition of PSMB4 led to a decrease of such events. Furthermore, our results demonstrated the up-regulation of miR-21 and a positive correlation between the levels of miR-21 and PSMB4 in MM. Re-expression of miR-21 markedly rescued PSMB4 knockdown-mediated suppression of cell proliferation and clone-formation. Additionally, while enforced expression of PSMB4 profoundly increased NF-κB activity and the level of miR-21, PSMB4 knockdown or NF-κB inhibition suppressed miR-21 expression in MM cells. Taken together, our results demonstrated that PSMB4 regulated MM cell growth in part by activating NF-κB-miR-21 signaling, which may represent promising targets for novel specific therapies. - Highlights: • First reported upregulation of PSMB4 in MM plasma and cell lines. • PSMB4 promoted MM cell growth and colony forming ability. • Further found miR-21 was up-regulated by PSMB4 in MM plasma and cell lines. • PSMB4-induced miR-21 expression was modulated by NF-κB. • PSMB4-NF-κB-miR-21 axis may be potential therapeutic targets of MM.

  20. Inhibition of Oncogenic Transcription Factor REL by the Natural Product Derivative Calafianin Monomer 101 Induces Proliferation Arrest and Apoptosis in Human B-Lymphoma Cell Lines.

    Science.gov (United States)

    Yeo, Alan T; Chennamadhavuni, Spandan; Whitty, Adrian; Porco, John A; Gilmore, Thomas D

    2015-04-23

    Increased activity of transcription factor NF-κB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-κB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-κB subunits REL (human c-Rel) and p65 as compared to NF-κB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-κB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-κB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells.

  1. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Hsieh-Hsun [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Chang, Chi-Sen [Department of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Division of Gastroenterology, Taichung Veterans General Hospital, Taichung 402, Taiwan (China); Ho, Wei-Chi [Division of Gastroenterology, Jen-Ai Hospital, Taichung 402, Taiwan (China); Liao, Sheng-You [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Lin, Wea-Lung [Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Wang, Chau-Jong, E-mail: wcj@csmu.edu.tw [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGS cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.

  2. Maternal and fetal mechanisms of B cell regulation during pregnancy: human Chorionic Gonadotropin stimulates B cells to produce IL-10 while alpha-fetoprotein drives them into apoptosis

    Directory of Open Access Journals (Sweden)

    Franziska Fettke

    2016-12-01

    Full Text Available Maternal immune tolerance towards the fetus is an essential requisite for pregnancy. While T cell functions are well documented, little is known about the participation of B cells. We have previously suggested that IL-10 producing B cells are involved in pregnancy tolerance in mice and humans. By employing murine and human systems, we report now that fetal trophoblasts positively regulate the generation of IL-10 producing B cells. We next studied the participation of hormones produced by the placenta as well as the fetal protein alpha-fetoprotein (AFP in B cell modulation. Human Chorionic Gonadotropin (hCG, but not progesterone, estrogen or a combination of both, was able to promote changes in B cell phenotype and boost their IL-10 production, which was abolished after blocking hCG. The hCG-induced B cell phenotype was not associated with augmented galactosylation, sialylation or fucosylation of IgG subclasses in their Fc. In vitro, hCG induced the synthesis of asymmetrically glycosylated antibodies in their Fab region. Interestingly, AFP had dual effects depending on the concentration. At concentrations corresponding to maternal serum levels, it did not modify the phenotype or IL-10 secretion of B cells. At fetal concentrations, however, AFP was able to drive B cells into apoptosis, which may indicate a protective mechanism to avoid maternal B cells to reach the fetus.Our data suggests that the fetus secrete factors that promote a pregnancy-friendly B cell phenotype, unraveling interesting aspects of B cell function and modulation by pregnancy hormones and fetal proteins.

  3. Search for KPNA7 cargo proteins in human cells reveals MVP and ZNF414 as novel regulators of cancer cell growth.

    Science.gov (United States)

    Vuorinen, Elisa M; Rajala, Nina K; Rauhala, Hanna E; Nurminen, Anssi T; Hytönen, Vesa P; Kallioniemi, Anne

    2017-01-01

    Karyopherin alpha 7 (KPNA7) belongs to a family of nuclear import proteins that recognize and bind nuclear localization signals (NLSs) in proteins to be transported to the nucleus. Previously we found that KPNA7 is overexpressed in a subset of pancreatic cancer cell lines and acts as a critical regulator of growth in these cells. This characteristic of KPNA7 is likely to be mediated by its cargo proteins that are still mainly unknown. Here, we used protein affinity chromatography in Hs700T and MIA PaCa-2 pancreatic cancer cell lines and identified 377 putative KPNA7 cargo proteins, most of which were known or predicted to localize to the nucleus. The interaction was confirmed for two of the candidates, MVP and ZNF414, using co-immunoprecipitation, and their transport to the nucleus was hindered by siRNA based KPNA7 silencing. Most importantly, silencing of MVP and ZNF414 resulted in marked reduction in Hs700T cell growth. In conclusion, these data uncover two previously unknown human KPNA7 cargo proteins with distinct roles as novel regulators of pancreatic cancer cell growth, thus deepening our understanding on the contribution of nuclear transport in cancer pathogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Luan Xiying [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Wang Yong [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Xiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Qiaoyan [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Li Mingzhong [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Lu Shenzhou [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Zhang Huanxiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Zhang Xueguang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China)

    2006-12-15

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture.

  5. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    International Nuclear Information System (INIS)

    Luan Xiying; Wang Yong; Duan Xiang; Duan Qiaoyan; Li Mingzhong; Lu Shenzhou; Zhang Huanxiang; Zhang Xueguang

    2006-01-01

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture

  6. Short-hairpin RNA-mediated Heat shock protein 90 gene silencing inhibits human breast cancer cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Zuo, Keqiang; Li, Dan; Pulli, Benjamin; Yu, Fei; Cai, Haidong; Yuan, Xueyu; Zhang, Xiaoping; Lv, Zhongwei

    2012-01-01

    Highlights: ► Hsp90 is over-expressed in human breast cancer. ► The shRNA-mediated gene silencing of Hsp90 resulted in inhibition of cell growth. ► Akt and NF-kB were down-regulation after transfection due to Hsp90 silencing. ► The tumor growth ratio was decline due to Hsp90 silencing. ► The PCNA expression was down-regulation due to Hsp90 silencing. -- Abstract: Hsp90 interacts with proteins that mediate signaling pathways involved in the regulation of essential processes such as proliferation, cell cycle control, angiogenesis and apoptosis. Hsp90 inhibition is therefore an attractive strategy for blocking abnormal pathways that are crucial for cancer cell growth. In the present study, the role of Hsp90 in human breast cancer MCF-7 cells was examined by stably silencing Hsp90 gene expression with an Hsp90-silencing vector (Hsp90-shRNA). RT-PCR and Western blot analyses showed that Hsp90-shRNA specifically and markedly down-regulated Hsp90 mRNA and protein expression. NF-kB and Akt protein levels were down-regulated in Hsp90-shRNA transfected cells, indicating that Hsp90 knockout caused a reduction of survival factors and induced apoptosis. Treatment with Hsp90-shRNA significantly increased apoptotic cell death and caused cell cycle arrest in the G1/S phase in MCF-7 cells, as shown by flow cytometry. Silencing of Hsp90 also reduced cell viability, as determined by MTT assay. In vivo experiments showed that MCF-7 cells stably transfected with Hsp90-shRNA grew slowly in nude mice as compared with control groups. In summary, the Hsp90-shRNA specifically silenced the Hsp90 gene, and inhibited MCF-7 cell growth in vitro and in vivo. Possible molecular mechanisms underlying the effects of Hsp90-shRNA include the degradation of Hsp90 breast cancer-related client proteins, the inhibition of survival signals and the upregulation of apoptotic pathways. shRNA-mediated interference may have potential therapeutic utility in human breast cancer.

  7. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  8. Transcriptome adaptation of group B Streptococcus to growth in human amniotic fluid.

    Directory of Open Access Journals (Sweden)

    Izabela Sitkiewicz

    Full Text Available BACKGROUND: Streptococcus agalactiae (group B Streptococcus is a bacterial pathogen that causes severe intrauterine infections leading to fetal morbidity and mortality. The pathogenesis of GBS infection in this environment is poorly understood, in part because we lack a detailed understanding of the adaptation of this pathogen to growth in amniotic fluid. To address this knowledge deficit, we characterized the transcriptome of GBS grown in human amniotic fluid (AF and compared it with the transcriptome in rich laboratory medium. METHODS: GBS was grown in Todd Hewitt-yeast extract medium and human AF. Bacteria were collected at mid-logarithmic, late-logarithmic and stationary growth phase. We performed global expression microarray analysis using a custom-made Affymetrix GeneChip. The normalized hybridization values derived from three biological replicates at each growth point were obtained. AF/THY transcript ratios representing greater than a 2-fold change and P-value exceeding 0.05 were considered to be statistically significant. PRINCIPAL FINDINGS: We have discovered that GBS significantly remodels its transcriptome in response to exposure to human amniotic fluid. GBS grew rapidly in human AF and did not exhibit a global stress response. The majority of changes in GBS transcripts in AF compared to THY medium were related to genes mediating metabolism of amino acids, carbohydrates, and nucleotides. The majority of the observed changes in transcripts affects genes involved in basic bacterial metabolism and is connected to AF composition and nutritional requirements of the bacterium. Importantly, the response to growth in human AF included significant changes in transcripts of multiple virulence genes such as adhesins, capsule, and hemolysin and IL-8 proteinase what might have consequences for the outcome of host-pathogen interactions. CONCLUSIONS/SIGNIFICANCE: Our work provides extensive new information about how the transcriptome of GBS responds

  9. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1

    International Nuclear Information System (INIS)

    Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao; Lu, Xin-Yang; Ning, Xiao-Fei; Yuan, Chuan-Tao; Wang, Ai-Liang

    2015-01-01

    Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth and promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth

  10. Human placenta secretes apolipoprotein B-100-containing lipoproteins

    DEFF Research Database (Denmark)

    Munk-Madsen, Eva; Lindegaard, Marie Louise Skakkebæk; Andersen, Claus B

    2004-01-01

    Supply of lipids from the mother is essential for fetal growth and development. In mice, disruption of yolk sac cell secretion of apolipoprotein (apo) B-containing lipoproteins results in embryonic lethality. In humans, the yolk sac is vestigial. Nutritional functions are instead established very...... of lipid transfer from the mother to the developing fetus....

  11. Differential responsiveness of luteinized human granulosa cells to gonadotropins and insulin-like growth factor I for induction of aromatase activity

    International Nuclear Information System (INIS)

    Christman, G.M.; Randolph, J.F. Jr.; Peegel, H.; Menon, K.M.

    1991-01-01

    The objective of this study was to examine the in vitro responsiveness of cultured luteinized human granulosa cells over time to insulin-like growth factor 1 (IGF-1), human follicle-stimulating hormone (FSH), and human chorionic gonadotropin (hCG) for the induction of aromatase activity. Granulosa cells were retrieved from preovulatory follicles in patients undergoing in vitro fertilization. Cells were cultured for a period of 72 hours or 10 days. The ability of hCG, human FSH, and/or IGF-I to induce aromatase activity was assayed by the stereospecific release of tritium from [1B-3H]androstenedione. Short-term cultures (72 hours) demonstrated a marked rise in aromatase activity in response to human FSH and IGF-I, whereas a smaller response to hCG was observed. In contrast, 10-day cultures demonstrated responsiveness predominantly to hCG rather than human FSH for the induction of aromatase activity with no remarkable effect of IGF-I. Luteinized human granulosa cells undergo a transformation from an initial human FSH and IGF-I responsive state to an hCG responsive state in long-term cultures

  12. Effect of Light-Activated Hypocrellin B on the Growth and Membrane Permeability of Gram-Negative Escherichia coli Cells

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-01-01

    Full Text Available Aim. To investigate the effect of light-activated hypocrellin B on the growth and membrane permeability of Gram-negative bacteria. Methods. Escherichia coli (E. coli as a model bacterium of Gram-negative bacteria was incubated with various concentrations of hypocrellin B for 60 min and was subsequently irradiated by blue light with wavelength of 470 nm at the dose of 12 J/cm2. Colony forming units were counted and the growth inhibition rate of E. coli cells was calculated after light-activated hypocrellin B. Membrane permeability was measured using flow cytometry and confocal laser scanning microscopy (CLSM with propidium iodide (PI staining. Bacterial morphology was observed using transmission electron microscopy (TEM. Reactive oxygen species in bacterial cells were measured using flow cytometry with DCFH-DA staining. Results. Significant growth inhibition rate of E. coli cells was observed after photodynamic action of hypocrellin B. Remarkable damage to the ultrastructure of E. coli was also observed by TEM. Flow cytometry and CLSM observation showed that light-activated hypocrellin B markedly increased membrane permeability of E. coli. Flow cytometry showed the intracellular ROS increase in E. coli treated by photodynamic action of hypocrellin B. Conclusion. Light-activated hypocrellin B caused intracellular ROS increase and structural damages and inhibited the growth of Gram-negative E. coli cells.

  13. IL-10-produced by human transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4+T-cell responses.

    Science.gov (United States)

    Nova-Lamperti, Estefania; Fanelli, Giorgia; Becker, Pablo D; Chana, Prabhjoat; Elgueta, Raul; Dodd, Philippa C; Lord, Graham M; Lombardi, Giovanna; Hernandez-Fuentes, Maria P

    2016-01-22

    A novel subset of human regulatory B-cells has recently been described. They arise from within the transitional B-cell subpopulation and are characterised by the production of IL-10. They appear to be of significant importance in regulating T-cell immunity in vivo. Despite this important function, the molecular mechanisms by which they control T-cell activation are incompletely defined. Here we show that transitional B-cells produced more IL-10 and expressed higher levels of IL-10 receptor after CD40 engagement compared to other B-cell subsets. Furthermore, under this stimulatory condition, CD86 expressed by transitional B-cells was down regulated and T-cell proliferation was reduced. We provide evidence to demonstrate that the down-regulation of CD86 expression by transitional B-cells was due to the autocrine effect of IL-10, which in turn leads to decreased T-cell proliferation and TNF-α production. This analysis was further extended to peripheral B-cells in kidney transplant recipients. We observed that B-cells from patients tolerant to the graft maintained higher IL-10 production after CD40 ligation, which correlates with lower CD86 expression compared to patients with chronic rejection. Hence, the results obtained in this study shed light on a new alternative mechanism by which transitional B-cells inhibit T-cell proliferation and cytokine production.

  14. IL-10-produced by human transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4+T-cell responses

    Science.gov (United States)

    Nova-Lamperti, Estefania; Fanelli, Giorgia; Becker, Pablo D.; Chana, Prabhjoat; Elgueta, Raul; Dodd, Philippa C.; Lord, Graham M.; Lombardi, Giovanna; Hernandez-Fuentes, Maria P.

    2016-01-01

    A novel subset of human regulatory B-cells has recently been described. They arise from within the transitional B-cell subpopulation and are characterised by the production of IL-10. They appear to be of significant importance in regulating T-cell immunity in vivo. Despite this important function, the molecular mechanisms by which they control T-cell activation are incompletely defined. Here we show that transitional B-cells produced more IL-10 and expressed higher levels of IL-10 receptor after CD40 engagement compared to other B-cell subsets. Furthermore, under this stimulatory condition, CD86 expressed by transitional B-cells was down regulated and T-cell proliferation was reduced. We provide evidence to demonstrate that the down-regulation of CD86 expression by transitional B-cells was due to the autocrine effect of IL-10, which in turn leads to decreased T-cell proliferation and TNF-α production. This analysis was further extended to peripheral B-cells in kidney transplant recipients. We observed that B-cells from patients tolerant to the graft maintained higher IL-10 production after CD40 ligation, which correlates with lower CD86 expression compared to patients with chronic rejection. Hence, the results obtained in this study shed light on a new alternative mechanism by which transitional B-cells inhibit T-cell proliferation and cytokine production. PMID:26795594

  15. Observations on human smooth muscle cell cultures from hyperplastic lesions of prosthetic bypass grafts: Production of a platelet-derived growth factor-like mitogen and expression of a gene for a platelet-derived growth factor receptor--a preliminary study

    International Nuclear Information System (INIS)

    Birinyi, L.K.; Warner, S.J.; Salomon, R.N.; Callow, A.D.; Libby, P.

    1989-01-01

    Prosthetic bypass grafts placed to the distal lower extremity often fail because of an occlusive tissue response in the perianastomotic region. The origin of the cells that comprise this occlusive lesion and the causes of the cellular proliferation are not known. To increase our understanding of this process we cultured cells from hyperplastic lesions obtained from patients at the time of reexploration for lower extremity graft failure, and we studied their identity and growth factor production in tissue culture. These cultures contain cells that express muscle-specific actin isoforms, shown by immunohistochemical staining, consistent with vascular smooth muscle origin. These cultures also released material that stimulated smooth muscle cell growth. A portion of this activity was similar to platelet-derived growth factor, since preincubation with antibody-to-human platelet-derived growth factor partially blocked the mitogenic effect of medium conditioned by human anastomotic hyperplastic cells. These conditioned media also contained material that competed with platelet-derived growth factor for its receptor, as measured in a radioreceptor assay. Northern blot analysis showed that these cells contain messenger RNA that encodes the A chain but not the B chain of platelet-derived growth factor. In addition, these cells contain messenger RNA that encodes a platelet-derived growth factor receptor. We conclude that cultured smooth muscle cells from human anastomotic hyperplastic lesions express genes for platelet-derived growth factor A chain and a platelet-derived growth factor receptor and secrete biologically active molecules similar to platelet-derived growth factor

  16. Transforming growth factor type β can act as a potent competence factor for AKR-2B cells

    International Nuclear Information System (INIS)

    Goustin, A.S.; Nuttall, G.A.; Leof, E.B.; Ranganathan, G.; Moses, H.L.

    1987-01-01

    Transforming growth factor type β (TGFβ) is a pleiotropic regulator of cell growth with specific high-affinity cell-surface receptors on a large number of cells; its mechanism of action, however, is poorly defined. In this report, the authors utilized the mouse fibroblast line AKR-2B to explore the question of the temporal requirements during the cell cycle in regard to both the growth inhibitory and the growth stimulatory action of TGFβ. The results indicate that AKR-2B cells are most sensitive to the inhibitory action of TGFβ during early to mid-G 1 . In addition, TGFβ need be present only briefly in order to exert its inhibitory effect on EGF-induced DNA synthesis. Likewise, the stimulatory effect of TGFβ in the absence of EGF requires only an equally brief exposure to TGFβ. Use of homogeneous 125 I-labeled TGFβ in a cell-binding assay demonstrates that TGFβ bound to cell-surface receptors can readily exchange into the culture medium, helping to rule out the possibility that persistent receptor-bound TGFβ is the source of a continuous stimulus. The data indicate that TGFβ exposure induces a stable state in the cell similar to but distinct from the state of competence induced by platelet-derived growth factor (PDGF)

  17. The nanoscale spatial organization of B-cell receptors on immunoglobulin M- and G-expressing human B-cells.

    Science.gov (United States)

    Lee, Jinmin; Sengupta, Prabuddha; Brzostowski, Joseph; Lippincott-Schwartz, Jennifer; Pierce, Susan K

    2017-02-15

    B-cell activation is initiated by the binding of antigen to the B-cell receptor (BCR). Here we used dSTORM superresolution imaging to characterize the nanoscale spatial organization of immunoglobulin M (IgM) and IgG BCRs on the surfaces of resting and antigen--activated human peripheral blood B-cells. We provide insights into both the fundamental process of antigen-driven BCR clustering and differences in the spatial organization of IgM and IgG BCRs that may contribute to the characteristic differences in the responses of naive and memory B-cells to antigen. We provide evidence that although both IgM and IgG BCRs reside in highly heterogeneous protein islands that vary in size and number of BCR single-molecule localizations, both resting and activated B-cells intrinsically maintain a high -frequency of single isolated BCR localizations, which likely represent BCR monomers. IgG BCRs are more clustered than IgM BCRs on resting cells and form larger protein islands after antigen activation. Small, dense BCR clusters likely formed via protein-protein interactions are present on the surface of resting cells, and antigen activation induces these to come together to form less dense, larger islands, a process likely governed, at least in part, by protein-lipid interactions. © 2017 Lee, Sengupta, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Resveratrol enhances radiosensitivity of human non-small cell lung cancer NCI-H838 cells accompanied by inhibition of nuclear factor-kappa B activation

    International Nuclear Information System (INIS)

    Liao, Hui-Fen; Kuo Cheng-Deng; Yang, Yuh-Cheng; Lin, Chin-Ping; Tai, Hung-Chi; Chen, Yu-Jen; Chen, Yu-Yawn

    2005-01-01

    Resveratrol, a polyphenol in red wine, possesses many pharmacological activities including cardio-protection, chemoprevention, anti-tumor effects, and nuclear factor-kappa B (NF-κB) inactivation. The present study was designed to evaluate the effects and possible mechanism of resveratrol in enhancing radiosensitivity of lung cancer cells. Human non-small cell lung cancer NCI-H838 cells were irradiated with or without resveratrol pretreatment. The surviving fraction and sensitizer enhancement ratio (SER) were estimated by using a colony formation assay and linear-quadratic model. The cell-cycle distribution was evaluated by using prospidium iodide staining and flow cytometry. An enzyme-linked immunosorbent assay (ELISA)-based assay with immobilized oligonucleotide was performed to assess the DNA binding activity of NF-κB. Resveratrol had no direct growth-inhibitory effect on NCI-H838 cells treated for 24 hours with doses up to 25 μM. Pretreatment with resveratrol significantly enhanced cell killing by radiation, with an SER up to 2.2. Radiation activated NF-κB, an effect reversed by resveratrol pretreatment. Resveratrol resulted in a decrease of cells in the G 0 /G 1 phase and an increase in the S phase. Our results demonstrate that resveratrol enhances the radiosensitivity of NCI-H838 cells accompanied by NF-κB inhibition and S-phase arrest. (author)

  19. Enterovirus strain and type-specific differences in growth kinetics and virus-induced cell destruction in human pancreatic duct epithelial HPDE cells.

    Science.gov (United States)

    Smura, Teemu; Natri, Olli; Ylipaasto, Petri; Hellman, Marika; Al-Hello, Haider; Piemonti, Lorenzo; Roivainen, Merja

    2015-12-02

    Enterovirus infections have been suspected to be involved in the development of type 1 diabetes. However, the pathogenetic mechanism of enterovirus-induced type 1 diabetes is not known. Pancreatic ductal cells are closely associated with pancreatic islets. Therefore, enterovirus infections in ductal cells may also affect beta-cells and be involved in the induction of type 1 diabetes. The aim of this study was to assess the ability of different enterovirus strains to infect, replicate and produce cytopathic effect in human pancreatic ductal cells. Furthermore, the viral factors that affect these capabilities were studied. The pancreatic ductal cells were highly susceptible to enterovirus infections. Both viral growth and cytolysis were detected for several enterovirus serotypes. However, the viral growth and capability to induce cytopathic effect (cpe) did not correlate completely. Some of the virus strains replicated in ductal cells without apparent cpe. Furthermore, there were strain-specific differences in the growth kinetics and the ability to cause cpe within some serotypes. Viral adaptation experiments were carried out to study the potential genetic determinants behind these phenotypic differences. The blind-passage of non-lytic CV-B6-Schmitt strain in HPDE-cells resulted in lytic phenotype and increased progeny production. This was associated with the substitution of a single amino acid (K257E) in the virus capsid protein VP1 and the viral ability to use decay accelerating factor (DAF) as a receptor. This study demonstrates considerable plasticity in the cell tropism, receptor usage and cytolytic properties of enteroviruses and underlines the strong effect of single or few amino acid substitutions in cell tropism and lytic capabilities of a given enterovirus. Since ductal cells are anatomically close to pancreatic islets, the capability of enteroviruses to infect and destroy pancreatic ductal cells may also implicate in respect to enterovirus induced type 1

  20. Requirements for growth and IL-10 expression of highly purified human T regulatory cells

    OpenAIRE

    Bonacci, Benedetta; Edwards, Brandon; Jia, Shuang; Williams, Calvin; Hessner, Martin J.; Gauld, Stephen; Verbsky, James

    2012-01-01

    Human regulatory T cells (TR) cells have potential for the treatment of a variety of immune mediated diseases but the anergic phenotype of these cells makes them difficult to expand in vitro. We have examined the requirements for growth and cytokine expression from highly purified human TR cells, and correlated these findings with the signal transduction events of these cells. We demonstrate that these cells do not proliferate or secrete IL-10 even in the presence of high doses of IL-2. Stimu...

  1. Effect of benzo[a]pyrene on the production of vascular endothelial growth factor by human eosinophilic leukemia EoL-1 cells.

    Science.gov (United States)

    Gu, Jie; Chan, Lai-Sheung; Wong, Chris Kong-Chu; Wong, Ngok-Shun; Wong, Chun-Kwok; Leung, Kok-Nam; Mak, Naiki K

    2011-01-01

    Benzo[a]pyrene (BaP) has been shown to affect both the development and response of T and B cells in the immune system. However, the effect of BaP on other immune cells, such as eosionophils, is unknown. In this study, we investigated the effect of BaP on the production of vascular endothelial growth factor (VEGF) using an in vitro eosinophilic EoL-1 cell and human umbilical vein endothelial cell (HUVEC) co-culture system. EoL-1-conditioned medium was found to promote the growth of HUVEC in a time-dependent manner. The growth stimulating activity was due to the production of VEGF by the EoL-1 cells. The production of VEGF was correlated with the enhanced expression of the phosphorylated form of extracellular signal-regulated kinases (p-ERKs) and the upregulated expression of VEGF mRNA. Furthermore, BaP-induced expression of VEGF mRNA was reduced by the ERK inhibitor PD98059. Results from this study suggested that BaP might affect the growth of endothelial cells through the modulation of VEGF production by eosinophils.

  2. Effect of human mesenchymal stem cells on the growth of HepG2 and Hela cells.

    Science.gov (United States)

    Long, Xiaohui; Matsumoto, Rena; Yang, Pengyuan; Uemura, Toshimasa

    2013-01-01

    Human mesenchymal stem cells (hMSCs) accumulate at carcinomas and have a great impact on cancer cell's behavior. Here we demonstrated that hMSCs could display both the promotional and inhibitive effects on growth of HepG2 and Hela cells by using the conditioned media, indirect co-culture, and cell-to-cell co-culture. Cell growth was increased following the addition of lower proportion of hMSCs while decreased by treatment of higher proportion of hMSCs. We also established a novel noninvasive label way by using internalizing quantum dots (i-QDs) for study of cell-cell contact in the co-culture, which was effective and sensitive for both tracking and distinguishing different cells population without the disturbance of cells. Furthermore, we investigated the role of hMSCs in regulation of cell growth and showed that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways were involved in hMSC-mediated cell inhibition and proliferation. Our findings suggested that hMSCs regulated cancer cell function by providing a suitable environment, and the discovery from the study would provide some clues for development of effective strategy for hMSC-based cancer therapies.

  3. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    International Nuclear Information System (INIS)

    Liu Hua; Luan Fang; Ju Ying; Shen Hongyu; Gao Lifen; Wang Xiaoyan; Liu Suxia; Zhang Lining; Sun Wensheng; Ma Chunhong

    2007-01-01

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation

  4. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Fang, Luan [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Ying, Ju [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Hongyu, Shen [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lifen, Gao [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Xiaoyan, Wang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Suxia, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lining, Zhang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Wensheng, Sun [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Chunhong, Ma [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Key Laboratory for Experimental Teratology, Ministry of Education (China)]. E-mail: machunhong@sdu.edu.cn

    2007-04-06

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation.

  5. Ultraviolet B Radiation Stimulates the Interaction between Nuclear Factor of Activated T Cells 5 (NFAT5) and Nuclear Factor-Kappa B (NF-κB) in Human Lens Epithelial Cells.

    Science.gov (United States)

    Chung, Inyoung; Hah, Young-Sool; Ju, SunMi; Kim, Ji-Hye; Yoo, Woong-Sun; Cho, Hee-Young; Yoo, Ji-Myong; Seo, Seong-Wook; Choi, Wan-Sung; Kim, Seong-Jae

    2017-07-01

    Nuclear factor-kappa B (NF-κB) has been proposed as a therapeutic target for the treatment of cataracts. The authors investigated the relationship between nuclear factor of activated T cells 5 (NFAT5) and NF-κB in ultraviolet B (UVB)-irradiated human lens epithelial (HLE) cells. Human lens epithelial B-3 (HLE-B3) cells were exposed to UVB light at a dose of 10 mJ/cm 2 and then incubated for 24 h. Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) assay. Gene expression level of NFAT5 was determined using real-time quantitative polymerase chain reaction (qPCR). Protein expression levels of NFAT5, NF-κB p65, and α-smooth muscle actin (α-SMA) and the association of NFAT5 with the NF-κB p65 subunit were measured by Western blot analysis and a co-immunoprecipitation assay, respectively. The cellular distribution of NFAT5 and NF-κB p65 was examined by triple immunofluorescence staining. At 24 h after UVB exposure, cell viability significantly decreased in a dose-dependent manner, and UVB light (15 and 20 mJ/cm 2 ) significantly increased the ROS generation. UVB irradiation increased NFAT5 mRNA and protein levels and increased phosphorylation of NF-κB in HLE-B3 cells. α-SMA protein levels were increased in the irradiated cells. In addition, NFAT5 and NF-κB translocated from the cytoplasm to the nucleus, and binding between the p65 subunit and NFAT5 was increased. Exposure to UVB radiation induces nuclear translocation and stimulates binding between NFAT5 and NF-κB proteins in HLE-B3 cells. These interactions may form part of the biochemical mechanism of cataractogenesis in UVB-irradiated HLECs.

  6. TGFβ activated kinase 1 (TAK1 at the crossroad of B cell receptor and Toll-like receptor 9 signaling pathways in human B cells.

    Directory of Open Access Journals (Sweden)

    Dániel Szili

    Full Text Available B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR, receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R and the innate receptor, Toll-like receptor 9 (TLR9. However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs, ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1 is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.

  7. STAT6 Mediates Interleukin-4 Growth Inhibition in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jennifer L. Gooch

    2002-01-01

    Full Text Available In addition to acting as a hematopoietic growth factor, interleukin-4 (IL-4 inhibits growth of some transformed cells in vitro and in vivo. In this study, we show that insulin receptor substrate (IRS-1, IRS-2, and signal transducer and activator of transcription 6 (STAT6 are phosphorylated following IL-4 treatment in MCF-7 breast cancer cells. STAT6 DNA binding is enhanced by IL-4 treatment. STAT6 activation occurs even after IRS-1 depletion, suggesting the two pathways are independent. To examine the role of STAT6 in IL-4-mediated growth inhibition and apoptosis, a fulllength STAT6 cDNA was transfected into MCF-7 cells. Transient overexpression of STAT6 resulted in both cytoplasmic and nuclear expression of the protein, increased DNA binding in response to IL-4, and increased transactivation of an IL-4 responsive promoter. In STAT6-transfected cells, basal proliferation was reduced whereas apoptosis was increased. Finally, stable expression of STAT6 resulted in reduced foci formation compared to vector-transfected cells alone. These results suggest STAT6 is required for IL-4mediated growth inhibition and induction of apoptosis in human breast cancer cells.

  8. Rhein inhibits malignant phenotypes of human renal cell carcinoma by impacting on MAPK/NF-κB signaling pathways

    Directory of Open Access Journals (Sweden)

    Ma YL

    2018-03-01

    Full Text Available Ya-Li Ma,* Fang Chen,* Jun ShiDepartment of Nephrology, Huaihe Hospital Henan University, Kaifeng, People’s Republic of China*These authors contributed equally to this workBackground: Rhein, an anthraquinone derivative of rhubarb, is traditionally used in Chinese herbal medicine. Now emerging studies suggest its antitumor properties in many human cancers. The present study aims to investigate the antitumor role of Rhein and its possible mechanism in human renal cell carcinoma (RCC.Materials and methods: Three RCC cell lines (A489, 786-O and ACHN were used as the cell models. We applied CCK-8, cell counting, colony formation, wound healing and Transwell assays to assess the antitumor roles of Rhein in RCC cells in vitro. The therapeutic efficacy of Rhein was further evaluated by intraperitoneal administrations in tumor formation of mice. Western blot was used to investigate the underlying mechanisms of action of Rhein.Results: Rhein inhibited RCC cell proliferation in a dose- and time-dependent manner. It also suppressed RCC cell migration and invasion in vitro. Moreover, Rhein was able to inhibit tumor growth in nude mice by intraperitoneal administration in vivo. Mechanistically, the protein levels of phosphorylated MAPK (mitogen-activated protein kinase, extracellular signal-regulated kinase and c-Jun N-terminal kinase, phosphorylated Akt and two targets of NF-κB (nuclear factor kappa-light-chain enhancer of activated B cells pathway, matrix metalloproteinase 9 and CCND1 were all markedly reduced by Rhein treatment.Conclusion: Rhein processed the antitumor effects in RCC cells by inhibiting cell proliferation, migration and invasion, and these tumor-suppressing functions might be mediated by MAPK/NF-κB signaling pathways.Keywords: Rhein, renal cell carcinoma, antitumor effects, MAPK, NF-κB

  9. The role of NF-κB signaling in the maintenance of pluripotency of human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Osamu Takase

    Full Text Available NF-κB signaling plays an essential role in maintaining the undifferentiated state of embryonic stem (ES cells. However, opposing roles of NF-κB have been reported in mouse and human ES cells, and the role of NF-κB in human induced pluripotent stem (iPS cells has not yet been clarified. Here, we report the role of NF-κB signaling in maintaining the undifferentiated state of human iPS cells. Compared with differentiated cells, undifferentiated human iPS cells showed an augmentation of NF-κB activity. During differentiation induced by the removal of feeder cells and FGF2, we observed a reduction in NF-κB activity, the expression of the undifferentiation markers Oct3/4 and Nanog, and the up-regulation of the differentiated markers WT-1 and Pax-2. The specific knockdown of NF-κB signaling using p65 siRNA also reduced the expression of Oct3/4 and Nanog and up-regulated WT-1 and Pax-2 but did not change the ES-like colony formation. Our results show that the augmentation of NF-κB signaling maintains the undifferentiated state of human iPS and suggest the importance of this signaling pathway in maintenance of human iPS cells.

  10. Transactivation of the TIEG1 confers growth inhibition of transforming growth factor-β-susceptible hepatocellular carcinoma cells

    Science.gov (United States)

    Jiang, Lei; Lai, Yiu-Kay; Zhang, Jin-Fang; Chan, Chu-Yan; Lu, Gang; Lin, Marie CM; He, Ming-Liang; Li, Ji-Cheng; Kung, Hsiang-Fu

    2012-01-01

    AIM: To investigate the role of transforming growth factor (TGF)-β-inducible early gene 1 (TIEG1) in TGF-β-induced growth inhibition in hepatocellular carcinoma (HCC) cells. METHODS: Human hepatocyte and HCC cell lines with varied susceptibilities to TGF-β1 were tested by methylthiazoletetrazolium (MTT) assay. The expression changes of Smad2, Smad3, Smad4, Smad7, TIEG1 and TIEG2 gene following treatment with TGF-β1 in a TGF-β-sensitive hepatocyte cell line (MIHA), a TGF-β-sensitive hepatoma cell line (Hep3B) and two TGF-β-insensitive hepatoma cell lines (HepG2 and Bel7404) were examined. SiRNA targeting TIEG1 was transfected into Hep3B cells and the sensitivity of cells to TGF-β1 was examined. Overexpression of TIEG1 was induced by lentiviral-mediated transduction in TGF-β1-resistant hepatoma cell lines (Bel7404 and HepG2). MTT assay and 4’,6-Diamidino-2-phenylindole staining were used to identify cell viability and apoptosis, respectively. The expression level of stathmin was measured by reverse transcriptase polymerase chain reaction and Western-blotting analysis, and stathmin promoter activity by TIEG1 was monitored by a luciferase reporter gene system. RESULTS: TIEG1 was significantly upregulated by TGF-β1 in the TGF-β1-sensitive HCC cell line, Hep3B, but not in the resistant cell lines. The suppression of TIEG1 by siRNAs decreased the sensitivity of Hep3B cells to TGF-β1, whereas the overexpression of TIEG1 mediated growth inhibition and apoptosis in TGF-β1-resistant HCC cell lines, which resembled those of TGF-β1-sensitive HCC cells treated with TGF-β1. Our data further suggested that stathmin was a direct target of TIEG1, as stathmin was significantly downregulated by TIEG1 overexpression, and stathmin promoter activity was inhibited by TIEG1 in a dose-dependent manner. CONCLUSION: Our data suggest that transactivation of TIEG1 conferred growth inhibition of TGF-β-susceptible human HCC cells. PMID:22563190

  11. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chu SH

    2012-07-01

    Full Text Available Sheng-Hua Chu,1 Dong-Fu Feng,1 Yan-Bin Ma,1 Zhi-Qiang Li21Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, ChinaAbstract: Hydroxyapatite nanoparticles (nano-HAPs have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU.Keywords: glioma, hydroxyapatite nanoparticles, growth mechanism

  12. Temporal Regulation of the Bacillus subtilis Acetylome and Evidence for a Role of MreB Acetylation in Cell Wall Growth.

    Science.gov (United States)

    Carabetta, Valerie J; Greco, Todd M; Tanner, Andrew W; Cristea, Ileana M; Dubnau, David

    2016-05-01

    N ε -Lysine acetylation has been recognized as a ubiquitous regulatory posttranslational modification that influences a variety of important biological processes in eukaryotic cells. Recently, it has been realized that acetylation is also prevalent in bacteria. Bacteria contain hundreds of acetylated proteins, with functions affecting diverse cellular pathways. Still, little is known about the regulation or biological relevance of nearly all of these modifications. Here we characterize the cellular growth-associated regulation of the Bacillus subtilis acetylome. Using acetylation enrichment and quantitative mass spectrometry, we investigate the logarithmic and stationary growth phases, identifying over 2,300 unique acetylation sites on proteins that function in essential cellular pathways. We determine an acetylation motif, EK(ac)(D/Y/E), which resembles the eukaryotic mitochondrial acetylation signature, and a distinct stationary-phase-enriched motif. By comparing the changes in acetylation with protein abundances, we discover a subset of critical acetylation events that are temporally regulated during cell growth. We functionally characterize the stationary-phase-enriched acetylation on the essential shape-determining protein MreB. Using bioinformatics, mutational analysis, and fluorescence microscopy, we define a potential role for the temporal acetylation of MreB in restricting cell wall growth and cell diameter. The past decade highlighted N ε -lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis . To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized MreB, the cell

  13. MicroRNAs control transcription factor NF-kB (p65) expression in human ovarian cells.

    Science.gov (United States)

    Sirotkin, Alexander V; Alexa, Richard; Kišová, Gabriela; Harrath, Abdel Halim; Alwasel, Saleh; Ovcharenko, Dmitriy; Mlynček, Miloš

    2015-05-01

    MicroRNAs (miRNAs) are known to influence ovarian cell proliferation, apoptosis and hormone release, but it remains unknown whether miRNAs affect ovarian functions via transcription factors. We examined the effect of miRNAs on nuclear factor-κappaB (NF-kB) (p65) expression in human ovarian luteinized granulosa cells. We transfected cultured primary human ovarian luteinized granulosa cells with 80 different constructs encoding human pre-miRNAs and then evaluated NF-kB (p65) expression (percentage of cells containing p65) by immunocytochemistry. We found that 21 of the constructs stimulated NF-kB (p65) expression and 18 of the constructs inhibited NF-kB (p65) expression. This is the first direct demonstration that miRNAs affect NF-kB (p65) expression and the first genome-scale miRNA screen to identify upregulation and downregulation of NF-kB accumulation by miRNAs in the ovary. Novel miRNAs that affect the NF-kB signalling pathway could be useful for the control of NF-kB-dependent reproductive processes and the treatment of NF-kB-dependent reproductive disorders.

  14. Galangin inhibits human osteosarcoma cells growth by inducing transforming growth factor-β1-dependent osteogenic differentiation.

    Science.gov (United States)

    Liu, Chunhong; Ma, Mingming; Zhang, Junde; Gui, Shaoliu; Zhang, Xiaohai; Xue, Shuangtao

    2017-05-01

    Osteosarcoma is the most common primary malignancy of the musculoskeletal system, and is associated with excessive proliferation and poor differentiation of osteoblasts. Currently, despite the use of traditional chemotherapy and radiotherapy, no satisfactory and effective agent has been developed to treat the disease. Herein, we found that a flavonoid natural product, galangin, could significantly attenuate human osteosarcoma cells proliferation, without causing obvious cell apoptosis. Moreover, galangin enhanced the expression of osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin and osteopontin) remarkably and elevated the alkaline phosphatase activity in human osteosarcoma cells. And galangin could also attenuated osteosarcoma growth in vivo. These bioactivities of galangin resulted from its selective activation of the transforming growth factor (TGF)-β1/Smad2/3 signaling pathway, which was demonstrated by pathway blocking experiments. These findings suggested that galangin could be a promising agent to treat osteosarcoma. In addition, targeting TGF-β1 to induce osteogenic differentiation might represent a novel therapeutic strategy to treat osteosarcoma with minimal side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Klein, George, E-mail: Georg.Klein@ki.se [Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Box 280, S171 77 Stockholm (Sweden); Klein, Eva; Kashuba, Elena [Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Box 280, S171 77 Stockholm (Sweden)

    2010-05-21

    Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma

  16. Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes

    International Nuclear Information System (INIS)

    Klein, George; Klein, Eva; Kashuba, Elena

    2010-01-01

    Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma

  17. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    Science.gov (United States)

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  18. Effect of cyclophilin A on gene expression in human pancreatic cancer cells.

    Science.gov (United States)

    Li, Min; Wang, Hao; Li, Fei; Fisher, William E; Chen, Changyi; Yao, Qizhi

    2005-11-01

    We previously found that cyclophilin A (CypA) is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. In this study, we further investigated the effect of CypA on gene expression of several key molecules that are involved in pancreatic cancer cell proliferation. Human pancreatic cancer cell lines (Panc-1, MIA PaCa-2, and BxPC-3) and human pancreatic ductal epithelial (HPDE) cells were used. The messenger RNA (mRNA) levels of CypA, CypB, CD147, neuropilins (NRPs), vascular endothelial growth factor (VEGF), and VEGF receptors upon the treatment of exogenous recombinant human CypA were determined by real-time reverse-transcription polymerase chain reaction. Exogenous human recombinant CypA reduced the mRNA levels of NRP-1 and VEGF, but not endogenous CypA, CypB, and CD147, in Panc-1, MIA PaCa-2, and BxPC-3 cells. In contrast, HPDE cells showed a decrease of endogenous CypA and CD147 mRNA, but not detectable changes of CypB, NRPs, and VEGF mRNA levels upon exogenous CypA treatment. These data show that exogenous CypA downregulates NRP-1 and VEGF expression in pancreatic cancer cells. This effect is different in normal HPDE cells. Thus, soluble CypA may affect cell growth of pancreatic cancer.

  19. Human herpesvirus 6B inhibits cell proliferation by a p53-independent pathway

    DEFF Research Database (Denmark)

    Øster, Bodil; Kaspersen, M.D.; Kofod-Olsen, Emil

    2006-01-01

    BACKGROUND: Various forms of cellular stress can activate the tumour suppressor protein p53, an important regulator of cell cycle arrest, apoptosis, and cellular senescence. Cells infected by human herpesvirus 6B (HHV-6B) accumulate aberrant amounts of p53. OBJECTIVES: The aim of this study...

  20. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated disruption of the CD40 ligand-induced activation of primary human B cells

    International Nuclear Information System (INIS)

    Lu Haitian; Crawford, Robert B.; Kaplan, Barbara L.F.; Kaminski, Norbert E.

    2011-01-01

    Suppression of the primary antibody response is particularly sensitive to suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice; however, surprisingly little is known concerning the effects of TCDD on humoral immunity or B cell function in humans. Results from a limited number of previous studies, primarily employing in vitro activation models, suggested that human B cell effector function is suppressed by TCDD. The present study sought to extend these findings by investigating, in primary human B cells, the effects of TCDD on several critical stages leading to antibody secretion including activation and plasmacytic differentiation using an in vitro CD40 ligand activation model. These studies revealed important differences in the response of human and mouse B cells to TCDD, the most striking being altered expression of plasmacytic differentiation regulators, B lymphocyte-induced maturation protein 1 and paired box protein 5, in mouse but not human B cells. The activation of human B cells was profoundly impaired by TCDD, as evidenced by decreased expression of activation markers CD80, CD86, and CD69. The impaired activation correlated with decreased cell viability, which prevented the progression of human B cells toward plasmacytic differentiation. TCDD treatment also attenuated the early activation of mitogen-activated protein kinases (MAPK) and Akt signaling in human B cells. Collectively, the present study provided experimental evidence for novel mechanisms by which TCDD impairs the effector function of primary human B cells. - Highlights: → In this study primary human and mouse B cell toxicity to TCDD was compared. → TCDD altered the expression of Blimp-1 and Pax5 in mouse but not human B cells. → TCDD markedly suppressed human B cell activation as characterized by CD80, CD86 and CD69 expression. → TCDD inhibited ERK, p38, and Akt phosphorylation in human B cells.

  1. The human vascular endothelial cell line HUV-EC-C harbors the integrated HHV-6B genome which remains stable in long term culture.

    Science.gov (United States)

    Shioda, Setsuko; Kasai, Fumio; Ozawa, Midori; Hirayama, Noriko; Satoh, Motonobu; Kameoka, Yousuke; Watanabe, Ken; Shimizu, Norio; Tang, Huamin; Mori, Yasuko; Kohara, Arihiro

    2018-02-01

    Human herpes virus 6 (HHV-6) is a common human pathogen that is most often detected in hematopoietic cells. Although human cells harboring chromosomally integrated HHV-6 can be generated in vitro, the availability of such cell lines originating from in vivo tissues is limited. In this study, chromosomally integrated HHV-6B has been identified in a human vascular endothelial cell line, HUV-EC-C (IFO50271), derived from normal umbilical cord tissue. Sequence analysis revealed that the viral genome was similar to the HHV-6B HST strain. FISH analysis using a HHV-6 DNA probe showed one signal in each cell, detected at the distal end of the long arm of chromosome 9. This was consistent with a digital PCR assay, validating one copy of the viral DNA. Because exposure of HUV-EC-C to chemicals did not cause viral reactivation, long term cell culture of HUV-EC-C was carried out to assess the stability of viral integration. The growth rate was altered depending on passage numbers, and morphology also changed during culture. SNP microarray profiles showed some differences between low and high passages, implying that the HUV-EC-C genome had changed during culture. However, no detectable change was observed in chromosome 9, where HHV-6B integration and the viral copy number remained unchanged. Our results suggest that integrated HHV-6B is stable in HUV-EC-C despite genome instability.

  2. A Novel Dual HDAC6 and Tubulin Inhibitor, MPT0B451, Displays Anti-tumor Ability in Human Cancer Cells in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Yi-Wen Wu

    2018-03-01

    Full Text Available The combination cancer therapy is a new strategy to circumvent drug resistance for the treatment of high metastasis and advanced malignancies. Herein, we developed a synthesized compound MPT0B451 that display inhibitory effect against histone deacetylase (HDAC 6 and tubulin assembly. Our data demonstrated that MPT0B451 significantly inhibited cancer cell growths in HL-60 and PC-3 cells due to inhibition of HDAC activity. MPT0B451 also markedly increased caspase-mediated apoptosis in these cells. The cell cycle analysis showed mitotic arrest induced by MPT0B451 with enhanced expression of G2/M transition proteins. Moreover, molecular docking analysis supported MPT0B451 as a dual HDAC6 and tubulin inhibitor. Finally, MPT0B451 led to tumor growth inhibition (TGI in HL-60 and PC-3 xenograft models. These findings indicated that MPT0B451 has dual inhibition effects for HDAC6 and tubulin, and also contributed to G2/M arrest followed by apoptotic induction. Together, our results suggested that MPT0B451 may serve as a potent anti-cancer treatment regimen in human prostate cancer and acute myeloid leukemia.

  3. Selective induction of DNA repair pathways in human B cells activated by CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Xiaosheng Wu

    Full Text Available Greater than 75% of all hematologic malignancies derive from germinal center (GC or post-GC B cells, suggesting that the GC reaction predisposes B cells to tumorigenesis. Because GC B cells acquire expression of the highly mutagenic enzyme activation-induced cytidine deaminase (AID, GC B cells may require additional DNA repair capacity. The goal of this study was to investigate whether normal human B cells acquire enhanced expression of DNA repair factors upon AID induction. We first demonstrated that several DNA mismatch repair, homologous recombination, base excision repair, and ATR signaling genes were overexpressed in GC B cells relative to naïve and memory B cells, reflecting activation of a process we have termed somatic hyperrepair (SHR. Using an in vitro system, we next characterized activation signals required to induce AID expression and SHR. Although AID expression was induced by a variety of polyclonal activators, SHR induction strictly required signals provided by contact with activated CD4+ T cells, and B cells activated in this manner displayed reduced levels of DNA damage-induced apoptosis. We further show the induction of SHR is independent of AID expression, as GC B cells from AID-/-mice retained heightened expression of SHR proteins. In consideration of the critical role that CD4+ T cells play in inducing the SHR process, our data suggest a novel role for CD4+ T cells in the tumor suppression of GC/post-GC B cells.

  4. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-{kappa}B pathway in human epidermoid carcinoma A431 cells

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi; George, Jasmine [Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India); Ray, Ratan Singh; Hans, Rajendra K. [Photobiology Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India); Prasad, Sahdeo [Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India); Shukla, Yogeshwer, E-mail: yogeshwer_shukla@hotmail.com [Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India)

    2009-06-26

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm{sup 2}) and resveratrol (60 {mu}M) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition of A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-{kappa}B) pathway by blocking phosphorylation of serine 536 and inactivating NF-{kappa}B and subsequent degradation of I{kappa}B{alpha}, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.

  5. Sustained CD8+ T-cell responses induced after acute parvovirus B19 infection in humans

    DEFF Research Database (Denmark)

    Norbeck, Oscar; Isa, Adiba; Pöhlmann, Christoph

    2005-01-01

    Murine models have suggested that CD8+ T-cell responses peak early in acute viral infections and are not sustained, but no evidence for humans has been available. To address this, we longitudinally analyzed the CD8+ T-cell response to human parvovirus B19 in acutely infected individuals. We...... observed striking CD8+ T-cell responses, which were sustained or even increased over many months after the resolution of acute disease, indicating that CD8+ T cells may play a prominent role in the control of parvovirus B19 and other acute viral infections of humans, including potentially those generated...

  6. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France); Mazella, Jean, E-mail: mazella@ipmc.cnrs.fr [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  8. Achillea millefolium L. hydroethanolic extract inhibits growth of human tumor cell lines by interfering with cell cycle and inducing apoptosis.

    Science.gov (United States)

    Pereira, Joana M; Peixoto, Vanessa; Teixeira, Alexandra; Sousa, Diana; Barros, Lillian; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2018-06-05

    The cell growth inhibitory activity of the hydroethanolic extract of Achillea millefolium was studied in human tumor cell lines (NCI-H460 and HCT-15) and its mechanism of action was investigated. The GI 50 concentration was determined with the sulforhodamine B assay and cell cycle and apoptosis were analyzed by flow cytometry following incubation with PI or Annexin V FITC/PI, respectively. The expression levels of proteins involved in cell cycle and apoptosis were analyzed by Western blot. The extracts were characterized regarding their phenolic composition by LC-DAD-ESI/MS. 3,5-O-Dicaffeoylquinic acid, followed by 5-O-caffeoylquinic acid, were the main phenolic acids, while, luteolin-O-acetylhexoside and apigenin-O-acetylhexoside were the main flavonoids. This extract decreased the growth of the tested cell lines, being more potent in HCT-15 and then in NCI-H460 cells. Two different concentrations of the extract (75 and 100 μg/mL) caused alterations in cell cycle profile and increased apoptosis levels in HCT-15 and NCI-H460 cells. Moreover, the extract caused an increase in p53 and p21 expression in NCI-H460 cells (which have wt p53), and reduced XIAP levels in HCT-15 cells (with mutant p53). This work enhances the importance of A. millefolium as source of bioactive phenolic compounds, particularly of XIAP inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes.

    Science.gov (United States)

    Kodama, Nao; Iwao, Takahiro; Kabeya, Tomoki; Horikawa, Takashi; Niwa, Takuro; Kondo, Yuki; Nakamura, Katsunori; Matsunaga, Tamihide

    2016-06-01

    We previously reported that small-molecule compounds were effective in generating pharmacokinetically functional enterocytes from human induced pluripotent stem (iPS) cells. In this study, to determine whether the compounds promote the differentiation of human iPS cells into enterocytes, we investigated the effects of a combination of mitogen-activated protein kinase kinase (MEK), DNA methyltransferase (DNMT), and transforming growth factor (TGF)-β inhibitors on intestinal differentiation. Human iPS cells cultured on feeder cells were differentiated into endodermal cells by activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, the cells were differentiated into enterocyte cells by epidermal growth factor and small-molecule compounds. After differentiation, mRNA expression levels and drug-metabolizing enzyme activities were measured. The mRNA expression levels of the enterocyte marker sucrase-isomaltase and the major drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 were increased by a combination of MEK, DNMT, and TGF-β inhibitors. The mRNA expression of CYP3A4 was markedly induced by 1α,25-dihydroxyvitamin D3. Metabolic activities of CYP1A1/2, CYP2B6, CYP2C9, CYP2C19, CYP3A4/5, UDP-glucuronosyltransferase, and sulfotransferase were also observed in the differentiated cells. In conclusion, MEK, DNMT, and TGF-β inhibitors can be used to promote the differentiation of human iPS cells into pharmacokinetically functional enterocytes. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  10. Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells

    International Nuclear Information System (INIS)

    Anisowicz, A.; Bardwell, L.; Sager, R.

    1987-01-01

    Comparison by subtractive hybridization of mRNAs revealed a moderately abundant message in highly tumorigenic CHEF/16 cells present at very low levels in closely related nontumorigenic CHEF/18 cells. After cloning and sequencing the corresponding cDNA, computer comparison showed closest homology with the human connective tissue-activating peptide III (CTAP III). The human tumor cell cDNA hybridizing with the Chinese hamster clone was isolated, sequenced, and found to have closer similarity to the Chinese hamster gene than to CTAP III. Thus, the cloned cDNAs from Chinese hamster and human cells represent a different gene, named gro. Studies of its transcriptional regulation have shown that expression is tightly regulated by growth status in normal Chinese hamster and human cells and relaxed in the tumorigenic cells so far examined

  11. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    International Nuclear Information System (INIS)

    Samoszuk, Michael; Kanakubo, Emi; Chan, John K

    2005-01-01

    The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7), a powerful, heparin-binding growth factor for breast epithelial cells. Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors

  12. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    Directory of Open Access Journals (Sweden)

    Kanakubo Emi

    2005-09-01

    Full Text Available Abstract Background The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. Methods We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7, a powerful, heparin-binding growth factor for breast epithelial cells. Results Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Conclusion Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors.

  13. B7-H3 is a potent inhibitor of human T cell activation: No evidence for B7-H3 and TREML2 interaction

    Science.gov (United States)

    Leitner, Judith; Klauser, Christoph; Pickl, Winfried F.; Stöckl, Johannes; Majdic, Otto; Bardet, Anaïs F.; Kreil, David P.; Dong, Chen; Yamazaki, Tomohide; Zlabinger, Gerhard; Pfistershammer, Katharina; Steinberger, Peter

    2010-01-01

    B7-H3 belongs to the B7 superfamily, a group of molecules that costimulate or down-modulate T cell responses. Although it was shown that B7-H3 can inhibit T cell responses, several studies - most of them performed in murine systems - found B7-H3 to act in a costimulatory manner. In this study we have specifically addressed a potential functional dualism of human B7-H3 by assessing the effect of this molecule under varying experimental conditions as well as on different T cell subsets. We show that B7-H3 does not costimulate human T cells. In presence of strong activating signals, B7-H3 potently and consistently down-modulated human T cell responses. This inhibitory effect was evident when analyzing proliferation and cytokine production and affected naïve as well as pre-activated T cells. We furthermore demonstrate that B7-H3 - T cell interaction is characterized by an early suppression of IL-2 and that T cell inhibition can be reverted by exogenous IL-2. Since TREML2 has been recently described as costimulatory receptor of murine B7-H3 we have extensively analysed interaction of human B7-H3 with TREML2 (TLT2). In these experiments we found no evidence for such an interaction. Furthermore our data do not point to a role for murine TREML2 as a receptor for murine B7-H3. PMID:19544488

  14. Atypical memory B cells in human chronic infectious diseases: An interim report.

    Science.gov (United States)

    Portugal, Silvia; Obeng-Adjei, Nyamekye; Moir, Susan; Crompton, Peter D; Pierce, Susan K

    2017-11-01

    Immunological memory is a remarkable phenomenon in which survival of an initial infection by a pathogen leads to life-long protection from disease upon subsequent exposure to that same pathogen. For many infectious diseases, long-lived protective humoral immunity is induced after only a single infection in a process that depends on the generation of memory B cells (MBCs) and long-lived plasma cells. However, over the past decade it has become increasingly evident that many chronic human infectious diseases to which immunity is not readily established, including HIV-AIDS, malaria and TB, are associated with fundamental alterations in the composition and functionality of MBC compartments. A common feature of these diseases appears to be a large expansion of what have been termed exhausted B cells, tissue-like memory B cells or atypical memory B cells (aMBCs) that, for simplicity's sake, we refer to here as aMBCs. It has been suggested that chronic immune activation and inflammation drive the expansion of aMBCs and that in some way aMBCs contribute to deficiencies in the acquisition of immunity in chronic infectious diseases. Although aMBCs are heterogeneous both within individuals and between diseases, they have several features in common including low expression of the cell surface markers that define classical MBCs in humans including CD21 and CD27 and high expression of genes not usually expressed by classical MBCs including T-bet, CD11c and a variety of inhibitory receptors, notably members of the FcRL family. Another distinguishing feature is their greatly diminished ability to be stimulated through their B cell receptors to proliferate, secrete cytokines or produce antibodies. In this review, we describe our current understanding of the phenotypic markers of aMBCs, their specificity in relation to the disease-causing pathogen, their functionality, the drivers of their expansion in chronic infections and their life span. We briefly summarize the features of a

  15. Radiosensitizing effect of epothilone B on human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, T.; Kriesen, S.; Hildebrandt, G.; Manda, K. [Univ. of Rostock (Germany). Dept. of Radiotherapy and Radiation Oncology; Klautke, G.; Fietkau, R. [Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany). Dept. of Radiation Oncology; Kuznetsov, S.A.; Weiss, D.G. [Univ. of Rostock (Germany). Inst. of Biological Sciences, Cell Biology, and Biosystems Technology

    2012-02-15

    A combined modality treatment employing radiation and chemotherapy plays a central role in the management of solid tumors. In our study, we examined the cytotoxic and radiosensitive effect of the microtubule stabilizer epothilone B on two human epithelial tumor cell lines in vitro and its influence on the microtubule assembly. Cancer cells were treated with epothilone B in proliferation assays and in combination with radiation in colony-forming assays. For the analysis of ionizing radiation-induced DNA damage and the influence of the drug on its repair a {gamma}H2AX foci assay was used. To determine the effect of epothilone B on the microtubule assembly in cells and on purified tubulin, immunofluorescence staining and tubulin polymerization assay, respectively, were conducted. Epothilone B induced a concentration- and application-dependent antiproliferative effect on the cells, with IC{sub 50} values in the low nanomolar range. Colony forming assays showed a synergistic radiosensitive effect on both cell lines which was dependent on incubation time and applied concentration of epothilone B. The {gamma}H2AX assays demonstrated that ionizing radiation combined with the drug resulted in a concentration-dependent increase in the number of double-strand breaks and suggested a reduction in DNA repair capacity. Epothilone B produced enhanced microtubule bundling and abnormal spindle formation as revealed by immunofluorescence microscopy and caused microtubule formation from purified tubulin. The results of this study showed that epothilone B displays cytotoxic antitumor activity at low nanomolar concentrations and also enhances the radiation response in the tumor cells tested; this may be induced by a reduced DNA repair capacity triggered by epothilone B. It was also demonstrated that epothilone B in fact targets microtubules in a more effective manner than paclitaxel. (orig.)

  16. Fluoro-sorafenib (Regorafenib) effects on hepatoma cells: growth inhibition, quiescence and recovery

    Science.gov (United States)

    Carr, Brian I.; Cavallini, Aldo; Lippolis, Catia; D’Alessandro, Rosalba; Messa, Caterina; Refolo, Maria Grazia; Tafaro, Angela

    2015-01-01

    To evaluate the growth-inhibitory properties of the potent multi-kinase antagonist Regorafenib (Fluoro-Sorafenib), which was synthesized as a more potent Sorafenib, a Raf inhibitor and to determine whether similar mechanisms were involved, human hepatoma cell lines were grown in the presence or absence of Regorafanib and examined for growth inhibition. Western blots were performed for Raf targets, for apoptosis and autophagy. Regorafenib inhibited growth of human Hep3B, PLC/PRF/5 and HepG2 cells in a concentration- and time-dependent manner. Multiple signaling pathways were altered, including MAP kinases phospho-ERK and phospho-JNK and its target phospho-c-Jun. There was evidence for apoptosis by FACS, cleavage of caspases and increased Bax levels; as well as induction of autophagy, as judged by increased Beclin-1 and LC3 (II) levels. Prolonged drug exposure resulted in cell quiescence. Full growth recovery occurred after drug removal, unlike with doxorubicin chemotherapy. Regorafenib is a potent inhibitor of cell growth. Cells surviving Regorafenib treatment remain viable, but quiescent and capable of regrowth following drug removal. The reversibility of tumor cell growth suppression after drug removal may have clinical implications. PMID:22777740

  17. Characterization of DNA polymerase. beta. mRNA: cell-cycle growth response in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Zmudzka, B Z; Fornace, A; Collins, J; Wilson, S H

    1988-10-25

    DNA polymerase ..beta.. (..beta..-polymerase) is a housekeeping enzyme involved in DNA repair in vertebrate cells. The authors used a cDNA probe to study abundance of ..beta..-polymerase mRNA in cultured human cells. The mRNA level in synchronized HeLa cells, representing different stages of the cell-cycle, varied only slightly. Contact inhibited fibroblasts AG-1522 contained the same level of mRNA as growing cells. The steady-state level of mRNA in fibroblasts is equivalent to 6 molecules per cell. The results indicate that the ..beta..-polymerase transcript is low abundance and is neither cell-cycles nor growth phase responsive.

  18. B cell-derived transforming growth factor-β1 expression limits the induction phase of autoimmune neuroinflammation.

    Science.gov (United States)

    Bjarnadóttir, Kristbjörg; Benkhoucha, Mahdia; Merkler, Doron; Weber, Martin S; Payne, Natalie L; Bernard, Claude C A; Molnarfi, Nicolas; Lalive, Patrice H

    2016-10-06

    Studies in experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), have shown that regulatory B cells modulate the course of the disease via the production of suppressive cytokines. While data indicate a role for transforming growth factor (TGF)-β1 expression in regulatory B cell functions, this mechanism has not yet been tested in autoimmune neuroinflammation. Transgenic mice deficient for TGF-β1 expression in B cells (B-TGF-β1 -/- ) were tested in EAE induced by recombinant mouse myelin oligodendrocyte glycoprotein (rmMOG). In this model, B-TGF-β1 -/- mice showed an earlier onset of neurologic impairment compared to their littermate controls. Exacerbated EAE susceptibility in B-TGF-β1 -/- mice was associated with augmented CNS T helper (Th)1/17 responses. Moreover, selective B cell TGF-β1-deficiency increased the frequencies and activation of myeloid dendritic cells, potent professional antigen-presenting cells (APCs), suggesting that B cell-derived TGF-β1 can constrain Th1/17 responses through inhibition of APC activity. Collectively our data suggest that B cells can down-regulate the function of APCs, and in turn encephalitogenic Th1/17 responses, via TGF-β1, findings that may be relevant to B cell-targeted therapies.

  19. Expression of members of immunoglobulin gene family in somatic cell hybrids between human B and T cells

    International Nuclear Information System (INIS)

    Kozbor, D.; Burioni, R.; Ar-Rushdi, A.; Zmijewski, C.; Croce, C.M.

    1987-01-01

    Somatic cell hybrids were obtained between human T and B cells and tested for the expression of differentiated traits of both cell lineages. The T-cell parent SUP-T1 is CD3 - , CD4 + , CD1 + , CD8 + , is weakly positive for HLA class I determinants, and has an inversion of chromosome 14 due to a site-specific recombination event between an immunoglobulin heavy-chain variable gene and the joining segment of the T-cell receptor α chain. The B-cell parent, the 6-thioguanine- and ouabain-resistant mutant GM1500, is a lymphoblastoid cell line that secretes IgG2, K chains, and expresses B1, B532, and HLA class I and II antigens. All hybrids expressed characteristics of B cells (Ig + , B1 + , B532 + , EBNA + , HLA antigens), whereas only CD4 among the T-cell markers was expressed. The level of T-cell receptor β-chain transcript was greatly reduced and no RNA of the chimeric T-cell receptor α-chain joining segment-immunoglobulin heavy-chain variable region was detected. Southern blot analysis indicated that absence of T-cell differentiation markers in the hybrids was not due to chromosomal loss. Rather, some B-cell-specific factor present in the hybrids may account for the suppression

  20. Soluble suppressor supernatants elaborated by concanavalin A-activated human mononuclear cells. Characterization of a soluble suppressor of B cell immunoglobulin production

    International Nuclear Information System (INIS)

    Fleisher, T.A.; Greene, W.C.; Blaese, R.M.; Waldmann, T.A.

    1981-01-01

    Human peripheral blood mononuclear cells (PBMC) activated with the mitogenic lectin concanavalin A (Con A) elaborate a soluble immune suppressor supernatant (SISS) that contains at least 2 distinct suppressor factors. One of these, SISS-B, inhibits polyclonal B cell immunoglobulin production, whereas the other, SISS-T, suppresses T cell proliferation to both mitogens and antigens. The latter mediator is discussed in the companion paper. Characteristics of the human soluble suppressor of B cell immunoglobulin production (SISS-B) include: 1) inhibition by a noncytotoxic mechanism, 2) loss of activity in the presence of the monosaccharide L-rhamnose, 3) appearance within 8 to 16 hr after the addition of Con A, 4) elaboration by cells irradiated with 500 or 2000 rads, 5) production by highly purified T cells, 6) stability at pH 2.5 but instability at 56/sup o/C, and 7) m.w. of 60 to 80,000. These data indicate that after Con A activation, selected T cells not only become potent suppressor cells, but also generate a soluble saccharide-specific factor(s) that inhibits polyclonal immunoglobulin production by human B cells

  1. The B-cell receptor controls fitness of MYC-driven lymphoma cells via GSK3β inhibition.

    Science.gov (United States)

    Varano, Gabriele; Raffel, Simon; Sormani, Martina; Zanardi, Federica; Lonardi, Silvia; Zasada, Christin; Perucho, Laura; Petrocelli, Valentina; Haake, Andrea; Lee, Albert K; Bugatti, Mattia; Paul, Ulrike; Van Anken, Eelco; Pasqualucci, Laura; Rabadan, Raul; Siebert, Reiner; Kempa, Stefan; Ponzoni, Maurilio; Facchetti, Fabio; Rajewsky, Klaus; Casola, Stefano

    2017-06-08

    Similar to resting mature B cells, where the B-cell antigen receptor (BCR) controls cellular survival, surface BCR expression is conserved in most mature B-cell lymphomas. The identification of activating BCR mutations and the growth disadvantage upon BCR knockdown of cells of certain lymphoma entities has led to the view that BCR signalling is required for tumour cell survival. Consequently, the BCR signalling machinery has become an established target in the therapy of B-cell malignancies. Here we study the effects of BCR ablation on MYC-driven mouse B-cell lymphomas and compare them with observations in human Burkitt lymphoma. Whereas BCR ablation does not, per se, significantly affect lymphoma growth, BCR-negative (BCR - ) tumour cells rapidly disappear in the presence of their BCR-expressing (BCR + ) counterparts in vitro and in vivo. This requires neither cellular contact nor factors released by BCR + tumour cells. Instead, BCR loss induces the rewiring of central carbon metabolism, increasing the sensitivity of receptor-less lymphoma cells to nutrient restriction. The BCR attenuates glycogen synthase kinase 3 beta (GSK3β) activity to support MYC-controlled gene expression. BCR - tumour cells exhibit increased GSK3β activity and are rescued from their competitive growth disadvantage by GSK3β inhibition. BCR - lymphoma variants that restore competitive fitness normalize GSK3β activity after constitutive activation of the MAPK pathway, commonly through Ras mutations. Similarly, in Burkitt lymphoma, activating RAS mutations may propagate immunoglobulin-crippled tumour cells, which usually represent a minority of the tumour bulk. Thus, while BCR expression enhances lymphoma cell fitness, BCR-targeted therapies may profit from combinations with drugs targeting BCR - tumour cells.

  2. KCC isoforms in a human lens epithelial cell line (B3) and lens tissue extracts.

    Science.gov (United States)

    Misri, Sandeep; Chimote, Ameet A; Adragna, Norma C; Warwar, Ronald; Brown, Thomas L; Lauf, Peter K

    2006-11-01

    We recently reported potassium-chloride cotransporter activity in human lens epithelial B3 (HLE-B3) cells. The purpose of the present study was to demonstrate in these cells as well as in human lens tissue the potassium-chloride cotransport (KCC) isoforms by reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting and immunofluorescence microscopy. Of the four KCC genes known to encode the respective proteins and their spliced variants, RT-PCR with both rat and human primers revealed the predicted cDNA fragments of KCC1, KCC3a, KCC3b, and KCC4 but not KCC2 in both HLE-B3 cells and in human lens tissue extracts from cataractous patients. Polyclonal rabbit (rb) anti-rat (rt) and anti-human (hm) antibodies against rtKCC1 and hmKCC3, respectively, and a commercially available rb-anti-mouse (ms) KCC4 antibody were used. Rb anti-rtKCC1-ECL3 [against epitopes within the large extracellular loop 3 (ECL3)] revealed a 150kDa band in HLE-B3 cells consistent with the known molecular weight of KCC1. Rb anti-hmKCC3-ECL3 yielded three bands of 150, 122 and 105kDa, evidence for the presence of KCC3a, KCC3b and possibly KCC3c isoforms. The 122 and 112kDa bands were also demonstrated by rb anti-hmKCC3-CTD [the C-terminal domain (CTD)]. Rb anti-msKCC4 antibody only showed a 100kDa band in HLE-B3 cells. In the human lens tissues, a 115kDa protein was detected with rb anti-rtKCC1-ECL3 and a 100kDa band with rb anti-msKCC4, however, no bands with rb anti-hmKCC3-ECL3 or rb anti-hmKCC3-CTD. Fluorescence microscopy revealed immunocytochemical cytoplasmic and membrane labeling of HLE-B3 cells with anti-KCC1, -KCC3 (laser confocal microscopy) and -KCC4 antibodies and a Cy3-tagged secondary antibody. Hence HLE-B3 cells expressed proteins of the KCC1, KCC3a, b, and KCC4 isoforms, whereas surgically removed cataractous lens tissue expressed only those of KCC1 and KCC4.

  3. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells.

    Science.gov (United States)

    Dong, Ray; Wang, Xueqian; Wang, Huan; Liu, Zhengyun; Liu, Jie; Saavedra, Joseph E

    2017-04-01

    JS-K is a novel anticancer nitric oxide (NO) prodrug effective against a variety of cancer cells, including the inhibition of AM-1 hepatoma cell growth in rats. To further evaluate anticancer effects of JS-K, human hepatoma Hep3B cells were treated with JS-K and the compound control JS-43-126 at various concentrations (0-100μM) for 24h, and cytotoxicity was determined by the MTS assay. The compound control JS-43-126 was not cytotoxic to Hep3B cells at concentrations up to 100μM, while the LC 50 for JS-K was about 10μM. To examine the molecular mechanisms of antitumor effects of JS-K, Hep3B cells were treated with 1-10μM of JS-K for 24h, and then subjected to gene expression analysis via real time RT-PCR and protein immunostain via confocal images. JS-K is a GST-α targeting NO prodrug, and decreased immunostaining for GST-α was associated with JS-K treatment. JS-K activated apoptosis pathways in Hep3B cells, including induction of caspase-3, caspase-9, Bax, TNF-α, and IL-1β, and immunostaining for caspase-3 was intensified. The expressions of thrombospondin-1 (TSP-1) and the tissue inhibitors of metalloproteinase-1 (TIMP-1) were increased by JS-K at both transcript and protein levels. JS-K treatment also increased the expression of differentiation-related genes CD14 and CD11b, and depressed the expression of c-myc in Hep3B cells. Thus, multiple molecular events appear to be associated with anticancer effects of JS-K in human hepatoma Hep3B cells, including activation of genes related to apoptosis and induction of genes involved in antiangiogenesis and tumor cell migration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Isolation of a cDNA for a Growth Factor of Vascular Endothelial Cells from Human Lung Cancer Cells: Its Identity with Insulin‐like Growth Factor II

    Science.gov (United States)

    Hagiwara, Koichi; Kobayashi, Tatsuo; Tobita, Masato; Kikyo, Nobuaki; Yazaki, Yoshio

    1995-01-01

    We have found growth‐promoting activity for vascular endothelial cells in the conditioned medium of a human lung cancer cell line, T3M‐11. Purification and characterization of the growth‐promoting activity have been carried out using ammonium sulfate precipitation and gel‐exclusion chromatography. The activity migrated as a single peak just after ribonuclease. It did not bind to a heparin affinity column. These results suggest that the activity is not a heparin‐binding growth factor (including fibroblast growth factors) or a vascular endothelial growth factor. To identify the molecule exhibiting the growth‐promoting activity, a cDNA encoding the growth factor was isolated through functional expression cloning in COS‐1 cells from a cDNA library prepared from T3M‐11 cells. The nucleotide sequence encoded by the cDNA proved to be identical with that of insulin‐like growth factor II. PMID:7730145

  5. Cloning of Soluble Human Stem Cell Factor in pET-26b(+) Vector.

    Science.gov (United States)

    Asghari, Salman; Shekari Khaniani, Mahmoud; Darabi, Masood; Mansoori Derakhshan, Sima

    2014-01-01

    Stem cell factor (SCF) plays an important role in the survival, proliferation and differentiation of hematopoietic stem cells and progenitor cells. Potential therapeutic applications of SCF include hematopoietic stem cell mobilization, exvivo stem/progenitor cell expansion, gene therapy, and immunotherapy. Considering the cost and problem in accessibility of this product in Iran, clears the importance of indigenizing production of rhSCF. In the present work, we describe the construction of the soluble rhSCF expression vector in pET-26b (+) with periplasmic localization potential. Following PCR amplification of human SCF ORF, it is cloned in pET-26b (+) vector in NcoI and XhoI sites. The recombinant construct was transformed into BL21 (DE3) Ecoli strains. The construction of recombinant vector was verified by colony PCR and sequence analysis of pET26b-hSCF vector. Sequence analyses proved that human SCF ORF has been inserted into NcoI and XhoI site with correct orientation downstream of strong T7 promotor and showed no nucleotide errors. The SCF ORF was successfully cloned in pET-26b (+) expression vector and is ready for future production of SCF protein.

  6. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    International Nuclear Information System (INIS)

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-01-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of 125 I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound 125 I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients

  7. Heterogeneity in both cytokine production and responsiveness of a panel of monoclonal human Epstein-Barr virus-transformed B-cell lines

    NARCIS (Netherlands)

    Jochems, G. J.; Klein, M. R.; Jordens, R.; Pascual-Salcedo, D.; van Boxtel-Oosterhof, F.; van Lier, R. A.; Zeijlemaker, W. P.

    1991-01-01

    To optimize growth and Ig production of in vitro-cultured Epstein-Barr virus (EBV)-transformed B cells, a panel of six monoclonal EBV B-cell lines was analyzed for autocrine growth factor production and responsiveness to various cytokines. Three cell lines produced Il-I and four produced Il-6,

  8. Analysis of B Cell Repertoire Dynamics Following Hepatitis B Vaccination in Humans, and Enrichment of Vaccine-specific Antibody Sequences.

    Science.gov (United States)

    Galson, Jacob D; Trück, Johannes; Fowler, Anna; Clutterbuck, Elizabeth A; Münz, Márton; Cerundolo, Vincenzo; Reinhard, Claudia; van der Most, Robbert; Pollard, Andrew J; Lunter, Gerton; Kelly, Dominic F

    2015-12-01

    Generating a diverse B cell immunoglobulin repertoire is essential for protection against infection. The repertoire in humans can now be comprehensively measured by high-throughput sequencing. Using hepatitis B vaccination as a model, we determined how the total immunoglobulin sequence repertoire changes following antigen exposure in humans, and compared this to sequences from vaccine-specific sorted cells. Clonal sequence expansions were seen 7 days after vaccination, which correlated with vaccine-specific plasma cell numbers. These expansions caused an increase in mutation, and a decrease in diversity and complementarity-determining region 3 sequence length in the repertoire. We also saw an increase in sequence convergence between participants 14 and 21 days after vaccination, coinciding with an increase of vaccine-specific memory cells. These features allowed development of a model for in silico enrichment of vaccine-specific sequences from the total repertoire. Identifying antigen-specific sequences from total repertoire data could aid our understanding B cell driven immunity, and be used for disease diagnostics and vaccine evaluation.

  9. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    International Nuclear Information System (INIS)

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G.

    1989-01-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity

  10. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies....

  11. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-κB pathway in human epidermoid carcinoma A431 cells

    International Nuclear Information System (INIS)

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi; George, Jasmine; Ray, Ratan Singh; Hans, Rajendra K.; Prasad, Sahdeo; Shukla, Yogeshwer

    2009-01-01

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm 2 ) and resveratrol (60 μM) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition of A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-κB) pathway by blocking phosphorylation of serine 536 and inactivating NF-κB and subsequent degradation of IκBα, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.

  12. H4 histamine receptors mediate cell cycle arrest in growth factor-induced murine and human hematopoietic progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anne-France Petit-Bertron

    Full Text Available The most recently characterized H4 histamine receptor (H4R is expressed preferentially in the bone marrow, raising the question of its role during hematopoiesis. Here we show that both murine and human progenitor cell populations express this receptor subtype on transcriptional and protein levels and respond to its agonists by reduced growth factor-induced cell cycle progression that leads to decreased myeloid, erythroid and lymphoid colony formation. H4R activation prevents the induction of cell cycle genes through a cAMP/PKA-dependent pathway that is not associated with apoptosis. It is mediated specifically through H4R signaling since gene silencing or treatment with selective antagonists restores normal cell cycle progression. The arrest of growth factor-induced G1/S transition protects murine and human progenitor cells from the toxicity of the cell cycle-dependent anticancer drug Ara-C in vitro and reduces aplasia in a murine model of chemotherapy. This first evidence for functional H4R expression in hematopoietic progenitors opens new therapeutic perspectives for alleviating hematotoxic side effects of antineoplastic drugs.

  13. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    International Nuclear Information System (INIS)

    Nagata, Takayuki; Murata, Kazuko; Murata, Ryo; Sun, Shu-lan; Saito, Yutaro; Yamaga, Shuhei; Tanaka, Nobuyuki; Tamai, Keiichi; Moriya, Kunihiko; Kasai, Noriyuki; Sugamura, Kazuo; Ishii, Naoto

    2014-01-01

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs flox/flox ;mb1 cre/+ :Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes

  14. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Takayuki [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Murata, Kazuko, E-mail: murata-k@iwakimu.ac.jp [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Murata, Ryo [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Sun, Shu-lan [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Saito, Yutaro; Yamaga, Shuhei [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Tanaka, Nobuyuki; Tamai, Keiichi [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Moriya, Kunihiko [Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kasai, Noriyuki [Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Sugamura, Kazuo [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Ishii, Naoto [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan)

    2014-01-10

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs{sup flox/flox};mb1{sup cre/+}:Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes.

  15. Video Bioinformatics Analysis of Human Embryonic Stem Cell Colony Growth

    Science.gov (United States)

    Lin, Sabrina; Fonteno, Shawn; Satish, Shruthi; Bhanu, Bir; Talbot, Prue

    2010-01-01

    Because video data are complex and are comprised of many images, mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article, we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments, hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies, recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth, three recipes were created. The first segmented the image into the colony and background, the second enhanced the image to define colonies throughout the video sequence accurately, and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes, the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared, results were virtually identical, indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition, other video bioinformatics recipes can be developed in the future for other cell processes such as migration, apoptosis, and cell adhesion. PMID:20495527

  16. Ganoderma lucidum suppresses growth of breast cancer cells through the inhibition of Akt/NF-kappaB signaling.

    Science.gov (United States)

    Jiang, Jiahua; Slivova, Veronika; Harvey, Kevin; Valachovicova, Tatiana; Sliva, Daniel

    2004-01-01

    Ganoderma lucidum (Reishi, Lingzhi) is a popular Asian mushroom that has been used for more than 2 millennia for the general promotion of health and was therefore called the "Mushroom of Immortality." Ganoderma lucidum was also used in traditional Chinese medicine to prevent or treat a variety of diseases, including cancer. We previously demonstrated that Ganoderma lucidum suppresses the invasive behavior of breast cancer cells by inhibiting the transcription factor NF-kappaB. However, the molecular mechanisms responsible for the inhibitory effects of Ganoderma lucidum on the growth of highly invasive and metastatic breast cancer cells has not been fully elucidated. Here, we show that Ganoderma lucidum inhibits proliferation of breast cancer MDA-MB-231 cells by downregulating Akt/NF-kappaB signaling. Ganoderma lucidum suppresses phosphorylation of Akt on Ser473 and downregulates the expression of Akt, which results in the inhibition of NF-kappaB activity in MDA-MB-231 cells. The biological effect of Ganoderma lucidum was demonstrated by cell cycle arrest at G0/G1, which was the result of the downregulation of expression of NF-kappaB-regulated cyclin D1, followed by the inhibition of cdk4. Our results suggest that Ganoderma lucidum inhibits the growth of MDA-MB-231 breast cancer cells by modulating Akt/NF-kappaB signaling and could have potential therapeutic use for the treatment of breast cancer.

  17. Curcumin Inhibits Growth of Human NCI-H292 Lung Squamous Cell Carcinoma Cells by Increasing FOXA2 Expression

    Directory of Open Access Journals (Sweden)

    Lingling Tang

    2018-02-01

    Full Text Available Lung squamous cell carcinoma (LSCC is a common histological lung cancer subtype, but unlike lung adenocarcinoma, limited therapeutic options are available for treatment. Curcumin, a natural compound, may have anticancer effects in various cancer cells, but how it may be used to treat LSCC has not been well studied. Here, we applied curcumin to a human NCI-H292 LSCC cell line to test anticancer effects and explored underlying potential mechanisms of action. Curcumin treatment inhibited NCI-H292 cell growth and increased FOXA2 expression in a time-dependent manner. FOXA2 expression was decreased in LSCC tissues compared with adjacent normal tissues and knockdown of FOXA2 increased NCI-H292 cells proliferation. Inhibition of cell proliferation by curcumin was attenuated by FOXA2 knockdown. Moreover inhibition of STAT3 pathways by curcumin increased FOXA2 expression in NCI-H292 cells whereas a STAT3 activator (IL-6 significantly inhibited curcumin-induced FOXA2 expression. Also, SOCS1 and SOCS3, negative regulators of STAT3 activity, were upregulated by curcumin treatment. Thus, curcumin inhibited human NCI-H292 cells growth by increasing FOXA2 expression via regulation of STAT3 signaling pathways.

  18. Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-deficient mice bearing B-lymphoma xenografts.

    Science.gov (United States)

    Furlong, Suzanne J; Mader, Jamie S; Hoskin, David W

    2010-06-01

    Although current treatments based on the use of B-cell-specific anti-CD20 monoclonal antibodies and aggressive combinatorial chemotherapy have improved the survival of patients suffering from B-cell non-Hodgkin's lymphoma (NHL), some individuals fail to respond to treatment and relapses remain common. New and more effective treatments for B-cell NHL are therefore required. Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that is cytotoxic for several human tumor cell lines but does not harm healthy cells. Here we show that in vitro treatment with LfcinB caused Raji and Ramos human B-lymphoma cells to die by apoptosis, as indicated by DNA fragmentation, chromatin condensation, and nuclear disintegration. LfcinB killed B-lymphoma cells more efficiently at low serum concentrations and was inhibited in the presence of exogenous bovine serum albumin, suggesting partial neutralization of cationic LfcinB by anionic serum components. LfcinB-induced apoptosis in B-lymphoma cells was caspase-independent since caspase-3 activation was not detected by Western blotting and the general caspase inhibitor z-VAD-fmk did not prevent LfcinB-induced DNA fragmentation. Importantly, immune-deficient SCID/beige mice that were inoculated intravenously with Ramos B-lymphoma cells in order to model B-cell NHL exhibited extended survival following systemic administration of LfcinB, indicating that LfcinB warrants further investigation as a novel therapeutic agent for the possible treatment of B-cell NHL. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation

    International Nuclear Information System (INIS)

    Diermeier, Simone; Horvath, Gabor; Knuechel-Clarke, Ruth; Hofstaedter, Ferdinand; Szoellosi, Janos; Brockhoff, Gero

    2005-01-01

    Background: Growth factors and Herceptin specifically and differentially modulate cell proliferation of tumor cells. However, the mechanism of action on erbB-receptor level is incompletely understood. We evaluated Herceptin's capacity to modulate erbB-receptor activation and interaction on the cell surface level and thereby potentially impair cell proliferation of HER2/neu (c-erbB2) overexpressing breast cancer cells, both in the presence and absence of relevant growth factors. Methods: BT474 and SK-BR-3 breast cancer cell lines were treated with Epidermal Growth Factor (EGF), Heregulin, and with Herceptin in different combinations. Kinetics of cell proliferation were evaluated flow cytometrically based on BrdU-labeling. Fluorescence Resonance Energy Transfer, ELISAs and phosphorylation site specific Western Blotting was performed to investigate erbB-receptor interaction and activation. Results: EGF induced EGFR/EGFR and EGFR/c-erbB2 interactions correlate with stimulation of cell proliferation in BT474 cells. Both homo- and heterodimerization are considerably less pronounced in SK-BR-3 cells and heterointeraction is additionally reduced by EGF treatment, causing inhibition of cell proliferation. Heregulin stimulates cell proliferation extensively in both cell lines. Herceptin drives BT474 cells more efficiently into quiescence than it does with SK-BR-3 cells and thereby blocks cell cycle progress. In SK-BR-3 Herceptin treatment causes c-erbB2 phosphorylation of Y877 and Y1248, EGF induces Y877 and Y1112 phosphorylation. The Y1112 phosphorylation site, activated by EGF in SK-BR-3 cell, is bypassed in BT474. In addition the inhibitory capacity of Herceptin on BT474 and SK-BR-3 cell proliferation depends on the presence and absence of growth factors to a various extent. Conclusion: The growth inhibitory effect of Herceptin on c-erbB2 overexpressing breast cancer cells is considerably modulated by EGFR coexpression and consequently EGFR/c-erbB2 homo- and

  20. DMEM enhances tyrosinase activity in B16 mouse melanoma cells and human melanocytes

    Directory of Open Access Journals (Sweden)

    Panpen Diawpanich

    2008-07-01

    Full Text Available Media components may affect the activities of cultured cells. In this study, tyrosinase activity was evaluated by using B16-F10 mouse melanoma cell lines (B16-F10 and primary human melanocytes cultured in different media. An optical density measurement and a L-dopa reaction assay were used as the determination of the tyrosinase activity. The study of B16-F10 found the optical density to be 2010, 2246 and 2961 in cells cultured in RPMI Medium 1640 (RPMI1640,Minimum Essential Medium (MEM and Dulbecco’s Modified Eagle Medium (DMEM, respectively. Moreover, compared to RPMI 1640 and MEM, DMEM showed the darkest color of melanin formation in culture media and in cells after the L-dopa reaction assay. Addition of kojic acid showed a significant inhibitory effect on tyrosinase activity in all media.Whereas MCDB153 showed no significant effect on human melanocytes, DMEM caused a dramatic increase in tyrosinase activity after 4 days of cultivation. Addition of kojic acid showed a significant tyrosinase inhibitory effect in DMEM only. Furthermore, an active ingredient in green tea, epigallocathechin gallate (EGCG could inhibit tyrosinase activity in both B16-F10 and human melanocytes cultured in DMEM. In summary, these results suggest that DMEM is a suitable medium that provides high detection sensitivity in a tyrosinase inhibition assay.

  1. NF-kappa B modulation is involved in celastrol induced human multiple myeloma cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Haiwen Ni

    Full Text Available Celastrol is an active compound extracted from the root bark of the traditional Chinese medicine Tripterygium wilfordii Hook F. To investigate the effect of celastrol on human multiple myeloma cell cycle arrest and apoptosis and explore its molecular mechanism of action. The activity of celastrol on LP-1 cell proliferation was detected by WST-8 assay. The celastrol-induced cell cycle arrest was analyzed by flow cytometry after propidium iodide staining. Nuclear translocation of the nuclear factor kappa B (NF-κB was observed by fluorescence microscope. Celastrol inhibited cell proliferation of LP-1 myeloma cell in a dose-dependent manner with IC50 values of 0.8817 µM, which was mediated through G1 cell cycle arrest and p27 induction. Celastrol induced apoptosis in LP-1 and RPMI 8226 myeloma cells in a time and dose dependent manner, and it involved Caspase-3 activation and NF-κB pathway. Celastrol down-modulated antiapoptotic proteins including Bcl-2 and survivin expression. The expression of NF-κB and IKKa were decreased after celastrol treatment. Celastrol effectively blocked the nuclear translocation of the p65 subunit and induced human multiple myeloma cell cycle arrest and apoptosis by p27 upregulation and NF-kB modulation. It has been demonstrated that the effect of celastrol on NF-kB was HO-1-independent by using zinc protoporphyrin-9 (ZnPPIX, a selective heme oxygenase inhibitor. From the results, it could be inferred that celastrol may be used as a NF-kB inhibitor to inhibit myeloma cell proliferation.

  2. Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells.

    Science.gov (United States)

    Yang, Wei-Hung; Chang, An-Chen; Wang, Shih-Wei; Wang, Shoou-Jyi; Chang, Yung-Sen; Chang, Tzu-Ming; Hsu, Shao-Keh; Fong, Yi-Chin; Tang, Chih-Hsin

    2016-06-27

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the chief lymphangiogenic mediator, and makes crucial contributions to tumor lymphangiogenesis. Leptin is an adipocytokine and has been indicated to facilitate tumorigenesis, angiogenesis and metastasis. However, the effect of leptin on VEGF-C regulation and lymphangiogenesis in human chondrosarcoma has hugely remained a mystery. Our results showed a clinical correlation between leptin and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that leptin promoted VEGF-C production and secretion in human chondrosarcoma cells. The conditioned medium from leptin-treated chondrosarcoma cells induced lymphangiogenesis of human lymphatic endothelial cells. We also found that leptin-induced VEGF-C is mediated by the FAK, PI3K and Akt signaling pathway. Furthermore, the expression of microRNA-27b was negatively regulated by leptin via the FAK, PI3K and Akt cascade. Our study is the first to describe the mechanism of leptin-promoted lymphangiogenesis by upregulating VEGF-C expression in chondrosarcomas. Thus, leptin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.

  3. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Tumor Growth Through Hedgehog Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2017-08-01

    Full Text Available Background/Aims: Mesenchymal stem/stromal cells (MSCs are known to home to sites of tumor microenvironments where they participate in the formation of the tumor microenvironment and to interplay with tumor cells. However, the potential functional effects of MSCs on tumor cell growth are controversial. Here, we, from the view of bone marrow MSC-derived exosomes, study the molecular mechanism of MSCs on the growth of human osteosarcoma and human gastric cancer cells. Methods: MSCs derived from human bone marrow (hBMSCs were isolated and cultured in complete DMEM/F12 supplemented with 10% exosome-depleted fetal bovine serum and 1% penicillin-streptomycin, cell culture supernatants containing exosomes were harvested and exosome purification was performed by ultracentrifugation. Osteosarcoma (MG63 and gastric cancer (SGC7901 cells, respectively, were treated with hBMSC-derived exosomes in the presence or absence of a small molecule inhibitor of Hedgehog pathway. Cell viability was measured by transwell invasion assay, scratch migration assay and CCK-8 test. The expression of the signaling molecules Smoothened, Patched-1, Gli1 and the ligand Shh were tested by western blot and RT-PCR. Results: In this study, we found that hBMSC-derived exosomes promoted MG63 and SGC7901 cell growth through the activation of Hedgehog signaling pathway. Inhibition of Hedgehog signaling pathway significantly suppressed the process of hBMSC-derived exosomes on tumor growth. Conclusion: Our findings demonstrated the new roles of hedgehog signaling pathway in the hBMSCs-derived exosomes induced tumor progression.

  4. Antigen-specific T8+ human clone of cells with a nonspecific augmenting function on the T4 cell-B cell helper interaction

    International Nuclear Information System (INIS)

    Brines, R.D.; Sia, D.Y.; Lehner, T.

    1987-01-01

    The authors isolated a T8 + T3 + Ia + clone of cells from the peripheral blood mononuclear cells of a healthy subject. The clone was expanded and maintained with autologous feed cells, interleukin 2, and a streptococcal antigen. The T8 + clone of cells responded specifically to the streptococcal antigen, in the absence of accessory cells,and released a soluble factor. Both the cloned cells and the corresponding soluble factor expressed augmenting helper but not suppressor activity. The augmenting helper activity for B cell antibody synthesis was demonstrable only in the presence of autologous T 4 cells. Radioimmunoassay was used to measure antibodies. Although stimulation of the T8 + cloned cells was antigen-specific, the resulting soluble factor elicited nonspecific antibody synthesis in the presence of T4 and B cells. The T8 + cloned cell-derived factor was adsorbed by B cells but not by T4 cells. Preliminary studies suggest that the factor has the properties of a B cell growth factor. They suggest that the T8 + population consists of functionally heterogeneous cell subsets, some that have suppressor function and others that augment the T4 + helper-inducer activity in B cell antibody synthesis

  5. Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes

    International Nuclear Information System (INIS)

    Tender, T.F.; Streuli, M.; Schlossman, S.F.; Saito, H.

    1988-01-01

    The B1 (CD20) molecule is a M/sub r/ 33,000 phosphoprotein on the surface of human B lymphocytes that may serve a central role in the homoral immune response by regulating B-cell proliferation and differentiation. In this report, a cDNA clone that encodes the B1 molecule was isolated and the amino acid sequence of B1 was determined. B-cell-specific cDNA clones were selected from a human tonsillar cDNA library by differential hybridization with labeled cDNA derived from either size-fractionated B-cell mRNA or size-fractionated T-cell mRNA. Of the 261 cDNA clones isolated, 3 cross-hybridizing cDNA clones were chosen as potential candidates for encoding B1 based on their selective hybridization to RNA from B1-positive cell lines. The longest clone, pB1-21, contained a 2.8-kilobase insert with an 891-base-pair open reading frame that encodes a protein of 33 kDa. mRNA synthesized from the pB1-21 cDNA clone in vitro was translated into a protein of the same apparent molecular weight as B1. Limited proteinase digestion of the pB1-21 translation product and B1 generated peptides of the same sizes, indicating that the pB1-21 cDNA encodes the B1 molecule. Gel blot analysis indicated that pB1-21 hybridized with two mRNA species of 2.8 and 3.4 kilobases only in B1-positive cell lines. The amino acid sequence deduced from the pB1-21 nucleotide sequence apparently lacks a signal sequence and contains three extensive hydrophobic regions. The deduced B1 amino acid sequence shows no significant homology with other known patients

  6. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells

    International Nuclear Information System (INIS)

    Miyazaki, Takamichi; Futaki, Sugiko; Hasegawa, Kouichi; Kawasaki, Miwa; Sanzen, Noriko; Hayashi, Maria; Kawase, Eihachiro; Sekiguchi, Kiyotoshi; Nakatsuji, Norio; Suemori, Hirofumi

    2008-01-01

    Human embryonic stem cells (hESCs) are thought to be a promising cell source for cell transplantation therapy. For such a clinical application, the hESCs should be manipulated using appropriate and qualified materials. In this study, we examined the efficacy of recombinant human laminin (rhLM) isoforms on the undifferentiated growth of hESCs. We first determined the major integrins expressed on the hESCs to reveal the preference of the hESCs for rhLMs, and found that the hESCs mainly expressed integrin α6β1, which binds predominantly to laminin-111, -332 and -511/-521. When the hESCs were seeded onto rhLMs, the cells indeed adhered markedly to rhLM-332, and to rhLM-511 and rhLM-111 to a lesser extent. The hESCs proliferated on these three rhLMs for several passages while preserving their pluripotency. These results show that rhLM-111, -332, and -511 are good substrates to expand undifferentiated hESCs due to their high affinity to integrin α6β1 expressed on hESCs

  7. VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo.

    Science.gov (United States)

    Rennel, E S; Varey, A H R; Churchill, A J; Wheatley, E R; Stewart, L; Mather, S; Bates, D O; Harper, S J

    2009-10-06

    The key mediator of new vessel formation in cancer and other diseases is VEGF-A. VEGF-A exists as alternatively spliced isoforms - the pro-angiogenic VEGF(xxx) family generated by exon 8 proximal splicing, and a sister family, termed VEGF(xxx)b, exemplified by VEGF(165)b, generated by distal splicing of exon 8. However, it is unknown whether this anti-angiogenic property of VEGF(165)b is a general property of the VEGF(xxx)b family of isoforms. The mRNA and protein expression of VEGF(121)b was studied in human tissue. The effect of VEGF(121)b was analysed by saturation binding to VEGF receptors, endothelial migration, apoptosis, xenograft tumour growth, pre-retinal neovascularisation and imaging of biodistribution in tumour-bearing mice with radioactive VEGF(121)b. The existence of VEGF(121)b was confirmed in normal human tissues. VEGF(121)b binds both VEGF receptors with similar affinity as other VEGF isoforms, but inhibits endothelial cell migration and is cytoprotective to endothelial cells through VEGFR-2 activation. Administration of VEGF(121)b normalised retinal vasculature by reducing both angiogenesis and ischaemia. VEGF(121)b reduced the growth of xenografted human colon tumours in association with reduced microvascular density, and an intravenous bolus of VEGF(121)b is taken up into colon tumour xenografts. Here we identify a second member of the family, VEGF(121)b, with similar properties to those of VEGF(165)b, and underline the importance of the six amino acids of exon 8b in the anti-angiogenic activity of the VEGF(xxx)b isoforms.

  8. Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation.

    Science.gov (United States)

    Panza, Elisabetta; Tersigni, Mariaroberta; Iorizzi, Maria; Zollo, Franco; De Marino, Simona; Festa, Carmen; Napolitano, Maria; Castello, Giuseppe; Ialenti, Armando; Ianaro, Angela

    2011-02-25

    Malignant melanoma is a highly aggressive tumor that frequently resists chemotherapy, so the search for new agents for its treatment is of great importance. In the present study, the antiproliferative propensity against human melanoma cell lines of lauroside B (1), a megastigmane glycoside isolated from Laurus nobilis (bay laurel) leaves, was investigated. This compound suppressed the proliferation of three human melanoma cell lines, namely, A375, WM115, and SK-Mel-28. The 1-induced inhibition of human melanoma cell proliferation was due to the induction of apoptosis, as demonstrated by FACS analysis with annexin V/PI staining and confirmed by activation of caspase-3 and by the cleavage of poly(ADP-ribose) polymerase (PARP). Growing evidence implicates NF-κB as an important contributor to metastasis and increased chemoresistance of melanoma. Thus, it was hypothesized that 1-induced apoptosis could be associated with suppression of NF-κB activation. The results showed that exposure of human melanoma cells to 1 inhibited IκB-α degradation and constitutive NF-κB DNA-binding activity as well as the expression, regulated by NF-κB, of two antiapoptotic genes, XIAP and c-FLIP. Induction of apoptosis by 1 in human aggressive melanoma cell lines has a potential high biological value.

  9. The synthetic epoxyquinoids jesterone dimer and epoxyquinone A monomer induce apoptosis and inhibit REL (human c-Rel) DNA binding in an IkappaBalpha-deficient diffuse large B-cell lymphoma cell line.

    Science.gov (United States)

    Liang, Mei-Chih; Bardhan, Sujata; Porco, John A; Gilmore, Thomas D

    2006-09-08

    The NF-kappaB transcription factor signaling pathway is constitutively active in many human cancers, and inhibition of this pathway can often kill cancer cells by inducing apoptosis. In this study, we show that two synthetic epoxyquinoids, jesterone dimer (JD) and epoxyquinone A monomer (EqM), are equally effective at inhibiting the growth of two human lymphoma cell lines that have constitutively nuclear REL (human c-Rel) DNA-binding complexes, but either express (SUDHL-4 cells) or do not express (RC-K8 cells) the NF-kappaB inhibitor IkappaBalpha. Furthermore, in these cells, both JD and EqM dose-dependently induced apoptosis, inhibited REL DNA-binding activity, and converted REL to a high molecular weight form. In A293 cells, JD and EqM inhibited the DNA-binding activity of overexpressed REL, but not p50. Replacement of Cys-27 with Ser in REL reduced JD- and EqM-mediated inhibition of REL DNA-binding activity. These results suggest that JD and EqM can induce apoptosis in IkappaBalpha-deficient lymphoma cells through a mechanism involving direct inhibition of transcription factor REL.

  10. The Neurofibromatosis 2 Tumor Suppressor Gene Product, Merlin, Regulates Human Meningioma Cell Growth by Signaling through YAP

    Directory of Open Access Journals (Sweden)

    Katherine Striedinger

    2008-11-01

    Full Text Available Neurofibromatosis type 2 (NF2 is an autosomal dominant disorder characterized by the occurrence of schwannomas and meningiomas. Several studies have examined the ability of the NF2 gene product, merlin, to function as a tumor suppressor in diverse cell types; however, little is known about merlin growth regulation in meningiomas. In Drosophila, merlin controls cell proliferation and apoptosis by signaling through the Hippo pathway to inhibit the function of the transcriptional coactivator Yorkie. The Hippo pathway is conserved in mammals. On the basis of these observations, we developed human meningioma cell lines matched for merlin expression to evaluate merlin growth regulation and investigate the relationship between NF2 status and Yes-associated protein (YAP, the mammalian homolog of Yorkie. NF2 loss in meningioma cells was associated with loss of contact-dependent growth inhibition, enhanced anchorage-independent growth and increased cell proliferation due to increased S-phase entry. In addition, merlin loss in both meningioma cell lines and primary tumors resulted in increased YAP expression and nuclear localization. Finally, siRNA-mediated reduction of YAP in NF2-deficient meningioma cells rescued the effects of merlin loss on cell proliferation and S-phase entry. Collectively, these results represent the first demonstration that merlin regulates cell growth in human cancer cells by suppressing YAP.

  11. Examining the protective role of ErbB2 modulation in human-induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Eldridge, Sandy; Guo, Liang; Mussio, Jodie; Furniss, Mike; Hamre, John; Davis, Myrtle

    2014-10-01

    Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are being used as an in vitro model system in cardiac biology and in drug discovery (e.g., cardiotoxicity testing). Qualification of these cells for use in mechanistic investigations will require detailed evaluations of cardiomyocyte signaling pathways and cellular responses. ErbB signaling and the ligand neuregulin play critical roles in survival and functional integrity of cardiac myocytes. As such, we sought to characterize the expression and activity of the ErbB family of receptors. Antibody microarray analysis performed on cell lysates derived from maturing hiPSC-CMs detected expression of ∼570 signaling proteins. EGFR/ErbB1, HER2/ErbB2, and ErbB4, but not ErbB3 receptors, of the epidermal growth factor receptor family were confirmed by Western blot. Activation of ErbB signaling by neuregulin-1β (NRG, a natural ligand for ErbB4) and its modulation by trastuzumab (a monoclonal anti-ErbB2 antibody) and lapatinib (a small molecule ErbB2 tyrosine kinase inhibitor) were evaluated through assessing phosphorylation of AKT and Erk1/2, two major downstream kinases of ErbB signaling, using nanofluidic proteomic immunoassay. Downregulation of ErbB2 expression by siRNA silencing attenuated NRG-induced AKT and Erk1/2 phosphorylation. Activation of ErbB signaling with NRG, or inhibition with trastuzumab, alleviated or aggravated doxorubicin-induced cardiomyocyte damage, respectively, as assessed by a real-time cellular impedance analysis and ATP measurement. Collectively, these results support the expanded use of hiPSC-CMs to examine mechanisms of cardiotoxicity and support the value of using these cells in early assessments of cardiotoxicity or efficacy. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells

    International Nuclear Information System (INIS)

    Perkel, V.S.; Mohan, S.; Herring, S.J.; Baylink, D.J.; Linkhart, T.A.

    1990-01-01

    Prostatic cancer typically produces osteoblastic metastases which are not attended by marrow fibrosis. In the present study we sought to test the hypothesis that prostatic cancer cells produce factor(s) which act selectively on human osteoblasts. Such a paracrine mechanism would explain the observed increase in osteoblasts, unaccompanied by an increase in marrow fibroblasts. To test this hypothesis we investigated the mitogenic activity released by the human prostatic tumor cell line, PC3. PC3 cells have been reported previously to produce mitogenic activity for cells that was relatively specific for rat osteoblasts compared to rat fibroblasts. However, the effects of this activity on human cells has not been examined previously. PC3-conditioned medium (CM) (5-50 micrograms CM protein/ml) stimulated human osteoblast proliferation by 200-950% yet did not stimulate human fibroblast proliferation ([3H]thymidine incorporation). PC3 CM also increased cell numbers in human osteoblast but not fibroblast cell cultures. To determine whether the osteoblast-specific mitogenic activity could be attributed to known bone growth factors, specific assays for these growth factors were performed. PC3 CM contained 10 pg insulin-like growth factor (IGF) I, less than 2 pg IGF II, 54 pg basic fibroblast growth factor, and 16 pg transforming growth factor beta/microgram CM protein. None of these growth factors alone or in combination could account for the observed osteoblast-specific PC3 cell-derived mitogenic activity. Furthermore, when 5 micrograms/ml PC3 CM was tested in combination with maximally effective concentrations of either basic fibroblast growth factor, IGF I, IGF II, or transforming growth factor beta, it produced an additive effect suggesting that PC3 CM stimulates osteoblast proliferation by a mechanism independent of these bone mitogens

  13. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yu, X; Zhen, Y; Yang, H; Wang, H; Zhou, Y; Wang, E; Marincola, F M; Mai, C; Chen, Y; Wei, H; Song, Y; Lyu, X; Ye, Y; Cai, L; Wu, Q; Zhao, M; Hua, S; Fu, Q; Zhang, Y; Yao, K; Liu, Z; Li, X; Fang, W

    2013-05-16

    Connective tissue growth factor (CTGF) has different roles in different types of cancer. However, the involvement and molecular basis of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC) have almost never been reported. In this study, we observed that downregulated CTGF expression was significantly associated with NPC progression and poor prognosis. Knockdown of CTGF markedly elevated the ability of cell proliferation in vivo and in vitro. Subsequently, we discovered that the reduction of CTGF increased the expression of miR-18b, an oncomir-promoting cell proliferation. Further, we discovered that attenuated CTGF-mediated upregulation of miR-18b was dependent on the increased binding of transcription factors Jun proto-oncogene (C-Jun) and v-Myc myelocytomatosis viral oncogene homolog (C-Myc) to miR-18b promoter region via phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we further found that miR-18b directly suppressed the expression of CTGF in NPC. In clinical fresh specimens, miR-18b was widely overexpressed and inversely correlated with CTGF expression in NPC. Our studies are the first to demonstrate that reduced CTGF as an unfavorable prognosis factor mediates the activation of miR-18b, an oncomir directly suppresses CTGF expression, by PI3K/AKT/C-Jun and C-Myc and promotes cell growth of NPC.

  14. Size- and time-dependent growth properties of human induced pluripotent stem cells in the culture of single aggregate.

    Science.gov (United States)

    Nath, Suman C; Horie, Masanobu; Nagamori, Eiji; Kino-Oka, Masahiro

    2017-10-01

    Aggregate culture of human induced pluripotent stem cells (hiPSCs) is a promising method to obtain high number of cells for cell therapy applications. This study quantitatively evaluated the effects of initial cell number and culture time on the growth of hiPSCs in the culture of single aggregate. Small size aggregates ((1.1 ± 0.4) × 10 1 -(2.8 ± 0.5) × 10 1 cells/aggregate) showed a lower growth rate in comparison to medium size aggregates ((8.8 ± 0.8) × 10 1 -(6.8 ± 1.1) × 10 2 cells/aggregate) during early-stage of culture (24-72 h). However, when small size aggregates were cultured in conditioned medium, their growth rate increased significantly. On the other hand, large size aggregates ((1.1 ± 0.2) × 10 3 -(3.5 ± 1.1) × 10 3 cells/aggregate) showed a lower growth rate and lower expression level of proliferation marker (ki-67) in the center region of aggregate in comparison to medium size aggregate during early-stage of culture. Medium size aggregates showed the highest growth rate during early-stage of culture. Furthermore, hiPSCs proliferation was dependent on culture time because the growth rate decreased significantly during late-stage of culture (72-120 h) at which point collagen type I accumulated on the periphery of aggregate, suggesting blockage of diffusive transport of nutrients, oxygen and metabolites into and out of the aggregates. Consideration of initial cell number and culture time are important to maintain balance between autocrine factors secretion and extracellular matrix accumulation on the aggregate periphery to achieve optimal growth of hiPSCs in the culture of single aggregate. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Cloning of Soluble Human Stem Cell Factor in pET-26b(+ Vector

    Directory of Open Access Journals (Sweden)

    Salman Asghari

    2014-03-01

    Full Text Available Purpose: Stem cell factor (SCF plays an important role in the survival, proliferation and differentiation of hematopoietic stem cells and progenitor cells. Potential therapeutic applications of SCF include hematopoietic stem cell mobilization, exvivo stem/progenitor cell expansion, gene therapy, and immunotherapy. Considering the cost and problem in accessibility of this product in Iran, clears the importance of indigenizing production of rhSCF. In the present work, we describe the construction of the soluble rhSCF expression vector in pET-26b (+ with periplasmic localization potential. Methods: Following PCR amplification of human SCF ORF, it is cloned in pET-26b (+ vector in NcoI and XhoI sites. The recombinant construct was transformed into BL21 (DE3 Ecoli strains. Results: The construction of recombinant vector was verified by colony PCR and sequence analysis of pET26b-hSCF vector. Sequence analyses proved that human SCF ORF has been inserted into NcoI and XhoI site with correct orientation downstream of strong T7 promotor and showed no nucleotide errors. Conclusion: The SCF ORF was successfully cloned in pET-26b (+ expression vector and is ready for future production of SCF protein.

  16. PPARalpha/gamma expression and activity in mouse and human melanocytes and melanoma cells.

    Science.gov (United States)

    Eastham, Linda L; Mills, Caroline N; Niles, Richard M

    2008-06-01

    We examined the expression of PPARs and the effects of PPARalpha and PPARgamma agonists on growth of mouse and human melanocytes and melanoma cells. PPARalpha,beta, and PPARgamma mRNA qualitative expression in melan-a mouse melanocytes, B16 mouse melanoma, human melanocytes, and A375 and SK-mel28 human melanoma cells was determined by RT-PCR, while quantitative PPARalpha mRNA levels were determined by QuantiGene assay. PPARalpha and PPARgamma protein was assessed by Western blotting. The effect of natural and synthetic PPAR ligands on cell growth was determined by either hemocytometer counting or crystal violet assay. PPAR transcriptional activity was determined by a PPRE-reporter gene assay, while knockdown of PPARalpha expression was achieved by transient transfection of siRNA. Both mouse and human melanoma cells produced more PPARalpha and PPARgamma protein compared to melanocytes. PPARalpha mRNA levels were elevated in human melanoma cells, but not in mouse melanoma cells relative to melanocytes. Silencing of PPARalpha in human melanoma cells did not alter cell proliferation or morphology. PPARgamma-selective agonists inhibited the growth of both mouse and human melanoma cells, while PPARalpha-selective agonists had limited effects. Increased expression of PPARalpha in melanoma relative to melanocytes may be a common occurrence, however its biologic significance remains to be determined. PPARgamma agonists may be useful for arresting the growth of some melanomas.

  17. Analysis of B Cell Repertoire Dynamics Following Hepatitis B Vaccination in Humans, and Enrichment of Vaccine-specific Antibody Sequences

    Directory of Open Access Journals (Sweden)

    Jacob D. Galson

    2015-12-01

    Full Text Available Generating a diverse B cell immunoglobulin repertoire is essential for protection against infection. The repertoire in humans can now be comprehensively measured by high-throughput sequencing. Using hepatitis B vaccination as a model, we determined how the total immunoglobulin sequence repertoire changes following antigen exposure in humans, and compared this to sequences from vaccine-specific sorted cells. Clonal sequence expansions were seen 7 days after vaccination, which correlated with vaccine-specific plasma cell numbers. These expansions caused an increase in mutation, and a decrease in diversity and complementarity-determining region 3 sequence length in the repertoire. We also saw an increase in sequence convergence between participants 14 and 21 days after vaccination, coinciding with an increase of vaccine-specific memory cells. These features allowed development of a model for in silico enrichment of vaccine-specific sequences from the total repertoire. Identifying antigen-specific sequences from total repertoire data could aid our understanding B cell driven immunity, and be used for disease diagnostics and vaccine evaluation.

  18. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    Science.gov (United States)

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. The role of T and B cells in human atherosclerosis and atherothrombosis.

    Science.gov (United States)

    Ammirati, E; Moroni, F; Magnoni, M; Camici, P G

    2015-02-01

    Far from being merely a passive cholesterol accumulation within the arterial wall, the development of atherosclerosis is currently known to imply both inflammation and immune effector mechanisms. Adaptive immunity has been implicated in the process of disease initiation and progression interwined with traditional cardiovascular risk factors. Although the body of knowledge regarding the correlation between atherosclerosis and immunity in humans is growing rapidly, a relevant proportion of it derives from studies carried out in animal models of cardiovascular disease (CVD). However, while the mouse is a well-suited model, the results obtained therein are not fully transferrable to the human setting due to intrinsic genomic and environmental differences. In the present review, we will discuss mainly human findings, obtained either by examination of post-mortem and surgical atherosclerotic material or through the analysis of the immunological profile of peripheral blood cells. In particular, we will discuss the findings supporting a pro-atherogenic role of T cell subsets, such as effector memory T cells or the potential protective function of regulatory T cells. Recent studies suggest that traditional T cell-driven B2 cell responses appear to be atherogenic, while innate B1 cells appear to exert a protective action through the secretion of naturally occurring antibodies. The insights into the immune pathogenesis of atherosclerosis can provide new targets in the quest for novel therapeutic targets to abate CVD morbidity and mortality. © 2014 British Society for Immunology.

  20. Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells

    Energy Technology Data Exchange (ETDEWEB)

    Kovalova, Natalia, E-mail: kovalova@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Nault, Rance, E-mail: naultran@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Crawford, Robert, E-mail: crawfo28@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Zacharewski, Timothy R., E-mail: tzachare@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Kaminski, Norbert E., E-mail: kamins11@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States)

    2017-02-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant that activates the aryl hydrocarbon receptor (AhR) resulting in altered gene expression. In vivo, in vitro, and ex vivo studies have demonstrated that B cells are directly impaired by TCDD, and are a sensitive target as evidenced by suppression of antibody responses. The window of sensitivity to TCDD-induced suppression of IgM secretion among mouse, rat and human B cells is similar. Specifically, TCDD must be present within the initial 12 h post B cell stimulation, indicating that TCDD disrupts early signaling network(s) necessary for B lymphocyte activation and differentiation. Therefore, we hypothesized that TCDD treatment across three different species (mouse, rat and human) triggers a conserved, B cell-specific mechanism that is involved in TCDD-induced immunosuppression. RNA sequencing (RNA-Seq) was used to identify B cell-specific orthologous genes that are differentially expressed in response to TCDD in primary mouse, rat and human B cells. Time course studies identified TCDD-elicited differential expression of 515 human, 2371 mouse and 712 rat orthologous genes over the 24-h period. 28 orthologs were differentially expressed in response to TCDD in all three species. Overrepresented pathways enriched in all three species included cytokine-cytokine receptor interaction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton and pathways in cancer. Differentially expressed genes functionally associated with cell-cell signaling in humans, immune response in mice, and oxidation reduction in rats. Overall, these results suggest that despite the conservation of the AhR and its signaling mechanism, TCDD elicits species-specific gene expression changes. - Highlights: • Kovalova TAAP Highlights Nov. 2016 • RNA-Seq identified TCDD-induced gene expression in PWM-activated primary B cells. • TCDD elicited differential expression of 515 human, 2371 mouse and 712

  1. Regulation by basic fibroblast growth factor of glycosaminoglycan biosynthesis in cultured vascular endothelial cells.

    Science.gov (United States)

    Kaji, T; Hiraga, S; Ohkawara, S; Inada, M; Yamamoto, C; Kozuka, H; Koizumi, F

    1995-05-01

    The alteration of glycosaminoglycans (GAGs) in cultured bovine aortic endothelial cells after exposure to basic fibroblast growth factor (bFGF) was investigated. It was found that the incorporation of [3H]glucosamine into GAGs was markedly increased by bFGF in both the cell layer and the conditioned medium; however, that of [35S]sulfate was not changed by the growth factor. These results indicated that bFGF enhanced the sugar-chain formation but did not affect their sulfation in endothelial GAG production. Similar changes were observed in either bovine aortic smooth-muscle cells and human fibroblastic IMR-90 cells to greater and lesser degrees, respectively. Characterization of GAGs in the endothelial cell layer and the conditioned medium revealed that bFGF enhanced both heparan sulfate and the other GAGs to a similar degree. The present data suggest that bFGF may be involved in the regulation of the blood coagulation system via altering GAGs of the vascular tissue when the endothelium was damaged.

  2. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest.

    Science.gov (United States)

    Li, Long-Zhu; Deng, Hong-Xia; Lou, Wen-Zhu; Sun, Xue-Yan; Song, Meng-Wan; Tao, Jing; Xiao, Bing-Xiu; Guo, Jun-Ming

    2012-01-07

    To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G₀/G₁ phase, whereas cells treated with high concentrations of PBA were arrested at the G₂/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G₀/ G₁ phase, cells treated with high concentrations of PBA were arrested at the S phase. The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G₀ /G₁ and G₂/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G₀/G₁ and S phases.

  3. Restoration of human B-cell differentiation into NOD-SCID mice engrafted with gene-corrected CD34+ cells isolated from Artemis or RAG1-deficient patients.

    Science.gov (United States)

    Lagresle-Peyrou, Chantal; Benjelloun, Fatine; Hue, Christophe; Andre-Schmutz, Isabelle; Bonhomme, Delphine; Forveille, Monique; Beldjord, Kheira; Hacein-Bey-Abina, Salima; De Villartay, Jean-Pierre; Charneau, Pierre; Durandy, Anne; Fischer, Alain; Cavazzana-Calvo, Marina

    2008-02-01

    Severe combined immunodeficiency (SCID) caused by mutation of the recombination-activating gene 1 (RAG1) or Artemis gene lead to the absence of B- and T-cell differentiation. The only curative treatment is allogeneic bone marrow (BM) transplantation, which displays a high survival rate when an HLA compatible donor is available but has a poorer prognosis when the donor is partially compatible. Consequently, gene therapy may be a promising alternative strategy for these diseases. Here, we report that lentiviral gene-corrected BM CD34(+) cells (isolated from Artemis- or RAG1-deficient patients) sustain human B-cell differentiation following injection into non-obese diabetic/SCID (NOD-SCID) mice previously infused with anti-interleukin-2 receptor beta chain monoclonal antibody. In most of the mice BM, engrafted with Artemis-transduced cells, human B-cell differentiation occurred until the mature stage. The B cells were functional as human immunoglobulin M (IgM) was present in the serum. Following injection with RAG1-transduced cells, human engraftment occurred in vivo but B-cell differentiation until the mature stage was less frequent. However, when it occurred, it was always associated with human IgM production. This overall approach represents a useful tool for evaluating gene transfer efficiency in human SCID forms affecting B-cell development (such as Artemis deficiency) and for testing new vectors for improving in vivo RAG1 complementation.

  4. EBI2 overexpression in mice leads to B1 B cell expansion and chronic lymphocytic leukemia-(CLL)-like B cell malignancies

    DEFF Research Database (Denmark)

    Niss Arfelt, Kristine; Barington, Line; Benned-Jensen, Tau

    2017-01-01

    -targeted expression of human EBI2 in mice reduces germinal center-dependent immune responses, reduces total IgM and IgG levels, and leads to increased proliferation and upregulation of cellular oncogenes. Furthermore, hEBI2 overexpression leads to an abnormally expanded CD5+ B1a B cell subset present as early as 4......Human and mouse chronic lymphocytic leukemia (CLL) develop from CD5+ B cells that in mice and macaques are known to define the distinct B1a B cell lineage. B1a cells are characterized by lack of germinal center development and the B1a cell population is increased in mice with reduced germinal...... cells towards the extrafollicular area, whereas downregulation is essential for germinal center formation. We therefore speculated whether increased expression of EBI2 would lead to an expanded B1 cell subset and, ultimately, progression to chronic lymphocytic leukemia. Here we demonstrate that B cell...

  5. Expression of a truncated Hmga1b gene induces gigantism, lipomatosis and B-cell lymphomas in mice.

    Science.gov (United States)

    Fedele, Monica; Visone, Rosa; De Martino, Ivana; Palmieri, Dario; Valentino, Teresa; Esposito, Francesco; Klein-Szanto, Andres; Arra, Claudio; Ciarmiello, Andrea; Croce, Carlo M; Fusco, Alfredo

    2011-02-01

    HMGA1 gene rearrangements have been frequently described in human lipomas. In vitro studies suggest that HMGA1 proteins have a negative role in the control of adipocyte cell growth, and that HMGA1 gene truncation acts in a dominant-negative fashion. Therefore, to define better the role of the HMGA1 alterations in the generation of human lipomas, we generated mice carrying an Hmga1b truncated (Hmga1b/T) gene. These mice develop a giant phenotype together with a drastic expansion of the retroperitoneal and subcutaneous white adipose tissue. We show that the activation of the E2F pathway likely accounts, at least in part, for this phenotype. Interestingly, the Hmga1b/T mice also develop B-cell lymphomas similar to that occurring in Hmga1-knockout mice, supporting a dominant-negative role of the Hmga1b/T mutant also in vivo. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Protein tyrosine phosphatase-1B (PTP1B) helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial cells

    Science.gov (United States)

    Ishino, Yutaka; Zhu, Cheng; Harris, Deshea L.

    2008-01-01

    Purpose Human corneal endothelial cells (HCEC), particularly from older donors, only proliferate weakly in response to EGF. The protein tyrosine phosphatase, PTP1B, is known to negatively regulate EGF-induced signaling in several cell types by dephosphorylating the epidermal growth factor receptor (EGFR). The current studies were conducted to determine whether PTP1B plays a role in regulating cell cycle entry in HCEC in response to EGF stimulation. Methods Donor corneas were obtained from the National Disease Research Interchange and accepted for study based on established exclusion criteria. PTP1B was localized in the endothelium of ex vivo corneas and in cultured cells by immunocytochemistry. Western blot analysis verified PTP1B protein expression in HCEC and then compared the relative expression of EGFR and PTP1B in HCEC from young (60 years old). The effect of inhibiting the activity of PTP1B on S-phase entry was tested by comparing time-dependent BrdU incorporation in subconfluent HCEC incubated in the presence or absence of the PTP1B inhibitor, CinnGEL 2Me, before EGF stimulation. Results PTP1B was localized in a punctate pattern mainly within the cytoplasm of HCEC in ex vivo corneas and cultured cells. Western blots revealed the presence of three PTP1B-positive bands in HCEC and the control. Further western blot analysis showed no significant age-related difference in expression of EGFR (p=0.444>0.05); however, PTP1B expression was significantly higher in HCEC from older donors (p=0.024<0.05). Pre-incubation of HCEC with the PTP1B inhibitor significantly increased (p=0.019<0.05) the number of BrdU positive cells by 48 h after EGF stimulation. Conclusions Both immunolocalization and western blot studies confirmed that PTP1B is expressed in HCEC. Staining patterns strongly suggest that at least a subset of PTP1B is localized to the cytoplasm and most likely to the endoplasmic reticulum, the known site of EGFR/PTP1B interaction following EGF stimulation. PTP1B

  7. Growth inhibitory effects of endotoxins from Bacteroides gingivalis and intermedius on human gingival fibroblasts in vitro

    International Nuclear Information System (INIS)

    Layman, D.L.; Diedrich, D.L.

    1987-01-01

    Purified endotoxin or lipopolysaccharide from Bacteroides gingivalis and Bacteroides intermedius caused a similar dose-dependent inhibition of growth of cultured human gingival fibroblasts as determined by 3 H-thymidine incorporation and direct cell count. Approximately 200 micrograms/ml endotoxin caused a 50% reduction in 3 H-thymidine uptake of logarithmically growing cells. Inhibition of growth was similar in cultures of fibroblasts derived from either healthy or diseased human gingiva. When examining the change in cell number with time of exposure in culture, the rate of proliferation was significantly suppressed during the logarithmic phase of growth. However, the cells recovered so that the rate of proliferation, although reduced, was sufficient to produce a cell density similar to the control cells with prolonged culture. The endotoxins were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The profiles of the Bacteroides endotoxins were different. B. gingivalis endotoxin showed a wide range of distinct bands indicating a heterogeneous distribution of molecular species. Endotoxin from B. intermedius exhibited a few discrete low molecular weight bands, but the majority of the lipopolysaccharides electrophoresed as a diffuse band of high molecular weight material. The apparent heterogeneity of the two Bacteroides endotoxins and the similarity in growth inhibitory capacity suggest that growth inhibitory effects of these substances cannot be attributed to any polysaccharide species of endotoxin

  8. Autonomous growth potential of leukemia blast cells is associated with poor prognosis in human acute leukemias

    Directory of Open Access Journals (Sweden)

    Jakubowski Ann A

    2009-12-01

    Full Text Available Abstract We have described a severe combined immunodeficiency (SCID mouse model that permits the subcutaneous growth of primary human acute leukemia blast cells into a measurable subcutaneous nodule which may be followed by the development of disseminated disease. Utilizing the SCID mouse model, we examined the growth potential of leukemic blasts from 133 patients with acute leukemia, (67 acute lymphoblastic leukemia (ALL and 66 acute myeloid leukemia (AML in the animals after subcutaneous inoculation without conditioning treatment. The blasts displayed three distinct growth patterns: "aggressive", "indolent", or "no tumor growth". Out of 133 leukemias, 45 (33.8% displayed an aggressive growth pattern, 14 (10.5% displayed an indolent growth pattern and 74 (55.6% did not grow in SCID mice. The growth probability of leukemias from relapsed and/or refractory disease was nearly 3 fold higher than that from patients with newly diagnosed disease. Serial observations found that leukemic blasts from the same individual, which did not initiate tumor growth at initial presentation and/or at early relapse, may engraft and grow in the later stages of disease, suggesting that the ability of leukemia cells for engraftment and proliferation was gradually acquired following the process of leukemia progression. Nine autonomous growing leukemia cell lines were established in vitro. These displayed an aggressive proliferation pattern, suggesting a possible correlation between the capacity of human leukemia cells for autonomous proliferation in vitro and an aggressive growth potential in SCID mice. In addition, we demonstrated that patients whose leukemic blasts displayed an aggressive growth and dissemination pattern in SClD mice had a poor clinical outcome in patients with ALL as well as AML. Patients whose leukemic blasts grew indolently or whose leukemia cells failed to induce growth had a significantly longer DFS and more favorable clinical course.

  9. LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways

    International Nuclear Information System (INIS)

    Tong, W.-G.; Ding, X.-Z.; Talamonti, Mark S.; Bell, Richard H.; Adrian, Thomas E.

    2005-01-01

    We have previously shown the importance of LTB4 in human pancreatic cancer. LTB4 receptor antagonists block growth and induce apoptosis in pancreatic cancer cells both in vitro and in vivo. Therefore, we investigated the effect of LTB4 on proliferation of human pancreatic cancer cells and the mechanisms involved. LTB4 stimulated DNA synthesis and proliferation of both PANC-1 and AsPC-1 human pancreatic cancer cells, as measured by thymidine incorporation and cell number. LTB4 stimulated rapid and transient activation of MEK and ERK1/2 kinases. The MEK inhibitors, PD98059 and U0126, blocked LTB4-stimulated ERK1/2 activation and cell proliferation. LTB4 also stimulated phosphorylation of p38 MAPK; however, the p38 MAPK inhibitor, SB203580, failed to block LTB4-stimulated growth. The activity of JNK/SAPK was not affected by LTB4 treatment. Phosphorylation of Akt was also induced by LTB4 and this effect was blocked by the PI-3 kinase inhibitor wortmannin, which also partially blocked LTB4-stimulated cell proliferation. In conclusion, LTB4 stimulates proliferation of human pancreatic cancer cells through MEK/ERK and PI-3 kinase/Akt pathways, while p38 MPAK and JNK/SAPK are not involved

  10. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    Science.gov (United States)

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  11. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth.

    Science.gov (United States)

    De Simone, V; Franzè, E; Ronchetti, G; Colantoni, A; Fantini, M C; Di Fusco, D; Sica, G S; Sileri, P; MacDonald, T T; Pallone, F; Monteleone, G; Stolfi, C

    2015-07-01

    Colorectal cancers (CRCs) often show a dense infiltrate of cytokine-producing immune/inflammatory cells. The exact contribution of each immune cell subset and cytokine in the activation of the intracellular pathways sustaining CRC cell growth is not understood. Herein, we isolate tumor-infiltrating leukocytes (TILs) and lamina propria mononuclear cells (LPMCs) from the tumor area and the macroscopically unaffected, adjacent, colonic mucosa of patients who underwent resection for sporadic CRC and show that the culture supernatants of TILs, but not of LPMCs, potently enhance the growth of human CRC cell lines through the activation of the oncogenic transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappa B (NF-kB). Characterization of immune cell complexity of TILs and LPMCs reveals no differences in the percentages of T cells, natural killer T cells, natural killer (NK) cells, macrophages and B cells. However, T cells from TILs show a functional switch compared with those from LPMCs to produce large amounts of T helper type 17 (Th17)-related cytokines (that is, interleukin-17A (IL-17A), IL-17F, IL-21 and IL-22), tumor necrosis factor-α (TNF-α) and IL-6. Individual neutralization of IL-17A, IL-17F, IL-21, IL-22, TNF-α or IL-6 does not change TIL-derived supernatant-driven STAT3 and NF-kB activation, as well as their proproliferative effect in CRC cells. In contrast, simultaneous neutralization of both IL-17A and TNF-α, which abrogates NF-kB signaling, and IL-22 and IL-6, which abrogates STAT3 signaling, reduces the mitogenic effect of supernatants in CRC cells. IL-17A, IL-21, IL-22, TNF-α and IL-6 are also produced in excess in the early colonic lesions in a mouse model of sporadic CRC, associated with enhanced STAT3/NF-kB activation. Mice therapeutically given BP-1-102, an orally bioavailable compound targeting STAT3/NF-kB activation and cross-talk, exhibit reduced colon tumorigenesis and diminished expression of

  12. Phosphoproteomic fingerprinting of epidermal growth factor signaling and anticancer drug action in human tumor cells.

    Science.gov (United States)

    Lim, Yoon-Pin; Diong, Lang-Shi; Qi, Robert; Druker, Brian J; Epstein, Richard J

    2003-12-01

    Many proteins regulating cancer cell growth are tyrosine phosphorylated. Using antiphosphotyrosine affinity chromatography, thiourea protein solubilization, two-dimensional PAGE, and mass spectrometry, we report here the characterization of the epidermal growth factor (EGF)-induced phosphoproteome in A431 human epidermoid carcinoma cells. Using this approach, more than 50 distinct tyrosine phosphoproteins are identifiable within five main clusters-cytoskeletal proteins, signaling enzymes, SH2-containing adaptors, chaperones, and focal adhesion proteins. Comparison of the phosphoproteomes induced in vitro by transforming growth factor-alpha and platelet-derived growth factor demonstrates the pathway- and cell-specific nature of the phosphoproteomes induced. Elimination of both basal and ligand-dependent phosphoproteins by cell exposure to the EGF receptor catalytic inhibitor gefitinib (Iressa, ZD1839) suggests either an autocrine growth loop or the presence of a second inhibited kinase in A431 cells. By identifying distinct patterns of phosphorylation involving novel signaling substrates, and by clarifying the mechanism of action of anticancer drugs, these findings illustrate the potential of immunoaffinity-based phosphoproteomics for guiding the discovery of new drug targets and the rational utilization of pathway-specific chemotherapies.

  13. Adaptation to statins restricts human tumour growth in Nude mice

    International Nuclear Information System (INIS)

    Follet, Julie; Rémy, Lionel; Hesry, Vincent; Simon, Brigitte; Gillet, Danièle; Auvray, Pierrick; Corcos, Laurent; Le Jossic-Corcos, Catherine

    2011-01-01

    Statins have long been used as anti-hypercholesterolemia drugs, but numerous lines of evidence suggest that they may also bear anti-tumour potential. We have recently demonstrated that it was possible to isolate cancer cells adapted to growth in the continuous presence of lovastatin. These cells grew more slowly than the statin-sensitive cells of origin. In the present study, we compared the ability of both statin-sensitive and statin-resistant cells to give rise to tumours in Nude mice. HGT-1 human gastric cancer cells and L50 statin-resistant derivatives were injected subcutaneously into Nude mice and tumour growth was recorded. At the end of the experiment, tumours were recovered and marker proteins were analyzed by western blotting, RT-PCR and immunohistochemistry. L50 tumours grew more slowly, showed a strong decrease in cyclin B1, over-expressed collagen IV, and had reduced laminin 332, VEGF and CD34 levels, which, collectively, may have restricted cell division, cell adhesion and neoangiogenesis. Taken together, these results showed that statin-resistant cells developed into smaller tumours than statin-sensitive cells. This may be reflective of the cancer restricting activity of statins in humans, as suggested from several retrospective studies with subjects undergoing statin therapy for several years

  14. Growth inhibition and differentiation of murine melanoma B16-BL6 cells caused by the combination of cisplatin and caffeine.

    Science.gov (United States)

    Tsuchiya, H; Tomita, K; Yasutake, H; Ueda, Y; Tanaka, M; Sasaki, T

    1989-12-01

    We preliminarily investigated the combined effects of cisplatin and caffeine on murine melanoma B16-BL6 cells in vitro. When caffeine was added before or simultaneously with cisplatin, there was little growth inhibition. The addition of 2.0 mM caffeine after 1 h of exposure to cisplatin inhibited growth and induced cell differentiation. This treatment resulted in fewer cells, and the numbers of melanosomes and mitochondria and the amount of Golgi's complex and endoplasmic reticulum were increased. DNA histograms obtained by flow cytometry showed that cells treated with cisplatin alone accumulated in the G2/M phase, with a partial G2 block. The addition of 2.0 mM caffeine after 1 h of treatment with cisplatin reduced this block. Caffeine caused murine melanoma B16-BL6 cells treated with cisplatin to differentiate, and this inhibited growth.

  15. Modelling cell population growth with applications to cancer therapy in human tumour cell lines.

    Science.gov (United States)

    Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N

    2004-01-01

    In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.

  16. Effects of dipotassium-trioxohydroxytetrafluorotriborate, K2[B3O3F4OH], on cell viability and gene expression of common human cancer drug targets in a melanoma cell line.

    Science.gov (United States)

    Pojskic, Lejla; Haveric, Sanin; Lojo-Kadric, Naida; Hadzic, Maida; Haveric, Anja; Galic, Zoran; Galic, Borivoj; Vullo, Daniela; Supuran, Claudiu T; Milos, Mladen

    2016-12-01

    Recently it was found that dipotassium-trioxohydroxytetrafluorotriborate, K2(B3O3F4OH), is a potent and highly specific inhibitor of precancerous cell processes. We conducted gene expression profiling of human melanoma cells before and after treatment with two concentrations (0.1 and 1 mM) of this boron inorganic derivative in order to assess its effects on deregulation of genes associated with tumor pathways. Parallel trypan blue exclusion assay was performed to assess the cytotoxicity effects of this chemical. Treatment with K2(B3O3F4OH) induced a significant decrease of cell viability in melanoma cellline at both tested concentrations. Furthermore, these treatments caused deregulation of more than 30 genes known as common anti-tumor drug targets. IGF-1 and hTERT were found to be significantly downregulated and this result may imply potential use of K2(B3O3F4OH) as an inhibitor or human telomerase and insulin-like growth factor 1, both of which are associated with various tumor pathways.

  17. Attachment, Growth, and Detachment of Human Mesenchymal Stem Cells in a Chemically Defined Medium

    Directory of Open Access Journals (Sweden)

    Denise Salzig

    2016-01-01

    Full Text Available The manufacture of human mesenchymal stem cells (hMSCs for clinical applications requires an appropriate growth surface and an optimized, preferably chemically defined medium (CDM for expansion. We investigated a new protein/peptide-free CDM that supports the adhesion, growth, and detachment of an immortalized hMSC line (hMSC-TERT as well as primary cells derived from bone marrow (bm-hMSCs and adipose tissue (ad-hMSCs. We observed the rapid attachment and spreading of hMSC-TERT cells and ad-hMSCs in CDM concomitant with the expression of integrin and actin fibers. Cell spreading was promoted by coating the growth surface with collagen type IV and fibronectin. The growth of hMSC-TERT cells was similar in CDM and serum-containing medium whereas the lag phase of bm-hMSCs was prolonged in CDM. FGF-2 or surface coating with collagen type IV promoted the growth of bm-hMSCs, but laminin had no effect. All three cell types retained their trilineage differentiation capability in CDM and were detached by several enzymes (but not collagenase in the case of hMSC-TERT cells. The medium and coating did not affect detachment efficiency but influenced cell survival after detachment. CDM combined with cell-specific surface coatings and/or FGF-2 supplements is therefore as effective as serum-containing medium for the manufacture of different hMSC types.

  18. HCMV Infection of Human Trophoblast Progenitor Cells of the Placenta Is Neutralized by a Human Monoclonal Antibody to Glycoprotein B and Not by Antibodies to the Pentamer Complex

    Directory of Open Access Journals (Sweden)

    Martin Zydek

    2014-03-01

    Full Text Available Human cytomegalovirus (HCMV is the major viral cause of congenital infection and birth defects. Primary maternal infection often results in virus transmission, and symptomatic babies can have permanent neurological deficiencies and deafness. Congenital infection can also lead to intrauterine growth restriction, a defect in placental transport. HCMV replicates in primary cytotrophoblasts (CTBs, the specialized cells of the placenta, and inhibits differentiation/invasion. Human trophoblast progenitor cells (TBPCs give rise to the mature cell types of the chorionic villi, CTBs and multi-nucleated syncytiotrophoblasts (STBs. Here we report that TBPCs are fully permissive for pathogenic and attenuated HCMV strains. Studies with a mutant virus lacking a functional pentamer complex (gH/gL/pUL128-131A showed that virion entry into TBPCs is independent of the pentamer. In addition, infection is blocked by a potent human neutralizing monoclonal antibody (mAb, TRL345, reactive with glycoprotein B (gB, but not mAbs to the pentamer proteins pUL130/pUL131A. Functional studies revealed that neutralization of infection preserved the capacity of TBPCs to differentiate and assemble into trophospheres composed of CTBs and STBs in vitro. Our results indicate that mAbs to gB protect trophoblast progenitors of the placenta and could be included in antibody treatments developed to suppress congenital infection and prevent disease.

  19. Effects of Titanium Surface Microtopography and Simvastatin on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells in Estrogen-Deprived Cell Culture.

    Science.gov (United States)

    Arpornmaeklong, Premjit; Pripatnanont, Prisana; Chookiatsiri, Chonticha; Tangtrakulwanich, Boonsin

    This study aimed to investigate the effects of titanium surface topography and simvastatin on growth and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs were seeded on cell culture plates, smooth-surface titanium (Ti) disks, and sandblasted with large grits and acid etched (SLA)-surface Ti disks; and subsequently cultured in regular (fetal bovine serum [FBS]), ED, and ED-with 100 nM simvastatin (ED-SIM) culture media for 14 to 21 days. Live/dead cell staining, scanning electron microscope examination, and cell viability assay were performed to determine cell attachment, morphology, and growth. Expression levels of osteoblast-associated genes, Runx2 and bone sialoprotein and levels of alkaline phosphatase (ALP) activity, calcium content, and osteocalcin in culture media were measured to determine osteoblastic differentiation. Expression levels of bone morphogenetic protein-2 (BMP-2) were investigated to examine stimulating effects of simvastatin (n = 4 to 5, mean ± SD). In vitro mineralization was verified by calcein staining. Human BMSCs exhibited different attachment and shapes on smooth and SLA titanium surfaces. Estrogen-deprived cell culture decreased cell attachment and growth, particularly on the SLA titanium surface, but cells were able to grow to reach confluence on day 21 in the ED-osteogenic (OS) culture medium. Promoting effects of the SLA titanium surface in ED-OS were significantly decreased. Simvastatin significantly increased osteogenic differentiation of human BMSCs on the SLA titanium surface in the ED-OS medium, and the promoting effects of simvastatin corresponded with the increasing of BMP-2 gene expression on the SLA titanium surface in ED-OS-SIM culture medium. The ED cell culture model provided a well-defined platform for investigating the effects of hormones and growth factors on cells and titanium surface interaction. Titanium, the SLA surface, and simvastatin

  20. Mycobacterium leprae induces NF-κB-dependent transcription repression in human Schwann cells

    International Nuclear Information System (INIS)

    Pereira, Renata M.S.; Calegari-Silva, Teresa Cristina; Hernandez, Maristela O.; Saliba, Alessandra M.; Redner, Paulo; Pessolani, Maria Cristina V.; Sarno, Euzenir N.; Sampaio, Elizabeth P.; Lopes, Ulisses G.

    2005-01-01

    Mycobacterium leprae, the causative agent of leprosy, invades peripheral nerve Schwann cells, resulting in deformities associated with this disease. NF-κB is an important transcription factor involved in the regulation of host immune antimicrobial responses. We aimed in this work to investigate NF-κB signaling pathways in the human ST88-14 Schwannoma cell line infected with M. leprae. Gel shift and supershift assays indicate that two NF-κB dimers, p65/p50 and p50/p50, translocate to the nucleus in Schwann cells treated with lethally irradiated M. leprae. Consistent with p65/p50 and p50/p50 activation, we observed IκB-α degradation and reduction of p105 levels. The nuclear translocation of p50/p50 complex due to M. leprae treatment correlated with repression of NF-κB-driven transcription induced by TNF-α. Moreover, thalidomide inhibited p50 homodimer nuclear translocation induced by M. leprae and consequently rescues Schwann cells from NF-κB-dependent transcriptional repression. Here, we report for the first time that M. leprae induces NF-κB activation in Schwann cells and thalidomide is able to modulate this activation

  1. A human monoclonal antibody drug and target discovery platform for B-cell chronic lymphocytic leukemia based on allogeneic hematopoietic stem cell transplantation and phage display.

    Science.gov (United States)

    Baskar, Sivasubramanian; Suschak, Jessica M; Samija, Ivan; Srinivasan, Ramaprasad; Childs, Richard W; Pavletic, Steven Z; Bishop, Michael R; Rader, Christoph

    2009-11-12

    Allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only potentially curative treatment available for patients with B-cell chronic lymphocytic leukemia (B-CLL). Here, we show that post-alloHSCT antibody repertoires can be mined for the discovery of fully human monoclonal antibodies to B-CLL cell-surface antigens. Sera collected from B-CLL patients at defined times after alloHSCT showed selective binding to primary B-CLL cells. Pre-alloHSCT sera, donor sera, and control sera were negative. To identify post-alloHSCT serum antibodies and subsequently B-CLL cell-surface antigens they recognize, we generated a human antibody-binding fragment (Fab) library from post-alloHSCT peripheral blood mononuclear cells and selected it on primary B-CLL cells by phage display. A panel of Fab with B-CLL cell-surface reactivity was strongly enriched. Selection was dominated by highly homologous Fab predicted to bind the same antigen. One Fab was converted to immunoglobulin G1 and analyzed for reactivity with peripheral blood mononuclear cells from B-CLL patients and healthy volunteers. Cell-surface antigen expression was restricted to primary B cells and up-regulated in primary B-CLL cells. Mining post-alloHSCT antibody repertoires offers a novel route to discover fully human monoclonal antibodies and identify antigens of potential therapeutic relevance to B-CLL and possibly other cancers. Trials described herein were registered at www.clinicaltrials.gov as nos. NCT00055744 and NCT00003838.

  2. Subamolide B Isolated from Medicinal Plant Cinnamomum subavenium Induces Cytotoxicity in Human Cutaneous Squamous Cell Carcinoma Cells through Mitochondrial and CHOP-Dependent Cell Death Pathways

    Directory of Open Access Journals (Sweden)

    Shu-Yi Yang

    2013-01-01

    Full Text Available Subamolide B is a butanolide isolated from Cinnamomum subavenium, a medicinal plant traditionally used to treat various ailments including carcinomatous swelling. We herein reported for the first time that subamolide B potently induced cytotoxicity against diverse human skin cancer cell lines while sparing nonmalignant cells. Mechanistic studies on human cutaneous squamous cell carcinoma (SCC cell line SCC12 highlighted the involvement of apoptosis in subamolide B-induced cytotoxicity, as evidenced by the activation of caspases-8, -9, -4, and -3, the increase in annexin V-positive population, and the partial restoration of cell viability by cotreatment with the pan-caspase inhibitor z-VAD-fmk. Additionally, subamolide B evoked cell death pathways mediated by FasL/Fas, mitochondria, and endoplasmic reticulum (ER stress, as supported by subamolide B-induced FasL upregulation, BCL-2 suppression/cytosolic release of cytochrome c, and UPR activation/CHOP upregulation, respectively. Noteworthy, ectopic expression of c-FLIPL or dominant-negative mutant of FADD failed to impair subamolide B-induced cytotoxicity, whereas BCL-2 overexpression or CHOP depletion greatly rescued subamolide B-stimulated cells. Collectively, these results underscored the central role of mitochondrial and CHOP-mediated cell death pathways in subamolide B-induced cytotoxicity. Our findings further implicate the potential of subamolide B for cutaneous SCC therapy or as a lead compound for developing novel chemotherapeutic agents.

  3. Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method.

    Science.gov (United States)

    Ohnishi, Hiroe; Skerleva, Desislava; Kitajiri, Shin-ichiro; Sakamoto, Tatsunori; Yamamoto, Norio; Ito, Juichi; Nakagawa, Takayuki

    2015-07-10

    Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    Science.gov (United States)

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  5. EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia-like B-cell malignancies.

    Science.gov (United States)

    Niss Arfelt, Kristine; Barington, Line; Benned-Jensen, Tau; Kubale, Valentina; Kovalchuk, Alexander L; Daugvilaite, Viktorija; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup; Egerod, Kristoffer L; Bassi, Maria R; Spiess, Katja; Schwartz, Thue W; Wang, Hongsheng; Morse, Herbert C; Holst, Peter J; Rosenkilde, Mette M

    2017-02-16

    Human and mouse chronic lymphocytic leukemia (CLL) develops from CD5 + B cells that in mice and macaques are known to define the distinct B1a B-cell lineage. B1a cells are characterized by lack of germinal center (GC) development, and the B1a cell population is increased in mice with reduced GC formation. As a major mediator of follicular B-cell migration, the G protein-coupled receptor Epstein-Barr virus-induced gene 2 ( EBI2 or GPR183 ) directs B-cell migration in the lymphoid follicles in response to its endogenous ligands, oxysterols. Thus, upregulation of EBI2 drives the B cells toward the extrafollicular area, whereas downregulation is essential for GC formation. We therefore speculated whether increased expression of EBI2 would lead to an expanded B1 cell subset and, ultimately, progression to CLL. Here, we demonstrate that B-cell-targeted expression of human EBI2 (hEBI2) in mice reduces GC-dependent immune responses, reduces total immunoglobulin M (IgM) and IgG levels, and leads to increased proliferation and upregulation of cellular oncogenes. Furthermore, hEBI2 overexpression leads to an abnormally expanded CD5 + B1a B-cell subset (present as early as 4 days after birth), late-onset lymphoid cancer development, and premature death. These findings are highly similar to those observed in CLL patients and identify EBI2 as a promoter of B-cell malignancies.

  6. Role of aryl hydrocarbon receptor polymorphisms on TCDD-mediated CYP1B1 induction and IgM suppression by human B cells

    Energy Technology Data Exchange (ETDEWEB)

    Kovalova, Natalia, E-mail: kovalova@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Manzan, Maria, E-mail: ale.manzan@gmail.com [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Crawford, Robert, E-mail: crawfo28@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Kaminski, Norbert, E-mail: kamins11@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States)

    2016-10-15

    Previous studies have demonstrated that most of the intraspecies variation in sensitivity to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including suppression of antibody responses, in murine models is due to single nucleotide polymorphisms (SNPs) within the aryl hydrocarbon receptor (AhR) gene. The underlying reason for variation in sensitivity to TCDD-induced suppression of IgM responses among humans is not well understood, but is thought, in part, to be a result of different polymorphic forms of the AhR expressed by different individuals. In this study, the functional properties of six (P517S, R554K, V570I, V570I + P517S, R554K + V570I and P517S + R554K + V570I) human AhR variants were examined in the human B cell line, SKW 6.4. TCDD-induced Cyp1B1 and Cyp1A2 mRNA expression levels and Cyp1B1-regulated reporter gene activity, used for comparative purposes, were markedly lower in SKW cells containing the R554K SNP than in SKW-AHR{sup +} (control AhR) cells. Furthermore, all AhR variants were able to mediate TCDD-induced suppression of the IgM response; however, a combined P517S + R554K + V570I variant partially reduced sensitivity to TCDD-mediated suppression of IgM secretion. Collectively, our findings show that the R554K human AhR SNP alone altered sensitivity of human B cells to TCDD-mediated induction of Cyp1B1 and Cyp1A2. By contrast, attenuation of TCDD-induced IgM suppression required a combination of all three SNPs P517S, R554K, and V570I. - Highlights: • Mouse, rat and SKW-AHR{sup +} B cells have a similar window of sensitivity to TCDD. • R554K AhR SNP alters B cell sensitivity to TCDD-mediated Cyp1B1 and Cyp1A2 induction. • Combination of P517S, R554K, and V570I SNPs attenuates TCDD-induced IgM suppression.

  7. Effect of TH-lines and clones on the growth and differentiation of B cell clones in microculture.

    Science.gov (United States)

    Kotloff, D B; Cebra, J J

    1988-02-01

    Antibody isotype expression by B cell clones was analyzed using in vitro microcultures containing low numbers of hapten-gelatin-enriched B cells and higher numbers of hemocyanin-specific helper T cell lines or clones. Twenty-eight to sixty-three percent of clones grown in microculture with haptenated hemocyanin and T cells from established lines expressed IgG and/or IgA isotypes in random mixtures, almost always accompanied by IgM. Helper T cells from hemocyanin-specific clones also supported the expression of non-IgM isotypes by the B cell clones, suggesting that a single specificity of T cell can provide sufficient growth and differentiation factors for the display of isotype switching. A positive correlation between the antibody output of clones and the expression of non-IgM isotypes indicated that the switching process may be associated with cell division. Although memory B cells that give clones expressing IgG and/or IgA in the absence of IgM are also enriched on haptenated gelatin, they are not stimulable under conditions of this microculture assay.

  8. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF-κB

    Directory of Open Access Journals (Sweden)

    Md. Abdur Rakib

    2013-01-01

    Full Text Available The major conjugated linoleic acid (CLA isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms. The CLA isomers significantly enhanced GJIC of MCF-7 cells at 40 μM concentration, whereas CLA inhibited cell growth and induced caspase-dependent apoptosis. CLA increased connexin43 (Cx43 expression both at the transcriptional and translational levels. CLA inhibited nuclear factor-κB (NF-κB activity and enhanced reactive oxygen species (ROS generation. No significant difference was observed in the efficacy of c9,t11-CLA and t10,c12-CLA. These results suggest that the anticancer effect of CLA is associated with upregulation of GJIC mediated by enhanced Cx43 expression through inactivation of NF-κB and generation of ROS in MCF-7 cells.

  9. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    International Nuclear Information System (INIS)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-01-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 μM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure

  10. TP508 accelerates fracture repair by promoting cell growth over cell death

    International Nuclear Information System (INIS)

    Li Xinmin; Wang Hali; Touma, Edward; Qi Yuchen; Rousseau, Emma; Quigg, Richard J.; Ryaby, James T.

    2007-01-01

    TP508 is a synthetic 23-amino acid peptide representing a receptor-binding domain of human thrombin. We have previously shown that a single injection of TP508 accelerates fracture healing in a rat femoral fracture model. To understand how TP508 acts at the protein level during fracture healing, we compared the translational profiles between saline-control and fractured femur at six time points after TP508 treatment using the second generation of BD Clontech TM Antibody Microarray. Here, we demonstrate that TP508 accelerates fracture healing by modulating expression levels of proteins primarily involved in the functional categories of cell cycle, cellular growth and proliferation, and cell death. The majority of those proteins are physically interrelated and functionally overlapped. The action of those proteins is highlighted by a central theme of promoting cell growth via balance of cell survival over cell death signals. This appears to occur through the stimulation of several bone healing pathways including cell cycle-G1/S checkpoint regulation, apoptosis, JAK/STAT, NF-κB, PDGF, PI3K/AKT, PTEN, and ERK/MAPK

  11. Anti-metastatic and anti-tumor growth effects of Origanum majorana on highly metastatic human breast cancer cells: inhibition of NFκB signaling and reduction of nitric oxide production.

    Directory of Open Access Journals (Sweden)

    Yusra Al Dhaheri

    Full Text Available BACKGROUND: We have recently reported that Origanummajorana exhibits anticancer activity by promoting cell cycle arrest and apoptosis of the metastatic MDA-MB-231 breast cancer cell line. Here, we extended our study by investigating the effect of O. majorana on the migration, invasion and tumor growth of these cells. RESULTS: We demonstrate that non-cytotoxic concentrations of O. majorana significantly inhibited the migration and invasion of the MDA-MB-231 cells as shown by wound-healing and matrigel invasion assays. We also show that O. majorana induce homotypic aggregation of MDA-MB-231 associated with an upregulation of E-cadherin protein and promoter activity. Furthermore, we show that O. majorana decrease the adhesion of MDA-MB-231 to HUVECs and inhibits transendothelial migration of MDA-MB-231 through TNF-α-activated HUVECs. Gelatin zymography assay shows that O. majorana suppresses the activities of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9. ELISA, RT-PCR and Western blot results revealed that O. majorana decreases the expression of MMP-2, MMP-9, urokinase plasminogen activator receptor (uPAR, ICAM-1 and VEGF. Further investigation revealed that O. majorana suppresses the phosphorylation of IκB, downregulates the nuclear level of NFκB and reduces Nitric Oxide (NO production in MDA-MB-231 cells. Most importantly, by using chick embryo tumor growth assay, we also show that O. majorana promotes inhibition of tumor growth and metastasis in vivo. CONCLUSION: Our findings identify Origanummajorana as a promising chemopreventive and therapeutic candidate that modulate breast cancer growth and metastasis.

  12. The 3' untranslated region of the cyclin B mRNA is not sufficient to enhance the synthesis of cyclin B during a mitotic block in human cells.

    Directory of Open Access Journals (Sweden)

    Dominik Schnerch

    Full Text Available Antimitotic agents are frequently used to treat solid tumors and hematologic malignancies. However, one major limitation of antimitotic approaches is mitotic slippage, which is driven by slow degradation of cyclin B during a mitotic block. The extent to which cyclin B levels decline is proposed to be governed by an equilibrium between cyclin B synthesis and degradation. It was recently shown that the 3' untranslated region (UTR of the murine cyclin B mRNA contributes to the synthesis of cyclin B during mitosis in murine cells. Using a novel live-cell imaging-based technique allowing us to study synthesis and degradation of cyclin B simultaneously at the single cell level, we tested here the role of the human cyclin B 3'UTR in regulating cyclin B synthesis during mitosis in human cells. We observed that the cyclin B 3'UTR was not sufficient to enhance cyclin B synthesis in human U2Os, HeLa or hTERT RPE-1 cells. A better understanding of how the equilibrium of cyclin B is regulated in mitosis may contribute to the development of improved therapeutic approaches to prevent mitotic slippage in cancer cells treated with antimitotic agents.

  13. Ligands for the peroxisome proliferator-activated receptor-γ have inhibitory effects on growth of human neuroblastoma cells in vitro

    International Nuclear Information System (INIS)

    Valentiner, Ursula; Carlsson, Margarita; Erttmann, Rudolf; Hildebrandt, Herbert; Schumacher, Udo

    2005-01-01

    The thiazolidinedione (TZD) or glitazone class of peroxisome proliferator-activated-γ (PPAR-γ) ligands not only induce adipocyte differentiation and increase insulin sensitivity, but also exert growth inhibitory effects on several carcinoma cell lines in vitro as well as in vivo. In the current study the in vitro effect of four PPAR-γ agonists (ciglitazone, pioglitazone, troglitazone, rosiglitazone) on the cell growth of seven human neuroblastoma cell lines (Kelly, LAN-1, LAN-5, LS, IMR-32, SK-N-SH, SH-SY5Y) was investigated. Growth rates were assessed by a colorimetric XTT-based assay kit. Expression of PPAR-γ protein was examined by immunohistochemistry and Western blot analysis. All glitazones inhibited in vitro growth and viability of the human neuroblastoma cell lines in a dose-dependent manner showing considerable effects only at high concentrations (10 μM and 100 μM). Effectiveness of the glitazones on neuroblastoma cell growth differed depending on the cell line and the agent. The presence of PPAR-γ protein was demonstrated in all cell lines. Our findings indicate that ligands for PPAR-γ may be useful therapeutic agents for the treatment of neuroblastoma. Thus the effect of glitazones on the growth of neuroblastoma should now be investigated in an in vivo animal model

  14. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants

    DEFF Research Database (Denmark)

    Samuelsen, Grethe B; Pakkenberg, Bente; Bogdanović, Nenad

    2007-01-01

    with controls. The daily increase in brain cells in the future cortex was only half of that of the controls. In the 3 other developmental zones, no significant differences in cell numbers could be demonstrated. CONCLUSIONS: IUGR in humans is associated with a severe reduction in cortical growth...

  15. TGF-b and a specific TGF-b inhibitor regulate pericentrin B and MYH9 in glioma cell lines

    Directory of Open Access Journals (Sweden)

    Óscar Álzate

    2006-01-01

    Full Text Available Malignant gliomas are heterogeneous, highly invasive vascular tumours. The multifunctional cytokine, transforming growth factor-beta (TGF-P, is expressed by grade III/IV gliomas and promotes tumour angiogenesis, invasión and immune escape. It has been shown previously that a small TGF-P receptor type I (TGF-(3-RI molecule inhibitor (SB-431542 blocks TGF-(3-mediated signal transduction, induction of angiogenic factor expression and cellular motility. As glioma cell lines display differential sensitivity to TGF-P, it was expected that they would also be differentially impacted by disruption of TGF-P signalling. Differential in gel expression (DIGE analysis and mass spectrometry was used in this work for determining protein regulation effects of both TGF-P and SB-431542 on human glioma cell lines. It was found that pericentrin B and non muscle myosin were differentially expressed in fragments which likely resulted from protease activation by the tumour growth mechanism. These results suggest that both pericentrin B and non-muscle myosin might be potential glioma biomarkers. Key words: DIGE, proteomics, glioma, TGF-P, mass spectrometry, non muscle myosin, pericentrin B.

  16. The Epstein-Barr Virus BART miRNA Cluster of the M81 Strain Modulates Multiple Functions in Primary B Cells

    Science.gov (United States)

    Lin, Xiaochen; Tsai, Ming-Han; Shumilov, Anatoliy; Poirey, Remy; Bannert, Helmut; Middeldorp, Jaap M.; Feederle, Regina; Delecluse, Henri-Jacques

    2015-01-01

    The Epstein-Barr virus (EBV) is a B lymphotropic virus that infects the majority of the human population. All EBV strains transform B lymphocytes, but some strains, such as M81, also induce spontaneous virus replication. EBV encodes 22 microRNAs (miRNAs) that form a cluster within the BART region of the virus and have been previously been found to stimulate tumor cell growth. Here we describe their functions in B cells infected by M81. We found that the BART miRNAs are downregulated in replicating cells, and that exposure of B cells in vitro or in vivo in humanized mice to a BART miRNA knockout virus resulted in an increased proportion of spontaneously replicating cells, relative to wild type virus. The BART miRNAs subcluster 1, and to a lesser extent subcluster 2, prevented expression of BZLF1, the key protein for initiation of lytic replication. Thus, multiple BART miRNAs cooperate to repress lytic replication. The BART miRNAs also downregulated pro- and anti-apoptotic mediators such as caspase 3 and LMP1, and their deletion did not sensitize B-cells to apoptosis. To the contrary, the majority of humanized mice infected with the BART miRNA knockout mutant developed tumors more rapidly, probably due to enhanced LMP1 expression, although deletion of the BART miRNAs did not modify the virus transforming abilities in vitro. This ability to slow cell growth could be confirmed in non-humanized immunocompromized mice. Injection of resting B cells exposed to a virus that lacks the BART miRNAs resulted in accelerated tumor growth, relative to wild type controls. Therefore, we found that the M81 BART miRNAs do not enhance B-cell tumorigenesis but rather repress it. The repressive effects of the BART miRNAs on potentially pathogenic viral functions in infected B cells are likely to facilitate long-term persistence of the virus in the infected host. PMID:26694854

  17. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang, E-mail: md_wzx7189@163.com

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.

  18. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    Directory of Open Access Journals (Sweden)

    Tzuu-Yuan Huang

    2012-01-01

    Full Text Available Demethoxycurcumin (DMC; a curcumin-related demethoxy compound has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP, DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

  19. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  20. Plasma Rich in Growth Factors Inhibits Ultraviolet B Induced Photoageing of the Skin in Human Dermal Fibroblast Culture.

    Science.gov (United States)

    Anitua, Eduardo; Pino, Ander; Orive, Gorka

    Ultraviolet irradiation is able to deeply penetrate into the dermis and alter fibroblast structure and function, leading to a degradation of the dermal extracellular matrix. The regenerative effect of plasma rich in growth factors (PRGF) on skin ageing was investigated using UVB photo-stressed human dermal fibroblasts as an in vitro culture model. PRGF was assessed over the main indicative features of ultraviolet B irradiation, including ROS formation, cell viability and death detection, apoptosis/ necrosis analysis and biosynthetic activity measurement. Four different UV irradiation protocols were tested in order to analyze the beneficial effects of PRGF. Ultraviolet irradiation exhibited a dose dependent cytotoxicity and dose of 400mJ/cm2 was selected for subsequent experiments. PRGF increased the cell viability and decreased the cell death comparing to the non-treated group. The apoptosis and necrosis were significantly lower in PRGF treated fibroblasts. ROS production after UV irradiation was significantly reduced in the presence of PRGF. Procollagen type I, hyaluronic acid and TIMP-1 levels were higher in the when treated with PRGF. This preliminary in vitro study suggests that PRGF is able to prevent UVB derived photooxidative stress and to diminish the cell damage caused by ultraviolet irradiation.

  1. Biomechanical force induces the growth factor production in human periodontal ligament-derived cells.

    Science.gov (United States)

    Ichioka, Hiroaki; Yamamoto, Toshiro; Yamamoto, Kenta; Honjo, Ken-Ichi; Adachi, Tetsuya; Oseko, Fumishige; Mazda, Osam; Kanamura, Narisato; Kita, Masakazu

    2016-01-01

    Although many reports have been published on the functional roles of periodontal ligament (PDL) cells, the mechanisms involved in the maintenance and homeostasis of PDL have not been determined. We investigated the effects of biomechanical force on growth factor production, phosphorylation of MAPKs, and intracellular transduction pathways for growth factor production in human periodontal ligament (hPDL) cells using MAPK inhibitors. hPDL cells were exposed to mechanical force (6 MPa) using a hydrostatic pressure apparatus. The levels of growth factor mRNA and protein were examined by real-time RT-PCR and ELISA. The phosphorylation of MAPKs was measured using BD™ CBA Flex Set. In addition, MAPKs inhibitors were used to identify specific signal transduction pathways. Application of biomechanical force (equivalent to occlusal force) increased the synthesis of VEGF-A, FGF-2, and NGF. The application of biomechanical force increased the expression levels of phosphorylated ERK and p38, but not of JNK. Furthermore, the levels of VEGF-A and NGF expression were suppressed by ERK or p38 inhibitor. The growth factors induced by biomechanical force may play a role in the mechanisms of homeostasis of PDL.

  2. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells

    Science.gov (United States)

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. PMID:25613934

  3. Growth Kinetics, Characterization, and Plasticity of Human Menstrual Blood Stem Cells

    Directory of Open Access Journals (Sweden)

    Davood Mehrabani

    2016-03-01

    Full Text Available One of the readily available sources of mesenchymal stem cells (MSCs is menstrual blood-derived stem cells (Men-SCs, which exhibit characteristics similar to other types of MSCs. This study was performed to determine the growth kinetics, plasticity, and characterization of Men-SCs in women. During spring 2014 in the southern Iranian city of Shiraz, menstrual blood (5 mL was obtained from 10 women on their third day of menstruation in 2 age groups of 30 to 40 and 40 to 50 years old. Ficoll was used to separate the mononuclear cell fraction. After the Men-SCs were cultured, they were subcultured up to passage 4. Growth behavior and population doubling time were evaluated by seeding 5×104 cells into 12- and 24-well culture plates, and the colonies were enumerated. The expression of CD44, CD90, and CD34 was evaluated. The osteogenic potential was assessed by alizarin red staining. The Men-SCs were shown to be plastic adherent and spindle-shaped. Regarding the growth curves in the 12- and 24-well culture plates, it was demonstrated that in the women aged between 30 and 40 years, population doubling time was 55.5 and 62 hours, respectively, while these values in the women aged between 40 and 50 years were 70.4 and 72.4 hours, correspondingly. Positive expression of CD44 and CD90 and negative expression of CD34 were noted. In the osteogenic differentiation medium, the cells differentiated toward osteoblasts. As human Men-SCs are easily collectable without any invasive procedure and are a safe and rapid source of MSCs, they can be a good candidate for stem cell banking and cell transplantation in women.

  4. Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells

    Directory of Open Access Journals (Sweden)

    JV Stoyanov

    2011-06-01

    Full Text Available There is evidence that mesenchymal stem cells (MSCs can differentiate towards an intervertebral disc (IVD-like phenotype. We compared the standard chondrogenic protocol using transforming growth factor beta-1 (TGFß to the effects of hypoxia, growth and differentiation factor-5 (GDF5, and coculture with bovine nucleus pulposus cells (bNPC. The efficacy of molecules recently discovered as possible nucleus pulposus (NP markers to differentiate between chondrogenic and IVD-like differentiation was evaluated. MSCs were isolated from human bone marrow and encapsulated in alginate beads. Beads were cultured in DMEM (control supplemented with TGFß or GDF5 or under indirect coculture with bNPC. All groups were incubated at low (2 % or normal (20 % oxygen tension for 28 days. Hypoxia increased aggrecan and collagen II gene expression in all groups. The hypoxic GDF5 and TGFß groups demonstrated most increased aggrecan and collagen II mRNA levels and glycosaminoglycan accumulation. Collagen I and X were most up-regulated in the TGFß groups. From the NP markers, cytokeratin-19 was expressed to highest extent in the hypoxic GDF5 groups; lowest expression was observed in the TGFß group. Levels of forkhead box F1 were down-regulated by TGFß and up-regulated by coculture with bNPC. Carbonic anhydrase 12 was also down-regulated in the TGFß group and showed highest expression in the GDF5 group cocultured with bNPC under hypoxia. Trends in gene expression regulation were confirmed on the protein level using immunohistochemistry. We conclude that hypoxia and GDF5 may be suitable for directing MSCs towards the IVD-like phenotype.

  5. Inhibition of IKK/NF-κB Signaling Enhances Differentiation of Mesenchymal Stromal Cells from Human Embryonic Stem Cells.

    Science.gov (United States)

    Deng, Peng; Zhou, Chenchen; Alvarez, Ruth; Hong, Christine; Wang, Cun-Yu

    2016-04-12

    Embryonic stem cell-derived mesenchymal stromal cells (MSCs; also known as mesenchymal stem cells) represent a promising source for bone regenerative medicine. Despite remarkable advances in stem cell biology, the molecular mechanism regulating differentiation of human embryonic stem cells (hESCs) into MSCs remains poorly understood. Here, we report that inhibition of IκB kinase (IKK)/nuclear factor kappa B (NF-κB) signaling enhances differentiation of hESCs into MSCs by expediting the loss of pluripotent markers and increasing the expression of MSC surface markers. In addition, a significantly higher quantity of MSCs was produced from hESCs with IKK/NF-κB suppression. These isolated MSCs displayed evident multipotency with capacity to terminally differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and to form bone in vivo. Collectively, our data provide important insights into the role of NF-κB in mesenchymal lineage specification during hESC differentiation, suggesting that IKK inhibitors could be utilized as an adjuvant in generating MSCs for cell-mediated therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Production of Multiple Growth Factors by a Newly Established Human Thyroid Carcinoma Cell Line

    Science.gov (United States)

    Yoshida, Yataro; Ohashi, Kensaku; Sano, Emiko; Kobayashi, Hisataka; Endo, Keigo; Naruto, Masanobu; Nakamura, Toru

    1992-01-01

    A multiple growth factor‐producing tumor cell line (NIM‐1) was newly established from a patient with thyroid cancer and remarkable neutrophilia. NIM‐1 cells also caused severe neutrophilia in nude mice bearing tumors. NIM‐1‐conditioned medium (NIM‐1CM) contained activities that supported not only granulocyte, macrophage and eosinophil colony formation of human bone marrow cells but also the growth of colony‐stimulating factor (CSF)‐dependent cell lines, NFS60‐KX and TF‐1. Northern blot hybridization analysis revealed the constitutive expression of granulocyte‐CSF (G‐CSF), granulocyte/macrophage‐CSF (GM‐CSF) and interleukin(IL)‐6 mRNAs in NIM‐1 cells. Enzyme‐linked immunosorbent assays (ELISA) using NIM‐1CM also confirmed the production of IL‐la and a small amount of IL‐1β besides G‐CSF, GM‐CSF and IL‐6 in NIM‐1 cells. In addition, unexpected production of IL‐11 in NIM‐1 cells was detected by northern blot hybridization analysis and by bioassay using an IL‐11‐dependent cell line. Therefore, NIM‐1 cell line is shown to produce multiple cytokines including potentially megakaryopoietic growth factors such as GM‐CSF, IL‐6 and IL‐11. PMID:1372885

  7. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ.

    Science.gov (United States)

    Pahl, Jens H W; Kwappenberg, Kitty M C; Varypataki, Eleni M; Santos, Susy J; Kuijjer, Marieke L; Mohamed, Susan; Wijnen, Juul T; van Tol, Maarten J D; Cleton-Jansen, Anne-Marie; Egeler, R Maarten; Jiskoot, Wim; Lankester, Arjan C; Schilham, Marco W

    2014-03-10

    In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/- IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ-activated M2-like macrophages had low anti-tumor activity, IL-10-polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. This study demonstrates that human macrophages can be induced to exert direct anti-tumor activity against osteosarcoma cells. Our

  8. Induction of anchorage-independent growth in primary human cells exposed to protons or HZE ions separately or in dual exposures.

    Science.gov (United States)

    Sutherland, B M; Cuomo, N C; Bennett, P V

    2005-10-01

    Travelers on space missions will be exposed to a complex radiation environment that includes protons and heavy charged particles. Since protons are present at much higher levels than are heavy ions, the most likely scenario for cellular radiation exposure will be proton exposure followed by a hit by a heavy ion. Although the effects of individual ion species on human cells are being investigated extensively, little is known about the effects of exposure to both radiation types. One useful measure of mammalian cell damage is induction of the ability to grow in a semi-solid agar medium highly inhibitory to the growth of normal human cells, termed neoplastic transformation. Using primary human cells, we evaluated induction of soft-agar growth and survival of cells exposed to protons only or to heavy charged particles (600 MeV/nucleon silicon) only as well as of cells exposed to protons followed after a 4-day interval by silicon ions. Both ions alone efficiently transformed the human cells to anchorage-independent growth. Initial experiments indicate that the dose responses for neoplastic transformation of cells exposed to protons and then after 4 days to silicon ions appear similar to that of cells exposed to silicon ions alone.

  9. Induction of chemokine receptor CXCR4 expression by transforming growth factor-β1 in human basal cell carcinoma cells.

    Science.gov (United States)

    Chu, Chia-Yu; Sheen, Yi-Shuan; Cha, Shih-Ting; Hu, Yeh-Fang; Tan, Ching-Ting; Chiu, Hsien-Ching; Chang, Cheng-Chi; Chen, Min-Wei; Kuo, Min-Liang; Jee, Shiou-Hwa

    2013-11-01

    Higher CXCR4 expression enhances basal cell carcinoma (BCC) invasion and angiogenesis. The underlying mechanism of increased CXCR4 expression in invasive BCC is still not well understood. To investigate the mechanisms involved in the regulation of CXCR4 expression in invasive BCC. We used qRT-PCR, RT-PCR, Western blot, and flow cytometric analyses to examine different CXCR4 levels among the clinical samples, co-cultured BCC cells and BCC cells treated with recombinant transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). Immunohistochemical studies were used to demonstrate the correlation between TGF-β1 and CXCR4 expressions. The signal transduction pathway and transcriptional regulation were confirmed by treatments with chemical inhibitors, neutralizing antibodies, or short interfering RNAs, as well as luciferase reporter activity. Invasive BCC has higher TGF-β1 and CTGF levels compared to non-invasive BCC. Non-contact dermal fibroblasts co-culture with human BCC cells also increases the expression of CXCR4 in BCC cells. Treatment with recombinant human TGF-β1, but not CTGF, enhanced the CXCR4 levels in time- and dose-dependent manners. The protein level and surface expression of CXCR4 in human BCC cells was increased by TGF-β1 treatment. TGF-β1 was intensely expressed in the surrounding fibroblasts of invasive BCC and was positively correlated with the CXCR4 expression of BCC cells. The transcriptional regulation of CXCR4 by TGF-β1 is mediated by its binding to the TGF-β receptor II and phosphorylation of the extracellular signal-related kinase 1/2 (ERK1/2)-ETS-1 pathway. TGF-β1 induces upregulation of CXCR4 in human BCC cells by phosphorylation of ERK1/2-ETS-1 pathway. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Fem1b, a proapoptotic protein, mediates proteasome inhibitor-induced apoptosis of human colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Sansom, Owen J; Porecha, Nehal; Raich, Natacha; Du, Liqin; Maher, Joseph F

    2010-02-01

    In the treatment of colon cancer, the development of resistance to apoptosis is a major factor in resistance to therapy. New molecular approaches to overcome apoptosis resistance, such as selectively upregulating proapoptotic proteins, are needed in colon cancer therapy. In a mouse model with inactivation of the adenomatous polyposis coli (Apc) tumor suppressor gene, reflecting the pathogenesis of most human colon cancers, the gene encoding feminization-1 homolog b (Fem1b) is upregulated in intestinal epithelium following Apc inactivation. Fem1b is a proapoptotic protein that interacts with apoptosis-inducing proteins Fas, tumor necrosis factor receptor-1 (TNFR1), and apoptotic protease activating factor-1 (Apaf-1). Increasing Fem1b expression induces apoptosis of cancer cells, but effects on colon cancer cells have not been reported. Fem1b is a homolog of feminization-1 (FEM-1), a protein in Caenorhabditis elegans that is regulated by proteasomal degradation, but whether Fem1b is likewise regulated by proteasomal degradation is unknown. Herein, we found that Fem1b protein is expressed in primary human colon cancer specimens, and in malignant SW620, HCT-116, and DLD-1 colon cancer cells. Increasing Fem1b expression, by transfection of a Fem1b expression construct, induced apoptosis of these cells. We found that proteasome inhibitor treatment of SW620, HCT-116, and DLD-1 cells caused upregulation of Fem1b protein levels, associated with induction of apoptosis. Blockade of Fem1b upregulation with morpholino antisense oligonucleotide suppressed the proteasome inhibitor-induced apoptosis of these cells. In conclusion, the proapoptotic protein Fem1b is downregulated by the proteasome in malignant colon cancer cells and mediates proteasome inhibitor-induced apoptosis of these cells. Therefore, Fem1b could represent a novel molecular target to overcome apoptosis resistance in therapy of colon cancer.

  11. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.

    Science.gov (United States)

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.

  12. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    Science.gov (United States)

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  13. Growth and production kinetics of human x mouse and mouse hybridoma cells at reduced temperature and serum content.

    Science.gov (United States)

    Borth, N; Heider, R; Assadian, A; Katinger, H

    1992-09-01

    The growth and production kinetics of a mouse hybridoma cell line and a human-mouse heterohybridoma were analyzed under conditions of reduced temperature and serum content. The mouse hybridoma P24 had a constant cell specific production rate and RNA content, while the heterohybridoma 3D6-LC4 showed growth associated production kinetics and an increased RNA content at higher growth rates. This behaviour of 3D6-LC4 cells can be explained by the unusual cell cycle kinetics of this line, which can be arrested in any phase under growth limiting conditions, so that a low growth rate does not result in a greater portion of high producing G1-phase cells. Substrate limitation changes the cell cycle distribution of this cell line to a greater extent than low temperature or serum content, which indicates that this stress factor exerts a greater physiological control than assumed.

  14. Lycopene acts through inhibition of IκB kinase to suppress NF-κB signaling in human prostate and breast cancer cells.

    Science.gov (United States)

    Assar, Emelia A; Vidalle, Magdalena Castellano; Chopra, Mridula; Hafizi, Sassan

    2016-07-01

    We studied the effect of the potent dietary antioxidant lycopene on multiple points along the nuclear factor kappa B (NF-κB) signaling pathway in prostate and breast cancer cells. Lycopene significantly inhibited prostate and breast cancer cell growth at physiologically relevant concentrations of ≥1.25 μM. Similar concentrations also caused a 30-40 % reduction in inhibitor of kappa B (IκB) phosphorylation in the cells, as determined by western blotting. Furthermore, the same degree of inhibition by lycopene was observed for NF-κB transcriptional activity, as determined by reporter gene assay. Concomitant with this, immunofluorescence staining of lycopene-treated cells showed a significant suppression (≥25 %) of TNF-induced NF-κB p65 subunit nuclear translocation. Further probing of lycopene's effects on upstream elements of the NF-κB pathway showed a 25 % inhibition of both activity of recombinant IκB kinase β (IKKβ) kinase in a cell-free in vitro assay, as well as activity of IKKβ immunoprecipitated from MDA-MB-231 cells treated with lycopene. In conclusion, the anticancer properties of lycopene may occur through inhibition of the NF-κB signaling pathway, beginning at the early stage of cytoplasmic IKK kinase activity, which then leads to reduced NF-κB-responsive gene regulation. Furthermore, these effects in cancer cells were observed at concentrations of lycopene that are relevant and achievable in vivo.

  15. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    Science.gov (United States)

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  16. [The process of heme synthesis in bone marrow mesenchymal stem cells cultured under fibroblast growth factor bFGF and hypoxic conditions].

    Science.gov (United States)

    Poleshko, A G; Lobanok, E S; Mezhevikina, L M; Fesenko, E E; Volotkovskiĭ, I D

    2014-01-01

    It was demonstrated that fibroblast growth factor bFGF influences the process of heme synthesis, the proliferation activity and viability of bone marrow mesenchymal stem cells in culture under hypoxic conditions. The addition of fibroblast growth factor bFGF (7 ng/ml) to the medium under above conditions led to the accumulation of aminolevulinic acid--an early porphyrin and heme precursor, an increase in CD 71 expression--a transferrin receptor, and also a decrease in porphyrin pigments and heme contents--a late precursor and end products of heme synthesis, respectively. It was found that cultivation of the cells under hypoxic conditions and bFGF is an optimum to maintain high viability and proliferation capacity of the mesenchymal stem cells.

  17. Growth of cells superinoculated onto irradiated and nonirradiated confluent monolayers

    International Nuclear Information System (INIS)

    Matsuoka, H.; Ueo, H.; Sugimachi, K.

    1990-01-01

    We prepared confluent monolayers of normal BALB/c 3T3 cells and compared differences in the growth of four types of cells superinoculated onto these nonirradiated and irradiated monolayers. The test cells were normal BALB/c 3T3 A31 cells, a squamous cell carcinoma from a human esophageal cancer (KSE-1), human fetal fibroblasts, and V-79 cells from Chinese hamster lung fibroblasts. Cell growth was checked by counting the cell number, determining [3H]thymidine incorporation and assessing colony formation. We found that on nonirradiated monolayers, colony formation of human fetal fibroblasts and normal BALB/c 3T3 cells was completely inhibited. On irradiated cells, test cells did exhibit some growth. KSE-1 cells, which had a low clonogenic efficiency on plastic surfaces, formed colonies on both irradiated and nonirradiated cells. On these monolayers, the clonogenic efficiency of V-79 cells was also higher than that on plastic surfaces. We conclude that the nonirradiated monolayer of BALB/c 3T3 cells completely inhibits the growth of superinoculated normal BALB/c 3T3 and human fetal fibroblasts, while on the other hand, they facilitate the growth of neoplastic KSE-1 and V-79 cells by providing a surface for cell adherence and growth, without affecting the presence of normal cells in co-cultures

  18. NF-κB in T-cell Acute Lymphoblastic Leukemia: Oncogenic Functions in Leukemic and in Microenvironmental Cells

    International Nuclear Information System (INIS)

    Santos, Nuno R. dos; Ghezzo, Marinella N.; Silva, Ricardo C. da; Fernandes, Mónica T.

    2010-01-01

    Two main NF-κB signaling pathways, canonical and noncanonical, performing distinct functions in organisms have been characterized. Identification of mutations in genes encoding components of these NF-κB signaling pathways in lymphoid malignancies confirmed their key role in leukemogenesis. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that despite significant therapeutic advances can still be fatal. Although mutations in NF-κB genes have not been reported in T-ALL, NF-κB constitutive activation in human T-ALL and in acute T-cell leukemia mouse models has been observed. Although these studies revealed activation of members of both canonical and noncanonical NF-κB pathways in acute T-cell leukemia, only inhibition of canonical NF-κB signaling was shown to impair leukemic T cell growth. Besides playing an important pro-oncogenic role in leukemic T cells, NF-κB signaling also appears to modulate T-cell leukemogenesis through its action in microenvironmental stromal cells. This article reviews recent data on the role of these transcription factors in T-ALL and pinpoints further research crucial to determine the value of NF-κB inhibition as a means to treat T-ALL

  19. NF-κB in T-cell Acute Lymphoblastic Leukemia: Oncogenic Functions in Leukemic and in Microenvironmental Cells

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Nuno R. dos, E-mail: nrsantos@ualg.pt; Ghezzo, Marinella N.; Silva, Ricardo C. da; Fernandes, Mónica T. [IBB-Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-11-05

    Two main NF-κB signaling pathways, canonical and noncanonical, performing distinct functions in organisms have been characterized. Identification of mutations in genes encoding components of these NF-κB signaling pathways in lymphoid malignancies confirmed their key role in leukemogenesis. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that despite significant therapeutic advances can still be fatal. Although mutations in NF-κB genes have not been reported in T-ALL, NF-κB constitutive activation in human T-ALL and in acute T-cell leukemia mouse models has been observed. Although these studies revealed activation of members of both canonical and noncanonical NF-κB pathways in acute T-cell leukemia, only inhibition of canonical NF-κB signaling was shown to impair leukemic T cell growth. Besides playing an important pro-oncogenic role in leukemic T cells, NF-κB signaling also appears to modulate T-cell leukemogenesis through its action in microenvironmental stromal cells. This article reviews recent data on the role of these transcription factors in T-ALL and pinpoints further research crucial to determine the value of NF-κB inhibition as a means to treat T-ALL.

  20. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    Directory of Open Access Journals (Sweden)

    Natascha Krömmelbein

    2016-02-01

    Full Text Available The human cytomegalovirus (HCMV replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.

  1. Establishment of LIF-dependent human iPS cells closely related to basic FGF-dependent authentic iPS cells.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hirai

    Full Text Available Human induced pluripotent stem cells (iPSCs can be divided into a leukemia inhibitory factor (LIF-dependent naïve type and a basic fibroblast growth factor (bFGF-dependent primed type. Although the former are more undifferentiated than the latter, they require signal transduction inhibitors and sustained expression of the transgenes used for iPSC production. We used a transcriptionally enhanced version of OCT4 to establish LIF-dependent human iPSCs without the use of inhibitors and sustained transgene expression. These cells belong to the primed type of pluripotent stem cell, similar to bFGF-dependent iPSCs. Thus, the particular cytokine required for iPSC production does not necessarily define stem cell phenotypes as previously thought. It is likely that the bFGF and LIF signaling pathways converge on unidentified OCT4 target genes. These findings suggest that our LIF-dependent human iPSCs could provide a novel model to investigate the role of cytokine signaling in cellular reprogramming.

  2. Requirement of B-Raf, C-Raf, and A-Raf for the growth and survival of mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Guo, Wenjing; Hao, Baixia; Wang, Qian; Lu, Yingying; Yue, Jianbo

    2013-01-01

    Extracellular signal-regulated kinases (ERKs) have been implicated to be dispensable for self-renewal of mouse embryonic stem (ES) cells, and simultaneous inhibition of both ERK signaling and glycogen synthase kinase 3 (GSK3) not only allows mouse ES cells to self-renew independent of extracellular stimuli but also enables more efficient derivation of naïve ES cells from mouse and rat strains. Interestingly, some ERKs stay active in mouse ES cells which are maintained in regular medium containing leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP). Yet, the upstream signaling for ERK activation and their roles in mouse ES cells, other than promoting or priming differentiation, have not been determined. Here we found that mouse ES cells express three forms of Raf kinases, A-Raf, B-Raf, and C-Raf. Knocking-down each single Raf member failed to affect the sustained ERK activity, neither did A-Raf and B-Raf double knockdown or B-Raf and C-Raf double knockdown change it in ES cells. Interestingly, B-Raf and C-Raf double knockdown, not A-Raf and B-Raf knockdown, inhibited the maximal ERK activation induced by LIF, concomitant with the slower growth of ES cells. On the other hand, A-Raf, B-Raf, and C-Raf triple knockdown markedly inhibited both the maximal and sustained ERK activity in ES cells. Moreover, Raf triple knockdown, similar to the treatment of U-0126, an MEK inhibitor, significantly inhibited the survival and proliferation of ES cells, thereby compromising the colony propagation of mouse ES cells. In summary, our data demonstrate that all three Raf members are required for ERK activation in mouse ES cells and are involved in growth and survival of mouse ES cells. - Highlights: ●Mouse ES (mES) cells express all three Raf members, A-Raf, B-Raf, and C-Raf. ●Leukemia inhibitory factor (LIF) temporally activates ERKs in mES cells. ●B-Raf and C-Raf are required for LIF-induced maximal ERKs activity in mES cells. ●All Raf members are

  3. Requirement of B-Raf, C-Raf, and A-Raf for the growth and survival of mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wenjing; Hao, Baixia; Wang, Qian; Lu, Yingying; Yue, Jianbo, E-mail: jbyue@me.com

    2013-11-01

    Extracellular signal-regulated kinases (ERKs) have been implicated to be dispensable for self-renewal of mouse embryonic stem (ES) cells, and simultaneous inhibition of both ERK signaling and glycogen synthase kinase 3 (GSK3) not only allows mouse ES cells to self-renew independent of extracellular stimuli but also enables more efficient derivation of naïve ES cells from mouse and rat strains. Interestingly, some ERKs stay active in mouse ES cells which are maintained in regular medium containing leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP). Yet, the upstream signaling for ERK activation and their roles in mouse ES cells, other than promoting or priming differentiation, have not been determined. Here we found that mouse ES cells express three forms of Raf kinases, A-Raf, B-Raf, and C-Raf. Knocking-down each single Raf member failed to affect the sustained ERK activity, neither did A-Raf and B-Raf double knockdown or B-Raf and C-Raf double knockdown change it in ES cells. Interestingly, B-Raf and C-Raf double knockdown, not A-Raf and B-Raf knockdown, inhibited the maximal ERK activation induced by LIF, concomitant with the slower growth of ES cells. On the other hand, A-Raf, B-Raf, and C-Raf triple knockdown markedly inhibited both the maximal and sustained ERK activity in ES cells. Moreover, Raf triple knockdown, similar to the treatment of U-0126, an MEK inhibitor, significantly inhibited the survival and proliferation of ES cells, thereby compromising the colony propagation of mouse ES cells. In summary, our data demonstrate that all three Raf members are required for ERK activation in mouse ES cells and are involved in growth and survival of mouse ES cells. - Highlights: ●Mouse ES (mES) cells express all three Raf members, A-Raf, B-Raf, and C-Raf. ●Leukemia inhibitory factor (LIF) temporally activates ERKs in mES cells. ●B-Raf and C-Raf are required for LIF-induced maximal ERKs activity in mES cells. ●All Raf members are

  4. Effects of phthalates on the human corneal endothelial cell line B4G12

    DEFF Research Database (Denmark)

    Krüger, Tanja; Cao, Yi; Kjærgaard, Søren K.

    2012-01-01

    Phthalates are industrial chemicals used in many cosmetics. We evaluated an in vitro model for eye irritancy testing using the human corneal endothelial cell line B4G12. Cell proliferation and toxicity were assessed after exposing to di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2...... toxicity was observed for DBP and BBP. Upon DBP exposure at nontoxic concentrations, a significant increased gene expression and cytokine cell secretion were observed for interleukin-1ß (IL-1ß) and IL-8, and also an increased IL-6 secretion was observed. In conclusion, the human corneal endothelial cell...

  5. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    Science.gov (United States)

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  6. Targeting both IGF-1R and mTOR synergistically inhibits growth of renal cell carcinoma in vitro

    International Nuclear Information System (INIS)

    Cardillo, Thomas M; Trisal, Preeti; Arrojo, Roberto; Goldenberg, David M; Chang, Chien-Hsing

    2013-01-01

    Advanced or metastatic renal cell carcinoma (RCC) has a poor prognosis, because it is relatively resistant to conventional chemotherapy or radiotherapy. Treatments with human interferon-α2b alone or in combination with mammalian target of rapamycin (mTOR) inhibitors have led to only a modest improvement in clinical outcome. One observation made with mTOR inhibitors is that carcinomas can overcome these inhibitory effects by activating the insulin-like growth factor-I (IGF-I) signaling pathway. Clinically, there is an association of IGF-I receptor (IGF-IR) expression in RCC and poor long-term patient survival. We have developed a humanized anti-IGF-IR monoclonal antibody, hR1, which binds to RCC, resulting in effective down-regulation of IGF-IR and moderate inhibition of cell proliferation in vitro. In this work, we evaluate the anti-tumor activity of two novel IGF-1R-targeting agents against renal cell carcinoma given alone or in combination with an mTOR inhibitor. hR1 was linked by the DOCK-AND-LOCK™ (DNL™) method to four Fabs of hR1, generating Hex-hR1, or to four molecules of interferon-α2b, generating 1R-2b. Eight human RCC cell lines were screened for IGF-1R expression and sensitivity to treatment with hR1 in vitro. Synergy with an mTOR inhibitor, temsirolimus, was tested in a cell line (ACHN) with low sensitivity to hR1. Hex-hR1 induced the down-regulation of IGF-IR at 10-fold lower concentrations compared to the parental hR1. Sensitivity to growth inhibition mediated by hR1 and Hex-hR1 treatments correlated with IGF-1R expression (higher expression was more sensitive). The potency of 1R-2b to inhibit the in vitro growth of RCC was also demonstrated in two human cell lines, ACHN and 786-O, with EC 50 –values of 63 and 48 pM, respectively. When combined with temsirolimus, a synergistic growth-inhibition with hR1, Hex-hR1, and 1R-2b was observed in ACHN cells at concentrations as low as 10 nM for hR1, 1 nM for Hex-hR1, and 2.6 nM for 1R-2b. Both Hex-hR1

  7. miR-518b Enhances Human Trophoblast Cell Proliferation Through Targeting Rap1b and Activating Ras-MAPK Signal

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2018-03-01

    Full Text Available Preeclampsia is a pregnancy-specific complication defined as newly onset gestational hypertension and proteinuria. Deficiency in placental development is considered as the predominant cause of preeclampsia. Our previous study found that the expression of miR-518b increased significantly in the preeclamptic placentas, indicating the potential participation of this small RNA in the occurrence of preeclampsia. In this study, data analysis using multiple databases predicted Rap1b as a candidate target of miR-518b. An evident decrease in Rap1b expression was observed in preeclamptic placentas when compared with the control placentas, which was negatively correlated with the level of miR-518b. Based on the data of in situ hybridization and immunohistochemistry showing that Rap1b exhibited similar localization with miR-518b in villous cytotrophoblast cells and column trophoblasts, we further explored their function in regulating trophoblast cell proliferation. In HTR8/SVneo cells, exogenous transfection of miR-518b reduced the expression of Rap1b, and dual-luciferase reporter assay validated Rap1b as the direct target of miR-518b. The small RNA could increase the BrdU incorporation and the ratio of cells at S phase, and enhance the phosphorylation of Raf-1 and ERK1/2. Such growth-promoting effect could be efficiently reversed by Rap1b overexpression. The data indicate that miR-518b can promote trophoblast cell proliferation via Rap1b–Ras–MAPK pathway, and the aberrant upregulation of miR-518b in preeclamptic placenta may contribute to the excessive trophoblast proliferation. The study provides new evidence to further understand the etiology of preeclampsia.

  8. Immunolocalization of transforming growth factor alpha in normal human tissues

    DEFF Research Database (Denmark)

    Christensen, M E; Poulsen, Steen Seier

    1996-01-01

    anchorage-independent growth of normal cells and was, therefore, considered as an "oncogenic" growth factor. Later, its immunohistochemical presence in normal human cells as well as its biological effects in normal human tissues have been demonstrated. The aim of the present investigation was to elucidate...... the distribution of the growth factor in a broad spectrum of normal human tissues. Indirect immunoenzymatic staining methods were used. The polypeptide was detected with a polyclonal as well as a monoclonal antibody. The polyclonal and monoclonal antibodies demonstrated almost identical immunoreactivity. TGF......-alpha was found to be widely distributed in cells of normal human tissues derived from all three germ layers, most often in differentiated cells. In epithelial cells, three different kinds of staining patterns were observed, either diffuse cytoplasmic, cytoplasmic in the basal parts of the cells, or distinctly...

  9. Choline Phospholipid Metabolites of Human Vascular Endothelial Cells Altered by Cyclooxygenase Inhibition, Growth Factor Depletion, and Paracrine Factors Secreted by Cancer Cells

    Directory of Open Access Journals (Sweden)

    Noriko Mori

    2003-04-01

    Full Text Available Magnetic resonance studies have previously shown that solid tumors and cancer cells in culture typically exhibit high phosphocholine and total choline. Treatment of cancer cells with the anti-inflammatory agent, indomethacin (INDO, reverted the phenotype of choline phospholipid metabolites in cancer cells towards a less malignant phenotype. Since endothelial cells form a key component of tumor vasculature, in this study, we used MR spectroscopy to characterize the phenotype of choline phospholipid metabolites in human umbilical vein endothelial cells (HUVECs. We determined the effect of growth factors, the anti-inflammatory agent INDO, and conditioned media obtained from a malignant cell line, on choline phospholipid metabolites. Growth factor depletion or treatment with INDO induced similar changes in the choline phospholipid metabolites of HUVECs. Treatment with conditioned medium obtained from MDA-MB-231 cancer cells induced changes similar to the presence of growth factor supplements. These results suggest that cancer cells secrete growth factors and/or other molecules that influence the choline phospholipid metabolism of HUVECs. The ability of INDO to alter choline phospholipid metabolism in the presence of growth factor supplements suggests that the inflammatory response pathways of HUVECs may play a role in cancer cell-HUVEC interaction and in the response of HUVECs to growth factors.

  10. DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Wook [Laboratory of Molecular Disease and Cell Regulation, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon (Korea, Republic of); Lee, Jong-Joo [Department of Environmental Medical Biology, Institute of Tropical Medicine, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Min Soo [Laboratory of Molecular Disease and Cell Regulation, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon (Korea, Republic of); Son, Byung Ho [Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, 108 Pyung-dong, Jongro-gu, Seoul 110-746 (Korea, Republic of); Cho, Yong Kyun, E-mail: choyk2004@hanmail.net [Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, 108 Pyung-dong, Jongro-gu, Seoul 110-746 (Korea, Republic of); Kim, Hyoung-Pyo, E-mail: kimhp@yuhs.ac [Department of Environmental Medical Biology, Institute of Tropical Medicine, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2011-03-04

    Research highlights: {yields} Expression of TrkA, TrkB, and TrkC is significantly elevated in human hepatocellular carcinoma. {yields} Downregulation of Trks is correlated with their promoter hypermethylation. {yields} Inhibiting DNA methylation restored expression of Trks in normal liver cell lines. {yields} Trks promote the proliferation of hepatocellular carcinoma. {yields} Trks induce expression of the metastatic regulator, Twist. -- Abstract: The tropomyosin-related kinase (Trk) family of neurotrophin receptors, TrkA, TrkB and TrkC, has been implicated in the growth and survival of human cancers. Here we report that Trks are frequently overexpressed in hepatocellular carcinoma (HCC) from patients and human liver cancer cell lines. To unravel the underlying molecular mechanism(s) for this phenomenon, DNA methylation patterns of CpG islands in TrkA, TrkB, and TrkC genes were examined in normal and cancer cell lines derived from liver. A good correlation was observed between promoter hypermethylation and lower expression of TrkA, TrkB, and TrkC genes, which was supported by the data that inhibiting DNA methylation with 5-azacytidine restored expression of those genes in normal liver cell lines. Furthermore, Trks promoted the proliferation of HepG2 and induced expression of the metastatic regulator, Twist. These results suggest that Trks may contribute to growth and metastasis of liver cancer.

  11. DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Jin, Wook; Lee, Jong-Joo; Kim, Min Soo; Son, Byung Ho; Cho, Yong Kyun; Kim, Hyoung-Pyo

    2011-01-01

    Research highlights: → Expression of TrkA, TrkB, and TrkC is significantly elevated in human hepatocellular carcinoma. → Downregulation of Trks is correlated with their promoter hypermethylation. → Inhibiting DNA methylation restored expression of Trks in normal liver cell lines. → Trks promote the proliferation of hepatocellular carcinoma. → Trks induce expression of the metastatic regulator, Twist. -- Abstract: The tropomyosin-related kinase (Trk) family of neurotrophin receptors, TrkA, TrkB and TrkC, has been implicated in the growth and survival of human cancers. Here we report that Trks are frequently overexpressed in hepatocellular carcinoma (HCC) from patients and human liver cancer cell lines. To unravel the underlying molecular mechanism(s) for this phenomenon, DNA methylation patterns of CpG islands in TrkA, TrkB, and TrkC genes were examined in normal and cancer cell lines derived from liver. A good correlation was observed between promoter hypermethylation and lower expression of TrkA, TrkB, and TrkC genes, which was supported by the data that inhibiting DNA methylation with 5-azacytidine restored expression of those genes in normal liver cell lines. Furthermore, Trks promoted the proliferation of HepG2 and induced expression of the metastatic regulator, Twist. These results suggest that Trks may contribute to growth and metastasis of liver cancer.

  12. High purity of human oligodendrocyte progenitor cells obtained from neural stem cells: suitable for clinical application.

    Science.gov (United States)

    Wang, Caiying; Luan, Zuo; Yang, Yinxiang; Wang, Zhaoyan; Wang, Qian; Lu, Yabin; Du, Qingan

    2015-01-30

    Recent studies have suggested that the transplantation of oligodendrocyte progenitor cells (OPCs) may be a promising potential therapeutic strategy for a broad range of diseases affecting myelin, such as multiple sclerosis, periventricular leukomalacia, and spinal cord injury. Clinical interest arose from the potential of human stem cells to be directed to OPCs for the clinical application of treating these diseases since large quantities of high quality OPCs are needed. However, to date, there have been precious few studies about OPC induction from human neural stem cells (NSCs). Here we successfully directed human fetal NSCs into highly pure OPCs using a cocktail of basic fibroblast growth factor, platelet-derived growth factor, and neurotrophic factor-3. These cells had typical morphology of OPCs, and 80-90% of them expressed specific OPC markers such as A2B5, O4, Sox10 and PDGF-αR. When exposed to differentiation medium, 90% of the cells differentiated into oligodendrocytes. The OPCs could be amplified in our culture medium and passaged at least 10 times. Compared to a recent published method, this protocol had much higher stability and repeatability, and OPCs could be obtained from NSCs from passage 5 to 38. It also obtained more highly pure OPCs (80-90%) via simpler and more convenient manipulation. This study provided an easy and efficient method to obtain large quantities of high-quality human OPCs to meet clinical demand. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Flavonoid C-glucosides derived from flax straw extracts reduce human breast cancer cell growth in vitro and induce apoptosis.

    Directory of Open Access Journals (Sweden)

    Magdalena Czemplik

    2016-08-01

    Full Text Available Flax straw of flax varieties that are grown for oil production is a byproduct which represents a considerable biomass source. Therefore its potential application for human use is of high interest. Our research has revealed that flax straw is rich in flavonoid C-glucosides, including vitexin, orientin and isoorientin. The objective of this study was to evaluate the cytotoxicity and possible proapoptotic effect of flax straw derived C-glucosides of flavonoids in the human breast adenocarcinoma cell line (MCF-7. The effects of flax straw derived flavonoid C-glucosides on cell proliferation of MCF-7 cells were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT and sulforhodamine B (SRB assays. The expression of apoptosis-related genes was assessed by real-time PCR. Our data revealed that flax C-glucosides as well as pure compounds are cytotoxic towards MCF-7 cells and inhibit their proliferation. Moreover, the induction of apoptosis was correlated with the changes in the mRNA level of pro-apoptotic genes. Increased expression of bax and caspase-7, -8, and -9 and decreased mRNA expression of bcl-2 was observed, whereas the mRNA levels of p53 and mdm2 were not altered. These results clearly demonstrated that flax straw metabolites effectively induced growth inhibition and apoptosis in human breast adenocarcinoma cells.

  14. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    International Nuclear Information System (INIS)

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T.

    1991-01-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes

  15. The r.b.e. of different-energy neutrons as determined by human bone-marrow cell-culture techniques

    International Nuclear Information System (INIS)

    Boeyum, A.; Carsten, A.L.; Chikkappa, G.; Cook, L.; Bullis, J.; Honikel, L.; Cronkite, E.P.

    1978-01-01

    The effect of X-rays and different-energy neutrons on human bone-marrow cells was studied using two different cell-culture techniques - diffusion chamber (DC) growth and colony formation in vitro (CFU-C). Based on the survival and proliferative granulocytes in DC on day 13, the D 0 value was 80 rad with X-rays, and 117 rad as measured by the CFU-C assay. The D 0 values for neutrons depended on the radiation source and the energy level. The r.b.e. values, which dropped with increasing energy levels of mono-energetic neutrons, were (i) 0.44 MeV; DC 3.7, CFU-C 4.1; (ii) 6 MeV; DC 1.8, CFU-C 2.0; (iii) 15 MeV; DC 1.6, CFU-C 1.6; (iv) fission neutrons; DC 2.6, CFU-C 2.4. (author)

  16. Gene expression profiles in BCL11B-siRNA treated malignant T cells

    Directory of Open Access Journals (Sweden)

    Grabarczyk Piotr

    2011-05-01

    Full Text Available Abstract Background Downregulation of the B-cell chronic lymphocytic leukemia (CLL/lymphoma11B (BCL11B gene by small interfering RNA (siRNA leads to growth inhibition and apoptosis of the human T-cell acute lymphoblastic leukemia (T-ALL cell line Molt-4. To further characterize the molecular mechanism, a global gene expression profile of BCL11B-siRNA -treated Molt-4 cells was established. The expression profiles of several genes were further validated in the BCL11B-siRNA -treated Molt-4 cells and primary T-ALL cells. Results 142 genes were found to be upregulated and 109 genes downregulated in the BCL11B-siRNA -treated Molt-4 cells by microarray analysis. Among apoptosis-related genes, three pro-apoptotic genes, TNFSF10, BIK, BNIP3, were upregulated and one anti-apoptotic gene, BCL2L1 was downregulated. Moreover, the expression of SPP1 and CREBBP genes involved in the transforming growth factor (TGF-β pathway was down 16-fold. Expression levels of TNFSF10, BCL2L1, SPP1, and CREBBP were also examined by real-time PCR. A similar expression pattern of TNFSF10, BCL2L1, and SPP1 was identified. However, CREBBP was not downregulated in the BLC11B-siRNA -treated Molt-4 cells. Conclusion BCL11B-siRNA treatment altered expression profiles of TNFSF10, BCL2L1, and SPP1 in both Molt-4 T cell line and primary T-ALL cells.

  17. Human CD134 (OX40) expressed on T cells plays a key role for human herpesvirus 6B replication after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Nagamata, Satoshi; Nagasaka, Miwako; Kawabata, Akiko; Kishimoto, Kenji; Hasegawa, Daiichiro; Kosaka, Yoshiyuki; Mori, Takeshi; Morioka, Ichiro; Nishimura, Noriyuki; Iijima, Kazumoto; Yamada, Hideto; Kawamoto, Shinichiro; Yakushijin, Kimikazu; Matsuoka, Hiroshi; Mori, Yasuko

    2018-05-01

    CD134 (OX40), which is a cellular receptor for human herpesvirus-6B (HHV-6B) and expresses on activated T cells, may play a key role for HHV-6B replication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Therefore, we examined the CD134 expression on T cells and HHV-6B replication after allo-HSCT, and analyzed the correlation between them. Twenty-three patients after allo-HSCT were enrolled. The percentages of CD134-positive cells within the CD4 + and CD8 + cell populations were measured by flow cytometry, and the viral copy number of HHV-6B was simultaneously quantified by real-time PCR. The correlation between CD134 and HHV-6B viral load was then statistically analyzed. HHV-6B reactivation occurred in 11 of 23 patients (47.8%). CD134 expression was seen on T cells and was coincident with the time of peak viral load. The percentage of CD134-positive cells decreased significantly when HHV-6B DNA disappeared (p = .005 in CD4 + T cells, p = .02 in CD8 + T cells). In the 4 patients who underwent umbilical cord blood transplantation (UCBT), the viral load varied with the percentage of CD134-positive cells. In the comparison between the HHV-6B reactivation group and non-reactivation group, maximum percentages of CD134-positive cells among CD4 + T cells in reactivation group were significantly higher than those in non-reactivation group (p = .04). This is the first study to show that a correlation of CD134 expression on T cells with HHV-6B replication after allo-HSCT, especially in UCBT. The results possibly indicate that CD134 on T cells plays a key role for HHV-6B replication after allo-HSCT. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Evaluation of the transforming growth factor-beta activity in normal and dry eye human tears by CCL-185 cell bioassay.

    Science.gov (United States)

    Zheng, Xiaofen; De Paiva, Cintia S; Rao, Kavita; Li, De-Quan; Farley, William J; Stern, Michael; Pflugfelder, Stephen C

    2010-09-01

    To develop a new bioassay method using human lung epithelial cells (CCL-185) to assess activity of transforming growth factor beta (TGF-beta) in human tear fluid from normal subjects and patients with dry eye. Two epithelial cell lines, mink lung cells (CCL-64) and human lung cells (CCL-185), were compared to detect the active form of TGF-beta by BrdU incorporation (quantitation of cell DNA synthesis) and WST assay (metabolic activity of viable cells). The effect of TGF-beta on the growth of CCL-185 cells was observed microscopically. Human tears from normal control subjects and patients with dry eye (DE) with and without Sjögren syndrome were evaluated for TGF-beta concentration by Luminex microbead assay, and TGF-beta activity by the CCL-185 cell growth inhibition bioassay. The metabolic activity of viable CCL-185 cells, measured by WST, was shown to be proportional to the TGF-beta1 concentration (R = 0.919) and confirmed by BrdU assay (R = 0.969). Compared with CCL-185, metabolic activity of viable cells and DNA synthesis, measured by WST and BrdU incorporation assays, were shown to be less proportional to the TGF-beta1 concentration in the CCL-64 line (R = 0.42 and 0.17, respectively). Coincubation with human anti-TGF-beta1 antibody (MAB-240) yielded a dose-dependent inhibition of TGF-beta1 (0.3 ng/mL) activity. CCL-185 cell growth observed microscopically was noted to decrease in response to increasing TGF-beta1 concentrations. Levels of immuodetectable TGF-beta1 and TGF-beta2 were similar in normal and DE tears. TGF-beta bioactivity in DE human tears measured by the CCL-185 cells assay was found to be higher (9777.5 +/- 10481.9 pg/mL) than those in normal controls (4129.3 +/- 1342.9 pg/mL) (P tears and 37.6% TGF-beta in normal tears were found to be biologically active. The CCL-185 cell assay was found to be a suitable tool for assessing TGF-beta activity in human tears. Tear TGF-beta bioactivity increases in DE, particularly in Sjögren syndrome, where

  19. Low dose X-irradiation of thymus filler cells in limiting dilution cultures of LPS-reactive B cells reduces the background Ig-secreting cells without affecting growth-supporting capacity

    International Nuclear Information System (INIS)

    Hooijkaas, H.; Preesman, A.A.; Benner, R.

    1982-01-01

    Frequencies of lipopolysaccharide (LPS)-reactive B cells in the mouse can be determined in the limiting dilution culture system developed by Andersson et al. (1976, 1977) which is completely dependent upon the presence of thymus filler cells, usually of rat origin. The assessment of B cell clones of mouse origin, however, can be hampered by the occurrence of varying numbers of thymus-derived immunoglobulin (Ig)-secreting cells. The number of these background Ig-secreting cells can be significantly reduced by low dose (110 mgray = 11 rad) X-irradiation of the rat thymus filler cells, without affecting their growth-supporting capacity. (Auth.)

  20. Adipose Tissue Inflammation Induces B Cell Inflammation and Decreases B Cell Function in Aging

    Directory of Open Access Journals (Sweden)

    Daniela Frasca

    2017-08-01

    Full Text Available Aging is the greatest risk factor for developing chronic diseases. Inflamm-aging, the age-related increase in low-grade chronic inflammation, may be a common link in age-related diseases. This review summarizes recent published data on potential cellular and molecular mechanisms of the age-related increase in inflammation, and how these contribute to decreased humoral immune responses in aged mice and humans. Briefly, we cover how aging and related inflammation decrease antibody responses in mice and humans, and how obesity contributes to the mechanisms for aging through increased inflammation. We also report data in the literature showing adipose tissue infiltration with immune cells and how these cells are recruited and contribute to local and systemic inflammation. We show that several types of immune cells infiltrate the adipose tissue and these include macrophages, neutrophils, NK cells, innate lymphoid cells, eosinophils, T cells, B1, and B2 cells. Our main focus is how the adipose tissue affects immune responses, in particular B cell responses and antibody production. The role of leptin in generating inflammation and decreased B cell responses is also discussed. We report data published by us and by other groups showing that the adipose tissue generates pro-inflammatory B cell subsets which induce pro-inflammatory T cells, promote insulin resistance, and secrete pathogenic autoimmune antibodies.

  1. Stimulation of chondrocytes in vitro by gene transfer with plasmids coding for epidermal growth factor (hEGF) and basic fibroblast growth factor (bFGF)

    DEFF Research Database (Denmark)

    Schmal, H; Mehlhorn, A T; Zwingmann, J

    2005-01-01

    Human epidermal growth factor (hEGF) and basic fibroblast growth factor (bFGF) influence critical characteristics of chondrocytes. The effects on metabolism and differentiation were evaluated following transfection using specific plasmids coding for both cytokines. Chondrocytes were isolated from...... of recombinant hEGF and bFGF resulted in a significant increase in cell proliferation and glucosaminoglycan production. Chondrocytes were transfected with vectors coding for either hEGF or bFGF and the production of these proteins was measured in supernatants by ELISA. Expression kinetics showed different...... patterns: hEGF was detectable 2.5 days following transfection and peaked at day 5.5, whereas bFGF-production reached its maximum 1.5 days after transfection, declining thereafter. Chondrocytes endogenously produced significant amounts of bFGF within 5 days following isolation. Proliferation of h...

  2. FK506 Binding Protein Mediates Glioma Cell Growth and Sensitivity to Rapamycin Treatment by Regulating NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-03-01

    Full Text Available FK506 binding protein 5 (FKBP5 belongs to a family of immunophilins named for their ability to bind immunosuppressive drugs, also known as peptidyl-prolyl cis-trans isomerases, and also with chaperones to help protein folding. Using glioma cDNA microarray analysis, we found that FKBP5 was overexpressed in glioma tumors. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. The roles of FKBP5 in glioma cells were then examined. We found that cell growth was suppressed after FKBP5 expression was inhibited by short interfering RNA transfection and enhanced by FKBP5 overexpression. Electrophoretic mobility shift assay showed that nuclear factor-kappa B (NF-κB and DNA binding was enhanced by FKBP5 overexpression. The expression level of I-kappa B alpha and phosphorylated NF-κB was regulated by the expression of FKBP5. These data suggest that FKBP5 is involved in NF-κB pathway activation in glioma cells. In addition, FKBP5 overexpression in rapamycin-sensitive U87 cells blocked the cells' response to rapamycin treatment, whereas rapamycin-resistant glioma cells, both PTEN-positive and -negative, were synergistically sensitive to rapamycin after FKBP5 was knocked down, suggesting that the FKBP5 regulates glioma cell response to rapamycin treatment. In conclusion, our study demonstrates that FKBP5 plays an important role in glioma growth and chemoresistance through regulating signal transduction of the NF-κB pathway.

  3. Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor

    Directory of Open Access Journals (Sweden)

    Manetta J

    2014-08-01

    Full Text Available Joseph Manetta, Holly Bina, Paul Ryan, Niles Fox, Derrick R Witcher, Kristine Kikly Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA Abstract: B-cell activating factor (BAFF is a B-cell survival factor with a key role in B-cell homeostasis and tolerance. Dysregulated BAFF expression may contribute to autoimmune diseases or B-cell malignancies via effects on abnormal B-lymphocyte activation, proliferation, survival, and immunoglobulin secretion. Monoclonal antibodies were generated against human BAFF, characterized for species specificity and affinity, and screened for the ability to neutralize both membrane-bound and soluble BAFF. In addition, studies were undertaken to determine the relative potency of membrane-bound and soluble BAFF. Tabalumab has a high affinity for human, cynomolgus monkey, and rabbit BAFF. No binding to mouse BAFF was detected. Tabalumab was able to neutralize soluble human, cynomolgus monkey, or rabbit BAFF with equal potency. Our data demonstrate that membrane-bound BAFF can be a more potent stimulus for B-cells than soluble BAFF, and tabalumab also neutralized membrane-bound BAFF. Tabalumab prevented BAFF from binding to BAFF receptors and demonstrated pharmacodynamic effects in human BAFF transgenic mice. Tabalumab is a high-affinity human antibody with neutralizing activity against membrane-bound and soluble BAFF. Given our findings that membrane-bound BAFF can have greater in vitro potency than soluble BAFF, neutralization of both forms of BAFF is likely to be important for optimal therapeutic effect. Keywords: autoimmunity, B-cell malignancies, B-cell survival factor, BAFF

  4. The rGel/BLyS Fusion Toxin Inhibits Diffuse Large B-cell Lymphoma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Mi-Ae Lyu

    2010-05-01

    Full Text Available Diffuse large B-cell lymphoma (DLBCL is an aggressive subtype of B-cell non-Hodgkin lymphoma (NHL and accounts for 30%to 40%of NHL. Molecules targeting nuclear factor-κB (NF-κB are expected to be of therapeutic value in those tumors where NF-κB seems to play a unique survival role such as activated B-cell (ABC-subtype DLBCL. We previously generated a rGel/BLyS fusion toxin for receptor-mediated delivery of the rGel toxin specifically to malignant B cells. In this study, we examined this fusion toxin for its ability to suppress DLBCL growth in vitro and in vivo. rGel/BLyS was specifically cytotoxic to DLBCL lines expressing all three BLyS receptors and constitutively active NF-κB. Treatment with rGel/BLyS induced down-regulation of the phosphorylation of inhibitory subunit of NF-κB (IκB-α, inhibition of NF-κB DNA-binding activity, and accumulation of IκB-α. In agreement with these results, we additionally found that rGel/BLyS downregulated levels of several NF-κB targets including Bcl-xL, Mcl-1, survivin, and x-chromosome linked inhibitor-of-apoptosis. Treatment also induced up-regulation of Bax and apoptosis through caspase-3 activation and poly ADP-ribose polymerase cleavage. Importantly, rGel/BLyS significantly inhibited tumor growth (P < .05 in a DLBCL xenograft model. Thus, our results indicate that rGel/BLyS is an excellent candidate for the treatment of aggressive NHLs that are both dependent on NF-κB and are resistant to conventional chemotherapeutic regimens.

  5. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation

    DEFF Research Database (Denmark)

    Boissy, Patrice; Andersen, Thomas L; Abdallah, Basem M

    2005-01-01

    , a challenge for treating multiple myeloma is discovering drugs targeting not only myeloma cells but also osteoclasts and osteoblasts. Because resveratrol (trans-3,4',5-trihydroxystilbene) is reported to display antitumor activities on a variety of human cancer cells, we investigated the effects...... of this natural compound on myeloma and bone cells. We found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis. In cultures of human primary monocytes, resveratrol inhibits dose-dependently receptor activator of nuclear factor......RNA and cell surface protein levels and a decrease of NFATc1 stimulation and NF-kappaB nuclear translocation, whereas the gene expression of c-fms, CD14, and CD11a is up-regulated. Finally, resveratrol promotes dose-dependently the expression of osteoblast markers like osteocalcin and osteopontin in human bone...

  6. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.

    Science.gov (United States)

    Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin

    2016-01-01

    Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.

  7. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    Science.gov (United States)

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs

  8. WNT16B from Ovarian Fibroblasts Induces Differentiation of Regulatory T Cells through β-Catenin Signal in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Cong-Cong Shen

    2014-07-01

    Full Text Available Treatment for cancer can induce a series of secreted factors into the tumor microenvironment, which can affect cancer progression. Wingless-type MMTV (mouse mammary tumor virus integration site 16B (WNT16B is a new member of the WNT family and has been reported to play growth-related roles in previous studies. In this study, we found WNT16B could be expressed and secreted into the microenvironment by human ovarian fibroblasts after DNA damage-associated treatment, including chemotherapy drugs and radiation. We also demonstrated that fibroblast-derived WNT16B could result in accumulation of β-catenin in dendritic cells and secretion of interleukin-10 (IL-10 and transforming growth factor beta (TGF-β, which contributed to the differentiation of regulatory T cells in a co-culture environment. These results shed light on the roles of WNT16B in immune regulation, especially in regard to cancer treatment.

  9. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro

    International Nuclear Information System (INIS)

    Tapparel, Caroline; Sobo, Komla; Constant, Samuel; Huang, Song; Van Belle, Sandra; Kaiser, Laurent

    2013-01-01

    New molecular diagnostic tools have recently allowed the discovery of human rhinovirus species C (HRV-C) that may be overrepresented in children with lower respiratory tract complications. Unlike HRV-A and HRV-B, HRV-C cannot be propagated in conventional immortalized cell lines and their biological properties have been difficult to study. Recent studies have described the successful amplification of HRV-C15, HRV-C11, and HRV-C41 in sinus mucosal organ cultures and in fully differentiated human airway epithelial cells. Consistent with these studies, we report that a panel of clinical HRV-C specimens including HRV-C2, HRV-C7, HRV-C12, HRV-C15, and HRV-C29 types were all capable of mediating productive infection in reconstituted 3D human primary upper airway epithelial tissues and that the virions enter and exit preferentially through the apical surface. Similar to HRV-A and HRV-B, our data support the acid sensitivity of HRV-C. We observed also that the optimum temperature requirement during HRV-C growth may be type-dependent. - Highlights: • A 3D human upper airway epithelia reconstituted in vitro supports HRV-C growth. • HRV-Cs enter and exit preferentially at the apical side of this ALI culture system. • HRV-Cs are acid sensitive. • Temperature sensitivity may be type-dependent for HRV-Cs

  10. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tapparel, Caroline, E-mail: Caroline.Tapparel@hcuge.ch [Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14 (Switzerland); Sobo, Komla [Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14 (Switzerland); Constant, Samuel; Huang, Song [Epithelix sárl, 14 Chemin des Aulx, 1228 Plan les Ouates, Geneva (Switzerland); Van Belle, Sandra; Kaiser, Laurent [Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14 (Switzerland)

    2013-11-15

    New molecular diagnostic tools have recently allowed the discovery of human rhinovirus species C (HRV-C) that may be overrepresented in children with lower respiratory tract complications. Unlike HRV-A and HRV-B, HRV-C cannot be propagated in conventional immortalized cell lines and their biological properties have been difficult to study. Recent studies have described the successful amplification of HRV-C15, HRV-C11, and HRV-C41 in sinus mucosal organ cultures and in fully differentiated human airway epithelial cells. Consistent with these studies, we report that a panel of clinical HRV-C specimens including HRV-C2, HRV-C7, HRV-C12, HRV-C15, and HRV-C29 types were all capable of mediating productive infection in reconstituted 3D human primary upper airway epithelial tissues and that the virions enter and exit preferentially through the apical surface. Similar to HRV-A and HRV-B, our data support the acid sensitivity of HRV-C. We observed also that the optimum temperature requirement during HRV-C growth may be type-dependent. - Highlights: • A 3D human upper airway epithelia reconstituted in vitro supports HRV-C growth. • HRV-Cs enter and exit preferentially at the apical side of this ALI culture system. • HRV-Cs are acid sensitive. • Temperature sensitivity may be type-dependent for HRV-Cs.

  11. Type I collagen gene suppresses tumor growth and invasion of malignant human glioma cells

    Directory of Open Access Journals (Sweden)

    Miyata Teruo

    2007-06-01

    Full Text Available Abstract Background Invasion is a hallmark of a malignant tumor, such as a glioma, and the progression is followed by the interaction of tumor cells with an extracellular matrix (ECM. This study examined the role of type I collagen in the invasion of the malignant human glioma cell line T98G by the introduction of the human collagen type I α1 (HCOL1A1 gene. Results The cells overexpressing HCOL1A1 were in a cluster, whereas the control cells were scattered. Overexpression of HCOL1A1 significantly suppressed the motility and invasion of the tumor cells. The glioma cell growth was markedly inhibited in vitro and in vivo by the overexpression of HCOL1A1; in particular, tumorigenicity completely regressed in nude mice. Furthermore, the HCOL1A1 gene induced apoptosis in glioma cells. Conclusion These results indicate that HCOL1A1 have a suppressive biological function in glioma progression and that the introduction of HCOL1A1 provides the basis of a novel therapeutic approach for the treatment of malignant human glioma.

  12. Expression of Eph receptor tyrosine kinases and their ligands in human Granulosa lutein cells and human umbilical vein endothelial cells.

    Science.gov (United States)

    Xu, Y; Zagoura, D; Keck, C; Pietrowski, D

    2006-11-01

    Corpus luteum development is regulated by gonadotropins and accompanied by extremely rapid vascularization of the avascular granulosa cell compartiment by endothelial cells (EC). The proliferation of Granulosa cells (GC) and EC is a complex interplay and takes place in a spatially and temporarily coordinated manner. The erythropoietin-producing hepatoma amplified sequence (Eph) receptors and their ligands-the ephrins- are a recently detected family of membrane located protein tyrosine kinases which play a crucial role in the growth and development of nerve and blood vessel network. We report about the mRNA expression pattern of Ephs and their ligands in human GC, in human EC, and in carcinoma cell lines OvCar-3 and Hela. The mRNA of EphA4, EphA7, ephrinA4, ephrinB1 and ephrinB2 was detected in GC and EC, while EphA2 was expressed only in GC. The expression of various Ephs and ephrins did not change in GC after stimulation with human chorion gonadotropin. Our study analyzes for the first time the expression of the complete human Eph/ephriny-system in GC and in EC. The remarkable similarity between these two cell types supports the theory of a functional relationship of EC and GC. In addition, it was shown that hCG is not a major determinant of Eph/ephrin regulation in GC.

  13. Bone Marrow Mesenchymal Stem Cells Enhance the Differentiation of Human Switched Memory B Lymphocytes into Plasma Cells in Serum-Free Medium

    Directory of Open Access Journals (Sweden)

    Guillaume Bonnaure

    2016-01-01

    Full Text Available The differentiation of human B lymphocytes into plasma cells is one of the most stirring questions with regard to adaptive immunity. However, the terminal differentiation and survival of plasma cells are still topics with much to be discovered, especially when targeting switched memory B lymphocytes. Plasma cells can migrate to the bone marrow in response to a CXCL12 gradient and survive for several years while secreting antibodies. In this study, we aimed to get closer to niches favoring plasma cell survival. We tested low oxygen concentrations and coculture with mesenchymal stem cells (MSC from human bone marrow. Besides, all cultures were performed using an animal protein-free medium. Overall, our model enables the generation of high proportions of CD38+CD138+CD31+ plasma cells (≥50% when CD40-activated switched memory B lymphocytes were cultured in direct contact with mesenchymal stem cells. In these cultures, the secretion of CXCL12 and TGF-β, usually found in the bone marrow, was linked to the presence of MSC. The level of oxygen appeared less impactful than the contact with MSC. This study shows for the first time that expanded switched memory B lymphocytes can be differentiated into plasma cells using exclusively a serum-free medium.

  14. Fetal Mesenchymal Stromal Cells Differentiating towards Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth Plate Cartilage

    NARCIS (Netherlands)

    van Gool, S.A.; Emons, J.A.M.; Leijten, Jeroen Christianus Hermanus; Decker, E.; Sticht, C.; van Houwelingen, J.C.; Goeman, J.J.; Kleijburg, C.; Scherjon, S.; Gretz, N.; Wit, J.M.; Rappold, G.; Post, Janine Nicole; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Abstract We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs) differentiating towards chondrocytes as an alternative model for the human growth plate (GP). Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether

  15. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sustarsic, Elahu G. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Junnila, Riia K. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Kopchick, John J., E-mail: kopchick@ohio.edu [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH (United States)

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  16. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Energy Technology Data Exchange (ETDEWEB)

    Tamminen, Jenni A.; Yin, Miao [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Rönty, Mikko [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Pathology, University of Helsinki (Finland); Sutinen, Eva [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Pasternack, Arja; Ritvos, Olli [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Bacteriology and Immunology, University of Helsinki (Finland); Myllärniemi, Marjukka [Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Koli, Katri, E-mail: katri.koli@helsinki.fi [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland)

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  17. Development of an ErbB4 monoclonal antibody that blocks neuregulin-1-induced ErbB4 activation in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Shogo [Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Nakatani, Fumi [Cell Biology Laboratory, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502 Japan (Japan); Masuko, Kazue; Tsuchihashi, Kenji [Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Ueda, Shiho; Masuko, Takashi [Cell Biology Laboratory, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502 Japan (Japan); Saya, Hideyuki [Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Nagano, Osamu, E-mail: osmna@sb3.so-net.ne.jp [Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2016-01-29

    The use of monoclonal antibodies (mAbs) for cancer therapy is one of the most important strategies for current cancer treatment. The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases, which regulates cancer cell proliferation, survival, and migration, is a major molecular target for antibody-based therapy. ErbB4/HER4, which contains a ligand-binding extracellular region, is activated by several ligands, including neuregulins (NRGs), heparin-binding EGF-like growth factor, betacellulin and epiregulin. Although there are clinically approved antibodies for ErbB1 and ErbB2, there are no available therapeutic mAbs for ErbB4, and it is not known whether ErbB4 is a useful target for antibody-based cancer therapy. In this study, we developed an anti-ErbB4 mAb (clone P6-1) that suppresses NRG-dependent activation of ErbB4 and examined its effect on breast cancer cell proliferation in the extracellular matrix. - Highlights: • We newly generated four clones of human ErbB4 specific mAb. • ErbB4 mAb clone P6-1 blocks ErbB4 phosphorylation induced by NRG-1. • ErbB4 mAb clone P6-1 suppresses NRG-1-promoted breast cancer cells proliferation on three dimensional culture condition.

  18. Development of an ErbB4 monoclonal antibody that blocks neuregulin-1-induced ErbB4 activation in cancer cells

    International Nuclear Information System (INIS)

    Okazaki, Shogo; Nakatani, Fumi; Masuko, Kazue; Tsuchihashi, Kenji; Ueda, Shiho; Masuko, Takashi; Saya, Hideyuki; Nagano, Osamu

    2016-01-01

    The use of monoclonal antibodies (mAbs) for cancer therapy is one of the most important strategies for current cancer treatment. The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases, which regulates cancer cell proliferation, survival, and migration, is a major molecular target for antibody-based therapy. ErbB4/HER4, which contains a ligand-binding extracellular region, is activated by several ligands, including neuregulins (NRGs), heparin-binding EGF-like growth factor, betacellulin and epiregulin. Although there are clinically approved antibodies for ErbB1 and ErbB2, there are no available therapeutic mAbs for ErbB4, and it is not known whether ErbB4 is a useful target for antibody-based cancer therapy. In this study, we developed an anti-ErbB4 mAb (clone P6-1) that suppresses NRG-dependent activation of ErbB4 and examined its effect on breast cancer cell proliferation in the extracellular matrix. - Highlights: • We newly generated four clones of human ErbB4 specific mAb. • ErbB4 mAb clone P6-1 blocks ErbB4 phosphorylation induced by NRG-1. • ErbB4 mAb clone P6-1 suppresses NRG-1-promoted breast cancer cells proliferation on three dimensional culture condition.

  19. Scavenger Receptor B1 is a Potential Biomarker of Human Nasopharyngeal Carcinoma and Its Growth is Inhibited by HDL-mimetic Nanoparticles

    Science.gov (United States)

    Zheng, Ying; Liu, Yanyan; Jin, Honglin; Pan, Shaotao; Qian, Yuan; Huang, Chuan; Zeng, Yixin; Luo, Qingming; Zeng, Musheng; Zhang, Zhihong

    2013-01-01

    Nasopharyngeal carcinoma (NPC) is a very regional malignant head and neck cancer that has attracted widespread attention for its unique etiology, epidemiology and therapeutic options. To achieve high cure rates in NPC patients, theranostic approaches are actively being pursued and improved efforts remain desirable in identifying novel biomarkers and establishing effective therapeutic approaches with low long-term toxicities. Here, we discovered that the scavenger receptor class B type I (SR-B1) was overexpressed in all investigated NPC cell lines and 75% of NPC biopsies, demonstrating that SR-B1 is a potential biomarker of NPC. Additional functional analysis showed that SR-B1 has great effect on cell motility while showing no significant impact on cell proliferation. As high-density lipoproteins (HDL) exhibit strong binding affinities to SR-B1 and HDL mimetic peptides are reportedly capable of inhibiting tumor growth, we further examined the SR-B1 targeting ability of a highly biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier and investigated its therapeutic effect on NPC. Results show that NPC cells with higher SR-B1 expression have superior ability in taking up the core constituents of HPPS. Moreover, HPPS inhibited the motility and colony formation of 5-8F cells, and significantly suppressed the NPC cell growth in nude mice without inducing tumor cell necrosis or apoptosis. These results indicate that HPPS is not only a NPC-targeting nanocarrier but also an effective anti-NPC drug. Together, the identification of SR-B1 as a potential biomarker and the use of HPPS as an effective anti-NPC agent may shed new light on the diagnosis and therapeutics of NPC. PMID:23843895

  20. Study of B7.1 costimulatory molecule neoexpression induced by γ irradiation of different dose in various human tumor cells

    International Nuclear Information System (INIS)

    Zhou Jianghua; Su Liaoyuan; Tong Jian; Zhu Minqing; Xue Lian

    2001-01-01

    The relationship between irradiation and B7.1 co-stimulative molecule expression of human tumor cells was studied to explore the reason of enhanced tumor cells immunity. The effect of γ ray irradiation on B7.1 molecule expression in various human tumor cells which were irradiated with 30 Gy, 40 Gy, 50 Gy, 60 Gy γ ray was investigated. At 24 h, 48 h, 72 h and 96 h after irradiation the changes of B7.1 molecule was measured by flow cytometry (FCM) with immunofluorescence technique. The activation of lymphocyte toxin upon tumor target cell after exposure was determined by using radiation release method. The results showed that a few of tumor cells after γ-ray irradiation express B7.1 co-stimulative molecule. Furthermore, B7.1 molecule membrane expression after γ ray irradiation is shown to enhance the activation of lymphocyte toxin. The data could explain the enhanced immunogenicity of tumor cells after irradiation, and could lead to new immunotherapy protocols. The experiments suggested that γ ray irradiation could induce human tumor cells to express B7.1 co-stimulative molecules and enhance tumor cell immunity

  1. Epothilone B induces extrinsic pathway of apoptosis in human SKOV-3 ovarian cancer cells.

    Science.gov (United States)

    Rogalska, Aneta; Gajek, Arkadiusz; Marczak, Agnieszka

    2014-06-01

    The molecular mechanisms underlying epothilone B (EpoB) induced apoptosis were investigated in SKOV-3 human ovarian cancer cells. The aim of this research was to compare EpoB's, which belongs to the new class of anticancer drugs, with paclitaxel's (PTX) ability to induce apoptosis. The mode of cell death was assessed colorimetrically, fluorimetrically and by immunoblot analyses through measuring DNA fragmentation, the level of intracellular calcium, the level of cytochrome c, TRAIL, the cleavage of poly(ADP-ribose) polymerase (PARP) and the activation of caspase-9, -8 and -3. EpoB leads to an increase of the cytosolic level of cytochrome c after 4 h of cell treatment. After 24 and 48 h of cell treatment the level of intracellular calcium also increased by about 21% and 24% respectively. Moreover, EpoB, similarly to PTX, promoted the expression of TRAIL in lymphocytes, although high TRAIL expression on tumor cells was detected only after adding EpoB to SKOV-3 cells. EpoB mediates caspases-8 and -3 activation, which is independent of the reduction in the amount of caspase-9. Epitope-specific monoclonal and polyclonal antibodies revealed characteristic apoptotic changes that included cleavage of the 116 kDa PARP polypeptide to 25 kDa fragments. The results of our study show that EpoB induces mainly the extrinsic pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cell of origin associated classification of B-cell malignancies by gene signatures of the normal B-cell hierarchy.

    Science.gov (United States)

    Johnsen, Hans Erik; Bergkvist, Kim Steve; Schmitz, Alexander; Kjeldsen, Malene Krag; Hansen, Steen Møller; Gaihede, Michael; Nørgaard, Martin Agge; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Bødker, Julie Støve; Bøgsted, Martin; Dybkær, Karen

    2014-06-01

    Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow. This strategy will provide an accurate image of the stage of differentiation, which prospectively can be used to classify any B-cell malignancy and eventually purify tumor cells. This report briefly describes the current models of the normal B-cell subset differentiation in multiple tissues and the pathogenesis of malignancies originating from the normal germinal B-cell hierarchy.

  3. B Cell Receptor-Mediated Internalization of Salmonella: A Novel Pathway for Autonomous B Cell Activation and Antibody Production

    NARCIS (Netherlands)

    Souwer, Yuri; Griekspoor, Alexander; Jorritsma, Tineke; de Wit, Jelle; Janssen, Hans; Neefjes, Jacques; van Ham, S. Marieke

    2009-01-01

    The present paradigm is that primary B cells are nonphagocytosing cells. In this study, we demonstrate that human primary B cells are able to internalize bacteria when the bacteria are recognized by the BCR. BCR-mediated internalization of Salmonella typhimurium results in B cell differentiation and

  4. Induction of B-cell lymphoma by UVB Radiation in p53 Haploinsufficient Mice

    International Nuclear Information System (INIS)

    Puebla-Osorio, Nahum; Miyahara, Yasuko; Coimbatore, Sreevidya; Limón-Flores, Alberto Y; Kazimi, Nasser; Ullrich, Stephen E; Zhu, Chengming

    2011-01-01

    The incidence of non-Hodgkin's lymphoma has increased over recent years. The exact etiology of lymphoma remains unknown. Ultraviolet light exposure has been associated with the development of internal lymphoid malignancies and some reports suggest that it may play a role in the development of lymphoma in humans. Here we describe the characterization and progression of lymphoma in p53 heterozygous mice exposed to UVB irradiation. UVB-irradiated p53 +/- mice developed enlargement of the spleen. Isolated spleen cells were transplanted into Rag deficient hosts. The UV-induced tumor cells were analyzed by flow cytometry. The tumor cells were tagged with GFP to study their metastatic potential. SKY and karyotypic analysis were carried out for the detection of chromosomal abnormalities. Functional assays included in vitro class switch recombination assay, immunoglobulin rearrangement assay, as well as cytokine profiling. UVB-exposed mice showed enlargement of the spleen and lymph nodes. Cells transplanted into Rag deficient mice developed aggressive tumors that infiltrated the lymph nodes, the spleen and the bone marrow. The tumor cells did not grow in immune competent syngeneic C57Bl/6 mice yet showed a modest growth in UV-irradiated B6 mice. Phenotypic analysis of these tumor cells revealed these cells are positive for B cell markers CD19 + , CD5 + , B220 + , IgM + and negative for T cell, NK or dendritic cell markers. The UV-induced tumor cells underwent robust in vitro immunoglobulin class switch recombination in response to lipopolysaccharide. Cytogenetic analysis revealed a t(14;19) translocation and trisomy of chromosome 6. These tumor cells secret IL-10, which can promote tumor growth and cause systemic immunosuppression. UV-irradiated p53 +/- mice developed lymphoid tumors that corresponded to a mature B cell lymphoma. Our results suggest that an indirect mechanism is involved in the development of internal tumors after chronic exposure to UV light. The

  5. Induction of B-cell lymphoma by UVB Radiation in p53 Haploinsufficient Mice

    Directory of Open Access Journals (Sweden)

    Ullrich Stephen E

    2011-01-01

    Full Text Available Abstract Background The incidence of non-Hodgkin's lymphoma has increased over recent years. The exact etiology of lymphoma remains unknown. Ultraviolet light exposure has been associated with the development of internal lymphoid malignancies and some reports suggest that it may play a role in the development of lymphoma in humans. Here we describe the characterization and progression of lymphoma in p53 heterozygous mice exposed to UVB irradiation. Methods UVB-irradiated p53+/- mice developed enlargement of the spleen. Isolated spleen cells were transplanted into Rag deficient hosts. The UV-induced tumor cells were analyzed by flow cytometry. The tumor cells were tagged with GFP to study their metastatic potential. SKY and karyotypic analysis were carried out for the detection of chromosomal abnormalities. Functional assays included in vitro class switch recombination assay, immunoglobulin rearrangement assay, as well as cytokine profiling. Results UVB-exposed mice showed enlargement of the spleen and lymph nodes. Cells transplanted into Rag deficient mice developed aggressive tumors that infiltrated the lymph nodes, the spleen and the bone marrow. The tumor cells did not grow in immune competent syngeneic C57Bl/6 mice yet showed a modest growth in UV-irradiated B6 mice. Phenotypic analysis of these tumor cells revealed these cells are positive for B cell markers CD19+, CD5+, B220+, IgM+ and negative for T cell, NK or dendritic cell markers. The UV-induced tumor cells underwent robust in vitro immunoglobulin class switch recombination in response to lipopolysaccharide. Cytogenetic analysis revealed a t(14;19 translocation and trisomy of chromosome 6. These tumor cells secret IL-10, which can promote tumor growth and cause systemic immunosuppression. Conclusion UV-irradiated p53+/- mice developed lymphoid tumors that corresponded to a mature B cell lymphoma. Our results suggest that an indirect mechanism is involved in the development of internal

  6. Dissection of pathways leading to antigen receptor-induced and Fas/CD95-induced apoptosis in human B cells

    NARCIS (Netherlands)

    Lens, S. M.; den Drijver, B. F.; Pötgens, A. J.; Tesselaar, K.; van Oers, M. H.; van Lier, R. A.

    1998-01-01

    To dissect intracellular pathways involved in B cell Ag receptor (BCR)-mediated and Fas-induced human B cell death, we isolated clones of the Burkitt lymphoma cell line Ramos with different apoptosis sensitivities. Selection for sensitivity to Fas-induced apoptosis also selected for clones with

  7. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction.

    Science.gov (United States)

    Mandò, Chiara; Razini, Paola; Novielli, Chiara; Anelli, Gaia Maria; Belicchi, Marzia; Erratico, Silvia; Banfi, Stefania; Meregalli, Mirella; Tavelli, Alessandro; Baccarin, Marco; Rolfo, Alessandro; Motta, Silvia; Torrente, Yvan; Cetin, Irene

    2016-04-01

    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineage was decreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells. This study demonstrates that the loss of endothelial differentiation potential and the increase of adipogenic ability are likely to play a significant role in the vicious cycle of abnormal placental development in intrauterine growth restriction (IUGR). This is the first observation of a potential role for placental mesenchymal stromal cells in intrauterine growth restriction, thus leading to new perspectives for the treatment of IUGR. ©AlphaMed Press.

  8. Picropodophyllin inhibits the growth of Ewing's sarcoma cells through the insulin‑like growth factor‑1 receptor/Akt signaling pathway.

    Science.gov (United States)

    Wu, Yong-Tao; Wang, Bao-Jun; Miao, Sheng-Wu; Gao, Jian-Jun

    2015-11-01

    Ewing's sarcoma (ES) is the second most common type of pediatric bone tumor, and is associated with a poor prognosis. Picropodophyllin (PPP), a novel selective inhibitor of insulin‑like growth factor‑1 receptor (IGF‑1R), is able to strongly inhibit various types of cancers. However, the effect of IGF‑1R on ES remains unclear. Following treatment with various concentrations of PPP for various times, cell viability was determined using an MTT assay. In addition, cell proliferation and apoptosis was investigated separately by bromodeoxyuridine staining and flow cytometry, respectively. The PPP‑associated signaling pathway was also investigated. The results of the present study suggested that PPP inhibited cell proliferation and viability of A673 and SK‑ES‑1 human Ewing's sarcoma cells in a dose- and time‑dependent manner. In addition, cell apoptosis rates were increased following treatment with PPP. Further investigation of the underlying mechanism revealed that PPP inhibited Akt phosphorylation. Fumonisin B1, an Akt‑specific activator, reversed the inhibitory effects of PPP on cell growth. Furthermore, the results suggested that PPP decreased the expression levels of IGF‑1R, a common activator of Akt signaling. PPP inhibited the growth of human Ewing's sarcoma cells by targeting the IGF‑1R/Akt signaling pathway. Therefore, PPP may prove useful in the development of an effective strategy for the treatment of Ewing's sarcoma.

  9. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic β-cells

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp; Thams, Peter Grevsen; Gaarn, Louise Winkel

    2011-01-01

    of this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic β-cells, and to examine this in relation to β-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN, FABP...

  10. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic ß-cells

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp; Thams, Peter Grevsen; Gaarn, Louise Winkel

    2011-01-01

    of this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic ß-cells, and to examine this in relation to ß-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN, FABP...

  11. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.

    Science.gov (United States)

    Floren, Michael; Bonani, Walter; Dharmarajan, Anirudh; Motta, Antonella; Migliaresi, Claudio; Tan, Wei

    2016-02-01

    Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we

  12. Human stefin B role in cell's response to misfolded proteins and autophagy.

    Directory of Open Access Journals (Sweden)

    Mira Polajnar

    Full Text Available Alternative functions, apart from cathepsins inhibition, are being discovered for stefin B. Here, we investigate its role in vesicular trafficking and autophagy. Astrocytes isolated from stefin B knock-out (KO mice exhibited an increased level of protein aggregates scattered throughout the cytoplasm. Addition of stefin B monomers or small oligomers to the cell medium reverted this phenotype, as imaged by confocal microscopy. To monitor the identity of proteins embedded within aggregates in wild type (wt and KO cells, the insoluble cell lysate fractions were isolated and analyzed by mass spectrometry. Chaperones, tubulins, dyneins, and proteosomal components were detected in the insoluble fraction of wt cells but not in KO aggregates. In contrast, the insoluble fraction of KO cells exhibited increased levels of apolipoprotein E, fibronectin, clusterin, major prion protein, and serpins H1 and I2 and some proteins of lysosomal origin, such as cathepsin D and CD63, relative to wt astrocytes. Analysis of autophagy activity demonstrated that this pathway was less functional in KO astrocytes. In addition, synthetic dosage lethality (SDL gene interactions analysis in Saccharomyces cerevisiae expressing human stefin B suggests a role in transport of vesicles and vacuoles These activities would contribute, directly or indirectly to completion of autophagy in wt astrocytes and would account for the accumulation of protein aggregates in KO cells, since autophagy is a key pathway for the clearance of intracellular protein aggregates.

  13. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    Science.gov (United States)

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  14. The microRNA-302b-inhibited insulin-like growth factor-binding protein 2 signaling pathway induces glioma cell apoptosis by targeting nuclear factor IA.

    Directory of Open Access Journals (Sweden)

    Chin-Cheng Lee

    Full Text Available MicroRNAs are small noncoding RNAs that post-transcriptionally control the expression of genes involved in glioblastoma multiforme (GBM development. Although miR-302b functions as a tumor suppressor, its role in GBM is still unclear. Therefore, this study comprehensively explored the roles of miR-302b-mediated gene networks in GBM cell death. We found that miR-302b levels were significantly higher in primary astrocytes than in GBM cell lines. miR-302b overexpression dose dependently reduced U87-MG cell viability and induced apoptosis through caspase-3 activation and poly(ADP ribose polymerase degradation. A transcriptome microarray revealed 150 downregulated genes and 380 upregulated genes in miR-302b-overexpressing cells. Nuclear factor IA (NFIA, higher levels of which were significantly related to poor survival, was identified as a direct target gene of miR-302b and was involved in miR-302b-induced glioma cell death. Higher NFIA levels were observed in GBM cell lines and human tumor sections compared with astrocytes and non-tumor tissues, respectively. NFIA knockdown significantly enhanced apoptosis. We found high levels of insulin-like growth factor-binding protein 2 (IGFBP2, another miR-302b-downregulated gene, in patients with poor survival. We verified that NFIA binds to the IGFBP2 promoter and transcriptionally enhances IGFBP2 expression levels. We identified that NFIA-mediated IGFBP2 signaling pathways are involved in miR-302b-induced glioma cell death. The identification of a regulatory loop whereby miR-302b inhibits NFIA, leading to a decrease in expression of IGFBP-2, may provide novel directions for developing therapies to target glioblastoma tumorigenesis.

  15. Invasin of Yersinia pseudotuberculosis activates human peripheral B cells.

    OpenAIRE

    Lundgren, E; Carballeira, N; Vazquez, R; Dubinina, E; Bränden, H; Persson, H; Wolf-Watz, H

    1996-01-01

    The Yersinia pseudotuberculosis cell surface-located protein invasin was found to promote binding between the pathogen and resting peripheral B cells via beta 1 integrin receptors (CD29). B cells responded by expressing several activation markers and by growing, In contrast, T cells did not react, although these cells express CD29. An isogenic invA mutant failed to activate B cells. The mutation could be complemented by providing the invA+ gene in trans. Purified invasin alone did not activat...

  16. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    Directory of Open Access Journals (Sweden)

    Deborah Frenkel

    2016-07-01

    Full Text Available After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/- retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK cell-mediated cytotoxicity: i B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/- and FcγRIIIa deficient (CD16-/- C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii administration of NK1.1 specific IgG2a (mAb PK136 but not irrelevant IgG2a (myeloma M9144 prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei

  17. Biochanin A induces anticancer effects in SK-Mel-28 human malignant melanoma cells via induction of apoptosis, inhibition of cell invasion and modulation of NF-κB and MAPK signaling pathways.

    Science.gov (United States)

    Xiao, Peng; Zheng, Bowen; Sun, Jiaming; Yang, Jia

    2017-11-01

    The present study aimed to investigate the antitumor activity of Biochanin A in SK-Mel-28 human malignant melanoma cells. An MTT assay was used to study the cytotoxic effects of Biochanin A. In vitro wound healing and invasion assays were used to investigate the effects on cell migration and invasion. Fluorescence microscopy using acridine orange/propidium iodide was used to study effects on cell morphology and apoptosis. Nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) protein expression levels were determined by western blot analysis. The results indicated that Biochanin A significantly inhibited the growth of SK-Mel-28 cells in a dose and time dependent manner. Treatment of the cells with Biochanin A induced apoptosis in a dose dependent manner. Additionally, Biochanin A led to inhibition of cell migration and invasion in a dose-dependent manner and upregulated the expression of key proteins in the NF-κB and MAPK signaling pathways.

  18. PDE7B is a novel, prognostically significant mediator of glioblastoma growth whose expression is regulated by endothelial cells.

    Directory of Open Access Journals (Sweden)

    Michael D Brooks

    Full Text Available Cell-cell interactions between tumor cells and constituents of their microenvironment are critical determinants of tumor tissue biology and therapeutic responses. Interactions between glioblastoma (GBM cells and endothelial cells (ECs establish a purported cancer stem cell niche. We hypothesized that genes regulated by these interactions would be important, particularly as therapeutic targets. Using a computational approach, we deconvoluted expression data from a mixed physical co-culture of GBM cells and ECs and identified a previously undescribed upregulation of the cAMP specific phosphodiesterase PDE7B in GBM cells in response to direct contact with ECs. We further found that elevated PDE7B expression occurs in most GBM cases and has a negative effect on survival. PDE7B overexpression resulted in the expansion of a stem-like cell subpopulation in vitro and increased tumor growth and aggressiveness in an in vivo intracranial GBM model. Collectively these studies illustrate a novel approach for studying cell-cell interactions and identifying new therapeutic targets like PDE7B in GBM.

  19. E3B1, a human homologue of the mouse gene product Abi-1, sensitizes activation of Rap1 in response to epidermal growth factor

    International Nuclear Information System (INIS)

    Jenei, Veronika; Andersson, Tommy; Jakus, Judit; Dib, Karim

    2005-01-01

    E3B1, a human homologue of the mouse gene product Abi-1, has been implicated in growth-factor-mediated regulation of the small GTPases p21 Ras and Rac. E3b1 is a regulator of Rac because it can form a complex with Sos-1 and eps8, and such a Sos-1-e3B1-eps8 complex serves as a guanine nucleotide exchange factor for Rac. In the present study, we found that overexpression of e3B1 in NIH3T3/EGFR cells sensitized EGF-induced activation of Rac1, whereas it had no impact on EGF-induced activation of p21 Ras . Remarkably, we found that EGF-induced activation of the p21 Ras -related GTPase Rap1 was also sensitized in NIH3T3/EGFR-e3B1 cells. Thus, in NIH3T3/EGFR-e3B1 cells, maximal EGF-induced activation of Rap1 occurs with a dose of EGF much lower than in NIH3T3/EGFR cells. We also report that overexpression of e3B1 in NIH3T3/EGFR cells renders EGF-induced activation of Rap1 completely dependent on Src tyrosine kinases but not on c-Abl. However, EGF-induced tyrosine phosphorylation of the Rap GEF C3G occurred regardless of whether e3B1 was overexpressed or not, and this did not involve Src tyrosine kinases. Accordingly, we propose that overexpression of e3B1 in NIH3T3/EGFR cells leads to mobilization of Src tyrosine kinases that participate in EGF-induced activation of Rap1 and inhibition of cell proliferation

  20. Effects of low concentrations of Regorafenib and Sorafenib on human HCC cell AFP, migration, invasion and growth in vitro

    Science.gov (United States)

    Carr, Brian Irving; D’Alessandro, Rosalba; Refolo, Maria Grazia; Iacovazzi, Palma Aurelia; Lippolis, Catia; Messa, Caterina; Cavallini, Aldo; Correale, Mario; Di Carlo, Antonio

    2012-01-01

    Sorafenib was shown in clinical trial to enhance survival in hepatocellular carcinoma (HCC) patients, but with minimal tumor shrinkage. To correlate several indices of HCC growth at various drug concentrations, HCC cells were grown in various low concentrations of two multi-kinase inhibitors, Regorafenib (Stivarga) and Sorafenib (Nexavar) and their effects were examined on alpha-fetoprotein (AFP), cell growth, migration and invasion. In two AFP positive human HCC cell lines, AFP was inhibited at 0.1–1µM drug concentrations. Cell migration and invasion were also inhibited at similar low drug concentrations. However, 10-fold higher drug concentrations were required to inhibit cell growth in both AFP positive and negative cells. To investigate this concentration discrepancy of effects, cells were then grown for prolonged times and sub-cultured in low drug concentrations and then their growth was re-tested. The growth in these drug-exposed cells was found to be slower than cells without prior drug exposure and they were also more sensitive to subsequent drug challenge. Evidence was also found for changes in cell signaling pathways in these slow-growth cells. Low multi-kinase inhibitor concentrations thus modulate several aspects of HCC cell biology. PMID:23169148

  1. Recycling of epidermal growth factor in a human pancreatic carcinoma cell line

    International Nuclear Information System (INIS)

    Korc, M.; Magun, B.E.

    1985-01-01

    PANC-1 human pancreatic carcinoma cells readily bound and internalized 125 I-labeled epidermal growth factor (EGF). Bound 125 I-labeled EGF was then partially processed to a number of high molecular weight acidic species. Percoll gradient centrifugation of cell homogenates indicated that the majority of 125 I activity localized to several intracellular vesicular compartments. Both intact EGF and its processed species were subsequently released into the incubation medium. A major portion of the released radioactivity was capable of rebinding to the cell. Only a small amount of bound 125 I-labeled EGF was degraded to low molecular weight products, and this degradation was completely blocked by methylamine. These findings suggest that in PANC-1 cells, bound EGF undergoes only limited processing. Both intact EGF and its major processed species bypass the cellular degradative pathways, are slowly released from the cell, and then rebind to the cell

  2. Tumor cell proliferation kinetics and tumor growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  3. EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway.

    Science.gov (United States)

    Bonavia, R; Inda, M M; Vandenberg, S; Cheng, S-Y; Nagane, M; Hadwiger, P; Tan, P; Sah, D W Y; Cavenee, W K; Furnari, F B

    2012-09-06

    Sustaining a high growth rate requires tumors to exploit resources in their microenvironment. One example of this is the extensive angiogenesis that is a typical feature of high-grade gliomas. Here, we show that expression of the constitutively active mutant epidermal growth factor receptor, ΔEGFR (EGFRvIII, EGFR*, de2-7EGFR) is associated with significantly higher expression levels of the pro-angiogenic factor interleukin (IL)-8 in human glioma specimens and glioma stem cells. Furthermore, the ectopic expression of ΔEGFR in different glioma cell lines caused up to 60-fold increases in the secretion of IL-8. Xenografts of these cells exhibit increased neovascularization, which is not elicited by cells overexpressing wild-type (wt)EGFR or ΔEGFR with an additional kinase domain mutation. Analysis of the regulation of IL-8 by site-directed mutagenesis of its promoter showed that ΔEGFR regulates its expression through the transcription factors nuclear factor (NF)-κB, activator protein 1 (AP-1) and CCAAT/enhancer binding protein (C/EBP). Glioma cells overexpressing ΔEGFR showed constitutive activation and DNA binding of NF-κB, overexpression of c-Jun and activation of its upstream kinase c-Jun N-terminal kinase (JNK) and overexpression of C/EBPβ. Selective pharmacological or genetic targeting of the NF-κB or AP-1 pathways efficiently blocked promoter activity and secretion of IL-8. Moreover, RNA interference-mediated knock-down of either IL-8 or the NF-κB subunit p65, in ΔEGFR-expressing cells attenuated their ability to form tumors and to induce angiogenesis when injected subcutaneously into nude mice. On the contrary, the overexpression of IL-8 in glioma cells lacking ΔEGFR potently enhanced their tumorigenicity and produced highly vascularized tumors, suggesting the importance of this cytokine and its transcription regulators in promoting glioma angiogenesis and tumor growth.

  4. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line

    Directory of Open Access Journals (Sweden)

    Y Kobayashi

    2009-06-01

    Full Text Available Low-intensity pulsed ultrasound (LIPUS stimulation has been shown to effect differentiation and activation of human chondrocytes. A study involving stimulation of rabbit disc cells with LIPUS revealed upregulation of cell proliferation and proteoglycan (PG synthesis. However, the effect of LIPUS on human nucleus pulposus cells has not been investigated. In the present study, therefore, we investigated whether LIPUS stimulation of a human nucleus pulposus cell line (HNPSV-1 exerted a positive effect on cellular activity. HNPSV-1 cells were encapsulated in 1.2% sodium alginate solution at 1x105 cells/ml and cultured at 10 beads/well in 6-well plates. The cells were stimulated for 20 min each day using a LIPUS generator, and the effects of LIPUS were evaluated by measuring DNA and PG synthesis. Furthermore, mRNA expression was analyzed by cDNA microarray using total RNA extracted from the cultured cells. Our study revealed no significant difference in cell proliferation between the control and the ultrasound treated groups. However, PG production was significantly upregulated in HNPSV cells stimulated at intensities of 15, 30, 60, and 120 mW/cm2 compared with the control. The results of cDNA array showed that LIPUS significantly stimulated the gene expression of growth factors and their receptors (BMP2, FGF7, TGFbetaR1 EGFRF1, VEGF. These findings suggest that LIPUS stimulation upregulates PG production in human nucleus pulposus cells by the enhancement of several matrix-related genes including growth factor-related genes. Safe and non-invasive stimulation using LIPUS may be a useful treatment for delaying the progression of disc degeneration.

  5. Inhibiting glycogen synthase kinase-3 and transforming growth factor-β signaling to promote epithelial transition of human adipose mesenchymal stem cells.

    Science.gov (United States)

    Setiawan, Melina; Tan, Xiao-Wei; Goh, Tze-Wei; Hin-Fai Yam, Gary; Mehta, Jodhbir S

    2017-09-02

    This study was aimed to investigate the epithelial differentiation of human adipose-derived mesenchymal stem cells (ADSCs) by inhibiting glycogen synthase kinase-3 (GSK3) and transforming growth factor β (TGFβ) signaling. STEMPRO human ADSCs at passage 2 were treated with CHIR99021 (GSK3 inhibitor), E-616452 (TGFβ1 receptor kinase inhibitor), A-83-01 (TGFβ type 1 receptor inhibitor), valproic acid (histone deacetylase inhibitor), tranylcypromine (monoamine oxidase inhibitor) and all-trans retinoic acid for 72 h. The mesenchymal-epithelial transition was shown by down-regulation of mesenchymal genes (Slug, Zinc Finger E-box Binding Homeobox 1 ZEB1, integrin α5 ITGA5 and vimentin VIM) and up-regulation of epithelial genes (E-cadherin, Epithelial Cell Adhesion Molecule EpCAM, Zonula Occludens-1 ZO-1, occludin, deltaN p63 δNp63, Transcription Factor 4 TCF4 and Twist Family bHLH Transcription Factor TWIST), compared to untreated ADSCs. Cell morphology and stress fiber pattern were examined and the treated cells became less migratory in scratch wound closure assay. The formation of cell junction complexes was observed under transmission electron microscopy. Global gene expression using GeneChip ® Human Genome U133 Array (Affymetrix) showed that the treatment up-regulated 540 genes (containing genes for cell cycle, cytoskeleton reorganization, chemotaxis, epithelium development and regulation of cell migration) and down-regulated 483 genes. Human ADSCs were transited to epithelial lineage by inhibiting GSK3 and TGFβ signaling. It can be an adult stem cell source for epithelial cell-based therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Deleterious effect of ultraviolet-B radiation on accessory function of human blood adherent mononuclear cells

    International Nuclear Information System (INIS)

    Rich, E.A.; Elmets, C.A.; Fujiwara, H.; Wallis, R.S.; Ellner, J.J.

    1987-01-01

    The effects of ultraviolet-B radiation (UV-B) on accessory function of human blood adherent mononuclear cells (ADH) for antigen and mitogen-induced responses, and production by ADH of the amplifying cytokine interleukin 1 (IL-1) were examined. Responder lymphocytes were rendered accessory cell dependent by treatment of nonadherent cells with OKIal + complement. UV-B depressed accessory function of ADH in a dose-dependent manner. UV-B decreased accessory function of ADH for tetanus toxoid-induced responses and phytohaemagglutinin-induced responses. UV-B also decreased accessory activity of peripheral blood mononuclear cells but not Epstein-Barr virus-transformed B cells for a PPD-reactive T cell line. Interleukin 1 (IL-1) activity of supernatants of ADH was assayed on C3H/HeJ mouse thymocytes. Pretreatment of ADH with UV-B decreased lipopolysaccharide-stimulated IL-1 activity. Lysates of UV-B irradiated, LPS-stimulated ADH had no discernible IL-1 activity. Addition of IL-1 partially restored accessory activity of UV-B irradiated ADH for lymphocyte responses to TT. Exposure of ADH to TT or PHA for 30 min before irradiation blocked the inhibitory effect of UV-B on accessory activity. Thus, low doses of UV-B are deleterious to accessory function and to production of IL-1 by ADH. Interference with production of cytokines and with initial interactions of accessory cells with antigen and mitogen may be critical to the effects of UV-B on immunoregulatory function of ADH. (author)

  7. Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells

    Science.gov (United States)

    Kwak, Youngeun

    2015-01-01

    BACKGROUND/OBJECTIVES Perilla frutescens Britton leaves are a commonly consumed vegetable in different Asian countries including Korea. Cancer is a major cause of human death worldwide. The aim of the current study was to investigate the inhibitory effects of ethanol extract of perilla leaf (PLE) against important characteristics of cancer cells, including unrestricted growth, resisted apoptosis, and activated metastasis, using human cancer cells. MATERIALS/METHODS Two human cancer cell lines were used in this study, HCT116 colorectal carcinoma cells and H1299 non-small cell lung carcinoma cells. Assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed for measurement of cell growth. Soft agar and wound healing assays were performed to determine colony formation and cell migration, respectively. Nuclear staining and cell cycle analysis were performed for assessment of apoptosis. Fibronectin-coated plates were used to determine cell adhesion. RESULTS Treatment of HCT116 and H1299 cells with PLE resulted in dose-dependent inhibition of growth by 52-92% (at the concentrations of 87.5, 175, and 350 µg/ml) and completely abolished the colony formation in soft agar (at the concentration of 350 µg/ml). Treatment with PLE at the 350 µg/ml concentration resulted in change of the nucleus morphology and significantly increased sub-G1 cell population in both cells, indicating its apoptosis-inducing activity. PLE at the concentration range of 87.5 to 350 µg/ml was also effective in inhibiting the migration of H1299 cells (by 52-58%) and adhesion of both HCT116 and H1299 cells (by 25-46%). CONCLUSIONS These results indicate that PLE exerts anti-cancer activities against colon and lung cancers in vitro. Further studies are needed in order to determine whether similar effects are reproduced in vivo. PMID:25671062

  8. Cytotoxicity and apoptotic inducibility of Vitex agnus-castus fruit extract in cultured human normal and cancer cells and effect on growth.

    Science.gov (United States)

    Ohyama, Kunio; Akaike, Takenori; Hirobe, Chieko; Yamakawa, Toshio

    2003-01-01

    A crude extract was prepared with ethanol from dried ripened Vitex agnus-castus fruits growing in Israel (Vitex extract). Cytotoxicity of the extract against human uterine cervical canal fibroblast (HCF), human embryo fibroblast (HE-21), ovarian cancer (MCF-7), cervical carcinoma (SKG-3a), breast carcinoma (SKOV-3), gastric signet ring carcinoma (KATO-III), colon carcinoma (COLO 201), and small cell lung carcinoma (Lu-134-A-H) cells was examined. After culture for 24 h (logarithmic growth phase) or 72 h (stationary growth phase), the cells were treated with various concentrations of Vitex extract. In both growth phases, higher growth activity of cells and more cytotoxic activity of Vitex extract were seen. The cytotoxic activity against stationary growth-phase cells was less than that against logarithmic growth-phase cells. DNA fragmentation of Vitex extract-treated cells was seen in SKOV-3, KATO-III, COLO 201, and Lu-134-A-H cells. The DNA fragmentation in Vitex extract-treated KATO-III cells was inhibited by the presence of the antioxidative reagent pyrrolidine dithiocarbamate or N-acetyl-L-cysteine (NAC). Western blotting analysis showed that in Vitex extract-treated KATO-III cells, the presence of NAC also inhibited the expression of heme oxygenase-1 and the active forms of caspases-3, -8 and -9. It is concluded that the cytotoxic activity of Vitex extract may be attributed to the effect on cell growth, that cell death occurs through apoptosis, and that this apoptotic cell death may be attributed to increased intracellular oxidation by Vitex extract treatment.

  9. [EXPERIMENTAL RESEARCH OF DIFFERENTIATION OF HUMAN AMNIOTIC MESENCHYMAL STEM CELLS INTO LIGAMENT CELLS IN VITRO].

    Science.gov (United States)

    Jin, Ying; Li, Yuwan; Zhang, Chenghao; Wu, Shuhong; Cheng, Daixiong; Liu, Yi

    2016-02-01

    To discuss whether human amniotic mesenchymal stem cells (hAMSCs) possesses the characteristic of mesenchymal stem cells, and could differentiate into ligament cells in vitro after induction. The hAMSCs were separated through enzyme digestion, and the phenotypic characteristics of hAMSCs were tested through flow cytometry. The cells at passage 3 were cultured with L-DMEM/F12 medium containing transforming growth factor beta1 (TGF-beta1) + basic fibroblast growth factor (bFGF) (group A), containing hyaluronic acid (HA) (group B), containing TGF-beta1+bFGF+HA (group C), and simple L-DMEM/F12 medium (group D) as control group. The morphology changes of cells in each group were observed by inverted phase contrast microscope at 21 days after induction; the cellular activities and proliferation were examined by sulforhodamine (SRB) colorimetric method; and specific mRNA and protein expressions of ligament including collagen type I, collagen type III, and tenascin C (TNC) were measured by real-time fluorescence quantitative PCR and immunohistochemical staining. The flow cytometry result indicated that hAMSCs expressed mesenchymal stem cell phenotype. After 21 days of induction, the cells in groups A, B, and C grew like spindle-shaped fibroblasts under inverted phase contrast microscope, and cells showed single shape, obvious directivity, and compact arrangement in group C. The SRB result indicated that the cells in each group reached the peak of growth curve at 6 days; the cellular activities of groups A, B, and C were significantly higher than that of group D at 6 days after induction. Also, the immunohistochemical staining results showed that no expressions of TNC were detected in 4 groups at 7 days; expressions of collagen type I in groups A, B, and C were significantly higher than that in group D at 7, 14, and 21 days (Pligament specific genes can be up-regulated and the synthesis of ligament specific proteins can be also strengthened. As a result, it can be used as

  10. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    Science.gov (United States)

    Fernández, Esteban R; Olivera, Gabriela C; Quebrada Palacio, Luz P; González, Mariela N; Hernandez-Vasquez, Yolanda; Sirena, Natalia María; Morán, María L; Ledesma Patiño, Oscar S; Postan, Miriam

    2014-01-01

    Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  11. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Esteban R Fernández

    Full Text Available Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  12. Requirements for growth and IL-10 expression of highly purified human T regulatory cells

    Science.gov (United States)

    Bonacci, Benedetta; Edwards, Brandon; Jia, Shuang; Williams, Calvin; Hessner, Martin J.; Gauld, Stephen; Verbsky, James

    2013-01-01

    Human regulatory T cells (TR) cells have potential for the treatment of a variety of immune mediated diseases but the anergic phenotype of these cells makes them difficult to expand in vitro. We have examined the requirements for growth and cytokine expression from highly purified human TR cells, and correlated these findings with the signal transduction events of these cells. We demonstrate that these cells do not proliferate or secrete IL-10 even in the presence of high doses of IL-2. Stimulation with a superagonistic anti-CD28 antibody (clone 9D4) and IL-2 partially reversed the proliferative defect, and this correlated with reversal of the defective calcium mobilization in these cells. Dendritic cells were effective at promoting TR cell proliferation, and under these conditions the proliferative capacity of TR cells was comparable to conventional CD4 lymphocytes. Blocking TGF-β activity abrogated IL-10 expression from these cells, while addition of TGF-β resulted in IL-10 production. These data demonstrate that highly purified populations of TR cells are anergic even in the presence of high doses of IL-2. Furthermore, antigen presenting cells provide proper co-stimulation to overcome the anergic phenotype of TR cells, and under these conditions they are highly sensitive to IL-2. In addition, these data demonstrate for the first time that TGF-β is critical to enable human TR cells to express IL-10. PMID:22562448

  13. HGF and c-Met Interaction Promotes Migration in Human Chondrosarcoma Cells

    Science.gov (United States)

    Tsou, Hsi-Kai; Chen, Hsien-Te; Hung, Ya-Huey; Chang, Chia-Hao; Li, Te-Mao; Fong, Yi-Chin; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF) has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3′-kinase (PI3K)/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway. PMID:23320110

  14. HGF and c-Met interaction promotes migration in human chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Hsi-Kai Tsou

    Full Text Available Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3'-kinase (PI3K/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway.

  15. Two different serum-free media and osmolality effect upon human 293 cell growth and adenovirus production.

    Science.gov (United States)

    Ferreira, Tiago B; Ferreira, Ana L; Carrondo, Manuel J T; Alves, Paula M

    2005-11-01

    Adenoviruses are promising vectors for gene therapy and vaccination protocols. Consequently, the market demands for adenovirus are increasing, driving the search for new methodologies for large-scale production of concentrated vectors with warranted purity and efficacy, in a cost-effective way. Nevertheless, the production of adenovirus is currently limited by the so-called 'cell density effect', i.e. a drop in cell specific productivity concomitant with increased cell concentration at infection. Of two different serum-free culture media (CD293 and EX-Cell), evaluated for their effect on human 293 cells growth and adenovirus production at cell densities higher than 1x10(6) cells/ml, EX-Cell proved the better medium for cell growth. Although adenovirus production was equivalent in both media when the infection was performed at 1x10(6) cells/ml, at 3x10(6) cells/ml CD293 was the better. This result related to the high ammonia content in EX-Cell medium at the highest cell concentration at infection. Besides this, the large-scale production of these vectors at high cell densities often requires re-feed strategies, which increase medium osmolality. While a negative effect on cell growth was observed with increasing osmolalities, adenovirus productivity was only affected for osmolalities higher than 430 mOsm.

  16. NF-κB and androgen receptor variant expression correlate with human BPH progression.

    Science.gov (United States)

    Austin, David C; Strand, Douglas W; Love, Harold L; Franco, Omar E; Jang, Alex; Grabowska, Magdalena M; Miller, Nicole L; Hameed, Omar; Clark, Peter E; Fowke, Jay H; Matusik, Robert J; Jin, Ren J; Hayward, Simon W

    2016-04-01

    Benign prostatic hyperplasia (BPH) is a common, chronic progressive disease. Inflammation is associated with prostatic enlargement and resistance to 5α-reductase inhibitor (5ARI) therapy. Activation of the nuclear factor-kappa B (NF-κB) pathway is linked to both inflammation and ligand-independent prostate cancer progression. NF-κB activation and androgen receptor variant (AR-V) expression were quantified in transition zone tissue samples from patients with a wide range of AUASS from incidental BPH in patients treated for low grade, localized peripheral zone prostate cancer to advanced disease requiring surgical intervention. To further investigate these pathways, human prostatic stromal and epithelial cell lines were transduced with constitutively active or kinase dead forms of IKK2 to regulate canonical NF-κB activity. The effects on AR full length (AR-FL) and androgen-independent AR-V expression as well as cellular growth and differentiation were assessed. Canonical NF-κB signaling was found to be upregulated in late versus early stage BPH, and to be strongly associated with non-insulin dependent diabetes mellitus. Elevated expression of AR-variant 7 (AR-V7), but not other AR variants, was found in advanced BPH samples. Expression of AR-V7 significantly correlated with the patient AUASS and TRUS volume. Forced activation of canonical NF-κB in human prostatic epithelial and stromal cells resulted in elevated expression of both AR-FL and AR-V7, with concomitant ligand-independent activation of AR reporters. Activation of NF-κB and over expression of AR-V7 in human prostatic epithelial cells maintained cell viability in the face of 5ARI treatment. Activation of NF-κB and AR-V7 in the prostate is associated with increased disease severity. AR-V7 expression is inducible in human prostate cells by forced activation of NF-κB resulting in resistance to 5ARI treatment, suggesting a potential mechanism by which patients may become resistant to 5ARI therapy.

  17. Highly purified, multi-wall carbon nanotubes induce light-chain 3B expression in human lung cells

    International Nuclear Information System (INIS)

    Tsukahara, Tamotsu; Matsuda, Yoshikazu; Usui, Yuki; Haniu, Hisao

    2013-01-01

    Highlights: •HTT2800-treated BEAS-2B cells induced LC3B in a time-dependent manner. •HTT2800-treated BEAS-2B cells showed decreased cell proliferation that was both time- and dose-dependent. •Addition of 3-MA, LC3B-II protein and mRNA levels were significantly decreased. •3-MA and E64-d + pepstatin A, but not brefeldin A, provided protection against HTT2800-induced cell death. •These results suggest that HTT2800 predominantly causes autophagy rather than apoptotic cell death in BEAS-2B cells. -- Abstract: Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition

  18. Highly purified, multi-wall carbon nanotubes induce light-chain 3B expression in human lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@kanazawa-med.ac.jp [Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan); Usui, Yuki [Research Center for Exotic Nanocarbons, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Haniu, Hisao [Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2013-10-18

    Highlights: •HTT2800-treated BEAS-2B cells induced LC3B in a time-dependent manner. •HTT2800-treated BEAS-2B cells showed decreased cell proliferation that was both time- and dose-dependent. •Addition of 3-MA, LC3B-II protein and mRNA levels were significantly decreased. •3-MA and E64-d + pepstatin A, but not brefeldin A, provided protection against HTT2800-induced cell death. •These results suggest that HTT2800 predominantly causes autophagy rather than apoptotic cell death in BEAS-2B cells. -- Abstract: Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition.

  19. Generation of Hepatocyte-like Cells from Human Induced Pluripotent Stem (iPS) Cells By Co-culturing Embryoid Body Cells with Liver Non-parenchymal Cell Line TWNT-1

    International Nuclear Information System (INIS)

    Javed, M. S.; Yaqoob, N.; Iwamuro, M.; Kobayashi, N.; Fujiwara, T.

    2014-01-01

    Objective: To generate a homogeneous population of patient-specific hepatocyte-like cells (HLCs) from human iPS cells those show the morphologic and phenotypic properties of primary human hepatocytes. Study Design: An experimental study. Place and Duration of Study: Department of Surgery, Okayama University, Graduate School of Medicine, Japan, from April to December 2011. Methodology: Human iPS cells were generated and maintained on ES qualified matrigel coated plates supplemented with mTeSR medium or alternatively on mitotically inactivated MEF feeder layer in DMEM/F12 medium containing 20% KOSR, 4ng/ml bFGF-2, 1 x 10-4 M 2-mercaptoethanol, 1 mmol/L NEAA, 2mM L-glutamine and 1% penicillin-streptomycin. iPS cells were differentiated to HLCs by sequential culture using a four step differentiation protocol: (I) Generation of embryoid bodies (EBs) in suspension culture; (II) Induction of definitive endoderm (DE) from 2 days old EBs by growth in human activin-A (100 ng/ml) and basic fibroblasts growth factor (bFGF2) (100 ng/ml) on matrigel coated plates; (III) Induction of hepatic progenitors by co-culture with non-parenchymal human hepatic stellate cell line (TWNT-1); and (IV) Maturation by culture in dexamethasone. Characterization was performed by RT-PCR and functional assays. Results: The generated HLCs showed microscopically morphological phenotype of human hepatocytes, expressed liver specific genes (ASGPR, Albumin, AFP, Sox17, Fox A2), secreted human liver-specific proteins such as albumin, synthesized urea and metabolized ammonia. Conclusion: Functional HLCs were generated from human iPS cells, which could be used for autologus hepatocyte transplantation for liver failure and as in vitro model for determining the metabolic and toxicological properties of drug compounds. (author)

  20. TRIM29 Overexpression Promotes Proliferation and Survival of Bladder Cancer Cells through NF-κB Signaling.

    Science.gov (United States)

    Tan, Shu-Tao; Liu, Sheng-Ye; Wu, Bin

    2016-10-01

    TRIM29 overexpression has been reported in several human malignancies and showed correlation with cancer cell malignancy. The aim of the current study is to examine its clinical significance and biological roles in human bladder cancer tissues and cell lines. A total of 102 cases of bladder cancer tissues were examined for TRIM29 expression by immunohistochemistry. siRNA and plasmid transfection were performed in 5637 and BIU-87 cell lines. Cell Counting Kit-8, flow cytometry, western blot, and real-time polymerase chain reaction were performed to examine its biological roles and mechanism in bladder cancer cells. We found that TRIM29 overexpression showed correlation with invading depth (p=0.0087). Knockdown of TRIM29 expression in bladder cancer cell line 5637 inhibited cell growth rate and cell cycle transition while its overexpression in BIU-87 cells accelerated cell proliferation and cell cycle progression. TRIM29 overexpression also inhibited cell apoptosis induced by cisplatin. In addition, we demonstrated that TRIM29 depletion decreased while its overexpression led to upregulated expression of cyclin D1, cyclin E, and Bcl-2. We also showed that TRIM29 knockdown inhibited protein kinase C (PKC) and nuclear factor κB (NF-κB) signaling while its overexpression stimulated the PKC and NF-κB pathways. BAY 11-7082 (NF-κB inhibitor) partly attenuated the effect of TRIM29 on expression of cyclin and Bcl-2. Treatment with PKC inhibitor staurosporine resulted in ameliorated TRIM29 induced activation of NF-κB. The current study demonstrated that TRIM29 upregulates cyclin and Bcl family proteins level to facilitate malignant cell growth and inhibit drug-induced apoptosis in bladder cancer, possibly through PKC-NF-κB signaling pathways.

  1. Differential Effects of Tacrolimus versus Sirolimus on the Proliferation, Activation and Differentiation of Human B Cells.

    Directory of Open Access Journals (Sweden)

    Opas Traitanon

    Full Text Available The direct effect of immunosuppressive drugs calcineurin inhibitor (Tacrolimus, TAC and mTOR inhibitor (Sirolimus, SRL on B cell activation, differentiation and proliferation is not well documented. Purified human B cells from healthy volunteers were stimulated through the B Cell Receptor with Anti-IgM + anti-CD40 + IL21 in the absence / presence of TAC or SRL. A variety of parameters of B cell activity including activation, differentiation, cytokine productions and proliferation were monitored by flow cytometry. SRL at clinically relevant concentrations (6 ng/ml profoundly inhibited CD19(+ B cell proliferation compared to controls whereas TAC at similar concentrations had a minimal effect. CD27(+ memory B cells were affected more by SRL than naïve CD27- B cells. SRL effectively blocked B cell differentiation into plasma cells (CD19(+CD138(+ and Blimp1(+/Pax5(low cells even at low dose (2 ng/ml, and totally eliminated them at 6 ng/ml. SRL decreased absolute B cell counts, but the residual responding cells acquired an activated phenotype (CD25(+/CD69(+ and increased the expression of HLA-DR. SRL-treated stimulated B cells on a per cell basis were able to enhance the proliferation of allogeneic CD4(+CD25(- T cells and induce a shift toward the Th1 phenotype. Thus, SRL and TAC have different effects on B lymphocytes. These data may provide insights into the clinical use of these two agents in recipients of solid organ transplants.

  2. URG4/URGCP enhances the angiogenic capacity of human hepatocellular carcinoma cells in vitro via activation of the NF-κB signaling pathway

    International Nuclear Information System (INIS)

    Xing, Sizhong; Zhang, Bing; Hua, Ruixi; Tai, William Chi-shing; Zeng, Zhirong; Xie, Binhui; Huang, Chenghui; Xue, Jisu; Xiong, Shiqiu; Yang, Jianyong; Liu, Side; Li, Heping

    2015-01-01

    Angiogenesis is essential for tumor growth. Hepatocellular carcinoma (HCC) is characterized by hypervascularity; high levels of angiogenesis are associated with poor prognosis and a highly invasive phenotype in HCC. Up-regulated gene-4 (URG4), also known as upregulator of cell proliferation (URGCP), is overexpressed in multiple tumor types and has been suggested to act as an oncogene. This study aimed to elucidate the effect of URG4/URGCP on the angiogenic capacity of HCC cells in vitro. Expression of URG4/URGCP in HCC cell lines and normal liver epithelial cell lines was examined by Western blotting and quantitative real-time PCR. URG4/URGCP was stably overexpressed or transiently knocked down using a shRNA in two HCC cell lines. The human umbilical vein endothelial cell (HUVEC) tubule formation and Transwell migration assays and chicken chorioallantoic membrane (CAM) assay were used to examine the angiogenic capacity of conditioned media from URG4/URGCP-overexpressing and knockdown cells. A luciferase reporter assay was used to examine the transcriptional activity of nuclear factor kappa – light – chain - enhancer of activated B cells (NF-κB). NF-κB was inhibited by overexpressing degradation-resistant mutant inhibitor of κB (IκB)-α. Expression of vascular endothelial growth factor C (VEGFC), tumor necrosis factor-α (TNFα), interleukin (IL)-6, IL-8 and v-myc avian myelocytomatosis viral oncogene homolog (MYC) were examined by quantitative real-time PCR; VEGFC protein expression was analyzed using an ELISA. URG4/URGCP protein and mRNA expression were significantly upregulated in HCC cell lines. Overexpressing URG4/URGCP enhanced - while silencing URG4/URGCP decreased - the capacity of HCC cell conditioned media to induce HUVEC tubule formation and migration and neovascularization in the CAM assay. Furthermore, overexpressing URG4/URGCP increased - whereas knockdown of URG4/URGCP decreased - VEGFC expression, NF-κB transcriptional activity, the levels

  3. Optimizing bone morphogenic protein 4-mediated human embryonic stem cell differentiation into trophoblast-like cells using fibroblast growth factor 2 and transforming growth factor-β/activin/nodal signalling inhibition.

    Science.gov (United States)

    Koel, Mariann; Võsa, Urmo; Krjutškov, Kaarel; Einarsdottir, Elisabet; Kere, Juha; Tapanainen, Juha; Katayama, Shintaro; Ingerpuu, Sulev; Jaks, Viljar; Stenman, Ulf-Hakan; Lundin, Karolina; Tuuri, Timo; Salumets, Andres

    2017-09-01

    Several studies have demonstrated that human embryonic stem cells (hESC) can be differentiated into trophoblast-like cells if exposed to bone morphogenic protein 4 (BMP4) and/or inhibitors of fibroblast growth factor 2 (FGF2) and the transforming growth factor beta (TGF-β)/activin/nodal signalling pathways. The goal of this study was to investigate how the inhibitors of these pathways improve the efficiency of hESC differentiation when compared with basic BMP4 treatment. RNA sequencing was used to analyse the effects of all possible inhibitor combinations on the differentiation of hESC into trophoblast-like cells over 12 days. Genes differentially expressed compared with untreated cells were identified at seven time points. Additionally, expression of total human chorionic gonadotrophin (HCG) and its hyperglycosylated form (HCG-H) were determined by immunoassay from cell culture media. We showed that FGF2 inhibition with BMP4 activation up-regulates syncytiotrophoblast-specific genes (CGA, CGB and LGALS16), induces several molecular pathways involved in embryo implantation and triggers HCG-H production. In contrast, inhibition of the TGF-β/activin/nodal pathway decreases the ability of hESC to form trophoblast-like cells. Information about the conditions needed for hESC differentiation toward trophoblast-like cells helps us to find an optimal model for studying the early development of human trophoblasts in normal and in complicated pregnancy. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Capsaicin induces cell cycle arrest and apoptosis in human KB cancer cells.

    Science.gov (United States)

    Lin, Chia-Han; Lu, Wei-Cheng; Wang, Che-Wei; Chan, Ya-Chi; Chen, Mu-Kuan

    2013-02-25

    Capsaicin, a pungent phytochemical in a variety of red peppers of the genus Capsicum, has shown an anti-proliferative effect on various human cancer cell lines. In contrast, capsaicin has also been considered to promote the growth of cancer cells. Thus, the effects of capsaicin on various cell types need to be explored. The anti-proliferative effects of capsaicin on human KB cancer cells are still unknown. Therefore, we examined the viability, cell cycle progression, and factors associated with apoptosis in KB cells treated with capsaicin. The cell proliferation/viability and cytotoxicity of KB cells exposed to capsaicin were determined by a sulforhodamine B colorimetric assay and trypan blue exclusion. Apoptosis was detected by Hoechst staining and confirmed by western blot analysis of poly-(ADP-ribose) polymerase cleavage. Cell cycle distribution and changes of the mitochondrial membrane potential were analyzed by flow cytometry. Furthermore, the expression of caspase 3, 8 and 9 was evaluated by immunoblotting. We found that treatment of KB cells with capsaicin significantly reduced cell proliferation/viability and induced cell death in a dose-dependent manner compared with that in the untreated control. Cell cycle analysis indicated that exposure of KB cells to capsaicin resulted in cell cycle arrest at G2/M phase. Capsaicin-induced growth inhibition of KB cells appeared to be associated with induction of apoptosis. Moreover, capsaicin induced disruption of the mitochondrial membrane potential as well as activation of caspase 9, 3 and poly-(ADP-ribose) polymerase in KB cells. Our data demonstrate that capsaicin modulates cell cycle progression and induces apoptosis in human KB cancer cells through mitochondrial membrane permeabilization and caspase activation. These observations suggest an anti-cancer activity of capsaicin.

  5. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    Science.gov (United States)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  6. B cell lymphomas express CX3CR1 a non-B cell lineage adhesion molecule

    DEFF Research Database (Denmark)

    Andreasson, U.; Ek, S.; Merz, H.

    2008-01-01

    normally is not expressed on B cells, is expressed both at the mRNA and protein level in several subtypes of lymphoma. CX3CR1 has also shown to be involved in the homing to specific tissues that express the ligand, CX3CL1, in breast and prostate cancer and may thus be involved in dissemination of lymphoma......To study the differential expression of cell membrane-bound receptors and their potential role in growth and/or survival of the tumor cells, highly purified follicular lymphoma cells were analyzed, using gene expression analysis, and compared to non-malignant B cell populations. Filtering...... the genome for overexpressed genes coding for cell membrane-bound proteins/receptors resulted in a hit list of 27 identified genes. Among these, we have focused on the aberrant over expression of CX3CR1, in different types of B cell lymphoma, as compared to non-malignant B cells. We show that CX3CR1, which...

  7. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation

    Science.gov (United States)

    Biever, Jessica J.; Brinkman, Doug; Gardner, Gary

    2014-01-01

    Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280–320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction. PMID:24591052

  8. Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues.

    Science.gov (United States)

    Fazzina, R; Iudicone, P; Fioravanti, D; Bonanno, G; Totta, P; Zizzari, I G; Pierelli, L

    2016-08-25

    Mesenchymal stromal cells (MSCs) have been largely investigated, in the past decade, as potential therapeutic strategies for various acute and chronic pathological conditions. MSCs isolated from different sources, such as bone marrow (BM), umbilical cord tissue (UCT) and adipose tissue (AT), share many biological features, although they may show some differences on cumulative yield, proliferative ability and differentiation potential. The standardization of MSCs growth and their functional amplification is a mandatory objective of cell therapies. The aim of this study was to evaluate the cumulative yield and the ex vivo amplification potential of MSCs obtained from various sources and different subjects, using defined culture conditions with a standardized platelet lysate (PL) as growth stimulus. MSCs isolated from BM, UCT and AT and expanded in human PL were compared in terms of cumulative yield and growth potential per gram of starting tissue. MSCs morphology, phenotype, differentiation potential, and immunomodulatory properties were also investigated to evaluate their biological characteristics. The use of standardized PL-based culture conditions resulted in a very low variability of MSC growth. Our data showed that AT has the greater capacity to generate MSC per gram of initial tissue, compared to BM and UCT. However, UCT-MSCs replicated faster than AT-MSCs and BM-MSCs, revealing a greater proliferation capacity of this source irrespective of its lower MSC yield. All MSCs exhibited the typical MSC phenotype and the ability to differentiate into all mesodermal lineages, while BM-MSCs showed the most prominent immunosuppressive effect in vitro. The adoption of standardized culture conditions may help researchers and clinicians to reveal particular characteristics and inter-individual variability of MSCs sourced from different tissues. These data will be beneficial to set the standards for tissue collection and MSCs clinical-scale expansion both for cell banking

  9. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation

    International Nuclear Information System (INIS)

    Lohberger, Birgit; Leithner, Andreas; Stuendl, Nicole; Kaltenegger, Heike; Kullich, Werner; Steinecker-Frohnwieser, Bibiane

    2015-01-01

    Chondrosarcoma is characterized for its lack of response to conventional cytotoxic chemotherapy, propensity for developing lung metastases, and low rates of survival. Research within the field of development and expansion of new treatment options for unresectable or metastatic diseases is of particular priority. Diacerein, a symptomatic slow acting drug in osteoarthritis (SYSADOA), implicates a therapeutic benefit for the treatment of chondrosarcoma by an antitumor activity. After treatment with diacerein the growth behaviour of the cells was analyzed with the xCELLigence system and MTS assay. Cell cycle was examined using flow cytometric analysis, RT-PCR, and western blot analysis of specific checkpoint regulators. The status for phosophorylation of mitogen-activated protein kinases (MAPKs) was analyzed with a proteome profiler assay. In addition, the possible impact of diacerein on apoptosis was investigated using cleaved caspase 3 and Annexin V/PI flow cytometric analysis. Diacerein decreased the cell viability and the cell proliferation in two different chondrosarcoma cell lines in a dose dependent manner. Flow cytometric analysis showed a classical G2/M arrest. mRNA and protein analysis revealed that diacerein induced a down-regulation of the cyclin B1-CDK1 complex and a reduction in CDK2 expression. Furthermore, diacerein treatment increased the phosphorylation of p38α and p38β MAPKs, and Akt1, Akt2, and Akt 3 in SW-1353, whereas in Cal-78 the opposite effect has been demonstrated. These observations accordingly to our cell cycle flow cytometric analysis and protein expression data may explain the G2/M phase arrest. In addition, no apoptotic induction after diacerein treatment, neither in the Cal-78 nor in the SW-1353 cell line was observed. Our results demonstrate for the first time that the SYSADOA diacerein decreased the viability of human chondrosarcoma cells and induces G2/M cell cycle arrest by CDK1/cyclin B1 down-regulation

  10. Kinase activation through dimerization by human SH2-B.

    Science.gov (United States)

    Nishi, Masahiro; Werner, Eric D; Oh, Byung-Chul; Frantz, J Daniel; Dhe-Paganon, Sirano; Hansen, Lone; Lee, Jongsoon; Shoelson, Steven E

    2005-04-01

    The isoforms of SH2-B, APS, and Lnk form a family of signaling proteins that have been described as activators, mediators, or inhibitors of cytokine and growth factor signaling. We now show that the three alternatively spliced isoforms of human SH2-B readily homodimerize in yeast two-hybrid and cellular transfections assays, and this is mediated specifically by a unique domain in its amino terminus. Consistent with previous reports, we further show that the SH2 domains of SH2-B and APS bind JAK2 at Tyr813. These findings suggested a model in which two molecules of SH2-B or APS homodimerize with their SH2 domains bound to two JAK2 molecules, creating heterotetrameric JAK2-(SH2-B)2-JAK2 or JAK2-(APS)2-JAK2 complexes. We further show that APS and SH2-B isoforms heterodimerize. At lower levels of SH2-B or APS expression, dimerization approximates two JAK2 molecules to induce transactivation. At higher relative concentrations of SH2-B or APS, kinase activation is blocked. SH2-B or APS homodimerization and SH2-B/APS heterodimerization thus provide direct mechanisms for activating and inhibiting JAK2 and other kinases from the inside of the cell and for potentiating or attenuating cytokine and growth factor receptor signaling when ligands are present.

  11. Activin A, B and AB decrease progesterone production by down-regulating StAR in human granulosa cells.

    Science.gov (United States)

    Chang, Hsun-Ming; Cheng, Jung-Chien; Huang, He-Feng; Shi, Feng-Tao; Leung, Peter C K

    2015-09-05

    Activins are homo- or heterodimers of inhibin β subunits that play important roles in the reproductive system. Our previous work has shown that activins A (βAβA), B (βBβB) and AB (βAβB) induce aromatase/estradiol, but suppress StAR/progesterone production in human granulosa-lutein cells. However, the underlying molecular determinants of these effects have not been examined. In this continuing study, we used immortalized human granulosa cells (SVOG) to investigate the effects of activins in regulating StAR/progesterone and the potential mechanisms of action. In SVOG cells, activins A, B and AB produced comparable down-regulation of StAR expression and progesterone production. In addition, all three activin isoforms induced equivalent phosphorylation of both SMAD2 and SMAD3. Importantly, the activin-induced down-regulation of StAR, increase in SMAD2/3 phosphorylation, and decrease in progesterone were abolished by the TGF-β type I receptor inhibitor SB431542. Interestingly, the small interfering RNA-mediated knockdown of ALK4 but not ALK5 reversed the activin-induced suppression of StAR. Furthermore, the knockdown of SMAD4 or SMAD2 but not SMAD3 abolished the inhibitory effects of all three activin isoforms on StAR expression. These results provide evidence that activins A, B and AB down-regulate StAR expression and decrease progesterone production in human granulosa cells, likely via an ALK4-mediated SMAD2/SMAD4-dependent pathway. Our findings provide important insights into the molecular mechanisms underlying the regulatory effects of activins on human granulosa cell steroidogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines

    International Nuclear Information System (INIS)

    Lee, Do Kyung; Jang, Seok; Kim, Mi Jin; Kim, Jung Hyun; Chung, Myung Jun; Kim, Kyung Jae; Ha, Nam Joo

    2008-01-01

    Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as anti-tumor activity. The aim of the present work was to study the growth inhibition of tumor cells by butanol extract of Bifidobacterium adolescentis isolated from healthy young Koreans. The anti-proliferative activity of B. adolescentis isolates was assessed by XTT assays on three human colon cancer cell lines (Caco-2, HT-29, and SW480). The effects of B. adolescentis SPM0212 butanol extract on tumor necrosis factor-α (TNF-α) and nitric oxide (NO) production were tested using the murine macrophage RAW 264.7 cell line. The butanol extract of B. adolescentis SPM0212 dose-dependently inhibited the growth of Caco-2, HT-29, and SW480 cells by 70%, 30%, and 40%, respectively, at 200 μg/mL. Additionally, the butanol extract of B. adolescentis SPM0212 induced macrophage activation and significantly increased the production of TNF-α and NO, which regulate immune modulation and are cytotoxic to tumor cells. The butanol extract of B. adolescentis SPM0212 increased activity of the host immune system and may improve human health by helping to prevent colon cancer as a biological response modifier

  13. Preferential antitumor effect of the Src inhibitor dasatinib associated with a decreased proportion of aldehyde dehydrogenase 1-positive cells in breast cancer cells of the basal B subtype

    Directory of Open Access Journals (Sweden)

    Watanabe Mika

    2010-10-01

    Full Text Available Abstract Background Recent studies have suggested that the Src inhibitor dasatinib preferentially inhibits the growth of breast cancer cells of the basal-like subtype. To clarify this finding and further investigate combined antitumor effects of dasatinib with cytotoxic agents, a panel of breast cancer cell lines of various subtypes was treated with dasatinib and/or chemotherapeutic agents. Methods Seven human breast cancer cell lines were treated with dasatinib and/or seven chemotherapeutic agents. Effects of the treatments on c-Src activation, cell growth, cell cycle, apoptosis and the proportion of aldehyde dehydrogenase (ALDH 1-positive cells were examined. Results The 50%-growth inhibitory concentrations (IC50s of dasatinib were much lower in two basal B cell lines than those in the other cell lines. The IC50s of chemotherapeutic agents were not substantially different among the cell lines. Dasatinib enhanced antitumor activity of etoposide in the basal B cell lines. Dasatinib induced a G1-S blockade with a slight apoptosis, and a combined treatment of dasatinib with etoposide also induced a G1-S blockade in the basal B cell lines. Dasatinib decreased the expression levels of phosphorylated Src in all cell lines. Interestingly, dasatinib significantly decreased the proportion of ALDH1-positive cells in the basal B cell lines but not in the other cell lines. Conclusions The present study indicates that dasatinib preferentially inhibits the growth of breast cancer cells of the basal B subtype associated with a significant loss of putative cancer stem cell population. A combined use of dasatinib with etoposide additively inhibits their growth. Further studies targeting breast cancers of the basal B subtype using dasatinib with cytotoxic agents are warranted.

  14. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....... that transferrin is the only obligatory factor whereas growth hormone, epidermal growth factor, fibroblast growth factor, and TRH had modulating effects. A heat-labile heparin binding serum factor which stimulated thymidine incorporation but not cell proliferation was demonstrated in human serum. Measurements...

  15. Apoptotic induction activity of Dactyloctenium aegyptium (L. P.B. and Eleusine indica (L. Gaerth. extracts on human lung and cervical cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pintusorn Hansakul

    2009-08-01

    Full Text Available Dactyloctenium aegyptium (L. P.B. (Yaa paak khwaai and Eleusine indica (L. Gaerth. (Yaa teen-ka have long been used in traditional Thai medicine because of their diuretic, anti-inflamatory, and antipyretic effects. The present study examined the antiproliferative and cytotoxic effects of the hexane and butanolic extracts of these two grass species. All the grass extracts exhibited selective growth inhibition effect on human lung cancer (A549 and cervical cancer (HeLa cells relative to normal human lung MRC-5 fibroblasts with IC50 values in a range of 202 to 845 mg/ml. Apparently, HeLa cellswere more sensitive to the extracts than A549 cells. Moreover, all the extracts induced lethality in both cancer cell lines atconcentrations close to 1,000 mg/ml, indicating their selective cytotoxicity effects. ELISA assay showed that only the hexaneextract of D. aegyptium (L. P.B. and E. indica (L. Gaerth. significantly increased the apoptotic level in extract-treatedA549 cells. However, DNA ladder assay detected classic DNA ladder patterns, a characteristic feature of apoptosis, in both cancer cell lines treated with all the extracts in a dose- and time-dependent manner. Taken together, these results indicatethat the cytotoxic activity of the grass extracts against lung and cervical cancer cells is mediated through the induction ofapoptosis.

  16. MicroRNA-20b-5p inhibits platelet-derived growth factor-induced proliferation of human fetal airway smooth muscle cells by targeting signal transducer and activator of transcription 3.

    Science.gov (United States)

    Tang, Jin; Luo, Lingying

    2018-06-01

    Pediatric asthma is still a health threat to the pediatric population in recent years. The airway remodeling induced by abnormal airway smooth muscle (ASM) cell proliferation is an important cause of asthma. MicroRNAs (miRNAs) are important regulators of ASM cell proliferation. Numerous studies have reported that miR-20b-5p is a critical regulator for cell proliferation. However, whether miR-20b-5p is involved in regulating ASM cell proliferation remains unknown. In this study, we aimed to investigate the potential role of miR-20b-5p in regulating the proliferation of fetal ASM cell induced by platelet-derived growth factor (PDGF). Here, we showed that miR-20b-5p was significantly decreased in fetal ASM cells treated with PDGF. Biological experiments showed that the overexpression of miR-20b-5p inhibited the proliferation while miR-20b-5p inhibition markedly promoted the proliferation of fetal ASM cells. Bioinformatics analysis and luciferase reporter assay showed that miR-20b-5p directly targeted the 3'-UTR of signal transducer and activator of transcription 3 (STAT3). Further data showed that miR-20b-5p negatively regulated the expression of STAT3 in fetal ASM cells. Moreover, miR-20b-5p regulates the transcriptional activity of STAT3 in fetal ASM cells. Overexpression of STAT3 reversed the inhibitory effect of miR-20b-5p overexpression on fetal ASM cell proliferation while the knockdown of STAT3 abrogated the promoted effect of miR-20b-5p inhibition on fetal ASM cell proliferation. Overall, our results show that miR-20b-5p impedes PDGF-induced proliferation of fetal ASM cells through targeting STAT3. Our study suggests that miR-20b-5p may play an important role in airway remodeling during asthma and suggests that miR-20b-5p may serve as a potential therapeutic target for pediatric asthma. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Cellular Dichotomy Between Anchorage-Independent Growth Responses to bFGF and TA Reflects Molecular Switch in Commitment to Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Tan, Ruimin; Opresko, Lee K.; Quesenberry, Ryan D.; Bandyopadhyay, Somnath; Chrisler, William B.; Weber, Thomas J.

    2009-11-01

    We have investigated gene expression patterns underlying reversible and irreversible anchorage-independent growth (AIG) phenotypes to identify more sensitive markers of cell transformation for studies directed at interrogating carcinogenesis responses. In JB6 mouse epidermal cells, basic fibroblast growth factor (bFGF) induces an unusually efficient and reversible AIG response, relative to 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced AIG which is irreversible. The reversible and irreversible AIG phenotypes are characterized by largely non-overlapping global gene expression profiles. However, a subset of differentially expressed genes were identified as common to reversible and irreversible AIG phenotypes, including genes regulated in a reciprocal fashion. Hepatic leukemia factor (HLF) and D-site albumin promoter-binding protein (DBP) were increased in both bFGF and TPA soft agar colonies and selected for functional validation. Ectopic expression of human HLF and DBP in JB6 cells resulted in a marked increase in TPA- and bFGF-regulated AIG responses. HLF and DBP expression were increased in soft agar colonies arising from JB6 cells exposed to gamma radiation and in a human basal cell carcinoma tumor tissue, relative to paired non-tumor tissue. Subsequent biological network analysis suggests that many of the differentially expressed genes that are common to bFGF- and TPA-dependent AIG are regulated by c-Myc, SP-1 and HNF-4 transcription factors. Collectively, we have identified a potential molecular switch that mediates the transition from reversible to irreversible AIG.

  18. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers.

    Science.gov (United States)

    Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya

    2016-04-15

    B cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL(+)MHC class-I(Hi)CD86(Hi)B cells of unknown origin. In this article, we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. They induce expression and activation of 4-1BBL and IFN-γR1 on B1a cells to subsequently upregulate membrane TNF-α and CD86. As a result, activated B1a/4BL cells induce expression of granzyme B in CD8(+)T cells by targeting TNFR2 via membrane TNF-α and providing costimulation with CD86. Thus, for the first time, to our knowledge, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8(+)T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  19. WNT10B functional dualism: beta-catenin/Tcf-dependent growth promotion or independent suppression with deregulated expression in cancer.

    Science.gov (United States)

    Yoshikawa, Hirohide; Matsubara, Kenichi; Zhou, Xiaoling; Okamura, Shu; Kubo, Takahiko; Murase, Yaeko; Shikauchi, Yuko; Esteller, Manel; Herman, James G; Wei Wang, Xin; Harris, Curtis C

    2007-11-01

    We found aberrant DNA methylation of the WNT10B promoter region in 46% of primary hepatocellular carcinoma (HCC) and 15% of colon cancer samples. Three of 10 HCC and one of two colon cancer cell lines demonstrated low or no expression, and 5-aza-2'deoxycytidine reactivated WNT10B expression with the induction of demethylation, indicating that WNT10B is silenced by DNA methylation in some cancers, whereas WNT10B expression is up-regulated in seven of the 10 HCC cell lines and a colon cancer cell line. These results indicate that WNT10B can be deregulated by either overexpression or silencing in cancer. We found that WNT10B up-regulated beta-catenin/Tcf activity. However, WNT10B-overexpressing cells demonstrated a reduced growth rate and anchorage-independent growth that is independent of the beta-catenin/Tcf activation, because mutant beta-catenin-transduced cells did not suppress growth, and dominant-negative hTcf-4 failed to alleviate the growth suppression by WNT10B. Although WNT10B expression alone inhibits cell growth, it acts synergistically with the fibroblast growth factor (FGF) to stimulate cell growth. WNT10B is bifunctional, one function of which is involved in beta-catenin/Tcf activation, and the other function is related to the down-regulation of cell growth through a different mechanism. We suggest that FGF switches WNT10B from a negative to a positive cell growth regulator.

  20. In Vitro Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness of both Naive and Memory B Cells.

    Science.gov (United States)

    Laksono, Brigitta M; Grosserichter-Wagener, Christina; de Vries, Rory D; Langeveld, Simone A G; Brem, Maarten D; van Dongen, Jacques J M; Katsikis, Peter D; Koopmans, Marion P G; van Zelm, Menno C; de Swart, Rik L

    2018-04-15

    Measles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils to in vitro MV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (T H ) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that T H 1T H 17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression. IMPORTANCE Measles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the

  1. Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Pørneki, Ann Dorte Storm; Floridon, Charlotte

    2007-01-01

    embryonic and fetal pancreas anlage in humans. Pdx1(+) cells are found in cell clusters also expressing Serpina1 and FABP1, suggesting activation of intestinal/liver developmental programs. Moreover, Activin B up-regulates Sonic Hedgehog (Shh) and its target Gli1, which during normal development...

  2. Modulation of integrin-linked kinase (ILK expression in human oesophageal squamous cell carcinoma cell lines by the EGF and TGFβ1 growth factors

    Directory of Open Access Journals (Sweden)

    Veale Robin B

    2006-04-01

    Full Text Available Abstract Background Integrin-linked kinase (ILK is a ubiquitously expressed protein kinase that has emerged as one of the points of convergence between integrin- and growth factor-signalling pathways. Results In this study we identify the ILK isoform expressed in five human oesophageal squamous cell carcinoma cell lines of South African origin as ILK1, and demonstrate its cellular distribution. ILK expression, although similar in the majority of the cell lines, did show variation. Furthermore, the ILK expressed was shown to be catalytically functional. The effect of growth factors on ILK expression was examined. An increase in ILK expression, following EGF and TGFβ1 exposure, was a trend across all the five oesophageal carcinoma cell lines tested. Conclusion These results suggest that growth factor modulation of ILK expression relies on the internalisation/recycling of growth factor receptors and stimulation of the PI3K pathway, which may have implications with regards to cell adhesion and tumourigenesis.

  3. Curcumin inhibits interferon-α induced NF-κB and COX-2 in human A549 non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun; Kim, Joo Hyun; Park, Joon Oh; Kim, Kihyun; Kim, Won Seog; Ahn, Jin Seok; Jung, Chul Won; Park, Young Suk; Kang, Won Ki; Park, Keunchil

    2005-01-01

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-α treatment. The IFN-α-treated A549 cells showed increase in protein expression levels of NF-κB and COX-2. IFN-α induced NF-κB binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-α-induced COX-2 expression in A549 cells. Within 10 min, IFN-α rapidly induced the binding activity of a γ- 32 P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-α-induced activations of NF-κB and COX-2 were inhibited by the addition of curcumin in A549 cells

  4. Complexities in human herpesvirus-6A and -6B binding to host cells

    International Nuclear Information System (INIS)

    Pedersen, Simon Metz; Hoellsberg, Per

    2006-01-01

    Human herpesvirus-6A and -6B uses the cellular receptor CD46 for fusion and infection of the host cell. The viral glycoprotein complex gH-gL from HHV-6A binds to the short consensus repeat 2 and 3 in CD46. Although all the major isoforms of CD46 bind the virus, certain isoforms may have higher affinity than others for the virus. Within recent years, elucidation of the viral complex has identified additional HHV-6A and -6B specific glycoproteins. Thus, gH-gL associates with a gQ1-gQ2 dimer to form a heterotetrameric complex. In addition, a novel complex consisting of gH-gL-gO has been described that does not bind CD46. Accumulating evidence suggests that an additional HHV-6A and -6B receptor exists. The previous simple picture of HHV-6A/B-host cell contact therefore includes more layers of complexities on both the viral and the host cell side of the interaction

  5. CD24(hi)CD27⁺ and plasmablast-like regulatory B cells in human chronic graft-versus-host disease.

    Science.gov (United States)

    de Masson, Adèle; Bouaziz, Jean-David; Le Buanec, Hélène; Robin, Marie; O'Meara, Alix; Parquet, Nathalie; Rybojad, Michel; Hau, Estelle; Monfort, Jean-Benoît; Branchtein, Mylène; Michonneau, David; Dessirier, Valérie; Sicre de Fontbrune, Flore; Bergeron, Anne; Itzykson, Raphaël; Dhédin, Nathalie; Bengoufa, Djaouida; Peffault de Latour, Régis; Xhaard, Aliénor; Bagot, Martine; Bensussan, Armand; Socié, Gérard

    2015-03-12

    Interleukin 10 (IL-10)-producing B cells (regulatory B cells [Bregs]) regulate autoimmunity in mice and humans, and a regulatory role of IL-10-producing plasma cells has been described in mice. Dysfunction of B cells that maintain homeostasis may play a role in the pathogenesis of chronic graft-versus-host disease (cGVHD) after allogeneic stem cell transplantation. Here, we found a relation between decreased Breg frequencies and cGVHD severity. An impaired ability of B cells to produce IL-10, possibly linked to poor signal transducer and activator of transcription 3 and extracellular signal-regulated kinase phosphorylation, was found in patients with active cGVHD. IL-10 production was not confined to a single B-cell subset, but enriched in both the CD24(hi)CD27(+) and CD27(hi)CD38(hi) plasmablast B-cell compartments. In vitro plasmablast differentiation increased the frequency of IL-10-producing B cells. We confirmed that allogeneic transplant recipients had an impaired reconstitution of the memory B-cell pool. cGVHD patients had less CD24(hi)CD27(+) B cells and IL-10-producing CD24(hi)CD27(+) B cells. Patients with cGVHD had increased plasmablast frequencies but decreased IL-10-producing plasmablasts. These results suggest a role of CD24(hi)CD27(+) B-cell and plasmablast-derived IL-10 in the regulation of human cGVHD. © 2015 by The American Society of Hematology.

  6. Production of transforming growth factor α in human pancreatic cancer cells: evidence for a superagonist autocrine cycle

    International Nuclear Information System (INIS)

    Smith, J.J.; Derynck, R.; Korc, M.

    1987-01-01

    Previous work showed that cultured human pancreatic cancer cells overexpress the epidermal growth factor (EGF) receptor. In the present study, the authors sought to determine whether some of these cell lines produce transforming growth factor α (TGF-α). Utilizing a radiolabeled TGF-α cDNA in hybridization experiments, they determined that ASPC-1, T 3 M 4 , PANC-1, COLO-357, and MIA PaCa-2 cell lines expressed TGF-α mRNA. Serum-free medium conditioned by T 3 M 4 and ASPC-1 cells contained significant amounts of TGF-α protein. Although unlabeled TGF-α readily competed with 125 I-labeled EGF for binding, each cell line exhibited lower surface binding and internalization of 125 I-labeled TGF-α as compared to 125 I-labeled EGF. Both TGF-α and EGF significantly enhanced the anchorage-independent growth of PANC-1, T 3 M 4 , and ASPC-1 cells. However, TGF-α was 10- to 100-fold more potent than EGF. These findings suggest that the concomitant overexpression of EGF receptors and production of TGF-α may represent an efficient mechanism for certain cancer cells to obtain a growth advantage

  7. Impact of tofacitinib treatment on human B-cells in vitro and in vivo.

    Science.gov (United States)

    Rizzi, Marta; Lorenzetti, Raquel; Fischer, Kathleen; Staniek, Julian; Janowska, Iga; Troilo, Arianna; Strohmeier, Valentina; Erlacher, Miriam; Kunze, Mirjam; Bannert, Bettina; Kyburz, Diego; Voll, Reinhard E; Venhoff, Nils; Thiel, Jens

    2017-02-01

    B-cells are pivotal to the pathogenesis of rheumatoid arthritis and tofacitinib, a JAK inhibitor, is effective and safe in its treatment. Tofacitinib interferes with signal transduction via cytokine receptors using the common γ-chain. Despite extensive data on T-lymphocytes, the impact of tofacitinib on B-lymphocytes is poorly understood. In this study we assessed the effect of tofacitinib on B-lymphocyte differentiation and function. Tofacitinib treatment strongly impaired in vitro plasmablast development, immunoglobulin secretion and induction of B-cell fate determining transcription factors, Blimp-1, Xbp-1, and IRF-4, in naïve B-cells. Interestingly, class switch and activation-induced cytidine deaminase (AICDA) induction was only slightly reduced in activated naïve B-cells. The effect of tofacitinib on plasmablast formation, immunoglobulin secretion and proliferation was less profound, when peripheral blood B-cells, including not only naïve but also memory B-cells, were stimulated. In line with these in vitro results, the relative distribution of B-cell populations remained stable in tofacitinib treated patients. Nevertheless, a temporary increase in absolute B-cell numbers was observed 6-8 weeks after start of treatment. In addition, B-cells isolated from tofacitinib treated patients responded rapidly to in vitro activation. We demonstrate that tofacitinib has a direct impact on human naïve B-lymphocytes, independently from its effect on T-lymphocytes, by impairing their development into plasmablasts and immunoglobulin secretion. The major effect of tofacitinib on naïve B-lymphocyte development points to the potential inability of tofacitinib-treated patients to respond to novel antigens, and suggests planning vaccination strategies prior to tofacitinib treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells

    OpenAIRE

    Patwardhan, Juilee; Bhatt, Purvi

    2015-01-01

    Background: The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. Objective: To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast c...

  9. Long-Term Expandable SOX9+ Chondrogenic Ectomesenchymal Cells from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Katsutsugu Umeda

    2015-04-01

    Full Text Available Here we report the successful generation and long-term expansion of SOX9-expressing CD271+PDGFRα+CD73+ chondrogenic ectomesenchymal cells from the PAX3/SOX10/FOXD3-expressing MIXL1−CD271hiPDGFRαloCD73− neural crest-like progeny of human pluripotent stem cells in a chemically defined medium supplemented with Nodal/Activin/transforming growth factorβ (TGFβ inhibitor and fibroblast growth factor (FGF. When “primed” with TGFβ, such cells efficiently formed translucent cartilage particles, which were completely mineralized in 12 weeks in immunocompromized mice. The ectomesenchymal cells were expandable without loss of chondrogenic potential for at least 16 passages. They maintained normal karyotype for at least 10 passages and expressed genes representing embryonic progenitors (SOX4/12, LIN28A/B, cranial mesenchyme (ALX1/3/4, and chondroprogenitors (SOX9, COL2A1 of neural crest origin (SOX8/9, NGFR, NES. Ectomesenchyme is a source of many craniofacial bone and cartilage structures. The method we describe for obtaining a large quantity of human ectomesenchymal cells will help to model craniofacial disorders in vitro and potentially provide cells for the repair of craniofacial damage.

  10. Inferring the Impact of Regulatory Mechanisms that Underpin CD8+ T Cell Control of B16 Tumor Growth In vivo Using Mechanistic Models and Simulation.

    Science.gov (United States)

    Klinke, David J; Wang, Qing

    2016-01-01

    A major barrier for broadening the efficacy of immunotherapies for cancer is identifying key mechanisms that limit the efficacy of tumor infiltrating lymphocytes. Yet, identifying these mechanisms using human samples and mouse models for cancer remains a challenge. While interactions between cancer and the immune system are dynamic and non-linear, identifying the relative roles that biological components play in regulating anti-tumor immunity commonly relies on human intuition alone, which can be limited by cognitive biases. To assist natural intuition, modeling and simulation play an emerging role in identifying therapeutic mechanisms. To illustrate the approach, we developed a multi-scale mechanistic model to describe the control of tumor growth by a primary response of CD8+ T cells against defined tumor antigens using the B16 C57Bl/6 mouse model for malignant melanoma. The mechanistic model was calibrated to data obtained following adenovirus-based immunization and validated to data obtained following adoptive transfer of transgenic CD8+ T cells. More importantly, we use simulation to test whether the postulated network topology, that is the modeled biological components and their associated interactions, is sufficient to capture the observed anti-tumor immune response. Given the available data, the simulation results also provided a statistical basis for quantifying the relative importance of different mechanisms that underpin CD8+ T cell control of B16F10 growth. By identifying conditions where the postulated network topology is incomplete, we illustrate how this approach can be used as part of an iterative design-build-test cycle to expand the predictive power of the model.

  11. Exogenous regucalcin suppresses the growth of human liver cancer HepG2 cells in vitro.

    Science.gov (United States)

    Yamaguchi, Masayoshi; Murata, Tomiyasu

    2018-04-05

    Regucalcin, which its gene is localized on the X chromosome, plays a pivotal role as a suppressor protein in signal transduction in various types of cells and tissues. Regucalcin gene expression has been demonstrated to be suppressed in various tumor tissues of animal and human subjects, suggesting a potential role of regucalcin in carcinogenesis. Regucalcin, which is produced from the tissues including liver, is found to be present in the serum of human subjects and animals. This study was undertaken to determine the effects of exogenous regucalcin on the proliferation in cloned human hepatoma HepG2 cells in vitro. Proliferation of HepG2 cells was suppressed after culture with addition of regucalcin (0.01 – 10 nM) into culture medium. Exogenous regucalcin did not reveal apoptotic cell death in HepG2 cells in vitro. Suppressive effects of regucalcin on cell proliferation were not enhanced in the presence of various signaling inhibitors including tumor necrosis factor-α (TNF-α), Bay K 8644, PD98059, staurosporine, worthomannin, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) or gemcitabine, which were found to suppress the proliferation. In addition, exogenous regucalcin suppressed the formation of colonies of cultured hepatoma cells in vitro. These findings demonstrated that exogenous regucalcin exhibits a suppressive effect on the growth of human hepatoma HepG2 cells, proposing a strategy with the gene therapy for cancer treatment.

  12. A human monoclonal antibody drug and target discovery platform for B-cell chronic lymphocytic leukemia based on allogeneic hematopoietic stem cell transplantation and phage display

    OpenAIRE

    Baskar, Sivasubramanian; Suschak, Jessica M.; Samija, Ivan; Srinivasan, Ramaprasad; Childs, Richard W.; Pavletic, Steven Z.; Bishop, Michael R.; Rader, Christoph

    2009-01-01

    Allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only potentially curative treatment available for patients with B-cell chronic lymphocytic leukemia (B-CLL). Here, we show that post-alloHSCT antibody repertoires can be mined for the discovery of fully human monoclonal antibodies to B-CLL cell-surface antigens. Sera collected from B-CLL patients at defined times after alloHSCT showed selective binding to primary B-CLL cells. Pre-alloHSCT sera, donor sera, and control sera w...

  13. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation

    DEFF Research Database (Denmark)

    Kaznelson, Dorte Wissing; Bruun, Silas; Monrad, Astrid

    2004-01-01

    Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation and induc......Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation......, possibly because of conflicting growth control. Interestingly, E7/p21-induced cell death is associated with the activation of a newly identified mediator of apoptosis, namely cathepsin B. Activation of the cellular caspases is undetectable in cells undergoing E7/p21-induced apoptosis. To our knowledge...

  14. Conjugated docosahexaenoic acid suppresses KPL-1 human breast cancer cell growth in vitro and in vivo: potential mechanisms of action

    International Nuclear Information System (INIS)

    Tsujita-Kyutoku, Miki; Ogawa, Yutaka; Tsubura, Airo; Yuri, Takashi; Danbara, Naoyuki; Senzaki, Hideto; Kiyozuka, Yasuhiko; Uehara, Norihisa; Takada, Hideho; Hada, Takahiko; Miyazawa, Teruo

    2004-01-01

    The present study was conducted to examine the effect of conjugated docosahexaenoic acid (CDHA) on cell growth, cell cycle progression, mode of cell death, and expression of cell cycle regulatory and/or apoptosis-related proteins in KPL-1 human breast cancer cell line. This effect of CDHA was compared with that of docosahexaenoic acid (DHA). KPL-1 cell growth was assessed by colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; cell cycle progression and mode of cell death were examined by flow cytometry; and levels of expression of p53, p21 Cip1/Waf1 , cyclin D 1 , Bax, and Bcl-2 proteins were examined by Western blotting analysis. In vivo tumor growth was examined by injecting KPL-1 cells subcutaneously into the area of the right thoracic mammary fat pad of female athymic mice fed a CDHA diet. CDHA inhibited KPL-1 cells more effectively than did DHA (50% inhibitory concentration for 72 hours: 97 μmol/l and 270 μmol/l, respectively). With both CDHA and DHA growth inhibition was due to apoptosis, as indicated by the appearance of a sub-G 1 fraction. The apoptosis cascade involved downregulation of Bcl-2 protein; Bax expression was unchanged. Cell cycle progression was due to G 0 /G 1 arrest, which involved increased expression of p53 and p21 Cip1/Waf1 , and decreased expression of cyclin D 1 . CDHA modulated cell cycle regulatory proteins and apoptosis-related proteins in a manner similar to that of parent DHA. In the athymic mouse system 1.0% dietary CDHA, but not 0.2%, significantly suppressed growth of KPL-1 tumor cells; CDHA tended to decrease regional lymph node metastasis in a dose dependent manner. CDHA inhibited growth of KPL-1 human breast cancer cells in vitro more effectively than did DHA. The mechanisms of action involved modulation of apoptosis cascade and cell cycle progression. Dietary CDHA at 1.0% suppressed KPL-1 cell growth in the athymic mouse system

  15. Effect on growth and cell cycle kinetics of estradiol and tamoxifen on MCF-7 human breast cancer cells grown in vitro and in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Bronzert, D; Vindeløv, L L

    1989-01-01

    The effects of estradiol and tamoxifen (TAM) on the estrogen-dependent human breast cancer cell line MCF-7 grown in vitro and in nude mice were compared. The effect on growth was determined by cell number in vitro and by tumor growth curves in nude mice. The effects on the cell cycle kinetics were...... determined by repeated flow cytometric DNA analyses in vitro and in vivo and by the technique of labeled mitosis in nude mouse-grown tumors. Under in vitro conditions, estradiol induced a pronounced increase in S-phase fraction and cell number. TAM inhibited growth of MCF-7 cells with a concomitant increase...... in the G1 phase from 60% to 75%. In nude mice, MCF-7 only formed tumors in estradiol-supplemented mice. No differences were observed in growth and cell kinetics between 0.1 and 1.0 mg of estradiol. Daily i.p. injections of TAM resulted in tumor growth inhibition with shrinkage of tumors. The flow...

  16. Inhibition of human MCF-7 breast cancer cells and HT-29 colon cancer cells by rice-produced recombinant human insulin-like growth binding protein-3 (rhIGFBP-3.

    Directory of Open Access Journals (Sweden)

    Stanley C K Cheung

    Full Text Available BACKGROUND: Insulin-like growth factor binding protein-3 (IGFBP-3 is a multifunctional molecule which is closely related to cell growth, apoptosis, angiogenesis, metabolism and senescence. It combines with insulin-like growth factor-I (IGF-I to form a complex (IGF-I/IGFBP-3 that can treat growth hormone insensitivity syndrome (GHIS and reduce insulin requirement in patients with diabetes. IGFBP-3 alone has been shown to have anti-proliferation effect on numerous cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: We reported here an expression method to produce functional recombinant human IGFBP-3 (rhIGFBP-3 in transgenic rice grains. Protein sorting sequences, signal peptide and endoplasmic reticulum retention tetrapeptide (KDEL were included in constructs for enhancing rhIGFBP-3 expression. Western blot analysis showed that only the constructs with signal peptide were successfully expressed in transgenic rice grains. Both rhIGFBP-3 proteins, with or without KDEL sorting sequence inhibited the growth of MCF-7 human breast cancer cells (65.76 ± 1.72% vs 45.00 ± 0.86%, p < 0.05; 50.84 ± 1.97% vs 45.00 ± 0.86%, p < 0.01 respectively and HT-29 colon cancer cells (65.14 ± 3.84% vs 18.01 ± 13.81%, p < 0.05 and 54.7 ± 9.44% vs 18.01 ± 13.81%, p < 0.05 respectively when compared with wild type rice. CONCLUSION/SIGNIFICANCE: These findings demonstrated the feasibility of producing biological active rhIGFBP-3 in rice using a transgenic approach, which will definitely encourage more research on the therapeutic use of hIGFBP-3 in future.

  17. Baicalein inhibits the migration and invasive properties of human hepatoma cells

    International Nuclear Information System (INIS)

    Chiu, Yung-Wei; Lin, Tseng-Hsi; Huang, Wen-Shih; Teng, Chun-Yuh; Liou, Yi-Sheng; Kuo, Wu-Hsien; Lin, Wea-Lung; Huang, Hai-I; Tung, Jai-Nien; Huang, Chih-Yang; Liu, Jer-Yuh; Wang, Wen-Hung; Hwang, Jin-Ming

    2011-01-01

    Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38 mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-β. In addition, baicalein reduced the phosphorylation levels of PKCα and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: → Baicalein inhibits several essential steps in the onset of metastasis.

  18. Long non-coding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2.

    Science.gov (United States)

    Niu, Yuchun; Ma, Feng; Huang, Weimei; Fang, Shun; Li, Man; Wei, Ting; Guo, Linlang

    2017-01-09

    Taurine upregulated gene1 (TUG1) as a 7.1-kb lncRNA, has been shown to play an oncogenic role in various cancers. However, the biological functions of lncRNA TUG1 in small cell lung cancer (SCLC) remain unknown. The aim of this study is to explore the roles of TUG1 in cell growth and chemoresistance of SCLC and its possible molecular mechanism. The expression of TUG1 in thirty-three cases of SCLC tissues and SCLC cell line were examined by quantitative RT-PCR (qRT-PCR). The functional roles of TUG1 in SCLC were demonstrated by CCK8 assay, colony formation assay, wound healing assay and transwell assay, flow cytometry analysis and in vivo study through siRNA or shRNA mediated knockdown. Western blot assays were used to evaluate gene and protein expression in cell lines. Chromatin immunoprecipitation (ChIP) and RNA binding protein immunoprecipitation (RIP) were performed to confirm the molecular mechanism of TUG1 involved in cell growth and chemoresistance of small cell lung cancer. We found that TUG1 was overexpressed in SCLC tissues, and its expression was correlated with the clinical stage and the shorter survival time of SCLC patients. Moreover, downregulation of TUG1 expression could impair cell proliferation and increased cell sensitivity to anticancer drugs both in vitro and in vivo. We also discovered that TUG1 knockdown significantly promoted cell apoptosis and cell cycle arrest, and inhibited cell migration and invasion in vitro . We further demonstrated that TUG1 can regulate the expression of LIMK2b (a splice variant of LIM-kinase 2) via binding with enhancer of zeste homolog 2 (EZH2), and then promoted cell growth and chemoresistance of SCLC. Together, these results suggested that TUG1 mediates cell growth and chemoresistance of SCLC by regulating LIMK2b via EZH2.

  19. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    International Nuclear Information System (INIS)

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-01-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-α-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 μM) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-α and 5 μM sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction

  20. Caspase-1 from Human Myeloid-Derived Suppressor Cells Can Promote T Cell-Independent Tumor Proliferation.

    Science.gov (United States)

    Zeng, Qi; Fu, Juan; Korrer, Michael; Gorbounov, Mikhail; Murray, Peter J; Pardoll, Drew; Masica, David L; Kim, Young J

    2018-05-01

    Immunosuppressive myeloid-derived suppressive cells (MDSCs) are characterized by their phenotypic and functional heterogeneity. To better define their T cell-independent functions within the tumor, sorted monocytic CD14 + CD11b + HLA-DR low/- MDSCs (mMDSC) from squamous cell carcinoma patients showed upregulated caspase-1 activity, which was associated with increased IL1β and IL18 expression. In vitro studies demonstrated that mMDSCs promoted caspase-1-dependent proliferation of multiple squamous carcinoma cell lines in both human and murine systems. In vivo , growth rates of B16, MOC1, and Panc02 were significantly blunted in chimeric mice adoptively transferred with caspase-1 null bone marrow cells under T cell-depleted conditions. Adoptive transfer of wild-type Gr-1 + CD11b + MDSCs from tumor-bearing mice reversed this antitumor response, whereas caspase-1 inhibiting thalidomide-treated MDSCs phenocopied the antitumor response found in caspase-1 null mice. We further hypothesized that MDSC caspase-1 activity could promote tumor-intrinsic MyD88-dependent carcinogenesis. In mice with wild-type caspase-1, MyD88-silenced tumors displayed reduced growth rate, but in chimeric mice with caspase-1 null bone marrow cells, MyD88-silenced tumors did not display differential tumor growth rate. When we queried the TCGA database, we found that caspase-1 expression is correlated with overall survival in squamous cell carcinoma patients. Taken together, our findings demonstrated that caspase-1 in MDSCs is a direct T cell-independent mediator of tumor proliferation. Cancer Immunol Res; 6(5); 566-77. ©2018 AACR . ©2018 American Association for Cancer Research.

  1. Effects of Human Parvovirus B19 and Bocavirus VP1 Unique Region on Tight Junction of Human Airway Epithelial A549 Cells

    Science.gov (United States)

    Chiu, Chun-Ching; Shi, Ya-Fang; Yang, Jiann-Jou; Hsiao, Yuan-Chao; Tzang, Bor-Show; Hsu, Tsai-Ching

    2014-01-01

    As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity. PMID:25268969

  2. Radiosensitization by overexpression of the nonphosphorylation form of IκB-α in human glioma cells

    International Nuclear Information System (INIS)

    Honda, Naoko; Yagi, Kasumi; Ding, Gui-Rong; Miyakoshi, Junji

    2002-01-01

    To assess the role of NF-κB in cellular radiosensitivity, we constructed mutated IκB expression plasmids for SY-IκB (with mutations at residues of 32, 36 and 42) expression in human malignant glioma cells (radiosensitive MO54 and radioresistant T98 cells), giving respective cell types referred to as MO54-SY4 and T98-SY14. Both of the clones expressing SY-IκB became radiosensitive, compared with the parental MO54 and T98 cells. A treatment with herbimycin A or genistein did not change the radiosensitivity of cells expressing SY-IκB, but made both the MO54 and T98 parental cells more sensitive to ionizing radiation. A treatment with TNF-α induced DNA fragmentation and apoptosis in cells expressing SY-IκB, but not in MO54 and T98 cells. The survival after X-ray exposure of the parental MO54 cells was slightly increased by a TNF-α treatment, but that of the parental T98 cells did not change. The change in sensitivity to ultra-violet (UV) radiation and adriamycin in MO54-SY4 cells was very similar to that for X-ray sensitivity, but no change was observed in T98-SY14 cells. Significant sublethal damage repair was observed in T98 cells, whereas MO54 cells showed little repair activity. The expression of p53 was enhanced in the parental MO54 cells, while the p53 levels in the MO54-SY4, and in the parent and clonal T98 cells, did not change. Our data suggest that the serine and tyrosine phosphorylation of IκB-α may play a role in determining the radiosensitivity of malignant glioma cells. (author)

  3. Tumor cell-derived PDGF-B potentiates mouse mesenchymal stem cells-pericytes transition and recruitment through an interaction with NRP-1

    Directory of Open Access Journals (Sweden)

    Haque Inamul

    2010-08-01

    Full Text Available Abstract Background New blood vessel formation, or angiogenic switch, is an essential event in the development of solid tumors and their metastatic growth. Tumor blood vessel formation and remodeling is a complex and multi-step processes. The differentiation and recruitment of mural cells including vascular smooth muscle cells and pericytes are essential steps in tumor angiogenesis. However, the role of tumor cells in differentiation and recruitment of mural cells has not yet been fully elucidated. This study focuses on the role of human tumor cells in governing the differentiation of mouse mesenchymal stem cells (MSCs to pericytes and their recruitment in the tumor angiogenesis process. Results We show that C3H/10T1/2 mouse embryonic mesenchymal stem cells, under the influence of different tumor cell-derived conditioned media, differentiate into mature pericytes. These differentiated pericytes, in turn, are recruited to bind with capillary-like networks formed by endothelial cells on the matrigel under in vitro conditions and recruited to bind with blood vessels on gel-foam under in vivo conditions. The degree of recruitment of pericytes into in vitro neo-angiogenesis is tumor cell phenotype specific. Interestingly, invasive cells recruit less pericytes as compared to non-invasive cells. We identified tumor cell-secreted platelet-derived growth factor-B (PDGF-B as a crucial factor controlling the differentiation and recruitment processes through an interaction with neuropilin-1 (NRP-1 in mesenchymal stem cells. Conclusion These new insights into the roles of tumor cell-secreted PDGF-B-NRP-1 signaling in MSCs-fate determination may help to develop new antiangiogenic strategies to prevent the tumor growth and metastasis and result in more effective cancer therapies.

  4. 7,8-Dihydroxyflavone ameliorates high-glucose induced diabetic apoptosis in human retinal pigment epithelial cells by activating TrkB.

    Science.gov (United States)

    Yu, Xiaoyi; Liu, Qiuhong; Wang, Xiaochuan; Liu, Hong; Wang, Yan

    2018-01-01

    In diabetic retinopathy, prolonged high-level blood glucose induced significant impairments among various retinal tissues, including retinal pigment epithelial (RPE) cells. In an in vitro model of human RPE cells, we evaluated whether 7,8-Dihydroxyflavone (DHF) may effectively prevent high glucose-induced diabetic apoptosis among human RPE cells. ARPE-19 cells, a Human RPE cell line, were treated with d-glucose (50 mM) to induce apoptosis in vitro. Prior to glucose, ARPE-19 cells were pre-incubated with various concentrations of DHF. The effect of DHF on d-glucose-induced apoptosis was examined by TUNEL assay, in a concentration-dependent manner. The biological effects of DHF on Caspase-9 (Casp-9) and TrkB signaling pathways in d-glucose-injured ARPE-19 cells were evaluated by qRT-PCR and western blot (WB) assays. A TrkB antagonist, K252a, was also applied in DHF and d-glucose treated ARPE-19 cells. Possible effect of K252a blocking TrkB signaling pathway, thus reversing DHF-modulated apoptosis prevention was also examined by TUNEL and WB assays. DHF ameliorated d-glucose-induced diabetic apoptosis in ARPE-19 cells. Apoptotic factor Casp-9, at both mRNA and protein levels, were drastically inhibited by DHF in d-glucose-injured ARPE-19 cells. Also, DHF activated TrkB signaling pathway through phosphorylation. K252a dramatically reversed the preventive effect of DHF on d-glucose-induced apoptosis in ARPE-19 cells. Further investigation showed that K252a functioned through de-activating or de-phosphorylating TrkB signaling pathway. This work demonstrates that DHF, through activation of TrkB signaling pathway, has a preventive function in d-glucose-induced apoptosis in PRE cells in diabetic retinopathy. Copyright © 2017. Published by Elsevier Inc.

  5. Impacts of berberine on the growth, migration and radiosensitivity of breast cancer cells

    International Nuclear Information System (INIS)

    Zhao Chaoqian; Xu Jiaying; Jiao Yang; Hu Xudong; Che Jun; Fan Saijun

    2012-01-01

    Objective: To study the impacts of berberine on the growth, migration and radiosensitivity in human breast cancer cells. Methods: MTT assay was used to evaluate cell growth.In vitro scratch migration assay was used to determine cell migration. Annexin V assay was used to detect cell apoptosis. The distribution of cell cycle was evaluated by flow cytometry assay. Colony formation assay was used to detect the influence of berberine on cell radiosensitivity. Western blot assay was employed to measure protein expression. Results: Berberine inhibited cell growth and migration in two human breast cancer cell lines, MCF-7 and MDA-MB-231, in a dose-and time-dependent manner. Furthermore, berberine resulted in a cell cycle G 0 /G 1 arrest. Compared with control, the early apoptosis in MDA-MB-231 and MCF-7 cells treated with 40 pμmol/L of berberine was as high as 86.6% and 66.6% (t=8.79, 10.32, P<0.01), respectively. Berberine caused a dose-dependent increase in Bax and Caspase-3 protein expressions, but did not change Cyclin D1 protein expression, while suppressed the expressions of Cyclin B1 and Bcl-2 protein. As analyzed with multi-target click model fitting curves, the SER D0 of berberine-treated cells were 1.12 and 1.22 for MDA-MB-231 and MCF-7 cells respectively at the dose D 0 of X-rays. Conclusions: The berberine inhibited the growth and migration of breast cancer cells via apoptosis induction and cell cycle arrest. Moreover, berberine increases cell sensitivity to X-ray irradiation. (authors)

  6. Corruption of human follicular B-lymphocyte trafficking by a B-cell superantigen.

    Science.gov (United States)

    Borhis, Gwenoline; Viau, Muriel; Badr, Gamal; Richard, Yolande; Zouali, Moncef

    2012-05-09

    Protein A (SpA) of Staphylococcus aureus is known to target the paratope of immunoglobulins expressing V(H)3 genes, and to delete marginal zone B cells and B-1a in vivo. We have discovered that SpA endows S. aureus with the potential to subvert B-cell trafficking in the host. We found that SpA, whose Fc-binding site has been inactivated, binds essentially to naïve B cells and induces a long-lasting decrease in CXCR4 expression and in B-cell chemotaxis to CXCL12. Competition experiments indicated that SpA does not interfere with binding of CXCR4 ligands and does not directly bind to CXCR4. This conclusion is strongly supported by the inability of SpA to modulate clathrin-mediated CXCR4 internalization, which contrasts with the potent effect of anti-immunoglobin M (IgM) antibodies. Microscopy and biochemical experiments confirmed that SpA binds to the surface IgM/IgD complex and induces its clathrin-dependent internalization. Concomitantly, the SpA-induced signaling leads to protein kinase C-dependent CXCR4 downmodulation, suggesting that SpA impairs the recycling of CXCR4, a postclathrin process that leads to either degradation into lysozomes or de novo expression at the cell surface. In addition to providing novel insight into disruption of B-cell trafficking by an infectious agent, our findings may have therapeutic implications. Because CXCR4 has been associated with cancer metastasis and with certain autoimmune diseases, SpA behaves as an evolutionary tailored highly specific, chemokine receptor inhibitor that may have value in addition to conventional cytotoxic therapy in patients with various malignancies and immune-mediated diseases.

  7. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo.

    Science.gov (United States)

    Zou, Ying; Ge, Minggai; Wang, Xuemin

    2017-08-19

    Abnormal activation of PI3K-AKT-mTOR signaling is detected in human skin squamous cell carcinoma (SCC). LY3023414 is a novel, potent, and orally bio-available PI3K-AKT-mTOR inhibitor. Its activity against human skin SCC cells was tested. We demonstrated that LY3023414 was cytotoxic when added to established (A431 line) and primary (patient-derived) human skin SCC cells. LY3023414 induced G0/1-S arrest and inhibited proliferation of skin SCC cells. Moreover, LY3023414 induced activation of caspase-3/-9 and apoptosis in skin SCC cells. Intriguingly, LY3023414 was yet non-cytotoxic nor pro-apoptotic to normal human skin cells (melanocytes, keratinocytes and fibroblasts). At the molecular level, LY3023414 blocked PI3K-AKT-mTOR activation in skin SCC cells, as it dephosphorylated PI3K-AKT-mTOR substrates: P85, AKT and S6K1. In vivo studies showed that oral administration of LY3023414 at well-tolerated doses inhibited A431 xenograft tumor growth in severe combined immunodeficiency (SCID) mice. AKT-mTOR activation in LY3023414-treated tumors was also largely inhibited. Together, these results suggest that targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin SCC cell growth in vitro and in vivo, establishing the rationale for further clinical testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis.

    Science.gov (United States)

    Morgenstein, Randy M; Bratton, Benjamin P; Nguyen, Jeffrey P; Ouzounov, Nikolay; Shaevitz, Joshua W; Gitai, Zemer

    2015-10-06

    The rod shape of most bacteria requires the actin homolog, MreB. Whereas MreB was initially thought to statically define rod shape, recent studies found that MreB dynamically rotates around the cell circumference dependent on cell wall synthesis. However, the mechanism by which cytoplasmic MreB is linked to extracytoplasmic cell wall synthesis and the function of this linkage for morphogenesis has remained unclear. Here we demonstrate that the transmembrane protein RodZ mediates MreB rotation by directly or indirectly coupling MreB to cell wall synthesis enzymes. Furthermore, we map the RodZ domains that link MreB to cell wall synthesis and identify mreB mutants that suppress the shape defect of ΔrodZ without restoring rotation, uncoupling rotation from rod-like growth. Surprisingly, MreB rotation is dispensable for rod-like shape determination under standard laboratory conditions but is required for the robustness of rod shape and growth under conditions of cell wall stress.

  9. In vitro growth inhibition and cytotoxicity of Euphorbia caducifolia against four human cancer cell lines and its phytochemical characterisation.

    Science.gov (United States)

    Bano, Shaista; Siddiqui, Bina Shaheen; Farooq, Ahsana Dar; Begum, Sabira; Siddiqui, Faheema; Kashif, Muhammad; Azhar, Mudassar

    2017-12-01

    Several Euphorbia species have been used in folklore as cancer remedies, however, scientific studies on the cytotoxicity (in vitro studies) of Euphorbia caducifolia are lacking. In present study, anticancer potential of E. caducifolia aerial parts ethanol extract and its fractions were evaluated against human lung (NCI-H460), breast (MCF-7), prostate (PC-3) and cervical (HeLa) cancer cell lines, using sulphorhodamine-B in vitro cytotoxicity (in vitro studies) assay. The ethanol extract demonstrated growth inhibitory effect against all aforementioned cancer cell lines with IC 50 , 19-135 μg/mL and LC 50 , ~220 μg/mL, and its petroleum ether fraction obtained on bioactivity guided fraction showed highest activity with IC 50 , 28-70 μg/mL and LC 50 , 71 μg/mL against NCI-H460 and MCF-7 cell lines. Its phytochemicals were analysed by gas chromatography-mass spectrometry (GC-MS). The present study provides scientific justification for its traditional use against cancer.

  10. Acute human parvovirus b19 infection: cytologic diagnosis.

    Science.gov (United States)

    Sharada Raju, Rane; Nalini Vinayak, Kadgi; Madhusudan Bapat, Vishnuprasad; Preeti Balkisanji, Agrawal; Shaila Chandrakant, Puranik

    2014-09-01

    Human parvovirus B19 is highly tropic to human bone marrow and replicates only in erythroid progenitor cells. It is causative agent of transient aplastic crisis in patients with chronic haemolytic anemia. In immunocompromised patients persistent parvovirus B19 infection may develop and it manifests as pure red cell aplasia and chronic anaemia. Bone marrow is characterised morphologically by giant pronormoblast stage with little or no further maturation. We encountered a case of 6 year old HIV positive male child presented with pure red cell aplasia due to parvovirus B19 infection. Bone marrow aspiration cytology revealed giant pronormoblast with prominent intranuclear inclusions led to suspicion of parvovirus B19 infection which was confirmed by DNA PCR. This case is presented to report classical morphological features of parvovirus B19 infection rarely seen on bone marrow examination should warrant the suspicion of human parvovirus B19 infection in the setting of HIV positive patient with repeated transfusions and confirmation should be done by PCR.

  11. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Guofeng Yu

    Full Text Available As the main source of extracellular matrix proteins in tumor stroma, hepatic stellate cells (HSCs have a great impact on biological behaviors of hepatocellular carcinoma (HCC. In the present study, we have investigated a mechanism whereby HSCs modulate the chemoresistance of hepatoma cells. We used human HSC line lx-2 and chemotherapeutic agent cisplatin to investigate their effects on human HCC cell line Hep3B. The results showed that cisplatin resistance in Hep3B cells was enhanced with LX-2 CM (cultured medium exposure in vitro as well as co-injection with LX-2 cells in null mice. Meanwhile, in presence of LX-2 CM, Hep3B cells underwent epithelial to mesenchymal transition (EMT and upregulation of cancer stem cell (CSC -like properties. Besides, LX-2 cells synthesized and secreted hepatic growth factor (HGF into the CM. HGF receptor tyrosine kinase mesenchymal-epithelial transition factor (Met was activated in Hep3B cells after LX-2 CM exposure. The HGF level of LX-2 CM could be effectively reduced by using HGF neutralizing antibody. Furthermore, depletion of HGF in LX-2 CM abolished its effects on activation of Met as well as promotion of the EMT, CSC-like features and cisplatin resistance in Hep3B cells. Collectively, secreting HGF into tumor milieu, HSCs may decrease hepatoma cells sensitization to chemotherapeutic agents by promoting EMT and CSC-like features via HGF/Met signaling.

  12. Specific receptors for epidermal growth factor in human bone tumour cells and its effect on synthesis of prostaglandin E2 by cultured osteosarcoma cell line

    International Nuclear Information System (INIS)

    Hirata, Y.; Uchihashi, M.; Nakashima, H.; Fujita, T.; Matsukura, S.; Matsui, K.

    1984-01-01

    Using tumour cell lines derived from human bone tumours, specific binding sites for epidermal growth factor (EGF), a potent growth stimulator in many tissues, and its effect on synthesis of prostaglandin (PG) E 2 , a potent bone-resorbing factor, by cultured osteosarcoma cell line were studied. Three tumour cell lines, one osteosarcoma (HOSO) and two giant cell tumours of the bone (G-1 and G-2), all possessed specific binding sites for 125 I-labelled EGF: the apparent dissociation constant was approximately 4-10 x 10 -10 M and the maximal binding capacity was 50 000-80 000 sites/cell. EGF had no mitogenic effect in these cell lines. However, these cell lines did not have specific binding sites for 125 I-labelled parathyroid hormone (PTH) or calcitonin. HOSO line produced and secreted PGE 2 into medium, while no significant amount of PGE 2 was demonstrated in G-1 or G-2 line. EGF significantly stimulated PGE 2 production in HOSO line in a dose-dependent manner (0.5-50 ng/ml); its stimulatory effect was completely abolished by indomethacin, an inhibitor of PG biosynthesis. Exogenous PGE 1 significantly stimulated cyclic AMP formation in HOSO line, whereas PGFsub(2α) PTH, calcitonin, or EGF had no effect. None of these calcium-regulating hormones affected cyclic AMP generation in either G-1 of G-2 line. These data indicate that human bone tumour cells have specific EGF receptors unrelated to cell growth, and suggest that EGF may be involved in bone resorption through a PGE 2 -mediated process in human osseous tissues. (author)

  13. A Dominant-Negative PPARγ Mutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Joey Z. Liu

    2009-01-01

    Full Text Available PPARγ ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN PPARγ mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs. In quiescent CASMCs, adenovirus-expressed DN-PPARγ promoted G1→S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγ expression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT or constitutively-active (CA PPARγ inhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγ expression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγ effects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγ expression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγ promotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs.

  14. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Huarong Huang

    Full Text Available α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer.

  15. Galectin-1 Inhibitor OTX008 Induces Tumor Vessel Normalization and Tumor Growth Inhibition in Human Head and Neck Squamous Cell Carcinoma Models.

    Science.gov (United States)

    Koonce, Nathan A; Griffin, Robert J; Dings, Ruud P M

    2017-12-09

    Galectin-1 is a hypoxia-regulated protein and a prognostic marker in head and neck squamous cell carcinomas (HNSCC). Here we assessed the ability of non-peptidic galectin-1 inhibitor OTX008 to improve tumor oxygenation levels via tumor vessel normalization as well as tumor growth inhibition in two human HNSCC tumor models, the human laryngeal squamous carcinoma SQ20B and the human epithelial type 2 HEp-2. Tumor-bearing mice were treated with OTX008, Anginex, or Avastin and oxygen levels were determined by fiber-optics and molecular marker pimonidazole binding. Immuno-fluorescence was used to determine vessel normalization status. Continued OTX008 treatment caused a transient reoxygenation in SQ20B tumors peaking on day 14, while a steady increase in tumor oxygenation was observed over 21 days in the HEp-2 model. A >50% decrease in immunohistochemical staining for tumor hypoxia verified the oxygenation data measured using a partial pressure of oxygen (pO₂) probe. Additionally, OTX008 induced tumor vessel normalization as tumor pericyte coverage increased by approximately 40% without inducing any toxicity. Moreover, OTX008 inhibited tumor growth as effectively as Anginex and Avastin, except in the HEp-2 model where Avastin was found to suspend tumor growth. Galectin-1 inhibitor OTX008 transiently increased overall tumor oxygenation via vessel normalization to various degrees in both HNSCC models. These findings suggest that targeting galectin-1-e.g., by OTX008-may be an effective approach to treat cancer patients as stand-alone therapy or in combination with other standards of care.

  16. Human parvovirus B19: a mechanistic overview of infection and DNA replication

    Science.gov (United States)

    Luo, Yong; Qiu, Jianming

    2015-01-01

    Human parvovirus B19 (B19V) is a human pathogen that belongs to genus Erythroparvovirus of the Parvoviridae family, which is composed of a group of small DNA viruses with a linear single-stranded DNA genome. B19V mainly infects human erythroid progenitor cells and causes mild to severe hematological disorders in patients. However, recent clinical studies indicate that B19V also infects nonerythroid lineage cells, such as myocardial endothelial cells, and may be associated with other disease outcomes. Several cell culture systems, including permissive and semipermissive erythroid lineage cells, nonpermissive human embryonic kidney 293 cells and recently reported myocardial endothelial cells, have been used to study the mechanisms underlying B19V infection and B19V DNA replication. This review aims to summarize recent advances in B19V studies with a focus on the mechanisms of B19V tropism specific to different cell types and the cellular pathways involved in B19V DNA replication including cellular signaling transduction and cell cycle arrest. PMID:26097496

  17. Stimulation of interleukin-13 expression by human T-cell leukemia virus type 1 oncoprotein Tax via a dually active promoter element responsive to NF-kappaB and NFAT.

    Science.gov (United States)

    Silbermann, Katrin; Schneider, Grit; Grassmann, Ralph

    2008-11-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein transforms human lymphocytes and is critical for the pathogenesis of HTLV-1-induced adult T-cell leukaemia. In HTLV-transformed cells, Tax upregulates interleukin (IL)-13, a cytokine with proliferative and anti-apoptotic functions that is linked to leukaemogenesis. Tax-stimulated IL-13 is thought to result in autocrine stimulation of HTLV-infected cells and thus may be relevant to their growth. The causal transactivation of the IL-13 promoter by Tax is predominantly dependent on a nuclear factor of activated T cells (NFAT)-binding P element. Here, it was shown that the isolated IL-13 Tax-responsive element (IL13TaxRE) was sufficient to mediate IL-13 transactivation by Tax and NFAT1. However, cyclosporin A, a specific NFAT inhibitor, revealed that Tax transactivation of IL13TaxRE or wild-type IL-13 promoter was independent of NFAT and that NFAT did not contribute to IL-13 upregulation in HTLV-transformed cells. By contrast, Tax stimulation was repressible by an efficient nuclear factor (NF)-kappaB inhibitor (IkBaDN), indicating the requirement for NF-kappaB. The capacity of NF-kappaB to stimulate IL13TaxRE was demonstrated by a strong response to NF-kappaB in reporter assays and by direct binding of NF-kappaB to IL13TaxRE. Thus, IL13TaxRE in the IL-13 promoter represents a dually active promoter element responsive to NF-kappaB and NFAT. Together, these results indicate that Tax causes IL-13 upregulation in HTLV-1-infected cells via NF-kappaB.

  18. HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling.

    Science.gov (United States)

    Huang, Qingsong; Niu, Zhiguo; Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang

    2017-08-01

    Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target.

  19. Triparanol suppresses human tumor growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Xinyu [Department of Abdominal Surgical Oncology, Lab of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 (China); Han, Xingpeng [Department of Pathology, Tianjin Chest Hospital, Tianjin 300051 (China); Zhang, Fang [Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang (China); He, Miao [Life Sciences School, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Yi [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Zhi, Xiu-Yi, E-mail: xiuyizhi@yahoo.com.cn [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Zhao, Hong, E-mail: zhaohong9@sina.com [Department of Abdominal Surgical Oncology, Lab of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 (China)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Demonstrate Triparanol can block proliferation in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrate Triparanol can induce apoptosis in multiple cancer cells. Black-Right-Pointing-Pointer Proved Triparanol can inhibit Hedgehog signaling in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrated Triparanol can impede tumor growth in vivo in mouse xenograft model. -- Abstract: Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.

  20. Triparanol suppresses human tumor growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Bi, Xinyu; Han, Xingpeng; Zhang, Fang; He, Miao; Zhang, Yi; Zhi, Xiu-Yi; Zhao, Hong

    2012-01-01

    Highlights: ► Demonstrate Triparanol can block proliferation in multiple cancer cells. ► Demonstrate Triparanol can induce apoptosis in multiple cancer cells. ► Proved Triparanol can inhibit Hedgehog signaling in multiple cancer cells. ► Demonstrated Triparanol can impede tumor growth in vivo in mouse xenograft model. -- Abstract: Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.

  1. Identification of Novel Human Breast Carcinoma (MDA-MB-231) Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library.

    Science.gov (United States)

    Lenci, Elena; Innocenti, Riccardo; Biagioni, Alessio; Menchi, Gloria; Bianchini, Francesca; Trabocchi, Andrea

    2016-10-20

    The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2 H -furo[3,2- b ][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.

  2. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    International Nuclear Information System (INIS)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-01-01

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer

  3. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Hong, Darong [Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Jung, Bom; Park, Min-Ju [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Kim, Jong-Ho, E-mail: jonghokim@khu.ac.kr [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  4. CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes

    NARCIS (Netherlands)

    Hasegawa, Yuki; Tang, Dave; Takahashi, Naoko; Hayashizaki, Yoshihide; Forrest, Alistair R R; Suzuki, Harukazu; Clevers, Hans

    2014-01-01

    Standard culture of human induced pluripotent stem cells (hiPSCs) requires basic Fibroblast Growth Factor (bFGF) to maintain the pluripotent state, whereas hiPSC more closely resemble epiblast stem cells than true naïve state ES which requires LIF to maintain pluripotency. Here we show that

  5. Angiotensin II upregulates the expression of placental growth factor in human vascular endothelial cells and smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Guo Yingqiang

    2010-05-01

    Full Text Available Abstract Background Atherosclerosis is now recognized as a chronic inflammatory disease. Angiotensin II (Ang II is a critical factor in inflammatory responses, which promotes the pathogenesis of atherosclerosis. Placental growth factor (PlGF is a member of the vascular endothelial growth factor (VEGF family cytokines and is associated with inflammatory progress of atherosclerosis. However, the potential link between PlGF and Ang II has not been investigated. In the current study, whether Ang II could regulate PlGF expression, and the effect of PlGF on cell proliferation, was investigated in human vascular endothelial cells (VECs and smooth muscle cells (VSMCs. Results In growth-arrested human VECs and VSMCs, Ang II induced PlGF mRNA expression after 4 hour treatment, and peaked at 24 hours. 10-6 mol/L Ang II increased PlGF protein production after 8 hour treatment, and peaked at 24 hours. Stimulation with Ang II also induced mRNA expression of VEGF receptor-1 and -2(VEGFR-1 and -2 in these cells. The Ang II type I receptor (AT1R antagonist blocked Ang II-induced PlGF gene expression and protein production. Several intracellular signals elicited by Ang II were involved in PlGF synthesis, including activation of protein kinase C, extracellular signal-regulated kinase 1/2 (ERK1/2 and PI3-kinase. A neutralizing antibody against PlGF partially inhibited the Ang II-induced proliferation of VECs and VSMCs. However, this antibody showed little effect on the basal proliferation in these cells, whereas blocking antibody of VEGF could suppress both basal and Ang II-induced proliferation in VECs and VSMCs. Conclusion Our results showed for the first time that Ang II could induce the gene expression and protein production of PlGF in VECs and VSMCs, which might play an important role in the pathogenesis of vascular inflammation and atherosclerosis.

  6. Novel Strategy for Phenotypic Characterization of Human B Lymphocytes from Precursors to Effector Cells by Flow Cytometry.

    Directory of Open Access Journals (Sweden)

    Giovanna Clavarino

    Full Text Available A precise identification and phenotypic characterization of human B-cell subsets is of crucial importance in both basic research and medicine. In the literature, flow cytometry studies for the phenotypic characterization of B-lymphocytes are mainly focused on the description of a particular cell stage, or of specific cell stages observed in a single type of sample. In the present work, we propose a backbone of 6 antibodies (CD38, CD27, CD10, CD19, CD5 and CD45 and an efficient gating strategy to identify, in a single analysis tube, a large number of B-cell subsets covering the whole B-cell differentiation from precursors to memory and plasma cells. Furthermore, by adding two antibodies in an 8-color combination, our approach allows the analysis of the modulation of any cell surface marker of interest along B-cell differentiation. We thus developed a panel of seven 8-colour antibody combinations to phenotypically characterize B-cell subpopulations in bone marrow, peripheral blood, lymph node and cord blood samples. Beyond qualitative information provided by biparametric representations, we also quantified antigen expression on each of the identified B-cell subsets and we proposed a series of informative curves showing the modulation of seventeen cell surface markers along B-cell differentiation. Our approach by flow cytometry provides an efficient tool to obtain quantitative data on B-cell surface markers expression with a relative easy-to-handle technique that can be applied in routine explorations.

  7. FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis.

    Science.gov (United States)

    Goldie, Stephen J; Mulder, Klaas W; Tan, David Wei-Min; Lyons, Scott K; Sims, Andrew H; Watt, Fiona M

    2012-07-01

    New therapeutic strategies are needed to improve treatment of head and neck squamous cell carcinoma (HNSCC), an aggressive tumor with poor survival rates. FRMD4A is a human epidermal stem cell marker implicated previously in epithelial polarity that is upregulated in SCC cells. Here, we report that FRMD4A upregulation occurs in primary human HNSCCs where high expression levels correlate with increased risks of relapse. FRMD4A silencing decreased growth and metastasis of human SCC xenografts in skin and tongue, reduced SCC proliferation and intercellular adhesion, and stimulated caspase-3 activity and expression of terminal differentiation markers. Notably, FRMD4A attenuation caused nuclear accumulation of YAP, suggesting a potential role for FRMD4A in Hippo signaling. Treatment with the HSP90 inhibitor 17-DMAG or ligation of CD44 with hyaluronan caused nuclear depletion of FRMD4A, nuclear accumulation of YAP and reduced SCC growth and metastasis. Together, our findings suggest FRMD4A as a novel candidate therapeutic target in HNSCC based on the key role in metastatic growth we have identified. ©2012 AACR.

  8. Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines

    International Nuclear Information System (INIS)

    Girroir, Elizabeth E.; Hollingshead, Holly E.; Billin, Andrew N.; Willson, Timothy M.; Robertson, Gavin P.; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Peters, Jeffrey M.

    2008-01-01

    The development of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands for the treatment of diseases including metabolic syndrome, diabetes and obesity has been hampered due to contradictory findings on their potential safety. For example, while some reports show that ligand activation of PPARβ/δ promotes the induction of terminal differentiation and inhibition of cell growth, other reports suggest that PPARβ/δ ligands potentiate tumorigenesis by increasing cell proliferation. Some of the contradictory findings could be due in part to differences in the ligand examined, the presence or absence of serum in cell cultures, differences in cell lines or differences in the method used to quantify cell growth. For these reasons, this study examined the effect of ligand activation of PPARβ/δ on cell growth of two human cancer cell lines, MCF7 (breast cancer) and UACC903 (melanoma) in the presence or absence of serum using two highly specific PPARβ/δ ligands, GW0742 or GW501516. Culturing cells in the presence of either GW0742 or GW501516 caused upregulation of the known PPARβ/δ target gene angiopoietin-like protein 4 (ANGPTL4). Inhibition of cell growth was observed in both cell lines cultured in the presence of either GW0742 or GW501516, and the presence or absence of serum had little influence on this inhibition. Results from the present studies demonstrate that ligand activation of PPARβ/δ inhibits the growth of both MCF7 and UACC903 cell lines and provide further evidence that PPARβ/δ ligands are not mitogenic in human cancer cell lines

  9. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    Science.gov (United States)

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  10. cDNA cloning and expression of a human platelet-derived growth factor (PDGF) receptor specific for B-chain-containing PDGF molecules

    International Nuclear Information System (INIS)

    Claesson-Welsh, L.; Eriksson, A.; Moren, A.; Severinsson, L.; Ek, B.; Ostman, A.; Betsholtz, C.; Heldin, C.H.

    1988-01-01

    The structure of the human receptor for platelet-derived growth factor (PDGF) has been deduced through cDNA cloning. A 5.45-kilobase-pair cDNA clone predicts a 1,106-amino-acid polypeptide, including the cleavable signal sequence. The overall amino acid sequence similarity with the murine PDGFR receptor is 85%. After transcription of the cDNA and translation in vitro, a PDGR receptor antiserum was used to immunoprecipitate a product of predicted size, which also could be phosphorylated in vitro. Stable introduction of the cDNA into Chinese hamster ovary (CHO) cells led to the expression of a 190-kilodalton component, which was immunoprecipitated by the PDGF receptor antiserum; this most probably represents the mature PDGF receptor. Binding assays with different /sup 125/I-labeled dimeric forms of PDGF A and B chains showed that the PDGFR receptor expressed in CHO cells bound PDGF-BB and, to a lesser extent, PDGF-AB, but not PDGF-AA

  11. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    International Nuclear Information System (INIS)

    Carrasco A, H.; Cardona, W.; Espinoza C, L.; Gallardo, C.; Catalan M, K.; Cardile, V.; Lombardo, L.; Cuellar F, M.; Russo, A.

    2008-01-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p 50 values in DU-145 cells of 19.02 x 10 -6 and 21.5 x 10 -6 mol L -1 , respectively, and in KB cells of 18.11 x 10 -6 and 21.26 x 10 -6 mol L -1 , respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  12. Wnt-10b, uniquely among Wnts, promotes epithelial differentiation and shaft growth

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Moriya, Kei; Nishiofuku, Mariko; Matsuda, Ryosuke; Ishizaka, Shigeaki

    2008-01-01

    Although Wnts are expressed in hair follicles throughout life from embryo to adult, and considered to be critical for their development and maturation, their roles remain largely unknown. In the present study, we investigated the effects of Wnts (Wnt-3a, Wnt-5a, Wnt-10b, and Wnt-11) on epithelial cell differentiation using adult mouse-derived primary skin epithelial cell (MPSEC) cultures and hair growth using hair follicle organ cultures. Only Wnt-10b showed evident promotion of epithelial cell differentiation and hair shaft growth, in contrast to Wnt-3a, 5a, and 11. Our results suggest that Wnt-10b is unique and plays an important role in differentiation of epithelial cells in the hair follicle

  13. (−-Gossypol Inhibits Growth and Promotes Apoptosis of Human Head and Neck Squamous Cell Carcinoma In Vivo

    Directory of Open Access Journals (Sweden)

    Keith G. Wolter

    2006-03-01

    Full Text Available Resistance to chemotherapy is a common problem encountered in the treatment of head and neck squamous cell carcinoma (HNSCC. Chemoresistant HNSCC tumors frequently overexpress antiapoptotic proteins, such as BCI-xL. (−-Gossypol, the negative enantiomer of a cottonseed polyphenol, binds to BCI-xL and was recently been shown to inhibit HNSCC proliferation in vitro. In this study, we assessed the in vivo efficacy of (−-gossypol in an orthotopic xenograff model of HNSCC, using two human HNSCC cell lines with high BCI-xL expression levels. Both produced tumors in a murine floor-of-mouth model that mimics human HNSCC, exhibiting growth and invasion into adjacent tissues. Mice were randomized into three groups: vehicle control and two daily intraperitoneal (−-gossypol treatment groups (5 and 15 mg/kg. Tumors were measured twice weekly. In the control group, tumors grew progressively, whereas in (−-gossypol treatment groups, tumor growth was significantly suppressed. The mitotic rate in tumors from (−-gossypol-treated animals was significantly lower than that in controls, and an increase in the percentage of apoptotic cells was observed in treated tumors versus controls. Residual tumors remained growth-suppressed for 2 weeks after cessation of (−-gossypol treatment. Our results demonstrate that (−-gossypol can inhibit tumor growth in an orthotopic model of aggressive HNSCC.

  14. B Cell Tolerance in Health and Disease

    Directory of Open Access Journals (Sweden)

    Murali Gururajan

    2014-02-01

    Full Text Available B lymphocyte receptors are generated randomly during the bone marrow developmental phase of B cells. Hence, the B cell repertoire consists of both self and foreign antigen specificities necessitating specific tolerance mechanisms to eliminate self-reactive B cells. This review summarizes the major mechanisms of B cell tolerance, which include clonal deletion, anergy and receptor editing. In the bone marrow presentation of antigen in membrane bound form is more effective than soluble form and the role of dendritic cells in this process is discussed. Toll like receptor derived signals affect activation of B cells by certain ligands such as nucleic acids and have been shown to play crucial roles in the development of autoimmunity in several animal models. In the periphery availability of BAFF, a B cell survival factor plays a critical role in the survival of self-reactive B cells. Antibodies against BAFF have been found to be effective therapeutic agents in lupus like autoimmune diseases. Recent developments are targeting anergy to control the growth of chronic lymphocytic leukemia cells.

  15. Inhibition of Human Cervical Cancer Cell Growth by Ethanolic Extract of Boerhaavia diffusa Linn. (Punarnava Root

    Directory of Open Access Journals (Sweden)

    Rakhi Srivastava

    2011-01-01

    Full Text Available In Indian traditional medicine, Boerhaavia diffusa (punarnava roots have been widely used for the treatment of dyspepsia, jaundice, enlargement of spleen, abdominal pain and as an anti-stress agent. Pharmacological evaluation of the crude ethanolic extract of B. diffusa roots has been shown to possess antiproliferative and immunomodulatory properties. The extract of B. diffusa was studied for anti-proliferative effects on the growth of HeLa cells and for its effect on cell cycle. Bio-assays of extracts from B. diffusa root showed that a methanol : chloroform fraction (BDF 5 had an antiproliferative effect on HeLa cells. After 48 h of exposure, this fraction at a concentration of 200 μg mL−1 significantly reduced cell proliferation with visible morphological changes in HeLa cells. Cell cycle analysis suggests that antiproliferative effect of BDF 5 could be due to inhibition of DNA synthesis in S-phase of cell cycle in HeLa cells, whereas no significant change in cell cycle was detected in control cells. The fraction BDF 5 caused cell death via apoptosis as evident from DNA fragmentation and caspase-9 activation. Thus the extract has potential to be evaluated in detail to assess the molecular mechanism-mediated anticancer activities of this plant.

  16. Curcumin Regulates Low-Linear Energy Transfer γ-Radiation-Induced NFκB-Dependent Telomerase Activity in Human Neuroblastoma Cells

    International Nuclear Information System (INIS)

    Aravindan, Natarajan; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh; Herman, Terence S.; Natarajan, Mohan

    2011-01-01

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NFκB regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NFκB-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NFκB-dependent regulation was investigated either by luciferase reporter assays using pNFκB-, pGL3-354-, pGL3-347-, or pUSE-IκBα-Luc, p50/p65, or RelA siRNA-transfected cells. NFκB activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NFκB. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NFκB becomes functionally activated after IR and mediates TA upregulation by binding to the κB-binding region in the promoter region of the TERT gene. Consistently, elimination of the NFκB-recognition site on the telomerase promoter or inhibition of NFκB by the IκBα mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NFκB overexpressed cells. Furthermore, curcumin enhanced the IR-induced inhibition of cell survival. Conclusions: These results

  17. Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies.

    Science.gov (United States)

    Matlawska-Wasowska, K; Ward, E; Stevens, S; Wang, Y; Herbst, R; Winter, S S; Wilson, B S

    2013-06-01

    This work reports the tumoricidal effects of a novel investigational humanized anti-CD19 monoclonal antibody (Medi-551). An a-fucosylated antibody with increased affinity for human FcγRIIIA, Medi-551 is shown to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Medi-551/CD19 complexes internalize slowly (>5 h) and thus remain accessible to effector cells for prolonged periods. We evaluated in vitro ADCC and ADCP activities of primary human natural killer (NK) cells and macrophages against precursor-B (pre-B) acute lymphoblastic leukemia (ALL) cell lines and pediatric patient blasts. Fluorescent imaging studies document immunological synapses formed between anti-CD19-bound target leukemia cells and effector cells and capture the kinetics of both NK-mediated killing and macrophage phagocytosis. Genetic polymorphisms in FcγRIIIA-158F/V modulate in vitro activities of effector cells, with FcγRIIIA-158V homozygotes or heterozygotes showing the strongest activity. Medi-551 treatment of severe combined immunodeficiency (SCID) mice engrafted with human pre-B cells led to prolonged animal survival and markedly reduced disease burden in blood, liver and bone marrow. These data show that anti-CD19 antibodies effectively recruit immune cells to pre-B ALL cells and support a move forward to early phase trials in this disease.

  18. Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Yafei; Zhang, Bicheng; Zhang, Anran; Zhao, Yong; Zhao, Jie; Liu, Jian; Gao, Jianfei; Fang, Dianchun; Rao, Zhiguo

    2012-09-01

    Sorafenib is an oral multikinase inhibitor that has been proven effective as a single-agent therapy in hepatocellular carcinoma, and there is a strong rationale for investigating its use in combination with other agents. Vitamin K2 is nearly non-toxic to humans and has been shown to inhibit the growth of hepatocellular carcinoma. In this study, we evaluated the effects of a combination of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Flow cytometry, 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) and nude mouse xenograft assays were used to examine the effects of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Western blotting was used to elucidate the possible mechanisms underlying these effects. Assays for 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) revealed a strong synergistic growth-inhibitory effect between sorafenib and vitamin K2. Flow cytometry showed an increase in cell cycle arrest and apoptosis after treatment with a combination of these two drugs at low concentrations. Sorafenib-mediated inhibition of extracellular signal-regulated kinase phosphorylation was promoted by vitamin K2, and downregulation of Mcl-1, which is required for sorafenib-induced apoptosis, was observed after combined treatment. Vitamin K2 also attenuated the downregulation of p21 expression induced by sorafenib, which may represent the mechanism by which vitamin K2 promotes the inhibitory effects of sorafenib on cell proliferation. Moreover, the combination of sorafenib and vitamin K2 significantly inhibited the growth of hepatocellular carcinoma xenografts in nude mice. Our results determined that combined treatment with sorafenib and vitamin K2 can work synergistically to inhibit the growth of hepatocellular carcinoma cells. This finding raises the possibility that this combined treatment strategy might be promising as a new therapy against hepatocellular carcinoma, especially for patients

  19. Study of the effects of low-dose radiation and rhEGF on growth of cultured human epithelial cells

    International Nuclear Information System (INIS)

    Yang Jicheng; Zhao Xiaoyu; Sheng Weihua; Tang Zhongyi

    1998-01-01

    In authors' study, the method of taking skin sample, mincing and trypsinizing the sample are presented. The cells were inoculated on adherent membrane or, for sublethally injured 3T3 cells, in culture dish fed with Eargles' medium supplemented with fetal calf serum and various growth-stimulating factors. The cultures were incubated at 37 degree C in an atmosphere containing 5% CO 2 . The medium was changed every three days. The cultured cells became confluent in about two weeks. At the same time, low-dose-radiation and rhEGF were used to influence the growth of the epithelial cells and to test the effects of dosage and concentration. The results showed that low-dose-radiation in the conditions like authors' study could enhance the growth of human epithelial cells just like rhEGF, and it has synergetic effects with rhEGF. The mechanism is discussed

  20. B-cell infiltration and frequency of cytokine producing cells differ between localized and disseminated human cutaneous leishmaniases

    Directory of Open Access Journals (Sweden)

    MGS Vieira

    2002-10-01

    Full Text Available Biopsies from human localized cutaneous lesions (LCL n = 7 or disseminated lesions (DL n = 8 cases were characterized according to cellular infiltration,frequency of cytokine (IFN-g, TNF-alpha or iNOS enzyme producing cells. LCL, the most usual form of the disease with usually one or two lesions, exhibits extensive tissue damage. DL is a rare form with widespread lesions throughout the body; exhibiting poor parasite containment but less tissue damage. We demonstrated that LCL lesions exhibit higher frequency of B lymphocytes and a higher intensity of IFN-gamma expression. In both forms of the disease CD8+ were found in higher frequency than CD4+ T cells. Frequency of TNF-alpha and iNOS producing cells, as well as the frequency of CD68+ macrophages, did not differ between LCL and DL. Our findings reinforce the link between an efficient control of parasite and tissue damage, implicating higher frequency of IFN-gamma producing cells, as well as its possible counteraction by infiltrated B cells and hence possible humoral immune response in situ.

  1. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  2. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Ming-De Yan

    2015-09-01

    Full Text Available Accumulating evidence has revealed that fucoidan exhibits anti-tumor activities by arresting cell cycle and inducing apoptosis in many types of cancer cells including hepatocellular carcinoma (HCC. Exploring its effect on microRNA expression, we found that fucoidan markedly upregulated miR-29b of human HCC cells. The induction of miR-29b was accompanied with suppression of its downstream target DNMT3B in a dose-dependent manner. The reduction of luciferase activity of DNMT3B 3′-UTR reporter by fucoidan was as markedly as that by miR-29b mimic, indicating that fucoidan induced miR-29b to suppress DNMT3B. Accordingly, the mRNA and protein levels of MTSS1 (metastasis suppressor 1, a target silenced by DNMT3B, were increased after fucoidan treatment. Furthermore, fucoidan also down-regulated TGF-β receptor and Smad signaling of HCC cells. All these effects leaded to the inhibition of EMT (increased E-cadherin and decreased N-cadherin and prevention of extracellular matrix degradation (increased TIMP-1 and decreased MMP2, 9, by which the invasion activity of HCC cells was diminished. Our results demonstrate the profound effect of fucoidan not only on the regulation of miR-29b-DNMT3B-MTSS1 axis but also on the inhibition of TGF-β signaling in HCC cells, suggesting the potential of using fucoidan as integrative therapeutics against invasion and metastasis of HCC.

  3. Hibiscus sabdariffa Leaf Extract Inhibits Human Prostate Cancer Cell Invasion via Down-Regulation of Akt/NF-κB/MMP-9 Pathway

    Science.gov (United States)

    Chiu, Chun-Tang; Chen, Jing-Hsien; Chou, Fen-Pi; Lin, Hui-Hsuan

    2015-01-01

    Hibiscus sabdariffa leaf has been previously shown to possess hypoglycemic, hypolipidemic, and antioxidant effects, and induce tumor cell apoptosis. However, the molecular mechanisms involved in the anticancer activity of H. sabdariffa leaf extract (HLE) are poorly understood. The object of the study was to examine the anti-invasive potential of HLE. First, HLE was demonstrated to be rich in polyphenols. The results of wound-healing assay and in vitro transwell assay revealed that HLE dose-dependently inhibited the migration and invasion of human prostate cancer LNCaP (lymph node carcinoma of the prostate) cells under non-cytotoxic concentrations. Our results further showed that HLE exerted an inhibitory effect on the activity and expressions of matrix metalloproteinase-9 (MMP-9). The HLE-inhibited MMP-9 expression appeared to be a consequence of nuclear factor-kappaB (NF-κB) inactivation because its DNA-binding activity was suppressed by HLE. Molecular data showed all these influences of HLE might be mediated via inhibition of protein kinase B (PKB, also known as Akt)/NF-κB/MMP-9 cascade pathway, as demonstrated by the transfection of Akt1 overexpression vector. Finally, the inhibitory effect of HLE was proven by its inhibition on the growth of LNCaP cells and the expressions of metastasis-related molecular proteins in vivo. These findings suggested that the inhibition of MMP-9 expression by HLE may act through the suppression of the Akt/NF-κB signaling pathway, which in turn led to the reduced invasiveness of the cancer cells. PMID:26115086

  4. Hibiscus sabdariffa Leaf Extract Inhibits Human Prostate Cancer Cell Invasion via Down-Regulation of Akt/NF-kB/MMP-9 Pathway.

    Science.gov (United States)

    Chiu, Chun-Tang; Chen, Jing-Hsien; Chou, Fen-Pi; Lin, Hui-Hsuan

    2015-06-24

    Hibiscus sabdariffa leaf has been previously shown to possess hypoglycemic, hypolipidemic, and antioxidant effects, and induce tumor cell apoptosis. However, the molecular mechanisms involved in the anticancer activity of H. sabdariffa leaf extract (HLE) are poorly understood. The object of the study was to examine the anti-invasive potential of HLE. First, HLE was demonstrated to be rich in polyphenols. The results of wound-healing assay and in vitro transwell assay revealed that HLE dose-dependently inhibited the migration and invasion of human prostate cancer LNCaP (lymph node carcinoma of the prostate) cells under non-cytotoxic concentrations. Our results further showed that HLE exerted an inhibitory effect on the activity and expressions of matrix metalloproteinase-9 (MMP-9). The HLE-inhibited MMP-9 expression appeared to be a consequence of nuclear factor-kappaB (NF-κB) inactivation because its DNA-binding activity was suppressed by HLE. Molecular data showed all these influences of HLE might be mediated via inhibition of protein kinase B (PKB, also known as Akt)/NF-kB/MMP-9 cascade pathway, as demonstrated by the transfection of Akt1 overexpression vector. Finally, the inhibitory effect of HLE was proven by its inhibition on the growth of LNCaP cells and the expressions of metastasis-related molecular proteins in vivo. These findings suggested that the inhibition of MMP-9 expression by HLE may act through the suppression of the Akt/NF-kB signaling pathway, which in turn led to the reduced invasiveness of the cancer cells.

  5. Processive motions of MreB micro-filaments coordinate cell wall growth

    Science.gov (United States)

    Garner, Ethan

    2012-02-01

    Rod-shaped bacteria elongate by the action of cell-wall synthesis complexes linked to underlying dynamic MreB filaments, but how these proteins function to allow continued elongation as a rod remains unknown. To understand how the movement of these filaments relates to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-resolution particle tracking in Bacillus subtilis. We found that both MreB and the elongation machinery move in linear paths across the cell, moving at similar rates (˜20nm / second) and angles to the cell body, suggesting they function as single complexes. These proteins move circumferentially around the cell, principally perpendicular to its length. We find that the motions of these complexes are independent, as they can pause and reverse,and also as nearby complexes move independently in both directions across one surface of the cell. Inhibition of cell wall synthesis with antibiotics or depletions in the cell wall synthesis machinery blocked MreB movement, suggesting that the cell wall synthetic machinery is the motor in this system. We propose that bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that span the plasma membrane and insert radial hoops of new peptidoglycan during their transit.

  6. Infection of endothelial cells by common human viruses.

    Science.gov (United States)

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  7. Piper betle leaf extracts induced human hepatocellular carcinoma Hep3B cell death via MAPKs regulating the p73 pathway in vitro and in vivo.

    Science.gov (United States)

    Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Chen, Jing-Hsien; Chou, Fen-Pi

    2014-12-01

    Extracts of Piper betle leaf (PBLs) are rich in bioactive compounds with potential chemopreventive ability. In this study, Hep3B cells which are p53 null were used to investigate the anti-tumor effect of PBLs in the cell and in the xenograft model. The results revealed that PBLs (0.1 to 1 mg mL(-1)) induced a dose- and time-dependent increase of cell toxicity. The underlying mechanisms as evidenced by flow cytometry and western blot analysis showed that PBLs triggered ATM, cAbl, and p73 expressions and activated JNK and p38 pathways that subsequently led to cell cycle arrest and mitochondria-dependent apoptosis. PBLs also inhibited tumor growth in Hep3B-bearing mice via inducing the MAPK-p73 pathway. Our results demonstrated the in vitro and in vivo anti-tumor potential of PBLs, supporting their application as a novel chemopreventive agent for the treatment of human hepatocellular carcinoma (HCC) in the future via targeting the p73 pathway.

  8. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.

    Science.gov (United States)

    Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T

    2008-12-01

    Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.

  9. Inhibitory Effects of Probiotic Lactobacillus on the Growth of Human Colonic Carcinoma Cell Line HT-29.

    Science.gov (United States)

    Chen, Zhung-Yuan; Hsieh, You-Miin; Huang, Chun-Chih; Tsai, Cheng-Chih

    2017-01-10

    This study was conducted to investigate the inhibitory effect of Lactobacillus cells and supernatants on the growth of the human colon cancer cell line HT-29. Our study results indicated that the PM153 strain exhibits the best adhesion ability and the highest survival in the gastrointestinal tract simulation experiment. Furthermore, after an 8-h co-culture of PM153 and HT-29 cells, the PM153 strain can induce the secretion of nitric oxide from the HT-29 cells. In addition, after the co-culture of the BCRC17010 strain (10⁸ cfu/mL) and HT-29 cells, the Bax/Bcl-2 ratio in the HT-29 cells was 1.19, which showed a significant difference from the other control and LAB groups ( p strain exerts a pro-apoptotic effect on the HT-29 cells. Upon co-culture with HT-29 cells for 4, 8 and 12 h, the BCRC14625 strain (10⁸ cfu/mL) demonstrated a significant increase in lactate dehydrogenase (LDH) activity ( p strains have ability to inhibit the growth of the colorectal cancer cell line HT-29 Bax/Bcl-2 pathway or NO production. In summary, we demonstrated that the BCRC17010 strain, good abilities of adhesion and increased LDH release, was the best probiotic potential for inhibition of HT-29 growth amongst the seven LAB strains tested in vitro.

  10. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner.

    Science.gov (United States)

    Vasilopoulou, E; Loubière, L S; Lash, G E; Ohizua, O; McCabe, C J; Franklyn, J A; Kilby, M D; Chan, S Y

    2014-06-01

    Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. Maternal thyroid dysfunction during early pregnancy is associated with complications of malplacentation including miscarriage and pre-eclampsia. T3 regulates the proliferation and apoptosis of fetal-derived trophoblasts, as well as promotes the invasive capability of extravillous trophoblasts (EVT). We hypothesize that T3 may also have a direct impact on human maternal-derived decidual cells, which are known to exert paracrine regulation upon trophoblast behaviour and vascular development at the uteroplacental interface. This laboratory-based study used human decidua from first (8-11 weeks; n = 18) and second (12-16 weeks; n = 12) trimester surgical terminations of apparently uncomplicated pregnancies. Primary cultures of total decidual cells, and immunomagnetic bead-isolated populations of stromal-enriched (CD10+) and stromal-depleted (CD10-) cells, uterine natural killer cells (uNK cells; CD56+) and macrophages (CD14+) were assessed for thyroid hormone receptors and transporters by immunocytochemistry. Each cell population was treated with T3 (0, 1, 10, 100 nM) and assessments were made of cell viability (MTT assay) and angiogenic growth factor and cytokine secretion (immunomediated assay). The effect of decidual cell-conditioned media on EVT invasion through Matrigel(®) was evaluated. Immunocytochemistry showed the expression of thyroid hormone transporters (MCT8, MCT10) and receptors (TRα1, TRβ1) required for thyroid hormone-responsiveness in uNK cells and macrophages from the first trimester. The viability of total decidual cells and the different

  11. Identification of Novel Human Breast Carcinoma (MDA-MB-231 Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library

    Directory of Open Access Journals (Sweden)

    Elena Lenci

    2016-10-01

    Full Text Available The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2H-furo[3,2-b][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.

  12. Cell surface response of chemically transformed, malignant mouse embryonal fibroblasts and human colon cancer cells to the maturation-promoting agent, N,N-dimethylformamide

    International Nuclear Information System (INIS)

    Marks, M.E.

    1985-01-01

    The lactoperoxidase/ 125 I radioiodination procedure was used to probe the cell surface of normal, nontransformed AKR-2B mouse embryo fibroblasts and malignant, permanently methylcholanthrene-transformed AKR-2B (AKR-MCA) cells to establish the relationship between cell surface changes and transformation/differentiation in this call system. AKR-MCA cells displayed surface alterations secondary to N,N-dimethylformamide (DFM)-promoted differentiation. Growth of AKR-MCA cells in DMF virtually eliminated the 85,000 and 63,000 molecular weight surface proteins susceptible to radioiodination and increased surface material of ∼200,000 molecular weight. Thus, surface profiles of DFM-treated AKR-MCA cells were essentially identical to those of nontransformed AKR-2B cells. Experimentation was extended to a cultured human colon cancer cell line (HCT MOSER). HCT MOSER cells exposed to DMF manifested marked, reversible morphological and surface changes which occurred as a function of time of growth in DMF and DMF concentration. Interestingly, material reactive with anti-fibronectin was found on the surfaces and in the culture medium of DFM-treated HCT MOSER cells

  13. iNKT cells suppress the CD8+ T cell response to a murine Burkitt's-like B cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Ryan L Bjordahl

    Full Text Available The T cell response to B cell lymphomas differs from the majority of solid tumors in that the malignant cells themselves are derived from B lymphocytes, key players in immune response. B cell lymphomas are therefore well situated to manipulate their surrounding microenvironment to enhance tumor growth and minimize anti-tumor T cell responses. We analyzed the effect of T cells on the growth of a transplantable B cell lymphoma and found that iNKT cells suppressed the anti-tumor CD8(+ T cell response. Lymphoma cells transplanted into syngeneic wild type (WT mice or Jalpha18(-/- mice that specifically lack iNKT cells grew initially at the same rate, but only the mice lacking iNKT cells were able to reject the lymphoma. This effect was due to the enhanced activity of tumor-specific CD8(+ T cells in the absence of iNKT cells, and could be partially reversed by reconstitution of iNKT cells in Jalpha 18(-/- mice. Treatment of tumor-bearing WT mice with alpha -galactosyl ceramide, an activating ligand for iNKT cells, reduced the number of tumor-specific CD8(+ T cells. In contrast, lymphoma growth in CD1d1(-/- mice that lack both iNKT and type II NKT cells was similar to that in WT mice, suggesting that type II NKT cells are required for full activation of the anti-tumor immune response. This study reveals a tumor-promoting role for iNKT cells and suggests their capacity to inhibit the CD8(+ T cell response to B cell lymphoma by opposing the effects of type II NKT cells.

  14. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    International Nuclear Information System (INIS)

    Tao, Jun; Xiang, Jun-Jian; Li, Dan; Deng, Ning; Wang, Hong; Gong, Yi-Ping

    2010-01-01

    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10 -9 M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  15. Antitumor effects of pristimerin on human osteosarcoma cells in vitro and in vivo.

    Science.gov (United States)

    Mori, Yuki; Shirai, Toshiharu; Terauchi, Ryu; Tsuchida, Shinji; Mizoshiri, Naoki; Hayashi, Daichi; Arai, Yuji; Kishida, Tunao; Mazda, Osam; Kubo, Toshikazu

    2017-01-01

    There are very few treatments for musculoskeletal tumors, compared to other cancers; thus, novel therapeutic drugs are needed. Pristimerin (PM) is a triterpene compound isolated from plant extracts that reportedly has antitumor effects on various cancers, such as of the breast and prostate. The purpose of this study was to evaluate the antitumor effects of PM on human osteosarcoma cells. Treatment of the human osteosarcoma cell lines, MNNG and 143B, with PM led to a dose-dependent decrease in cell viability. The effects of PM on apoptosis were evaluated with the Annexin V/propidium iodide assay and analysis of caspases 3, 8, and 9 activities. Western blot analysis showed that PM caused a decrease in the expression of Akt, mTOR, and NF-κB. The volumes and weights of human osteosarcoma xenografts decreased significantly with PM treatment. The results of this study revealed that PM can inhibit human osteosarcoma growth in vitro and in vivo, and may be a novel therapeutic agent for the disease.

  16. A pathological study on overexpression of c-erbB-2, EGFR proteins in human radiation skin ulcer

    International Nuclear Information System (INIS)

    Zhao Po; Yang Zhixiang; Wang Dewen; Li Guomin; Gao Yabin

    1996-01-01

    We performed an immunohistochemical study in 25 cases of human radiation skin ulcer by using c-erbB-2, Epidermal growth factor receptor (EGFR), protein antibodies and repairing method of antigen with microwave oven. The results show that the positive rate for overexpression of c-erbB-2 oncoprotein was 92.0% (23/25), and EGFR was 73.7%(14/19). The positive position for overexpression of c-crbB-2 was mainly observed on cell membrane of squamous epithelial cells and cell plasma of fibroblasts, endotheliocytes, and leiomyocytes in media and fibrocytes in adventitia of the arterioles in mesenchyme. It is suggested that the overexpression of c-erbB-2 and EGFR proteins might be related to cancer transformation and poor healing in radiation skin ulcers

  17. Human SUV3 helicase regulates growth rate of the HeLa cells and can localize in the nucleoli.

    Science.gov (United States)

    Szewczyk, Maciej; Fedoryszak-Kuśka, Natalia; Tkaczuk, Katarzyna; Dobrucki, Jurek; Waligórska, Agnieszka; Stępień, Piotr P

    2017-01-01

    The human SUV3 helicase (SUV3, hSUV3, SUPV3L1) is a DNA/RNA unwinding enzyme belonging to the class of DexH-box helicases. It localizes predominantly in the mitochondria, where it forms an RNA-degrading complex called mitochondrial degradosome with exonuclease PNP (polynucleotide phosphorylase). Association of this complex with the polyA polymerase can modulate mitochondrial polyA tails. Silencing of the SUV3 gene was shown to inhibit the cell cycle and to induce apoptosis in human cell lines. However, since small amounts of the SUV3 helicase were found in the cell nuclei, it was not clear whether the observed phenotypes of SUV3 depletion were of mitochondrial or nuclear origin. In order to answer this question we have designed gene constructs able to inhibit the SUV3 activity exclusively in the cell nuclei. The results indicate that the observed growth rate impairment upon SUV3 depletion is due to its nuclear function(s). Unexpectedly, overexpression of the nuclear-targeted wild-type copies of the SUV3 gene resulted in a higher growth rate. In addition, we demonstrate that the SUV3 helicase can be found in the HeLa cell nucleoli, but it is not detectable in the DNA-repair foci. Our results indicate that the nucleolar-associated human SUV3 protein is an important factor in regulation of the cell cycle.

  18. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Davis Rodney

    2006-07-01

    Full Text Available Abstract Background Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF, was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. Methods We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. Results We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM or nucleolin (on the cell surfaces eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of

  19. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    International Nuclear Information System (INIS)

    Tate, Amanda; Isotani, Shuji; Bradley, Michael J; Sikes, Robert A; Davis, Rodney; Chung, Leland WK; Edlund, Magnus

    2006-01-01

    Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to

  20. Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    David M Harris

    Full Text Available Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza and the growth factors (GF granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy.