WorldWideScience

Sample records for human astrocytes morphology

  1. Cortical astrocytes exposed to tributyltin undergo morphological changes in vitro.

    Science.gov (United States)

    Mizuhashi, S; Ikegaya, Y; Nishiyama, N; Matsuki, N

    2000-11-01

    We investigated the effect of tributyltin (TBT), an endocrine-disrupting chemical, on the morphology and viability of cultured rat cortical astrocytes. Cultured astrocytes exhibited smooth and planiform morphology under normal conditions. Following exposure to TBT, however, they showed rapid morphological changes that are characterized by asteriated cell bodies and process formation in a time- and concentration-dependent manner. Higher concentrations of TBT produced progressive cell death of the astrocytes. In serum-free medium, TBT at a concentration as low as 200 nM induced the stellation. Pharmacological studies revealed that the morphological changes were alleviated by application of diverse free radical scavengers or antioxidants such as catalase, superoxide dismutase, Trolox, ascorbic acid and N-acetyl-L-cysteine, suggesting that TBT-induced stellation is caused by oxidative stress involving free radicals, particularly reactive oxygen species. Furthermore, we found that the astrocyte stellation was abolished by treatment with inhibitors of phospholipase C, mitogen-activated protein kinase kinase or tyrosine phosphatase. The data suggest that TBT causes the stellation through intracellular signaling cascades rather than its non-specific toxicity. These findings provide an important insight for reconciling the problems in assumed aversive actions of this environmental pollutant for mammals.

  2. Astrocyte calcium signal and gliotransmission in human brain tissue.

    Science.gov (United States)

    Navarrete, Marta; Perea, Gertrudis; Maglio, Laura; Pastor, Jesús; García de Sola, Rafael; Araque, Alfonso

    2013-05-01

    Brain function is recognized to rely on neuronal activity and signaling processes between neurons, whereas astrocytes are generally considered to play supportive roles for proper neuronal function. However, accumulating evidence indicates that astrocytes sense and control neuronal and synaptic activity, indicating that neuron and astrocytes reciprocally communicate. While this evidence has been obtained in experimental animal models, whether this bidirectional signaling between astrocytes and neurons occurs in human brain remains unknown. We have investigated the existence of astrocyte-neuron communication in human brain tissue, using electrophysiological and Ca(2+) imaging techniques in slices of the cortex and hippocampus obtained from biopsies from epileptic patients. Cortical and hippocampal human astrocytes displayed spontaneous Ca(2+) elevations that were independent of neuronal activity. Local application of transmitter receptor agonists or nerve electrical stimulation transiently elevated Ca(2+) in astrocytes, indicating that human astrocytes detect synaptic activity and respond to synaptically released neurotransmitters, suggesting the existence of neuron-to-astrocyte communication in human brain tissue. Electrophysiological recordings in neurons revealed the presence of slow inward currents (SICs) mediated by NMDA receptor activation. The frequency of SICs increased after local application of ATP that elevated astrocyte Ca(2+). Therefore, human astrocytes are able to release the gliotransmitter glutamate, which affect neuronal excitability through activation of NMDA receptors in neurons. These results reveal the existence of reciprocal signaling between neurons and astrocytes in human brain tissue, indicating that astrocytes are relevant in human neurophysiology and are involved in human brain function.

  3. A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells.

    Science.gov (United States)

    Magistri, Marco; Khoury, Nathalie; Mazza, Emilia Maria Cristina; Velmeshev, Dmitry; Lee, Jae K; Bicciato, Silvio; Tsoulfas, Pantelis; Faghihi, Mohammad Ali

    2016-11-01

    Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self-renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing. Here we used an unbiased transcriptomic analysis to characterize in vitro culture of human NPCs and to define the gene expression programs activated during the differentiation of these cells into astrocytes using FBS or the combination of CNTF and BMP4. Our results demonstrate that in vitro cultures of human NPCs isolated during the gliogenic phase of neurodevelopment mainly consist of radial glial cells (RGCs) and glia-restricted progenitor cells. In these cells the combination of CNTF and BMP4 activates the JAK/STAT and SMAD signaling cascades, leading to the inhibition of oligodendrocytes lineage commitment and activation of astrocytes differentiation. On the other hand, FBS-derived astrocytes have properties of reactive astrocytes. Our work suggests that in vitro culture of human NPCs represents a valuable cellular system to study human disorders characterized by impairment of astrocytes development and function. Our datasets represent an important resource for researchers studying human astrocytes development and might set the basis for the discovery of novel human-specific astrocyte markers. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Astrocytes

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Samson, Andrew J.

    2017-01-01

    Anatomy, physiology, proteomics, and genomics reveal the prospect of distinct highly specialized astrocyte subtypes within neural circuits.......Anatomy, physiology, proteomics, and genomics reveal the prospect of distinct highly specialized astrocyte subtypes within neural circuits....

  5. Human astrocytes: structure and functions in the healthy brain.

    Science.gov (United States)

    Vasile, Flora; Dossi, Elena; Rouach, Nathalie

    2017-07-01

    Data collected on astrocytes' physiology in the rodent have placed them as key regulators of synaptic, neuronal, network, and cognitive functions. While these findings proved highly valuable for our awareness and appreciation of non-neuronal cell significance in brain physiology, early structural and phylogenic investigations of human astrocytes hinted at potentially different astrocytic properties. This idea sparked interest to replicate rodent-based studies on human samples, which have revealed an analogous but enhanced involvement of astrocytes in neuronal function of the human brain. Such evidence pointed to a central role of human astrocytes in sustaining more complex information processing. Here, we review the current state of our knowledge of human astrocytes regarding their structure, gene profile, and functions, highlighting the differences with rodent astrocytes. This recent insight is essential for assessment of the relevance of findings using animal models and for comprehending the functional significance of species-specific properties of astrocytes. Moreover, since dysfunctional astrocytes have been described in many brain disorders, a more thorough understanding of human-specific astrocytic properties is crucial for better-adapted translational applications.

  6. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling.

    Directory of Open Access Journals (Sweden)

    Anna Konopka

    Full Text Available Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis, we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a "stellate"-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological

  7. Cleavage of Hyaluronan and CD44 Adhesion Molecule Regulate Astrocyte Morphology via Rac1 Signalling.

    Science.gov (United States)

    Konopka, Anna; Zeug, Andre; Skupien, Anna; Kaza, Beata; Mueller, Franziska; Chwedorowicz, Agnieszka; Ponimaskin, Evgeni; Wilczynski, Grzegorz M; Dzwonek, Joanna

    2016-01-01

    Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM) proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis), we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a "stellate"-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological changes of

  8. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers.

    Science.gov (United States)

    Lanjakornsiripan, Darin; Pior, Baek-Jun; Kawaguchi, Daichi; Furutachi, Shohei; Tahara, Tomoaki; Katsuyama, Yu; Suzuki, Yutaka; Fukazawa, Yugo; Gotoh, Yukiko

    2018-04-24

    Non-pial neocortical astrocytes have historically been thought to comprise largely a nondiverse population of protoplasmic astrocytes. Here we show that astrocytes of the mouse somatosensory cortex manifest layer-specific morphological and molecular differences. Two- and three-dimensional observations revealed that astrocytes in the different layers possess distinct morphologies as reflected by differences in cell orientation, territorial volume, and arborization. The extent of ensheathment of synaptic clefts by astrocytes in layer II/III was greater than that by those in layer VI. Moreover, differences in gene expression were observed between upper-layer and deep-layer astrocytes. Importantly, layer-specific differences in astrocyte properties were abrogated in reeler and Dab1 conditional knockout mice, in which neuronal layers are disturbed, suggesting that neuronal layers are a prerequisite for the observed morphological and molecular differences of neocortical astrocytes. This study thus demonstrates the existence of layer-specific interactions between neurons and astrocytes, which may underlie their layer-specific functions.

  9. Human astrocytes: secretome profiles of cytokines and chemokines.

    Directory of Open Access Journals (Sweden)

    Sung S Choi

    Full Text Available Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1, IL-6, IL-8 (CXCL8, MCP-1 (CCL2, MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10, MIP-1α (CCL3 and RANTES (CCL5, in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.

  10. Astrocyte morphology, heterogeneity and density in the developing African Giant Rat (Cricetomys gambianus

    Directory of Open Access Journals (Sweden)

    James Olukayode Olopade

    2015-05-01

    Full Text Available Astrocyte morphologies and heterogeneity were described in male African giant rats (AGR (Cricetomys gambianus, Waterhouse across three age groups (5 neonates, 5 juveniles and 5 adults using Silver impregnation method and immunohistochemistry against glia fibrillary acidic protein (GFAP. Immunopositive cell signaling, cell size and population were least in neonates, followed by adults and juveniles respectively. In neonates, astrocyte processes were mostly detected within the glia limitans of the mid and hind brain; their cell bodies measuring 32±4.8 µm in diameter against 91±5.4µm and 75± 1.9µm in juveniles and adults respectively. Astrocyte heterogeneity in juvenile and adult groups revealed eight subtypes to include fibrous astrocytes chiefly in the corpus callosum and brain stem, protoplasmic astrocytes in the cortex and dentate gyrus (DG; radial glia were found along the olfactory bulb (OB and subventricular zone (SVZ; velate astrocytes were mainly found in the cerebellum and hippocampus; marginal astrocytes close to the pia mater; Bergmann glia in the molecular layer of the cerebellum; perivascular and periventricular astrocytes in the cortex and third ventricle respectively. Cell counts from twelve anatomical regions of the brain were significantly higher in juveniles than in adults (p≤0.01 using unpaired student t-test in the cerebral cortex, pia, corpus callosum, rostral migratory stream (RMS, DG and cerebellum. Highest astrocyte count was found in the DG, while the least count was in the brain stem and sub cortex. Astrocytes along the periventricular layer of the OB are believed to be part of the radial glia system that transport newly formed cells towards the hippocampus and play roles in neurogenesis migration and homeostasis in the AGR. Therefore, astrocyte heterogeneity was examined across age groups in the AGR to determine whether age influences astrocytes population in different regions of the AGR brain and discuss

  11. Characterisation of the expression of NMDA receptors in human astrocytes.

    Directory of Open Access Journals (Sweden)

    Ming-Chak Lee

    Full Text Available Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS. However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN. Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.

  12. Age, environment, object recognition and morphological diversity of GFAP-immunolabeled astrocytes.

    Science.gov (United States)

    Diniz, Daniel Guerreiro; de Oliveira, Marcus Augusto; de Lima, Camila Mendes; Fôro, César Augusto Raiol; Sosthenes, Marcia Consentino Kronka; Bento-Torres, João; da Costa Vasconcelos, Pedro Fernando; Anthony, Daniel Clive; Diniz, Cristovam Wanderley Picanço

    2016-10-10

    Few studies have explored the glial response to a standard environment and how the response may be associated with age-related cognitive decline in learning and memory. Here we investigated aging and environmental influences on hippocampal-dependent tasks and on the morphology of an unbiased selected population of astrocytes from the molecular layer of dentate gyrus, which is the main target of perforant pathway. Six and twenty-month-old female, albino Swiss mice were housed, from weaning, in a standard or enriched environment, including running wheels for exercise and tested for object recognition and contextual memories. Young adult and aged subjects, independent of environment, were able to distinguish familiar from novel objects. All experimental groups, except aged mice from standard environment, distinguish stationary from displaced objects. Young adult but not aged mice, independent of environment, were able to distinguish older from recent objects. Only young mice from an enriched environment were able to distinguish novel from familiar contexts. Unbiased selected astrocytes from the molecular layer of the dentate gyrus were reconstructed in three-dimensions and classified using hierarchical cluster analysis of bimodal or multimodal morphological features. We found two morphological phenotypes of astrocytes and we designated type I the astrocytes that exhibited significantly higher values of morphological complexity as compared with type II. Complexity = [Sum of the terminal orders + Number of terminals] × [Total branch length/Number of primary branches]. On average, type I morphological complexity seems to be much more sensitive to age and environmental influences than that of type II. Indeed, aging and environmental impoverishment interact and reduce the morphological complexity of type I astrocytes at a point that they could not be distinguished anymore from type II. We suggest these two types of astrocytes may have different physiological roles

  13. Glucose Tightly Controls Morphological and Functional Properties of Astrocytes

    Czech Academy of Sciences Publication Activity Database

    Lee, Ch. Y.; Dallérac, G.; Ezan, P.; Anděrová, Miroslava; Rouach, N.

    2016-01-01

    Roč. 8, č. 85 (2016) ISSN 1663-4365 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : hippocampus * astrocytes * neuroglial interactions Subject RIV: ED - Physiology Impact factor: 4.504, year: 2016

  14. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Julia TCW

    2017-08-01

    Full Text Available Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs, via a neural progenitor cell (NPC intermediate. We evaluated this protocol across 42 NPC lines (derived from 30 individuals. Transcriptomic analysis demonstrated that hiPSC-astrocytes from four individuals are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity, and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our protocol is a reproducible, straightforward (single medium, and rapid (<30 days method to generate populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders.

  15. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse

    OpenAIRE

    Zhang, Ye; Sloan, Steven A.; Clarke, Laura E.; Caneda, Christine; Plaza, Colton A.; Blumenthal, Paul D.; Vogel, Hannes; Steinberg, Gary K.; Edwards, Michael S. B.; Li, Gordon; Duncan, John A.; Cheshier, Samuel H.; Shuer, Lawrence M.; Chang, Edward F.; Grant, Gerald A.

    2015-01-01

    The functional and molecular similarities and distinctions between human and murine astrocytes are poorly understood. Here we report the development of an immunopanning method to acutely purify astrocytes from fetal, juvenile, and adult human brains, and to maintain these cells in serum-free cultures. We found that human astrocytes have similar abilities to murine astrocytes in promoting neuronal survival, inducing functional synapse formation, and engulfing synaptosomes. In contrast to exist...

  16. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy.

    Science.gov (United States)

    Aronica, Eleonora; Zurolo, Emanuele; Iyer, Anand; de Groot, Marjolein; Anink, Jasper; Carbonell, Caterina; van Vliet, Erwin A; Baayen, Johannes C; Boison, Detlev; Gorter, Jan A

    2011-09-01

    Adenosine kinase (ADK) represents the key metabolic enzyme for the regulation of extracellular adenosine levels in the brain. In adult brain, ADK is primarily present in astrocytes. Several lines of experimental evidence support a critical role of ADK in different types of brain injury associated with astrogliosis, which is also a prominent morphologic feature of temporal lobe epilepsy (TLE). We hypothesized that dysregulation of ADK is an ubiquitous pathologic hallmark of TLE. Using immunocytochemistry and Western blot analysis, we investigated ADK protein expression in a rat model of TLE during epileptogenesis and the chronic epileptic phase and compared those findings with tissue resected from TLE patients with mesial temporal sclerosis (MTS). In rat control hippocampus and cortex, a low baseline expression of ADK was found with mainly nuclear localization. One week after the electrical induction of status epilepticus (SE), prominent up-regulation of ADK became evident in astrocytes with a characteristic cytoplasmic localization. This increase in ADK persisted at least for 3-4 months after SE in rats developing a progressive form of epilepsy. In line with the findings from the rat model, expression of astrocytic ADK was also found to be increased in the hippocampus and temporal cortex of patients with TLE. In addition, in vitro experiments in human astrocyte cultures showed that ADK expression was increased by several proinflammatory molecules (interleukin-1β and lipopolysaccharide). These results suggest that dysregulation of ADK in astrocytes is a common pathologic hallmark of TLE. Moreover, in vitro data suggest the existence of an additional layer of modulatory crosstalk between the astrocyte-based adenosine cycle and inflammation. Whether this interaction also can play a role in vivo needs to be further investigated. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  17. Astrocyte uncoupling as a cause of human temporal lobe epilepsy.

    Science.gov (United States)

    Bedner, Peter; Dupper, Alexander; Hüttmann, Kerstin; Müller, Julia; Herde, Michel K; Dublin, Pavel; Deshpande, Tushar; Schramm, Johannes; Häussler, Ute; Haas, Carola A; Henneberger, Christian; Theis, Martin; Steinhäuser, Christian

    2015-05-01

    Glial cells are now recognized as active communication partners in the central nervous system, and this new perspective has rekindled the question of their role in pathology. In the present study we analysed functional properties of astrocytes in hippocampal specimens from patients with mesial temporal lobe epilepsy without (n = 44) and with sclerosis (n = 75) combining patch clamp recording, K(+) concentration analysis, electroencephalography/video-monitoring, and fate mapping analysis. We found that the hippocampus of patients with mesial temporal lobe epilepsy with sclerosis is completely devoid of bona fide astrocytes and gap junction coupling, whereas coupled astrocytes were abundantly present in non-sclerotic specimens. To decide whether these glial changes represent cause or effect of mesial temporal lobe epilepsy with sclerosis, we developed a mouse model that reproduced key features of human mesial temporal lobe epilepsy with sclerosis. In this model, uncoupling impaired K(+) buffering and temporally preceded apoptotic neuronal death and the generation of spontaneous seizures. Uncoupling was induced through intraperitoneal injection of lipopolysaccharide, prevented in Toll-like receptor4 knockout mice and reproduced in situ through acute cytokine or lipopolysaccharide incubation. Fate mapping confirmed that in the course of mesial temporal lobe epilepsy with sclerosis, astrocytes acquire an atypical functional phenotype and lose coupling. These data suggest that astrocyte dysfunction might be a prime cause of mesial temporal lobe epilepsy with sclerosis and identify novel targets for anti-epileptogenic therapeutic intervention. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    2011-03-01

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  19. Immunocytochemical detection of the microsomal glucose-6-phosphatase in human brain astrocytes.

    Science.gov (United States)

    Bell, J E; Hume, R; Busuttil, A; Burchell, A

    1993-10-01

    Using an antibody raised against the catalytic subunit of glucose-6-phosphatase, this enzyme was immunolocalized in many astrocytes in 20 normal human brains. Double immunofluorescence studies showed co-localization of glial fibrillary acidic protein (GFAP) with glucose-6-phosphatase in astrocytes. However, not all GFAP-positive cells were also glucose-6-phosphatase positive, indicating that some astrocytes do not contain demonstrable expression of this enzyme. Reactive astrocytes in a variety of abnormal brains were strongly glucose-6-phosphatase positive, but neoplastic astrocytes were often only weakly positive. Expression of the enzyme could not be demonstrated in radial glia, neurons or oligodendroglia. Astrocytes normally contain glycogen and the demonstration that some astrocytes also contain glucose-6-phosphatase indicates that they are competent for both glycogenolysis and gluconeogenesis, which may be critical for neuronal welfare.

  20. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Tcw, Julia; Wang, Minghui; Pimenova, Anna A; Bowles, Kathryn R; Hartley, Brigham J; Lacin, Emre; Machlovi, Saima I; Abdelaal, Rawan; Karch, Celeste M; Phatnani, Hemali; Slesinger, Paul A; Zhang, Bin; Goate, Alison M; Brennand, Kristen J

    2017-08-08

    Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs), via a neural progenitor cell (NPC) intermediate. We evaluated this protocol across 42 NPC lines (derived from 30 individuals). Transcriptomic analysis demonstrated that hiPSC-astrocytes from four individuals are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity, and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our protocol is a reproducible, straightforward (single medium), and rapid (method to generate populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes

    International Nuclear Information System (INIS)

    Fang Jianhua; Acheampong, Edward; Dave, Rajnish; Wang Fengxiang; Mukhtar, Muhammad; Pomerantz, Roger J.

    2005-01-01

    Productive infection by human immunodeficiency virus type I (HIV-1) in the central nervous system (CNS) involves mainly macrophages and microglial cells. A frequency of less than 10% of human astrocytes is estimated to be infectable with HIV-1. Nonetheless, this relatively low percentage of infected astrocytes, but associated with a large total number of astrocytic cells in the CNS, makes human astrocytes a critical part in the analyses of potential HIV-1 reservoirs in vivo. Investigations in astrocytic cell lines and primary human fetal astrocytes revealed that limited HIV-1 replication in these cells resulted from low-level viral entry, transcription, viral protein processing, and virion maturation. Of note, a low ratio of unspliced versus spliced HIV-1-specific RNA was also investigated, as Rev appeared to act aberrantly in astrocytes, via loss of nuclear and/or nucleolar localization and diminished Rev-mediated function. Host cellular machinery enabling Rev function has become critical for elucidation of diminished Rev activity, especially for those factors leading to RNA metabolism. We have recently identified a DEAD-box protein, DDX1, as a Rev cellular co-factor and now have explored its potential importance in astrocytes. Cells were infected with HIV-1 pseudotyped with envelope glycoproteins of amphotropic murine leukemia viruses (MLV). Semi-quantitative reverse transcriptase-polymerase chain reactions (RT-PCR) for unspliced, singly-spliced, and multiply-spliced RNA clearly showed a lower ratio of unspliced/singly-spliced over multiply-spliced HIV-1-specific RNA in human astrocytes as compared to Rev-permissive, non-glial control cells. As well, the cellular localization of Rev in astrocytes was cytoplasmically dominant as compared to that of Rev-permissive, non-glial controls. This endogenous level of DDX1 expression in astrocytes was demonstrated directly to lead to a shift of Rev sub-cellular distribution dominance from nuclear and/or nucleolar to

  2. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  3. Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Renata Santos

    2017-06-01

    Full Text Available Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1β or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1β. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration.

  4. Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Santos, Renata; Vadodaria, Krishna C; Jaeger, Baptiste N; Mei, Arianna; Lefcochilos-Fogelquist, Sabrina; Mendes, Ana P D; Erikson, Galina; Shokhirev, Maxim; Randolph-Moore, Lynne; Fredlender, Callie; Dave, Sonia; Oefner, Ruth; Fitzpatrick, Conor; Pena, Monique; Barron, Jerika J; Ku, Manching; Denli, Ahmet M; Kerman, Bilal E; Charnay, Patrick; Kelsoe, John R; Marchetto, Maria C; Gage, Fred H

    2017-06-06

    Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs) and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1β or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1β. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Sulfocerebrosides upregulate liposome uptake in human astrocytes without inducing a proinflammatory response.

    Science.gov (United States)

    Suesca, Elizabeth; Alejo, Jose Luis; Bolaños, Natalia I; Ocampo, Jackson; Leidy, Chad; González, John M

    2013-07-01

    Astrocytes are involved in the pathogenesis of demyelinating diseases, where they actively regulate the secretion of proinflammatory factors, and trigger the recruitment of immune cells in the central nervous system (CNS). Antigen presentation of myelin-derived proteins has been shown to trigger astrocyte response, suggesting that astrocytes can directly sense demyelination. However, the direct response of astrocytes to lipid-debris generated during demyelination has not been investigated. The lipid composition of the myelin sheath is distinct, presenting significant amounts of cerebrosides, sulfocerebrosides (SCB), and ceramides. Studies have shown that microglia are activated in the presence of myelin-derived lipids, pointing to the possibility of lipid-induced astrocyte activation. In this study, a human astrocyte cell line was exposed to liposomes enriched in each myelin lipid component. Although liposome uptake was observed for all compositions, astrocytes had augmented uptake for liposomes containing sulfocerebroside (SCB). This enhanced uptake did not modify their expression of human leukocyte antigen (HLA) molecules or secretion of chemokines. This was in contrast to changes observed in astrocyte cells stimulated with IFNγ. Contrary to human monocytes, astrocytes did not internalize beads in the size-range of liposomes, indicating that liposome uptake is lipid specific. Epifluorescence microscopy corroborated that liposome uptake takes place through endocytosis. Soluble SCB were found to partially block uptake of liposomes containing this same lipid. Endocytosis was not decreased when cells were treated with cytochalasin D, but it was decreased by cold temperature incubation. The specific uptake of SCB in the absence of a proinflammatory response indicates that astrocytes may participate in the trafficking and regulation of sulfocerebroside metabolism and homeostasis in the CNS. Copyright © 2013 International Society for Advancement of Cytometry.

  6. From the Cover: AstrocytesAre Protective Against Chlorpyrifos Developmental Neurotoxicity in Human Pluripotent Stem Cell-Derived Astrocyte-Neuron Cocultures.

    Science.gov (United States)

    Wu, Xian; Yang, Xiangkun; Majumder, Anirban; Swetenburg, Raymond; Goodfellow, Forrest T; Bartlett, Michael G; Stice, Steven L

    2017-06-01

    Human neural progenitor cells are capable of independent, directed differentiation into astrocytes, oligodendrocytes and neurons and thus offer a potential cell source for developmental neurotoxicity (DNT) systems. Human neural progenitor-derived astrocyte-neuron cocultured at defined ratios mimic cellular heterogeneity and interaction in the central nervous system. Cytochrome P450 enzymes are expressed at a relatively high level in astrocytes and may play a critical role in the biotransformation of endogenous or exogenous compounds, including chlorpyrifos, an organophosphate insecticide that affects the central nervous system. P450 enzymes metabolize chlorpyrifos to chlorpyrifos-oxon, which is then metabolized primarily to 3, 5, 6-trichloropyridinol in addition to diethylphosphate and diethylthiophosphate. These end metabolites are less neurotoxic than chlorpyrifos and chlorpyrifos-oxon. Our objective was to identify the interactive role of astrocytes and neurons in chlorpyrifos-induced human DNT. In neuron-only cultures, chlorpyrifos inhibited neurite length, neurite number and branch points per neuron in a dose-dependent manner during a 48 h exposure, starting at 10 μM. However, in astrocyte-neuron cocultures, astrocytes protected neurons from the effects of chlorpyrifos at higher concentrations, up to and including 30 μM chlorpyrifos and endogenous astrocyte P450 enzymes effectively metabolized chlorpyrifos. The P450 inhibitor SKF525A partly negated the protective effect of astrocytes, allowing reduction in branch points with chlorpyrifos (10 μM). Thus, the scalable and defined astrocyte-neuron cocultures model that we established here has potentially identified a role for P450 enzymes in astrocytic neuroprotection against chlorpyrifos and provides a novel model for addressing DNT in a more accurate multicellular environment. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For

  7. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network

    OpenAIRE

    Mart?n-Jim?nez, Cynthia A.; Salazar-Barreto, Diego; Barreto, George E.; Gonz?lez, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework t...

  8. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    International Nuclear Information System (INIS)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P.

    2014-01-01

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes

  9. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada); Klegeris, Andis [Department of Biology, University of British Columbia Okanagan, Kelowna, BC (Canada); Little, Jonathan P., E-mail: jonathan.little@ubc.ca [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada)

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  10. Proteomics Analyses of Human Optic Nerve Head Astrocytes Following Biomechanical Strain*

    OpenAIRE

    Rogers, Ronan S.; Dharsee, Moyez; Ackloo, Suzanne; Sivak, Jeremy M.; Flanagan, John G.

    2011-01-01

    We investigate the role of glial cell activation in the human optic nerve caused by raised intraocular pressure, and their potential role in the development of glaucomatous optic neuropathy. To do this we present a proteomics study of the response of cultured, optic nerve head astrocytes to biomechanical strain, the magnitude and mode of strain based on previously published quantitative models. In this case, astrocytes were subjected to 3 and 12% stretches for either 2 h or 24 h. Proteomic me...

  11. Long-term neuroglobin expression of human astrocytes following brain trauma.

    Science.gov (United States)

    Chen, Xiameng; Liu, Yuan; Zhang, Lin; Zhu, Peng; Zhu, Haibiao; Yang, Yu; Guan, Peng

    2015-10-08

    Neuroglobin (Ngb), a 17 kDa monomeric protein, was initially described as a vertebrate oxygen-binding heme protein in 2000 and detected in metabolically active organs or cells, like the brain, peripheral nervous system as well as certain endocrine cells. A large array of initial experimental work reported that Ngb displayed a neuron restricted expression pattern in mammalian brains. However, growing evidence indicated astrocytes may also express Ngb under pathological conditions. To address the question whether human astrocytes express Ngb under traumatic insults, we investigated Ngb immuno-reactivity in post-mortem human brain tissues that died of acute, sub-acute and chronic brain trauma, respectively. We observed astrocytic Ngb expression in sub-acute and chronic traumatic brains rather than acute traumatic brains. Strikingly, the Ngb immuno-reactive astrocytes were still strongly detectable in groups that died 12 months after brain trauma. Our findings may imply an unexplored role of Ngb in astrocytes and the involved mechanisms were suggested to be further characterized. Also, therapeutic application of Ngb or Ngb-inducible chemical compounds in neuro-genesis or astrocytic scar forming can be expected. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Nanosecond UV lasers stimulate transient Ca2+ elevations in human hNT astrocytes.

    Science.gov (United States)

    Raos, B J; Graham, E S; Unsworth, C P

    2017-06-01

    Astrocytes respond to various stimuli resulting in intracellular Ca 2+ signals that can propagate through organized functional networks. Recent literature calls for the development of techniques that can stimulate astrocytes in a fast and highly localized manner to emulate more closely the characteristics of astrocytic Ca 2+ signals in vivo. In this article we demonstrate, for the first time, how nanosecond UV lasers are capable of reproducibly stimulating Ca 2+ transients in human hNT astrocytes. We report that laser pulses with a beam energy of 4-29 µJ generate transient increases in cytosolic Ca 2+ . These Ca 2+ transients then propagate to adjacent astrocytes as intercellular Ca 2+ waves. We propose that nanosecond laser stimulation provides a valuable tool for enabling the study of Ca 2+ dynamics in human astrocytes at both a single cell and network level. Compared to previously developed techniques nanosecond laser stimulation has the advantage of not requiring loading of photo-caged or -sensitising agents, is non-contact, enables stimulation with a high spatiotemporal resolution and is comparatively cost effective.

  13. Systematic Three-Dimensional Coculture Rapidly Recapitulates Interactions between Human Neurons and Astrocytes

    Directory of Open Access Journals (Sweden)

    Robert Krencik

    2017-12-01

    Full Text Available Summary: Human astrocytes network with neurons in dynamic ways that are still poorly defined. Our ability to model this relationship is hampered by the lack of relevant and convenient tools to recapitulate this complex interaction. To address this barrier, we have devised efficient coculture systems utilizing 3D organoid-like spheres, termed asteroids, containing pre-differentiated human pluripotent stem cell (hPSC-derived astrocytes (hAstros combined with neurons generated from hPSC-derived neural stem cells (hNeurons or directly induced via Neurogenin 2 overexpression (iNeurons. Our systematic methods rapidly produce structurally complex hAstros and synapses in high-density coculture with iNeurons in precise numbers, allowing for improved studies of neural circuit function, disease modeling, and drug screening. We conclude that these bioengineered neural circuit model systems are reliable and scalable tools to accurately study aspects of human astrocyte-neuron functional properties while being easily accessible for cell-type-specific manipulations and observations. : In this article, Krencik and colleagues show that high-density cocultures of pre-differentiated human astrocytes with induced neurons, from pluripotent stem cells, elicit mature characteristics by 3–5 weeks. This provides a faster and more defined alternative method to organoid cultures for investigating human neural circuit function. Keywords: human pluripotent stem cells, neurons, astrocytes, synapses, coculture, three-dimensional spheres, organoids, disease modeling

  14. Human glial chimeric mice reveal astrocytic dependence of JC virus infection

    DEFF Research Database (Denmark)

    Kondo, Yoichi; Windrem, Martha S; Zou, Lisa

    2014-01-01

    with humanized white matter by engrafting human glial progenitor cells (GPCs) into neonatal immunodeficient and myelin-deficient mice. Intracerebral delivery of JCV resulted in infection and subsequent demyelination of these chimeric mice. Human GPCs and astrocytes were infected more readily than...... that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection...

  15. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells

    Directory of Open Access Journals (Sweden)

    Tetsuro Yasui

    2017-06-01

    Full Text Available Human neural precursor cells (hNPCs derived from pluripotent stem cells display a high propensity for neuronal differentiation, but they require long-term culturing to differentiate efficiently into astrocytes. The mechanisms underlying this biased fate specification of hNPCs remain elusive. Here, we show that hypoxia confers astrocytic differentiation potential on hNPCs through epigenetic gene regulation, and that this was achieved by cooperation between hypoxia-inducible factor 1α and Notch signaling, accompanied by a reduction of DNA methylation level in the promoter region of a typical astrocyte-specific gene, Glial fibrillary acidic protein. Furthermore, we found that this hypoxic culture condition could be applied to rapid generation of astrocytes from Rett syndrome patient-derived hNPCs, and that these astrocytes impaired neuronal development. Thus, our findings shed further light on the molecular mechanisms regulating hNPC differentiation and provide attractive tools for the development of therapeutic strategies for treating astrocyte-mediated neurological disorders.

  16. CCL2 binding is CCR2 independent in primary adult human astrocytes.

    Science.gov (United States)

    Fouillet, A; Mawson, J; Suliman, O; Sharrack, B; Romero, I A; Woodroofe, M N

    2012-02-09

    Chemokines are low relative molecular mass proteins, which have chemoattractant actions on many cell types. The chemokine, CCL2, has been shown to play a major role in the recruitment of monocytes in central nervous system (CNS) lesions in multiple sclerosis (MS). Since resident astrocytes constitute a major source of chemokine synthesis including CCL2, we were interested to assess the regulation of CCL2 by astrocytes. We showed that CCL2 bound to the cell surface of astrocytes and binding was not modulated by inflammatory conditions. However, CCR2 protein was not detected nor was activation of the classical CCR2 downstream signaling pathways. Recent studies have shown that non-signaling decoy chemokine receptors bind and modulate the expression of chemokines at site of inflammation. Here, we show that the D6 chemokine decoy receptor is constitutively expressed by primary human adult astrocytes at both mRNA and protein level. In addition, CCL3, which binds to D6, but not CCL19, which does not bind to D6, displaced CCL2 binding to astrocytes; indicating that CCL2 may bind to this cell type via the D6 receptor. Our results suggest that CCL2 binding to primary adult human astrocytes is CCR2-independent and is likely to be mediated via the D6 decoy chemokine receptor. Therefore we propose that astrocytes are implicated in both the establishment of chemokine gradients for the migration of leukocytes into and within the CNS and in the regulation of CCL2 levels at inflammatory sites in the CNS. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Nonproductive human immunodeficiency virus type 1 infection of human fetal astrocytes: independence from CD4 and major chemokine receptors.

    Science.gov (United States)

    Sabri, F; Tresoldi, E; Di Stefano, M; Polo, S; Monaco, M C; Verani, A; Fiore, J R; Lusso, P; Major, E; Chiodi, F; Scarlatti, G

    1999-11-25

    Human immunodeficiency virus type 1 (HIV-1) infection of the brain is associated with neurological manifestations both in adults and in children. The primary target for HIV-1 infection in the brain is the microglia, but astrocytes can also be infected. We tested 26 primary HIV-1 isolates for their capacity to infect human fetal astrocytes in culture. Eight of these isolates, independent of their biological phenotype and chemokine receptor usage, were able to infect astrocytes. Although no sustained viral replication could be demonstrated, the virus was recovered by coculture with receptive cells such as macrophages or on stimulation with interleukin-1beta. To gain knowledge into the molecular events that regulate attachment and penetration of HIV-1 in astrocytes, we investigated the expression of several chemokine receptors. Fluorocytometry and calcium-mobilization assay did not provide evidence of expression of any of the major HIV-1 coreceptors, including CXCR4, CCR5, CCR3, and CCR2b, as well as the CD4 molecule on the cell surface of human fetal astrocytes. However, mRNA transcripts for CXCR4, CCR5, Bonzo/STRL33/TYMSTR, and APJ were detected by RT-PCR. Furthermore, infection of astrocytes by HIV-1 isolates with different chemokine receptor usage was not inhibited by the chemokines SDF-1beta, RANTES, MIP-1beta, or MCP-1 or by antibodies directed against the third variable region or the CD4 binding site of gp120. These data show that astrocytes can be infected by primary HIV-1 isolates via a mechanism independent of CD4 or major chemokine receptors. Furthermore, astrocytes are potential carriers of latent HIV-1 and on activation may be implicated in spreading the infection to other neighbouring cells, such as microglia or macrophages. Copyright 1999 Academic Press.

  18. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Radka Gromnicova

    Full Text Available The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier.

  19. Cultured human astrocytes secrete large cholesteryl ester- andtriglyceride-rich lipoproteins along with endothelial lipase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin; Liu, Yanzhu; Forte, Trudy M.; Chisholm, Jeffrey W.; Parks, John S.; Shachter, Neil S.

    2003-12-01

    We cultured normal human astrocytes and characterized their secreted lipoproteins. Human astrocytes secreted lipoproteins in the size range of plasma VLDL (Peak 1), LDL (Peak 2), HDL (Peak 3) and a smaller peak (Peak 4), as determined by gel filtration chromatography, nondenaturing gradient gel electrophoresis and transmission electron microscopy. Cholesterol enrichment of astrocytes led to a particular increase in Peak 1. Almost all Peak 2, 3 and 4 cholesterol and most Peak 1 cholesterol was esterified (unlike mouse astrocyte lipoproteins, which exhibited similar peaks but where cholesterol was predominantly non-esterified). Triglycerides were present at about 2/3 the level of cholesterol. LCAT was detected along with two of its activators, apolipoprotein (apo) A-IV and apoC-I. ApoA-I and apoA-II mRNA and protein were absent. ApoJ was present equally in all peaks but apoE was present predominantly in peaks 3 and 4. ApoB was not detected. The electron microscopic appearance of Peak 1 lipoproteins suggested partial lipolysis leading to the detection of a heparin-releasable triglyceride lipase consistent with endothelial lipase. The increased neuronal delivery of lipids from large lipoprotein particles, for which apoE4 has greater affinity than does apoE3, may be a mechanism whereby the apoE {var_epsilon}4 allele contributes to neurodegenerative risk.

  20. Human microglia and astrocytes express cGAS-STING viral sensing components.

    Science.gov (United States)

    Jeffries, Austin M; Marriott, Ian

    2017-09-29

    While microglia and astrocytes are known to produce key inflammatory and anti-viral mediators following infection with replicative DNA viruses, the mechanisms by which these cell types perceive such threats are poorly understood. Recently, cyclic GMP-AMP synthase (cGAS) has been identified as an important cytosolic sensor for DNA viruses and retroviruses in peripheral leukocytes. Here we confirm the ability of human microglial and astrocytic cell lines and primary human glia to respond to foreign intracellular double stranded DNA. Importantly, we provide the first demonstration that human microglia and astrocytes show robust levels of cGAS protein expression at rest and following activation. Furthermore, we show these cell types also constitutively express the critical downstream cGAS adaptor protein, stimulator of interferon genes (STING). The present finding that human glia express the principle components of the cGAS-STING pathway provides a foundation for future studies to investigate the relative importance of these molecules in clinically relevant viral CNS infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Conceptual Network Model From Sensory Neurons to Astrocytes of the Human Nervous System.

    Science.gov (United States)

    Yang, Yiqun; Yeo, Chai Kiat

    2015-07-01

    From a single-cell animal like paramecium to vertebrates like ape, the nervous system plays an important role in responding to the variations of the environment. Compared to animals, the nervous system in the human body possesses more intricate organization and utility. The nervous system anatomy has been understood progressively, yet the explanation at the cell level regarding complete information transmission is still lacking. Along the signal pathway toward the brain, an external stimulus first activates action potentials in the sensing neuron and these electric pulses transmit along the spinal nerve or cranial nerve to the neurons in the brain. Second, calcium elevation is triggered in the branch of astrocyte at the tripartite synapse. Third, the local calcium wave expands to the entire territory of the astrocyte. Finally, the calcium wave propagates to the neighboring astrocyte via gap junction channel. In our study, we integrate the existing mathematical model and biological experiments in each step of the signal transduction to establish a conceptual network model for the human nervous system. The network is composed of four layers and the communication protocols of each layer could be adapted to entities with different characterizations. We verify our simulation results against the available biological experiments and mathematical models and provide a test case of the integrated network. As the production of conscious episode in the human nervous system is still under intense research, our model serves as a useful tool to facilitate, complement and verify current and future study in human cognition.

  2. Differentiation of a medulloblastoma cell line towards an astrocytic lineage using the human T lymphotropic retrovirus-1.

    Science.gov (United States)

    Giraudon, P; Dufay, N; Hardin, H; Reboul, A; Tardy, M; Belin, M F

    1993-02-01

    Constituent cells of medulloblastoma, the most common brain tumor occurring in childhood, resemble the primitive neuroepithelial cells normally found in the developing nervous system. However, mutational events prevent their further differentiation. We used the human T cell lymphotrophic virus type 1 to activate these deregulated immature cells by means of its transactivating protein Tax. Concomitant with viral infection was a decrease in cell proliferation characterized by inhibition of [3H]thymidine incorporation and in the number of cells in the G2/M phase of the cell cycle. Morphological changes suggested that medulloblastoma cells differentiated along the astrocytic lineage. The glial phenotype was confirmed by the induction of the glial fibrillary acidic protein and the glial enzyme glutamine synthetase. A direct viral effect and/or secondary effects to viral infection via paracrine/autocrine pathways could counterbalance the maturational defect in these medulloblastoma cells.

  3. Proteomics analyses of human optic nerve head astrocytes following biomechanical strain.

    Science.gov (United States)

    Rogers, Ronan S; Dharsee, Moyez; Ackloo, Suzanne; Sivak, Jeremy M; Flanagan, John G

    2012-02-01

    We investigate the role of glial cell activation in the human optic nerve caused by raised intraocular pressure, and their potential role in the development of glaucomatous optic neuropathy. To do this we present a proteomics study of the response of cultured, optic nerve head astrocytes to biomechanical strain, the magnitude and mode of strain based on previously published quantitative models. In this case, astrocytes were subjected to 3 and 12% stretches for either 2 h or 24 h. Proteomic methods included nano-liquid chromatography, tandem mass spectrometry, and iTRAQ labeling. Using controls for both stretch and time, a six-plex iTRAQ liquid chromatography- tandem MS (LC/MS/MS) experiment yielded 573 proteins discovered at a 95% confidence limit. The pathways included transforming growth factor β1, tumor necrosis factor, caspase 3, and tumor protein p53, which have all been implicated in the activation of astrocytes and are believed to play a role in the development of glaucomatous optic neuropathy. Confirmation of the iTRAQ analysis was performed by Western blotting of various proteins of interest including ANXA 4, GOLGA2, and αB-Crystallin.

  4. Proteomics Analyses of Human Optic Nerve Head Astrocytes Following Biomechanical Strain*

    Science.gov (United States)

    Rogers, Ronan S.; Dharsee, Moyez; Ackloo, Suzanne; Sivak, Jeremy M.; Flanagan, John G.

    2012-01-01

    We investigate the role of glial cell activation in the human optic nerve caused by raised intraocular pressure, and their potential role in the development of glaucomatous optic neuropathy. To do this we present a proteomics study of the response of cultured, optic nerve head astrocytes to biomechanical strain, the magnitude and mode of strain based on previously published quantitative models. In this case, astrocytes were subjected to 3 and 12% stretches for either 2 h or 24 h. Proteomic methods included nano-liquid chromatography, tandem mass spectrometry, and iTRAQ labeling. Using controls for both stretch and time, a six-plex iTRAQ liquid chromatography- tandem MS (LC/MS/MS) experiment yielded 573 proteins discovered at a 95% confidence limit. The pathways included transforming growth factor β1, tumor necrosis factor, caspase 3, and tumor protein p53, which have all been implicated in the activation of astrocytes and are believed to play a role in the development of glaucomatous optic neuropathy. Confirmation of the iTRAQ analysis was performed by Western blotting of various proteins of interest including ANXA 4, GOLGA2, and αB-Crystallin. PMID:22126795

  5. Identification of gene products suppressed by human immunodeficiency virus type 1 infection or gp120 exposure of primary human astrocytes by rapid subtraction hybridization.

    Science.gov (United States)

    Su, Zao-Zhong; Kang, Dong-Chul; Chen, Yinming; Pekarskaya, Olga; Chao, Wei; Volsky, David J; Fisher, Paul B

    2003-06-01

    Neurodegeneration and human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) are the major disease manifestations of HIV-1 colonization of the central nervous system (CNS). In the brain, HIV-1 replicates in microglial cells and infiltrating macrophages and it persists in a low-productive, noncytolytic state in astrocytes. Astrocytes play critical roles in the maintenance of the brain microenvironment, responses to injury, and in neuronal signal transmission, and disruption of these functions by HIV-1 could contribute to HAD. To better understand the potential effects of HIV-1 on astrocyte biology, the authors investigated changes in gene expression using an efficient and sensitive rapid subtraction hybridization approach, RaSH. Primary human astrocytes were isolated from abortus brain tissue, low-passage cells were infected with HIV-1 or mock infected, and total cellular RNAs were isolated at multiple time points over a period of 1 week. This approach is designed to identify gene products modulated early and late after HIV-1 infection and limits the cloning of genes displaying normal cell-cycle fluctuations in astrocytes. By subtracting temporal cDNAs derived from HIV-1-infected astrocytes from temporal cDNAs made from uninfected cells, 10 genes displaying reduced expression in infected cells, termed astrocyte suppressed genes (ASGs), were identified and their suppression was confirmed by Northern blot hybridization. Both known and novel ASGs, not reported in current DNA databases, that are down-regulated by HIV-1 infection are described. Northern blotting confirms suppression of the same panel of ASGs by treatment of astrocytes with recombinant HIV-1 envelope glycoprotein, gp120. These results extend our previous analysis of astrocyte genes induced or enhanced by HIV-1 infection and together they suggest that HIV-1 and viral proteins have profound effects on astrocyte physiology, which may influence their function in the CNS.

  6. Distinct morphology and current patterns of astrocytes in the rat hippocampus after global cerebral ischemia

    Czech Academy of Sciences Publication Activity Database

    Anděrová, Miroslava; Pivoňková, Helena; Benešová, Jana; Butenko, Olena; Chvátal, Alexandr

    2009-01-01

    Roč. 57, č. 13 (2009), S58-S59 ISSN 0894-1491. [European Meeting on Glia l Cells in Health and Disease /9./. 09.09.2009-12.09.2009, Paris] Institutional research plan: CEZ:AV0Z50390703 Keywords : Hippocampus * Morphology Subject RIV: FH - Neurology

  7. Patterning of functional human astrocytes onto parylene-C/SiO2 substrates for the study of Ca2+ dynamics in astrocytic networks

    Science.gov (United States)

    Raos, B. J.; Simpson, M. C.; Doyle, C. S.; Murray, A. F.; Graham, E. S.; Unsworth, C. P.

    2018-06-01

    Objective. Recent literature suggests that astrocytes form organized functional networks and communicate through transient changes in cytosolic Ca2+. Traditional techniques to investigate network activity, such as pharmacological blocking or genetic knockout, are difficult to restrict to individual cells. The objective of this work is to develop cell-patterning techniques to physically manipulate astrocytic interactions to enable the study of Ca2+ in astrocytic networks. Approach. We investigate how an in vitro cell-patterning platform that utilizes geometric patterns of parylene-C on SiO2 can be used to physically isolate single astrocytes and small astrocytic networks. Main results. We report that single astrocytes are effectively isolated on 75  ×  75 µm square parylene nodes, whereas multi-cellular astrocytic networks are isolated on larger nodes, with the mean number of astrocytes per cluster increasing as a function of node size. Additionally, we report that astrocytes in small multi-cellular clusters exhibit spatio-temporal clustering of Ca2+ transients. Finally, we report that the frequency and regularity of Ca2+ transients was positively correlated with astrocyte connectivity. Significance. The significance of this work is to demonstrate how patterning hNT astrocytes replicates spatio-temporal clustering of Ca2+ signalling that is observed in vivo but not in dissociated in vitro cultures. We therefore highlight the importance of the structure of astrocytic networks in determining ensemble Ca2+ behaviour.

  8. Deciphering the Astrocyte Reaction in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Beatriz G. Perez-Nievas

    2018-04-01

    Full Text Available Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer’s disease (AD patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.

  9. A transcriptome-based assessment of the astrocytic dystrophin-associated complex in the developing human brain.

    Science.gov (United States)

    Simon, Matthew J; Murchison, Charles; Iliff, Jeffrey J

    2018-02-01

    Astrocytes play a critical role in regulating the interface between the cerebral vasculature and the central nervous system. Contributing to this is the astrocytic endfoot domain, a specialized structure that ensheathes the entirety of the vasculature and mediates signaling between endothelial cells, pericytes, and neurons. The astrocytic endfoot has been implicated as a critical element of the glymphatic pathway, and changes in protein expression profiles in this cellular domain are linked to Alzheimer's disease pathology. Despite this, basic physiological properties of this structure remain poorly understood including the developmental timing of its formation, and the protein components that localize there to mediate its functions. Here we use human transcriptome data from male and female subjects across several developmental stages and brain regions to characterize the gene expression profile of the dystrophin-associated complex (DAC), a known structural component of the astrocytic endfoot that supports perivascular localization of the astroglial water channel aquaporin-4. Transcriptomic profiling is also used to define genes exhibiting parallel expression profiles to DAC elements, generating a pool of candidate genes that encode gene products that may contribute to the physiological function of the perivascular astrocytic endfoot domain. We found that several genes encoding transporter proteins are transcriptionally associated with DAC genes. © 2017 Wiley Periodicals, Inc.

  10. Hippocampal Atrophy Following Subarachnoid Hemorrhage Correlates with Disruption of Astrocyte Morphology and Capillary Coverage by AQP4

    DEFF Research Database (Denmark)

    Anzabi, Maryam; Ardalan, Maryam; Iversen, Nina Kerting

    2018-01-01

    Despite successful management of ruptured intracranial aneurysm following subarachnoid hemorrhage (SAH), delayed cerebral ischemia (DCI) remains the main cause of high mortality and morbidity in patients who survive the initial bleeding. Astrocytes play a key role in neurovascular coupling...

  11. Neurosphere based differentiation of human iPSC improves astrocyte differentiation

    DEFF Research Database (Denmark)

    Zhou, Shuling; Szczesna, Karolina; Ochalek, Anna

    2016-01-01

    Neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) are traditionally maintained and proliferated utilizing two-dimensional (2D) adherent monolayer culture systems. However, NPCs cultured using this system hardly reflect the intrinsic spatial development...... of brain tissue. In this study, we determined that culturing iPSC-derived NPCs as three-dimensional (3D) floating neurospheres resulted in increased expression of the neural progenitor cell (NPC) markers, PAX6 and NESTIN. Expansion of NPCs in 3D culture methods also resulted in a more homogenous PAX6...... expression when compared to 2D culture methods. Furthermore, the 3D propagation method for NPCs resulted in a significant higher expression of the astrocyte markers  GFAP and aquaporin 4 (AQP4) in the differentiated cells. Thus, our 3D propagation method could constitute a useful tool to promote NPC...

  12. Astrocytes in physiological aging and Alzheimer's disease.

    Science.gov (United States)

    Rodríguez-Arellano, J J; Parpura, V; Zorec, R; Verkhratsky, A

    2016-05-26

    Astrocytes are fundamental for homoeostasis, defence and regeneration of the central nervous system. Loss of astroglial function and astroglial reactivity contributes to the aging of the brain and to neurodegenerative diseases. Changes in astroglia in aging and neurodegeneration are highly heterogeneous and region-specific. In animal models of Alzheimer's disease (AD) astrocytes undergo degeneration and atrophy at the early stages of pathological progression, which possibly may alter the homeostatic reserve of the brain and contribute to early cognitive deficits. At later stages of AD reactive astrocytes are associated with neurite plaques, the feature commonly found in animal models and in human diseased tissue. In animal models of the AD reactive astrogliosis develops in some (e.g. in the hippocampus) but not in all regions of the brain. For instance, in entorhinal and prefrontal cortices astrocytes do not mount gliotic response to emerging β-amyloid deposits. These deficits in reactivity coincide with higher vulnerability of these regions to AD-type pathology. Astroglial morphology and function can be regulated through environmental stimulation and/or medication suggesting that astrocytes can be regarded as a target for therapies aimed at the prevention and cure of neurodegenerative disorders. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down's syndrome.

    Directory of Open Access Journals (Sweden)

    Octavio Garcia

    2010-12-01

    Full Text Available Down's syndrome (DS is the most common genetic cause of mental retardation. Reduced number and aberrant architecture of dendritic spines are common features of DS neuropathology. However, the mechanisms involved in DS spine alterations are not known. In addition to a relevant role in synapse formation and maintenance, astrocytes can regulate spine dynamics by releasing soluble factors or by physical contact with neurons. We have previously shown impaired mitochondrial function in DS astrocytes leading to metabolic alterations in protein processing and secretion. In this study, we investigated whether deficits in astrocyte function contribute to DS spine pathology.Using a human astrocyte/rat hippocampal neuron coculture, we found that DS astrocytes are directly involved in the development of spine malformations and reduced synaptic density. We also show that thrombospondin 1 (TSP-1, an astrocyte-secreted protein, possesses a potent modulatory effect on spine number and morphology, and that both DS brains and DS astrocytes exhibit marked deficits in TSP-1 protein expression. Depletion of TSP-1 from normal astrocytes resulted in dramatic changes in spine morphology, while restoration of TSP-1 levels prevented DS astrocyte-mediated spine and synaptic alterations. Astrocyte cultures derived from TSP-1 KO mice exhibited similar deficits to support spine formation and structure than DS astrocytes.These results indicate that human astrocytes promote spine and synapse formation, identify astrocyte dysfunction as a significant factor of spine and synaptic pathology in the DS brain, and provide a mechanistic rationale for the exploration of TSP-1-based therapies to treat spine and synaptic pathology in DS and other neurological conditions.

  14. Human herpesvirus 6A induces apoptosis of primary human fetal astrocytes via both caspase-dependent and -independent pathways

    Directory of Open Access Journals (Sweden)

    Gu Bin

    2011-12-01

    Full Text Available Abstract Background Human herpesvirus 6 (HHV-6 is a T-lymphtropic and neurotropic virus that can infect various types of cells. Sequential studies reported that apoptosis of glia and neurons induced by HHV-6 might act a potential trigger for some central nervous system (CNS diseases. HHV-6 is involved in the pathogenesis of encephalitis, multiple sclerosis (MS and fatigue syndrome. However, the mechanisms responsible for the apoptosis of infected CNS cells induced by HHV-6 are poorly understood. In this study, we investigated the cell death processes of primary human fetal astrocytes (PHFAs during productive HHV-6A infection and the underlying mechanisms. Results HHV-6A can cause productive infection in primary human fetal astrocytes. Annexin V-PI staining and electron microscopic analysis indicated that HHV-6A was an inducer of apoptosis. The cell death was associated with activation of caspase-3 and cleavage of poly (ADP-ribose polymerase (PARP, which is known to be an important substrate for activated caspase-3. Caspase-8 and -9 were also significantly activated in HHV-6A-infected cells. Moreover, HHV-6A infection led to Bax up-regulation and Bcl-2 down-regulation. HHV-6A infection increased the release of Smac/Diablo, AIF and cytochrome c from mitochondria to cytosol, which induced apoptosis via the caspase-dependent and -independent pathways. In addition, we also found that anti-apoptotic factors such as IAPs and NF-κB decreased in HHV-6A infected PHFAs. Conclusion This is the first demonstration of caspase-dependent and -independent apoptosis in HHV-6A-infected glial cells. These findings would be helpful in understanding the mechanisms of CNS diseases caused by HHV-6.

  15. Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2.

    LENUS (Irish Health Repository)

    Stevens, Niall T

    2009-03-01

    Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- and\\/or time-dependent manner from U373 MG cells and primary normal human astrocytes. This effect was inhibited by depletion of N-acetyl-beta-d-glucosamine polymer from the PIA preparation with Lycopersicon esculentum lectin or sodium meta-periodate. Expression of dominant-negative versions of the TLR2 and TLR4 adaptor proteins MyD88 and Mal in U373 MG cells inhibited PIA-induced IL-8 production. Blocking IL-1 had no effect. PIA failed to induce IL-8 production from HEK293 cells stably expressing TLR4. However, in U373 MG cells which express TLR2, neutralization of TLR2 impaired PIA-induced IL-8 production. In addition to IL-8, PIA also induced expression of other cytokines from U373 MG cells including IL-6 and MCP-1. These data implicate PIA as an important immunogenic component of the S. epidermidis biofilm that can regulate pro-inflammatory cytokine production from human astrocytes, in part, via TLR2.

  16. Kynurenine Pathway Metabolism is Involved in the Maintenance of the Intracellular NAD Concentration in Human Primary Astrocytes

    Directory of Open Access Journals (Sweden)

    Ross Grant

    2010-01-01

    Full Text Available Efficient synthesis of NAD + is critical to maintaining cell viability in all organs of the body. However, little is known of the pathway(s by which cells of the central nervous system produce NAD + . The aim of this study was to investigate the relationship, between tryptophan degradation via the kynurenine pathway (KP and de novo NAD + synthesis in human astrocytes, a major cell type within the brain. In this study we observed that inhibition of single enzymes of the KP resulted in significant decreases in NAD + levels in astroglial cells after a 24 hr period. We also observed that astrocytes cultured in media deficient in tryptophan, nicotinic acid and nicotinamide resulted in a 50% decrease in NAD + levels after 24 hrs. This decrease in NAD + was partially restored by supplementation of the culture media with either tryptophan or kynurenine, or nicotinic acid or with supply of the salvage pathway precursor nicotinamide.

  17. Kynurenine Pathway Metabolism is Involved in the Maintenance of the Intracellular NAD+ Concentration in Human Primary Astrocytes

    Science.gov (United States)

    Grant, Ross; Nguyen, Susan; Guillemin, Gilles

    2010-01-01

    Efficient synthesis of NAD+ is critical to maintaining cell viability in all organs of the body. However, little is known of the pathway(s) by which cells of the central nervous system produce NAD+. The aim of this study was to investigate the relationship, between tryptophan degradation via the kynurenine pathway (KP) and de novo NAD+ synthesis in human astrocytes, a major cell type within the brain. In this study we observed that inhibition of single enzymes of the KP resulted in significant decreases in NAD+ levels in astroglial cells after a 24 hr period. We also observed that astrocytes cultured in media deficient in tryptophan, nicotinic acid and nicotinamide resulted in a 50% decrease in NAD+ levels after 24 hrs. This decrease in NAD+ was partially restored by supplementation of the culture media with either tryptophan or kynurenine, or nicotinic acid or with supply of the salvage pathway precursor nicotinamide. PMID:22084595

  18. Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds.

    Science.gov (United States)

    Terrasso, Ana Paula; Silva, Ana Carina; Filipe, Augusto; Pedroso, Pedro; Ferreira, Ana Lúcia; Alves, Paula Marques; Brito, Catarina

    Central nervous system drug development has registered high attrition rates, mainly due to the lack of efficacy of drug candidates, highlighting the low reliability of the models used in early-stage drug development and the need for new in vitro human cell-based models and assays to accurately identify and validate drug candidates. 3D human cell models can include different tissue cell types and represent the spatiotemporal context of the original tissue (co-cultures), allowing the establishment of biologically-relevant cell-cell and cell-extracellular matrix interactions. Nevertheless, exploitation of these 3D models for neuroprotection assessment has been limited due to the lack of data to validate such 3D co-culture approaches. In this work we combined a 3D human neuron-astrocyte co-culture with a cell viability endpoint for the implementation of a novel in vitro neuroprotection assay, over an oxidative insult. Neuroprotection assay robustness and specificity, and the applicability of Presto Blue, MTT and CytoTox-Glo viability assays to the 3D co-culture were evaluated. Presto Blue was the adequate endpoint as it is non-destructive and is a simpler and reliable assay. Semi-automation of the cell viability endpoint was performed, indicating that the assay setup is amenable to be transferred to automated screening platforms. Finally, the neuroprotection assay setup was applied to a series of 36 test compounds and several candidates with higher neuroprotective effect than the positive control, Idebenone, were identified. The robustness and simplicity of the implemented neuroprotection assay with the cell viability endpoint enables the use of more complex and reliable 3D in vitro cell models to identify and validate drug candidates. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Two classes of astrocytes in the adult human and pig retina in terms of their expression of high affinity NGF receptor (TrkA).

    Science.gov (United States)

    Ruiz-Ederra, Javier; Hitchcock, Peter F; Vecino, Elena

    2003-02-13

    Astrocytes have been implicated in axon guidance and synaptic regeneration in the retina and these processes involve activation of the high affinity nerve growth factor receptor, known as the tyrosine kinase A (TrkA) receptor. The purpose of the present study was to characterize the expression of TrkA in astrocytes of the adult pig and human retina. To this end, sections of human and pig retinas were immunolabeled with a combination of antibodies to glial fibrillary acidic protein (GFAP) and TrkA. Our study revealed that most of the GFAP-positive cells express TrkA, whereas a rare, novel subpopulation of astrocytes was found to be devoid of TrkA. Our results support the idea that astrocytes play an important neurotrophic role in the retina.

  20. Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines

    International Nuclear Information System (INIS)

    Mameli, Giuseppe; Astone, Vito; Khalili, Kamel; Serra, Caterina; Sawaya, Bassel E.; Dolei, Antonina

    2007-01-01

    Syncytin-1 has a physiological role during early pregnancy, as mediator of trophoblast fusion into the syncytiotrophoblast layer, hence allowing embryo implantation. In addition, its expression in nerve tissue has been proposed to contribute to the pathogenesis of multiple sclerosis (MS). Syncytin-1 is the env glycoprotein of the ERVWE1 component of the W family of human endogenous retroviruses (HERV), located on chromosome 7q21-22, in a candidate region for genetic susceptibility to MS. The mechanisms of ERVWE1 regulation in nerve tissue remain to be identified. Since there are correlations between some cytokines and MS outcome, we examined the regulation of the syncytin-1 promoter by MS-related cytokines in human U-87MG astrocytic cells. Using transient transfection assays, we observed that the MS-detrimental cytokines TNFα, interferon-γ, interleukin-6, and interleukin-1 activate the ERVWE1 promoter, while the MS-protective interferon-β is inhibitory. The effects of cytokines are reduced by the deletion of the cellular enhancer domain of the promoter that contains binding sites for several transcription factors. In particular, we found that TNFα had the ability to activate the ERVWE1 promoter through an NF-κB-responsive element located within the enhancer domain of the promoter. Electrophoretic mobility shift and ChIP assays showed that TNFα enhances the binding of the p65 subunit of NF-κB, to its cognate site within the promoter. The effect of TNFα is abolished by siRNA directed against p65. Taken together, these results illustrate a role for p65 in regulating the ERVWE1 promoter and in TNFα-mediated induction of syncytin-1 in multiple sclerosis

  1. Astrocyte atrophy and immune dysfunction in self-harming macaques.

    Science.gov (United States)

    Lee, Kim M; Chiu, Kevin B; Sansing, Hope A; Inglis, Fiona M; Baker, Kate C; MacLean, Andrew G

    2013-01-01

    Self-injurious behavior (SIB) is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction. We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP) and Toll-like receptor 2 (TLR2). Morphologic features of astrocytes were determined using computer-assisted camera lucida. There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2. These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.

  2. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120

    International Nuclear Information System (INIS)

    Wang Zhuying; Pekarskaya, Olga; Bencheikh, Meryem; Chao Wei; Gelbard, Harris A.; Ghorpade, Anuja; Rothstein, Jeffrey D.; Volsky, David J.

    2003-01-01

    L-Glutamate is the major excitatory neurotransmitter in the brain. Astrocytes maintain low levels of synaptic glutamate by high-affinity uptake and defects in this function may lead to neuronal cell death by excitotoxicity. We tested the effects of HIV-1 and its envelope glycoprotein gp120 upon glutamate uptake and expression of glutamate transporters EAAT1 and EAAT2 in fetal human astrocytes in vitro. Astrocytes isolated from fetal tissues between 16 and 19 weeks of gestation expressed EAAT1 and EAAT2 RNA and proteins as detected by Northern blot analysis and immunoblotting, respectively, and the cells were capable of specific glutamate uptake. Exposure of astrocytes to HIV-1 or gp120 significantly impaired glutamate uptake by the cells, with maximum inhibition within 6 h, followed by gradual decline during 3 days of observation. HIV-1-infected cells showed a 59% reduction in V max for glutamate transport, indicating a reduction in the number of active transporter sites on the cell surface. Impaired glutamate transport after HIV-1 infection or gp120 exposure correlated with a 40-70% decline in steady-state levels of EAAT2 RNA and protein. EAAT1 RNA and protein levels were less affected. Treatment of astrocytes with tumor necrosis factor-α (TNF-α) decreased the expression of both EAAT1 and EAAT2, but neither HIV-1 nor gp120 were found to induce TNF-α production by astrocytes. These findings demonstrate that HIV-1 and gp120 induce transcriptional downmodulation of the EAAT2 transporter gene in human astrocytes and coordinately attenuate glutamate transport by the cells. Reduction of the ability of HIV-1-infected astrocytes to take up glutamate may contribute to the development of neurological disease

  3. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability

    NARCIS (Netherlands)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W.; Pfluger, Paul T.; Fernandez, Ana M.; Luquet, Serge; Woods, Stephen C.; Torres-Alemán, Ignacio; Kahn, C. Ronald; Götz, Magdalena; Horvath, Tamas L.; Tschöp, Matthias H.

    2016-01-01

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and

  4. Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner.

    Science.gov (United States)

    Brumm, Andrew J; Nunez, Stefanie; Doroudchi, Mehdi M; Kawaguchi, Riki; Duan, Jinhzu; Pellegrini, Matteo; Lam, Larry; Carmichael, S Thomas; Deb, Arjun; Hinman, Jason D

    2017-08-01

    Astrocytes respond to a variety of CNS injuries by cellular enlargement, process outgrowth, and upregulation of extracellular matrix proteins that function to prevent expansion of the injured region. This astrocytic response, though critical to the acute injury response, results in the formation of a glial scar that inhibits neural repair. Scar-forming cells (fibroblasts) in the heart can undergo mesenchymal-endothelial transition into endothelial cell fates following cardiac injury in a process dependent on p53 that can be modulated to augment cardiac repair. Here, we sought to determine whether astrocytes, as the primary scar-forming cell of the CNS, are able to undergo a similar cellular phenotypic transition and adopt endothelial cell fates. Serum deprivation of differentiated astrocytes resulted in a change in cellular morphology and upregulation of endothelial cell marker genes. In a tube formation assay, serum-deprived astrocytes showed a substantial increase in vessel-like morphology that was comparable to human umbilical vein endothelial cells and dependent on p53. RNA sequencing of serum-deprived astrocytes demonstrated an expression profile that mimicked an endothelial rather than astrocyte transcriptome and identified p53 and angiogenic pathways as specifically upregulated. Inhibition of p53 with genetic or pharmacologic strategies inhibited astrocyte-endothelial transition. Astrocyte-endothelial cell transition could also be modulated by miR-194, a microRNA downstream of p53 that affects expression of genes regulating angiogenesis. Together, these studies demonstrate that differentiated astrocytes retain a stimulus-dependent mechanism for cellular transition into an endothelial phenotype that may modulate formation of the glial scar and promote injury-induced angiogenesis.

  5. Involvement of astrocytes in neurovascular communication.

    Science.gov (United States)

    Nuriya, M; Hirase, H

    2016-01-01

    The vascular interface of the brain is distinct from that of the peripheral tissue in that astrocytes, the most numerous glial cell type in the gray matter, cover the vasculature with their endfeet. This morphological feature of the gliovascular junction has prompted neuroscientists to suggest possible functional roles of astrocytes including astrocytic modulation of the vasculature. Additionally, astrocytes develop an intricate morphology that intimately apposes neuronal synapses, making them an ideal cellular mediator of neurovascular coupling. In this article, we first introduce the classical anatomical and physiological findings that led to the proposal of various gliovascular interaction models. Next, we touch on the technological advances in the past few decades that enabled investigations and evaluations of neuro-glio-vascular interactions in situ. We then review recent experimental findings on the roles of astrocytes in neurovascular coupling from the viewpoints of intra- and intercellular signalings in astrocytes. © 2016 Elsevier B.V. All rights reserved.

  6. Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer's Disease Model.

    Science.gov (United States)

    Diniz, Luan Pereira; Tortelli, Vanessa; Matias, Isadora; Morgado, Juliana; Bérgamo Araujo, Ana Paula; Melo, Helen M; Seixas da Silva, Gisele S; Alves-Leon, Soniza V; de Souza, Jorge M; Ferreira, Sergio T; De Felice, Fernanda G; Gomes, Flávia Carvalho Alcantara

    2017-07-12

    Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-β oligomers (AβOs). Although the impact of AβOs on neurons has been extensively studied, only recently have the possible effects of AβOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AβOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AβOs on synapses. We found that AβOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AβOs binding, and prevent AβO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-β1 (TGF-β1) antibody and siRNA-mediated knockdown of TGF-β1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AβO-induced synapse loss. Notably, TGF-β1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AβOs. Results suggest that astrocyte-derived TGF-β1 is part of an endogenous mechanism that protects synapses against AβOs. By demonstrating that AβOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AβOs in AD. SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-β oligomers (AβOs). Here, we investigated the impact of AβOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by A

  7. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw

    2017-01-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1...... and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation...

  8. The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases.

    Science.gov (United States)

    Seidel, K; Vinet, J; Dunnen, W F A den; Brunt, E R; Meister, M; Boncoraglio, A; Zijlstra, M P; Boddeke, H W G M; Rüb, U; Kampinga, H H; Carra, S

    2012-02-01

    HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  9. Ultrastructural Morphology of Sperm from Human Globozoospermia

    Directory of Open Access Journals (Sweden)

    Giuseppe Ricci

    2015-01-01

    Full Text Available Globozoospermia is a rare disorder characterized by the presence of sperm with round head, lacking acrosome. Coiling tail around the nucleus has been reported since early human studies, but no specific significance has conferred it. By contrast, studies on animal models suggest that coiling tail around the nucleus could represent a crucial step of defective spermatogenesis, resulting in round-headed sperm. No observations, so far, support the transfer of this hypothesis to human globozoospermia. The purpose of this work was to compare ultrastructural morphology of human and mouse model globozoospermic sperm. Sperm have been investigated by using scanning and transmission electron microscopy. The images that we obtained show significant similarities to those described in GOPC knockout mice, an animal model of globozoospermia. By using this model as reference, we were able to identify the probable steps of the tail coiling process in human globozoospermia. Although we have no evidence that there is the same pathophysiology in man and knocked-out mouse, the similarities between these ultrastructural observations in human and those in the experimental model are very suggestive. This is the first demonstration of the existence of relevant morphological homologies between the tail coiling in animal model and human globozoospermia.

  10. Temporally coordinated spiking activity of human induced pluripotent stem cell-derived neurons co-cultured with astrocytes.

    Science.gov (United States)

    Kayama, Tasuku; Suzuki, Ikuro; Odawara, Aoi; Sasaki, Takuya; Ikegaya, Yuji

    2018-01-01

    In culture conditions, human induced-pluripotent stem cells (hiPSC)-derived neurons form synaptic connections with other cells and establish neuronal networks, which are expected to be an in vitro model system for drug discovery screening and toxicity testing. While early studies demonstrated effects of co-culture of hiPSC-derived neurons with astroglial cells on survival and maturation of hiPSC-derived neurons, the population spiking patterns of such hiPSC-derived neurons have not been fully characterized. In this study, we analyzed temporal spiking patterns of hiPSC-derived neurons recorded by a multi-electrode array system. We discovered that specific sets of hiPSC-derived neurons co-cultured with astrocytes showed more frequent and highly coherent non-random synchronized spike trains and more dynamic changes in overall spike patterns over time. These temporally coordinated spiking patterns are physiological signs of organized circuits of hiPSC-derived neurons and suggest benefits of co-culture of hiPSC-derived neurons with astrocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax-1 and tumor necrosis factor alpha.

    Science.gov (United States)

    Szymocha, R; Akaoka, H; Dutuit, M; Malcus, C; Didier-Bazes, M; Belin, M F; Giraudon, P

    2000-07-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of a chronic progressive myelopathy called tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In this disease, lesions of the central nervous system (CNS) are associated with perivascular infiltration by lymphocytes. We and others have hypothesized that these T lymphocytes infiltrating the CNS may play a prominent role in TSP/HAM. Here, we show that transient contact of human or rat astrocytes with T lymphocytes chronically infected by HTLV-1 impairs some of the major functions of brain astrocytes. Uptake of extracellular glutamate by astrocytes was significantly decreased after transient contact with infected T cells, while the expression of the glial transporters GLAST and GLT-1 was decreased. In two-compartment cultures avoiding direct cell-to-cell contact, similar results were obtained, suggesting possible involvement of soluble factors, such as cytokines and the viral protein Tax-1. Recombinant Tax-1 and tumor necrosis factor alpha (TNF-alpha) decreased glutamate uptake by astrocytes. Tax-1 probably acts by inducing TNF-alpha, as the effect of Tax-1 was abolished by anti-TNF-alpha antibody. The expression of glutamate-catabolizing enzymes in astrocytes was increased for glutamine synthetase and decreased for glutamate dehydrogenase, the magnitudes of these effects being correlated with the level of Tax-1 transcripts. In conclusion, Tax-1 and cytokines produced by HTLV-1-infected T cells impair the ability of astrocytes to manage the steady-state level of glutamate, which in turn may affect neuronal and oligodendrocytic functions and survival.

  12. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw; Stridh, Malin H; Zaganas, Ioannis; Skytt, Dorte M; Schousboe, Arne; Bak, Lasse K; Enard, Wolfgang; Pääbo, Svante; Waagepetersen, Helle S

    2017-03-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO 2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1 and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation and supports the TCA cycle during energy-demanding processes such as high intensity glutamatergic signaling. However, little is known about how expression of hGDH2 affects the handling of glutamate and TCA cycle metabolism in astrocytes. Therefore, we cultured astrocytes from cerebral cortical tissue of hGDH2-expressing transgenic mice. We measured glutamate uptake and metabolism using [ 3 H]glutamate, while the effect on metabolic pathways of glutamate and glucose was evaluated by use of 13 C and 14 C substrates and analysis by mass spectrometry and determination of radioactively labeled metabolites including CO 2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic activity. GLIA 2017;65:474-488. © 2016 Wiley Periodicals, Inc.

  13. HIV and drug abuse mediate astrocyte senescence in a β-catenin-dependent manner leading to neuronal toxicity.

    Science.gov (United States)

    Yu, Chunjiang; Narasipura, Srinivas D; Richards, Maureen H; Hu, Xiu-Ti; Yamamoto, Bryan; Al-Harthi, Lena

    2017-10-01

    Emerging evidence suggests that cell senescence plays an important role in aging-associated diseases including neurodegenerative diseases. HIV leads to a spectrum of neurologic diseases collectively termed HIV-associated neurocognitive disorders (HAND). Drug abuse, particularly methamphetamine (meth), is a frequently abused psychostimulant among HIV+ individuals and its abuse exacerbates HAND. The mechanism by which HIV and meth lead to brain cell dysregulation is not entirely clear. In this study, we evaluated the impact of HIV and meth on astrocyte senescence using in vitro and several animal models. Astrocytes constitute up to 50% of brain cells and play a pivotal role in marinating brain homeostasis. We show here that HIV and meth induce significant senescence of primary human fetal astrocytes, as evaluated by induction of senescence markers (β-galactosidase and p16 INK 4A ), senescence-associated morphologic changes, and cell cycle arrest. HIV- and meth-mediated astrocyte senescence was also demonstrated in three small animal models (humanized mouse model of HIV/NSG-huPBMCs, HIV-transgenic rats, and in a meth administration rat model). Senescent astrocytes in turn mediated neuronal toxicity. Further, we show that β-catenin, a pro-survival/proliferation transcriptional co-activator, is downregulated by HIV and meth in human astrocytes and this downregulation promotes astrocyte senescence while induction of β-catenin blocks HIV- and meth-mediated astrocyte senescence. These studies, for the first time, demonstrate that HIV and meth induce astrocyte senescence and implicate the β-catenin pathway as potential therapeutic target to overcome astrocyte senescence. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Electrospun fiber surface nanotopography influences astrocyte-mediated neurite outgrowth.

    Science.gov (United States)

    Johnson, Christopher D; D'Amato, Anthony R; Puhl, Devan L; Wich, Douglas M; Vespermann, Amanda; Gilbert, Ryan J

    2018-05-15

    Aligned, electrospun fiber scaffolds provide topographical guidance for regenerating neurons and glia after central nervous system injury. To date, no study has explored how fiber surface nanotopography affects astrocyte response to fibrous scaffolds. Astrocytes play important roles in the glial scar, the blood brain barrier, and in maintaining homeostasis in the central nervous system. In this study, electrospun poly L-lactic acid fibers were engineered with smooth, pitted, or divoted surface nanotopography. Cortical or spinal cord primary rat astrocytes were cultured on the surfaces for either 1 or 3 days to examine the astrocyte response over time. The results showed that cortical astrocytes were significantly shorter and broader on the pitted and divoted fibers compared to those on smooth fibers. However, spinal cord astrocyte morphology was not significantly altered by the surface features. These findings indicate that astrocytes from unique anatomical locations respond differently to the presence of nanotopography. Western Blot results show that the differences in morphology were not associated with significant changes in GFAP or vinculin in either astrocyte population, suggesting that surface pits and divots do not induce a reactive phenotype in either cortical or spinal cord astrocytes. Finally, astrocytes were co-cultured with dorsal root ganglia to determine how the surfaces affected astrocyte-mediated neurite outgrowth. Astrocytes cultured on the fibers for shorter periods of time (1 day) generally supported longer neurite outgrowth. Pitted and divoted fibers restricted spinal cord astrocyte-mediated neurite outgrowth, while smooth fibers increased 3 day spinal cord astrocyte-mediated neurite outgrowth. In total, fiber surface nanotopography can influence astrocyte elongation and influence the capability of astrocytes to direct neurites. Therefore, fiber surface characteristics should be carefully controlled to optimize astrocyte-mediated axonal

  15. Gemfibrozil, a Lipid-lowering Drug, Inhibits the Induction of Nitric-oxide Synthase in Human Astrocytes*

    Science.gov (United States)

    Pahan, Kalipada; Jana, Malabendu; Liu, Xiaojuan; Taylor, Bradley S.; Wood, Charles; Fischer, Susan M.

    2007-01-01

    Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibrozil is known to activate peroxisome proliferator-activated receptor-α (PPAR-α), we investigated the role of PPAR-α in gemfibrozil-mediated inhibition of iNOS. Gemfibrozil induced peroxisome proliferator-responsive element (PPRE)-dependent luciferase activity, which was inhibited by the expression of ΔhPPAR-α, the dominant-negative mutant of human PPAR-α. However, ΔhPPAR-α was unable to abrogate gemfibrozil-mediated inhibition of iNOS suggesting that gemfibrozil inhibits iNOS independent of PPAR-α. The human iNOS promoter contains consensus sequences for the binding of transcription factors, including interferon-γ (IFN-γ) regulatory factor-1 (IRF-1) binding to interferon-stimulated responsive element (ISRE), signal transducer and activator of transcription (STAT) binding to γ-activation site (GAS), nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein β (C/EBPβ); therefore, we investigated the effect of gemfibrozil on the activation of these transcription factors. The combination of interleukin (IL)-1β and IFN-γ induced the activation of NF-κB, AP-1, C/EBPβ, and GAS but not that of ISRE, suggesting that IRF-1 may not be involved in cytokine-induced expression of iNOS in human astrocytes. Interestingly, gemfibrozil strongly inhibited the activation of NF-κB, AP-1, and C/EBPβ but not that of GAS in cytokine-stimulated astroglial cells. These results suggest that gemfibrozil inhibits the induction of iNOS probably by

  16. Alteration of astrocytes and Wnt/β-catenin signaling in the frontal cortex of autistic subjects

    Directory of Open Access Journals (Sweden)

    Cao Fujiang

    2012-09-01

    Full Text Available Abstract Background Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. To date the etiology of this disorder is poorly understood. Studies suggest that astrocytes play critical roles in neural plasticity by detecting neuronal activity and modulating neuronal networks. Recently, a number of studies suggested that an abnormal function of glia/astrocytes may be involved in the development of autism. However, there is yet no direct evidence showing how astrocytes develop in the brain of autistic individuals. Methods Study subjects include brain tissue from autistic subjects, BTBR T + tfJ (BTBR and Neuroligin (NL-3 knock-down mice. Western blot analysis, Immunohistochemistry and confocal microscopy studies have be used to examine the density and morphology of astrocytes, as well as Wnt and β-catenin protein expression. Results In this study, we demonstrate that the astrocytes in autisitcsubjects exhibit significantly reduced branching processes, total branching length and cell body sizes. We also detected an astrocytosis in the frontal cortex of autistic subjects. In addition, we found that the astrocytes in the brain of an NL3 knockdown mouse exhibited similar alterations to what we found in the autistic brain. Furthermore, we detected that both Wnt and β-catenin proteins are decreased in the frontal cortex of autistic subjects. Wnt/β-catenin pathway has been suggested to be involved in the regulation of astrocyte development. Conclusions Our findings imply that defects in astrocytes could impair neuronal plasticity and partially contribute to the development of autistic-like behaviors in both humans and mice. The alteration of Wnt/β-catenin pathway in the brain of autistic subjects may contribute to the changes of astrocytes.

  17. Human induced pluripotent stem cell (hiPSC)-derived neurons respond to convulsant drugs when co-cultured with hiPSC-derived astrocytes.

    Science.gov (United States)

    Ishii, Misawa Niki; Yamamoto, Koji; Shoji, Masanobu; Asami, Asano; Kawamata, Yuji

    2017-08-15

    Accurate risk assessment for drug-induced seizure is expected to be performed before entering clinical studies because of its severity and fatal damage to drug development. Induced pluripotent stem cell (iPSC) technology has allowed the use of human neurons and glial cells in toxicology studies. Recently, several studies showed the advantage of co-culture system of human iPSC (hiPSC)-derived neurons with rodent/human primary astrocytes regarding neuronal functions. However, the application of hiPSC-derived neurons for seizure risk assessment has not yet been fully addressed, and not at all when co-cultured with hiPSC-derived astrocytes. Here, we characterized hiPSC-derived neurons co-cultured with hiPSC-derived astrocytes to discuss how hiPSC-derived neurons are useful to assess seizure risk of drugs. First, we detected the frequency of spikes and synchronized bursts hiPSC-derived neurons when co-cultured with hiPSC-derived astrocytes for 8 weeks. This synchronized burst was suppressed by the treatment with 6-cyano-7-nitroquinoxaline-2,3-dione, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist, and D-(-)-2-amino-5-phosphonopentanoic acid, an N-Methyl-d-aspartate (NMDA) receptor antagonist. These data suggested that co-cultured hiPSC-derived neurons formed synaptic connections mediated by AMPA and NMDA receptors. We also demonstrated that co-cultured hiPSC-derived neurons showed epileptiform activity upon treatment with gabazine or kaliotoxin. Finally, we performed single-cell transcriptome analysis in hiPSC-derived neurons and found that hiPSC-derived astrocytes activated the pathways involved in the activities of AMPA and NMDA receptor functions, neuronal polarity, and axon guidance in hiPSC-derived neurons. These data suggested that hiPSC-derived astrocytes promoted the development of action potential, synaptic functions, and neuronal networks in hiPSC-derived neurons, and then these functional alterations result in the epileptiform

  18. Lateral regulation of synaptic transmission by astrocytes.

    Science.gov (United States)

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  20. Single-Cell Detection of Secreted Aβ and sAPPα from Human IPSC-Derived Neurons and Astrocytes.

    Science.gov (United States)

    Liao, Mei-Chen; Muratore, Christina R; Gierahn, Todd M; Sullivan, Sarah E; Srikanth, Priya; De Jager, Philip L; Love, J Christopher; Young-Pearse, Tracy L

    2016-02-03

    Secreted factors play a central role in normal and pathological processes in every tissue in the body. The brain is composed of a highly complex milieu of different cell types and few methods exist that can identify which individual cells in a complex mixture are secreting specific analytes. By identifying which cells are responsible, we can better understand neural physiology and pathophysiology, more readily identify the underlying pathways responsible for analyte production, and ultimately use this information to guide the development of novel therapeutic strategies that target the cell types of relevance. We present here a method for detecting analytes secreted from single human induced pluripotent stem cell (iPSC)-derived neural cells and have applied the method to measure amyloid β (Aβ) and soluble amyloid precursor protein-alpha (sAPPα), analytes central to Alzheimer's disease pathogenesis. Through these studies, we have uncovered the dynamic range of secretion profiles of these analytes from single iPSC-derived neuronal and glial cells and have molecularly characterized subpopulations of these cells through immunostaining and gene expression analyses. In examining Aβ and sAPPα secretion from single cells, we were able to identify previously unappreciated complexities in the biology of APP cleavage that could not otherwise have been found by studying averaged responses over pools of cells. This technique can be readily adapted to the detection of other analytes secreted by neural cells, which would have the potential to open new perspectives into human CNS development and dysfunction. We have established a technology that, for the first time, detects secreted analytes from single human neurons and astrocytes. We examine secretion of the Alzheimer's disease-relevant factors amyloid β (Aβ) and soluble amyloid precursor protein-alpha (sAPPα) and present novel findings that could not have been observed without a single-cell analytical platform. First, we

  1. Platelet-derived growth factor (PDGF-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation

    Directory of Open Access Journals (Sweden)

    Bethel-Brown Crystal

    2012-12-01

    Full Text Available Abstract Chemokine (C-C motif ligand 2, also known as monocyte chemoattractant protein 1 (MCP-1 is an important factor for the pathogenesis of HIV-associated neurocognitive disorders (HAND. The mechanisms of MCP-1-mediated neuropathogenesis, in part, revolve around its neuroinflammatory role and the recruitment of monocytes into the central nervous system (CNS via the disrupted blood-brain barrier (BBB. We have previously demonstrated that HIV-1/HIV-1 Tat upregulate platelet-derived growth factor (PDGF-BB, a known cerebrovascular permeant; subsequently, the present study was aimed at exploring the regulation of MCP-1 by PDGF-BB in astrocytes with implications in HAND. Specifically, the data herein demonstrate that exposure of human astrocytes to HIV-1 LAI elevated PDGF-B and MCP-1 levels. Furthermore, treating astrocytes with the human recombinant PDGF-BB protein significantly increased the production and release of MCP-1 at both the RNA and protein levels. MCP-1 induction was regulated by activation of extracellular-signal-regulated kinase (ERK1/2, c-Jun N-terminal kinase (JNK and p38 mitogen-activated protein (MAP kinases and phosphatidylinositol 3-kinase (PI3K/Akt pathways and the downstream transcription factor, nuclear factor κB (NFκB. Chromatin immunoprecipitation (ChIP assays demonstrated increased binding of NFκB to the human MCP-1 promoter following PDGF-BB exposure. Conditioned media from PDGF-BB-treated astrocytes increased monocyte transmigration through human brain microvascular endothelial cells (HBMECs, an effect that was blocked by STI-571, a tyrosine kinase inhibitor (PDGF receptor (PDGF-R blocker. PDGF-BB-mediated release of MCP-1 was critical for increased permeability in an in vitro BBB model as evidenced by blocking antibody assays. Since MCP-1 is linked to disease severity, understanding its modulation by PDGF-BB could aid in understanding the proinflammatory responses in HAND. These results suggest that astrocyte

  2. Hemin inhibits NO production by IL-1β-stimulated human astrocytes through induction of heme oxygenase-1 and reduction of p38 MAPK activation

    Directory of Open Access Journals (Sweden)

    Sheng Wen S

    2010-09-01

    Full Text Available Abstract Background Heme oxygenase (HO-1 has been shown to attenuate oxidative injury and reduce apoptosis. HO-1 can be induced by various stimuli released during cellular injury, such as heme. Deleterious free heme is degraded by HO-1 to carbon monoxide, iron and biliverdin, which have potent anti-oxidant and anti-inflammatory properties. In this study, we tested the hypothesis that upregulation of HO-1 would inhibit production of the free radical (NO by interlukin (IL-1β-activated human astrocytes. Methods To measure NO production, inducible NO synthase (iNOS, HO-1 expression and mitogen-activated protein (MAP kinase activation we used hemin as an HO-1 inducer and tin protoporphyrin (SnPP IX as an inhibitor of HO-1 activity in human astrocyte cultures prior to IL-1β exposure. Transfection of astrocyte cultures was performed using a pLEX expression vector carrying the human HO-1 sequence prior to IL-1β treatment. Supernatants of astrocyte cultures pretreated with inhibitors of p38 MAPK or MEK1/2 prior to IL-1β exposure were collected for NO assay. Results IL-1β treatment of astrocytes alone induced undetectable amounts of HO-1 protein by western blot. However, HO-1 mRNA expression was modestly up-regulated in response to IL-1β stimulation. Pretreatment with hemin alone substantially induced both HO-1 mRNA and protein expression, and HO-1 mRNA expression was further enhanced when hemin was combined with IL-1β treatment. In contrast, IL-1β-induced iNOS mRNA expression and NO production were markedly inhibited by hemin treatment. When pretreated with SnPP, the inhibitory effect of hemin on IL-1β-induced NO production and iNOS expression was reversed, suggesting the involvement of HO-1. IL-1β-induced p38 MAPK activation, which is known to be required for NO production, was also down-regulated by hemin. Conclusion These findings support the hypothesis that up-regulation of HO-1 in astrocytes is associated with down-regulation of i

  3. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  4. Primary cultures of astrocytes

    DEFF Research Database (Denmark)

    Lange, Sofie C; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes...... subsequently found in vivo. Nevertheless, primary cultures of astrocytes are an in vitro model that does not fully mimic the complex events occurring in vivo. Here we present an overview of the numerous contributions generated by the use of primary astrocyte cultures to uncover the diverse functions...... of astrocytes. Many of these discoveries would not have been possible to achieve without the use of astrocyte cultures. Additionally, we address and discuss the concerns that have been raised regarding the use of primary cultures of astrocytes as an experimental model system....

  5. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain

    DEFF Research Database (Denmark)

    Skjolding, Anders Daehli; Holst, Anders Vedel; Broholm, Helle

    2013-01-01

    findings to human pathophysiology. This study compares expression of aquaporin-4 in hydrocephalic human brain with human controls and hydrocephalic rat brain. Methods:  Cortical biopsies from patients with chronic hydrocephalus (n=29) were sampled secondary to planned surgical intervention. Aquaporin-4...

  6. Disentangling the role of astrocytes in alcohol use disorder

    Science.gov (United States)

    Adermark, Louise; Bowers, M. Scott

    2016-01-01

    Several laboratories recently identified that astrocytes are critical regulators of addiction machinery. It is now known that astrocyte pathology is a common feature of ethanol exposure in both humans and animal models, as even brief ethanol exposure is sufficient to elicit long-lasting perturbations in astrocyte gene expression, activity, and proliferation. Astrocytes were also recently shown to modulate the motivational properties of ethanol and other strongly reinforcing stimuli. Given the role of astrocytes in regulating glutamate homeostasis, a crucial component of alcohol use disorder, astrocytes might be an important target for the development of next generation alcoholism treatments. This review will outline some of the more prominent features displayed by astrocytes, how these properties are influenced by acute and long term ethanol exposure, and future directions that may help to disentangle astrocytic from neuronal functions in the etiology of alcohol use disorder. PMID:27476876

  7. Astrocytes and energy metabolism.

    Science.gov (United States)

    Prebil, Mateja; Jensen, Jørgen; Zorec, Robert; Kreft, Marko

    2011-05-01

    Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.

  8. Frequent loss of heterozygosity and altered expression of the candidate tumor suppressor gene 'FAT' in human astrocytic tumors

    International Nuclear Information System (INIS)

    Chosdol, Kunzang; Misra, Anjan; Puri, Sachin; Srivastava, Tapasya; Chattopadhyay, Parthaprasad; Sarkar, Chitra; Mahapatra, Ashok K; Sinha, Subrata

    2009-01-01

    We had earlier used the comparison of RAPD (Random Amplification of Polymorphic DNA) DNA fingerprinting profiles of tumor and corresponding normal DNA to identify genetic alterations in primary human glial tumors. This has the advantage that DNA fingerprinting identifies the genetic alterations in a manner not biased for locus. In this study we used RAPD-PCR to identify novel genomic alterations in the astrocytic tumors of WHO grade II (Low Grade Diffuse Astrocytoma) and WHO Grade IV (Glioblastoma Multiforme). Loss of heterozygosity (LOH) of the altered region was studied by microsatellite and Single Nucleotide Polymorphism (SNP) markers. Expression study of the gene identified at the altered locus was done by semi-quantitative reverse-transcriptase-PCR (RT-PCR). Bands consistently altered in the RAPD profile of tumor DNA in a significant proportion of tumors were identified. One such 500 bp band, that was absent in the RAPD profile of 33% (4/12) of the grade II astrocytic tumors, was selected for further study. Its sequence corresponded with a region of FAT, a putative tumor suppressor gene initially identified in Drosophila. Fifty percent of a set of 40 tumors, both grade II and IV, were shown to have Loss of Heterozygosity (LOH) at this locus by microsatellite (intragenic) and by SNP markers. Semi-quantitative RT-PCR showed low FAT mRNA levels in a major subset of tumors. These results point to a role of the FAT in astrocytic tumorigenesis and demonstrate the use of RAPD analysis in identifying specific alterations in astrocytic tumors

  9. Memory in astrocytes: a hypothesis

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2006-01-01

    Full Text Available Abstract Background Recent work has indicated an increasingly complex role for astrocytes in the central nervous system. Astrocytes are now known to exchange information with neurons at synaptic junctions and to alter the information processing capabilities of the neurons. As an extension of this trend a hypothesis was proposed that astrocytes function to store information. To explore this idea the ion channels in biological membranes were compared to models known as cellular automata. These comparisons were made to test the hypothesis that ion channels in the membranes of astrocytes form a dynamic information storage device. Results Two dimensional cellular automata were found to behave similarly to ion channels in a membrane when they function at the boundary between order and chaos. The length of time information is stored in this class of cellular automata is exponentially related to the number of units. Therefore the length of time biological ion channels store information was plotted versus the estimated number of ion channels in the tissue. This analysis indicates that there is an exponential relationship between memory and the number of ion channels. Extrapolation of this relationship to the estimated number of ion channels in the astrocytes of a human brain indicates that memory can be stored in this system for an entire life span. Interestingly, this information is not affixed to any physical structure, but is stored as an organization of the activity of the ion channels. Further analysis of two dimensional cellular automata also demonstrates that these systems have both associative and temporal memory capabilities. Conclusion It is concluded that astrocytes may serve as a dynamic information sink for neurons. The memory in the astrocytes is stored by organizing the activity of ion channels and is not associated with a physical location such as a synapse. In order for this form of memory to be of significant duration it is necessary

  10. Astrocyte, the star avatar: redefined

    Indian Academy of Sciences (India)

    This review summarizes the past and present knowledge of glial cell functions that has evolved over the years, and has resulted in a new appreciation of astrocytes and their value in studying the neurobiology of human brain cells and their functions. In this review, we highlight recent advances in the role of glial cells in ...

  11. Spatial organization of astrocytes in ferret visual cortex

    Science.gov (United States)

    López‐Hidalgo, Mónica; Hoover, Walter B.

    2016-01-01

    ABSTRACT Astrocytes form an intricate partnership with neural circuits to influence numerous cellular and synaptic processes. One prominent organizational feature of astrocytes is the “tiling” of the brain with non‐overlapping territories. There are some documented species and brain region–specific astrocyte specializations, but the extent of astrocyte diversity and circuit specificity are still unknown. We quantitatively defined the rules that govern the spatial arrangement of astrocyte somata and territory overlap in ferret visual cortex using a combination of in vivo two‐photon imaging, morphological reconstruction, immunostaining, and model simulations. We found that ferret astrocytes share, on average, half of their territory with other astrocytes. However, a specific class of astrocytes, abundant in thalamo‐recipient cortical layers (“kissing” astrocytes), overlap markedly less. Together, these results demonstrate novel features of astrocyte organization indicating that different classes of astrocytes are arranged in a circuit‐specific manner and that tiling does not apply universally across brain regions and species. J. Comp. Neurol. 524:3561–3576, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27072916

  12. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Science.gov (United States)

    Moser, Joanna J; Fritzler, Marvin J

    2010-10-18

    GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  13. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Directory of Open Access Journals (Sweden)

    Joanna J Moser

    2010-10-01

    Full Text Available GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA-mediated messenger RNA (mRNA silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC. To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells.RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1 miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2 astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3 miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4 the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells.The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  14. Astrocyte atrophy and immune dysfunction in self-harming macaques.

    Directory of Open Access Journals (Sweden)

    Kim M Lee

    Full Text Available BACKGROUND: Self-injurious behavior (SIB is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction. METHODS: We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP and Toll-like receptor 2 (TLR2. Morphologic features of astrocytes were determined using computer-assisted camera lucida. RESULTS: There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2. CONCLUSIONS: These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.

  15. Infection and injury of human astrocytes by tick-borne encephalitis virus

    Czech Academy of Sciences Publication Activity Database

    Palus, Martin; Bílý, Tomáš; Elsterová, Jana; Langhansová, Helena; Salát, J.; Vancová, Marie; Růžek, Daniel

    2014-01-01

    Roč. 95, Pt 11 (2014), s. 2411-2426 ISSN 0022-1317 R&D Projects: GA ČR GAP502/11/2116; GA ČR GAP302/12/2490; GA TA ČR TE01020118 Institutional support: RVO:60077344 Keywords : Tick-borne encephalitis * Tick-borne encephalitis virus * human Subject RIV: EE - Microbiology, Virology Impact factor: 3.183, year: 2014

  16. Apolipoproteins E and J interfere with amyloid-beta uptake by primary human astrocytes and microglia in vitro

    NARCIS (Netherlands)

    Mulder, S.D.; Nielsen, H.M.; Blankenstein, M.A.; Eikelenboom, P.; Veerhuis, R.

    2014-01-01

    Defective clearance of the amyloid-β peptide (Aβ) from the brain is considered a strong promoter in Alzheimer's disease (AD) pathogenesis. Astrocytes and microglia are important mediators of Aβ clearance and Aβ aggregation state and the presence of amyloid associated proteins (AAPs), such as

  17. The Anti-Inflammatory Effects of Lipoxygenase and Cyclo-Oxygenase Inhibitors in Inflammation-Induced Human Fetal Glia Cells and the Aβ Degradation Capacity of Human Fetal Astrocytes in an Ex vivo Assay

    Directory of Open Access Journals (Sweden)

    Rea Pihlaja

    2017-05-01

    Full Text Available Chronic inflammation is a common phenomenon present in the background of multiple neurodegenerative diseases, including Alzheimer's disease (AD. The arachidonic acid pathway overproduces proinflammatory eicosanoids during these states and glial cells in the brain gradually lose their vital functions of protecting and supporting neurons. In this study, the role of different key enzymes of the eicosanoid pathway mediating inflammatory responses was examined in vitro and ex vivo using human fetal glial cells. Astrocytes and microglia were exposed to proinflammatory agents i.e., cytokines interleukin 1-β (IL-1β and tumor necrosis factor (TNF-α. ELISA assays were used to examine the effects of inhibitors of key enzymes in the eicosanoid pathway. Inhibitors for 5-lipoxygenase (5-LOX and cyclo-oxygenase 2 (COX-2 in both cell types and 5-, 12-, and 15-LOX-inhibitor in astrocytes reduced significantly IL-6 secretion, compared to exposed glial cells without inhibitors. The cytokine antibody array showed that especially treatments with 5, -12, and -15 LOX inhibitor in astrocytes, 5-LOX inhibitor in microglia and COX-2 inhibitor in both glial cell types significantly reduced the expression of multiple proinflammatory cytokines. Furthermore, human fetal astrocytes and microglia were cultured on top of AD-affected and control human brain sections for 30 h. According to the immunochemical evaluation of the level of total Aβ, astrocytes were very efficient at degrading Aβ from AD-affected brain sections ex vivo; simultaneously added enzyme inhibitors did not increase their Aβ degradation capabilities. Microglia were not able to reduce the level of total Aβ during the 30 h incubation time.

  18. [The 40th anniversary of RAMS institute of human morphology].

    Science.gov (United States)

    Kakturskiĭ, L V; Shakhlamov, V A

    2002-01-01

    Institute of Human Morphology of Russian Academy of Medical Sciences was established in 1961 and united efforts of morphologists of various profile--pathologists, cytologists, embryologists. The role of outstanding Russian morphologists and the first Institute heads is shown. Basic achievements in four research fields are characterized: in geographic pathology; structural basis of immune homeostasis in health and pathology; pathologic anatomy and pathogenesis of basic human diseases; human morpho- and embriogenesis in health and disease.

  19. Small regions of overlapping deletions on 6q26 in human astrocytic tumours identified using chromosome 6 tile path array CGH

    Science.gov (United States)

    Ichimura, Koichi; Mungall, Andrew J; Fiegler, Heike; Pearson, Danita M.; Dunham, Ian; Carter, Nigel P; Collins, V. Peter

    2009-01-01

    Deletions of chromosome 6 are a common abnormality in diverse human malignancies including astrocytic tumours, suggesting the presence of tumour suppressor genes (TSG). In order to help identify candidate TSGs, we have constructed a chromosome 6 tile path microarray. The array contains 1780 clones (778 PACs and 1002 BACs) that cover 98.3% of the published chromosome 6 sequences. A total of 104 adult astrocytic tumours (10 diffuse astrocytomas, 30 anaplastic astrocytomas (AA), 64 glioblastomas (GB)) were analysed using this array. Single copy number change was successfully detected and the result was in general concordant with a microsatellite analysis. The pattern of copy number change was complex with multiple interstitial deletions/gains. However, a predominance of telomeric 6q deletions was seen. Two small common and overlapping regions of deletion at 6q26 were identified. One was 1002 kb in size and contained PACRG and QKI, while the second was 199 kb and harbours a single gene, ARID1B. The data show that the chromosome 6 tile path array is useful in mapping copy number changes with high resolution and accuracy. We confirmed the high frequency of chromosome 6 deletions in AA and GB, and identified two novel commonly deleted regions that may harbour TSGs. PMID:16205629

  20. Changes in channel morphology over human time scales [Chapter 32

    Science.gov (United States)

    John M. Buffington

    2012-01-01

    Rivers are exposed to changing environmental conditions over multiple spatial and temporal scales, with the imposed environmental conditions and response potential of the river modulated to varying degrees by human activity and our exploitation of natural resources. Watershed features that control river morphology include topography (valley slope and channel...

  1. The best stain for morphological study of human seminal fluid's ...

    African Journals Online (AJOL)

    Objectives:There is a high need for proper evaluation of the morphological features of human sperms. The importance of this lies in the field of andrology, male fertility and in vitro fertilization. The wet smears can give rough clue about the shape of the sperms, but it is neither accurate nor reproducible. This study aimed to ...

  2. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    Science.gov (United States)

    Reconstruction of Human Lung Morphology Models from Magnetic Resonance ImagesT. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  3. Sex Differences and Laterality in Astrocyte Number and Complexity in the Adult Rat Medial Amygdala

    Science.gov (United States)

    JOHNSON, RYAN T.; BREEDLOVE, S. MARC; JORDAN, CYNTHIA L.

    2008-01-01

    The posterodorsal portion of the medial amygdala (MePD) is sexually dimorphic in several rodent species. In several other brain nuclei, astrocytes change morphology in response to steroid hormones. We visualized MePD astrocytes using glial-fibrillary acidic protein (GFAP) immunocytochemistry. We compared the number and process complexity of MePD astrocytes in adult wildtype male and female rats and testicular feminized mutant (TFM) male rats that lack functional androgen receptors (ARs) to determine whether MePD astrocytes are sexually differentiated and whether ARs have a role. Unbiased stereological methods revealed laterality and sex differences in MePD astrocyte number and complexity. The right MePD contained more astrocytes than the left in all three genotypes, and the number of astrocytes was also sexually differentiated in the right MePD, with males having more astrocytes than females. In contrast, the left MePD contained more complex astrocytes than did the right MePD in all three genotypes, and males had more complex astrocytes than females in this hemisphere. TFM males were comparable to wildtype females, having fewer astrocytes on the right and simpler astrocytes on the left than do wildtype males. Taken together, these results demonstrate that astrocytes are sexually dimorphic in the adult MePD and that the nature of the sex difference is hemisphere-dependent: a sex difference in astrocyte number in the right MePD and a sex difference in astrocyte complexity in the left MePD. Moreover, functional ARs appear to be critical in establishing these sex differences in MePD astrocyte morphology. PMID:18853427

  4. Morphology and digitally aided morphometry of the human paracentral lobule.

    Science.gov (United States)

    Spasojević, Goran; Malobabic, Slobodan; Pilipović-Spasojević, Olivera; Djukić-Macut, Nataša; Maliković, Aleksandar

    2013-02-01

    The human paracentral lobule, the junction of the precentral and postcentral gyri at the medial hemispheric surface, contains several important functional regions, and its variable morphology requires exact morphological and quantitativedata. In order to obtain precise data we investigated the morphology of the paracentral lobule and quantified its visible (extrasulcal) surface. This surface corresponds to commonly used magnetic resonance imaging scout images. We studied 84 hemispheres of adult persons (42 brains; 26 males and 16 females; 20-65 years) fixed in neutral formalin for at least 4 weeks. The medial hemispheric surface was photographed at standard distance and each digital photo was calibrated. Using the intercommissural line system (commissura anterior-commissura posterior or CA-CP line), we performed standardised measurements of the paracentral lobule. Exact determination of its boundaries and morphological types was followed by digital morphometry of its extrasulcal surface using AutoCAD software. We found two distinct morphological types of the human paracentral lobule: continuous type, which was predominant (95.2%), and rare segmented type (4.8%). In hemispheres with segmented cingulate sulcus we also found the short transitional lobulo-limbic gyrus (13.1%). The mean extrasulcal surface of the left paracentral lobule was significantly larger, both in males (left 6.79 cm2 vs. right 5.76 cm2) and in females (left 6.05 cm2 vs. right 5.16 cm2). However, even larger average surfaces in males were not significantly different than the same in females. Reported morphological and quantitative data will be useful during diagnostics and treatment of pathologies affecting the human paracentral lobule, and in further studies of its cytoarchitectonic and functional parcellations.

  5. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    Science.gov (United States)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  6. Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Giuseppe Mameli

    Full Text Available BACKGROUND: Proposed co-factors triggering the pathogenesis of multiple sclerosis (MS are the Epstein Barr virus (EBV, and the potentially neuropathogenic MSRV (MS-associated retrovirus and syncytin-1, of the W family of human endogenous retroviruses. METHODOLOGY/PRINCIPAL FINDINGS: In search of links, the expression of HERV-W/MSRV/syncytin-1, with/without exposure to EBV or to EBV glycoprotein350 (EBVgp350, was studied on peripheral blood mononuclear cells (PBMC from healthy volunteers and MS patients, and on astrocytes, by discriminatory env-specific RT-PCR assays, and by flow cytometry. Basal expression of HERV-W/MSRV/syncytin-1 occurs in astrocytes and in monocytes, NK, and B, but not in T cells. This uneven expression is amplified in untreated MS patients, and dramatically reduced during therapy. In astrocytes, EBVgp350 stimulates the expression of HERV-W/MSRV/syncytin-1, with requirement of the NF-κB pathway. In EBVgp350-treated PBMC, MSRVenv and syncytin-1 transcription is activated in B cells and monocytes, but not in T cells, nor in the highly expressing NK cells. The latter cells, but not the T cells, are activated by proinflammatory cytokines. CONCLUSIONS/SIGNIFICANCE: In vitro EBV activates the potentially immunopathogenic and neuropathogenic HERV-W/MSRV/syncytin-1, in cells deriving from blood and brain. In vivo, pathogenic outcomes would depend on abnormal situations, as in late EBV primary infection, that is often symptomatic, or/and in the presence of particular host genetic backgrounds. In the blood, HERV-Wenv activation might induce immunopathogenic phenomena linked to its superantigenic properties. In the brain, toxic mechanisms against oligodendrocytes could be established, inducing inflammation, demyelination and axonal damage. Local stimulation by proinflammatory cytokines and other factors might activate further HERV-Ws, contributing to the neuropathogenity. In MS pathogenesis, a possible model could include EBV as

  7. Transcriptomic analyses of primary astrocytes under TNFα treatment

    Directory of Open Access Journals (Sweden)

    Cindy Birck

    2016-03-01

    Full Text Available Astrocytes, the most abundant glial cell population in the central nervous system, have important functional roles in the brain as blood brain barrier maintenance, synaptic transmission or intercellular communications [1,2]. Numerous studies suggested that astrocytes exhibit a functional and morphological high degree of plasticity. For example, following any brain injury, astrocytes become reactive and hypertrophic. This phenomenon, also called reactive gliosis, is characterized by a set of progressive gene expression and cellular changes [3]. Interestingly, in this context, astrocytes can re-acquire neurogenic properties. It has been shown that astrocytes can undergo dedifferentiation upon injury and inflammation, and may re-acquire the potentiality of neural progenitors [4,5,6,7].To assess the effect of inflammation on astrocytes, primary mouse astrocytes were treated with tumor necrosis factor α (TNFα, one of the main pro-inflammatory cytokines. The strength of this study is that pure primary astrocytes were used. As microglia are highly reactive immune cells, we used a magnetic cell sorting separation (MACS method to further obtain highly pure astrocyte cultures devoid of microglia.Here, we provide details of the microarray data, which have been deposited in the Gene Expression Omnibus (GEO under the series accession number GSE73022. The analysis and interpretation of these data are included in Gabel et al. (2015. Analysis of gene expression indicated that the NFκB pathway-associated genes were induced after a TNFα treatment. We have shown that primary astrocytes devoid of microglia can respond to a TNFα treatment with the re-expression of genes implicated in the glial cell development. Keywords: Primary astrocytes, Inflammation, Microarrays, Gene expression

  8. Supraorbital morphology and social dynamics in human evolution.

    Science.gov (United States)

    Godinho, Ricardo Miguel; Spikins, Penny; O'Higgins, Paul

    2018-04-09

    Uniquely, with respect to Middle Pleistocene hominins, anatomically modern humans do not possess marked browridges, and have a more vertical forehead with mobile eyebrows that play a key role in social signalling and communication. The presence and variability of browridges in archaic Homo species and their absence in ourselves have led to debate concerning their morphogenesis and function, with two main hypotheses being put forward: that browridge morphology is the result of the spatial relationship between the orbits and the brain case; and that browridge morphology is significantly impacted by biting mechanics. Here, we virtually manipulate the browridge morphology of an archaic hominin (Kabwe 1), showing that it is much larger than the minimum required to fulfil spatial demands and that browridge size has little impact on mechanical performance during biting. As browridge morphology in this fossil is not driven by spatial and mechanical requirements alone, the role of the supraorbital region in social communication is a potentially significant factor. We propose that conversion of the large browridges of our immediate ancestors to a more vertical frontal bone in modern humans allowed highly mobile eyebrows to display subtle affiliative emotions.

  9. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    , regulation of the blood brain barrier and glial scar tissue formation. Despite the involvement in various CNS functions only a limited number of studies have addressed mRNA localization in astrocytes. This PhD project was initially focused on developing and implementing methods that could be used to asses mRNA......Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation...... localization in astrocyte protrusions, and following look into the subcellular localization pattern of specific mRNA species of both primary astrocytes isolated from cortical hemispheres of newborn mice, and the mouse astrocyte cell line, C8S. The Boyden chamber cell fractionation assay was optimized, in a way...

  10. Thyroid hormone modulates the extracellular matrix organization and expression in cerebellar astrocyte: effects on astrocyte adhesion.

    Science.gov (United States)

    Trentin, Andréa Gonçalves; De Aguiar, Cláudia Beatriz Nedel Mendes; Garcez, Ricardo Castilho; Alvarez-Silva, Marcio

    2003-06-01

    The effects of thyroid hormone (T(3)) on extracellular matrix (ECM) expression and organization in cerebellar astrocytes were studied. Control astrocytes exhibit laminin immunostaining distributed in a punctate configuration and fibronectin concentrated in focal points at the cell surface. These cells attach to the substratum by membrane points, as shown by scanning microscopy, possibly by focal points stained to fibronectin. In contrast, after T(3) treatment, laminin assumes a fibrillary pattern and fibronectin becomes organized in filaments homogeneously distributed on the cell surface; the cells acquire a very flat and spread morphology. T(3) treatment also modulates astrocyte adhesion. In addition, increased expression of both laminin and fibronectin was detected by Western blot. These alterations in fibronectin and/or laminin production and organization may be involved in the flat and spread morphology and in altered adhesion. We observed that fibroblast growth factor-2 (FGF(2)) added to cultures had similar effects to those described to T(3). Neutralizing antibodies against FGF(2) reversed T(3) effects on fibronectin and laminin distribution. We also observed that cerebellar neurons co-cultured on T(3)-treated astrocytes had an increase in the number of cells and presented longer neurites. Thus, we propose a novel mechanism of the effect of thyroid hormone on cerebellar development mediated by astrocytes: T(3) may induce astrocyte secretion of growth factors, mainly FGF(2), that autocrinally stimulate astrocyte proliferation, reorganization in ECM proteins, and alterations in cell spreading and adhesion. These effects may indirectly influence neuronal development. Copyright 2003 Wiley-Liss, Inc.

  11. Integrating human and machine intelligence in galaxy morphology classification tasks

    Science.gov (United States)

    Beck, Melanie R.; Scarlata, Claudia; Fortson, Lucy F.; Lintott, Chris J.; Simmons, B. D.; Galloway, Melanie A.; Willett, Kyle W.; Dickinson, Hugh; Masters, Karen L.; Marshall, Philip J.; Wright, Darryl

    2018-06-01

    Quantifying galaxy morphology is a challenging yet scientifically rewarding task. As the scale of data continues to increase with upcoming surveys, traditional classification methods will struggle to handle the load. We present a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme, we increase the classification rate nearly 5-fold classifying 226 124 galaxies in 92 d of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7 per cent accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides at least a factor of 8 increase in the classification rate, classifying 210 803 galaxies in just 32 d of GZ2 project time with 93.1 per cent accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.

  12. Interpreting locomotor biomechanics from the morphology of human footprints.

    Science.gov (United States)

    Hatala, Kevin G; Wunderlich, Roshna E; Dingwall, Heather L; Richmond, Brian G

    2016-01-01

    Fossil hominin footprints offer unique direct windows to the locomotor behaviors of our ancestors. These data could allow a clearer understanding of the evolution of human locomotion by circumventing issues associated with indirect interpretations of habitual locomotor patterns from fossil skeletal material. However, before we can use fossil hominin footprints to understand better the evolution of human locomotion, we must first develop an understanding of how locomotor biomechanics are preserved in, and can be inferred from, footprint morphologies. In this experimental study, 41 habitually barefoot modern humans created footprints under controlled conditions in which variables related to locomotor biomechanics could be quantified. Measurements of regional topography (depth) were taken from 3D models of those footprints, and principal components analysis was used to identify orthogonal axes that described the largest proportions of topographic variance within the human experimental sample. Linear mixed effects models were used to quantify the influences of biomechanical variables on the first five principal axes of footprint topographic variation, thus providing new information on the biomechanical variables most evidently expressed in the morphology of human footprints. The footprint's overall depth was considered as a confounding variable, since biomechanics may be linked to the extent to which a substrate deforms. Three of five axes showed statistically significant relationships with variables related to both locomotor biomechanics and substrate displacement; one axis was influenced only by biomechanics and another only by the overall depth of the footprint. Principal axes of footprint morphological variation were significantly related to gait type (walking or running), kinematics of the hip and ankle joints and the distribution of pressure beneath the foot. These results provide the first quantitative framework for developing hypotheses regarding the

  13. Progressive Motor Neuron Pathology and the Role of Astrocytes in a Human Stem Cell Model of VCP-Related ALS

    Directory of Open Access Journals (Sweden)

    Claire E. Hall

    2017-05-01

    Full Text Available Motor neurons (MNs and astrocytes (ACs are implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS, but their interaction and the sequence of molecular events leading to MN death remain unresolved. Here, we optimized directed differentiation of induced pluripotent stem cells (iPSCs into highly enriched (> 85% functional populations of spinal cord MNs and ACs. We identify significantly increased cytoplasmic TDP-43 and ER stress as primary pathogenic events in patient-specific valosin-containing protein (VCP-mutant MNs, with secondary mitochondrial dysfunction and oxidative stress. Cumulatively, these cellular stresses result in synaptic pathology and cell death in VCP-mutant MNs. We additionally identify a cell-autonomous VCP-mutant AC survival phenotype, which is not attributable to the same molecular pathology occurring in VCP-mutant MNs. Finally, through iterative co-culture experiments, we uncover non-cell-autonomous effects of VCP-mutant ACs on both control and mutant MNs. This work elucidates molecular events and cellular interplay that could guide future therapeutic strategies in ALS.

  14. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells.

    Directory of Open Access Journals (Sweden)

    Cong Haolong

    Full Text Available Enterovirus 71 (EV71 is one of the main causative agents of foot, hand and mouth disease. Its infection usually causes severe central nervous system diseases and complications in infected infants and young children. In the present study, we demonstrated that EV71 infection caused the rearrangement of vimentin in human astrocytoma cells. The rearranged vimentin, together with various EV71 components, formed aggresomes-like structures in the perinuclear region. Electron microscopy and viral RNA labeling indicated that the aggresomes were virus replication sites since most of the EV71 particles and the newly synthesized viral RNA were concentrated here. Further analysis revealed that the vimentin in the virus factories was serine-82 phosphorylated. More importantly, EV71 VP1 protein is responsible for the activation of calmodulin-dependent protein kinase II (CaMK-II which phosphorylated the N-terminal domain of vimentin on serine 82. Phosphorylation of vimentin and the formation of aggresomes were required for the replication of EV71 since the latter was decreased markedly after phosphorylation was blocked by KN93, a CaMK-II inhibitor. Thus, as one of the consequences of CaMK-II activation, vimentin phosphorylation and rearrangement may support virus replication by playing a structural role for the formation of the replication factories. Collectively, this study identified the replication centers of EV71 in human astrocyte cells. This may help us understand the replication mechanism and pathogenesis of EV71 in human.

  15. Temporal morphologic changes in human colorectal carcinomas following xenografting.

    Science.gov (United States)

    Barkla, D H; Tutton, P J

    1983-03-01

    The temporal morphologic changes of human colorectal carcinomas following xenografting into immunosuppressed mice were investigated by the use of light and transmission electron microscopy. The results show that colorectal carcinomas undergo a series of morphologic changes during the initial 30-day period following transplantation. During the initial 1-5-day period the majority of tumor cells die, and during the following 5-10-day period the necrotic debris created during the 1-5-day period is removed by host-supplied inflammatory cells. Only small groups of peripherally placed tumor cells survived at the end of the first 10 days. During the 10-20-day period the tumor cell populations of xenografts were reestablished by a morphologically heterogeneous population of tumor cells, and during the 20-30 day period consolidation of this process continued and some xenografts showed macroscopic evidence of growth. The authors hypothesize that human colorectal carcinomas, like the antecedent epithelium, contain subpopulations of undifferentiated cells that give rise to populations of more-differentiated cells.

  16. Astrocytes in endocannabinoid signalling.

    Science.gov (United States)

    Navarrete, Marta; Díez, Adolfo; Araque, Alfonso

    2014-10-19

    Astrocytes are emerging as integral functional components of synapses, responding to synaptically released neurotransmitters and regulating synaptic transmission and plasticity. Thus, they functionally interact with neurons establishing tripartite synapses: a functional concept that refers to the existence of communication between astrocytes and neurons and its crucial role in synaptic function. Here, we discuss recent evidence showing that astrocytes are involved in the endocannabinoid (ECB) system, responding to exogenous cannabinoids as well as ECBs through activation of type 1 cannabinoid receptors, which increase intracellular calcium and stimulate the release of glutamate that modulates synaptic transmission and plasticity. We also discuss the consequences of ECB signalling in tripartite synapses on the astrocyte-mediated regulation of synaptic function, which reveal novel properties of synaptic regulation by ECBs, such as the spatially controlled dual effect on synaptic strength and the lateral potentiation of synaptic efficacy. Finally, we discuss the potential implications of ECB signalling for astrocytes in brain pathology and animal behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. In Vitro Modeling of Blood-Brain Barrier with Human iPSC-Derived Endothelial Cells, Pericytes, Neurons, and Astrocytes via Notch Signaling

    Directory of Open Access Journals (Sweden)

    Kohei Yamamizu

    2017-03-01

    Full Text Available The blood-brain barrier (BBB is composed of four cell populations, brain endothelial cells (BECs, pericytes, neurons, and astrocytes. Its role is to precisely regulate the microenvironment of the brain through selective substance crossing. Here we generated an in vitro model of the BBB by differentiating human induced pluripotent stem cells (hiPSCs into all four populations. When the four hiPSC-derived populations were co-cultured, endothelial cells (ECs were endowed with features consistent with BECs, including a high expression of nutrient transporters (CAT3, MFSD2A and efflux transporters (ABCA1, BCRP, PGP, MRP5, and strong barrier function based on tight junctions. Neuron-derived Dll1, which activates Notch signaling in ECs, was essential for the BEC specification. We performed in vitro BBB permeability tests and assessed ten clinical drugs by nanoLC-MS/MS, finding a good correlation with the BBB permeability reported in previous cases. This technology should be useful for research on human BBB physiology, pathology, and drug development.

  18. Mechanisms of CDDO-imidazolide-mediated cytoprotection against acrolein-induced neurocytotoxicity in SH-SY5Y cells and primary human astrocytes.

    Science.gov (United States)

    Speen, Adam; Jones, Colton; Patel, Ruby; Shah, Halley; Nallasamy, Palanisamy; Brooke, Elizabeth A S; Zhu, Hong; Li, Y Robert; Jia, Zhenquan

    2015-10-01

    Acrolein is a ubiquitous unsaturated aldehyde has been implicated in the pathogenesis of various neurological disorders. However, limited study has been conducted into potential therapeutic protection and underlying mechanism against acrolein-induced cytotoxicity via upregulation of cellular aldehyde-detoxification defenses. In this study we have utilized RA-differentiated human SH-SY5Y cells and primary human astrocytes to investigate the induction of glutathione (GSH) by the synthetic triterpenoid 2-cyano-3,12-dixooleana-1,9-dien-28-imidazolide (CDDO-Im) and the protective effects CDDO-Im-mediated antioxidant defenses on acrolein toxicity. Acrolein exposure to RA-differentiated SH-SY5Y cells resulted in a significant time dependent depletion of cellular GSH preceding a reduction in cell viability and LDH release. Further, we demonstrated the predominance of cellular GSH in protection against acrolein-induced cytotoxicity. Buthionine sulfoximine (BSO) at 25μM dramatically depleted GSH and significantly potentiated acrolein-induced cytotoxicity. Pretreatment of the cells with 100nM CDDO-Im afforded a dramatic protection against acrolein-induced cytotoxicity. Pretreatment of BSO and CDDO was found to prevent the CDDO-Im-mediated GSH induction and partially reversed the cytoprotective effects of CDDO-Im against acrolein cytotoxicity. Overall, this study represents for the first time the CDDO-Im mediated upregulation of GSH is a predominant mechanism against acrolein-induced neurotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Acute treatment with 17beta-estradiol attenuates astrocyte-astrocyte and astrocyte-neuron communication.

    Science.gov (United States)

    Rao, Shilpa P; Sikdar, Sujit Kumar

    2007-12-01

    Astrocytes are now recognized as dynamic signaling elements in the brain. Bidirectional communication between neurons and astrocytes involves integration of neuronal inputs by astrocytes and release of gliotransmitters that modulate neuronal excitability and synaptic transmission. The ovarian steroid hormone, 17beta-estradiol, in addition to its rapid actions on neuronal electrical activity can rapidly alter astrocyte intracellular calcium concentration ([Ca2+]i) through a membrane-associated estrogen receptor. Using calcium imaging and electrophysiological techniques, we investigated the functional consequences of acute treatment with estradiol on astrocyte-astrocyte and astrocyte-neuron communication in mixed hippocampal cultures. Mechanical stimulation of an astrocyte evoked a [Ca2+]i rise in the stimulated astrocyte, which propagated to the surrounding astrocytes as a [Ca2+]i wave. Following acute treatment with estradiol, the amplitude of the [Ca2+]i elevation in astrocytes around the stimulated astrocyte was attenuated. Further, estradiol inhibited the [Ca2+]i rise in individual astrocytes in response to the metabotropic glutamate receptor agonist, trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid. Mechanical stimulation of astrocytes induced [Ca2+]i elevations and electrophysiological responses in adjacent neurons. Estradiol rapidly attenuated the astrocyte-evoked glutamate-mediated [Ca2+]i rise and slow inward current in neurons. Also, the incidence of astrocyte-induced increase in spontaneous postsynaptic current frequency was reduced in the presence of estradiol. The effects of estradiol were stereo-specific and reversible following washout. These findings may indicate that the regulation of neuronal excitability and synaptic transmission by astrocytes is sensitive to rapid estradiol-mediated hormonal control. (c) 2007 Wiley-Liss, Inc.

  20. MORPHOLOGICAL STUDY OF THE HUMAN OVARY IN DIFFERENT AGE GROUPS

    Directory of Open Access Journals (Sweden)

    Ritu Saloi

    2017-02-01

    Full Text Available BACKGROUND Ovarian pathology can manifest in various ways, e.g. menstrual abnormalities, cystic disease, infertility, benign and malignant tumours of the ovary, etc. Ovarian cancer is one of the leading cancers in Indian women. The aim was undertaken to observe the age-related changes in the human ovary and to study if there is any difference between the right and left ovaries with respect to length, breadth, thickness and weight and compare it with the established findings of previous workers, which will help the clinicians to adopt appropriate diagnosis and treatment of the various clinical conditions associated with the ovaries. MATERIALS AND METHODS A study on human ovary was conducted in the Department of Anatomy, Gauhati Medical College, Guwahati. The morphological characteristics of 42 pairs of normal human ovaries of different age groups were studied (14 pairs in each age group. The ovaries were divided into three groups, viz. Group A or pre-reproductive, Group B or reproductive and Group C or postmenopausal. The results were statistically analysed and ‘t’ test was done to find out the significant difference of mean value. RESULTS The morphology of the ovary including the length, breadth, thickness and weight of the three groups were measured and the findings were compared with each other and also with the findings of studies done by previous workers. CONCLUSION The study showed that there were certain differences in the morphology of ovary in the three groups. The study also revealed that the weight of the right ovary was more than the left ovary in all the three age groups. The results were statistically analysed and compared with the findings of previous workers.

  1. Morphological changes in human placenta of wet snuff users

    International Nuclear Information System (INIS)

    Ashfaq, M.; Malik, M.A.

    2008-01-01

    Wet snuff is commonly used by both males and females in different parts of Pakistan. Apart from other ingredients, tobacco is the major component of snuff. Adverse effects of smoking on morphology of human placenta have been shown by some previous studies. But snuff is not considered as dangerous as smoking during pregnancy. This study was designed to see the effects of snuff on morphology of human placenta. In present study total 80 human placentae, 40 from normal and 40 from snuff users were used. This study was carried out in the Department of Anatomy Basic Medical Sciences Institution (BSMI) Karachi. Duration of study was six months. Samples were obtained from Gynaecology and Obstetric unit-I JPMC. Placentae washed well with running tap water to remove blood clots. Umbilical cord and other membranes were removed and placenta gently squeezed to expel the foetal blood. Gross features like weight, diameters, central thickness and attachment of umbilical cord were noted in normal and snuff users' placentae. Then placentae were preserved in 10% formalin for at least five days before the sectioning for micromorphology. Placentae divided in two groups-A and B. 4 macro m thick sections of the tissue were taken on rotary microtome and stained with H and E, Mallorys trichrome and methanamine silver for different histological observations. Mircromorpholgical changes have been observed in placentae of snuff users leading to loss of functional components of placentae. This loss of functional component may have deleterious effects on outcome of pregnancy. No significant gross morphological changes were found in snuff user placentae. Wet snuff effect the micromorphology of placenta leading to loss of functional component and in turn effects the exchange of materials between mother and foetus which may leads to intrauterine growth retardation. Loss of trophoblasts may lead to hormonal imbalance necessary for normal pregnancy and this imbalance can cause premature labour

  2. Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla.

    Science.gov (United States)

    Carvalho-Paulo, Dario; de Morais Magalhães, Nara G; de Almeida Miranda, Diego; Diniz, Daniel G; Henrique, Ediely P; Moraes, Isis A M; Pereira, Patrick D C; de Melo, Mauro A D; de Lima, Camila M; de Oliveira, Marcus A; Guerreiro-Diniz, Cristovam; Sherry, David F; Diniz, Cristovam W P

    2017-01-01

    Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla , that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D) morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy ( n = 249 cells) with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period ( n = 250 cells). Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes may play

  3. Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla

    Directory of Open Access Journals (Sweden)

    Dario Carvalho-Paulo

    2018-01-01

    Full Text Available Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla, that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy (n = 249 cells with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period (n = 250 cells. Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes

  4. Astrocytes in Alzheimer’s disease

    OpenAIRE

    Verkhratsky, Alexei; Olabarria, Markel; Noristani, Harun N.; Yeh, Chia-Yu; Rodriguez, Jose Julio

    2010-01-01

    The circuitry of the human brain is formed by neuronal networks embedded into astroglial syncytia. The astrocytes perform numerous functions, providing for the overall brain homeostasis, assisting in neurogenesis, determining the micro-architecture of the grey matter, and defending the brain through evolutionary conserved astrogliosis programs.

  5. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...... of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images...

  6. Integrating Human and Machine Intelligence in Galaxy Morphology Classification Tasks

    Science.gov (United States)

    Beck, Melanie Renee

    The large flood of data flowing from observatories presents significant challenges to astronomy and cosmology--challenges that will only be magnified by projects currently under development. Growth in both volume and velocity of astrophysics data is accelerating: whereas the Sloan Digital Sky Survey (SDSS) has produced 60 terabytes of data in the last decade, the upcoming Large Synoptic Survey Telescope (LSST) plans to register 30 terabytes per night starting in the year 2020. Additionally, the Euclid Mission will acquire imaging for 5 x 107 resolvable galaxies. The field of galaxy evolution faces a particularly challenging future as complete understanding often cannot be reached without analysis of detailed morphological galaxy features. Historically, morphological analysis has relied on visual classification by astronomers, accessing the human brains capacity for advanced pattern recognition. However, this accurate but inefficient method falters when confronted with many thousands (or millions) of images. In the SDSS era, efforts to automate morphological classifications of galaxies (e.g., Conselice et al., 2000; Lotz et al., 2004) are reasonably successful and can distinguish between elliptical and disk-dominated galaxies with accuracies of 80%. While this is statistically very useful, a key problem with these methods is that they often cannot say which 80% of their samples are accurate. Furthermore, when confronted with the more complex task of identifying key substructure within galaxies, automated classification algorithms begin to fail. The Galaxy Zoo project uses a highly innovative approach to solving the scalability problem of visual classification. Displaying images of SDSS galaxies to volunteers via a simple and engaging web interface, www.galaxyzoo.org asks people to classify images by eye. Within the first year hundreds of thousands of members of the general public had classified each of the 1 million SDSS galaxies an average of 40 times. Galaxy Zoo

  7. Morphological integration in the gorilla, chimpanzee, and human neck.

    Science.gov (United States)

    Arlegi, Mikel; Gómez-Robles, Aida; Gómez-Olivencia, Asier

    2018-06-01

    Although integration studies are important to understand the evolution of organisms' traits across phylogenies, vertebral integration in primates is still largely unexplored. Here we describe and quantify patterns of morphological integration and modularity in the subaxial cervical vertebrae (C3-C7) in extant hominines incorporating the potential influence of size. Three-dimensional landmarks were digitized on 546 subaxial cervical vertebrae from 141 adult individuals of Gorilla gorilla, Pan troglodytes, and Homo sapiens. Integration and modularity, and the influence of size effects, were quantified using geometric morphometric approaches. All subaxial cervical vertebrae from the three species show a strong degree of integration. Gorillas show the highest degree of integration; conversely, humans have the lowest degree of integration. Analyses of allometric regression residuals show that size is an important factor promoting integration in gorillas, with lesser influence in chimpanzees and almost no effect in humans. Results point to a likely ancestral pattern of integration in non-human hominines, whereby the degree of integration decreases from cranial to caudal positions. Humans deviate from this pattern in the cranialmost (C3) and, to a lesser extent, in the caudalmost (C7) vertebrae, which are less integrated. These differences can be tentatively related to the emergence of bipedalism due to the presence of modern human-like C3 in australopiths, which still preserve a more chimpanzee-like C7. © 2018 Wiley Periodicals, Inc.

  8. Thimerosal-Derived Ethylmercury Is a Mitochondrial Toxin in Human Astrocytes: Possible Role of Fenton Chemistry in the Oxidation and Breakage of mtDNA

    Directory of Open Access Journals (Sweden)

    Martyn A. Sharpe

    2012-01-01

    Full Text Available Thimerosal generates ethylmercury in aqueous solution and is widely used as preservative. We have investigated the toxicology of Thimerosal in normal human astrocytes, paying particular attention to mitochondrial function and the generation of specific oxidants. We find that ethylmercury not only inhibits mitochondrial respiration leading to a drop in the steady state membrane potential, but also concurrent with these phenomena increases the formation of superoxide, hydrogen peroxide, and Fenton/Haber-Weiss generated hydroxyl radical. These oxidants increase the levels of cellular aldehyde/ketones. Additionally, we find a five-fold increase in the levels of oxidant damaged mitochondrial DNA bases and increases in the levels of mtDNA nicks and blunt-ended breaks. Highly damaged mitochondria are characterized by having very low membrane potentials, increased superoxide/hydrogen peroxide production, and extensively damaged mtDNA and proteins. These mitochondria appear to have undergone a permeability transition, an observation supported by the five-fold increase in Caspase-3 activity observed after Thimerosal treatment.

  9. Astrocytes in Alzheimer's Disease

    Czech Academy of Sciences Publication Activity Database

    Verkhratsky, Alexei; Olabarria, M.; Noristani, H. N.; Yeh, C. Y.; Rodríguez Arellano, Jose Julio

    2010-01-01

    Roč. 7, č. 4 (2010), s. 399-412 ISSN 1933-7213 R&D Projects: GA ČR GA309/09/1696; GA ČR GA305/08/1384 Institutional research plan: CEZ:AV0Z50390703 Keywords : Astrocytes * neuroglia * neurodegeneration Subject RIV: FH - Neurology Impact factor: 6.084, year: 2010

  10. Amines, Astrocytes and Arousal

    OpenAIRE

    Bazargani, N.; Attwell, D.

    2017-01-01

    Amine neurotransmitters, such as noradrenaline, mediate arousal, attention, and reward in the CNS. New data suggest that, from flies to mammals, a major mechanism for amine transmitter action is to raise astrocyte [Ca2+]i and release gliotransmitters that modulate neuronal activity and behavior.

  11. Knockdown of astrocyte elevated gene-1 inhibits tumor growth and modifies microRNAs expression profiles in human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Sujun [East Department of Gastroenterology, Institute of Geriatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080 (China); Southern Medical University, Guangzhou, Guangdong 510515 (China); Wu, Binwen, E-mail: wubinwengd@aliyun.com [East Department of Gastroenterology, Institute of Geriatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080 (China); Li, Dongfeng; Zhou, Weihong; Deng, Gang; Zhang, Kaijun; Li, Youjia [East Department of Gastroenterology, Institute of Geriatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080 (China)

    2014-02-14

    Highlights: • AEG-1 expression in CRC cell lines and down-regulation or upregulation of AEG-1 in vitro. • Knockdown of AEG-1 inhibits cell proliferation, colony formation and invasion. • Upregulation of AEG-1 enhances proliferation, invasion and colony formation. • Knockdown of AEG-1 accumulates G0/G1-phase cells and promotes apoptosis in CRC cells. • AEG-1 knockdown increases 5-FU cytotoxicity. - Abstract: Astrocyte elevated gene-1 (AEG-1), upregulated in various types of malignancies including colorectal cancer (CRC), has been reported to be associated with the carcinogenesis. MicroRNAs (miRNAs) are widely involved in the initiation and progression of cancer. However, the functional significance of AEG-1 and the relationship between AEG-1 and microRNAs in human CRC remains unclear. The aim of this study was to investigate whether AEG-1 could serve as a potential therapeutic target of human CRC and its possible mechanism. We adopted a strategy of ectopic overexpression or RNA interference to upregulate or downregulate expression of AEG-1 in CRC models. Their phenotypic changes were analyzed by Western blot, MTT and transwell matrix penetration assays. MicroRNAs expression profiles were performed using microarray analysis followed by validation using qRT-PCR. Knockdown of AEG-1 could significantly inhibit colon cancer cell proliferation, colony formation, invasion and promotes apoptosis. Conversely, upregulation of AEG-1 could significantly enhance cell proliferation, invasion and reduced apoptisis. AEG-1 directly contributes to resistance to chemotherapeutic drug. Targeted downregulation of AEG-1 might improve the expression of miR-181a-2{sup ∗}, -193b and -193a, and inversely inhibit miR-31 and -9{sup ∗}. Targeted inhibition of AEG-1 can lead to modification of key elemental characteristics, such as miRNAs, which may become a potential effective therapeutic strategy for CRC.

  12. Knockdown of astrocyte elevated gene-1 inhibits tumor growth and modifies microRNAs expression profiles in human colorectal cancer cells

    International Nuclear Information System (INIS)

    Huang, Sujun; Wu, Binwen; Li, Dongfeng; Zhou, Weihong; Deng, Gang; Zhang, Kaijun; Li, Youjia

    2014-01-01

    Highlights: • AEG-1 expression in CRC cell lines and down-regulation or upregulation of AEG-1 in vitro. • Knockdown of AEG-1 inhibits cell proliferation, colony formation and invasion. • Upregulation of AEG-1 enhances proliferation, invasion and colony formation. • Knockdown of AEG-1 accumulates G0/G1-phase cells and promotes apoptosis in CRC cells. • AEG-1 knockdown increases 5-FU cytotoxicity. - Abstract: Astrocyte elevated gene-1 (AEG-1), upregulated in various types of malignancies including colorectal cancer (CRC), has been reported to be associated with the carcinogenesis. MicroRNAs (miRNAs) are widely involved in the initiation and progression of cancer. However, the functional significance of AEG-1 and the relationship between AEG-1 and microRNAs in human CRC remains unclear. The aim of this study was to investigate whether AEG-1 could serve as a potential therapeutic target of human CRC and its possible mechanism. We adopted a strategy of ectopic overexpression or RNA interference to upregulate or downregulate expression of AEG-1 in CRC models. Their phenotypic changes were analyzed by Western blot, MTT and transwell matrix penetration assays. MicroRNAs expression profiles were performed using microarray analysis followed by validation using qRT-PCR. Knockdown of AEG-1 could significantly inhibit colon cancer cell proliferation, colony formation, invasion and promotes apoptosis. Conversely, upregulation of AEG-1 could significantly enhance cell proliferation, invasion and reduced apoptisis. AEG-1 directly contributes to resistance to chemotherapeutic drug. Targeted downregulation of AEG-1 might improve the expression of miR-181a-2 ∗ , -193b and -193a, and inversely inhibit miR-31 and -9 ∗ . Targeted inhibition of AEG-1 can lead to modification of key elemental characteristics, such as miRNAs, which may become a potential effective therapeutic strategy for CRC

  13. Endothelial-astrocytic interactions in acute liver failure.

    Science.gov (United States)

    Jayakumar, A R; Norenberg, M D

    2013-06-01

    Brain edema and the subsequent increase in intracranial pressure are major neurological complications of acute liver failure (ALF), and swelling of astrocytes (cytotoxic brain edema) is the most prominent neuropathological abnormality in ALF. Recent studies, however, have suggested the co-existence of cytotoxic and vasogenic mechanisms in the brain edema associated with ALF. This review 1) summarizes the nature of the brain edema in humans and experimental animals with ALF; 2) reviews in vitro studies supporting the presence of cytotoxic brain edema (cell swelling in cultured astrocytes); and 3) documents the role of brain endothelial cells in the development of astrocyte swelling/brain edema in ALF.

  14. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model.

    Science.gov (United States)

    Cheng, Connie; Lau, Sally K M; Doering, Laurie C

    2016-08-02

    Astrocytes are key participants in various aspects of brain development and function, many of which are executed via secreted proteins. Defects in astrocyte signaling are implicated in neurodevelopmental disorders characterized by abnormal neural circuitry such as Fragile X syndrome (FXS). In animal models of FXS, the loss in expression of the Fragile X mental retardation 1 protein (FMRP) from astrocytes is associated with delayed dendrite maturation and improper synapse formation; however, the effect of astrocyte-derived factors on the development of neurons is not known. Thrombospondin-1 (TSP-1) is an important astrocyte-secreted protein that is involved in the regulation of spine development and synaptogenesis. In this study, we found that cultured astrocytes isolated from an Fmr1 knockout (Fmr1 KO) mouse model of FXS displayed a significant decrease in TSP-1 protein expression compared to the wildtype (WT) astrocytes. Correspondingly, Fmr1 KO hippocampal neurons exhibited morphological deficits in dendritic spines and alterations in excitatory synapse formation following long-term culture. All spine and synaptic abnormalities were prevented in the presence of either astrocyte-conditioned media or a feeder layer derived from FMRP-expressing astrocytes, or following the application of exogenous TSP-1. Importantly, this work demonstrates the integral role of astrocyte-secreted signals in the establishment of neuronal communication and identifies soluble TSP-1 as a potential therapeutic target for Fragile X syndrome.

  15. Local biochemical and morphological differences in human Achilles tendinopathy

    DEFF Research Database (Denmark)

    Pingel, Jessica; Fredberg, U.; Qvortrup, Klaus

    2012-01-01

    The incidence of Achilles tendinopathy is high and underlying etiology as well as biochemical and morphological pathology associated with the disease is largely unknown. The aim of the present study was to describe biochemical and morphological differences in chronic Achilles tendinopathy....... The expressions of growth factors, inflammatory mediators and tendon morphology were determined in both chronically diseased and healthy tendon parts....

  16. The effect of gallic acid on cytotoxicity, Ca(2+) homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes.

    Science.gov (United States)

    Hsu, Shu-Shong; Chou, Chiang-Ting; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Kuo, Chun-Chi; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-05-25

    Gallic acid, a polyhydroxylphenolic compound, is widely distributed in various plants, fruits and foods. It has been shown that gallic acid passes into blood brain barrier and reaches the brain tissue of middle cerebral artery occlusion rats. However, the effect of gallic acid on Ca(2+) signaling in glia cells is unknown. This study explored whether gallic acid affected Ca(2+) homeostasis and induced Ca(2+)-associated cytotoxicity in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Gallic acid (20-40 μM) concentration-dependently induced cytotoxicity and intracellular Ca(2+) level ([Ca(2+)]i) increases in DBTRG-05MG cells but not in CTX TNA2 cells. In DBTRG-05MG cells, the Ca(2+) response was decreased by half by removal of extracellular Ca(2+). In Ca(2+)-containing medium, gallic acid-induced Ca(2+) entry was inhibited by store-operated Ca(2+) channel inhibitors (2-APB, econazole and SKF96365). In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin abolished gallic acid-induced [Ca(2+)]i increases. Conversely, incubation with gallic acid also abolished thapsigargin-induced [Ca(2+)]i increases. Inhibition of phospholipase C with U73122 abolished gallic acid-induced [Ca(2+)]i increases. Gallic acid significantly caused cytotoxicity in DBTRG-05MG cells, which was partially prevented by prechelating cytosolic Ca(2+) with BAPTA-AM. Moreover, gallic acid activated mitochondrial apoptotic pathways that involved ROS production. Together, in DBTRG-05MG cells but not in CTX TNA2 cells, gallic acid induced [Ca(2+)]i increases by causing Ca(2+) entry via 2-APB, econazole and SKF96365-sensitive store-operated Ca(2+) entry, and phospholipase C-dependent release from the endoplasmic reticulum. This Ca(2+) signal subsequently evoked mitochondrial pathways of apoptosis that involved ROS production. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Morphology of nerve endings in vocal fold of human newborn.

    Science.gov (United States)

    Gonçalves da Silva Leite, Janaina; Costa Cavalcante, Maria Luzete; Fechine-Jamacaru, Francisco Vagnaldo; de Lima Pompeu, Margarida Maria; Leite, José Alberto Dias; Nascimento Coelho, Dulce Maria; Rabelo de Freitas, Marcos

    2016-10-01

    Sensory receptors are distributed throughout the oral cavity, pharynx, and larynx. Laryngeal sensitivity is crucial for maintaining safe swallowing, thus avoiding silent aspiration. Morphologic description of different receptor types present in larynx vary because of the study of many different species, from mouse to humans. The most commonly sensory structures described in laryngeal mucosa are free nerve endings, taste buds, muscle spindles, glomerular and corpuscular receptors. This study aimed at describing the morphology and the distribution of nerve endings in premature newborn glottic region. Transversal serial frozen sections of the whole vocal folds of three newborns were analyzed using an immuno-histochemical process with a pan-neuronal marker anti-protein gene product 9.5 (PGP 9.5). Imaging was done using a confocal laser microscope. Nerve fiber density in vocal cord was calculated using panoramic images in software Morphometric Analysis System v1.0. Some sensory structures, i.e. glomerular endings and intraepithelial free nerve endings were found in the vocal cord mucosa. Muscle spindles, complex nerve endings (Meissner-like, spherical, rectangular and growing) spiral-wharves nerve structures were identified in larynx intrinsic muscles. Nervous total mean density in vocal cord was similar in the three newborns, although they had different gestational age. The mean nerve fiber density was higher in the posterior region than anterior region of vocal cord. The present results demonstrate the occurrence of different morphotypes of sensory corpuscles and nerve endings premature newborn glottic region and provide information on their sensory systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Expression and enzymatic activity of dipeptidyl peptidase-IV in human astrocytic tumours are associated with tumour grade

    Czech Academy of Sciences Publication Activity Database

    Stremeňová, J.; Křepela, E.; Mareš, Vladislav; Trim, J.; Dbalý, V.; Marek, J.; Vaníčková, Z.; Lisá, Věra; Yea, Ch.; Šedo, A.

    2007-01-01

    Roč. 31, č. 4 (2007), s. 785-792 ISSN 1019-6439 R&D Projects: GA MZd NR8105 Institutional research plan: CEZ:AV0Z50110509 Keywords : Dipeptidyl peptidase-IV * human brain tumors * DASH molecules Subject RIV: FD - Oncology ; Hematology Impact factor: 2.295, year: 2007

  19. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    Science.gov (United States)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Connexin Hemichannels in Astrocytes

    DEFF Research Database (Denmark)

    Nielsen, Brian Skriver; Hansen, Daniel Bloch; Ransom, Bruce R.

    2017-01-01

    Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli are repo...... selectivity. We expect that some, or all, of the controversies discussed here will be resolved by future research and sincerely hope that this review serves to motivate such clarifying investigations.......Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli....... Published studies about astrocyte hemichannel behavior, however, have been highly variable and/or contradictory. The field of connexin hemichannel research has been complicated by great variability in the experimental preparations employed, a lack of highly specific pharmacological inhibitors...

  1. Lentivirus-Mediated Knockdown of Astrocyte Elevated Gene-1 Inhibits Growth and Induces Apoptosis through MAPK Pathways in Human Retinoblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Ying Chang

    Full Text Available To explore expression and function of astrocyte elevated gene-1 (AEG-1 in human retinoblastoma (RB.The expression of AEG-1 in histological sections of human RBs and in RB cell lines was examined using immunohistochemical staining and RT-PCR and Western blotting respectively. We knocked down AEG-1 gene levels by AEG-1-siRNA lentivirus transfection of human RB cell lines SO-RB50 and Y79, and using an MTT assay, we assessed the role of AEG-1 on RB cell proliferation. The biological significance of lentivirus transfection induced AEG-1 down-regulation was examined by assessing the apoptosis rate in the transfected RB cells by Annexin V-APC staining and flow cytometry. We additionally measured the expression of Bcl-2, Bax, cleaved-caspase-3 and caspase-3, and the phosphorylation and non-phosphorylation alternation of MAPKs.AEG-1 expression was detected to be strongly positive in the histological slides of 35 out of 54 (65% patients with RB. AEG-1 expression increased significantly (P<0.05 with tumor stage. In the RB cell lines SO-RB50, Y79 and WERI-RB1 as compared with retinal pigment epithelium cells, expression of AEG-1 mRNA and AEG-1 protein was significantly higher. In AEG-1-siRNA lentivirus transfected cell cultures as compared with negative control lentivirus transfected cell cultures, levels of AEG-1 mRNA and of AEG-1 protein (P<0.05 and cell growth rates (P<0.01 were significantly lower, and apoptosis rate (P<0.001, Bax/Bcl-2 ratio and cleaved-caspase-3 protein level were significantly increased. The P-ERK/ERK ratio was significantly decreased in the AEG-1-siRNA lentivirus transfected cell lines.Expression of AEG-1 was associated with RB, in histological slides of patients and in cell culture experiments. Lentivirus transfection induced knockdown of AEG-1 had a tumor suppressive effect, potentially by tumor cell apoptosis induction through inhibition of ERK.

  2. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    the focal GM and WM densities of each twin are correlated with the psychometric intelligence quotient of his/her cotwin. Genes influenced individual differences in left and right superior occipitofrontal fascicle (heritability up to 0.79 and 0.77), corpus callosum (0.82, 0.80), optic radiation (0.69, 0.......79), corticospinal tract (0.78, 0.79), medial frontal cortex (0.78, 0.83), superior frontal cortex (0.76, 0.80), superior temporal cortex (0.80, 0.77), left occipital cortex (0.85), left postcentral cortex (0.83), left posterior cingulate cortex (0.83), right parahippocampal cortex (0.69), and amygdala (0.80, 0......Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...

  3. Morphological characterization of a human glioma cell l ine.

    Science.gov (United States)

    Machado, Camila Ml; Schenka, André; Vassallo, José; Tamashiro, Wirla Msc; Gonçalves, Estela M; Genari, Selma C; Verinaud, Liana

    2005-05-10

    A human malignant continuous cell line, named NG97, was recently established in our laboratory. This cell line has been serially subcultured over 100 times in standard culture media presenting no sign of cell senescence. The NG97 cell line has a doubling time of about 24 h. Immunocytochemical analysis of glial markers demonstrated that cells are positive for glial fibrillary acidic protein (GFAP) and S-100 protein, and negative for vimentin. Under phase-contrast microscope, cultures of NG97 showed cells with variable morphological features, such as small rounded cells, fusiform cells (fibroblastic-like cells), and dendritic-like cells. However, at confluence just small rounded and fusiform cells can be observed. At scanning electron microscopy (SEM) small rounded cells showed heterogeneous microextentions, including blebs and filopodia. Dendritic-like cells were flat and presented extensive prolongations, making several contacts with small rounded cells, while fusiform cells presented their surfaces dominated by microvilli.We believe that the knowledge about NG97 cell line may be useful for a deeper understanding of biological and immunological characteristics of gliomas.

  4. An Anatomic Morphological Study of Occipital Spurs in Human Skulls.

    Science.gov (United States)

    Srivastava, Monika; Asghar, Adil; Srivastava, Nitya Nand; Gupta, Nandkishore; Jain, Anuj; Verma, Jayant

    2018-01-01

    Occipital spurs are quite common; however, they are also the source of frequent discomfort to the patients. Their role has been implicated in causation of pain at the base of skull, which may extend to shoulder limiting the movement of the shoulder and neck. The present was carried out to find out the prevalence of occipital spur in human skull and to find out the anatomic morphological characteristics of occipital spur. A total of 30 cadaveric skulls were examined in the Department of Anatomy, Uttar Pradesh University of Medical Sciences, for the presence of occipital spur. These skulls were the part of boneset obtained as a part of undergraduate training in the department. All the measurements were taken using a digital Vernier Caliper after taking all necessary precaution to avoid any damage to these spurs. The prevalence of occipital spur in the present study was 10%. The mean width recorded in the present study was 13.40 mm (±6.7) and the mean length recorded was 13.45 mm (±1.05). Similarly, mean thickness noted was 2.43 mm (±0.43). Thus, the present study concludes that occipital spurs are the frequent source of discomfort to patients. The knowledge of this tubercle is of paramount importance to neurosurgeons, sports physicians, and radiologists for the diagnosis of such discomfort.

  5. Identification of diverse astrocyte populations and their malignant analogs.

    Science.gov (United States)

    John Lin, Chia-Ching; Yu, Kwanha; Hatcher, Asante; Huang, Teng-Wei; Lee, Hyun Kyoung; Carlson, Jeffrey; Weston, Matthew C; Chen, Fengju; Zhang, Yiqun; Zhu, Wenyi; Mohila, Carrie A; Ahmed, Nabil; Patel, Akash J; Arenkiel, Benjamin R; Noebels, Jeffrey L; Creighton, Chad J; Deneen, Benjamin

    2017-03-01

    Astrocytes are the most abundant cell type in the brain, where they perform a wide array of functions, yet the nature of their cellular heterogeneity and how it oversees these diverse roles remains shrouded in mystery. Using an intersectional fluorescence-activated cell sorting-based strategy, we identified five distinct astrocyte subpopulations present across three brain regions that show extensive molecular diversity. Application of this molecular insight toward function revealed that these populations differentially support synaptogenesis between neurons. We identified correlative populations in mouse and human glioma and found that the emergence of specific subpopulations during tumor progression corresponded with the onset of seizures and tumor invasion. In sum, we have identified subpopulations of astrocytes in the adult brain and their correlates in glioma that are endowed with diverse cellular, molecular and functional properties. These populations selectively contribute to synaptogenesis and tumor pathophysiology, providing a blueprint for understanding diverse astrocyte contributions to neurological disease.

  6. SLAM- and nectin-4-independent noncytolytic spread of canine distemper virus in astrocytes.

    Science.gov (United States)

    Alves, Lisa; Khosravi, Mojtaba; Avila, Mislay; Ader-Ebert, Nadine; Bringolf, Fanny; Zurbriggen, Andreas; Vandevelde, Marc; Plattet, Philippe

    2015-05-01

    Measles and canine distemper viruses (MeV and CDV, respectively) first replicate in lymphatic and epithelial tissues by using SLAM and nectin-4 as entry receptors, respectively. The viruses may also invade the brain to establish persistent infections, triggering fatal complications, such as subacute sclerosis pan-encephalitis (SSPE) in MeV infection or chronic, multiple sclerosis-like, multifocal demyelinating lesions in the case of CDV infection. In both diseases, persistence is mediated by viral nucleocapsids that do not require packaging into particles for infectivity but are directly transmitted from cell to cell (neurons in SSPE or astrocytes in distemper encephalitis), presumably by relying on restricted microfusion events. Indeed, although morphological evidence of fusion remained undetectable, viral fusion machineries and, thus, a putative cellular receptor, were shown to contribute to persistent infections. Here, we first showed that nectin-4-dependent cell-cell fusion in Vero cells, triggered by a demyelinating CDV strain, remained extremely limited, thereby supporting a potential role of nectin-4 in mediating persistent infections in astrocytes. However, nectin-4 could not be detected in either primary cultured astrocytes or the white matter of tissue sections. In addition, a bioengineered "nectin-4-blind" recombinant CDV retained full cell-to-cell transmission efficacy in primary astrocytes. Combined with our previous report demonstrating the absence of SLAM expression in astrocytes, these findings are suggestive for the existence of a hitherto unrecognized third CDV receptor expressed by glial cells that contributes to the induction of noncytolytic cell-to-cell viral transmission in astrocytes. While persistent measles virus (MeV) infection induces SSPE in humans, persistent canine distemper virus (CDV) infection causes chronic progressive or relapsing demyelination in carnivores. Common to both central nervous system (CNS) infections is that

  7. Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes.

    Science.gov (United States)

    Kunze, Christine; Börner, Kathleen; Kienle, Eike; Orschmann, Tanja; Rusha, Ejona; Schneider, Martha; Radivojkov-Blagojevic, Milena; Drukker, Micha; Desbordes, Sabrina; Grimm, Dirk; Brack-Werner, Ruth

    2018-02-01

    Astrocytes, the most abundant cells in the mammalian brain, perform key functions and are involved in several neurodegenerative diseases. The human immunodeficiency virus (HIV) can persist in astrocytes, contributing to the HIV burden and neurological dysfunctions in infected individuals. While a comprehensive approach to HIV cure must include the targeting of HIV-1 in astrocytes, dedicated tools for this purpose are still lacking. Here we report a novel Adeno-associated virus-based vector (AAV9P1) with a synthetic surface peptide for transduction of astrocytes. Analysis of AAV9P1 transduction efficiencies with single brain cell populations, including primary human brain cells, as well as human brain organoids demonstrated that AAV9P1 targeted terminally differentiated human astrocytes much more efficiently than neurons. We then investigated whether AAV9P1 can be used to deliver HIV-inhibitory genes to astrocytes. To this end we generated AAV9P1 vectors containing genes for HIV-1 proviral editing by CRISPR/Cas9. Latently HIV-1 infected astrocytes transduced with these vectors showed significantly diminished reactivation of proviruses, compared with untransduced cultures. Sequence analysis identified mutations/deletions in key HIV-1 transcriptional control regions. We conclude that AAV9P1 is a promising tool for gene delivery to astrocytes and may facilitate inactivation/destruction of persisting HIV-1 proviruses in astrocyte reservoirs. © 2017 Wiley Periodicals, Inc.

  8. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    Science.gov (United States)

    Barcia, Carlos; Sanderson, Nicholas S R; Barrett, Robert J; Wawrowsky, Kolja; Kroeger, Kurt M; Puntel, Mariana; Liu, Chunyan; Castro, Maria G; Lowenstein, Pedro R

    2008-08-20

    Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown. Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes. Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV infection), anti

  9. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    Directory of Open Access Journals (Sweden)

    Carlos Barcia

    2008-08-01

    Full Text Available Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown.Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes.Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV

  10. N-acetylcysteine prevents HIV gp 120-related damage of human cultured astrocytes: correlation with glutamine synthase dysfunction

    Directory of Open Access Journals (Sweden)

    Costa Nicola

    2007-12-01

    Full Text Available Abstract Background HIV envelope gp 120 glycoprotein is released during active HIV infection of brain macrophages thereby generating inflammation and oxidative stress which contribute to the development of the AIDS-Dementia Complex (ADC. Gp120 has also been found capable to generate excitotoxic effect on brain tissue via enhancement of glutamatergic neurotransmission, leading to neuronal and astroglial damage, though the mechanism is still to be better understood. Here we investigated on the effect of N-acetylcysteine (NAC, on gp120-induced damage in human cultured astroglial cells and the possible contribution of gp120-related reacting oxygen species (ROS in the imbalanced activity of glutamine synthase (GS, the enzyme that metabolizes glutamate into glutamine within astroglial cells playing a neuroprotective role in brain disorders. Results Incubation of Lipari human cultured astroglial cells with gp 120 (0.1–10 nM produced a significant reduction of astroglial cell viability and apoptosis as evaluated by TUNEL reaction and flow cytometric analysis (FACS. This effect was accompanied by lipid peroxidation as detected by means of malondialdehyde assay (MDA. In addition, gp 120 reduced both glutamine concentration in astroglial cell supernatants and GS expression as detected by immunocytochemistry and western blotting analysis. Pre-treatment of cells with NAC (0.5–5 mM, dose-dependently antagonised astroglial apoptotic cell death induced by gp 120, an effect accompanied by significant attenuation of MDA accumulation. Furthermore, both effects were closely associated with a significant recovery of glutamine levels in cell supernatants and by GS expression, thus suggesting that overproduction of free radicals might contribute in gp 120-related dysfunction of GS in astroglial cells. Conclusion In conclusion, the present experiments demonstrate that gp 120 is toxic to astroglial cells, an effect accompanied by lipid peroxidation and by altered

  11. Does rapid and physiological astrocyte-neuron signalling amplify epileptic activity?

    Science.gov (United States)

    Henneberger, Christian

    2017-03-15

    The hippocampus is a key brain region in the pathophysiology of mesial temporal lobe epilepsy. Long-term changes of its architecture and function on the network and cellular level are well documented in epilepsy. Astrocytes can control many aspects of neuronal function and their long-term alterations over weeks, months and years play an important role in epilepsy. However, a pathophysiological transformation of astrocytes does not seem to be required for astrocytes to contribute to epileptic activity. Some of the properties of physiological astrocyte-neuron communication could allow these cells to exacerbate or synchronize neuronal firing on shorter time scales of milliseconds to minutes. Therefore, these astrocyte-neuron interactions are increasingly recognized as potential contributors to epileptic activity. Fast and reciprocal communication between astrocytes and neurons is enabled by a diverse set of mechanisms that could both amplify and counteract epileptic activity. They may thus promote or cause development of epileptic activity or inhibit it. Mechanisms of astrocyte-neuron interactions that can quickly increase network excitability involve, for example, astrocyte Ca 2+ and Na + signalling, K + buffering, gap junction coupling and metabolism. However, rapid changes of astrocyte neurotransmitter uptake and morphology may also underlie or support development of network hyperexcitability. The temporal characteristics of these interactions, their ability to synchronize neuronal activity and their net effect on network activity will determine their contribution to the emergence or maintenance of epileptic activity. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  12. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target

    Directory of Open Access Journals (Sweden)

    Yutaka eKoyama

    2015-07-01

    Full Text Available Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this article, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.

  13. Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity

    Czech Academy of Sciences Publication Activity Database

    Dráberová, Eduarda; Del Valle, L.; Gordon, J.; Marková, Vladimíra; Šmejkalová, Barbora; Bertrand, L.; de Chadarévian, J.-P.; Agamanolis, D.P.; Legido, A.; Khalili, K.; Dráber, Pavel; Katsetos, C.D.

    2008-01-01

    Roč. 67, č. 4 (2008), s. 341-354 ISSN 0022-3069 R&D Projects: GA MŠk LC545; GA ČR GA204/05/2375 Institutional research plan: CEZ:AV0Z50520514 Keywords : astrocytes * class III beta-tubulin * fetal glia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.140, year: 2008

  14. Taurine Biosynthesis by Neurons and Astrocytes*

    Science.gov (United States)

    Vitvitsky, Victor; Garg, Sanjay K.; Banerjee, Ruma

    2011-01-01

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capability as reported by incorporation of radioactivity from [35S]cysteine into taurine, in primary murine astrocytes and neurons, and in several transformed cell lines (human (SH-SY5Y) and murine (N1E-115) neuroblastoma, human astrocytoma (U-87MG and 1321 N1), and rat glioma (C6)). Extensive incorporation of radioactivity from [35S]cysteine into taurine was observed in rat glioma cells as well as in primary mouse astrocytes and neurons, establishing the presence of an intact taurine synthesis pathway in these cells. Interestingly, exposure of cells to cysteine or cysteamine resulted in elevated intracellular hypotaurine without a corresponding increase in taurine levels, suggesting that oxidation of hypotaurine limits taurine synthesis in cells. Consistent with its role as an organic osmolyte, taurine synthesis was stimulated under hypertonic conditions in neurons. PMID:21778230

  15. Astrocytic GABA transporter activity modulates excitatory neurotransmission

    DEFF Research Database (Denmark)

    Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent

    2016-01-01

    unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na(+) concentrations and a consequent increase in astrocytic Ca(2+) through Na(+)/Ca(2+) exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal...

  16. Astrocytic GABA Transporters

    DEFF Research Database (Denmark)

    Schousboe, Arne; Wellendorph, Petrine; Frølund, Bente

    2017-01-01

    , and several of these compounds have been shown to exhibit pronounced anticonvulsant activity in a variety of animal seizure models. As proof of concept of the validity of this drug development approach, one GABA-transport inhibitor, tiagabine, has been developed as a clinically active antiepileptic drug......Inactivation of GABA-mediated neurotransmission is achieved by high-affinity transporters located at both GABAergic neurons and the surrounding astrocytes. Early studies of the pharmacological properties of neuronal and glial GABA transporters suggested that different types of transporters might...... be expressed in the two cell types, and such a scenario was confirmed by the cloning of four distinctly different GABA transporters from a number of different species. These GABA-transport entities have been extensively characterized using a large number of GABA analogues of restricted conformation...

  17. Patterns of differences in brain morphology in humans as compared to extant apes.

    Science.gov (United States)

    Aldridge, Kristina

    2011-01-01

    Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Astrocyte, the star avatar: redefined

    Indian Academy of Sciences (India)

    Srinivas

    LIF, leukaemia inhibitory factor; LTP, long-term potentiation; MBP, myelin basic protein; MCP, ... In short, astrocytes are multifunctional, efficient housekeeping cells that help neurons become ..... memory, synaptic plasticity and induction of LTP.

  19. ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord.

    Science.gov (United States)

    Yu, Zhiyuan; Liu, Miao; Fu, Peicai; Xie, Minjie; Wang, Wei; Luo, Xiang

    2012-12-01

    Rho-associated Kinase (ROCK) has been identified as an important regulator of proliferation and cell cycle progression in a number of cell types. Although its effects on astrocyte proliferation have not been well characterized, ROCK has been reported to play important roles in gap junction formation, morphology, and migration of astrocytes. In the present study, our aim was to investigate the effect of ROCK inhibition by [(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] (Y27632) on proliferation and DNA synthesis in cultured astrocytes from rat spinal cord and the possible mechanism involved. Western blots showed that treatment of astrocytes with Y27632 increased their expression of cyclin D1, CDK4, and cyclin E, thereby causing cell cycle progression. Furthermore, Y27632-induced astrocyte proliferation was mediated through the extracellular-signal-regulated kinase signaling cascade. These results indicate the importance of ROCK in astrocyte proliferation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Epilepsy and astrocyte energy metabolism.

    Science.gov (United States)

    Boison, Detlev; Steinhäuser, Christian

    2018-06-01

    Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K + and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy. © 2017 Wiley Periodicals, Inc.

  2. Gross morphological changes in premature and post mature human plancentae

    International Nuclear Information System (INIS)

    Sherin, F.; Afzal, E.; Seema, N.

    2015-01-01

    Placenta is a valuable tool for maternal and foetal diseases. Gross pathological changes are seen in the placenta of many disorders of pregnancy, which are associated with high perinatal morbidity and mortality. This study was conducted with the aim to compare the morphological features of preterm, term and post term placentae in our setup. Methods: This cross sectional study was conducted on 150 placentae: 50 were from normal (term) pregnancies considered as control (delivered between 37 to 42 weeks of gestation.), 50 from premature pregnancies (gestational age between 35-37 weeks) from mothers having hypertensive disorders of pregnancy, and 50 from post mature pregnancies (gestational age more than 42 weeks). The placentae were collected from Department of Obstetrics and Gynaecology, Khyber Teaching Hospital, Peshawar, through purposive sampling. Placentae were examined in the department of Anatomy, Khyber Medical College Peshawar. Results: In gross morphological features of placentae (weight and diameter) showed significant (p<0.001) among the groups Conclusion: In was concluded that the hypertensive disorders of the pregnancy adversely influence the morphology of placenta, which leads to the premature delivery. (author)

  3. Are astrocytes executive cells within the central nervous system?

    Directory of Open Access Journals (Sweden)

    Roberto E. Sica

    2016-08-01

    Full Text Available ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

  4. Nanofibrillar scaffolds induce preferential activation of Rho GTPases in cerebral cortical astrocytes

    Science.gov (United States)

    Tiryaki, Volkan Mujdat; Ayres, Virginia M; Khan, Adeel A; Ahmed, Ijaz; Shreiber, David I; Meiners, Sally

    2012-01-01

    Cerebral cortical astrocyte responses to polyamide nanofibrillar scaffolds versus poly-L-lysine (PLL)-functionalized planar glass, unfunctionalized planar Aclar coverslips, and PLL-functionalized planar Aclar surfaces were investigated by atomic force microscopy and immunocytochemistry. The physical properties of the cell culture environments were evaluated using contact angle and surface roughness measurements and compared. Astrocyte morphological responses, including filopodia, lamellipodia, and stress fiber formation, and stellation were imaged using atomic force microscopy and phalloidin staining for F-actin. Activation of the corresponding Rho GTPase regulators was investigated using immunolabeling with Cdc42, Rac1, and RhoA. Astrocytes cultured on the nanofibrillar scaffolds showed a unique response that included stellation, cell–cell interactions by stellate processes, and evidence of depression of RhoA. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family, with demonstrable morphological consequences for cerebral cortical astrocytes. PMID:22915841

  5. Fluoxetine requires the endfeet protein aquaporin-4 to enhance plasticity of astrocyte processes

    Directory of Open Access Journals (Sweden)

    Barbara eDi Benedetto

    2016-02-01

    Full Text Available Morphological alterations in astrocytes are characteristic for post mortem brains of patients affected by major depressive disorder (MDD. Recently, a significant reduction in the coverage of blood vessels (BVs by aquaporin-4 (AQP-4-positive astrocyte endfeet has been shown in the prefrontal cortex (PFC of MDD patients, suggesting that either alterations in the morphology of endfeet or in AQP-4 distribution might be responsible for the disease phenotype or constitute a consequence of its progress. Antidepressant drugs (ADs regulate the expression of several proteins, including astrocyte-specific ones. Thus, they may target AQP-4 to induce morphological changes in astrocytes and restore their proper shape or relocate AQP-4 to endfeet. Using an animal model of depression, rats selectively bred for high anxiety-like behavior (HAB, we confirmed a reduced coverage of BVs in the adult PFC by AQP-4-immunoreactive (AQP-4-IR astrocyte processes with respect to nonselected Wistar rats (NAB, thereby validating it for our study. A further evaluation of the morphology of astrocyte in brain slices (ex vivo and in vitro using an antibody against the astrocyte-specific cytoskeletal protein glial fibrillary acidic protein (GFAP revealed that HAB astrocytes extended less processes than NAB cells. Furthermore, short-term drug treatment in vitro with the AD fluoxetine (FLX was sufficient to increase the plasticity of astrocyte processes, enhancing their number in NAB-derived cells and recovering their basal number in HAB-derived cells. This enhanced FLX-dependent plasticity occurred, however, only in the presence of intact AQP-4, as demonstrated by the lack of effect after the downregulation of AQP-4 with RNAi in both NAB and HAB cells. Nonetheless, a similar short-term treatment did neither modulate the coverage of BVs with AQP-4-positive astrocyte endfeet in NAB nor in HAB rats, although dosage and time of treatment were sufficient to fully recover GFAP expression

  6. Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro.

    Science.gov (United States)

    Sobieski, Courtney; Jiang, Xiaoping; Crawford, Devon C; Mennerick, Steven

    2015-08-05

    action potentials to synaptic terminals. GABA transmission was not disrupted. The disruption did not involve detectable morphological changes to axons of glutamate neurons. Our work identifies a developmental role for astrocytes in the temporal precision of excitatory signals. Copyright © 2015 the authors 0270-6474/15/3511105-13$15.00/0.

  7. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes.

    Science.gov (United States)

    Gandhi, Gautam K; Ball, Kelly K; Cruz, Nancy F; Dienel, Gerald A

    2010-03-15

    Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15-25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at 20-24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.

  8. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    Science.gov (United States)

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. © FASEB.

  9. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    International Nuclear Information System (INIS)

    Kim, Ki Chan; Hyun Joo, So; Shin, Chan Young

    2011-01-01

    Highlights: → Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. → JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. → Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. → CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  10. Spatial organization of NG2 glial cells and astrocytes in rat hippocampal CA1 region.

    Science.gov (United States)

    Xu, Guangjin; Wang, Wei; Zhou, Min

    2014-04-01

    Similar to astrocytes, NG2 glial cells are uniformly distributed in the central nervous system (CNS). However, little is known about the interspatial relationship, nor the functional interactions between these two star-shaped glial subtypes. Confocal morphometric analysis showed that NG2 immunostained cells are spatially organized as domains in rat hippocampal CA1 region and that each NG2 glial domain occupies a spatial volume of ∼178, 364 μm(3) . The processes of NG2 glia and astrocytes overlap extensively; each NG2 glial domain interlaces with the processes deriving from 5.8 ± 0.4 neighboring astrocytes, while each astrocytic domain accommodates processes stemming from 4.5 ± 0.3 abutting NG2 glia. In CA1 stratum radiatum, the cell bodies of morphologically identified glial cells often appear to make direct somatic-somata contact, termed as doublets. We used dual patch recording and postrecording NG2/GFAP double staining to determine the glial identities of these doublets. We show that among 44 doublets, 50% were NG2 glia-astrocyte pairs, while another 38.6% and 11.4% were astrocyte-astrocyte and NG2 glia-NG2 glia pairs, respectively. In dual patch recording, neither electrical coupling nor intercellular biocytin transfer was detected in astrocyte-NG2 glia or NG2 glia-NG2 glia doublets. Altogether, although NG2 glia and astrocytes are not gap junction coupled, their cell bodies and processes are interwoven extensively. The anatomical and physiological relationships revealed in this study should facilitate future studies to understand the metabolic coupling and functional communication between NG2 glia and astrocytes. Copyright © 2013 Wiley Periodicals, Inc.

  11. Insulin resistance alters islet morphology in nondiabetic humans

    DEFF Research Database (Denmark)

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects...... pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared...... insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell-to-α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from...

  12. The EBI2 signalling pathway plays a role in cellular crosstalk between astrocytes and macrophages.

    Science.gov (United States)

    Rutkowska, Aleksandra; O'Sullivan, Sinead A; Christen, Isabelle; Zhang, Juan; Sailer, Andreas W; Dev, Kumlesh K

    2016-05-11

    EBI2 is a G protein-coupled receptor activated by oxysterol 7α, 25-dihydroxycholesterol (7α25HC) and regulates T cell-dependant antibody response and B cell migration. We recently found EBI2 is expressed in human astrocytes, regulates intracellular signalling and modulates astrocyte migration. Here, we report that LPS treatment of mouse astrocytes alters mRNA levels of EBI2 and oxysterols suggesting that the EBI2 signalling pathway is sensitive to LPS-mediated immune challenge. We also find that conditioned media obtained from LPS-stimulated mouse astrocytes induces macrophage migration, which is inhibited by the EBI2 antagonist NIBR189. These results demonstrate a role for the EBI2 signalling pathway in astrocytes as a sensor for immune challenge and for communication with innate immune cells such as macrophages.

  13. Morphology and some biomechanical properties of human liver and spleen

    Czech Academy of Sciences Publication Activity Database

    Stingl, J.; Bača, V.; Čech, V.; Kovanda, J.; Kovandová, H.; Mandys, Václav; Rejmontová, J.; Sosna, B.

    2002-01-01

    Roč. 24, - (2002), s. 285-289 ISSN 0930-1038 Institutional research plan: CEZ:AV0Z5039906 Keywords : Human liver and spleen Subject RIV: FE - Other Internal Medicine Disciplines Impact factor: 0.252, year: 2002

  14. Glutamate mediated astrocytic filtering of neuronal activity.

    Directory of Open Access Journals (Sweden)

    Gilad Wallach

    2014-12-01

    Full Text Available Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.

  15. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    Science.gov (United States)

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  16. Electrophysiological Correlates of Morphological Neuroplasticity in Human Callosal Dysgenesis.

    Directory of Open Access Journals (Sweden)

    Vladimir V Lazarev

    Full Text Available In search for the functional counterpart of the alternative Probst and sigmoid bundles, considered as morphological evidence of neuroplasticity in callosal dysgenesis, electroencephalographic (EEG coherence analysis was combined with high resolution and diffusion tensor magnetic resonance imaging. Data of two patients with callosal agenesis, plus two with typical partial dysgenesis with a remnant genu, and one atypical patient with a substantially reduced genu were compared to those of fifteen neurotypic controls. The interhemispheric EEG coherence between homologous nontemporal brain regions corresponded to absence or partial presence of callosal connections. A generalized coherence reduction was observed in complete acallosal patients, as well as coherence preservation in the anterior areas of the two patients with a remnant genu. jThe sigmoid bundles found in three patients with partial dysgenesis correlated with augmented EEG coherence between anterior regions of one hemisphere and posterior regions of the other. These heterologous (crossed interhemispheric connections were asymmetric in both imaging and EEG patterns, with predominance of the right-anterior-to-left-posterior connections over the mirror ones. The Probst bundles correlated with higher intrahemispheric long-distance coherence in all patients. The significant correlations observed for the delta, theta and alpha bands indicate that these alternative pathways are functional, although the neuropsychological nature of this function is still unknown.

  17. Morphological changes in human melanoma cells following irradiation with thermal neutrons.

    Science.gov (United States)

    Barkla, D H; Allen, B J; Brown, J K; Mountford, M; Mishima, Y; Ichihashi, M

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.

  18. Morphological changes in human melanoma cells following irradiation with thermal neutrons

    International Nuclear Information System (INIS)

    Barkla, D.H.; Allen, B.J.; Brown, J.K.; Mountford, M.; Mishima, Y.; Ichihashi, M.

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified

  19. Effects of lactic acid on astrocytes in primary culture.

    Science.gov (United States)

    Norenberg, M D; Mozes, L W; Gregorios, J B; Norenberg, L O

    1987-03-01

    Excessive tissue lactic acidosis is considered to be detrimental to the central nervous system (CNS) and may adversely affect recovery from anoxia, ischemia, trauma and epilepsy. Since astrocytes are believed to play a role in pH regulation in the CNS, we studied the effect of this acid on primary astrocyte cultures. Cells exposed to lactic acid showed chromatin clumping, an increase of lipid and dense bodies, a loss of polyribosomal clusters, slightly increased cytoplasmic lucency, swollen mitochondria and tangled intermediate filaments. These alterations progressed with lower pH and longer exposure. Irreversible changes occurred one to two hours after exposure at pH 6; after 30 to 60 minutes (min) at pH 5.5 and after ten to 30 min at pH 5. Comparable results were obtained with the use of other weak acids indicating that the observed changes were due to increased hydrogen ion concentration rather than secondary to lactate per se. Additionally, various concentrations of lactic acid adjusted to identical pH produced similar morphologic alterations. Thus, while lactic acid caused marked and at times irreversible alterations in astrocytes, severe and prolonged acidosis was required to produce such injurious effects. This relative resistance of astrocytes to acidosis is in keeping with their potential role in pH regulation in brain.

  20. Connexin-based intercellular communication and astrocyte heterogeneity.

    Science.gov (United States)

    Theis, Martin; Giaume, Christian

    2012-12-03

    This review gives an overview of the current knowledge on connexin-mediated communication in astrocytes, covering gap junction and hemichannel functions mediated by connexins. Astroglia is the main brain cell type that expresses the largest amount of connexin and exhibits high level of gap junctional communication compared to neurons and oligodendrocytes. However, in certain developmental and regional situations, astrocytes are also coupled with oligodendrocytes and neurons. This heterotypic coupling is infrequent and minor in terms of extent of the coupling area, which does not mean that it is not important in terms of cell interaction. Here, we present an update on heterogeneity of connexin expression and function at the molecular, subcellular, cellular and networking levels. Interestingly, while astrocytes were initially considered as a homogenous population, there is now increasing evidence for morphological, developmental, molecular and physiological heterogeneity of astrocytes. Consequently, the specificity of gap junction channel- and hemichannel-mediated communication, which tends to synchronize cell populations, is also a parameter to take into account when neuroglial interactions are investigated. This article is part of a Special Issue entitled Electrical Synapses. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Age Effect in the Morphological Traits Performance for Sex Determination in Human Skulls and Mandibles

    OpenAIRE

    Suazo Galdames, Iván; Zavando, Daniela

    2012-01-01

    In this study we tested the hypothesis that diagnostic performance of the morphological indicators for sexual dimorphism are reduced as they are applied in skull and mandibles of older subjects. We used 275 adult human skulls, 250 of these with mandible, all subjects with sex and age registry. Sixteen classic morphological indicators of sexual dimorphism were evaluated, this information was compared with the registry and results noted in terms of precision. The best general performance of mor...

  2. Three-dimensional morphology of the human embryonic brain

    Directory of Open Access Journals (Sweden)

    N. Shiraishi

    2015-09-01

    Full Text Available The morphogenesis of the cerebral vesicles and ventricles was visualized in 3D movies using images derived from human embryo specimens between Carnegie stage 13 and 23 from the Kyoto Collection. These images were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. Three-dimensional images using the same scale demonstrated brain development and growth effectively. The non-uniform thickness of the brain tissue, which may indicate brain differentiation, was visualized with thickness-based surface color mapping. A closer view was obtained of the unique and complicated differentiation of the rhombencephalon, especially with regard to the internal view and thickening of the brain tissue. The present data contribute to a better understanding of brain and cerebral ventricle development.

  3. Astrocyte-neuron interaction in diphenyl ditelluride toxicity directed to the cytoskeleton

    International Nuclear Information System (INIS)

    Heimfarth, Luana; Silva Ferreira, Fernanda da; Pierozan, Paula; Mingori, Moara Rodrigues; Moreira, José Cláudio Fonseca; Batista Teixeira da Rocha, João; Pessoa-Pureur, Regina

    2017-01-01

    Highlights: • Diphenyl ditelluride is toxic to the cytoskeleton of neural cells in vitro. • Hypophosphorylation disrupts cytoskeletal homeostasis and causes cell dysfunction. • Calcium signaling underlies hypophosphorylation of intermediate filaments. • Actin disorganization causes altered astrocyte morphology. • Astrocyte cytoskeleton is more susceptible than neuronal cytoskeleton. - Abstract: Diphenylditelluride (PhTe) 2 is a neurotoxin that disrupts cytoskeletal homeostasis. We are showing that different concentrations of (PhTe) 2 caused hypophosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) and altered actin organization in co-cultured astrocytes and neurons from cerebral cortex of rats. These mechanisms were mediated by N-methyl-D-aspartate (NMDA) receptors without participation of either L-type voltage-dependent calcium channels (L-VDCC) or metabotropic glutamate receptors. Upregulated Ca 2+ influx downstream of NMDA receptors activated Ca 2+ -dependent protein phosphatase 2B (PP2B) causing hypophosphorylation of astrocyte and neuron IFs. Immunocytochemistry showed that hypophosphorylated intermediate filaments (IF) failed to disrupt their organization into the cytoskeleton. However, phalloidin-actin-FITC stained cytoskeleton evidenced misregulation of actin distribution, cell spreading and increased stress fibers in astrocytes. βIII tubulin staining showed that neurite meshworks are not altered by (PhTe) 2 , suggesting greater susceptibility of astrocytes than neurons to (PheTe) 2 toxicity. These findings indicate that signals leading to IF hypophosphorylation fail to disrupt the cytoskeletal IF meshwork of interacting astrocytes and neurons in vitro however astrocyte actin network seems more susceptible. Our findings support that intracellular Ca 2+ is one of the crucial signals that modulate the action of (PhTe) 2 in co-cultured astrocytes and neurons and highlights the cytoskeleton

  4. Astrocyte-like glial cells physiologically regulate olfactory processing through the modification of ORN-PN synaptic strength in Drosophila.

    Science.gov (United States)

    Liu, He; Zhou, Bangyu; Yan, Wenjun; Lei, Zhengchang; Zhao, Xiaoliang; Zhang, Ke; Guo, Aike

    2014-09-01

    Astrocyte-like glial cells are abundant in the central nervous system of adult Drosophila and exhibit morphology similar to astrocytes of mammals. Previous evidence has shown that astrocyte-like glial cells are strongly associated with synapses in the antennal lobe (AL), the first relay of the olfactory system, where olfactory receptor neurons (ORNs) transmit information into projection neurons (PNs). However, the function of astrocyte-like glia in the AL remains obscure. In this study, using in vivo calcium imaging, we found that astrocyte-like glial cells exhibited spontaneous microdomain calcium elevations. Using simultaneous manipulation of glial activity and monitoring of neuronal function, we found that the astrocyte-like glial activation, but not ensheathing glial activation, could inhibit odor-evoked responses of PNs. Ensheathing glial cells are another subtype of glia, and are of functional importance in the AL. Electrophysiological experiments indicated that astrocyte-like glial activation decreased the amplitude and slope of excitatory postsynaptic potentials evoked through electrical stimulation of the antennal nerve. These results suggest that astrocyte-like glial cells may regulate olfactory processing through negative regulation of ORN-PN synaptic strength. Beyond the antennal lobe we observed astrocyte-like glial spontaneous calcium activities in the ventromedial protocerebrum, indicating that astrocyte-like glial spontaneous calcium elevations might be general in the adult fly brain. Overall, our study demonstrates a new function for astrocyte-like glial cells in the physiological modulation of olfactory information transmission, possibly through regulating ORN-PN synapse strength. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Morphological and Genetic Diversity of Trichuris spp. recovered from Humans and Pigs

    DEFF Research Database (Denmark)

    Nissen, Sofie; Nejsum, Peter; Christensen, Henrik

    2009-01-01

    The nematodes, Trichuris suis and Trichuris trichiura are believed to be two separate but closely related species. The aim of our study was to examine the morphological and genetic diversity of Trichuris spp. recovered from pigs and humans. Sympatric worm material isolated from 10 humans and 5 pigs...... found in pig-derived worms (31% of the human-derived worms, consensus sequence 531 nucleotides long). The results indicated that the nematodes found in pigs belong to a genetically distinct species (T. suis) whereas the nematodes in humans showed considerable genetic variability either related...... to ancestral polymorphism or more recent cross-breeding between T. trichiura and T. suis....

  6. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue

    NARCIS (Netherlands)

    Zhang, Zhiqing; Kuzmin, Nikolay V.; Groot, Marie Louise; de Munck, Jan C.

    2017-01-01

    Motivation: The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering,

  7. Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS.

    Science.gov (United States)

    Kunze, Anja; Lengacher, Sylvain; Dirren, Elisabeth; Aebischer, Patrick; Magistretti, Pierre J; Renaud, Philippe

    2013-07-24

    Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. ALS is believed to be a non-cell autonomous condition, as other cell types, including astrocytes, have been implicated in disease pathogenesis. Hence, to facilitate the development of therapeutics against ALS, it is crucial to better understand the interactions between astrocytes and neural cells. Furthermore, cell culture assays are needed that mimic the complexity of cell to cell communication at the same time as they provide control over the different microenvironmental parameters. Here, we aim to validate a previously developed microfluidic system for an astrocyte-neuron cell culture platform, in which astrocytes have been genetically modified to overexpress either a human wild-type (WT) or a mutated form of the super oxide dismutase enzyme 1 (SOD1). Cortical neural cells were co-cultured with infected astrocytes and studied for up to two weeks. Using our microfluidic device that prevents direct cell to cell contact, we could evaluate neural cell response in the vicinity of astrocytes. We showed that neuronal cell density was reduced by about 45% when neurons were co-cultured with SOD-mutant astrocytes. Moreover, we demonstrated that SOD-WT overexpressing astrocytes reduced oxidative stress on cortical neurons that were in close metabolic contact. In contrast, cortical neurons in metabolic contact with SOD-mutant astrocytes lost their synapsin protein expression after severe glutamate treatment, an indication of the toxicity potentiating effect of the SOD-mutant enzyme.

  8. Observations on morphologic changes in the aging and degenerating human disc: Secondary collagen alterations

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2002-03-01

    Full Text Available Abstract Background In the annulus, collagen fibers that make up the lamellae have a wavy, planar crimped pattern. This crimping plays a role in disc biomechanical function by allowing collagen fibers to stretch during compression. The relationship between morphologic changes in the aging/degenerating disc and collagen crimping have not been explored. Methods Ultrastructural studies were performed on annulus tissue from 29 control (normal donors (aged newborn to 79 years and surgical specimens from 49 patients (aged 16 to 77 years. Light microscopy and specialized image analysis to visualize crimping was performed on additional control and surgical specimens. Human intervertebral disc tissue from the annulus was obtained in a prospective morphologic study of the annulus. Studies were approved by the authors' Human Subjects Institutional Review Board. Results Three types of morphologic changes were found to alter the crimping morphology of collagen: 1 encircling layers of unusual matrix disrupted the lamellar collagen architecture; 2 collagen fibers were reduced in amount, and 3 collagen was absent in regions with focal matrix loss. Conclusions Although proteoglycan loss is well recognized as playing a role in the decreased shock absorber function of the aging/degenerating disc, collagen changes have received little attention. This study suggests that important stretch responses of collagen made possible by collagen crimping may be markedly altered by morphologic changes during aging/degeneration and may contribute to the early tissue changes involved in annular tears.

  9. Molecular Neuropathology of Astrocytes and Oligodendrocytes in Alcohol Use Disorders

    Directory of Open Access Journals (Sweden)

    José J. Miguel-Hidalgo

    2018-03-01

    Full Text Available Postmortem studies reveal structural and molecular alterations of astrocytes and oligodendrocytes in both the gray and white matter (GM and WM of the prefrontal cortex (PFC in human subjects with chronic alcohol abuse or dependence. These glial cellular changes appear to parallel and may largely explain structural and functional alterations detected using neuroimaging techniques in subjects with alcohol use disorders (AUDs. Moreover, due to the crucial roles of astrocytes and oligodendrocytes in neurotransmission and signal conduction, these cells are very likely major players in the molecular mechanisms underpinning alcoholism-related connectivity disturbances between the PFC and relevant interconnecting brain regions. The glia-mediated etiology of alcohol-related brain damage is likely multifactorial since metabolic, hormonal, hepatic and hemodynamic factors as well as direct actions of ethanol or its metabolites have the potential to disrupt distinct aspects of glial neurobiology. Studies in animal models of alcoholism and postmortem human brains have identified astrocyte markers altered in response to significant exposures to ethanol or during alcohol withdrawal, such as gap-junction proteins, glutamate transporters or enzymes related to glutamate and gamma-aminobutyric acid (GABA metabolism. Changes in these proteins and their regulatory pathways would not only cause GM neuronal dysfunction, but also disturbances in the ability of WM axons to convey impulses. In addition, alcoholism alters the expression of astrocyte and myelin proteins and of oligodendrocyte transcription factors important for the maintenance and plasticity of myelin sheaths in WM and GM. These changes are concomitant with epigenetic DNA and histone modifications as well as alterations in regulatory microRNAs (miRNAs that likely cause profound disturbances of gene expression and protein translation. Knowledge is also available about interactions between astrocytes and

  10. Cell Biology of Astrocyte-Synapse Interactions.

    Science.gov (United States)

    Allen, Nicola J; Eroglu, Cagla

    2017-11-01

    Astrocytes, the most abundant glial cells in the mammalian brain, are critical regulators of brain development and physiology through dynamic and often bidirectional interactions with neuronal synapses. Despite the clear importance of astrocytes for the establishment and maintenance of proper synaptic connectivity, our understanding of their role in brain function is still in its infancy. We propose that this is at least in part due to large gaps in our knowledge of the cell biology of astrocytes and the mechanisms they use to interact with synapses. In this review, we summarize some of the seminal findings that yield important insight into the cellular and molecular basis of astrocyte-neuron communication, focusing on the role of astrocytes in the development and remodeling of synapses. Furthermore, we pose some pressing questions that need to be addressed to advance our mechanistic understanding of the role of astrocytes in regulating synaptic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cyclic AMP signaling restricts activation and promotes maturation and antioxidant defenses in astrocytes.

    Science.gov (United States)

    Paco, Sonia; Hummel, Manuela; Plá, Virginia; Sumoy, Lauro; Aguado, Fernando

    2016-04-23

    cAMP signaling produces dramatic changes in astrocyte morphology and physiology. However, its involvement in phenotype acquisition and the transcriptionally mediated mechanisms of action are largely unknown. Here we analyzed the global transcriptome of cultured astroglial cells incubated with activators of cAMP pathways. A bulk of astroglial transcripts, 6221 annotated genes, were differentially regulated by cAMP signaling. cAMP analogs strongly upregulated genes involved in typical functions of mature astrocytes, such as homeostatic control, metabolic and structural support to neurons, antioxidant defense and communication, whereas they downregulated a considerable number of proliferating and immaturity-related transcripts. Moreover, numerous genes typically activated in reactive cells, such as scar components and immunological mediators, were repressed by cAMP. GSEA analysis contrasting gene expression profiles with transcriptome signatures of acutely isolated astrocytes and in situ evaluation of protein levels in these cells showed that cAMP signaling conferred mature and in vivo-like transcriptional features to cultured astrocytes. These results indicate that cAMP signaling is a key pathway promoting astrocyte maturation and restricting their developmental and activation features. Therefore, a positive modulation of cAMP signaling may promote the normal state of differentiated astrocytes and favor the protection and function of neuronal networks.

  12. Reactive Astrocytes in Brain Metastasis

    Directory of Open Access Journals (Sweden)

    David Wasilewski

    2017-12-01

    Full Text Available Brain metastasis, the secondary growth of malignant cells within the central nervous system (CNS, exceeds the incidence of primary brain tumors (i.e., gliomas by tenfold and are seemingly on the rise owing to the emergence of novel targeted therapies that are more effective in controlling extracranial disease relatively to intracranial lesions. Despite the fact that metastasis to the brain poses a unmet clinical problem, with afflicted patients carrying significant morbidity and a fatal prognosis, our knowledge as to how metastatic cells manage to adapt to the tissue environment of the CNS remains limited. Answering this question could pave the way for novel and more specific therapeutic modalities in brain metastasis by targeting the specific makeup of the brain metastatic niche. In regard to this, astrocytes have emerged as the major host cell type that cancer cells encounter and interact with during brain metastasis formation. Similarly to other CNS disorders, astrocytes become reactive and respond to the presence of cancer cells by changing their phenotype and significantly influencing the outcome of disseminated cancer cells within the CNS. Here, we summarize the current knowledge on the contribution of reactive astrocytes in brain metastasis by focusing on the signaling pathways and types of interactions that play a crucial part in the communication with cancer cells and how these could be translated into innovative therapies.

  13. Astrocytic actions on extrasynaptic neuronal currents

    Directory of Open Access Journals (Sweden)

    Balazs ePal

    2015-12-01

    Full Text Available In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system, but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the 'tripartite synapse', as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and –secretory processes, cortical oscillatory activity, memory and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.

  14. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-01-01

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  15. Endocannabinoids mediate neuron-astrocyte communication.

    Science.gov (United States)

    Navarrete, Marta; Araque, Alfonso

    2008-03-27

    Cannabinoid receptors play key roles in brain function, and cannabinoid effects in brain physiology and drug-related behavior are thought to be mediated by receptors present in neurons. Neuron-astrocyte communication relies on the expression by astrocytes of neurotransmitter receptors. Yet, the expression of cannabinoid receptors by astrocytes in situ and their involvement in the neuron-astrocyte communication remain largely unknown. We show that hippocampal astrocytes express CB1 receptors that upon activation lead to phospholipase C-dependent Ca2+ mobilization from internal stores. These receptors are activated by endocannabinoids released by neurons, increasing astrocyte Ca2+ levels, which stimulate glutamate release that activates NMDA receptors in pyramidal neurons. These results demonstrate the existence of endocannabinoid-mediated neuron-astrocyte communication, revealing that astrocytes are targets of cannabinoids and might therefore participate in the physiology of cannabinoid-related addiction. They also reveal the existence of an endocannabinoid-glutamate signaling pathway where astrocytes serve as a bridge for nonsynaptic interneuronal communication.

  16. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-10-01

    Full Text Available AIM:To investigate the morphological altering effect of transforming growth factor-β2 (TGF-β2 on untransfected human corneal endothelial cells (HCECs in vitro.METHODS: After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology, cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy, immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2 (9 μg/L altered HCE cell morphology after treatment for 36h, increased the mean optical density (P<0.01 and the length of F-actin, reduced the mean optical density (P<0.01 of the collagen type IV in extracellular matrix (ECM and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72h. CONCLUTION:TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  17. Patterns of morphological integration between parietal and temporal areas in the human skull.

    Science.gov (United States)

    Bruner, Emiliano; Pereira-Pedro, Ana Sofia; Bastir, Markus

    2017-10-01

    Modern humans have evolved bulging parietal areas and large, projecting temporal lobes. Both changes, largely due to a longitudinal expansion of these cranial and cerebral elements, were hypothesized to be the result of brain evolution and cognitive variations. Nonetheless, the independence of these two morphological characters has not been evaluated. Because of structural and functional integration among cranial elements, changes in the position of the temporal poles can be a secondary consequence of parietal bulging and reorientation of the head axis. In this study, we use geometric morphometrics to test the correlation between parietal shape and the morphology of the endocranial base in a sample of adult modern humans. Our results suggest that parietal proportions show no correlation with the relative position of the temporal poles within the spatial organization of the endocranial base. The vault and endocranial base are likely to be involved in distinct morphogenetic processes, with scarce or no integration between these two districts. Therefore, the current evidence rejects the hypothesis of reciprocal morphological influences between parietal and temporal morphology, suggesting that evolutionary spatial changes in these two areas may have been independent. However, parietal bulging exerts a visible effect on the rotation of the cranial base, influencing head position and orientation. This change can have had a major relevance in the reorganization of the head functional axis. © 2017 Wiley Periodicals, Inc.

  18. Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity.

    Science.gov (United States)

    Segawa, Shohei; Nishiura, Takeshi; Furuta, Takahiro; Ohsato, Yuki; Tani, Misaki; Nishida, Kentaro; Nagasawa, Kazuki

    2014-01-17

    Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter. Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214-314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation. Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated "amoeboid" form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different. These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Morphological Features of the Porcine Lacrimal Gland and Its Compatibility for Human Lacrimal Gland Xenografting

    OpenAIRE

    Henker, Robert; Scholz, Michael; Gaffling, Simone; Asano, Nagayoshi; Hampel, Ulrike; Garreis, Fabian; Hornegger, Joachim; Paulsen, Friedrich

    2013-01-01

    In this study, we present first data concerning the anatomical structure, blood supply and location of the lacrimal gland of the pig. Our data indicate that the porcine lacrimal gland may serve as a potential xenograft candidate in humans or as an animal model for engineering of a bioartificial lacrimal gland tissue construct for clinical application. For this purpose, we used different macroscopic preparation techniques and digital reconstruction of the histological gland morphology to gain ...

  20. Testing functional and morphological interpretations of enamel thickness along the deciduous tooth row in human children.

    OpenAIRE

    Mahoney, Patrick

    2013-01-01

    The significance of a gradient in enamel thickness along the human permanent molar row has been debated in the literature. Some attribute increased enamel thickness from first to third molars to greater bite force during chewing. Others argue that thicker third molar enamel relates to a smaller crown size facilitated by a reduced dentin component. Thus, differences in morphology, not function, explains enamel thickness. This study draws on these different interpretive models to assess enamel ...

  1. Microwear and morphology: Functional relationships between human dental microwear and the mandible

    OpenAIRE

    Mahoney, Patrick

    2006-01-01

    Microscopic pits and scratches form on teeth during chewing, but the extent to which their formation is influenced by mandibular morphology is unknown. Digitized micrographs of the base of facet nine of the first, second, and third mandibular molar were used to record microwear features from an archaeological sample of modern humans recovered from Semna South in northern Sudan (n 38; 100 BC to AD 350). Micro- wear patterns of the molar row are correlated with mandibular corpus width and depth...

  2. From in silico astrocyte cell models to neuron-astrocyte network models: A review.

    Science.gov (United States)

    Oschmann, Franziska; Berry, Hugues; Obermayer, Klaus; Lenk, Kerstin

    2018-01-01

    The idea that astrocytes may be active partners in synaptic information processing has recently emerged from abundant experimental reports. Because of their spatial proximity to neurons and their bidirectional communication with them, astrocytes are now considered as an important third element of the synapse. Astrocytes integrate and process synaptic information and by doing so generate cytosolic calcium signals that are believed to reflect neuronal transmitter release. Moreover, they regulate neuronal information transmission by releasing gliotransmitters into the synaptic cleft affecting both pre- and postsynaptic receptors. Concurrent with the first experimental reports of the astrocytic impact on neural network dynamics, computational models describing astrocytic functions have been developed. In this review, we give an overview over the published computational models of astrocytic functions, from single-cell dynamics to the tripartite synapse level and network models of astrocytes and neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics

    Science.gov (United States)

    Lockwood, Charles A; Lynch, John M; Kimbel, William H

    2002-01-01

    The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade. PMID:12489757

  4. In vivo imaging reveals rapid astrocyte depletion and axon damage in a model of neuromyelitis optica-related pathology

    DEFF Research Database (Denmark)

    Herwerth, Marina; Kalluri, Sudhakar Reddy; Srivastava, Rajneesh

    2016-01-01

    IgG autoantibodies against aquaporin-4 (AQP4), an astrocytic water channel. Antibodies against AQP4 can damage astrocytes via complement, but NMO histopathology also shows demyelination, and - importantly - axon injury, which may determine permanent deficits following NMO relapses. The dynamics...... antibodies in mice. RESULTS: We found that human AQP4 antibodies caused acute astrocyte depletion with initial oligodendrocyte survival. Within two hours of antibody application, we observed secondary axon injury in the form of progressive swellings. Astrocyte toxicity and axon damage were dependent on AQP4...... antibody concentration and complement, specifically C1q. INTERPRETATION: In vivo imaging of the spinal cord reveals the swift development of NMO-related acute axon injury following AQP4 antibody-mediated astrocyte depletion. This approach will be useful in studying the mechanisms underlying the spread...

  5. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nianzhen [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca2+ elevations in response to neurotransmitters. A Ca2+ elevation can propagate to adjacent astrocytes as a Ca2+ wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca2+-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca2+ signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca2+-dependent NO production. To test the roles of NO in astrocytic Ca2+ signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca2+, possibly through store-operated Ca2+ channels. The NO-induced Ca2+ signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca2+ change. The consequence of this NO-induced Ca2+ influx was assessed by simultaneously monitoring of cytosolic and internal store Ca2+ using fluorescent Ca2+ indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca2+ release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca2+ elevation in the stimulated astrocyte and a subsequent Ca2+ wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by

  6. Large-scale recording of astrocyte activity

    Science.gov (United States)

    Nimmerjahn, Axel; Bergles, Dwight E.

    2015-01-01

    Astrocytes are highly ramified glial cells found throughout the central nervous system (CNS). They express a variety of neurotransmitter receptors that can induce widespread chemical excitation, placing these cells in an optimal position to exert global effects on brain physiology. However, the activity patterns of only a small fraction of astrocytes have been examined and techniques to manipulate their behavior are limited. As a result, little is known about how astrocytes modulate CNS function on synaptic, microcircuit, or systems levels. Here, we review current and emerging approaches for visualizing and manipulating astrocyte activity in vivo. Deciphering how astrocyte network activity is controlled in different physiological and pathological contexts is critical for defining their roles in the healthy and diseased CNS. PMID:25665733

  7. Podocalyxin expression in malignant astrocytic tumors

    International Nuclear Information System (INIS)

    Hayatsu, Norihito; Kaneko, Mika Kato; Mishima, Kazuhiko; Nishikawa, Ryo; Matsutani, Masao; Price, Janet E.; Kato, Yukinari

    2008-01-01

    Podocalyxin is an anti-adhesive mucin-like transmembrane sialoglycoprotein that has been implicated in the development of aggressive forms of cancer. Podocalyxin is also known as keratan sulfate (KS) proteoglycan. Recently, we revealed that highly sulfated KS or another mucin-like transmembrane sialoglycoprotein podoplanin/aggrus is upregulated in malignant astrocytic tumors. The aim of this study is to examine the relationship between podocalyxin expression and malignant progression of astrocytic tumors. In this study, 51 astrocytic tumors were investigated for podocalyxin expression using immunohistochemistry, Western blot analysis, and quantitative real-time PCR. Immunohistochemistry detected podocalyxin on the surface of tumor cells in six of 14 anaplastic astrocytomas (42.9%) and in 17 of 31 glioblastomas (54.8%), especially around proliferating endothelial cells. In diffuse astrocytoma, podocalyxin expression was observed only in vascular endothelial cells. Podocalyxin might be associated with the malignant progression of astrocytic tumors, and be a useful prognostic marker for astrocytic tumors

  8. Astrocyte-neuron communication: functional consequences.

    Science.gov (United States)

    Ben Achour, Sarrah; Pascual, Olivier

    2012-11-01

    Astrocyte-neuron communication has recently been proposed as a potential mechanism participating to synaptic transmission. With the development of this concept and accumulating evidences in favor of a modulation of synaptic transmission by astrocytes, has emerged the term gliotransmission. It refers to the capacity of astrocytes to release various transmitters, such as ATP, glutamate, D-serine, and GABA in the vicinity of synapses. While the cellular mechanisms involved in gliotransmission still need to be better described and, for some, identified, the aim of more and more studies is to determine the role of astrocytes from a functional point of view. This review will summarize the principal studies that have investigated a potential role of astrocytes in the various functions regulated by the brain (sleep, breathing, perception, learning and memory…). This will allow us to highlight the similarities and discrepancies in the signaling pathways involved in the different areas of the brain related to these functions.

  9. Micropatterned substrates for studying astrocytes in culture

    Directory of Open Access Journals (Sweden)

    William Lee

    2009-12-01

    Full Text Available Recent studies of the physiological roles of astrocytes have ignited renewed interest in the functional significance of these glial cells in the central nervous system. Many of the newly discovered astrocytic functions were initially demonstrated and characterized in cell culture systems. We discuss the use of microculture techniques and micropatterning of cell-adhesive substrates in studies of astrocytic Ca2+ excitability and bidirectional neuron-astrocyte signaling. This culturing approach aims to reduce the level of complexity of the system by limiting the interacting partners and by controlling the localization of cells. It provides tight control over experimental conditions allowing detailed characterization of cellular functions and intercellular communication. Although such a reductionist approach yields some difference in observations between astrocytic properties in culture and in situ, general phenomena discovered in cell culture systems, however, have also been found in vivo.

  10. Morphological characterization of the nasopalatine region in human fetuses and its association to pathologies

    Directory of Open Access Journals (Sweden)

    Saulo Gabriel Moreira FALCI

    2013-06-01

    Full Text Available The nasopalatine region is composed of structures such as the vomeronasal organ and nasopalatine duct. The nasopalatine duct may provide the communication of the mouth to the nasal cavity in human fetuses and can be obliterated in an adult human. Knowledge on the development of the nasopalatine region and nasopalatine duct in humans is necessary for understanding the morphology and etiopathogenesis of lesions that occur in this region. Objective The aim of the present study was to describe the morphological aspects of the nasopalatine region in human fetuses and correlate these aspects with the development of pathologies in this region. Material and Methods Five human fetuses with no facial or palatine abnormalities were used for the acquisition of specimens from the nasopalatine region. After demineralization, the specimens were histologically processed. Histological cuts were stained with methylene blue to orient the cutting plane and hematoxylin-eosin for the descriptive histological analysis. Results The age of the fetuses was 8.00, 8.25, 9.00 and 9.25 weeks, and it was not possible to determine the age in the last one. The incisive canal was observed in all specimens as an opening delimited laterally by the periosteum and connecting oral and nasal cavity. The nasopalatine duct is an epithelial structure with the greatest morphological variation, with either unilateral or bilateral occurrence and total patent, partial patent and islet forms. The vomeronasal organ is a bilateral epithelized structure located alongside the nasal septum above the incisive canal in all the fetuses. Conclusions The incisive canal, nasopalatine duct and vomeronasal organ are distinct anatomic structures. The development of nasopalatine duct cysts may occur in all forms of the nasopalatine duct.

  11. Accessible Morphological and Genetic Markers for Identification of Taioba and Taro, Two Forgotten Human Foods

    Directory of Open Access Journals (Sweden)

    María Del Pilar Sepúlveda-Nieto

    2017-10-01

    Full Text Available Some tropical species—such as the domesticated Xanthosoma sagittifolium (L. Schott (Taioba and Colocasia esculenta (L. Schott (Taro—have similar phenotypic characteristics, especially in the shape and color of the leaves and petioles which generate uncertainty in their identification for use in human food. This study aimed to analyze the morphological and molecular characteristics of X. sagittifolium and C. esculenta that may help in the popular and scientific identification of these species. The principal morphological characteristics of X. sagittifolium were as follows: leaves with subcoriaceous textures, basal insertion of the petiole, green pseudo-stem in the basal portion with exudate being white and the presence of two collector veins. Distinctive morphological characteristics of C. esculenta were as follows: leaves with velvety textures, peltate insertion of the petiole, pink pseudo-stem in the basal portion with pink exudate and presence of one collector vein. The morphological characteristics that can be used to distinguish Taioba from Taro are the basal petiole insertion of the first, against the petiole insertion near the center of the blade of the latter. Molecular analyses using eight Inter-Simple Sequence Repeat (ISSR molecular markers simultaneously showed distinctive fingerprints for each of the species. These results contribute to the proper identification of the species used as a food source.

  12. Glial cell morphological and density changes through the lifespan of rhesus macaques.

    Science.gov (United States)

    Robillard, Katelyn N; Lee, Kim M; Chiu, Kevin B; MacLean, Andrew G

    2016-07-01

    How aging impacts the central nervous system (CNS) is an area of intense interest. Glial morphology is known to affect neuronal and immune function as well as metabolic and homeostatic balance. Activation of glia, both astrocytes and microglia, occurs at several stages during development and aging. The present study analyzed changes in glial morphology and density through the entire lifespan of rhesus macaques, which are physiologically and anatomically similar to humans. We observed apparent increases in gray matter astrocytic process length and process complexity as rhesus macaques matured from juveniles through adulthood. These changes were not attributed to cell enlargement because they were not accompanied by proportional changes in soma or process volume. There was a decrease in white matter microglial process length as rhesus macaques aged. Aging was shown to have a significant effect on gray matter microglial density, with a significant increase in aged macaques compared with adults. Overall, we observed significant changes in glial morphology as macaques age indicative of astrocytic activation with subsequent increase in microglial density in aged macaques. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. NOTCH2 signaling confers immature morphology and aggressiveness in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Hayashi, Yoshihiro; Osanai, Makoto; Lee, Gang-Hong

    2015-10-01

    The NOTCH family of membranous receptors plays key roles during development and carcinogenesis. Since NOTCH2, yet not NOTCH1 has been shown essential for murine hepatogenesis, NOTCH2 rather than NOTCH1 may be more relevant to human hepatocarcinogenesis; however, no previous studies have supported this hypothesis. We therefore assessed the role of NOTCH2 in human hepatocellular carcinoma (HCC) by immunohistochemistry and cell culture. Immunohistochemically, 19% of primary HCCs showed nuclear staining for NOTCH2, indicating activated NOTCH2 signaling. NOTCH2-positive HCCs were on average in more advanced clinical stages, and exhibited more immature cellular morphology, i.e. higher nuclear-cytoplasmic ratios and nuclear densities. Such features were not evident in NOTCH1‑positive HCCs. In human HCC cell lines, abundant NOTCH2 expression was associated with anaplasia, represented by loss of E-cadherin. When NOTCH2 signaling was stably downregulated in HLF cells, an anaplastic HCC cell line, the cells were attenuated in potential for in vitro invasiveness and migration, as well as in vivo tumorigenicity accompanied by histological maturation. Generally, inverse results were obtained for a differentiated HCC cell line, Huh7, manipulated to overexpress activated NOTCH2. These findings suggested that the NOTCH2 signaling may confer aggressive behavior and immature morphology in human HCC cells.

  14. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  15. Morphology of muscle attachment sites in the modern human hand does not reflect muscle architecture.

    Science.gov (United States)

    Williams-Hatala, E M; Hatala, K G; Hiles, S; Rabey, K N

    2016-06-23

    Muscle attachment sites (entheses) on dry bones are regularly used by paleontologists to infer soft tissue anatomy and to reconstruct behaviors of extinct organisms. This method is commonly applied to fossil hominin hand bones to assess their abilities to participate in Paleolithic stone tool behaviors. Little is known, however, about how or even whether muscle anatomy and activity regimes influence the morphologies of their entheses, especially in the hand. Using the opponens muscles from a sample of modern humans, we tested the hypothesis that aspects of hand muscle architecture that are known to be influenced by behavior correlate with the size and shape of their associated entheses. Results show no consistent relationships between these behaviorally-influenced aspects of muscle architecture and entheseal morphology. Consequently, it is likely premature to infer patterns of behavior, such as stone tool making in fossil hominins, from these same entheses.

  16. Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Fumiko Matsuoka

    Full Text Available Human bone marrow mesenchymal stem cells (hBMSCs are widely used cell source for clinical bone regeneration. Achieving the greatest therapeutic effect is dependent on the osteogenic differentiation potential of the stem cells to be implanted. However, there are still no practical methods to characterize such potential non-invasively or previously. Monitoring cellular morphology is a practical and non-invasive approach for evaluating osteogenic potential. Unfortunately, such image-based approaches had been historically qualitative and requiring experienced interpretation. By combining the non-invasive attributes of microscopy with the latest technology allowing higher throughput and quantitative imaging metrics, we studied the applicability of morphometric features to quantitatively predict cellular osteogenic potential. We applied computational machine learning, combining cell morphology features with their corresponding biochemical osteogenic assay results, to develop prediction model of osteogenic differentiation. Using a dataset of 9,990 images automatically acquired by BioStation CT during osteogenic differentiation culture of hBMSCs, 666 morphometric features were extracted as parameters. Two commonly used osteogenic markers, alkaline phosphatase (ALP activity and calcium deposition were measured experimentally, and used as the true biological differentiation status to validate the prediction accuracy. Using time-course morphological features throughout differentiation culture, the prediction results highly correlated with the experimentally defined differentiation marker values (R>0.89 for both marker predictions. The clinical applicability of our morphology-based prediction was further examined with two scenarios: one using only historical cell images and the other using both historical images together with the patient's own cell images to predict a new patient's cellular potential. The prediction accuracy was found to be greatly enhanced

  17. Evidence for aberrant astrocyte hemichannel activity in Juvenile Neuronal Ceroid Lipofuscinosis (JNCL).

    Science.gov (United States)

    Burkovetskaya, Maria; Karpuk, Nikolay; Xiong, Juan; Bosch, Megan; Boska, Michael D; Takeuchi, Hideyuki; Suzumura, Akio; Kielian, Tammy

    2014-01-01

    Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is a lysosomal storage disease caused by an autosomal recessive mutation in CLN3 that leads to vision loss, progressive cognitive and motor decline, and premature death. Morphological evidence of astrocyte activation occurs early in the disease process and coincides with regions where neuronal loss eventually ensues. However, the consequences of CLN3 mutation on astrocyte function remain relatively ill-defined. Astrocytes play a critical role in CNS homeostasis, in part, by their ability to regulate the extracellular milieu via the formation of extensive syncytial networks coupled by gap junction (GJ) channels. In contrast, unopposed hemichannels (HCs) have been implicated in CNS pathology by allowing the non-discriminant passage of molecules between the intracellular and extracellular milieus. Here we examined acute brain slices from CLN3 mutant mice (CLN3Δex7/8) to determine whether CLN3 loss alters the balance of GJ and HC activity. CLN3Δex7/8 mice displayed transient increases in astrocyte HC opening at postnatal day 30 in numerous brain regions, compared to wild type (WT) animals; however, HC activity steadily decreased at postnatal days 60 and 90 in CLN3Δex7/8 astrocytes to reach levels lower than WT cells. This suggested a progressive decline in astrocyte function, which was supported by significant reductions in glutamine synthetase, GLAST, and connexin expression in CLN3Δex7/8 mice compared to WT animals. Based on the early increase in astrocyte HC activity, CLN3Δex7/8 mice were treated with the novel carbenoxolone derivative INI-0602 to inhibit HCs. Administration of INI-0602 for a one month period significantly reduced lysosomal ceroid inclusions in the brains of CLN3Δex7/8 mice compared to WT animals, which coincided with significant increases in astrocyte GJ communication and normalization of astrocyte resting membrane potential to WT levels. Collectively, these findings suggest that alterations in

  18. Evidence for aberrant astrocyte hemichannel activity in Juvenile Neuronal Ceroid Lipofuscinosis (JNCL.

    Directory of Open Access Journals (Sweden)

    Maria Burkovetskaya

    Full Text Available Juvenile Neuronal Ceroid Lipofuscinosis (JNCL is a lysosomal storage disease caused by an autosomal recessive mutation in CLN3 that leads to vision loss, progressive cognitive and motor decline, and premature death. Morphological evidence of astrocyte activation occurs early in the disease process and coincides with regions where neuronal loss eventually ensues. However, the consequences of CLN3 mutation on astrocyte function remain relatively ill-defined. Astrocytes play a critical role in CNS homeostasis, in part, by their ability to regulate the extracellular milieu via the formation of extensive syncytial networks coupled by gap junction (GJ channels. In contrast, unopposed hemichannels (HCs have been implicated in CNS pathology by allowing the non-discriminant passage of molecules between the intracellular and extracellular milieus. Here we examined acute brain slices from CLN3 mutant mice (CLN3Δex7/8 to determine whether CLN3 loss alters the balance of GJ and HC activity. CLN3Δex7/8 mice displayed transient increases in astrocyte HC opening at postnatal day 30 in numerous brain regions, compared to wild type (WT animals; however, HC activity steadily decreased at postnatal days 60 and 90 in CLN3Δex7/8 astrocytes to reach levels lower than WT cells. This suggested a progressive decline in astrocyte function, which was supported by significant reductions in glutamine synthetase, GLAST, and connexin expression in CLN3Δex7/8 mice compared to WT animals. Based on the early increase in astrocyte HC activity, CLN3Δex7/8 mice were treated with the novel carbenoxolone derivative INI-0602 to inhibit HCs. Administration of INI-0602 for a one month period significantly reduced lysosomal ceroid inclusions in the brains of CLN3Δex7/8 mice compared to WT animals, which coincided with significant increases in astrocyte GJ communication and normalization of astrocyte resting membrane potential to WT levels. Collectively, these findings suggest that

  19. Human Lymphatic Mesenteric Vessels: Morphology and Possible Function of Aminergic and NPY-ergic Nerve Fibers.

    Science.gov (United States)

    D'Andrea, Vito; Panarese, Alessandra; Taurone, Samanta; Coppola, Luigi; Cavallotti, Carlo; Artico, Marco

    2015-09-01

    The lymphatic vessels have been studied in different organs from a morphological to a clinical point of view. Nevertheless, the knowledge of the catecholaminergic control of the lymphatic circulation is still incomplete. The aim of this work is to study the presence and distribution of the catecholaminergic and NPY-ergic nerve fibers in the whole wall of the human mesenteric lymphatic vessels in order to obtain knowledge about their morphology and functional significance. The following experimental procedures were performed: 1) drawing of tissue containing lymphatic vessels; 2) cutting of tissue; 3) staining of tissue; 4) staining of nerve fibers; 5) histofluorescence microscopy for the staining of catecholaminergic nerve fibers; 6) staining of neuropeptide Y like-immune reactivity; 7) biochemical assay of proteins; 8) measurement of noradrenaline; 9) quantitative analysis of images; 10) statistical analysis of data. Numerous nerve fibers run in the wall of lymphatic vessels. Many of them are catecholaminergic in nature. Some nerve fibers are NPY-positive. The biochemical results on noradrenaline amounts are in agreement with morphological results on catecholaminergic nerve fibers. Moreover, the morphometric results, obtained by the quantitative analysis of images and the subsequent statistical analysis of data, confirm all our morphological and biochemical data. The knowledge of the physiological or pathological mechanism regulating the functions of the lymphatic system is incomplete. Nevertheless the catecholaminergic nerve fibers of the human mesenteric lymphatic vessels come from the adrenergic periarterial plexuses of the mesenterial arterial bed. NPY-ergic nerve fibers may modulate the microcirculatory mesenterial bed in different pathological conditions.

  20. Illicit stimulant use is associated with abnormal substantia nigra morphology in humans.

    Directory of Open Access Journals (Sweden)

    Gabrielle Todd

    Full Text Available Use of illicit stimulants such as methamphetamine, cocaine, and ecstasy is an increasing health problem. Chronic use can cause neurotoxicity in animals and humans but the long-term consequences are not well understood. The aim of the current study was to investigate the long-term effect of stimulant use on the morphology of the human substantia nigra. We hypothesised that history of illicit stimulant use is associated with an abnormally bright and enlarged substantia nigra (termed 'hyperechogenicity' when viewed with transcranial sonography. Substantia nigra morphology was assessed in abstinent stimulant users (n = 36; 31±9 yrs and in two groups of control subjects: non-drug users (n = 29; 24±5 yrs and cannabis users (n = 12; 25±7 yrs. Substantia nigra morphology was viewed with transcranial sonography and the area of echogenicity at the anatomical site of the substantia nigra was measured at its greatest extent. The area of substantia nigra echogenicity was significantly larger in the stimulant group (0.273±0.078 cm(2 than in the control (0.201±0.054 cm(2; P<0.001 and cannabis (0.202±0.045 cm(2; P<0.007 groups. 53% of stimulant users exhibited echogenicity that exceeded the 90(th percentile for the control group. The results of the current study suggest that individuals with a history of illicit stimulant use exhibit abnormal substantia nigra morphology. Substantia nigra hyperechogenicity is a strong risk factor for developing Parkinson's disease later in life and further research is required to determine if the observed abnormality in stimulant users is associated with a functional deficit of the nigro-striatal system.

  1. Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats

    Science.gov (United States)

    Frintrop, Linda; Liesbrock, Johanna; Paulukat, Lisa; Johann, Sonja; Kas, Martien J; Tolba, Rene; Heussen, Nicole; Neulen, Joseph; Konrad, Kerstin; Herpertz-Dahlmann, Beate; Beyer, Cordian; Seitz, Jochen

    2018-04-01

    Severe grey and white matter volume reductions were found in patients with anorexia nervosa (AN) that were linked to neuropsychological deficits while their underlying pathophysiology remains unclear. For the first time, we analysed the cellular basis of brain volume changes in an animal model (activity-based anorexia, ABA). Female rats had 24 h/day running wheel access and received reduced food intake until a 25% weight reduction was reached and maintained for 2 weeks. In ABA rats, the volumes of the cerebral cortex and corpus callosum were significantly reduced compared to controls by 6% and 9%, respectively. The number of GFAP-positive astrocytes in these regions decreased by 39% and 23%, total astrocyte-covered area by 83% and 63%. In neurons no changes were observed. The findings were complemented by a 60% and 49% reduction in astrocyte (GFAP) mRNA expression. Volumetric brain changes in ABA animals mirror those in human AN patients. These alterations are associated with a reduction of GFAP-positive astrocytes as well as GFAP expression. Reduced astrocyte functioning could help explain neuronal dysfunctions leading to symptoms of rigidity and impaired learning. Astrocyte loss could constitute a new research target for understanding and treating semi-starvation and AN.

  2. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifcally regulated in cortical astrocytes following sleep deprivation in mice

    KAUST Repository

    Petit, Jean Marie

    2013-10-01

    Study Objectives: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifcally in astrocytes following sleep deprivation. Astrocytes were purifed by fuorescence-activated cell sorting from transgenic mice expressing the green fuorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. Design: 6-hour instrumental sleep deprivation (TSD). Setting: Animal sleep research laboratory. Participants: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. Interventions: Basal sleep recordings and sleep deprivation achieved using a modifed cage where animals were gently forced to move. Measurements and Results: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, a-2-Na/K pump, Glt1, and Ldha mRNAs were signifcantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not signifcant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. Conclusions: This study shows that TSD induces the expression of genes associated with ANLS specifcally in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

  3. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifically regulated in cortical astrocytes following sleep deprivation in mice.

    Science.gov (United States)

    Petit, Jean-Marie; Gyger, Joël; Burlet-Godinot, Sophie; Fiumelli, Hubert; Martin, Jean-Luc; Magistretti, Pierre J

    2013-10-01

    There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. 6-hour instrumental sleep deprivation (TSD). Animal sleep research laboratory. Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

  4. Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry

    International Nuclear Information System (INIS)

    Moshayedi, Pouria; Christ, Andreas; Guck, Jochen; Franze, Kristian; Da F Costa, Luciano; Lacour, Stephanie P; Fawcett, James

    2010-01-01

    Cells are able to detect and respond to mechanical cues from their environment. Previous studies have investigated this mechanosensitivity on various cell types, including neural cells such as astrocytes. In this study, we have carefully optimized polyacrylamide gels, commonly used as compliant growth substrates, considering their homogeneity in surface topography, mechanical properties, and coating density, and identified several potential pitfalls for the purpose of mechanosensitivity studies. The resulting astrocyte response to growth on substrates with shear storage moduli of G' 100 Pa and G' = 10 kPa was then evaluated as a function of coating density of poly-D-lysine using quantitative morphometric analysis. Astrocytes cultured on stiff substrates showed significantly increased perimeter, area, diameter, elongation, number of extremities and overall complexity if compared to those cultured on compliant substrates. A statistically significant difference in the overall morphological score was confirmed with an artificial intelligence-based shape analysis. The dependence of the cells' morphology on PDL coating density seemed to be weak compared to the effect of the substrate stiffness and was slightly biphasic, with a maximum at 10-100 μg ml -1 PDL concentration. Our finding suggests that the compliance of the surrounding tissue in vivo may influence astrocyte morphology and behavior.

  5. Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics.

    Science.gov (United States)

    Simpson, Siobhan; Dunning, Mark David; de Brot, Simone; Grau-Roma, Llorenç; Mongan, Nigel Patrick; Rutland, Catrin Sian

    2017-10-24

    Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is relatively poor, with 5 year OSA survival rates in people not having improved in decades. For dogs, 1 year survival rates are only around ~ 45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with the higher incidence rates in dogs contributing to the dog population being a good model of human disease. This review compares the clinical characteristics, gross morphology and histopathology, aetiology, epidemiology, and genetics of canine and human OSA. Finally, the current position of canine OSA genetic research is discussed and areas for additional work within the canine population are identified.

  6. Astrocytic Contributions to Synaptic and Learning Abnormalities in a Mouse Model of Fragile X Syndrome.

    Science.gov (United States)

    Hodges, Jennifer L; Yu, Xinzhu; Gilmore, Anthony; Bennett, Hannah; Tjia, Michelle; Perna, James F; Chen, Chia-Chien; Li, Xiang; Lu, Ju; Zuo, Yi

    2017-07-15

    Fragile X syndrome (FXS) is the most common type of mental retardation attributable to a single-gene mutation. It is caused by FMR1 gene silencing and the consequent loss of its protein product, fragile X mental retardation protein. Fmr1 global knockout (KO) mice recapitulate many behavioral and synaptic phenotypes associated with FXS. Abundant evidence suggests that astrocytes are important contributors to neurological diseases. This study investigates astrocytic contributions to the progression of synaptic abnormalities and learning impairments associated with FXS. Taking advantage of the Cre-lox system, we generated and characterized mice in which fragile X mental retardation protein is selectively deleted or exclusively expressed in astrocytes. We performed in vivo two-photon imaging to track spine dynamics/morphology along dendrites of neurons in the motor cortex and examined associated behavioral defects. We found that adult astrocyte-specific Fmr1 KO mice displayed increased spine density in the motor cortex and impaired motor-skill learning. The learning defect coincided with a lack of enhanced spine dynamics in the motor cortex that normally occurs in response to motor skill acquisition. Although spine density was normal at 1 month of age in astrocyte-specific Fmr1 KO mice, new spines formed at an elevated rate. Furthermore, fragile X mental retardation protein expression in only astrocytes was insufficient to rescue most spine or behavioral defects. Our work suggests a joint astrocytic-neuronal contribution to FXS pathogenesis and reveals that heightened spine formation during adolescence precedes the overabundance of spines and behavioral defects found in adult Fmr1 KO mice. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    International Nuclear Information System (INIS)

    Stiene-Martin, A.; Hauser, K.F.

    1990-01-01

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 μM met-enkephalin, 1 μM met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined [ 3 H]-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in [ 3 H]-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture

  8. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    Energy Technology Data Exchange (ETDEWEB)

    Stiene-Martin, A.; Hauser, K.F. (Univ. of Kentucky, Lexington (USA))

    1990-01-01

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 {mu}M met-enkephalin, 1 {mu}M met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined ({sup 3}H)-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in ({sup 3}H)-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture.

  9. Induction of neural stem cell-like cells (NSCLCs) from mouse astrocytes by Bmi1

    International Nuclear Information System (INIS)

    Moon, Jai-Hee; Yoon, Byung Sun; Kim, Bona; Park, Gyuman; Jung, Hye-Youn; Maeng, Isaac; Jun, Eun Kyoung; Yoo, Seung Jun; Kim, Aeree; Oh, Sejong; Whang, Kwang Youn; Kim, Hyunggee; Kim, Dong-Wook; Kim, Ki Dong; You, Seungkwon

    2008-01-01

    Recently, Bmi1 was shown to control the proliferation and self-renewal of neural stem cells (NSCs). In this study, we demonstrated the induction of NSC-like cells (NSCLCs) from mouse astrocytes by Bmi1 under NSC culture conditions. These NSCLCs exhibited the morphology and growth properties of NSCs, and expressed NSC marker genes, including nestin, CD133, and Sox2. In vitro differentiation of NSCLCs resulted in differentiated cell populations containing astrocytes, neurons, and oligodendrocytes. Following treatment with histone deacetylase inhibitors (trichostatin A and valproic acid), the potential of NSCLCs for proliferation, dedifferentiation, and self-renewal was significantly inhibited. Our data indicate that multipotent NSCLCs can be generated directly from astrocytes by the addition of Bmi1

  10. Artificial Astrocytes Improve Neural Network Performance

    Science.gov (United States)

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  11. Artificial astrocytes improve neural network performance.

    Directory of Open Access Journals (Sweden)

    Ana B Porto-Pazos

    Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  12. Artificial astrocytes improve neural network performance.

    Science.gov (United States)

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  13. Loose excitation-secretion coupling in astrocytes.

    Science.gov (United States)

    Vardjan, Nina; Parpura, Vladimir; Zorec, Robert

    2016-05-01

    Astrocytes play an important housekeeping role in the central nervous system. Additionally, as secretory cells, they actively participate in cell-to-cell communication, which can be mediated by membrane-bound vesicles. The gliosignaling molecules stored in these vesicles are discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This process is termed exocytosis, regulated by SNARE proteins, and triggered by elevations in cytosolic calcium levels, which are necessary and sufficient for exocytosis in astrocytes. For astrocytic exocytosis, calcium is sourced from the intracellular endoplasmic reticulum store, although its entry from the extracellular space contributes to cytosolic calcium dynamics in astrocytes. Here, we discuss calcium management in astrocytic exocytosis and the properties of the membrane-bound vesicles that store gliosignaling molecules, including the vesicle fusion machinery and kinetics of vesicle content discharge. In astrocytes, the delay between the increase in cytosolic calcium activity and the discharge of secretions from the vesicular lumen is orders of magnitude longer than that in neurons. This relatively loose excitation-secretion coupling is likely tailored to the participation of astrocytes in modulating neural network processing. © 2015 Wiley Periodicals, Inc.

  14. Reprogramming of HUVECs into induced pluripotent stem cells (HiPSCs, generation and characterization of HiPSC-derived neurons and astrocytes.

    Directory of Open Access Journals (Sweden)

    Yohannes Haile

    Full Text Available Neurodegenerative diseases are characterized by chronic and progressive structural or functional loss of neurons. Limitations related to the animal models of these human diseases have impeded the development of effective drugs. This emphasizes the need to establish disease models using human-derived cells. The discovery of induced pluripotent stem cell (iPSC technology has provided novel opportunities in disease modeling, drug development, screening, and the potential for "patient-matched" cellular therapies in neurodegenerative diseases. In this study, with the objective of establishing reliable tools to study neurodegenerative diseases, we reprogrammed human umbilical vein endothelial cells (HUVECs into iPSCs (HiPSCs. Using a novel and direct approach, HiPSCs were differentiated into cells of central nervous system (CNS lineage, including neuronal, astrocyte and glial cells, with high efficiency. HiPSCs expressed embryonic genes such as nanog, sox2 and Oct-3/4, and formed embryoid bodies that expressed markers of the 3 germ layers. Expression of endothelial-specific genes was not detected in HiPSCs at RNA or protein levels. HiPSC-derived neurons possess similar morphology but significantly longer neurites compared to primary human fetal neurons. These stem cell-derived neurons are susceptible to inflammatory cell-mediated neuronal injury. HiPSC-derived neurons express various amino acids that are important for normal function in the CNS. They have functional receptors for a variety of neurotransmitters such as glutamate and acetylcholine. HiPSC-derived astrocytes respond to ATP and acetylcholine by elevating cytosolic Ca2+ concentrations. In summary, this study presents a novel technique to generate differentiated and functional HiPSC-derived neurons and astrocytes. These cells are appropriate tools for studying the development of the nervous system, the pathophysiology of various neurodegenerative diseases and the development of potential

  15. Morphological features of the porcine lacrimal gland and its compatibility for human lacrimal gland xenografting.

    Science.gov (United States)

    Henker, Robert; Scholz, Michael; Gaffling, Simone; Asano, Nagayoshi; Hampel, Ulrike; Garreis, Fabian; Hornegger, Joachim; Paulsen, Friedrich

    2013-01-01

    In this study, we present first data concerning the anatomical structure, blood supply and location of the lacrimal gland of the pig. Our data indicate that the porcine lacrimal gland may serve as a potential xenograft candidate in humans or as an animal model for engineering of a bioartificial lacrimal gland tissue construct for clinical application. For this purpose, we used different macroscopic preparation techniques and digital reconstruction of the histological gland morphology to gain new insights and important information concerning the feasibility of a lacrimal gland transplantation from pig to humans in general. Our results show that the lacrimal gland of the pig reveals a lot of morphological similarities to the analogous human lacrimal gland and thus might be regarded as a xenograft in the future. This is true for a similar anatomical location within the orbit as well as for the feeding artery supply to the organ. Functional differences concerning the composition of the tear fluid, due to a different secretory unit distribution within the gland tissue will, however, be a challenge in future investigations.

  16. Morphological features of the porcine lacrimal gland and its compatibility for human lacrimal gland xenografting.

    Directory of Open Access Journals (Sweden)

    Robert Henker

    Full Text Available In this study, we present first data concerning the anatomical structure, blood supply and location of the lacrimal gland of the pig. Our data indicate that the porcine lacrimal gland may serve as a potential xenograft candidate in humans or as an animal model for engineering of a bioartificial lacrimal gland tissue construct for clinical application. For this purpose, we used different macroscopic preparation techniques and digital reconstruction of the histological gland morphology to gain new insights and important information concerning the feasibility of a lacrimal gland transplantation from pig to humans in general. Our results show that the lacrimal gland of the pig reveals a lot of morphological similarities to the analogous human lacrimal gland and thus might be regarded as a xenograft in the future. This is true for a similar anatomical location within the orbit as well as for the feeding artery supply to the organ. Functional differences concerning the composition of the tear fluid, due to a different secretory unit distribution within the gland tissue will, however, be a challenge in future investigations.

  17. The MCM-associated protein MCM-BP is important for human nuclear morphology.

    Science.gov (United States)

    Jagannathan, Madhav; Sakwe, Amos M; Nguyen, Tin; Frappier, Lori

    2012-01-01

    Mini-chromosome maintenance complex-binding protein (MCM-BP) was discovered as a protein that is strongly associated with human MCM proteins, known to be crucial for DNA replication in providing DNA helicase activity. The Xenopus MCM-BP homologue appears to play a role in unloading MCM complexes from chromatin after DNA synthesis; however, the importance of MCM-BP and its functional contribution to human cells has been unclear. Here we show that depletion of MCM-BP by sustained expression of short hairpin RNA (shRNA) results in highly abnormal nuclear morphology and centrosome amplification. The abnormal nuclear morphology was not seen with depletion of other MCM proteins and was rescued with shRNA-resistant MCM-BP. MCM-BP depletion was also found to result in transient activation of the G2 checkpoint, slowed progression through G2 and increased replication protein A foci, indicative of replication stress. In addition, MCM-BP depletion led to increased cellular levels of MCM proteins throughout the cell cycle including soluble MCM pools. The results suggest that MCM-BP makes multiple contributions to human cells that are not limited to unloading of the MCM complex.

  18. Femoral morphology and femoropelvic musculoskeletal anatomy of humans and great apes: a comparative virtopsy study.

    Science.gov (United States)

    Morimoto, Naoki; Ponce de León, Marcia S; Nishimura, Takeshi; Zollikofer, Christoph P E

    2011-09-01

    The proximal femoral morphology of fossil hominins is routinely interpreted in terms of muscular topography and associated locomotor modes. However, the detailed correspondence between hard and soft tissue structures in the proximal femoral region of extant great apes is relatively unknown, because dissection protocols typically do not comprise in-depth osteological descriptions. Here, we use computed tomography and virtopsy (virtual dissection) for non-invasive examination of the femoropelvic musculoskeletal anatomy in Pan troglodytes, P. paniscus, Gorilla gorilla, Pongo pygmaeus, and Homo sapiens. Specifically, we analyze the topographic relationship between muscle attachment sites and surface structures of the proximal femoral shaft such as the lateral spiral pilaster. Our results show that the origin of the vastus lateralis muscle is anterior to the insertion of gluteus maximus in all examined great ape specimens and humans. In gorillas and orangutans, the insertion of gluteus maximus is on the inferior (anterolateral) side of the lateral spiral pilaster. In chimpanzees, however, the maximus insertion is on its superior (posteromedial) side, similar to the situation in modern humans. These findings support the hypothesis that chimpanzees and humans exhibit a shared-derived musculoskeletal topography of the proximal femoral region, irrespective of their different locomotor modes, whereas gorillas and orangutans represent the primitive condition. Caution is thus warranted when inferring locomotor behavior from the surface topography of the proximal femur of fossil hominins, as the morphology of this region may contain a strong phyletic signal that tends to blur locomotor adaptation. Copyright © 2011 Wiley-Liss, Inc.

  19. Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia

    DEFF Research Database (Denmark)

    Windrem, Martha S.; Osipovitch, Mikhail; Liu, Zhengshan

    2017-01-01

    with childhood-onset SCZ. After neonatal implantation into myelin-deficient shiverer mice, SCZ GPCs showed premature migration into the cortex, leading to reduced white matter expansion and hypomyelination relative to controls. The SCZ glial chimeras also showed delayed astrocytic differentiation and abnormal...... astrocytic morphologies. When established in myelin wild-type hosts, SCZ glial mice showed reduced prepulse inhibition and abnormal behavior, including excessive anxiety, antisocial traits, and disturbed sleep. RNA-seq of cultured SCZ human glial progenitor cells (hGPCs) revealed disrupted glial...

  20. Morphological modulation of human fibrosarcoma HT-1080 cells by hydroxybenzoate compounds during apoptosis

    Directory of Open Access Journals (Sweden)

    Jassem G Mahdi

    2015-10-01

    Full Text Available Hydroxybenzoate (HB compounds have shown to modulate the morphology in human fibrosarcoma HT-1080 cells. The changes in HT-1080 cells showed marker signs of apoptosis, which included the condensation of nucleus, cell round, blebbing and the formation of apoptotic bodies. The different stages of apoptosis were assessed microscopically using different staining and immunohistochemical techniques, as well as scanning electron microscopy. In addition, HB compounds increased the expression of caspase-3, which is closely associated with the development of the modulation in HT-1080 cells that are undergoing the programmed cell death. Both acetyl salicylic acid (ASA and HBZn compounds were dose and treatment duration dependent.

  1. Study of the human encephalon morphology by computerized axial tomography in neurological diseases

    International Nuclear Information System (INIS)

    Loynaz Fernandez, Clara Silvia; Milan Companioni, Daile; Gomez Padron, Ivo; Alvarez Leon, Oladys; Espinosa Quiros, Desiderio

    2001-01-01

    Since the middle of the last century, the study of the human encephalon morphology has been of great interest for the researchers. With the introduction of the computerized axial tomography in 1974, it was possible to expand the knowledge about this area and at the same time provide information on the structural lesions that are pathologies of great psychosocial repercussion like epilepsy and Parkinsonism. This paper used 90 tomographic studies on people aged 20-80 years. A series of linear measurements were made and statistically processed. The results showed variations in linear measurements among control, epileptic and Parkinsonian subjects

  2. No Relationship between Embryo Morphology and Successful Derivation of Human Embryonic Stem Cell Lines

    Science.gov (United States)

    Ström, Susanne; Rodriguez-Wallberg, Kenny; Holm, Frida; Bergström, Rosita; Eklund, Linda; Strömberg, Anne-Marie; Hovatta, Outi

    2010-01-01

    Background The large number (30) of permanent human embryonic stem cell (hESC) lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002–2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. Methods We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. Results Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM) was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN) zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. Conclusion Even very poor quality embryos with few cells in the ICM can give origin to hESC lines. PMID:21217828

  3. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.

    Science.gov (United States)

    Maquer, Ghislain; Laurent, Marc; Brandejsky, Vaclav; Pretterklieber, Michael L; Zysset, Philippe K

    2014-06-01

    Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently

  4. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment.

    Science.gov (United States)

    MacNamee, Sarah E; Liu, Kendra E; Gerhard, Stephan; Tran, Cathy T; Fetter, Richard D; Cardona, Albert; Tolbert, Leslie P; Oland, Lynne A

    2016-07-01

    Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 μm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. The influence of ovarian hyperstimulation drugs on morphometry and morphology of human oocytes in ICSI program.

    Science.gov (United States)

    Taheri, Fatemeh; Alemzadeh Mehrizi, Arezoo; Khalili, Mohammad Ali; Halvaei, Iman

    2018-04-01

    To compare the influences of controlled ovarian hyperstimulation (COH) drugs using recombinant follicular stimulating hormone (rFSH) versus human menopausal gonadotropins (hMG) on morphometry and morphology of MII oocytes in ICSI cycles. In this prospective study, 363 MII oocytes from 50 ICSI cycles with male factor infertility were evaluated. The patients were divided into two groups according to the protocols of COH: I- rFSH and II- hMG. The immature oocytes were excluded from the study. All oocytes were categorized into four morphological groups of normal, and those with single, double, or multiple defects. The inclusive morphometrical criteria were: areas and diameters of oocyte, ooplasm, and zona pellucida (ZP). Also, circumferences of oocyte and ooplasm were assessed. The ZP area and ooplasm diameter for both normal and abnormal oocytes were significantly higher in group I (P: .05; P: .028, respectively) compared to group II (P: .023; P: .003, respectively). In abnormal oocytes, ooplasm diameter was higher in group I compared to group II. Furthermore, ooplasm area for abnormal oocytes was significantly higher in group I compared to group II. There was an increasing trend for number of mature oocytes, in abnormal oocytes, for group I (5.53 ± 3.1) in comparison with group II (4.4 ± 2.97; P = .25). The rate of oocytes with normal morphology was significantly higher in hMG, when compared to rFSH groups. Morphometrical parameters were increased in rFSH group, but the normal morphology of oocytes were significantly enhanced in hMG group. Treatment with proper dosage of ovulation induction drugs may enhance the number of normal sized oocytes. Copyright © 2018. Published by Elsevier B.V.

  6. Predicting human age using regional morphometry and inter-regional morphological similarity

    Science.gov (United States)

    Wang, Xun-Heng; Li, Lihua

    2016-03-01

    The goal of this study is predicting human age using neuro-metrics derived from structural MRI, as well as investigating the relationships between age and predictive neuro-metrics. To this end, a cohort of healthy subjects were recruited from 1000 Functional Connectomes Project. The ages of the participations were ranging from 7 to 83 (36.17+/-20.46). The structural MRI for each subject was preprocessed using FreeSurfer, resulting in regional cortical thickness, mean curvature, regional volume and regional surface area for 148 anatomical parcellations. The individual age was predicted from the combination of regional and inter-regional neuro-metrics. The prediction accuracy is r = 0.835, p Pearson correlation coefficient between predicted ages and actual ages. Moreover, the LASSO linear regression also found certain predictive features, most of which were inter-regional features. The turning-point of the developmental trajectories in human brain was around 40 years old based on regional cortical thickness. In conclusion, structural MRI could be potential biomarkers for the aging in human brain. The human age could be successfully predicted from the combination of regional morphometry and inter-regional morphological similarity. The inter-regional measures could be beneficial to investigating human brain connectome.

  7. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Chong-Chong Xu

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA, characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1 gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this study, we examined the role of SMN in mitochondrial axonal transport and morphology in human motor neurons by generating SMA type 1 patient-specific induced pluripotent stem cells (iPSCs and differentiating these cells into spinal motor neurons. The initial specification of spinal motor neurons was not affected, but these SMA spinal motor neurons specifically degenerated following long-term culture. Moreover, at an early stage in SMA spinal motor neurons, but not in SMA forebrain neurons, the number of mitochondria, mitochondrial area and mitochondrial transport were significantly reduced in axons. Knocking down of SMN expression led to similar mitochondrial defects in spinal motor neurons derived from human embryonic stem cells, confirming that SMN deficiency results in impaired mitochondrial dynamics. Finally, the application of N-acetylcysteine (NAC mitigated the impairment in mitochondrial transport and morphology and rescued motor neuron degeneration in SMA long-term cultures. Furthermore, NAC ameliorated the reduction in mitochondrial membrane potential in SMA spinal motor neurons, suggesting that NAC might rescue apoptosis and motor neuron degeneration by improving mitochondrial health. Overall, our data demonstrate that SMN deficiency results in abnormal mitochondrial transport and morphology and a subsequent reduction in mitochondrial health, which are implicated in the specific degeneration of spinal motor neurons in SMA.

  8. Morphological alteration of the Dráva as the result of human impact

    Directory of Open Access Journals (Sweden)

    Tímea Kiss

    2011-10-01

    Full Text Available The Croatian-Hungarian border section of the Dráva River has been undisturbed for almost a century, and it is characterised by unique fluvial morphology (braided pattern and islands supporting rich habitats and wildlife. However, during the last decades human impact became more and moreintensive. Between 1975 and 1989 three water reservoirs were built on the Croatian section of the river, just 16 km from the beginning of the border-section, altering the hydrology and the sediment characteristics of the river. On a local scale cut-offs, revetments and groynes were built. The aim of the study was to evaluate the effect of these human interventions. As the result of the alteration of the hydrology the channel pattern of the Dráva has been changing from braided to meandering, though on the upstream meandering part the territory and number of islands increased due to the drop of water stages. A cut-off and a groyne influenced only the morphology of a short section. As the result of the cut-off braided pattern became more pronounced, and the groyne caused intensive channel aggradation and gave way to lateral island development.

  9. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.

    Science.gov (United States)

    Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F

    2015-10-01

    Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. © The Author(s) 2015.

  10. Astrocyte Ca2+ signalling: an unexpected complexity

    OpenAIRE

    Volterra, Andrea; Liaudet, Nicolas; Savtchouk, Iaroslav

    2014-01-01

    Astrocyte Ca(2+) signalling has been proposed to link neuronal information in different spatial-temporal dimensions to achieve a higher level of brain integration. However, some discrepancies in the results of recent studies challenge this view and highlight key insufficiencies in our current understanding. In parallel, new experimental approaches that enable the study of astrocyte physiology at higher spatial-temporal resolution in intact brain preparations are beginning to reveal an unexpec...

  11. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  12. Glucocorticoid regulation of astrocytic fate and function.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.

  13. Astrocyte glycogen and brain energy metabolism.

    Science.gov (United States)

    Brown, Angus M; Ransom, Bruce R

    2007-09-01

    The brain contains glycogen but at low concentration compared with liver and muscle. In the adult brain, glycogen is found predominantly in astrocytes. Astrocyte glycogen content is modulated by a number of factors including some neurotransmitters and ambient glucose concentration. Compelling evidence indicates that astrocyte glycogen breaks down during hypoglycemia to lactate that is transferred to adjacent neurons or axons where it is used aerobically as fuel. In the case of CNS white matter, this source of energy can extend axon function for 20 min or longer. Likewise, during periods of intense neural activity when energy demand exceeds glucose supply, astrocyte glycogen is degraded to lactate, a portion of which is transferred to axons for fuel. Astrocyte glycogen, therefore, offers some protection against hypoglycemic neural injury and ensures that neurons and axons can maintain their function during very intense periods of activation. These emerging principles about the roles of astrocyte glycogen contradict the long held belief that this metabolic pool has little or no functional significance.

  14. Chronological changes in astrocytes induced by chronic electrical sensorimotor cortex stimulation in rats.

    Science.gov (United States)

    Morishita, Takashi; Yamashita, Akiko; Katayama, Yoichi; Oshima, Hideki; Nishizaki, Yuji; Shijo, Katsunori; Fukaya, Chikashi; Yamamoto, Takamitsu

    2011-01-01

    Motor cortex stimulation (MCS) is a treatment option for various disorders such as medically refractory pain, poststroke hemiplegia, and movement disorders. However, the exact mechanisms underlying its effects remain unknown. In this study, the effects of long-term chronic MCS were investigated by observing changes in astrocytes. A quadripolar stimulation electrode was implanted on the dura over the sensorimotor cortex of adult rats, and the cortex was continuously stimulated for 3 hours, 1 week, 4 weeks, and 8 weeks. Immunohistochemical staining of microglia (ionized calcium-binding adaptor molecule 1 [Iba1] staining) and astrocytes (glial fibrillary acidic protein [GFAP] staining), and neuronal degeneration histochemistry (Fluoro-Jade B staining) were carried out to investigate the morphological changes following long-term chronic MCS. Iba1 staining and Fluoro-Jade B staining showed no evidence of Iba1-positive microglial changes or neurodegeneration. Following continuous MCS, GFAP-positive astrocytes were enlarged and their number increased in the cortex and the thalamus of the stimulated hemisphere. These findings indicate that chronic electrical stimulation can continuously activate astrocytes and result in morphological and quantitative changes. These changes may be involved in the mechanisms underlying the neuroplasticity effect induced by MCS.

  15. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Javier M. Urquiza

    2017-08-01

    Full Text Available The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV, the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis.

  16. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy.

    Science.gov (United States)

    Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing

    2015-09-01

    Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.

  17. Sulcal pattern, extension, and morphology of the precuneus in adult humans.

    Science.gov (United States)

    Pereira-Pedro, Ana Sofia; Bruner, Emiliano

    2016-11-01

    The precuneus represents a relevant cortical component of the parietal lobes. It is involved in visuospatial integration, imagery and simulation, self-awareness, and it is a main node of the Default Mode Network. Its morphology is extremely variable among adult humans, and it has been hypothesized to have undergone major morphological changes in the evolution of Homo sapiens. Recent studies have evidenced a marked variation also associated with its sulcal patterns. The present survey contributes to add further information on this topic, investigating the extension of its main folds, their geometrical influence on the lateral parietal areas, and the relationships with the sulcal schemes. The subparietal sulcus, on average, extends 14mm in its anterior and middle regions and 11mm in its posterior area. The precuneal area extends 36mm above this sulcus. The subparietal sulcus is generally wider on the right hemisphere. Males have larger values than females, but differences are not significant. Sulcal pattern is not correlated with the size of the subparietal sulcus extension. There is a lack of consistent correspondence between hemispheres in the sulcal patterns, pointing further towards a notable individual variability and random asymmetries. The vertical extension of the precuneus influences the height and proportions of the upper parietal profile, but the lateral parietal outline is not sensitive to precuneal variation. There is no correlation between external cortical shape and the size of the subparietal sulcus. Morphological analyses of the precuneus must be integrated with studies on histological factors involved in its variability and, ultimately, with analyses on possible relationships with functional factors. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice.

    Directory of Open Access Journals (Sweden)

    Miroslava Anderova

    Full Text Available Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+ and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4. As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+ clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD or 50 mM K(+. As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+, α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+.

  19. Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells.

    Science.gov (United States)

    Bernal, Giovanna M; Peterson, Daniel A

    2011-06-01

    Astrocytes secrete growth factors that are both neuroprotective and supportive for the local environment. Identified by glial fibrillary acidic protein (GFAP) expression, astrocytes exhibit heterogeneity in morphology and in the expression of phenotypic markers and growth factors throughout different adult brain regions. In adult neurogenic niches, astrocytes secrete vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) within the neurogenic niche and are also a source of special GFAP-positive multipotent neural stem cells (NSCs). Normal aging is accompanied by a decline in CNS function and reduced neurogenesis. We asked whether a decreased availability of astrocyte-derived factors may contribute to the age-related decline in neurogenesis. Determining alterations of astrocytic activity in the aging brain is crucial for understanding CNS homeostasis in aging and for assessing appropriate therapeutic targets for an aging population. We found region-specific alterations in the gene expression of GFAP, VEGF, and FGF-2 and their receptors in the aged brain corresponding to changes in astrocytic reactivity, supporting astrocytic heterogeneity and demonstrating a differential aging effect. We found that GFAP-positive NSCs uniquely coexpress both VEGF and its key mitotic receptor Flk-1 in both young and aged hippocampus, indicating a possible autocrine/paracrine signaling mechanism. VEGF expression is lost once NSCs commit to a neuronal fate, but Flk-1-mediated sensitivity to VEGF signaling is maintained. We propose that age-related astrocytic changes result in reduced VEGF and FGF-2 signaling, which in turn limits NSC and progenitor cell maintenance and contributes to decreased neurogenesis. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  20. Genetic determination of human facial morphology: links between cleft-lips and normal variation.

    Science.gov (United States)

    Boehringer, Stefan; van der Lijn, Fedde; Liu, Fan; Günther, Manuel; Sinigerova, Stella; Nowak, Stefanie; Ludwig, Kerstin U; Herberz, Ruth; Klein, Stefan; Hofman, Albert; Uitterlinden, Andre G; Niessen, Wiro J; Breteler, Monique M B; van der Lugt, Aad; Würtz, Rolf P; Nöthen, Markus M; Horsthemke, Bernhard; Wieczorek, Dagmar; Mangold, Elisabeth; Kayser, Manfred

    2011-11-01

    Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with non-syndromic cleft lip with or without cleft palate (NSCL/P), and other previous studies showed distinctly differing facial distance measurements when comparing unaffected relatives of NSCL/P patients with normal controls. Here, we test the hypothesis that genetic loci involved in NSCL/P also influence normal variation in facial morphology. We tested 11 SNPs from 10 genomic regions previously showing replicated evidence of association with NSCL/P for association with normal variation of nose width and bizygomatic distance in two cohorts from Germany (N=529) and the Netherlands (N=2497). The two most significant associations found were between nose width and SNP rs1258763 near the GREM1 gene in the German cohort (P=6 × 10(-4)), and between bizygomatic distance and SNP rs987525 at 8q24.21 near the CCDC26 gene (P=0.017) in the Dutch sample. A genetic prediction model explained 2% of phenotype variation in nose width in the German and 0.5% of bizygomatic distance variation in the Dutch cohort. Although preliminary, our data provide a first link between genetic loci involved in a pathological facial trait such as NSCL/P and variation of normal facial morphology. Moreover, we present a first approach for understanding the genetic basis of human facial appearance, a highly intriguing trait with implications on clinical practice, clinical genetics, forensic intelligence, social interactions and personal identity.

  1. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2.

    Science.gov (United States)

    Llana-Ruiz-Cabello, María; Gutiérrez-Praena, Daniel; Pichardo, Silvia; Moreno, F Javier; Bermúdez, José María; Aucejo, Susana; Cameán, Ana María

    2014-02-01

    Essential oils used as additives in the food industry due to its flavour, antimicrobial and antioxidant properties. Therefore, human can be exposed orally to these compounds through the ingestion of foods. In this sense, the present work aims to assess toxicological effects of oregano essential oil on the digestive tract. In concrete, the cytotoxic effects of two components of the oregano essential oils, carvacrol and thymol, and their mixture, on the intestinal cells line Caco-2 after 24 and 48 h of exposure are studied. The basal cytotoxicity endpoints assayed (total protein content, neutral red uptake and the tetrazolium salt reduction) and the annexin/propidium iodide staining indicated that carvacrol and the mixture carvacrol/thymol induced toxic effects. Moreover, a morphological study was performed in order to determine the ultrastructural cellular damages caused by these substances. The main morphological alterations were vacuolated cytoplasm, altered organelles and finally cell death. In addition, although no cytotoxic effects were recorded for thymol at any concentration and time of exposure, ultrastructural changes evidenced cellular damage such as lipid degeneration, mitochondrial damage, nucleolar segregation and apoptosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Morphological response of human rotavirus to ultra-violet radiation, heat and disinfectants

    International Nuclear Information System (INIS)

    Rodgers, F.G.; Hufton, P.; Kurzawska, E.; Molloy, C.; Morgan, S.

    1985-01-01

    The morphological damage induced in human rotavirus particles by exposure to UV radiation (254 nm) increased progressively with length of treatment. Exposure of the virus in suspension to 9000 ergs/cm 2 /s removed the smooth capsid layer from 50% of particles after 1 min and from all the virions within 10 min. By this time, the number of stain-penetrated or empty particles increased markedly, along with the appearance of virus-derived debris in the form of disrupted and isolated capsomeres. After treatment for 120 min no intact virus particles were observed. The action of wet (100 0 C) or dry (60 0 C) heat resulted in changes similar to those effected by UV radiation. Sodium hypochlorite, cetrimide and 70% ethanol induced a rapid loss of the outer capsid layer, but, compared with UV radiation or heat, a slower increase in the number of stain-penetrated particles was noted. Chlorhexidine and phenol had effects on virus structure only after extended periods of exposure, whilst glutaraldehyde treatment had little influence on virus morphology. Glutaraldehyde 2% v/v would appear to be most suitable for the disinfection of rotavirus-containing electron microscope grids before their examination. (author)

  3. [Optogenetic activation of dorsal hippocampal astrocytic Rac1 blocks the learning of associative memory].

    Science.gov (United States)

    Guo, Xiao-Mu; Liao, Zhao-Hui; Tao, Ye-Zheng; Wang, Fei-Fei; Ma, Lan

    2017-06-25

    Rac1 belongs to the family of Rho GTPases, and plays important roles in the brain function. It affects the cell migration and axon guidance via regulating the cytoskeleton and cellular morphology. However, the effect of its dynamic activation in regulating physiological function remains unclear. Recently, a photoactivatable analogue of Rac1 (PA-Rac1) has been developed, allowing the activation of Rac1 by the specific wavelength of light in living cells. Thus, we constructed recombinant adeno-associated virus (AAV) of PA-Rac1 and its light-insensitive mutant PA-Rac1-C450A under the control of the mouse glial fibrillary acidic protein (mGFAP) promoter to manipulate Rac1 activity in astrocytes by optical stimulation. Primary culture of hippocampal astrocytes was infected with the recombinant AAV-PA-Rac1 or AAV-PA-Rac1-C450A. Real-time fluorescence imaging showed that the cell membrane of the astrocyte expressing PA-Rac1 protruded near the light spot, while the astrocyte expressing PA-Rac1-C450A did not. We injected AAV-PA-Rac1 and AAV-PA-Rac1-C450A into dorsal hippocampus to investigate the role of the activation of Rac1 in regulating the associative learning. With optical stimulation, the PA-Rac1 group, rather than the PA-Rac1-C450A group, showed slower learning curve during the fear conditioning compared with the control group, indicating that activating astrocytic Rac1 blocks the formation of contextual memory. Our data suggest that the activation of Rac1 in dorsal hippocampal astrocyte plays an important role in the associative learning.

  4. Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death.

    Science.gov (United States)

    Rossi, Daniela

    2015-07-01

    Recent breakthroughs in neuroscience have led to the awareness that we should revise our traditional mode of thinking and studying the CNS, i.e. by isolating the privileged network of "intelligent" synaptic contacts. We may instead need to contemplate all the variegate communications occurring between the different neural cell types, and centrally involving the astrocytes. Basically, it appears that a single astrocyte should be considered as a core that receives and integrates information from thousands of synapses, other glial cells and the blood vessels. In turn, it generates complex outputs that control the neural circuitry and coordinate it with the local microcirculation. Astrocytes thus emerge as the possible fulcrum of the functional homeostasis of the healthy CNS. Yet, evidence indicates that the bridging properties of the astrocytes can change in parallel with, or as a result of, the morphological, biochemical and functional alterations these cells undergo upon injury or disease. As a consequence, they have the potential to transform from supportive friends and interactive partners for neurons into noxious foes. In this review, we summarize the currently available knowledge on the contribution of astrocytes to the functioning of the CNS and what goes wrong in various pathological conditions, with a particular focus on Amyotrophic Lateral Sclerosis, Alzheimer's Disease and ischemia. The observations described convincingly demonstrate that the development and progression of several neurological disorders involve the de-regulation of a finely tuned interplay between multiple cell populations. Thus, it seems that a better understanding of the mechanisms governing the integrated communication and detrimental responses of the astrocytes as well as their impact towards the homeostasis and performance of the CNS is fundamental to open novel therapeutic perspectives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer's disease.

    Science.gov (United States)

    Davies, Danielle S; Ma, Jolande; Jegathees, Thuvarahan; Goldsbury, Claire

    2017-11-01

    Changes in microglia function are involved in Alzheimer's disease (AD) for which ageing is the major risk factor. We evaluated microglial cell process morphologies and their gray matter coverage (arborized area) during ageing and in the presence and absence of AD pathology in autopsied human neocortex. Microglial cell processes were reduced in length, showed less branching and reduced arborized area with aging (case range 52-98 years). This occurred during normal ageing and without microglia dystrophy or changes in cell density. There was a larger reduction in process length and arborized area in AD compared to aged-matched control microglia. In AD cases, on average, 49%-64% of microglia had discontinuous and/or punctate Iba1 labeled processes instead of continuous Iba1 distribution. Up to 16% of aged-matched control microglia displayed discontinuous or punctate features. There was no change in the density of microglial cell bodies in gray matter during ageing or AD. This demonstrates that human microglia show progressive cell process retraction without cell loss during ageing. Additional changes in microglia occur with AD including Iba1 protein puncta and discontinuity. We suggest that reduced microglial arborized area may be an aging-related correlate of AD in humans. These variations in microglial cells during ageing and in AD could reflect changes in neural-glial interactions which are emerging as key to mechanisms involved in ageing and neurodegenerative disease. © 2016 International Society of Neuropathology.

  6. Volumetrical and morphological responses of human laryngeal squamous cell carcinoma xenografts treated with fractionated irradiation

    International Nuclear Information System (INIS)

    Hoogenhout, J.; Gasteren, H. van; Jerusalem, C.R.; Kal, H.B.

    1988-01-01

    Xenografts of both primary human laryngeal squamous cell carcinoma and its metastases were irradiated with five daily fractions of 5.0 Gy. Tumor volume changes, morphology, mitotic index and mitotic figures were studied. Primary xenografts disappeared within 17±3 days. Grafts of metastases showed complete regression within 26±5 days, or regrowth after a delay period. Mitotic activity was higher in the grafts of metastases. The number of mitotic figures decreased and ceased within 14 days in the primary tumor, while some were still occasionally noted in the grafts of metastases. Telophase stages were practically absent after the first fraction. This study suggests that the response of metastases to radiation therapy is lower than the response of the primary tumor. (orig.) [de

  7. Astrocyte galectin-9 potentiates microglial TNF secretion.

    Science.gov (United States)

    Steelman, Andrew J; Li, Jianrong

    2014-08-27

    Aberrant neuroinflammation is suspected to contribute to the pathogenesis of myriad neurological diseases. As such, determining the pathways that promote or inhibit glial activation is of interest. Activation of the surface glycoprotein T-cell immunoglobulin and mucin-domain containing protein 3 (Tim-3) by the lectin galectin-9 has been implicated in promoting innate immune cell activation by potentiating or synergizing toll-like receptor (TLR) signaling. In the present study we examined the role of the Tim-3/galectin-9 pathway in glial activation in vitro. Primary monocultures of microglia or astrocytes, co-cultures containing microglia and astrocytes, and mixed glial cultures consisting of microglia, astrocytes and oligodendrocytes were stimulated with poly(I:C) or LPS, and galectin-9 up-regulation was determined. The effect of endogenous galectin-9 production on microglial activation was examined using cultures from wild-type and Lgals9 null mice. The ability for recombinant galectin-9 to promote microglia activation was also assessed. Tim-3 expression on microglia and BV2 cells was examined by qPCR and flow cytometry and its necessity in transducing the galectin-9 signal was determined using a Tim-3 specific neutralizing antibody or recombinant soluble Tim-3. Astrocytes potentiated TNF production from microglia following TLR stimulation. Poly(I:C) stimulation increased galectin-9 expression in microglia and microglial-derived factors promoted galectin-9 up-regulation in astrocytes. Astrocyte-derived galectin-9 in turn enhanced microglial TNF production. Similarly, recombinant galectin-9 enhanced poly(I:C)-induced microglial TNF and IL-6 production. Inhibition of Tim-3 did not alter TNF production in mixed glial cultures stimulated with poly(I:C). Galectin-9 functions as an astrocyte-microglia communication signal and promotes cytokine production from microglia in a Tim-3 independent manner. Activation of CNS galectin-9 likely modulates neuroinflammatory

  8. Morphology of primary human venous endothelial cell cultures before and after culture medium exchange.

    Science.gov (United States)

    Krüger-Genge, A; Fuhrmann, R; Jung, F; Franke, R P

    2015-01-01

    The evaluation of the interaction of human, venous endothelial cells (HUVEC) with body foreign materials on the cellular level cannot be performed in vivo, but is investigated in vitro under standard culture conditions. To maintain the vitality, proliferation and morphology of HUVEC seeded on body foreign substrates over days, the cell culture medium is usually exchanged every second day. It is well known, that alterations in the microenvironment of cells bear the risk of influencing cell morphology and function. In the current study the influence of cell culture medium exchange on HUVEC cytoskeletal microfilament structure and function was investigated. HUVEC in the third passage were seeded on extracellular matrix (ECM) - which was secreted from bovine corneal endothelial cells on glass- until functional confluence was reached. The experiment started 11 days after HUVEC seeding with an exchange of the cell culture medium followed by a staining of the actin microfilaments with phalloidin-rhodamin 1.5 and 5 minutes after medium exchange. The microfilaments were documented by use of an Olympus microscope (IMT-2) equipped with a UV lamp and online connected to a TV chain (Sony XC 50 ST/monochrome) implying an OPTIMAS - Image analysis system. Prostacyclin was analysed in the cell culture supernatant. 1.5 min after culture medium exchange in the functionally confluent cultures a slight disturbance of the actin microfilament structure with a broadening of the marginal filament band, a partial disconnection of cell-cell contacts and the appearance of intercellular fenestrations were observed. 5 minutes after medium exchange a redevelopment of the slightly disturbed microfilament structure with a condensation and narrowing of the marginal filament band was seen. 12 h later a further consolidation of the microfilament structure occurred. In addition, a perturbation of the cultured HUVEC occurred after cell culture medium exchange. The prostacyclin concentration in the

  9. Shared human-chimpanzee pattern of perinatal femoral shaft morphology and its implications for the evolution of hominin locomotor adaptations.

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    Full Text Available Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual's lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion.Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state.These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.

  10. Astrocyte-secreted factors modulate a gradient of primary dendritic arbors in nucleus laminaris of the avian auditory brainstem.

    Directory of Open Access Journals (Sweden)

    Matthew J Korn

    Full Text Available Neurons in nucleus laminaris (NL receive binaural, tonotopically matched input from nucleus magnocelluaris (NM onto bitufted dendrites that display a gradient of dendritic arbor size. These features improve computation of interaural time differences, which are used to determine the locations of sound sources. The dendritic gradient emerges following a period of significant reorganization at embryonic day 15 (E15, which coincides with the emergence of astrocytes that express glial fibrillary acidic protein (GFAP in the auditory brainstem. The major changes include a loss of total dendritic length, a systematic loss of primary dendrites along the tonotopic axis, and lengthening of primary dendrites on caudolateral NL neurons. Here we have tested whether astrocyte-derived molecules contribute to these changes in dendritic morphology. We used an organotypic brainstem slice preparation to perform repeated imaging of individual dye-filled NL neurons to determine the effects of astrocyte-conditioned medium (ACM on dendritic morphology. We found that treatment with ACM induced a decrease in the number of primary dendrites in a tonotopically graded manner similar to that observed during normal development. Our data introduce a new interaction between astrocytes and neurons in the auditory brainstem and suggest that these astrocytes influence multiple aspects of auditory brainstem maturation.

  11. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases.

    Science.gov (United States)

    Martin-Jiménez, Cynthia A; García-Vega, Ángela; Cabezas, Ricardo; Aliev, Gjumrakch; Echeverria, Valentina; González, Janneth; Barreto, George E

    2017-11-01

    Endoplasmic reticulum (ER) is a subcellular organelle involved in protein folding and processing. ER stress constitutes a cellular process characterized by accumulation of misfolded proteins, impaired lipid metabolism and induction of inflammatory responses. ER stress has been suggested to be involved in several human pathologies, including neurodegenerative diseases and obesity. Different studies have shown that both neurodegenerative diseases and obesity trigger similar cellular responses to ER stress. Moreover, both diseases are assessed in astrocytes as evidences suggest these cells as key regulators of brain homeostasis. However, the exact contributions to the effects of ER stress in astrocytes in the various neurodegenerative diseases and its relation with obesity are not well known. Here, we discuss recent advances in the understanding of molecular mechanisms that regulate ER stress-related disorders in astrocytes such as obesity and neurodegeneration. Moreover, we outline the correlation between the activated proteins of the unfolded protein response (UPR) in these pathological conditions in order to identify possible therapeutic targets for ER stress in astrocytes. We show that ER stress in astrocytes shares UPR activation pathways during both obesity and neurodegenerative diseases, demonstrating that UPR related proteins like ER chaperone GRP 78/Bip, PERK pathway and other exogenous molecules ameliorate UPR response and promote neuroprotection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Hypoxia inducible factor-2α regulates the development of retinal astrocytic network by maintaining adequate supply of astrocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Li-Juan Duan

    Full Text Available Here we investigate the role of hypoxia inducible factor (HIF-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26(CreERT2, Tie2(Cre, and GFAP(Cre. Global Hif-2α disruption by Rosa26(CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2(Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAP(Cre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP(+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2(+ and PDGFRα(+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other

  13. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves; Magistretti, Pierre J.; Barros, L. Felipe

    2016-01-01

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  14. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  15. Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease

    DEFF Research Database (Denmark)

    Khakh, Baljit S.; Beaumont, Vahri; Cachope, Roger

    2017-01-01

    Astrocytes are abundant within mature neural circuits and are involved in brain disorders. Here, we summarize our current understanding of astrocytes and Huntington's disease (HD), with a focus on correlative and causative dysfunctions of ion homeostasis, calcium signaling, and neurotransmitter...

  16. [Immunocytochemical demonstration of astrocytes in brain sections combined with Nissl staining].

    Science.gov (United States)

    Korzhevskiĭ, D E; Otellin, V A

    2004-01-01

    The aim of the present study was to develop an easy and reliable protocol of combined preparation staining, which would unite the advantages of immunocytochemical demonstration of astrocytes with the availability to evaluate functional state of neurons provided by Nissl technique. The presented protocol of paraffin sections processing allows to retain high quality of tissue structure and provides for selective demonstration of astrocytes using the monoclonal antibodies against glial fibrillary acidic protein and contrast Nissl staining of cells. The protocol can be used without any changes for processing of brain sections obtained from the humans and other mammals with the exception of mice and rabbits.

  17. Immunocytochemical detection of astrocytes in brain slices in combination with Nissl staining.

    Science.gov (United States)

    Korzhevskii, D E; Otellin, V A

    2005-07-01

    The present study was performed to develop a simple and reliable method for the combined staining of specimens to allow the advantages of immunocytochemical detection of astrocytes and assessment of the functional state of neurons by the Nissl method to be assessed simultaneously. The protocol suggested for processing paraffin sections allows preservation of tissue structure at high quality and allows the selective identification of astrocytes with counterstaining of neurons by the Nissl method. The protocol can be used without modification for processing brain specimens from humans and various mammals--except mice and rabbits.

  18. Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulus-dependent

    DEFF Research Database (Denmark)

    Hartlage-Rübsamen, Maike; Zeitschel, Ulrike; Apelt, Jenny

    2003-01-01

    The beta-site APP-cleaving enzyme (BACE1) is a prerequisite for the generation of beta-amyloid peptides, which give rise to cerebrovascular and parenchymal beta-amyloid deposits in the brain of Alzheimer's disease patients. BACE1 is neuronally expressed in the brains of humans and experimental...... paradigms studied. In contrast, BACE1 expression by reactive astrocytes was evident in chronic but not in acute models of gliosis. Additionally, we observed BACE1-immunoreactive astrocytes in proximity to beta-amyloid plaques in the brains of aged Tg2576 mice and Alzheimer's disease patients....

  19. Does menaquinone participate in brain astrocyte electron transport?

    Science.gov (United States)

    Lovern, Douglas; Marbois, Beth

    2013-10-01

    Quinone compounds act as membrane resident carriers of electrons between components of the electron transport chain in the periplasmic space of prokaryotes and in the mitochondria of eukaryotes. Vitamin K is a quinone compound in the human body in a storage form as menaquinone (MK); distribution includes regulated amounts in mitochondrial membranes. The human brain, which has low amounts of typical vitamin K dependent function (e.g., gamma carboxylase) has relatively high levels of MK, and different regions of brain have different amounts. Coenzyme Q (Q), is a quinone synthesized de novo, and the levels of synthesis decline with age. The levels of MK are dependent on dietary intake and generally increase with age. MK has a characterized role in the transfer of electrons to fumarate in prokaryotes. A newly recognized fumarate cycle has been identified in brain astrocytes. The MK precursor menadione has been shown to donate electrons directly to mitochondrial complex III. Vitamin K compounds function in the electron transport chain of human brain astrocytes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. New tools for investigating astrocyte-to-neuron communication

    OpenAIRE

    Li, Dongdong; Agulhon, Cendra; Schmidt, Elke; Oheim, Martin; Ropert, Nicole

    2013-01-01

    Gray matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca2+)-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated. Studying astrocytes in their natural environment is challenging because: (i) astrocytes are electrically silent; (ii) ...

  1. Morphology and morphometry of the human sublingual glands in mouth floor enlargements of edentulous patients

    Directory of Open Access Journals (Sweden)

    Josiane Costa Rodrigues de SA

    2013-12-01

    Full Text Available Asymptomatic mouth floor enlargements may be observed in edentulous patients. These masses, which protrude from the mouth floor, may complicate the fitting of dentures and require surgery. Whether this "entity" may be considered an anatomical variation of the mouth floor or represent specific alterations in the sublingual gland is not known. Objective: The aim of this work is to investigate the morphological and morphometric aspects of the sublingual glands of edentulous patients with mouth floor enlargements and compare the glands of these patients with the sublingual glands of human cadavers. Material and Methods: Microscopic evaluation was performed on human sublingual glands from edentulous patients with mouth floor enlargements (n=20 and edentulous cadavers (n=20. The patients and cadavers were of similar ages. The data were compared using Mann-Whitney U, Fisher's exact and Student's t tests (p0.05. Only the variables "autolysis" and "congested blood vessels" presented statistical difference between groups (p=0.014; p=0.043. The morphometric study revealed that the volume densities of acini, ducts, stroma and adipose tissue were similar between the groups (p>0.05. CONCLUSION: The microscopic characteristics of the sublingual glands in mouth floor enlargements in edentulous patients correspond to characteristics associated with the normal aging process. The glands are not pathological and represent an age-related alteration that occurs with or without the presence of the mouth floor enlargements.

  2. Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain.

    Science.gov (United States)

    Arsuaga, Juan Luis; Carretero, José-Miguel; Lorenzo, Carlos; Gómez-Olivencia, Asier; Pablos, Adrián; Rodríguez, Laura; García-González, Rebeca; Bonmatí, Alejandro; Quam, Rolf M; Pantoja-Pérez, Ana; Martínez, Ignacio; Aranburu, Arantza; Gracia-Téllez, Ana; Poza-Rey, Eva; Sala, Nohemi; García, Nuria; Alcázar de Velasco, Almudena; Cuenca-Bescós, Gloria; Bermúdez de Castro, José María; Carbonell, Eudald

    2015-09-15

    Current knowledge of the evolution of the postcranial skeleton in the genus Homo is hampered by a geographically and chronologically scattered fossil record. Here we present a complete characterization of the postcranium of the middle Pleistocene paleodeme from the Sima de los Huesos (SH) and its paleobiological implications. The SH hominins show the following: (i) wide bodies, a plesiomorphic character in the genus Homo inherited from their early hominin ancestors; (ii) statures that can be found in modern human middle-latitude populations that first appeared 1.6-1.5 Mya; and (iii) large femoral heads in some individuals, a trait that first appeared during the middle Pleistocene in Africa and Europe. The intrapopulational size variation in SH shows that the level of dimorphism was similar to modern humans (MH), but the SH hominins were less encephalized than Neandertals. SH shares many postcranial anatomical features with Neandertals. Although most of these features appear to be either plesiomorphic retentions or are of uncertain phylogenetic polarity, a few represent Neandertal apomorphies. Nevertheless, the full suite of Neandertal-derived features is not yet present in the SH population. The postcranial evidence is consistent with the hypothesis based on the cranial morphology that the SH hominins are a sister group to the later Neandertals. Comparison of the SH postcranial skeleton to other hominins suggests that the evolution of the postcranium occurred in a mosaic mode, both at a general and at a detailed level.

  3. Topographical distribution and morphology of NADPH-diaphorase-stained neurons in the human claustrum

    Science.gov (United States)

    Hinova-Palova, Dimka V.; Edelstein, Lawrence; Landzhov, Boycho; Minkov, Minko; Malinova, Lina; Hristov, Stanislav; Denaro, Frank J.; Alexandrov, Alexandar; Kiriakova, Teodora; Brainova, Ilina; Paloff, Adrian; Ovtscharoff, Wladimir

    2014-01-01

    We studied the topographical distribution and morphological characteristics of NADPH-diaphorase-positive neurons and fibers in the human claustrum. These neurons were seen to be heterogeneously distributed throughout the claustrum. Taking into account the size and shape of stained perikarya as well as dendritic and axonal characteristics, Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHd)-positive neurons were categorized by diameter into three types: large, medium and small. Large neurons ranged from 25 to 35 μm in diameter and typically displayed elliptical or multipolar cell bodies. Medium neurons ranged from 20 to 25 μm in diameter and displayed multipolar, bipolar and irregular cell bodies. Small neurons ranged from 14 to 20 μm in diameter and most often displayed oval or elliptical cell bodies. Based on dendritic characteristics, these neurons were divided into spiny and aspiny subtypes. Our findings reveal two populations of NADPHd-positive neurons in the human claustrum—one comprised of large and medium cells consistent with a projection neuron phenotype, the other represented by small cells resembling the interneuron phenotype as defined by previous Golgi impregnation studies. PMID:24904317

  4. Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization

    International Nuclear Information System (INIS)

    Rath, Barbara H; Wahba, Amy; Camphausen, Kevin; Tofilon, Philip J

    2015-01-01

    Toward developing a model system for investigating the role of the microenvironment in the radioresistance of glioblastoma (GBM), human glioblastoma stem-like cells (GSCs) were grown in coculture with human astrocytes. Using a trans-well assay, survival analyses showed that astrocytes significantly decreased the radiosensitivity of GSCs compared to standard culture conditions. In addition, when irradiated in coculture, the initial level of radiation-induced γH2AX foci in GSCs was reduced and foci dispersal was enhanced suggesting that the presence of astrocytes influenced the induction and repair of DNA double-strand breaks. These data indicate that astrocytes can decrease the radiosensitivity of GSCs in vitro via a paracrine-based mechanism and further support a role for the microenvironment as a determinant of GBM radioresponse. Chemokine profiling of coculture media identified a number of bioactive molecules not present under standard culture conditions. The gene expression profiles of GSCs grown in coculture were significantly different as compared to GSCs grown alone. These analyses were consistent with an astrocyte-mediated modification in GSC phenotype and, moreover, suggested a number of potential targets for GSC radiosensitization that were unique to coculture conditions. Along these lines, STAT3 was activated in GSCs grown with astrocytes; the JAK/STAT3 inhibitor WP1066 enhanced the radiosensitivity of GSCs under coculture conditions and when grown as orthotopic xenografts. Further, this coculture system may also provide an approach for identifying additional targets for GBM radiosensitization

  5. GABA(A) Increases Calcium in Subventricular Zone Astrocyte-Like Cells Through L- and T-Type Voltage-Gated Calcium Channels

    DEFF Research Database (Denmark)

    Young, Stephanie Z; Platel, Jean-Claude; Nielsen, Jakob V

    2010-01-01

    In the adult neurogenic subventricular zone (SVZ), the behavior of astrocyte-like cells and some of their functions depend on changes in intracellular Ca(2+) levels and tonic GABA(A) receptor activation. However, it is unknown whether, and if so how, GABA(A) receptor activity regulates...... intracellular Ca(2+) dynamics in SVZ astrocytes. To monitor Ca(2+) activity selectively in astrocyte-like cells, we used two lines of transgenic mice expressing either GFP fused to a Gq-coupled receptor or DsRed under the human glial fibrillary acidic protein (hGFAP) promoter. GABA(A) receptor activation...... induced Ca(2+) increases in 40-50% of SVZ astrocytes. GABA(A)-induced Ca(2+) increases were prevented with nifedipine and mibefradil, blockers of L- and T-type voltage-gated calcium channels (VGCC). The L-type Ca(2+) channel activator BayK 8644 increased the percentage of GABA(A)-responding astrocyte...

  6. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  7. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells

    International Nuclear Information System (INIS)

    Shahmoradi, Saleheh; Yazdian, Fatemeh; Tabandeh, Fatemeh; Soheili, Zahra-Soheila; Hatamian Zarami, Ashraf Sadat; Navaei-Nigjeh, Mona

    2017-01-01

    Applying scaffolds as a bed to enhance cell proliferation and even differentiation is one of the treatment of retina diseases such as age-related macular degeneration (AMD) which deteriorating photoreceptors and finally happening blindness. In this study, aligned polycaprolactone (PCL) nanofibers were electrospun and at different conditions and their characteristics were measured by scanning electron microscope (SEM) and contact angle. Response surface methodology (RSM) was used to optimize the diameter of fabricated nanofibers. Two factors as solution concentration and voltage value were considered as independent variables and their effects on nanofibers' diameters were evaluated by central composite design and the optimum conditions were obtained as 0.12 g/mL and 20 kV, respectively. In order to decrease the hydrophobicity of PCL, the surface of the fabricated scaffolds was modified by alkaline hydrolysis method. Contact time of the scaffolds and alkaline solution and concentration of alkaline solution were optimized using Box Behnken design and (120 min and 5 M were the optimal, respectively). Contact angle measurement showed the high hydrophilicity of treated scaffolds (with contact angle 7.48°). Plasma surface treatment was applied to compare the effect of using two kinds of surface modification methods simultaneously on hydrolyzed scaffolds. The RPE cells grown on scaffolds were examined by immunocytochemistry (ICC), MTT and continuous inspection of cellular morphology. Interestingly, Human RPE cells revealed their characteristic morphology on hydrolyzed scaffold well. As a result, we introduced a culture substrate with low diameter (185.8 nm), high porosity (82%) and suitable hydrophilicity (with contact angle 7.48 degree) which can be promising for hRPE cell transplantation. - Highlights: • Dimethylformamide (DMF) has significant effect on reduction of fibers' diameter. • Having high hydrophilicity by alkaline hydrolysis • Suitable

  8. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells.

    Science.gov (United States)

    Shahmoradi, Saleheh; Yazdian, Fatemeh; Tabandeh, Fatemeh; Soheili, Zahra-Soheila; Hatamian Zarami, Ashraf Sadat; Navaei-Nigjeh, Mona

    2017-04-01

    Applying scaffolds as a bed to enhance cell proliferation and even differentiation is one of the treatment of retina diseases such as age-related macular degeneration (AMD) which deteriorating photoreceptors and finally happening blindness. In this study, aligned polycaprolactone (PCL) nanofibers were electrospun and at different conditions and their characteristics were measured by scanning electron microscope (SEM) and contact angle. Response surface methodology (RSM) was used to optimize the diameter of fabricated nanofibers. Two factors as solution concentration and voltage value were considered as independent variables and their effects on nanofibers' diameters were evaluated by central composite design and the optimum conditions were obtained as 0.12g/mL and 20kV, respectively. In order to decrease the hydrophobicity of PCL, the surface of the fabricated scaffolds was modified by alkaline hydrolysis method. Contact time of the scaffolds and alkaline solution and concentration of alkaline solution were optimized using Box Behnken design and (120min and 5M were the optimal, respectively). Contact angle measurement showed the high hydrophilicity of treated scaffolds (with contact angle 7.48°). Plasma surface treatment was applied to compare the effect of using two kinds of surface modification methods simultaneously on hydrolyzed scaffolds. The RPE cells grown on scaffolds were examined by immunocytochemistry (ICC), MTT and continuous inspection of cellular morphology. Interestingly, Human RPE cells revealed their characteristic morphology on hydrolyzed scaffold well. As a result, we introduced a culture substrate with low diameter (185.8nm), high porosity (82%) and suitable hydrophilicity (with contact angle 7.48 degree) which can be promising for hRPE cell transplantation. Copyright © 2016. Published by Elsevier B.V.

  9. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells

    Energy Technology Data Exchange (ETDEWEB)

    Shahmoradi, Saleheh; Yazdian, Fatemeh [Department of Life Science Engineering, Faculty of New sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Tabandeh, Fatemeh, E-mail: taban_f@nigeb.ac.ir [Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran (Iran, Islamic Republic of); Soheili, Zahra-Soheila [Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran (Iran, Islamic Republic of); Hatamian Zarami, Ashraf Sadat [Department of Life Science Engineering, Faculty of New sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Navaei-Nigjeh, Mona [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2017-04-01

    Applying scaffolds as a bed to enhance cell proliferation and even differentiation is one of the treatment of retina diseases such as age-related macular degeneration (AMD) which deteriorating photoreceptors and finally happening blindness. In this study, aligned polycaprolactone (PCL) nanofibers were electrospun and at different conditions and their characteristics were measured by scanning electron microscope (SEM) and contact angle. Response surface methodology (RSM) was used to optimize the diameter of fabricated nanofibers. Two factors as solution concentration and voltage value were considered as independent variables and their effects on nanofibers' diameters were evaluated by central composite design and the optimum conditions were obtained as 0.12 g/mL and 20 kV, respectively. In order to decrease the hydrophobicity of PCL, the surface of the fabricated scaffolds was modified by alkaline hydrolysis method. Contact time of the scaffolds and alkaline solution and concentration of alkaline solution were optimized using Box Behnken design and (120 min and 5 M were the optimal, respectively). Contact angle measurement showed the high hydrophilicity of treated scaffolds (with contact angle 7.48°). Plasma surface treatment was applied to compare the effect of using two kinds of surface modification methods simultaneously on hydrolyzed scaffolds. The RPE cells grown on scaffolds were examined by immunocytochemistry (ICC), MTT and continuous inspection of cellular morphology. Interestingly, Human RPE cells revealed their characteristic morphology on hydrolyzed scaffold well. As a result, we introduced a culture substrate with low diameter (185.8 nm), high porosity (82%) and suitable hydrophilicity (with contact angle 7.48 degree) which can be promising for hRPE cell transplantation. - Highlights: • Dimethylformamide (DMF) has significant effect on reduction of fibers' diameter. • Having high hydrophilicity by alkaline hydrolysis • Suitable

  10. From observational to analytical morphology of the stratum corneum: progress avoiding hazardous animal and human testings

    Directory of Open Access Journals (Sweden)

    Piérard GE

    2015-03-01

    Full Text Available Gérald E Piérard,1,2 Justine Courtois,1 Caroline Ritacco,1 Philippe Humbert,2,3 Ferial Fanian,3 Claudine Piérard-Franchimont1,4,5 1Laboratory of Skin Bioengineering and Imaging (LABIC, Department of Clinical Sciences, Liège University, Liège, Belgium; 2University of Franche-Comté, Besançon, France; 3Department of Dermatology, University Hospital Saint-Jacques, Besançon, France; 4Department of Dermatopathology, Unilab Lg, University Hospital of Liège, Liège, Belgium; 5Department of Dermatology, Regional Hospital of Huy, Huy, Belgium Background: In cosmetic science, noninvasive sampling of the upper part of the stratum corneum is conveniently performed using strippings with adhesive-coated discs (SACD and cyanoacrylate skin surface strippings (CSSSs. Methods: Under controlled conditions, it is possible to scrutinize SACD and CSSS with objectivity using appropriate methods of analytical morphology. These procedures apply to a series of clinical conditions including xerosis grading, comedometry, corneodynamics, corneomelametry, corneosurfametry, corneoxenometry, and dandruff assessment. Results: With any of the analytical evaluations, SACD and CSSS provide specific salient information that is useful in the field of cosmetology. In particular, both methods appear valuable and complementary in assessing the human skin compatibility of personal skincare products. Conclusion: A set of quantitative analytical methods applicable to the minimally invasive and low-cost SACD and CSSS procedures allow for a sound assessment of cosmetic effects on the stratum corneum. Under regular conditions, both methods are painless and do not induce adverse events. Globally, CSSS appears more precise and informative than the regular SACD stripping. Keywords: irritation, morphometry, quantitative morphology, stripping

  11. Stereomicroscopic study of the human tooth caries: clinical and morphological correlations

    Science.gov (United States)

    Oancea, Roxana; Vasile, Liliana; Marchese, Cristian; Sava-Rosianu, Ruxandra

    2012-06-01

    loss that is very useful in grading the progression of the carious lesion. Conclusions: The stereomicroscopic study correlated with clinical and morphological data allowed to appreciate the extent of tissue involved in the carious process, but also the understanding of the enamel, dentine and cement matrix demineralization process, in proximity with the morpho-embryological markings of the human tooth structure.

  12. The research of morphological variations and sexual dimorphism of primary grooves on the medial side of brain hemispheres in humans

    Directory of Open Access Journals (Sweden)

    Spasojević Goran

    2012-01-01

    Full Text Available Morphological studies of the various parts of the brain show certain morphological and morphometric differences in correlation with sex, so-called sexual dimorphism of the brain. Our research has been done on the cerebral hemispheres, taken from cadavers of both sexes and different age without pathological processes in the brain. The sample comprised 26 male brains and 16 female brains. We studied three primary grooves (sulcus cinguli, sulcus parietooccipitalis and sulcus calcarinus of the medial surface of the human cerebral hemispheres. We conducted morphological typology of grooves and morphometric measurements of primary brain grooves length in relation to sex and side of hemisphere. The results showed a statistically significant sex difference in the cingulate sulcus length (p0,05. Determined morphometric sexual dimorphism in cingulate sulcus length is significant because it implies the correlation between morphology and function of the explored areas of the cerebral cortex.

  13. Morphology of fluvial levee series along a river under human influence, Maros River, Hungary

    Science.gov (United States)

    Kiss, Tímea; Balogh, Márton; Fiala, Károly; Sipos, György

    2018-02-01

    The development and morphometry of fluvial levees reflect the connection between channel and overbank processes, which can be altered by various human activities. The aims of this study are to investigate the morphology and spatial characteristics of fluvial levees and evaluate the role of some local- and catchment-scale human activities on their medium-term (150 years) development. This study applies LiDAR data along a 53-km-long reach of the Maros River in Hungary. Six fluvial levee types are identified based on the beginning and end of their evolution. These levee types were generated by local nineteenth century channel regulation works (cutoffs) and mid-twentieth century channel narrowing, which was caused by gravel mining and water impoundment in the upstream sections. However, other human activities also influenced the development of active fluvial levees because their horizontal evolution could have been limited by embanked flood-protection levees or the widening of low-lying floodplain benches that were generated by channel narrowing. Additionally, revetment constructions influenced their vertical parameters as higher fluvial levees developed along the fixed banks. Generally, the older active fluvial levees are wider, while the younger active levees are narrower with steeper slopes but not always lower. On the low-lying floodplain levels (benches), the youngest fluvial levees evolved quite rapidly and consist of coarser material. Currently, only 9.8- to 38-year return-period floods could cover the fluvial levees, contributing to their evolution. This fact and the development of fluvial levee series with two-three members reflect a gradual decoupling of the channel from the floodplain.

  14. Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology.

    Science.gov (United States)

    Aminiaghdam, Soran; Rode, Christian; Müller, Roy; Blickhan, Reinhard

    2017-02-01

    Pronograde trunk orientation in small birds causes prominent intra-limb asymmetries in the leg function. As yet, it is not clear whether these asymmetries induced by the trunk reflect general constraints on the leg function regardless of the specific leg architecture or size of the species. To address this, we instructed 12 human volunteers to walk at a self-selected velocity with four postures: regular erect, or with 30 deg, 50 deg and maximal trunk flexion. In addition, we simulated the axial leg force (along the line connecting hip and centre of pressure) using two simple models: spring and damper in series, and parallel spring and damper. As trunk flexion increases, lower limb joints become more flexed during stance. Similar to birds, the associated posterior shift of the hip relative to the centre of mass leads to a shorter leg at toe-off than at touchdown, and to a flatter angle of attack and a steeper leg angle at toe-off. Furthermore, walking with maximal trunk flexion induces right-skewed vertical and horizontal ground reaction force profiles comparable to those in birds. Interestingly, the spring and damper in series model provides a superior prediction of the axial leg force across trunk-flexed gaits compared with the parallel spring and damper model; in regular erect gait, the damper does not substantially improve the reproduction of the human axial leg force. In conclusion, mimicking the pronograde locomotion of birds by bending the trunk forward in humans causes a leg function similar to that of birds despite the different morphology of the segmented legs. © 2017. Published by The Company of Biologists Ltd.

  15. High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes.

    Science.gov (United States)

    Guyenet, Stephan J; Nguyen, Hong T; Hwang, Bang H; Schwartz, Michael W; Baskin, Denis G; Thaler, Joshua P

    2013-05-28

    Astrocytes respond to multiple forms of central nervous system (CNS) injury by entering a reactive state characterized by morphological changes and a specific pattern of altered protein expression. Termed astrogliosis, this response has been shown to strongly influence the injury response and functional recovery of CNS tissues. This pattern of CNS inflammation and injury associated with astrogliosis has recently been found to occur in the energy homeostasis centers of the hypothalamus during diet-induced obesity (DIO) in rodent models, but the characterization of the astrocyte response remains incomplete. Here, we report that astrocytes in the mediobasal hypothalamus respond robustly and rapidly to purified high-fat diet (HFD) feeding by cleaving caspase-3, a protease whose cleavage is often associated with apoptosis. Although obesity develops in HFD-fed rats by day 14, caspase-3 cleavage occurs by day 3, prior to the development of obesity, suggesting the possibility that it could play a causal role in the hypothalamic neuropathology and fat gain observed in DIO. Caspase-3 cleavage is not associated with an increase in the rate of apoptosis, as determined by TUNEL staining, suggesting it plays a non-apoptotic role analogous to the response to excitotoxic neuron injury. Our results indicate that astrocytes in the mediobasal hypothalamus respond rapidly and robustly to HFD feeding, activating caspase-3 in the absence of apoptosis, a process that has the potential to influence the course of DIO. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. MIRNAS in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity

    Directory of Open Access Journals (Sweden)

    Carlos Lafourcade

    2016-01-01

    Full Text Available Astrocytes use gliotransmitters to modulate neuronal function and plasticity. However, the role of small extracellular vesicles, called exosomes, in astrocyte-to-neuron signaling is mostly unknown. Exosomes originate in multivesicular bodies of parent cells and are secreted by fusion of the multivesicular body limiting membrane with the plasma membrane. Their molecular cargo, consisting of RNA species, proteins, and lipids, is in part cell type and cell state specific. Among the RNA species transported by exosomes, microRNAs (miRNAs are able to modify gene expression in recipient cells. Several miRNAs present in astrocytes are regulated under pathological conditions, and this may have far-reaching consequences if they are loaded in exosomes. We propose that astrocyte-derived miRNA-loaded exosomes, such as miR-26a, are dysregulated in several central nervous system diseases; thus potentially controlling neuronal morphology and synaptic transmission through validated and predicted targets. Unraveling the contribution of this new signaling mechanism to the maintenance and plasticity of neuronal networks will impact our understanding on the physiology and pathophysiology of the central nervous system.

  17. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  18. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge.

    Science.gov (United States)

    Norden, Diana M; Trojanowski, Paige J; Villanueva, Emmanuel; Navarro, Elisa; Godbout, Jonathan P

    2016-02-01

    Activation of the peripheral immune system elicits a coordinated response from the central nervous system. Key to this immune to brain communication is that glia, microglia, and astrocytes, interpret and propagate inflammatory signals in the brain that influence physiological and behavioral responses. One issue in glial biology is that morphological analysis alone is used to report on glial activation state. Therefore, our objective was to compare behavioral responses after in vivo immune (lipopolysaccharide, LPS) challenge to glial specific mRNA and morphological profiles. Here, LPS challenge induced an immediate but transient sickness response with decreased locomotion and social interaction. Corresponding with active sickness behavior (2-12 h), inflammatory cytokine mRNA expression was elevated in enriched microglia and astrocytes. Although proinflammatory cytokine expression in microglia peaked 2-4 h after LPS, astrocyte cytokine, and chemokine induction was delayed and peaked at 12 h. Morphological alterations in microglia (Iba-1(+)) and astrocytes (GFAP(+)), however, were undetected during this 2-12 h timeframe. Increased Iba-1 immunoreactivity and de-ramified microglia were evident 24 and 48 h after LPS but corresponded to the resolution phase of activation. Morphological alterations in astrocytes were undetected after LPS. Additionally, glial cytokine expression did not correlate with morphology after four repeated LPS injections. In fact, repeated LPS challenge was associated with immune and behavioral tolerance and a less inflammatory microglial profile compared with acute LPS challenge. Overall, induction of glial cytokine expression was sequential, aligned with active sickness behavior, and preceded increased Iba-1 or GFAP immunoreactivity after LPS challenge. © 2015 Wiley Periodicals, Inc.

  19. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy

    Science.gov (United States)

    Yi, Faliu; Moon, Inkyu; Lee, Yeon H.

    2015-01-01

    Counting morphologically normal cells in human red blood cells (RBCs) is extremely beneficial in the health care field. We propose a three-dimensional (3-D) classification method of automatically determining the morphologically normal RBCs in the phase image of multiple human RBCs that are obtained by off-axis digital holographic microscopy (DHM). The RBC holograms are first recorded by DHM, and then the phase images of multiple RBCs are reconstructed by a computational numerical algorithm. To design the classifier, the three typical RBC shapes, which are stomatocyte, discocyte, and echinocyte, are used for training and testing. Nonmain or abnormal RBC shapes different from the three normal shapes are defined as the fourth category. Ten features, including projected surface area, average phase value, mean corpuscular hemoglobin, perimeter, mean corpuscular hemoglobin surface density, circularity, mean phase of center part, sphericity coefficient, elongation, and pallor, are extracted from each RBC after segmenting the reconstructed phase images by using a watershed transform algorithm. Moreover, four additional properties, such as projected surface area, perimeter, average phase value, and elongation, are measured from the inner part of each cell, which can give significant information beyond the previous 10 features for the separation of the RBC groups; these are verified in the experiment by the statistical method of Hotelling's T-square test. We also apply the principal component analysis algorithm to reduce the dimension number of variables and establish the Gaussian mixture densities using the projected data with the first eight principal components. Consequently, the Gaussian mixtures are used to design the discriminant functions based on Bayesian decision theory. To improve the performance of the Bayes classifier and the accuracy of estimation of its error rate, the leaving-one-out technique is applied. Experimental results show that the proposed method can

  20. Astrocytes at the Hub of the Stress Response: Potential Modulation of Neurogenesis by miRNAs in Astrocyte-Derived Exosomes.

    Science.gov (United States)

    Luarte, Alejandro; Cisternas, Pablo; Caviedes, Ariel; Batiz, Luis Federico; Lafourcade, Carlos; Wyneken, Ursula; Henzi, Roberto

    2017-01-01

    Repetitive stress negatively affects several brain functions and neuronal networks. Moreover, adult neurogenesis is consistently impaired in chronic stress models and in associated human diseases such as unipolar depression and bipolar disorder, while it is restored by effective antidepressant treatments. The adult neurogenic niche contains neural progenitor cells in addition to amplifying progenitors, neuroblasts, immature and mature neurons, pericytes, astrocytes, and microglial cells. Because of their particular and crucial position, with their end feet enwrapping endothelial cells and their close communication with the cells of the niche, astrocytes might constitute a nodal point to bridge or transduce systemic stress signals from peripheral blood, such as glucocorticoids, to the cells involved in the neurogenic process. It has been proposed that communication between astrocytes and niche cells depends on direct cell-cell contacts and soluble mediators. In addition, new evidence suggests that this communication might be mediated by extracellular vesicles such as exosomes, and in particular, by their miRNA cargo. Here, we address some of the latest findings regarding the impact of stress in the biology of the neurogenic niche, and postulate how astrocytic exosomes (and miRNAs) may play a fundamental role in such phenomenon.

  1. Astrocytes at the Hub of the Stress Response: Potential Modulation of Neurogenesis by miRNAs in Astrocyte-Derived Exosomes

    Directory of Open Access Journals (Sweden)

    Alejandro Luarte

    2017-01-01

    Full Text Available Repetitive stress negatively affects several brain functions and neuronal networks. Moreover, adult neurogenesis is consistently impaired in chronic stress models and in associated human diseases such as unipolar depression and bipolar disorder, while it is restored by effective antidepressant treatments. The adult neurogenic niche contains neural progenitor cells in addition to amplifying progenitors, neuroblasts, immature and mature neurons, pericytes, astrocytes, and microglial cells. Because of their particular and crucial position, with their end feet enwrapping endothelial cells and their close communication with the cells of the niche, astrocytes might constitute a nodal point to bridge or transduce systemic stress signals from peripheral blood, such as glucocorticoids, to the cells involved in the neurogenic process. It has been proposed that communication between astrocytes and niche cells depends on direct cell-cell contacts and soluble mediators. In addition, new evidence suggests that this communication might be mediated by extracellular vesicles such as exosomes, and in particular, by their miRNA cargo. Here, we address some of the latest findings regarding the impact of stress in the biology of the neurogenic niche, and postulate how astrocytic exosomes (and miRNAs may play a fundamental role in such phenomenon.

  2. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    Science.gov (United States)

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte

  3. Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology

    DEFF Research Database (Denmark)

    Hansen, Philip; Haraldsson, Bjarki Thor; Aagaard, Per

    2010-01-01

    The human patellar tendon is frequently affected by tendinopathy, but the etiology of the condition is not established, although differential loading of the anterior and posterior tendon may be associated with the condition. We hypothesized that changes in fibril morphology and collagen cross-lin...

  4. Morphology of the human internal vertebral venous plexus : A cadaver study after latex injection in the 21-25-week fetus

    NARCIS (Netherlands)

    Groen, RJM; Grobbelaar, M; Muller, GIF; van Solinge, G; Verhoof, O; du Toit, DF; Hoogland, P.V.J.M.

    The morphology of the anterior and posterior internal vertebral venous plexus (IVVP) in human fetuses between 21-25 weeks of gestational age is described. The results are compared to the findings of a previous morphological study of the IVVP in the aged. The morphological pattern of the anterior

  5. Evidence of disrupted high-risk human papillomavirus DNA in morphologically normal cervices of older women.

    Science.gov (United States)

    Leonard, Sarah M; Pereira, Merlin; Roberts, Sally; Cuschieri, Kate; Nuovo, Gerard; Athavale, Ramanand; Young, Lawrence; Ganesan, Raji; Woodman, Ciarán B

    2016-02-15

    High-risk human papillomavirus (HR-HPV) causes nearly 100% of cervical carcinoma. However, it remains unclear whether HPV can establish a latent infection, one which may be responsible for the second peak in incidence of cervical carcinoma seen in older women. Therefore, using Ventana in situ hybridisation (ISH), quantitative PCR assays and biomarkers of productive and transforming viral infection, we set out to provide the first robust estimate of the prevalence and characteristics of HPV genomes in FFPE tissue from the cervices of 99 women undergoing hysterectomy for reasons unrelated to epithelial abnormality. Our ISH assay detected HR-HPV in 42% of our study population. The majority of ISH positive samples also tested HPV16 positive using sensitive PCR based assays and were more likely to have a history of preceding cytological abnormality. Analysis of subsets of this population revealed HR-HPV to be transcriptionally inactive as there was no evidence of a productive or transforming infection. Critically, the E2 gene was always disrupted in those HPV16 positive cases which were assessed. These findings point to a reservoir of transcriptionally silent, disrupted HPV16 DNA in morphologically normal cervices, re-expression of which could explain the increase in incidence of cervical cancer observed in later life.

  6. Effects of in-office bleaching on human enamel and dentin. Morphological and mineral changes.

    Science.gov (United States)

    Llena, Carmen; Esteve, Irene; Forner, Leopoldo

    2018-05-01

    The effects of HP-based products upon dental enamel and dentin are inconclusive. To evaluate changes in micromorphology and composition of calcium (Ca) and phosphate (P) in enamel and dentin after the application of 37.5% hydrogen peroxide (HP) and 35% carbamide peroxide (CP) METHODS: Crowns of 20 human teeth were divided in two halves. One half was used as control specimen and the other as experimental specimen. The control specimens were kept in artificial saliva, and the experimental specimens were divided into four groups (n=5 each): group 1 (enamel HP for 45min); group 2 (dentin HP for 45min); group 3 (enamel CP for 90min); and group 4 (dentin CP for 90min). The morphological changes were evaluated using confocal laser scanning microscopy (CLSM), while the changes in the composition of Ca and P were assessed using environmental scanning electron microscopy combined with a microanalysis system (ESEM+EDX). The results within each group and between groups were compared using the Wilcoxon test and Mann-Whitney U-test, respectively (p0.05). When bleaching products with a neutral pH are used in clinical practice, both, the concentration and the application time should be taken into account in order to avoid possible structural and mineral changes in enamel and dentin. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Comparison of techniques for morphologic evaluation of glycerol-preserved human skim subjected to gamma radiation

    International Nuclear Information System (INIS)

    Bringel, Fabiana de A.; Isaac, Cesar; Herson, Marisa R.; Freitas, Anderson Z. de; Martinho Junior, Antonio C.; Mathor, Monica B.

    2011-01-01

    Extensive skin lesions expose the body to damaging agents, which makes spontaneous regeneration difficult and, in many cases, leads patient to death. In such cases, if there are no donating areas for auto graft, allografts can be used. In this type of graft, tissue is processed in tissue banks, where it can be subjected to radiosterilization. According to in vitro studies, gamma radiation, in doses higher than 25 kGy, causes breakdown of collagen I fibrils in the skin preserved in glycerol at 85% and this change influences fibroblast migration and deposition of new collagen. In order to assess if the alterations observed in vitro, would compromise in vivo use, transplants of human tissue, irradiated or not, were performed in Nude mice. After the surgery the skins of the mice was subjected to macroscopic analysis on the 3 rd , 7 th , 21 st and 90 th days; optical coherence tomography on the 90 th day and histological assay on the 3 rd , 7 th , 21 st days to compare the results of the repair process among the techniques, considering that the OCT allows in vivo and not destructive morphological analysis. According to the results obtained through OCT it was possible to observe a more organized repair process in the animals which received irradiated grafts (25 and 50 kGy) if compared to unirradiated grafts. It was not possible to observe such phenomena through macroscopic or histological evaluation. (author)

  8. Comparison of techniques for morphologic evaluation of glycerol-preserved human skim subjected to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bringel, Fabiana de A. [Faculty of Humanities, Economic and Health Sciences of Araguaina ITPAC (FAHESA/ITPAC/TO) Araguaina, TO (Brazil); Isaac, Cesar [Faculty of Medicine, University of Sao Paulo (FMUSP/SP) Sao Paulo, SP (Brazil); Herson, Marisa R., E-mail: marisah@vifm.org [Tissue Bank of Victoria, Victoria (Australia); Freitas, Anderson Z. de; Martinho Junior, Antonio C.; Mathor, Monica B., E-mail: azanardi@ipen.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Radiation Technology Centre; Oliveira, Sergio F. de [Institute of Biomedical Sciences, University of Sao Paulo (ICB-USP/SP), SP (Brazil)

    2011-07-01

    Extensive skin lesions expose the body to damaging agents, which makes spontaneous regeneration difficult and, in many cases, leads patient to death. In such cases, if there are no donating areas for auto graft, allografts can be used. In this type of graft, tissue is processed in tissue banks, where it can be subjected to radiosterilization. According to in vitro studies, gamma radiation, in doses higher than 25 kGy, causes breakdown of collagen I fibrils in the skin preserved in glycerol at 85% and this change influences fibroblast migration and deposition of new collagen. In order to assess if the alterations observed in vitro, would compromise in vivo use, transplants of human tissue, irradiated or not, were performed in Nude mice. After the surgery the skins of the mice was subjected to macroscopic analysis on the 3{sup rd}, 7{sup th}, 21{sup st} and 90{sup th} days; optical coherence tomography on the 90{sup th} day and histological assay on the 3{sup rd}, 7{sup th}, 21{sup st} days to compare the results of the repair process among the techniques, considering that the OCT allows in vivo and not destructive morphological analysis. According to the results obtained through OCT it was possible to observe a more organized repair process in the animals which received irradiated grafts (25 and 50 kGy) if compared to unirradiated grafts. It was not possible to observe such phenomena through macroscopic or histological evaluation. (author)

  9. Computational Modelling of Gas-Particle Flows with Different Particle Morphology in the Human Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Kiao Inthavong

    2009-01-01

    Full Text Available This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles, elongated shapes (asbestos fibres, rough shapes (pollen, and porous light density particles (drug particles are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.

  10. Induction of Morphological Changes in Human Embryo Liver Cells by the Pyrrolizidine Alkaloid Lasiocarpine

    Science.gov (United States)

    Armstrong, Sylvia J.; Zuckerman, A. J.; Bird, R. G.

    1972-01-01

    The pyrrolizidine alkaloids have been implicated in the aetiology of liver disease in man and in animals. Studies of the effects of lasiocarpine indicate that they have several and perhaps independent effects on human liver cells in culture. These may be summarized as follows: 1. Nuclear and nucleolar changes which are probably related to the alkylation of DNA and ensuing inhibition of nucleic acid and protein synthesis. 2. The induction of possible chromosomal damage and mutation. 3. A generalized reduction of the metabolic activities of the cells due to membrane and mitochondrial damage, and to alkylation and inactivation of cell enzymes and proteins. 4. A long-term inhibition of mitosis leading to the formation of giant cells (“megalocytes”). The morphological effects induced by a number of the pyrrolizidine alkaloids were very similar but the pattern of metabolic changes varied somewhat. It is believed that the hepatotoxic effects are not due to the pyrrolizidine alkaloids themselves but to metabolic derivatives formed by the cell. ImagesFigs. 3-5Figs. 1-2 PMID:5032090

  11. Anatomy of the human orbital muscle (OM): Features of its detailed topography, syntopy and morphology.

    Science.gov (United States)

    Wilden, Andre; Feiser, Janna; Wöhler, Aliona; Isik, Zeynep; Bendella, Habib; Angelov, Doychin N

    2017-05-01

    The human orbital muscle (OM) is not readily accessible during ordinary anatomical teaching because of insufficient time and difficulties encountered in the preparation. Accordingly, its few anatomical descriptions are supported only by drawings, but not by photographs. The aim of this study was to present OM in dissected anatomic specimens in more detail. Following microscope-assisted dissection, its location, syntopy and morphology were analyzed in 88 orbits of 51 cadavers. Together with the periorbital connective tissue OM filled the infraorbital fissure (IOF) and extended back to the cavernous sinus. As a new finding, we here report that in 34% of the orbits we observed OM-fibers, which proceeded from IOF caudally to the facies infratemporalis of the maxilla. OM had a mean width of 4±1mm, a mean length of 22±5mm and its mean mass was 0.22±0.19g. The subsequent histological analysis of all specimens showed features of smooth muscle tissue: long, spindle-like cells with a centrally located cell nucleus (hematoxylin-eosin staining) which were innervated by tyrosine-hydroxylase immunopositive adrenergic fibers. We conclude that precise knowledge on OM might be very helpful not only to students in medicine and dentistry during anatomical dissection courses, but also to head and neck surgeons, ear-nose-throat specialists and neurosurgeons working in this field. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Semiquantitative morphology of human prostatic development and regional distribution of prostatic neuroendocrine cells.

    Science.gov (United States)

    Aumüller, G; Leonhardt, M; Renneberg, H; von Rahden, B; Bjartell, A; Abrahamsson, P A

    2001-02-01

    The neuroendocrine cells of the human prostate have been related to proliferative disorders such as prostatic cancer. Their origin, distribution, and development have therefore been studied and discussed in terms of current stem cell concepts in the prostate. Prostatic tissue specimens (n = 20) from human fetuses (n = 8), prepubertal and pubertal children (n = 8) and mature men (n = 4) were studied immunohistochemically using antibodies directed against neuroendocrine, epithelial as well as secretory markers. Semiquantitative computer-assisted evaluation of different epithelial and stromal components based on stereological principles was performed on azan-stained sections representative of all developmental stages. By the end of gestational Week 9, neuroendocrine (NE) cells appear in the epithelium of the urogenital sinus and are subsequently closely associated with the formation of urethral prostatic buds. The fetal and postnatal distribution pattern of NE cells within the gland is characterized by a relatively constant number of cells per gland similar to prostatic smooth muscle cells. Likewise, a density gradient exists with the highest density in the large collicular ducts and almost no NE cells in subcapsular peripheral acini. In peripheral ducts, the distribution is random. Maturation of the NE cells precedes that of the secretory cells by about 10-16 years. A second prostatic stem cell lineage, different from the urogenital sinus (UGS)-lineage is hypothesized originating from immature neuroendocrine cells. Being morphologically indistinguishable from the UGS-derived prostatic secretory cell lineage, it gives rise to neuroendocrine cells. Their presence is apparently important for proliferation regulation of the UGS-derived lineage of the prostate. Copyright 2001 Wiley-Liss, Inc.

  13. Differential diagnosis of oligodendroglial and astrocytic tumors using imaging results: the added value of perfusion MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jung [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea, Republic of); Seoul St. Mary' s Hospital, The Catholic University of Korea, Department of Radiology, College of Medicine, Seoul (Korea, Republic of); Ahn, Kook Jin; Lee, Song; Jang, Jin Hee; Choi, Hyun Seok; Jung, So Lyung; Kim, Bum Soo [Seoul St. Mary' s Hospital, The Catholic University of Korea, Department of Radiology, College of Medicine, Seoul (Korea, Republic of); Jeun, Shin Soo; Hong, Yong Kil [Seoul St. Mary' s Hospital, The Catholic University of Korea, Department of Neurosurgery, College of Medicine, Seoul (Korea, Republic of)

    2017-07-15

    The purposes of the present study are to assess whether different characteristics of oligodendrogliomas and astrocytic tumors are visible on MR imaging and to determine the added value of perfusion imaging in conventional MR imaging when differentiating oligodendrogliomas from astrocytic tumors. We retrospectively studied 22 oligodendroglioma and 54 astrocytic tumor patients, including glioblastoma multiforme (GBM). The morphological tumor characteristics were evaluated using MR imaging. The rCBV, K{sup trans}, and V{sub e} values were recorded. All imaging and clinical values were compared. The ability to discriminate between the two entities was evaluated using receiver operating characteristic curve analyses. Separate comparison analysis between oligodendroglioma and astrocytic tumors excluding GBM was also performed. The presence of calcification, higher cortex involvement ratio, and lower V{sub e} value were more representative of oligodendrogliomas than astrocytic tumors (P = <0.001, 0.038, and <0.001, respectively). The area under the curve (AUC) value of a combination of calcification and cortex involvement ratio was 0.796. The combination of all three parameters, including V{sub e}, further increased the diagnostic performance (AUC = 0.881). Comparison test of the two AUC areas revealed significant difference (P = 0.0474). The presence of calcification and higher cortex involvement ratio were the only findings suggestive of oligodendrogliomas than astrocytic tumors with exclusion of GBMs (P = 0.014 and <0.001, respectively). Cortex involvement ratio and the presence of calcification with V{sub e} values were diagnostically accurate in identifying oligodendrogliomas. The V{sub e} value calculated from dynamic contrast-enhanced MR imaging could be a supportive tool for differentiating between oligodendrogliomas and astrocytic tumors including GBMs. (orig.)

  14. Regional Susceptibility to Domoic Acid in Primary Astrocyte Cells Cultured from the Brain Stem and Hippocampus

    Directory of Open Access Journals (Sweden)

    Olga M. Pulido

    2008-02-01

    Full Text Available Domoic acid is a marine biotoxin associated with harmful algal blooms and is the causative agent of amnesic shellfish poisoning in marine animals and humans. It is also an excitatory amino acid analog to glutamate and kainic acid which acts through glutamate receptors eliciting a very rapid and potent neurotoxic response. The hippocampus, among other brain regions, has been identified as a specific target site having high sensitivity to DOM toxicity. Histopathology evidence indicates that in addition to neurons, the astrocytes were also injured. Electron microscopy data reported in this study further supports the light microscopy findings. Furthermore, the effect of DOM was confirmed by culturing primary astrocytes from the hippocampus and the brain stem and subsequently exposing them to domoic acid. The RNA was extracted and used for biomarker analysis. The biomarker analysis was done for the early response genes including c-fos, c-jun, c-myc, Hsp-72; specific marker for the astrocytes- GFAP and the glutamate receptors including GluR 2, NMDAR 1, NMDAR 2A and B. Although, the astrocyte-GFAP and c-fos were not affected, c-jun and GluR 2 were down-regulated. The microarray analysis revealed that the chemokines / cytokines, tyrosine kinases (Trk, and apoptotic genes were altered. The chemokines that were up-regulated included - IL1-a, IL-1B, IL-6, the small inducible cytokine, interferon protein IP-10, CXC chemokine LIX, and IGF binding proteins. The Bax, Bcl-2, Trk A and Trk B were all downregulated. Interestingly, only the hippocampal astrocytes were affected. Our findings suggest that astrocytes may present a possible target for pharmacological interventions for the prevention and treatment of amnesic shellfish poisoning and for other brain pathologies involving excitotoxicity

  15. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes.

    Science.gov (United States)

    Lalo, Ulyana; Pankratov, Yuri; Kirchhoff, Frank; North, R Alan; Verkhratsky, Alexei

    2006-03-08

    Chemical transmission between neurons and glial cells is an important element of integration in the CNS. Here, we describe currents activated by NMDA in cortical astrocytes, identified in transgenic mice that express enhanced green fluorescent protein under control of the human glial fibrillary acidic protein promoter. Astrocytes were studied by whole-cell voltage clamp either in slices or after gentle nonenzymatic mechanical dissociation. Acutely isolated astrocytes showed a three-component response to glutamate. The initial rapid component was blocked by 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), which is an antagonist of AMPA receptors (IC50, 2 microM), and the NMDA receptor antagonist D-AP-5 blocked the later sustained component (IC50, 0.6 microM). The third component of glutamate application response was sensitive to D,L-threo-beta-benzyloxyaspartate, a glutamate transporter blocker. Fast application of NMDA evoked concentration-dependent inward currents (EC50, 0.3 microM); these showed use-dependent block by (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801). These NMDA-evoked currents were linearly dependent on membrane potential and were not affected by extracellular magnesium at concentrations up to 10 mM. Electrical stimulation of axons in layer IV-VI induced a complex inward current in astrocytes situated in the cortical layer II, part of which was sensitive to MK-801 at holding potential -80 mV and was not affected by the AMPA glutamate receptor antagonist NBQX. The fast miniature spontaneous currents were observed in cortical astrocytes in slices as well. These currents exhibited both AMPA and NMDA receptor-mediated components. We conclude that cortical astrocytes express functional NMDA receptors that are devoid of Mg2+ block, and these receptors are involved in neuronal-glial signal transmission.

  16. The computational power of astrocyte mediated synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Rogier eMin

    2012-11-01

    Full Text Available Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte-mediated signaling processes described in the literature today, the current challenge is to identify which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  17. New tools for investigating astrocyte-to-neuron communication.

    Science.gov (United States)

    Li, Dongdong; Agulhon, Cendra; Schmidt, Elke; Oheim, Martin; Ropert, Nicole

    2013-10-29

    Gray matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca(2+))-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated. Studying astrocytes in their natural environment is challenging because: (i) astrocytes are electrically silent; (ii) astrocytes and neurons express an overlapping repertoire of transmembrane receptors; (iii) the size of astrocyte processes in contact with synapses are below the resolution of confocal and two-photon microscopes (iv) bulk-loading techniques using fluorescent Ca(2+) indicators lack cellular specificity. In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca(2+) indicators (GECIs), light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: (i) the complexity of astrocyte Ca(2+) signaling revealed by GECIs; (ii) new pharmacogenetic and optogenetic approaches to activate specific Ca(2+) signaling pathways in astrocytes; (iii) classical and new techniques to monitor vesicle fusion in cultured astrocytes; (iv) possible strategies to express specifically reporter genes in astrocytes.

  18. New Tools for Investigating Astrocyte-to-Neuron Communication

    Directory of Open Access Journals (Sweden)

    Dongdong eLi

    2013-10-01

    Full Text Available Grey matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca2+-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated.Studying astrocytes in their natural environment is challenging because: i astrocytes are electrically silent; ii astrocytes and neurons express an overlapping repertoire of transmembrane receptors; iii astrocyte processes in contact with synapses are below confocal and two-photon microscope resolution; iv bulk-loading techniques using fluorescent Ca2+ indicators lack cellular specificity.In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca2+ indicators (GECIs, light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: i the complexity of astrocyte Ca2+ signalling revealed by GECIs; ii new pharmacogenetic and optogenetic approaches to activate specific Ca2+ signalling pathways in astrocytes; iii classical and new techniques to monitor vesicle fusion in cultured astrocytes; iv possible strategies to express specifically reporter genes in astrocytes.

  19. Recent molecular approaches to understanding astrocyte function in vivo

    Directory of Open Access Journals (Sweden)

    David eDavila

    2013-12-01

    Full Text Available Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes - with an emphasis on astrocyte signaling - in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.

  20. ASTROCYTES IN THE NEUROPROTECTION AFTER BRAIN STROKE

    Directory of Open Access Journals (Sweden)

    Gloria Patricia Cardona Gomez

    2015-03-01

    Full Text Available Astrocytes are specialized glial cells of the nervous system, which have multiple homeostatic functions for the survival and maintenance of the neurovascular unit. It has been shown that astrocytes have critical role in the dynamics pro survival conferring neuroprotective, angiogenic, immunomodulatory, neurogenic, antioxidants and regulatory synapse functions (Shen et al 2012; Gimsa et al 2013; Proschel et al 2014; making them excellent candidates as the source of neuroprotection and neurorestauration of tissue affected by events ischemia and / or reperfusion. However, these cells also may be involved in negative responses such as reactive astrocytes and glial scar under chronic excitotoxic responses generated by these events. To know what are the key points in the pro and anti-survival responses of astrocytes, would allow use them as targets in cellular therapies. This review has aim to study the mechanisms for neuroprotection in these cells (Posada-Duque et al submitted, which would make them targets of cell therapy, through of inducing regeneration, such as vehicle for corrective molecular systems and trigger endogenous cellular events that can recover the tissue homeostasis, which is lost after progressive damage.

  1. Fluoxetin Upregulates Connexin 43 Expression in Astrocyte

    Directory of Open Access Journals (Sweden)

    Hossein Mostafavi

    2014-02-01

    Full Text Available Introduction: Recent studies have shown that astrocytes play major roles in normal and disease condition of the central nervous system including multiple sclerosis (MS. Molecular target therapy studies in MS have revealed that connexin-43 (Cx43 and Aquaporin-4 (AQP4 contents of astrocytes undergo expression alteration. Fluoxetine had some effects in MS patients unrelated to its known antidepressant effects. Some of fluoxetine effects were attributed to its capability of cAMP signaling pathway stimulation. This study aimed to investigate possible acute effects of fluoxetine on Cx43 and AQP4 expression in astrocyte.  Methods: Astrocytoma cells were treated for 24 hours with fluoxetine (10 and 20 &mug/ml with or without adenyl cyclase (AC and protein kinase A (PKA inhibition. Cx43 expression at both mRNA and protein levels and AQP4 expression at mRNA level were evaluated.  Results: Acquired results showed that fluoxetine with and without AC and PKA inhibition resulted in Cx43 up-regulation both in mRNA and protein levels, whereas AQP4 expression have not changed.  Discussion: In conclusion, data showed that fluoxetine alone and in the absence of serotonin acutely up-regulated Cx43 expression in astrocytes that can be assumed in molecular target therapy of MS patients. It seems that cAMP involvement in fluoxetine effects need more researches.

  2. Immune Players in the CNS : The Astrocyte

    NARCIS (Netherlands)

    Jensen, Cathy J.; Massie, Ann; De Keyser, Jacques

    In the finely balanced environment of the central nervous system astrocytes, the most numerous cell type, play a role in regulating almost every physiological system. First found to regulate extracellular ions and pH, they have since been shown to regulate neurotransmitter levels, cerebral blood

  3. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  4. Elucidating the Role of Injury-Induced Electric Fields (EFs in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Matthew L Baer

    Full Text Available Injury to the vertebrate central nervous system (CNS induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair.

  5. Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System.

    Science.gov (United States)

    Baer, Matthew L; Henderson, Scott C; Colello, Raymond J

    2015-01-01

    Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair.

  6. RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE IMAGES

    Science.gov (United States)

    RATIONALE A description of lung morphological structure is necessary for modeling the deposition and fate of inhaled therapeutic aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images with the goal of creating a framework for anato...

  7. COMPUTER RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE (MR) IMAGES

    Science.gov (United States)

    A mathematical description of the morphological structure of the lung is necessary for modeling and analysis of the deposition of inhaled aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images, with the goal of creating a frame...

  8. Class I HDAC inhibition is a novel pathway for regulating astrocytic apoE secretion.

    Science.gov (United States)

    Dresselhaus, Erica; Duerr, James M; Vincent, Fabien; Sylvain, Emily K; Beyna, Mercedes; Lanyon, Lorraine F; LaChapelle, Erik; Pettersson, Martin; Bales, Kelly R; Ramaswamy, Gayathri

    2018-01-01

    Despite the important role of apolipoprotein E (apoE) secretion from astrocytes in brain lipid metabolism and the strong association of apoE4, one of the human apoE isoforms, with sporadic and late onset forms of Alzheimer's disease (AD) little is known about the regulation of astrocytic apoE. Utilizing annotated chemical libraries and a phenotypic screening strategy that measured apoE secretion from a human astrocytoma cell line, inhibition of pan class I histone deacetylases (HDACs) was identified as a mechanism to increase apoE secretion. Knocking down select HDAC family members alone or in combination revealed that inhibition of the class I HDAC family was responsible for enhancing apoE secretion. Knocking down LXRα and LXRβ genes revealed that the increase in astrocytic apoE in response to HDAC inhibition occurred via an LXR-independent pathway. Collectively, these data suggest that pan class I HDAC inhibition is a novel pathway for regulating astrocytic apoE secretion.

  9. Control of HIV replication in astrocytes by a family of highly conserved host proteins with a common Rev-interacting domain (Risp).

    Science.gov (United States)

    Vincendeau, Michelle; Kramer, Susanne; Hadian, Kamyar; Rothenaigner, Ina; Bell, Jeanne; Hauck, Stefanie M; Bickel, Christian; Nagel, Daniel; Kremmer, Elisabeth; Werner, Thomas; Leib-Mösch, Christine; Brack-Werner, Ruth

    2010-10-23

    In human astrocytes, restriction of HIV replication involves inhibition of HIV Rev activity. We previously identified a Rev-interacting human protein fragment (16.4.1) that can reduce Rev activity. The 16.4.1 sequence is contained in a group of highly similar host cell proteins, which we call the Risp family. Here we investigate whether the Risp family is connected to HIV replication in astrocytes. Cell/tissue lysates were analyzed for Risp expression by western blot with various anti-Risp antibodies. The interaction of astrocytic Risp members with Rev was investigated by affinity chromatography. Astrocytes were transfected with expression plasmids containing cDNAs encoding full-length Risp or the isolated 16.4.1 region for Risp overexpression or with siRNAs designed for Risp knock-down. Rev activity was investigated with a Rev-reporter assay. RNA levels were quantified by real-time RT-PCR, HIV Gag levels by p24ELISA. Expression of the Risp family was demonstrated in human brain tissues and astrocytes. Astrocytes were shown to produce Risp family members that interact with Rev. Production of HIV Gag proteins and Rev-dependent RNAs in persistently infected astrocytes increased upon Risp knock-down and decreased upon Risp overexpression. Risp knock-down increased Rev activity and raised proportions of Rev proteins in the nucleus of astrocytes. Our results link the Risp family to restriction of HIV production and inhibition of Rev activity in astrocytes. We conclude that the Risp family represents a novel family of host factors that can control HIV replication and may be important for the containment of HIV infection in brain reservoirs.

  10. HIV-1, Methamphetamine and Astrocytes at Neuroinflammatory crossroads

    Directory of Open Access Journals (Sweden)

    Kathleen eBorgmann

    2015-10-01

    Full Text Available As a popular psychostimulant, methamphetamine (METH use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10-15% of human immunodeficiency virus-1 (HIV-1 patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND through direct and indirect mechanisms. Repetitive METH use decreases adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression towards AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte number and activity, cytokine signaling, phagocytic function, and CNS infiltration through the blood brain barrier. Further, METH triggers the neuronal dopamine reward pathway and leads to altered neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation. Neuroinflammation modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress and excitotoxicity. Pathologically, glial activation is a hallmark of both HIV-1 and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, neuroinflammation and HAND are carefully reviewed. Interventions targeting astrocytes in HAND and METH are presented as potential novel therapeutic approaches.

  11. Morphological changes of carotid bodies in acute respiratory distress syndrome: a morphometric study in humans

    Directory of Open Access Journals (Sweden)

    Vinhaes E.N.G.

    2002-01-01

    Full Text Available Carotid bodies are chemoreceptors sensitive to a fall of partial oxygen pressure in blood (hypoxia. The morphological alterations of these organs in patients with chronic obstructive pulmonary disease (COPD and in people living at high altitude are well known. However, it is not known whether the histological profile of human carotid bodies is changed in acute clinical conditions such as acute respiratory distress syndrome (ARDS. The objective of the present study was to perform a quantitative analysis of the histology of carotid bodies collected from patients who died of ARDS. A morphometric study of carotid bodies collected during routine autopsies was carried out on three groups: patients that died of non-respiratory diseases (controls, N = 8, patients that presented COPD and died of its complications or associated diseases (N = 7, and patients that died of ARDS (N = 7. Morphometric measurements of the volume fraction of clusters of chief cells were performed in five fields on each slide at 40X magnification. The numerical proportion of the four main histological cell types (light, dark, progenitor and sustentacular cells was determined analyzing 10 fields on each slide at 400X magnification. The proportion of dark cells was 0.22 in ARDS patients, 0.12 in controls (P<0.001, and 0.08 in the COPD group. The proportion of light cells was 0.33 (ARDS, 0.44 (controls (P<0.001, and 0.36 (COPD. These findings suggest that chronic and acute hypoxia have different effects on the histology of glomic tissue.

  12. Comparison of two different techniques on the human lymphocytes morphology and sensitivity to gamma radiation

    International Nuclear Information System (INIS)

    Kol, R.

    1985-02-01

    The lymphocytes in the peripheral blood are divided into two main subclasses: T cells and B cells. These differ from each other in function and in their sensitivity to radiation. The effort to study which group is more sensitive to radiation has resulted in many contradictory results. In the present study we examined whether the methods that are used to separate the lymphocytes from the whole blood, before their separation into subclasses, have an effect on the cells and whether this might contribute to the contradictory results. Blood samples were taken from several normal donors and each sample was devided into two fractions. Lymphocytes in each fraction were separated by one of the two following methods: a) sedimentation of erythrocytes by gravitation; b) separation on Ficoll-Paque density gradient. For cells obtained by these two methods, the ultrastructure was examined by electron microscopy and their ability to incorporate radioactive thymidine was measured. Samples separated on Ficoll-Paque showed a subpopulation with morphological changes similar to those occuring in lymphocytes undergoing stimulation. Unstimulated cells separated on Ficoll-Paque showed greater sensitivity to radiation. The effect of gamma radiation on the capability of lymphocytes to undergo transformation in response to three mitogens; PHA, PWM and Con A was examined. Different mitogens stimulate different lymphocytes subpopulations. There was no difference between the two separation methods regarding the sensitivity to gamma radiation of stimulation by PAH and PWM. The transformation by Con A of lymphocytes separated on Ficoll-Paque was more radiosensitive. This could indicate that the separation by Ficoll-Paque density gradient causes a selective depletion of T lymphocytes that react with Con A and are considered more radioresistant. The use of different methods for separating lymphocytes from whole blood- each has a different influence on the cells- can contribute to contradictory

  13. Morphologic expression of the left coronary artery in pigs. An approach in relation to human heart

    Directory of Open Access Journals (Sweden)

    Fabian Alejandro Gómez

    2014-04-01

    Full Text Available Introduction: In spite of its importance as an experimental model, the information on the left coronary artery in pigs is sparse. Objective: To determine the morphologic features of the left coronary artery in pigs. Methods: We evaluated 158 pig hearts. The left coronary artery was perfused with synthetic resin after their ostia had been catheterized. Diameters and courses of the vascular beds were measured with an electronic caliper (Mitutoyo(r. Results: The diameter of left coronary artery was 6.98 ± 1.56 mm and its length was 3.51±0.99 mm. It was found to end up by bifurcating itself into the anterior interventricular artery and the circumflex artery in 79% of the cases, and by trifurcating in 21% of the cases, with the presence of the diagonal artery. The anterior interventricular artery ended up at the apex in 79.7% of the cases, and the circumflex artery at the posterior aspect of the left ventricle in 64% of the case, this artery never reached the posterior interventricular sulcus. An anastomosis between the terminal branches of the anterior interventricular artery and the posterior interventricular artery was found in 7.6% of the specimens. The antero-superior branch of the anterior interventricular artery occurred in 89.9% of the hearts. A left marginal branch was observed in 87.9% of the cases with a diameter of 2.25±0.55 mm. Conclusion: Compared with humans, pigs have shorter left coronary artery trunks and branches; even the circumflex artery never reaches the posterior interventricular sulcus. Our findings are useful for the design of experimental hemodynamic and procedural models.

  14. In vivo CHI3L1 (YKL-40 expression in astrocytes in acute and chronic neurological diseases

    Directory of Open Access Journals (Sweden)

    Hamilton Ronald L

    2010-06-01

    Full Text Available Abstract Background CHI3L1 (YKL-40 is up-regulated in a variety of inflammatory conditions and cancers. We have previously reported elevated CHI3L1 concentration in the cerebrospinal fluid (CSF of human and non-human primates with lentiviral encephalitis and using immunohistochemistry showed that CHI3L1 was associated with astrocytes. Methods In the current study CHI3L1 transcription and expression were evaluated in a variety of acute and chronic human neurological diseases. Results ELISA revealed significant elevation of CHI3L1 in the CSF of multiple sclerosis (MS patients as well as mild elevation with aging. In situ hybridization (ISH showed CHI3L1 transcription mostly associated with reactive astrocytes, that was more pronounced in inflammatory conditions like lentiviral encephalitis and MS. Comparison of CHI3L1 expression in different stages of brain infarction showed that YKL40 was abundantly expressed in astrocytes during acute phases and diminished to low levels in chronic infarcts. Conclusions Taken together, these findings demonstrate that CHI3L1 is induced in astrocytes in a variety of neurological diseases but that it is most abundantly associated with astrocytes in regions of inflammatory cells.

  15. Application of morphological and physiological parameters representative of a sample Brazilian population in the human respiratory tract model

    International Nuclear Information System (INIS)

    Reis, A.A.; Cardoso, J.C.S.; Lourenco, M.C.

    2005-01-01

    Full text: The Human Respiratory Tract Model (HRTM) proposed in ICRP Publication 66 account for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. These changing characteristics can influence the rates and the sites of deposition. Concerning the respiratory physiological parameters the breathing characteristics influence the volume, the inhalation rate of air and the portion that enters through the nose and the mouth. These characteristics are important to determine the fractional deposition. The HRTM model uses morphological and physiological parameters from the Caucasian man to establish deposition fractions in the respiratory tract regions. lt is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends for a reliable evaluation of the regional deposition the use of parameters from a local population when information is available. The main purpose of this study is to verify the influence in using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of ICRP Publication 66. The morphological and physiological data were obtained from the literature. The software EXCEL for Windows (version 2000) was used in order to implement the deposition model and also to allow the changes in parameters of interest. Initially, the implemented model was checked using the parameters defined in ICRP and the results of the fraction deposition in the respiratory tract compartments were compared. Finally, morphological and physiological parameters from Brazilian adult male were applied and the fractional deposition calculated. The respiratory values at different levels of activity for ages varying from

  16. Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction.

    Science.gov (United States)

    Pierozan, Paula; Ferreira, Fernanda; de Lima, Bárbara Ortiz; Pessoa-Pureur, Regina

    2015-02-01

    Quinolinic acid (QUIN) is an endogenous metabolite of the kynurenine pathway involved in several neurological disorders. Among the several mechanisms involved in QUIN-mediated toxicity, disruption of the cytoskeleton has been demonstrated in striatally injected rats and in striatal slices. The present work searched for the actions of QUIN in primary striatal neurons. Neurons exposed to 10 µM QUIN presented hyperphosphorylated neurofilament (NF) subunits (NFL, NFM, and NFH). Hyperphosphorylation was abrogated in the presence of protein kinase A and protein kinase C inhibitors H89 (20 μM) and staurosporine (10 nM), respectively, as well as by specific antagonists to N-methyl-D-aspartate (50 µM DL-AP5) and metabotropic glutamate receptor 1 (100 µM MPEP). Also, intra- and extracellular Ca(2+) chelators (10 µM BAPTA-AM and 1 mM EGTA, respectively) and Ca(2+) influx through L-type voltage-dependent Ca(2+) channel (10 µM verapamil) are implicated in QUIN-mediated effects. Cells immunostained for the neuronal markers βIII-tubulin and microtubule-associated protein 2 showed altered neurite/neuron ratios and neurite outgrowth. NF hyperphosphorylation and morphological alterations were totally prevented by conditioned medium from QUIN-treated astrocytes. Cocultured astrocytes and neurons interacted with one another reciprocally, protecting them against QUIN injury. Cocultured cells preserved their cytoskeletal organization and cell morphology together with unaltered activity of the phosphorylating system associated with the cytoskeleton. This article describes cytoskeletal disruption as one of the most relevant actions of QUIN toxicity in striatal neurons in culture with soluble factors secreted by astrocytes, with neuron-astrocyte interaction playing a role in neuroprotection. © 2014 Wiley Periodicals, Inc.

  17. [The morphological changes of Hassall corpuscles of the different maturity in vertebrate animals and human in different stages of age].

    Science.gov (United States)

    Yurchinskij, V Ja

    With the use of methods of light microscopy we produce comparison morphological investigation of Hassall corpuscles of different maturity in animals and human with age difference. It was arranged that quantity and sizes of Hassall corpuscles in different stages of age depend on organization level, belonging to a vital form, shape and age of animal. On the base of our investigation we can make resume about functional role of Hassall corpuscles.

  18. Cytoplasmic vacuolation in cultured rat astrocytes induced by an organophosphorus agent requires extracellular signal-regulated kinase activation

    International Nuclear Information System (INIS)

    Isobe, Ichiro; Maeno, Yoshitaka; Nagao, Masataka; Iwasa, Mineo; Koyama, Hiroyoshi; Seko-Nakamura, Yoshimi; Monma-Ohtaki, Jun

    2003-01-01

    There are various toxic chemicals that cause cell death. However, in certain cases deleterious agents elicit various cellular responses prior to cell death. To determine the cellular mechanisms by which such cellular responses are induced is important, but sufficient attention has not been paid to this issue to date. In this study, we showed the characteristic effects of an organophosphorus (OP) agent, bis(pinacolyl methyl)phosphonate (BPMP), which we synthesized for the study of OP nerve agents, on cultured rat astrocytes. Morphologically, BPMP induced cytoplasmic vacuolation and stellation in the rat astrocytes. Cytoplasmic vacuolation is a cell pathological change observed, for example, in vacuolar degeneration, and stellation has been reported in astrocytic reactions against various stimuli. By pretreatment with cycloheximide, a protein synthesis inhibitor, stellation was inhibited, although vacuolation was not. Cell staining with a mitochondrion-selective dye indicated that the vacuolation probably occurs in the mitochondria that are swollen and vacuolatred in the center. Interestingly, the extracellular signal-regulated kinase (ERK) cascade inhibitor inhibited vacuolation and, to some extent, stellation. These results suggest that the ERK signaling cascade is important for the induction of mitochondrial vacuolation. We expect that a detailed study of these astrocytic reactions will provide us new perspectives regarding the variation and pathological significance of cell morphological changes, such as vacuolar degeneration, and also the mechanisms underlying various neurological disorders

  19. Phospholipase A2 is involved in galactosylsphingosine-induced astrocyte toxicity, neuronal damage and demyelination.

    Directory of Open Access Journals (Sweden)

    Cedric Misslin

    Full Text Available Krabbe disease is a fatal rare inherited lipid storage disorder affecting 1:100,000 births. This illness is caused by mutations in the galc gene encoding for the enzyme galactosylceramidase (GALC. Dysfunction of GALC has been linked to the toxic build-up of the galactolipid, galactosylsphingosine (psychosine, which induces cell death of oligodendrocytes. Previous studies show that phospholipase A2 (PLA2 may play a role in psychosine induce cell death. Here, we demonstrate that non-selective inhibition of cPLA2/sPLA2 and selective inhibition of cPLA2, but not sPLA2, also attenuates psychosine-induced cell death of human astrocytes. This study shows that extracellular calcium is required for psychosine induced cell death, but intracellular calcium release, reactive oxygen species or release of soluble factors are not involved. These findings suggest a cell autonomous effect, at least in human astrocytes. Supporting a role for PLA2 in psychosine-induced cell death of oligodendrocytes and astrocytes, the results show inhibition of PLA2 attenuates psychosine-induced decrease in the expression of astrocyte marker vimentin as well as myelin basic protein (MBP, myelin oligodendrocyte glycoprotein (MOG and the neuronal marker SMI-32 in organotypic slice cultures. These findings provide further mechanistic details of psychosine-induced death of glia and suggest a role for PLA2 in the process. This work also supports the proposal that novel drugs for Krabbe disease may require testing on astrocytes as well as oligodendrocytes for more holistic prediction of pre-clinical and clinical efficacy.

  20. Morphologic study of the effect of iron on pseudocyst formation in Trichomonas vaginalis and its interaction with human epithelial cells.

    Science.gov (United States)

    Dias-Lopes, Geovane; Saboia-Vahia, Leonardo; Margotti, Eliane Trindade; Fernandes, Nilma de Souza; Castro, Cássia Luana de Faria; Oliveira, Francisco Odencio; Peixoto, Juliana Figueiredo; Britto, Constança; Silva, Fernando Costa E; Cuervo, Patricia; Jesus, José Batista de

    2017-10-01

    Trichomonas vaginalis is the aetiological agent of human trichomoniasis, which is one of the most prevalent sexually transmitted diseases in humans. Iron is an important element for the survival of this parasite and the colonisation of the host urogenital tract. In this study, we investigated the effects of iron on parasite proliferation in the dynamics of pseudocyst formation and morphologically characterised iron depletion-induced pseudocysts. We performed structural and ultrastructural analyses using light microscopy, scanning electron microscopy and transmission electron microscopy. It was observed that iron depletion (i) interrupts the proliferation of T. vaginalis, (ii) induces morphological changes in typical multiplicative trophozoites to spherical non-proliferative, non-motile pseudocysts, and (iii) induces the arrest of cell division at different stages of the cell cycle; (iv) iron is the fundamental element for the maintenance of typical trophozoite morphology; (v) pseudocysts induced by iron depletion are viable and reversible forms; and, finally, (vi) we demonstrated that pseudocysts induced by iron depletion are able to interact with human epithelial cells maintaining their spherical forms. Together, these data suggest that pseudocysts could be induced as a response to iron nutritional stress and could have a potential role in the transmission and infection of T. vaginalis.

  1. Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling.

    Science.gov (United States)

    DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2010-12-01

    In this article, we examined theoretically the role of human cerebral glycogen in buffering the metabolic requirement of a 360-second brain stimulation, expanding our previous modeling study of neurometabolic coupling. We found that glycogen synthesis and degradation affects the relative amount of glucose taken up by neurons versus astrocytes. Under conditions of 175:115 mmol/L (∼1.5:1) neuronal versus astrocytic activation-induced Na(+) influx ratio, ∼12% of astrocytic glycogen is mobilized. This results in the rapid increase of intracellular glucose-6-phosphate level on stimulation and nearly 40% mean decrease of glucose flow through hexokinase (HK) in astrocytes via product inhibition. The suppression of astrocytic glucose phosphorylation, in turn, favors the channeling of glucose from interstitium to nearby activated neurons, without a critical effect on the concurrent intercellular lactate trafficking. Under conditions of increased neuronal versus astrocytic activation-induced Na(+) influx ratio to 190:65 mmol/L (∼3:1), glycogen is not significantly degraded and blood glucose is primarily taken up by neurons. These results support a role for astrocytic glycogen in preserving extracellular glucose for neuronal utilization, rather than providing lactate to neurons as is commonly accepted by the current 'thinking paradigm'. This might be critical in subcellular domains during functional conditions associated with fast energetic demands.

  2. Astrocyte mega-domain hypothesis of the autistic savantism.

    Science.gov (United States)

    Mitterauer, Bernhard J

    2013-01-01

    Individuals with autism who show high abilities are called savants. Whereas in their brains a disconnection in and between neural networks has been identified, savantism is yet poorly understood. Focusing on astrocyte domain organization, it is hypothesized that local astrocyte mega-organizations may be responsible for exerting high capabilities in brains of autistic savants. Astrocytes, the dominant glial cell type, modulate synaptic information transmission. Each astrocyte is organized in non-overlapping domains. Formally, each astrocyte contacting n-neurons with m-synapses via its processes generates dynamic domains of synaptic interactions based on qualitative computation criteria, and hereby it structures neuronal information processing. If the number of processes is genetically significantly increased, these astrocytes operate in a mega-domain with a higher complexitiy of computation. From this model savant abilities are deduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Astrocytes in neurodegenerative diseases (I): function and molecular description.

    Science.gov (United States)

    Guillamón-Vivancos, T; Gómez-Pinedo, U; Matías-Guiu, J

    2015-03-01

    Astrocytes have been considered mere supporting cells in the CNS. However, we now know that astrocytes are actively involved in many of the functions of the CNS and may play an important role in neurodegenerative diseases. This article reviews the roles astrocytes play in CNS development and plasticity; control of synaptic transmission; regulation of blood flow, energy, and metabolism; formation of the blood-brain barrier; regulation of the circadian rhythms, lipid metabolism and secretion of lipoproteins; and in neurogenesis. Astrocyte markers and the functions of astrogliosis are also described. Astrocytes play an active role in the CNS. A good knowledge of astrocytes is essential to understanding the mechanisms of neurodegenerative diseases. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  4. Calcium dynamics of cortical astrocytic networks in vivo.

    Directory of Open Access Journals (Sweden)

    Hajime Hirase

    2004-04-01

    Full Text Available Large and long-lasting cytosolic calcium surges in astrocytes have been described in cultured cells and acute slice preparations. The mechanisms that give rise to these calcium events have been extensively studied in vitro. However, their existence and functions in the intact brain are unknown. We have topically applied Fluo-4 AM on the cerebral cortex of anesthetized rats, and imaged cytosolic calcium fluctuation in astrocyte populations of superficial cortical layers in vivo, using two-photon laser scanning microscopy. Spontaneous [Ca(2+](i events in individual astrocytes were similar to those observed in vitro. Coordination of [Ca(2+](i events among astrocytes was indicated by the broad cross-correlograms. Increased neuronal discharge was associated with increased astrocytic [Ca(2+](i activity in individual cells and a robust coordination of [Ca(2+](i signals in neighboring astrocytes. These findings indicate potential neuron-glia communication in the intact brain.

  5. Morphology of the lateral pterygoid muscle associated to the mandibular condyle in the human prenatal stage.

    Science.gov (United States)

    Carranza, Miriam L; Carda, Carmen; Simbrón, Alicia; Quevedo, María C Sánchez; Celaya, Gabriela; de Ferraris, Maria Elsa Gómez

    2006-01-01

    The lateral pterygoid muscle (LPM) inserts at the condyle and the articular disc and plays a central role in mandibular movement via the Temporomandibular Articular Complex. The aim of this study was to examine the association between the morphology of LPM muscular fascicles and the degree of mineralization of the mandibular condyle in the prenatal stage employing structural, ultrastructural and microanalytical evaluation. Sixteen human fetuses at 11-37 weeks of gestation, with no apparent pathology and resulting from spontaneous abortions, were included in the study. Samples from lateral pterygoid muscle and the mandibular condyle were processed for light microscopy and electron microscopy and microanalysis. Desmin immunolabeling (dilution 1: 25 Dako) and alpha sarcomeric actin immunolabeling (dilution 1:50 Dako) employing the avidin-biotin system were used in paraffin embedded samples. Contralateral samples were examine by transmission electron microscopy. Four condyles (at 17-21 weeks of gestation) were used to measure the relative content of calcium and phosphorous employing the X-ray diffraction microanalytical technique. At 11-16 weeks of gestation, the LPM was composed of secondary myotubes associated to satellite cells and nerve fibers. At 18 weeks, the muscle exhibited multiple compact fascicles and the condyle showed a thin, external, subperiostal mineralized layer with few central bone spicules. At 20 weeks, at the site of insertion of the LPM, the bone trabeculae of the condyle contained an electrondense matrix with abundant mineralization nuclei. At 17-21 weeks of gestation no significant variations in the contents of phosphorous and calcium were observed. At 24 weeks, transmission electron calcium and microscopy studies revealed a marked increase in the functional units of the muscle fascicles. Also, at this age muscle fibers exhibited differences in the expression of desmin and alpha sarcomeric actin. At 37 weeks the muscle became multipennate in

  6. Astrocyte-neuronal interactions in epileptogenesis.

    Science.gov (United States)

    Hadera, Mussie Ghezu; Eloqayli, Haytham; Jaradat, Saied; Nehlig, Astrid; Sonnewald, Ursula

    2015-07-01

    Pentylenetetrazol, kainic acid, or pilocarpine can be used to induce seizures in animal models of epilepsy. The present Review describes disturbances in astrocyte-neuron interactions in the acute, latent, and chronic phases analyzed by magnetic resonance spectroscopy of brain tissue extracts from rats injected with [1-(13)C]glucose and [1,2-(13)C]acetate. The most consistent change after onset of seizures was the decrease in (13)C labeling of glutamate (GLU) from [1-(13) C]glucose regardless of brain area, severity, or duration of the period with seizures and toxin used. In most cases this decrease was accompanied by a reduction in glutamine (GLN) labeling from [1-(13)C]glucose, presumably as a direct consequence of the reduction in labeling of GLU and the GLU-GLN cycle. Amounts of GLN were never changed. Reduction in the content of N-acetyl aspartate (NAA) was first detectable some time after status epilepticus but before the occurrence of spontaneous seizures. This decrease can be an indication of neuronal death and/or mitochondrial impairment and might indicate beginning gliosis. It is known that gliosis occurs in the chronic phase of temporal lobe epilepsy in hippocampus, but astrocyte metabolism appears normal in this phase, indicating that the gliotic astrocytes have a somewhat reduced metabolism per volume. A decrease in (13)C labeling of GLU from [1-(13)C]glucose is a very sensitive measure for the onset of epileptogenesis, whereas reduction of NAA is first detectable later. In the chronic phases of the hippocampal formation, astrocyte metabolism is upregulated given that the number of neurons is reduced. © 2015 Wiley Periodicals, Inc.

  7. Signaling triggered by Thy-1 interaction with ß3 integrin on astrocytes is an essential step towards unraveling neuronal Thy-1 function

    Directory of Open Access Journals (Sweden)

    ANA MARIA AVALOS

    2002-01-01

    Full Text Available Thy-1 is an abundant neuronal glycoprotein in mammals. Despite such prevalence, Thy-1 function remains largely obscure in the absence of a defined ligand. Recently described evidence that Thy-1 interacts with ß3 integrin on astrocytes will be discussed. Thy-1 binding to ß3 integrin triggers tyrosine phosphorylation of focal adhesion proteins in astrocytes, thereby promoting focal adhesion formation, cell attachment and spreading. Thy-1 has been reported to modulate neurite outgrowth by triggering a cellular response in neurons. However, our data indicate that Thy-1 can also initiate signaling events that promote adhesion of adjacent astrocytes to the underlying surface. Preliminary results suggest that morphological changes observed in the actin cytoskeleton of astrocytes as a consequence of Thy-1 binding is mediated by small GTPases from the Rho family. Our findings argue that Thy-1 functions in a bimodal fashion, as a receptor on neuronal cells and as a ligand for ß3 integrin receptor on astrocytes. Since Thy-1 is implicated in the inhibition of neurite outgrowth, signaling events in astrocytes are likely to play an important role in this process

  8. Quality of human spermatozoa: relationship between high-magnification sperm morphology and DNA integrity.

    Science.gov (United States)

    Maettner, R; Sterzik, K; Isachenko, V; Strehler, E; Rahimi, G; Alabart, J L; Sánchez, R; Mallmann, P; Isachenko, E

    2014-06-01

    The aim of this work is to establish the relationship between the morphology of Intracytoplasmic Morphologically Selected Sperm Injection (IMSI)-selected spermatozoa and their DNA integrity. The 45 ejaculates were randomly distributed into three treatment groups: normozoospermic, oligoasthenozoospermic and oligoasthenotheratozoospermic samples. The evaluation of DNA integrity was performed using the sperm chromatin dispersion test. It was established that DNA integrity of spermatozoa is strongly dependent on ejaculate quality (P count of spermatozoa with nonfragmented DNA in normozoospermic samples was high and independent from IMSI-morphological classes (Class 1 versus Class 3, respectively) (P > 0.1). With decreased ejaculate quality, the percentage of spermatozoa with nonfragmented DNA decreased significantly (P < 0.05) independent from morphological class. Nevertheless, the rate of IMSI-selected spermatozoa with fragmented DNA within of Class 1 in normozoospermic (Group 1), in oligoasthenozoospermic (Group 2) and in oligoasthenotheratozoospermic (Group 3) samples was 21.1%, 31.8% and 54.1%, respectively. In conclusion, there is a direct relationship between morphological parameters of spermatozoa and their DNA integrity. However, the IMSI technique alone is not enough for the selection of spermatozoa with intact nuclei. © 2013 Blackwell Verlag GmbH.

  9. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply

    Directory of Open Access Journals (Sweden)

    Jillian L Stobart

    2013-04-01

    Full Text Available Dynamic adjustments to neuronal energy supply in response to synaptic activity are critical for neuronal function. Glial cells known as astrocytes have processes that ensheath most central synapses and express G-protein-coupled neurotransmitter receptors and transporters that respond to neuronal activity. Astrocytes also release substrates for neuronal oxidative phosphorylation and have processes that terminate on the surface of brain arterioles and can influence vascular smooth muscle tone and local blood flow. Membrane receptor or transporter-mediated effects of glutamate represent a convergence point of astrocyte influence on neuronal bioenergetics. Astrocytic glutamate uptake drives glycolysis and subsequent shuttling of lactate from astrocytes to neurons for oxidative metabolism. Astrocytes also convert synaptically reclaimed glutamate to glutamine, which is returned to neurons for glutamate salvage or oxidation. Finally, astrocytes store brain energy currency in the form of glycogen, which can be mobilized to produce lactate for neuronal oxidative phosphorylation in response to glutamatergic neurotransmission. These mechanisms couple synaptically-driven astrocytic responses to glutamate with release of energy substrates back to neurons to match demand with supply. In addition, astrocytes directly influence the tone of penetrating brain arterioles in response to glutamatergic neurotransmission, coordinating dynamic regulation of local blood flow. We will describe the role of astrocytes in neurometabolic and neurovascular coupling in detail and discuss, in turn, how astrocyte dysfunction may contribute to neuronal bioenergetic deficit and neurodegeneration. Understanding the role of astrocytes as a hub for neurometabolic and neurovascular coupling mechanisms is a critical underpinning for therapeutic development in a broad range of neurodegenerative disorders characterized by chronic generalized brain ischemia and brain microvascular

  10. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways...

  11. Neuron-astrocyte signaling is preserved in the aging brain.

    Science.gov (United States)

    Gómez-Gonzalo, Marta; Martin-Fernandez, Mario; Martínez-Murillo, Ricardo; Mederos, Sara; Hernández-Vivanco, Alicia; Jamison, Stephanie; Fernandez, Ana P; Serrano, Julia; Calero, Pilar; Futch, Hunter S; Corpas, Rubén; Sanfeliu, Coral; Perea, Gertrudis; Araque, Alfonso

    2017-04-01

    Astrocytes play crucial roles in brain homeostasis and are emerging as regulatory elements of neuronal and synaptic physiology by responding to neurotransmitters with Ca 2+ elevations and releasing gliotransmitters that activate neuronal receptors. Aging involves neuronal and astrocytic alterations, being considered risk factor for neurodegenerative diseases. Most evidence of the astrocyte-neuron signaling is derived from studies with young animals; however, the features of astrocyte-neuron signaling in adult and aging brain remain largely unknown. We have investigated the existence and properties of astrocyte-neuron signaling in physiologically and pathologically aging mouse hippocampal and cortical slices at different lifetime points (0.5 to 20 month-old animals). We found that astrocytes preserved their ability to express spontaneous and neurotransmitter-dependent intracellular Ca 2+ signals from juvenile to aging brains. Likewise, resting levels of gliotransmission, assessed by neuronal NMDAR activation by glutamate released from astrocytes, were largely preserved with similar properties in all tested age groups, but DHPG-induced gliotransmission was reduced in aged mice. In contrast, gliotransmission was enhanced in the APP/PS1 mouse model of Alzheimer's disease, indicating a dysregulation of astrocyte-neuron signaling in pathological conditions. Disruption of the astrocytic IP 3 R2 mediated-signaling, which is required for neurotransmitter-induced astrocyte Ca 2+ signals and gliotransmission, boosted the progression of amyloid plaque deposits and synaptic plasticity impairments in APP/PS1 mice at early stages of the disease. Therefore, astrocyte-neuron interaction is a fundamental signaling, largely conserved in the adult and aging brain of healthy animals, but it is altered in Alzheimer's disease, suggesting that dysfunctions of astrocyte Ca 2+ physiology may contribute to this neurodegenerative disease. GLIA 2017 GLIA 2017;65:569-580. © 2017 Wiley

  12. Fisetin regulates astrocyte migration and proliferation in vitro

    OpenAIRE

    Wang, Nan; Yao, Fang; Li, Ke; Zhang, Lanlan; Yin, Guo; Du, Mingjun; Wu, Bingyi

    2017-01-01

    Fisetin (3,3?,4?,7-tetrahydroxyflavone) is a plant flavonol found in fruits and vegetables that has been reported to inhibit migration and proliferation in several types of cancer. Reactive astrogliosis involves astrocyte migration and proliferation, and contributes to the formation of glial scars in central nervous system (CNS) disorders. However, the effect of fisetin on the migration and proliferation of astrocytes remains unclear. In this study, we found that fisetin inhibited astrocyte m...

  13. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  14. Subcellular location of astrocytic calcium stores favors extrasynaptic neuron-astrocyte communication.

    Science.gov (United States)

    Patrushev, Ilya; Gavrilov, Nikolay; Turlapov, Vadim; Semyanov, Alexey

    2013-11-01

    Neuron-astrocyte interactions are important for brain computations and synaptic plasticity. Perisynaptic astrocytic processes (PAPs) contain a high density of transporters that are responsible for neurotransmitter clearance. Metabotropic glutamate receptors are thought to trigger Ca(2+) release from Ca(2+) stores in PAPs in response to synaptic activity. Our ultrastructural study revealed that PAPs are actually devoid of Ca(2+) stores and have a high surface-to-volume ratio favorable for uptake. Astrocytic processes containing Ca(2+) stores were located further away from the synapses and could therefore respond to changes in ambient glutamate. Thus, the anatomic data do not support communication involving Ca(2+) stores in tripartite synapses, but rather point to extrasynaptic communication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Immune and inflammatory responses in the CNS : Modulation by astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; aschner, michael; hidalgo, juan

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating...... the communication between hematogenous cells and resident cells of the central nervous system (CNS). This review will address (1) the functions of astrocytes in the normal brain and (2) their role in surveying noxious stimuli within the brain, with particular emphasis on astrocytic responses to damage or disease...

  16. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke

    Science.gov (United States)

    Liu, Zhongwu; Chopp, Michael

    2015-01-01

    Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke. PMID:26455456

  17. A phase plane analysis of neuron-astrocyte interactions.

    Science.gov (United States)

    Amiri, Mahmood; Montaseri, Ghazal; Bahrami, Fariba

    2013-08-01

    Intensive experimental studies have shown that astrocytes are active partners in modulation of synaptic transmission. In the present research, we study neuron-astrocyte signaling using a biologically inspired model of one neuron synapsing one astrocyte. In this model, the firing dynamics of the neuron is described by the Morris-Lecar model and the Ca(2+) dynamics of a single astrocyte explained by a functional model introduced by Postnov and colleagues. Using the coupled neuron-astrocyte model and based on the results of the phase plane analyses, it is demonstrated that the astrocyte is able to activate the silent neuron or change the neuron spiking frequency through bidirectional communication. This suggests that astrocyte feedback signaling is capable of modulating spike transmission frequency by changing neuron spiking frequency. This effect is described by a saddle-node on invariant circle bifurcation in the coupled neuron-astrocyte model. In this way, our results suggest that the neuron-astrocyte crosstalk has a fundamental role in producing diverse neuronal activities and therefore enhances the information processing capabilities of the brain. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. The multi-dimensional roles of astrocytes in ALS.

    Science.gov (United States)

    Yamanaka, Koji; Komine, Okiru

    2018-01-01

    Despite significant progress in understanding the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons, the precise and comprehensive pathomechanisms remain largely unknown. In addition to motor neuron involvement, recent studies using cellular and animal models of ALS indicate that there is a complex interplay between motor neurons and neighboring non-neuronal cells, such as astrocytes, in non-cell autonomous neurodegeneration. Astrocytes are key homeostatic cells that play numerous supportive roles in maintaining the brain environment. In neurodegenerative diseases such as ALS, astrocytes change their shape and molecular expression patterns and are referred to as reactive or activated astrocytes. Reactive astrocytes in ALS lose their beneficial functions and gain detrimental roles. In addition, interactions between motor neurons and astrocytes are impaired in ALS. In this review, we summarize growing evidence that astrocytes are critically involved in the survival and demise of motor neurons through several key molecules and cascades in astrocytes in both sporadic and inherited ALS. These observations strongly suggest that astrocytes have multi-dimensional roles in disease and are a viable therapeutic target for ALS. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. [The morphology of the causative agent of human diphyllobothriasis in the Far East].

    Science.gov (United States)

    Dovgalev, A S; Valovaia, M A; Piskunova, Iu A; Romanenko, N A; Khodakova, V I; Artamoshin, A S

    1991-01-01

    The morphology of types F, A, C plerocercoids, and mature Diphyllobothriidae of the Far Eastern populations (USSR) was studied by using scanning electron microscopy. New data were obtained on structure the skin muscular sac of plerocercoids type F (presence of tegumental microvilli, multi poly-layer of longitudinal subtegumental musculature, and variation of quantity of muscular filaments along strobila. The morphological identity of mature Diphyllobothriidae from the volunteer (self-infection of plerocercoid "type F"), infested men and seagulls from focuses of diphyllobothriasis in the Pacific Ocean regions in the Far East of the USSR was proved.

  20. Root canal morphology of Chalcolithic and early bronze age human populations of El Mirador Cave (Sierra de Atapuerca, Spain).

    Science.gov (United States)

    Ceperuelo, Dolors; Lozano, Marina; Duran-Sindreu, Fernando; Mercadé, Montse

    2014-12-01

    This study provides a morphological characterization of the inner anatomy of the root canals of permanent first and second molars in Chalcolithic and early Bronze Age human fossils using cone-beam computed tomography. The general evolutionary trend in present-day human dentition is related to morphological simplification. As little is known about when this trend appeared in Homo sapiens populations, the aim of this work is to test the presence of modern radicular morphology 4,400 years ago. Fifty-four permanent first and second maxillary and mandibular molars of 17 individuals were included in the study. All maxillary first and second molars showed three separate roots. Almost all the lower molars analyzed (100% of first molars and 75% of second molars) had two separate roots. More differences in the canal system configuration were documented in the maxillary mesiobuccal roots than in the palatal or distobuccal roots. The most variable tooth in root and canal configuration is the maxillary second molar. It should be pointed out that 12.5% of the teeth analyzed showed a C-shaped root configuration. © 2014 Wiley Periodicals, Inc.

  1. A comparative study of different bleaching agents on the morphology of human enamel: an in vitro SEM study.

    Science.gov (United States)

    Uthappa, Roshan; Suprith, M L; Bhandary, Shreetha; Dash, Sumit

    2012-11-01

    The purpose of the study was to compare two different commercial bleaching agents, Opalescence with Colgate Platinum, and 30% phosphoric acid used as aggressive agent on the morphology of human enamel. Ten freshly extracted, noncarious, human maxillary central incisors extracted for periodontal reasons were used in this study. The labial surface of the disinfected teeth were polished using a polishing paste with the help of rubber cup and a slow speed handpiece. Each tooth was sectioned at cement-enamel junction and the crown was separated into four specimens, all taken from labial surface. Group 1 was treated with Colgate Platinum for 7 hours, group 2 with Opalescence for 7 hours, group 3 was treated with 30% phosphoric acid for 30 seconds and group 4 was untreated and used as control. After the treatment period, the specimens were washed with normal saline and stored in sterile bottle and sealed. Photomicrographs obtained from the scanning electron microscopy (SEM) after surface treatments were examined for no alteration, slight alteration, moderate alteration and severe alterations. The specimens treated with commercial bleaching agents revealed no enamel surface morphologic alterations compared to control group. The specimen treated with phosphoric acid showed severe alterations. Ten percent carbamide peroxide evaluated in this study does not etch tooth enamel or alter enamel surface morphology as do conventional etching techniques. Carbamine peroxide is a safe and effective tooth whitening agent even when used for extended period of time. The enamel surface remains smooth which reduces caries due to plaque collection.

  2. Different Levels of DNA Methylation Detected in Human Sperms after Morphological Selection Using High Magnification Microscopy

    Directory of Open Access Journals (Sweden)

    Nino Guy Cassuto

    2016-01-01

    Full Text Available Objective. To analyze DNA methylation levels between two groups of spermatozoa taken from the same sample, following morphological selection by high magnification (HM at 6100x microscopy. A prospective study was conducted and studied 876 spermatozoa from 10 randomly selected men. Sperm morphology was characterized at HM according to criteria previously established. High-scoring Score 6 and low-scoring Score 0 sperm were selected. Sperm DNA methylation level was assessed using an immunoassay method targeting 5-methylcytosine residues by fluorescence microscopy with imaging analysis system to detect DNA methylation in single spermatozoon. Results. In total, 448 S6 spermatozoa and 428 S0 spermatozoa were analyzed. A strong relationship was found between sperm DNA methylation levels and sperm morphology observed at HM. Sperm DNA methylation level in the S6 group was significantly lower compared with that in the S0 group (p<10-6, OR = 2.4; and p<0.001, as determined using the Wilcoxon test. Conclusion. Differences in DNA methylation levels are associated with sperm morphology variations as observed at HM, which allows spermatozoa with abnormal levels to be discarded and ultimately decrease birth defects, malformations, and epigenetic diseases that may be transmitted from sperm to offspring in ICSI.

  3. Morphology of the human atrioventricular node is age dependent: a feature of potential clinical significance

    NARCIS (Netherlands)

    Waki, K.; Kim, J. S.; Becker, A. E.

    2000-01-01

    Advances in catheter ablation procedures have created the need to understand better the morphology of the AV node (AVN), particularly as it relates to age. This study was based on 40 normally structured hearts obtained at autopsy from patients without a history of tachyarrhythmia in the following

  4. Human Mesenchymal Stem Cell Morphology and Migration on Micro-Textured Titanium

    Directory of Open Access Journals (Sweden)

    Brittany eBanik

    2016-05-01

    Full Text Available The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that micro-textured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 hours, rate and directionality of migration 6 to 18 hours post seeding, differentiation markers at 10 days, and the long term morphology of MSCs at 7 days, on micro-textured, acid-etched titanium (Endoskeleton, smooth titanium, and smooth PEEK surfaces. The results demonstrate in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts.

  5. Morphology of Design of Aerospace Systems with Inclusion of Human Factors

    Science.gov (United States)

    1977-08-01

    Visual Indicators," Human Factors, 1971, 13(5), pp. 427-433. 22. Mayer, Sylvia R., "Trends in Human Factors Research for Military Information Systems...34The Standardi- zation of Human Factors Data," Human Factors, 1970, 12(1), pp. 55-62. 29. Plath , D.W., "Th’ Readability of Segmented and Con... Sylvia R., "Trends in Human Factors Research for Military Information Systems," Human Factors, 1970, 12(2), pp. 177-186. 35. Meister, David, Dennis 3

  6. A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models.

    Science.gov (United States)

    Tyzack, Giulia E; Hall, Claire E; Sibley, Christopher R; Cymes, Tomasz; Forostyak, Serhiy; Carlino, Giulia; Meyer, Ione F; Schiavo, Giampietro; Zhang, Su-Chun; Gibbons, George M; Newcombe, Jia; Patani, Rickie; Lakatos, András

    2017-10-27

    Astrocyte responses to neuronal injury may be beneficial or detrimental to neuronal recovery, but the mechanisms that determine these different responses are poorly understood. Here we show that ephrin type-B receptor 1 (EphB1) is upregulated in injured motor neurons, which in turn can activate astrocytes through ephrin-B1-mediated stimulation of signal transducer and activator of transcription-3 (STAT3). Transcriptional analysis shows that EphB1 induces a protective and anti-inflammatory signature in astrocytes, partially linked to the STAT3 network. This is distinct from the response evoked by interleukin (IL)-6 that is known to induce both pro inflammatory and anti-inflammatory processes. Finally, we demonstrate that the EphB1-ephrin-B1 pathway is disrupted in human stem cell derived astrocyte and mouse models of amyotrophic lateral sclerosis (ALS). Our work identifies an early neuronal help-me signal that activates a neuroprotective astrocytic response, which fails in ALS, and therefore represents an attractive therapeutic target.

  7. Liposomal clodronate selectively eliminates microglia from primary astrocyte cultures

    Directory of Open Access Journals (Sweden)

    Kumamaru Hiromi

    2012-05-01

    Full Text Available Abstract Background There is increasing interest in astrocyte biology because astrocytes have been demonstrated to play prominent roles in physiological and pathological conditions of the central nervous system, including neuroinflammation. To understand astrocyte biology, primary astrocyte cultures are most commonly used because of the direct accessibility of astrocytes in this system. However, this advantage can be hindered by microglial contamination. Although several authors have warned regarding microglial contamination in this system, complete microglial elimination has never been achieved. Methods The number and proliferative potential of contaminating microglia in primary astrocyte cultures were quantitatively assessed by immunocytologic and flow cytometric analyses. To examine the utility of clodronate for microglial elimination, primary astrocyte cultures or MG-5 cells were exposed to liposomal or free clodronate, and then immunocytologic, flow cytometric, and gene expression analyses were performed. The gene expression profiles of microglia-eliminated and microglia-contaminated cultures were compared after interleukin-6 (IL-6 stimulation. Results The percentage of contaminating microglia exceeded 15% and continued to increase because of their high proliferative activity in conventional primary astrocyte cultures. These contaminating microglia were selectively eliminated low concentration of liposomal clodronate. Although primary microglia and MG-5 cells were killed by both liposomal and free clodronate, free clodronate significantly affected the viability of astrocytes. In contrast, liposomal clodronate selectively eliminated microglia without affecting the viability, proliferation or activation of astrocytes. The efficacy of liposomal clodronate was much higher than that of previously reported methods used for decreasing microglial contamination. Furthermore, we observed rapid tumor necrosis factor-α and IL-1b gene induction in

  8. The Endo-Lysosomal System of Brain Endothelial Cells Is Influenced by Astrocytes In Vitro.

    Science.gov (United States)

    Toth, Andrea E; Siupka, Piotr; P Augustine, Thomas J; Venø, Susanne T; Thomsen, Louiza B; Moos, Torben; Lohi, Hannes T; Madsen, Peder; Lykke-Hartmann, Karin; Nielsen, Morten S

    2018-03-20

    Receptor- and adsorptive-mediated transport through brain endothelial cells (BEC) of the blood-brain barrier (BBB) involves a complex array of subcellular vesicular structures, the endo-lysosomal system. It consists of several types of vesicles, such as early, recycling, and late endosomes, retromer-positive structures, and lysosomes. Since this system is important for receptor-mediated transcytosis of drugs across brain capillaries, our aim was to characterise the endo-lysosomal system in BEC with emphasis on their interactions with astrocytes. We used primary porcine BEC in monoculture and in co-culture with primary rat astrocytes. The presence of astrocytes changed the intraendothelial vesicular network and significantly impacted vesicular number, morphology, and distribution. Additionally, gene set enrichment analysis revealed that 60 genes associated with vesicular trafficking showed altered expression in co-cultured BEC. Cytosolic proteins involved in subcellular trafficking were investigated to mark transport routes, such as RAB25 for transcytosis. Strikingly, the adaptor protein called AP1-μ1B, important for basolateral sorting in epithelial cells, was not expressed in BEC. Altogether, our data pin-point unique features of BEC trafficking network, essentially mapping the endo-lysosomal system of in vitro BBB models. Consequently, our findings constitute a valuable basis for planning the optimal route across the BBB when advancing drug delivery to the brain.

  9. Abundance of Flt3 and its ligand in astrocytic tumors

    Directory of Open Access Journals (Sweden)

    Eßbach C

    2013-05-01

    Full Text Available C Eßbach,1 N Andrae,1 D Pachow,1 J-P Warnke,2 A Wilisch-Neumann,1 E Kirches,1 C Mawrin11Department of Neuropathology, Otto-von-Guericke University, Magdeburg, 2Department of Neurosurgery, Paracelsus Hospital, Zwickau, GermanyBackground: Molecular targeted therapies for astrocytic tumors are the subject of growing research interest, due to the limited response of these tumors, especially glioblastoma multiforme, to conventional chemotherapeutic regimens. Several of these approaches exploit the inhibition of receptor tyrosine kinases. To date, it has not been elucidated if fms-like tyrosine kinase-3 (Flt3 and its natural ligand (Flt3L are expressed in astrocytic tumors, although some of the clinically intended small-molecule receptor tyrosine kinase inhibitors affect Flt3, while others do not. More importantly, the recent proof of principle for successful stimulation of the immune system against gliomas in preclinical models via local Flt3L application requires elucidation of this receptor tyrosine kinase pathway in these tumors in more detail. This therapy is based on recruitment of Flt3-positive dendritic cells, but may be corroborated by activity of this signaling pathway in glioma cells.Methods: Receptor and ligand expression was analyzed by real-time polymerase chain reaction in 31 astrocytic tumors (six diffuse and 11 anaplastic astrocytomas, 14 glioblastomas derived from patients of both genders and in glioblastoma cell lines. The two most common activating mutations of the Flt3 gene, ie, internal tandem duplication and D835 point mutation, were assessed by specific polymerase chain reaction.Results: A relatively high abundance of Flt3L mRNA (4%–6% of the reference, β2 microglobulin could be demonstrated in all tumor samples. Flt3 expression could generally be demonstrated by 40 specific polymerase chain reaction cycles and gel electrophoresis in 87% of the tumors, including all grades, although the small quantities of the receptor did

  10. Molecular and Morphological Characterizations of Echinococcus granulosus from Human and Animal Isolates in Kashan, Markazi Province, Iran

    Science.gov (United States)

    ARBABI, Mohsen; PIRESTANI, Majid; DELAVARI, Mahdi; HOOSHYAR, Hossein; ABDOLI, Amir; SARVI, Shahab

    2017-01-01

    Background: One of the most important zoonotic helminths in the world is known as Echinococcus granulosus. Different strains of the E. granulosus have been described based on morphological and molecular characterizations, however, there is limited information regarding the characteristics of the phenotypes and genotypes of E. granulosus in Iran. Methods: The present study was prepared to evaluate the phenotypic and genotypic diversity of E. granulosus isolates collected from human, goat, sheep, and cattle based on 19 standard morphometric parameters and mitochondrial and nuclear genes (CO1, ND1, and ITS1) in Kashan, Markazi Province, Iran during 2013–2014. Results: The biometric analysis for the 19 characters revealed that the 19 morphometric values of cattle isolates were exceptionally higher than human, goat, and sheep isolates (Pgranulosus travels between humans and other intermediate hosts of this parasite in the area study. PMID:28761477

  11. Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions.

    Science.gov (United States)

    Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M; Mariani, John N; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S; John, Gareth R

    2015-06-01

    In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood-brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood-brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood-brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood-brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood-brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood-brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an

  12. Astrocytes and Müller cells changes during retinal degeneration in a transgenic rat model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Laura eFernández-Sánchez

    2015-12-01

    Full Text Available Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer of P23H versus SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.

  13. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  14. Tumor Microenvironment In Experimental Models Of Human Cancer: Morphological Investigational Approaches

    Directory of Open Access Journals (Sweden)

    Lucia Minoli

    2017-05-01

    Discussion and conclusions. Due to the microenvironmental heterogeneity which influence tumor development and biological behavior, a sole quantification is unreliable for characterizing the TME. Considering that, morphological techniques proved to be a valuable approach, allowing the evaluation of the spatial distribution and mutual interaction between the different elements. Additional studies are needed for further investigate the biological significance of spatial distribution of the components of the TME.

  15. Human dental age estimation combining third molar(s) development and tooth morphological age predictors.

    Science.gov (United States)

    Thevissen, P W; Galiti, D; Willems, G

    2012-11-01

    In the subadult age group, third molar development, as well as age-related morphological tooth information can be observed on panoramic radiographs. The aim of present study was to combine, in subadults, panoramic radiographic data based on developmental stages of third molar(s) and morphological measurements from permanent teeth, in order to evaluate its added age-predicting performances. In the age range between 15 and 23 years, 25 gender-specific radiographs were collected within each age category of 1 year. Third molar development was classified and registered according the 10-point staging and scoring technique proposed by Gleiser and Hunt (1955), modified by Köhler (1994). The Kvaal (1995) measuring technique was applied on the indicated teeth from the individuals' left side. Linear regression models with age as response and third molar-scored stages as explanatory variables were developed, and morphological measurements from permanent teeth were added. From the models, determination coefficients (R (2)) and root-mean-square errors (RMSE) were calculated. Maximal-added age information was reported as a 6 % R² increase and a 0.10-year decrease of RMSE. Forensic dental age estimations on panoramic radiographic data in the subadult group (15-23 year) should only be based on third molar development.

  16. A MORPHOLOGICAL STUDY OF HUMAN THYROID GLAND IN THE POPULATION OF NORTH - EASTERN REGION OF INDIA

    Directory of Open Access Journals (Sweden)

    Debabani

    2015-06-01

    Full Text Available BACKGROUND : Due to the high incidence of thyroid disorders in the North - Eastern population of India a study was undertaken in Guwahati Medical College to see the age related changes in the morphology of the gland in the ca davers of this region. AIM : The study was done to compare the dimensions of the thyroid gland in this population with different studies around the world to see if it can throw any light why thyroid disorders are more common in this population and help clin icians to deal better. MATERIALS AND METHOD : The specimens were divided into three groups according to their ages. Twenty (21 specimens (both male and female were taken from each age group. Statistical analysis was done by paired t - test and t was taken a s significant if the value of t was greater than 2.18. SUMMARY : A study of all together of 63 specimen were taken up to see if any morphological differences in dimension exists in various age groups viz. pediatrics , adults and elderly and co relate with fi ndings of previous workers and was statistically analyzed. CONCLUSION : The study showed that there was no morphological difference of this population with that of previous studies done in other parts of the world. Perhaps a histological study in molecular level will throw more light why this stratum of population is so vulnerable to thyroid disorders.

  17. Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of paclitaxel-induced painful neuropathy

    OpenAIRE

    Zhang, Haijun; Yoon, Seo-Yeon; Zhang, Hongmei; Dougherty, Patrick M.

    2012-01-01

    Paclitaxel often induces persistent painful neuropathy as its most common treatment limiting side effect. Little is known concerning the underlying mechanisms. Given the prominent role of glial cells in many types of neuropathic pain, we investigated here the morphological and functional changes of spinal astrocytes and microglia in a rat model of paclitaxel-induced neuropathy. Immunohistochemistry, western blotting and real-time polymerase chain reaction (rt-PCR) were performed with samples ...

  18. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    International Nuclear Information System (INIS)

    Pierozan, Paula; Ferreira, Fernanda; Ortiz de Lima, Bárbara; Gonçalves Fernandes, Carolina; Totarelli Monteforte, Priscila; Castro Medaglia, Natalia de; Bincoletto, Claudia; Soubhi Smaili, Soraya; Pessoa-Pureur, Regina

    2014-01-01

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to 32 P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca 2+ /calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca 2+ quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca 2+ influx through voltage-dependent Ca 2+ channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative disorders. - Highlights:

  19. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Pierozan, Paula; Ferreira, Fernanda; Ortiz de Lima, Bárbara; Gonçalves Fernandes, Carolina [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003 (Brazil); Totarelli Monteforte, Priscila; Castro Medaglia, Natalia de; Bincoletto, Claudia; Soubhi Smaili, Soraya [Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP (Brazil); Pessoa-Pureur, Regina, E-mail: rpureur@ufrgs.br [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003 (Brazil)

    2014-04-01

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to {sup 32}P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca{sup 2+}/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca{sup 2+} quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca{sup 2+} influx through voltage-dependent Ca{sup 2+} channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative

  20. Controversial Effects of D-Amino Acid Oxidase Activator (DAOA)/G72 on D-Amino Acid Oxidase (DAO) Activity in Human Neuronal, Astrocyte and Kidney Cell Lines: The N-methyl D-aspartate (NMDA) Receptor Hypofunction Point of View.

    Science.gov (United States)

    Jagannath, Vinita; Brotzakis, Zacharias Faidon; Parrinello, Michele; Walitza, Susanne; Grünblatt, Edna

    2017-01-01

    Dysfunction of D-amino acid oxidase ( DAO ) and DAO activator ( DAOA )/ G72 genes have been linked to neuropsychiatric disorders. The glutamate hypothesis of schizophrenia has proposed that increased DAO activity leads to decreased D-serine, which subsequently may lead to N-methyl-D-aspartate (NMDA) receptor hypofunction. It has been shown that DAOA binds to DAO and increases its activity. However, there are also studies showing DAOA decreases DAO activity. Thus, the effect of DAOA on DAO is controversial. We aimed to understand the effect of DAOA on DAO activity in neuron-like (SH-SY5Y), astrocyte-like (1321N1) and kidney-like (HEK293) human cell lines. DAO activity was measured based on the release of hydrogen peroxide and its interaction with Amplex Red reagent. We found that DAOA increases DAO activity only in HEK293 cells, but has no effect on DAO activity in SH-SY5Y and 1321N1 cells. This might be because of different signaling pathways, or due to lower DAO and DAOA expression in SH-SY5Y and 1321N1 cells compared to HEK293 cells, but also due to different compartmentalization of the proteins. The lower DAO and DAOA expression in neuron-like SH-SY5Y and astrocyte-like 1321N1 cells might be due to tightly regulated expression, as previously reported in the human post-mortem brain. Our simulation experiments to demonstrate the interaction between DAOA and human DAO (hDAO) showed that hDAO holoenzyme [hDAO with flavine adenine dinucleotide (FAD)] becomes more flexible and misfolded in the presence of DAOA, whereas DAOA had no effect on hDAO apoprotein (hDAO without FAD), which indicate that DAOA inactivates hDAO holoenzyme. Furthermore, patch-clamp analysis demonstrated no effect of DAOA on NMDA receptor activity in NR1/NR2A HEK293 cells. In summary, the interaction between DAO and DAOA seems to be cell type and its biochemical characteristics dependent which still needs to be elucidated.

  1. Controversial Effects of D-Amino Acid Oxidase Activator (DAOA/G72 on D-Amino Acid Oxidase (DAO Activity in Human Neuronal, Astrocyte and Kidney Cell Lines: The N-methyl D-aspartate (NMDA Receptor Hypofunction Point of View

    Directory of Open Access Journals (Sweden)

    Vinita Jagannath

    2017-10-01

    Full Text Available Dysfunction of D-amino acid oxidase (DAO and DAO activator (DAOA/G72 genes have been linked to neuropsychiatric disorders. The glutamate hypothesis of schizophrenia has proposed that increased DAO activity leads to decreased D-serine, which subsequently may lead to N-methyl-D-aspartate (NMDA receptor hypofunction. It has been shown that DAOA binds to DAO and increases its activity. However, there are also studies showing DAOA decreases DAO activity. Thus, the effect of DAOA on DAO is controversial. We aimed to understand the effect of DAOA on DAO activity in neuron-like (SH-SY5Y, astrocyte-like (1321N1 and kidney-like (HEK293 human cell lines. DAO activity was measured based on the release of hydrogen peroxide and its interaction with Amplex Red reagent. We found that DAOA increases DAO activity only in HEK293 cells, but has no effect on DAO activity in SH-SY5Y and 1321N1 cells. This might be because of different signaling pathways, or due to lower DAO and DAOA expression in SH-SY5Y and 1321N1 cells compared to HEK293 cells, but also due to different compartmentalization of the proteins. The lower DAO and DAOA expression in neuron-like SH-SY5Y and astrocyte-like 1321N1 cells might be due to tightly regulated expression, as previously reported in the human post-mortem brain. Our simulation experiments to demonstrate the interaction between DAOA and human DAO (hDAO showed that hDAO holoenzyme [hDAO with flavine adenine dinucleotide (FAD] becomes more flexible and misfolded in the presence of DAOA, whereas DAOA had no effect on hDAO apoprotein (hDAO without FAD, which indicate that DAOA inactivates hDAO holoenzyme. Furthermore, patch-clamp analysis demonstrated no effect of DAOA on NMDA receptor activity in NR1/NR2A HEK293 cells. In summary, the interaction between DAO and DAOA seems to be cell type and its biochemical characteristics dependent which still needs to be elucidated.

  2. Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes

    Science.gov (United States)

    Hawkins, Simon J.; Crompton, Lucy A.; Sood, Aman; Saunders, Margaret; Boyle, Noreen T.; Buckley, Amy; Minogue, Aedín M.; McComish, Sarah F.; Jiménez-Moreno, Natalia; Cordero-Llana, Oscar; Stathakos, Petros; Gilmore, Catherine E.; Kelly, Stephen; Lane, Jon D.; Case, C. Patrick; Caldwell, Maeve A.

    2018-05-01

    The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.

  3. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells.

    Science.gov (United States)

    Sato, Hiromi; Coburn, Jenifer

    2017-07-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways

  4. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hiromi Sato

    2017-07-01

    Full Text Available Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1 extracellular matrix, 2 intercellular adhesion molecules and cell surface receptors, 3 intracellular proteins, 4 cell-cell junction proteins, and 5 a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or

  5. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells

    Science.gov (United States)

    Sato, Hiromi

    2017-01-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways

  6. Synapse-specific astrocyte gating of amygdala-related behavior.

    Science.gov (United States)

    Martin-Fernandez, Mario; Jamison, Stephanie; Robin, Laurie M; Zhao, Zhe; Martin, Eduardo D; Aguilar, Juan; Benneyworth, Michael A; Marsicano, Giovanni; Araque, Alfonso

    2017-11-01

    The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A 1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A 2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.

  7. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1).

    Science.gov (United States)

    Harlan, Benjamin A; Pehar, Mariana; Sharma, Deep R; Beeson, Gyda; Beeson, Craig C; Vargas, Marcelo R

    2016-05-13

    Nicotinamide adenine dinucleotide (NAD(+)) participates in redox reactions and NAD(+)-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD(+)-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD(+) as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1-7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD(+) salvage pathway capable of resynthesizing NAD(+) from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD(+) levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD(+) salvage pathway in astrocytes. Supplementation with the NAD(+) precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD(+) levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1-2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD(+) salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. © 2016 by The American Society for Biochemistry and Molecular

  8. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1)*

    Science.gov (United States)

    Harlan, Benjamin A.; Pehar, Mariana; Sharma, Deep R.; Beeson, Gyda; Beeson, Craig C.; Vargas, Marcelo R.

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD+) participates in redox reactions and NAD+-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD+-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD+ as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1–7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD+ salvage pathway capable of resynthesizing NAD+ from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD+ levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD+ salvage pathway in astrocytes. Supplementation with the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD+ levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1–2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD+ content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD+ salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. PMID:27002158

  9. Analysis of p53- immunoreactivity in astrocytic brain tumors

    Directory of Open Access Journals (Sweden)

    Shinkarenko T.V.

    2016-12-01

    Full Text Available P53 is an antioncogene with the frequently occured mutations in human tumor cells, leading to corresponding protein overexpression which can be detected by immunohistochemistry. Researches dedicated to the investigation of possibilities of using this technique gave controversial results. The authors investigated features of p53 protein expression in astrocytic brain tumors with different degrees of malignancy. Analyzed the relationship of the expression level of p53 by tumor cells with clinical parameters and Ki-67 proliferation index (PI as well. Tissues were collected from 52 cases with diagnosed astrocytic brain tumors. The sections were immunohistochemically stained with p53 and Ki-67. For each marker, 1000 tumor cells were counted and the ratio of positive tumor cells was calculated using software package ImageJ 1,47v. In normal brain tissue p53- expression was not identified. p53-immunoreactive tumor cells were detected in 25% (1/4 pilocytic astrocytomas, 33.3% (2/6 of diffuse astrocytomas, 53.8% (7/13 anaplastic astrocytomas, 58.6% (17/29 glioblastomas. A high proportion of p53-immunoreactive cells (> 30% was observed only in glioblastomas. The level of p53-imunoreactivity was not related to the age, gender and Grade WHO (p> 0,05. Spearman correlation coefficient between the relative quantity of ki-67- and p53-immunoreactive nuclei showed weak direct correlation (0.023, but the one was not statistically significant (p> 0,05. The level of p53-imunoreactivity is not dependent from age and sex of patients, Grade (WHO and proliferative activity (p>0,05 but the high level of p53-immunoreactive cells (>30% is found in glioblastoma specimens only, that may be due to the accumulation of mutations in DNA of tumor cells. There is insignificant weak relationship between relative quantities of ki-67- and p53-immunoreactive tumor cells (p>0,05.

  10. Computational Models for Calcium-Mediated Astrocyte Functions

    Directory of Open Access Journals (Sweden)

    Tiina Manninen

    2018-04-01

    Full Text Available The computational neuroscience field has heavily concentrated on the modeling of neuronal functions, largely ignoring other brain cells, including one type of glial cell, the astrocytes. Despite the short history of modeling astrocytic functions, we were delighted about the hundreds of models developed so far to study the role of astrocytes, most often in calcium dynamics, synchronization, information transfer, and plasticity in vitro, but also in vascular events, hyperexcitability, and homeostasis. Our goal here is to present the state-of-the-art in computational modeling of astrocytes in order to facilitate better understanding of the functions and dynamics of astrocytes in the brain. Due to the large number of models, we concentrated on a hundred models that include biophysical descriptions for calcium signaling and dynamics in astrocytes. We categorized the models into four groups: single astrocyte models, astrocyte network models, neuron-astrocyte synapse models, and neuron-astrocyte network models to ease their use in future modeling projects. We characterized the models based on which earlier models were used for building the models and which type of biological entities were described in the astrocyte models. Features of the models were compared and contrasted so that similarities and differences were more readily apparent. We discovered that most of the models were basically generated from a small set of previously published models with small variations. However, neither citations to all the previous models with similar core structure nor explanations of what was built on top of the previous models were provided, which made it possible, in some cases, to have the same models published several times without an explicit intention to make new predictions about the roles of astrocytes in brain functions. Furthermore, only a few of the models are available online which makes it difficult to reproduce the simulation results and further develop

  11. Computational Models for Calcium-Mediated Astrocyte Functions.

    Science.gov (United States)

    Manninen, Tiina; Havela, Riikka; Linne, Marja-Leena

    2018-01-01

    The computational neuroscience field has heavily concentrated on the modeling of neuronal functions, largely ignoring other brain cells, including one type of glial cell, the astrocytes. Despite the short history of modeling astrocytic functions, we were delighted about the hundreds of models developed so far to study the role of astrocytes, most often in calcium dynamics, synchronization, information transfer, and plasticity in vitro , but also in vascular events, hyperexcitability, and homeostasis. Our goal here is to present the state-of-the-art in computational modeling of astrocytes in order to facilitate better understanding of the functions and dynamics of astrocytes in the brain. Due to the large number of models, we concentrated on a hundred models that include biophysical descriptions for calcium signaling and dynamics in astrocytes. We categorized the models into four groups: single astrocyte models, astrocyte network models, neuron-astrocyte synapse models, and neuron-astrocyte network models to ease their use in future modeling projects. We characterized the models based on which earlier models were used for building the models and which type of biological entities were described in the astrocyte models. Features of the models were compared and contrasted so that similarities and differences were more readily apparent. We discovered that most of the models were basically generated from a small set of previously published models with small variations. However, neither citations to all the previous models with similar core structure nor explanations of what was built on top of the previous models were provided, which made it possible, in some cases, to have the same models published several times without an explicit intention to make new predictions about the roles of astrocytes in brain functions. Furthermore, only a few of the models are available online which makes it difficult to reproduce the simulation results and further develop the models. Thus

  12. Age and Environment Influences on Mouse Prion Disease Progression: Behavioral Changes and Morphometry and Stereology of Hippocampal Astrocytes

    Directory of Open Access Journals (Sweden)

    J. Bento-Torres

    2017-01-01

    Full Text Available Because enriched environment (EE and exercise increase and aging decreases immune response, we hypothesized that environmental enrichment and aging will, respectively, delay and increase prion disease progression. Mice dorsal striatum received bilateral stereotaxic intracerebral injections of normal or ME7 prion infected mouse brain homogenates. After behavior analysis, animals were euthanized and their brains processed for astrocyte GFAP immunolabeling. Our analysis related to the environmental influence are limited to young adult mice, whereas age influence refers to aged mice raised on standard cages. Burrowing activity began to reduce in ME7-SE two weeks before ME7-EE, while no changes were apparent in ME7 aged mice (ME7-A. Object placement recognition was impaired in ME7-SE, NBH-A, and ME7-A but normal in all other groups. Object identity recognition was impaired in ME7-A. Cluster analysis revealed two morphological families of astrocytes in NBH-SE animals, three in NBH-A and ME7-A, and four in NBH-EE, ME7-SE, and ME7-EE. As compared with control groups, astrocytes from DG and CA3 prion-diseased animals show significant numerical and morphological differences and environmental enrichment did not reverse these changes but induced different morphological changes in GFAP+ hippocampal astroglia. We suggest that environmental enrichment and aging delayed hippocampal-dependent behavioral and neuropathological signs of disease progression.

  13. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  14. Involvement of astrocyte metabolic coupling in Tourette syndrome pathogenesis.

    Science.gov (United States)

    de Leeuw, Christiaan; Goudriaan, Andrea; Smit, August B; Yu, Dongmei; Mathews, Carol A; Scharf, Jeremiah M; Verheijen, Mark H G; Posthuma, Danielle

    2015-11-01

    Tourette syndrome is a heritable neurodevelopmental disorder whose pathophysiology remains unknown. Recent genome-wide association studies suggest that it is a polygenic disorder influenced by many genes of small effect. We tested whether these genes cluster in cellular function by applying gene-set analysis using expert curated sets of brain-expressed genes in the current largest available Tourette syndrome genome-wide association data set, involving 1285 cases and 4964 controls. The gene sets included specific synaptic, astrocytic, oligodendrocyte and microglial functions. We report association of Tourette syndrome with a set of genes involved in astrocyte function, specifically in astrocyte carbohydrate metabolism. This association is driven primarily by a subset of 33 genes involved in glycolysis and glutamate metabolism through which astrocytes support synaptic function. Our results indicate for the first time that the process of astrocyte-neuron metabolic coupling may be an important contributor to Tourette syndrome pathogenesis.

  15. Investigation on the suitable pressure for the preservation of astrocyte

    International Nuclear Information System (INIS)

    Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4 0 C, in an effort to establish the best conditions for the preservation. Survival rate at 4 0 C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4 0 C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4 0 C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  16. An analysis on half century morphological changes in the Changjiang Estuary: Spatial variability under natural processes and human intervention

    Science.gov (United States)

    Zhao, Jie; Guo, Leicheng; He, Qing; Wang, Zheng Bing; van Maren, D. S.; Wang, Xianye

    2018-05-01

    Examination of large scale, alluvial estuarine morphology and associated time evolution is of particular importance regarding management of channel navigability, ecosystem, etc. In this work, we analyze morphological evolution and changes of the channel-shoal system in the Changjiang Estuary, a river- and tide-controlled coastal plain estuary, based on bathymetric data between 1958 and 2016. We see that its channel-shoal pattern is featured by meandering and bifurcated channels persisting over decades. In the vertical direction, hypsometry curves show that the sand bars and shoals are continuously accreted while the deep channels are eroded, leading to narrower and deeper estuarine channels. Intensive human activities in terms of reclamation, embankment, and dredging play a profound role in controlling the decadal morphological evolution by stabilizing coastlines and narrowing channels. Even though, the present Changjiang Estuary is still a pretty wide and shallow system with channel width-to-depth ratios >1000, much larger than usual fluvial rivers and small estuaries. In-depth analysis suggests that the Changjiang Estuary as a whole exhibited an overall deposition trend over 59 years, i.e., a net deposition volume of 8.3 × 108 m3. Spatially, the pan-South Branch was net eroded by 9.7 × 108 m3 whereas the mouth bar zone was net deposited by 18 × 108 m3, suggesting that the mouth bar zone is a major sediment sink. Over time there is no directional deposition or erosion trend in the interval though riverine sediment supply has decreased by 2/3 since the mid-1980s. We infer that the pan-South Branch is more fluvial-controlled therefore its morphology responds to riverine sediment load reduction fast while the mouth bar zone is more controlled by both river and tides that its morphological response lags to riverine sediment supply changes at a time scale >10 years, which is an issue largely ignored in previous studies. We argue that the time lag effect needs

  17. Phagocytic response of astrocytes to damaged neighboring cells.

    Directory of Open Access Journals (Sweden)

    Nicole M Wakida

    Full Text Available This study aims to understand the phagocytic response of astrocytes to the injury of neurons or other astrocytes at the single cell level. Laser nanosurgery was used to damage individual cells in both primary mouse cortical astrocytes and an established astrocyte cell line. In both cases, the release of material/substances from laser-irradiated astrocytes or neurons induced a phagocytic response in near-by astrocytes. Propidium iodide stained DNA originating from irradiated cells was visible in vesicles of neighboring cells, confirming phagocytosis of material from damaged cortical cells. In the presence of an intracellular pH indicator dye, newly formed vesicles correspond to acidic pH fluorescence, thus suggesting lysosome bound degradation of cellular debris. Cells with shared membrane connections prior to laser damage had a significantly higher frequency of induced phagocytosis compared to isolated cells with no shared membrane. The increase in phagocytic response of cells with a shared membrane occurred regardless of the extent of shared membrane (a thin filopodial connection vs. a cell cluster with significant shared membrane. In addition to the presence (or lack of a membrane connection, variation in phagocytic ability was also observed with differences in injury location within the cell and distance separating isolated astrocytes. These results demonstrate the ability of an astrocyte to respond to the damage of a single cell, be it another astrocyte, or a neuron. This single-cell level of analysis results in a better understanding of the role of astrocytes to maintain homeostasis in the CNS, particularly in the sensing and removal of debris in damaged or pathologic nervous tissue.

  18. Neuroinflammation alters voltage-dependent conductance in striatal astrocytes.

    Science.gov (United States)

    Karpuk, Nikolay; Burkovetskaya, Maria; Kielian, Tammy

    2012-07-01

    Neuroinflammation has the capacity to alter normal central nervous system (CNS) homeostasis and function. The objective of the present study was to examine the effects of an inflammatory milieu on the electrophysiological properties of striatal astrocyte subpopulations with a mouse bacterial brain abscess model. Whole cell patch-clamp recordings were performed in striatal glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP)(+) astrocytes neighboring abscesses at postinfection days 3 or 7 in adult mice. Cell input conductance (G(i)) measurements spanning a membrane potential (V(m)) surrounding resting membrane potential (RMP) revealed two prevalent astrocyte subsets. A1 and A2 astrocytes were identified by negative and positive G(i) increments vs. V(m), respectively. A1 and A2 astrocytes displayed significantly different RMP, G(i), and cell membrane capacitance that were influenced by both time after bacterial exposure and astrocyte proximity to the inflammatory site. Specifically, the percentage of A1 astrocytes was decreased immediately surrounding the inflammatory lesion, whereas A2 cells were increased. These changes were particularly evident at postinfection day 7, revealing increased cell numbers with an outward current component. Furthermore, RMP was inversely modified in A1 and A2 astrocytes during neuroinflammation, and resting G(i) was increased from 21 to 30 nS in the latter. In contrast, gap junction communication was significantly decreased in all astrocyte populations associated with inflamed tissues. Collectively, these findings demonstrate the heterogeneity of striatal astrocyte populations, which experience distinct electrophysiological modifications in response to CNS inflammation.

  19. The influence of zygote pronuclear morphology on in vitro human embryo development

    Directory of Open Access Journals (Sweden)

    Lidija Križančić-Bombek

    2007-09-01

    Full Text Available Background: The selection of embryos with largest implantation potential is an important part in assisted reproduction. Besides the embryo or blastocyst morphology, selection criteria such as position and orientation of pronuclei (PN in relation to polar body positioning and the number, size and distribution of nucleolar precursor bodies (NPB have been proposed. In our study, a correlation between PN and NBP morphology with the development of early embryos (day 2 of cultivation and blastocysts (day 5 was investigated.Methods: 653 zygotes from 113 IVF (in vitro fertilization and ICSI (intracytoplasmic sperm injection patients, younger than 40 years, were assessed 18–20 hours post-insemination. Optimal zygotes (Z1 had thouching centrally located PN with equall numbers of alligned NPB. Other zygote types differred from Z1 in having scattered NPB in both PN (Z2 or alligned NPB in one PN (Z3 or in PN beeing distant from one another (Z4. For each zygote type a percentage of normal early embryos and blastocysts was calculated.Results: Among 653 assessed zygotes 21.8 % were Z1; 29.1 % Z2, 34.6 % Z3 and 14.5 % Z4. The percentage of normal early embryos decreased from Z1 to Z4 zygote type (70.4 % vs. 55.3 % vs. 59.7 % vs.45.3 %; p < 0.05 as well as the percentage of developed blastocysts (63.4 % vs. 55.3 % vs. 58.8 % vs. 43.2 %. However, the percentages of optimal blastocysts in the four groups did not differ (11.3 % vs. 11.1 % vs. 8.4 % vs. 6.3 %.Conclusions: Best grade zygotes result in batter early embryo and blastocyst development suggesting that zygote morphology can be used in combination with embryo and/or blastocyst evaluation as a method for embryo selection prior to embryo transfer.

  20. α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading.

    Science.gov (United States)

    Loria, Frida; Vargas, Jessica Y; Bousset, Luc; Syan, Sylvie; Salles, Audrey; Melki, Ronald; Zurzolo, Chiara

    2017-11-01

    Recent evidence suggests that disease progression in Parkinson's disease (PD) could occur by the spreading of α-synuclein (α-syn) aggregates between neurons. Here we studied the role of astrocytes in the intercellular transfer and fate of α-syn fibrils, using in vitro and ex vivo models. α-Syn fibrils can be transferred to neighboring cells; however, the transfer efficiency changes depending on the cell types. We found that α-syn is efficiently transferred from astrocytes to astrocytes and from neurons to astrocytes, but less efficiently from astrocytes to neurons. Interestingly, α-syn puncta are mainly found inside the lysosomal compartments of the recipient cells. However, differently from neurons, astrocytes are able to efficiently degrade fibrillar α-syn, suggesting an active role for these cells in clearing α-syn deposits. Astrocytes co-cultured with organotypic brain slices are able to take up α-syn fibrils from the slices. Altogether our data support a role for astrocytes in trapping and clearing α-syn pathological deposits in PD.

  1. Modulation of mitochondrial morphology by bioenergetics defects in primary human fibroblasts

    DEFF Research Database (Denmark)

    Guillery, O.; Malka, F.; Frachon, P.

    2008-01-01

    induced partial but significant mitochondrial fragmentation, whereas dissipation of mitochondrial membrane potential (D Psi m) provoked complete fragmentation, and glycolysis inhibition had no effect. Oxidative phosphorylation defective fibroblasts had essentially normal filamentous mitochondria under...... basal conditions, although when challenged some of them presented with mild alteration of fission or fusion efficacy. Severely defective cells disclosed complete mitochondrial fragmentation under glycolysis inhibition. In conclusion, mitochondrial morphology is modulated by D Psi m but loosely linked...... to mitochondrial oxidative phosphorylation. Its alteration by glycolysis, inhibition points to a severe oxidative phosphorylation defect. (C) 2008 Elsevier B.V. All rights reserved Udgivelsesdato: 2008/4...

  2. Attachment, Proliferation, and Morphological Properties of Human Dermal Fibroblasts on Ovine Tendon Collagen Scaffolds: A Comparative Study.

    Science.gov (United States)

    Busra, Fauzi Mh; Lokanathan, Yogeswaran; Nadzir, Masrina Mohd; Saim, Aminuddin; Idrus, Ruszymah Bt Hj; Chowdhury, Shiplu Roy

    2017-03-01

    Collagen type I is widely used as a biomaterial for tissue-engineered substitutes. This study aimed to fabricate different three-dimensional (3D) scaffolds using ovine tendon collagen type I (OTC-I), and compare the attachment, proliferation and morphological features of human dermal fibroblasts (HDF) on the scaffolds. This study was conducted between the years 2014 to 2016 at the Tissue Engineering Centre, UKM Medical Centre. OTC-I was extracted from ovine tendon, and fabricated into 3D scaffolds in the form of sponge, hydrogel and film. A polystyrene surface coated with OTC-I was used as the 2D culture condition. Genipin was used to crosslink the OTC-I. A non-coated polystyrene surface was used as a control. The mechanical strength of OTC-I scaffolds was evaluated. Attachment, proliferation and morphological features of HDF were assessed and compared between conditions. The mechanical strength of OTC-I sponge was significantly higher than that of the other scaffolds. OTC-I scaffolds and the coated surface significantly enhanced HDF attachment and proliferation compared to the control, but no differences were observed between the scaffolds and coated surface. In contrast, the morphological features of HDF including spreading, filopodia, lamellipodia and actin cytoskeletal formation differed between conditions. OTC-I can be moulded into various scaffolds that are biocompatible and thus could be suitable as scaffolds for developing tissue substitutes for clinical applications and in vitro tissue models. However, further study is required to determine the effect of morphological properties on the functional and molecular properties of HDF.

  3. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    International Nuclear Information System (INIS)

    Noble, E.P.; Ritchie, T.; de Vellis, J.

    1986-01-01

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca ++ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10 -5 M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with ( 3 H)inositol, and basal ( 3 H) inositol phosphate (IP 1 ) accumulation was measured in the presence of Li + . Epinephrine > norepinephrine (NE) were the most active stimulants of IP 1 production. The α 1 adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP 1 production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP 1 below basal levels and when added together diminished IP 1 accumulation even further. The role of adrenergic stimulation in the production of c-AMP

  4. Thyroid hormone action: Astrocyte-neuron communication.

    Directory of Open Access Journals (Sweden)

    Beatriz eMorte

    2014-05-01

    Full Text Available Thyroid hormone action is exerted mainly through regulation of gene expression by binding of T3 to the nuclear receptors. T4 plays an important role as a source of intracellular T3 in the central nervous system via the action of the type 2 deiodinase, expressed in the astrocytes. A model of T3 availability to neural cells has been proposed and validated. The model contemplates that brain T3 has a double origin: a fraction is available directly from the circulation, and another is produced locally from T4 in the astrocytes by type 2 deiodinase. The fetal brain depends almost entirely on the T3 generated locally. The contribution of systemic T3 increases subsequently during development to account for approximately 50% of total brain T3 in the late postnatal and adult stages. In this article we review the experimental data in support of this model, and how the factors affecting T3 availability in the brain, such as deiodinases and transporters, play a decisive role in modulating local thyroid hormone action during development.

  5. Effects of Calophyllum inophyllum fruit extract on the proliferation and morphological characteristics of human breast cancer cells MCF-7

    Directory of Open Access Journals (Sweden)

    Shanmugapriya

    2016-04-01

    Full Text Available Objective: To evaluate the antiproliferative activity of Calophyllum inophyllum (C. inophyllum fruit extract against human breast cancer cells MCF-7. Methods: The cytotoxic effect of C. inophyllum fruit extract against MCF-7 cancer cells was evaluated through MTT and CyQuant assays for 24 h and the morphological investigation of treated MCF-7 cells was observed under optical microscope using Giemsa staining. Results: The cytotoxic effect of C. inophyllum fruit extract against MCF-7 cancer cells was evaluated through MTT and CyQuant assays simultaneously for 24 h after treatment, which demonstrated the inhibition of cell viability with the IC50 values of 19.63 µg/mL and 27.54 µg/mL, respectively. The preliminary time-based morphological investigation of MCF-7 cells treated with the IC 50 value (23.59 µg/mL of C. inophyllum fruit extract was observed under an optical microscopy via Giemsa staining, which exhibited prominent histological characteristics of apoptosis. Conclusions: This study clearly proved that the proliferation of human breast cancer cell MCF-7 was inhibited by C. inophyllum fruit extract resulted from the induction of apoptosis in MCF-7 cells.

  6. Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zeng Hui-Lan

    2011-08-01

    Full Text Available Abstract Background The therapeutic efficacy of human mesenchymal stem cells (hMSCs for the treatment of hypoxic-ischemic diseases is closely related to level of hypoxia in the damaged tissues. To elucidate the potential therapeutic applications and limitations of hMSCs derived from human umbilical cords, the effects of hypoxia on the morphology and proliferation of hMSCs were analyzed. Results After treatment with DFO and CoCl2, hMSCs were elongated, and adjacent cells were no longer in close contact. In addition, vacuole-like structures were observed within the cytoplasm; the rough endoplasmic reticulum expanded, and expanded ridges were observed in mitochondria. In addition, DFO and CoCl2 treatments for 48 h significantly inhibited hMSCs proliferation in a concentration-dependent manner (P Conclusions The hypoxia-mimetic agents, DFO and CoCl2, alter umbilical cord-derived hMSCs morphology and inhibit their proliferation through influencing the cell cycle.

  7. Localization of oxidized low-density lipoprotein and its relation to plaque morphology in human coronary artery.

    Directory of Open Access Journals (Sweden)

    Yasumi Uchida

    Full Text Available OBJECTIVES: Oxidized low-density lipoprotein (oxLDL plays a key role in the formation of atherosclerotic plaques. However, its localization in human coronary arterial wall is not well understood. The present study was performed to visualize deposition sites and patterns of native oxLDL and their relation to plaque morphology in human coronary artery. METHODS: Evans blue dye (EB elicits a violet fluorescence by excitation at 345-nm and emission at 420-nm, and a reddish-brown fluorescence by excitation at 470-nm and emission at 515-nm characteristic of oxLDL only. Therefore, native oxLDL in excised human coronary artery were investigated by color fluorescent microscopy (CFM using EB as a biomarker. RESULTS: (1 By luminal surface scan with CFM, the % incidence of oxLDL in 38 normal segments, 41 white plaques and 32 yellow plaques that were classified by conventional angioscopy, was respectively 26, 44 and 94, indicating significantly (p<0.05 higher incidence in the latter than the former two groups. Distribution pattern was classified as patchy, diffuse and web-like. Web-like pattern was observed only in yellow plaques with necrotic core. (2 By transected surface scan, oxLDL deposited within superficial layer in normal segments and diffusely within both superficial and deep layers in white and yellow plaques. In yellow plaques with necrotic core, oxLDL deposited not only in the marginal zone of the necrotic core but also in the fibrous cap. CONCLUSION: Taken into consideration of the well-known process of coronary plaque growth, the results suggest that oxLDL begins to deposit in human coronary artery wall before plaque formation and increasingly deposits with plaque growth, exhibiting different deposition sites and patterns depending on morphological changes.

  8. Evidence for heterogeneity of astrocyte de-differentiation in vitro: astrocytes transform into intermediate precursor cells following induction of ACM from scratch-insulted astrocytes.

    Science.gov (United States)

    Yang, Hao; Qian, Xin-Hong; Cong, Rui; Li, Jing-wen; Yao, Qin; Jiao, Xi-Ying; Ju, Gong; You, Si-Wei

    2010-04-01

    Our previous study definitely demonstrated that the mature astrocytes could undergo a de-differentiation process and further transform into pluripotential neural stem cells (NSCs), which might well arise from the effect of diffusible factors released from scratch-insulted astrocytes. However, these neurospheres passaged from one neurosphere-derived from de-differentiated astrocytes possessed a completely distinct characteristic in the differentiation behavior, namely heterogeneity of differentiation. The heterogeneity in cell differentiation has become a crucial but elusive issue. In this study, we show that purified astrocytes could de-differentiate into intermediate precursor cells (IPCs) with addition of scratch-insulted astrocyte-conditioned medium (ACM) to the culture, which can express NG2 and A2B5, the IPCs markers. Apart from the number of NG2(+) and A2B5(+) cells, the percentage of proliferative cells as labeled with BrdU progressively increased with prolonged culture period ranging from 1 to 10 days. Meanwhile, the protein level of A2B5 in cells also increased significantly. These results revealed that not all astrocytes could de-differentiate fully into NSCs directly when induced by ACM, rather they generated intermediate or more restricted precursor cells that might undergo progressive de-differentiation to generate NSCs.

  9. Astrocytic Gap Junctional Communication is Reduced in Amyloid-β-Treated Cultured Astrocytes, but not in Alzheimer's Disease Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Nancy F Cruz

    2010-07-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1-40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  10. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cruz, Nancy F; Ball, Kelly K; Dienel, Gerald A

    2010-08-17

    Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-beta on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β(1-40) (1 μmol/l) for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue), NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  11. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Science.gov (United States)

    Thomsen, Louiza Bohn; Burkhart, Annette; Moos, Torben

    2015-01-01

    In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).

  12. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Directory of Open Access Journals (Sweden)

    Louiza Bohn Thomsen

    Full Text Available In vitro blood-brain barrier (BBB models based on primary brain endothelial cells (BECs cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP and breast cancer related protein (BCRP, and the transferrin receptor.

  13. Morphology of subcortical brain nuclei is associated with autonomic function in healthy humans.

    Science.gov (United States)

    Ruffle, James K; Coen, Steven J; Giampietro, Vincent; Williams, Steven C R; Apkarian, A Vania; Farmer, Adam D; Aziz, Qasim

    2018-01-01

    The autonomic nervous system (ANS) is a brain body interface which serves to maintain homeostasis by influencing a plethora of physiological processes, including metabolism, cardiorespiratory regulation and nociception. Accumulating evidence suggests that ANS function is disturbed in numerous prevalent clinical disorders, including irritable bowel syndrome and fibromyalgia. While the brain is a central hub for regulating autonomic function, the association between resting autonomic activity and subcortical morphology has not been comprehensively studied and thus was our aim. In 27 healthy subjects [14 male and 13 female; mean age 30 years (range 22-53 years)], we quantified resting ANS function using validated indices of cardiac sympathetic index (CSI) and parasympathetic cardiac vagal tone (CVT). High resolution structural magnetic resonance imaging scans were acquired, and differences in subcortical nuclei shape, that is, 'deformation', contingent on resting ANS activity were investigated. CSI positively correlated with outward deformation of the brainstem, right nucleus accumbens, right amygdala and bilateral pallidum (all thresholded to corrected P right amygdala and pallidum (all thresholded to corrected P Left and right putamen volume positively correlated with CVT (r = 0.62, P = 0.0047 and r = 0.59, P = 0.008, respectively), as did the brainstem (r = 0.46, P = 0.049). These data provide novel evidence that resting autonomic state is associated with differences in the shape and volume of subcortical nuclei. Thus, subcortical morphological brain differences in various disorders may partly be attributable to perturbation in autonomic function. Further work is warranted to investigate these findings in clinical populations. Hum Brain Mapp 39:381-392, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Direct Signaling from Astrocytes to Neurons in Cultures of Mammalian Brain Cells

    Science.gov (United States)

    Nedergaard, Maiken

    1994-03-01

    Although astrocytes have been considered to be supportive, rather than transmissive, in the adult nervous system, recent studies have challenged this assumption by demonstrating that astrocytes possess functional neurotransmitter receptors. Astrocytes are now shown to directly modulate the free cytosolic calcium, and hence transmission characteristics, of neighboring neurons. When a focal electric field potential was applied to single astrocytes in mixed cultures of rat forebrain astrocytes and neurons, a prompt elevation of calcium occurred in the target cell. This in turn triggered a wave of calcium increase, which propagated from astrocyte to astrocyte. Neurons resting on these astrocytes responded with large increases in their concentration of cytosolic calcium. The gap junction blocker octanol attenuated the neuronal response, which suggests that the astrocytic-neuronal signaling is mediated through intercellular connections rather than synaptically. This neuronal response to local astrocytic stimulation may mediate local intercellular communication within the brain.

  15. Electric field-induced astrocyte alignment directs neurite outgrowth.

    Science.gov (United States)

    Alexander, John K; Fuss, Babette; Colello, Raymond J

    2006-05-01

    The extension and directionality of neurite outgrowth are key to achieving successful target connections during both CNS development and during the re-establishment of connections lost after neural trauma. The degree of axonal elongation depends, in large part, on the spatial arrangement of astrocytic processes rich in growth-promoting proteins. Because astrocytes in culture align their processes on exposure to an electrical field of physiological strength, we sought to determine the extent to which aligned astrocytes affect neurite outgrowth. To this end, dorsal root ganglia cells were seeded onto cultured rat astrocytes that were pre-aligned by exposure to an electric field of physiological strength (500 mV mm(-1)). Using confocal microscopy and digital image analysis, we found that neurite outgrowth at 24 hours and at 48 hours is enhanced significantly and directed consistently along the aligned astrocyte processes. Moreover, this directed neurite outgrowth is maintained when grown on fixed, aligned astrocytes. Collectively, these results indicate that endogenous electric fields present within the developing CNS might act to align astrocyte processes, which can promote and direct neurite growth. Furthermore, these results demonstrate a simple method to produce an aligned cellular substrate, which might be used to direct regenerating neurites.

  16. The role of astrocytes in multiple sclerosis pathogenesis.

    Science.gov (United States)

    Guerrero-García, J J

    2017-09-25

    Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS), in which astrocytes play an important role as CNS immune cells. However, the activity of astrocytes as antigen-presenting cells (APC) continues to be subject to debate. This review analyses the existing evidence on the participation of astrocytes in CNS inflammation in MS and on several mechanisms that modify astrocyte activity in the disease. Astrocytes play a crucial role in the pathogenesis of MS because they express toll-like receptors (TLR) and major histocompatibility complex (MHC) classI andII. In addition, astrocytes participate in regulating the blood-brain barrier (BBB) and in modulating T cell activity through the production of cytokines. Future studies should focus on the role of astrocytes in order to find new therapeutic targets for the treatment of MS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Simultaneous neuron- and astrocyte-specific fluorescent marking

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Wiebke [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hayata-Takano, Atsuko [Molecular Research Center for Children' s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamo, Toshihiko [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakazawa, Takanobu, E-mail: takanobunakazawa-tky@umin.ac.jp [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagayasu, Kazuki [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kasai, Atsushi; Seiriki, Kaoru [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shintani, Norihito [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ago, Yukio [Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Farfan, Camille [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); and others

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein.

  18. Simultaneous neuron- and astrocyte-specific fluorescent marking

    International Nuclear Information System (INIS)

    Schulze, Wiebke; Hayata-Takano, Atsuko; Kamo, Toshihiko; Nakazawa, Takanobu; Nagayasu, Kazuki; Kasai, Atsushi; Seiriki, Kaoru; Shintani, Norihito; Ago, Yukio; Farfan, Camille

    2015-01-01

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein

  19. Effects of titanium surface topography on morphology and in vitro activity of human gingival fibroblasts.

    Science.gov (United States)

    Ramaglia, L; Capece, G; Di Spigna, G; Bruno, M P; Buonocore, N; Postiglione, L

    2013-01-01

    The aim of the present study was to evaluate in vitro the biological behavior of human gingival fibroblasts cultured on two different titanium surfaces. Titanium test disks were prepared with a machined, relatively smooth (S) surface or a rough surface (O) obtained by a double acid etching procedure. Primary cultures of human gingival fibroblasts were plated on the experimental titanium disks and cultured up to 14 days. Titanium disk surfaces were analysed by scanning electron microscopy (SEM). Cell proliferation and a quantitative analysis by ELISA in situ of ECM components as CoI, FN and TN were performed. Results have shown different effects of titanium surface microtopography on cell expression and differentiation. At 96 hours of culture on experimental surfaces human gingival fibroblasts displayed a favourable cell attachment and proliferation on both surfaces although showing some differences. Both the relatively smooth and the etched surfaces interacted actively with in vitro cultures of human gingival fibroblasts, promoting cell proliferation and differentiation. Results suggested that the microtopography of a double acid-etched rough surface may induce a greater Co I and FN production, thus conditioning in vivo the biological behaviour of human gingival fibroblasts during the process of peri-implant soft tissue healing.

  20. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture.

    Science.gov (United States)

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-06-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)(1.0) and fascicle length scaled closely to (body mass)(0.3) in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment.

  1. The synaptic cell adhesion molecule, SynCAM1, mediates astrocyte-to-astrocyte and astrocyte-to-GnRH neuron adhesiveness in the mouse hypothalamus.

    Science.gov (United States)

    Sandau, Ursula S; Mungenast, Alison E; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel; Ojeda, Sergio R

    2011-06-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication.

  2. Green-fluorescent protein+ Astrocytes Attach to beta-Amyloid Plaques in an Alzheimer Mouse Model and GFPare Sensitive for Clasmatodendrosis

    Directory of Open Access Journals (Sweden)

    Christian eHumpel

    2016-04-01

    Full Text Available Alzheimer’s disease (AD is pathologically characterized by beta-amyloid (Aβ plaques and Tau pathology. It is well-established that Aβ plaques are surrounded by reactive astrocytes, highly expressing glial fibrillary acidic protein (GFAP. In order to study the cellular interaction of reactive astrocytes with Aβ plaques, we crossbred mice overexpressing amyloid precursor protein (APP with the Swedish-Dutch-Iowa mutations (APP-SweDI with mice expressing green fluorescent protein (GFP under the GFAP-promotor. Three-dimensional confocal microscopy revealed a tight association and intense sprouting of astrocytic fine branched processes towards Aβ plaques in 12 month old mice. In order to study phagocytosis, 110 µm thick brain slices from 12 month old crossbred mice were cultured overnight, however, we found that the GFP fluorescence faded away, distal processes degenerated and a complete loss of astrocytic morphology was seen (clasmatodendrosis. In summary, our data show that GFP+ reactive astrocytes make intense contact with Aβ plaques but these cells are highly vulnerable for degeneration.

  3. Is there an astrocyte-neuron ketone body shuttle?

    Science.gov (United States)

    Guzmán, M; Blázquez, C

    2001-01-01

    Ketone bodies can replace glucose as the major source of brain energy when glucose becomes scarce. Although it is generally assumed that the liver supplies extrahepatic tissues with ketone bodies, recent evidence shows that astrocytes are also ketogenic cells. Moreover, the partitioning of fatty acids between ketogenesis and ceramide synthesis de novo might control the survival/death decision of neural cells. These findings support the notion that astrocytes might supply neurons with ketone bodies in situ, and raise the possibility that astrocyte ketogenesis is a cytoprotective pathway.

  4. Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Iversen, Peter; Mouridsen, Kim; Hansen, Mikkel B

    2014-01-01

    In patients with impaired liver function and hepatic encephalopathy (HE), consistent elevations of blood ammonia concentration suggest a crucial role in the pathogenesis of HE. Ammonia and acetate are metabolized in brain both primarily in astrocytes. Here, we used dynamic [(11)C]acetate PET...... of the brain to measure the contribution of astrocytes to the previously observed reduction of brain oxidative metabolism in patients with liver cirrhosis and HE, compared to patients with cirrhosis without HE, and to healthy subjects. We used a new kinetic model to estimate uptake from blood to astrocytes...

  5. Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury.

    Science.gov (United States)

    Teng, Zhi-Ping; Chen, Jing; Chau, Lee-Young; Galunic, Nicholas; Regan, Raymond F

    2004-11-01

    Heme oxygenase-1 (HO-1) is induced in the CNS after hemorrhage, and may have an effect on injury to surrounding tissue. Hemin, the preferred substrate of HO, is a neurotoxin that is present in intracranial hematomas. In a prior study, we observed that HO inhibitors increased the vulnerability of cultured cortical astrocytes to heme-mediated oxidative injury. To investigate the effect of HO more specifically, we used an adenoviral vector encoding the human HO-1 gene to specifically increase HO-1 expression. Incubation with 100 MOI of the HO-1 adenovirus (Adv-HHO-1) for 24 h increased both HO-1 protein and HO activity; a control adenovirus lacking the HO-1 gene had no effect. Using a DNA probe that was specific for human HO-1, 80.5 +/- 7.2% of astrocytes were observed to be infected by in situ hybridization. The cell death produced by 30-60 microM hemin was significantly reduced by pretreatment with 100 MOI Adv-HHO-1, as assessed by LDH release, propidium iodide exclusion, and MTT reduction assay. The threefold increase in cell protein oxidation produced by hemin was also attenuated in cultures pretreated with Adv-HHO-1. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Specifically increasing astrocytic HO-1 by gene transfer may have a beneficial effect on hemorrhagic CNS injury.

  6. Transcriptional dynamics during human adipogenesis and its link to adipose morphology and distribution

    DEFF Research Database (Denmark)

    Ehrlund, Anna; Mejhert, Niklas; Björk, Christel

    2017-01-01

    White adipose tissue (WAT) can develop into several phenotypes with different pathophysiological impact on type 2 diabetes. To better understand the adipogenic process, the transcriptional events that occur during in vitro differentiation of human adipocytes were investigated and the findings lin...

  7. Water distribution and related morphology in human stratum corneum at different hydration levels

    NARCIS (Netherlands)

    Bouwstra, J.A.; Graaff, de A.; Gooris, G.S.; Nijsse, J.; Wiechers, J.W.; Aelst, van A.C.

    2003-01-01

    This study focused on the water distribution in human stratum corneum and on the swelling of the corneocytes. For this purpose stratum corneum was hydrated to various levels and used either for Fourier transform infrared spectroscopy or for cryo-scanning electron microscopy. The images were analyzed

  8. The Effect of Scala Tympani Morphology on Basilar Membrane Contact With a Straight Electrode Array: A Human Temporal Bone Study.

    Science.gov (United States)

    Verberne, Juul; Risi, Frank; Campbell, Luke; Chambers, Scott; O'Leary, Stephen

    2017-01-01

    Scala tympani morphology influences the insertion dynamics and intra-scalar position of straight electrode arrays. Hearing preservation is the goal of cochlear implantation with current thin straight electrode arrays. These hug the lateral wall, facilitating full, atraumatic insertions. However, most studies still report some postoperative hearing loss. This study explores the influence of scala tympani morphology on array position relative to the basilar membrane and its possible contribution to postoperative hearing loss. Twenty-six fresh-frozen human temporal bones implanted with a straight electrode array were three-dimensionally reconstructed from micro-photographic histological sections. Insertion depth and the proximity between the array and basilar membrane were recorded. Lateral wall shape was quantified as a curvature ratio. Insertion depths ranged from 233 to 470 degrees. The mean first point of contact between the array and basilar membrane was 185 degrees; arrays tended to remain in contact with the membrane after first contacting it. Eighty-nine and 93% of arrays that reached the upper basal (>240-360 degrees) and second (>360-720 degrees) turns respectively contacted the basilar membrane in these regions. Scalar wall curvature ratio decreased significantly (the wall became steeper) from the basal to second turns. This shift correlated with a reduced distance between the array and basilar membrane. Scala tympani morphology influences the insertion dynamics and intra-scalar position of a straight electrode array. In addition to gross trauma of cochlear structures, contact between the array and basilar membrane and how this impacts membrane function should be considered in hearing preservation cases.

  9. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Kazemi, Mohammad, E-mail: m_kazemi@med.mui.ac.i [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Mardani, Mohammad, E-mail: mardani@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esmaeili, Abolghasem, E-mail: abesmaeili@yahoo.com [Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  10. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    International Nuclear Information System (INIS)

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-01-01

    Highlights: ► We investigated effects of FGF-2 on hADSCs. ► We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. ► FGF-2 induces chondrogenesis in hADSCs, which •Increasing information will decrease quality if hospital costs are very different. ► The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  11. The role of substrate morphology for the cytokine release profile of immature human primary macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Bartneck, Matthias [Department of Medicine III, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen (Germany); Heffels, Karl-Heinz [Department and Chair of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Bovi, Manfred [Electron Microscopic Facility, Medical Faculty, RWTH Aachen (Germany); Groll, Jürgen [Department and Chair of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Zwadlo-Klarwasser, Gabriele [Interdisciplinary Center for Clinical Research and Dept. of Dermatology, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, 52056 Aachen (Germany)

    2013-12-01

    There is increasing evidence that the physicochemical nature of any given material is a dominant factor for the release of cytokines by innate immune cells, specifically of macrophages, and thus majorly influences their interaction with other cell types. Recently, we could show that the 3D structure of star shaped polytheylene oxide–polypropylene oxide co-polymers (sP(EO-stat-PO))-hydrogel coated substrates has a stronger influence on the release pattern of cytokines after 7 days of culture than surface chemistry. Here, we focused on the analysis of cytokine release over time and a more detailed analysis of cell morphology by scanning electron microscopy (SEM). Therefore, we compared different strategies for SEM sample preparation and found that using osmium tetroxide combined with aqua bidest led to best preparation results. For cytokine release we show significant changes from day 3 to day 7 of cell culture. After 3 days, the sP(EO-stat-PO)-coated substrates led to an induction of pro-angiogenic CCL3 and CCL4, and of low amounts of the anti-inflammatory IL10, which declined at day 7. In contrast, pleiotropic IL6 and the pro-inflammatory TNFα and IL1β were expressed stronger at day 7 than at day 3. - Highlights: • Strategies for the preparation of macrophages on hydrogel materials (Fig. 1) • Cytokine release of immature macrophages on the substrates (Fig. 2 and Table 1) • Changes in cytokine release during macrophage maturation (Table 2)

  12. Evaluation of root canal morphology of human mandibular incisors in Yazd

    Directory of Open Access Journals (Sweden)

    Tabrizi-zadeh M. Assistant Professor

    2003-06-01

    Full Text Available Statement of Problem: The main objective of endodontic therapy is chemomechanical cleansing of entire pulp cavity and its complete obturation with an inert material. During this procedure, the failure of detection and inadequate cleaning of a canal will result in failed endodontic therapy. Therefore, the dentist must have enough knowledge of root canal morphology to treat a tooth successfully."nAim: The aim of this study was to determine the number and type of root canals of mandibular incisor teeth."nMaterials and Methods: In order to do this in-vitro, descriptive study, 68 non-carious mandibular incisor teethj collected from different clinics in Yazd, were immersed in indian ink, decalcified and cleared."nResults: It was found that 55.9% of the teeth had two separate canals that in 5.5% of them, the canals"nmerged before' apical foramen. In 4.4% of these samples, two separate canals existed along the whole"nroot."nConclusion: Considering high percentage of two canals in lower mandibular incisors, during access preparation, more attempts in detection of the second canal, is emphasized.

  13. The morphology of amputated human teeth and its relation to mechanical properties after restoration treatment

    Science.gov (United States)

    Gugger, Jonas; Krastl, Gabriel; Huser, Marius; Deyhle, Hans; Müller, Bert

    2010-09-01

    The increased susceptibility to fracture of root canal- and post-treated teeth is less affected by alterations of the dentin structure, but seems to crucially depend on the loss of coronal tooth substance. The surface, available for adhesion of the composite material in the root canal and in the coronal part of the tooth, is assumed to be of key importance for the fracture resistance. Thus, an appropriate three-dimensional method should be identified to determine the adhesive surface with necessary precision. For this purpose, severely decayed teeth were simulated decapitating clinical crowns. After root canal filling and post space preparation, impressions of the root canal and the amputation surface were obtained using silicone. Micro computed tomography scans of these impressions were acquired. For one selected specimen, an additional high-resolution scan was recorded at a synchrotron radiation source. Software of ImageLab served for the extraction of the amputation interface, the post surface and the post volume from the tomography data, which have been finally correlated with the Young's modulus and the maximal load derived from mechanical tests. The morphological parameters show a realistic relationship to the mechanical tests performed after the restoration treatments and are consequently important for improving the dental skills.

  14. From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin

    Science.gov (United States)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R.; Feger, Julia S.; Fallah, Mohammad A.; Metze, Dieter; Ständer, Sonja; Luger, Thomas A.; Koenig, Karsten; Mess, Christian; Schneider, Stefan W.

    2016-03-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients’ bedsides. These ‘optical biopsies’ generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy.

  15. The role of substrate morphology for the cytokine release profile of immature human primary macrophages

    International Nuclear Information System (INIS)

    Bartneck, Matthias; Heffels, Karl-Heinz; Bovi, Manfred; Groll, Jürgen; Zwadlo-Klarwasser, Gabriele

    2013-01-01

    There is increasing evidence that the physicochemical nature of any given material is a dominant factor for the release of cytokines by innate immune cells, specifically of macrophages, and thus majorly influences their interaction with other cell types. Recently, we could show that the 3D structure of star shaped polytheylene oxide–polypropylene oxide co-polymers (sP(EO-stat-PO))-hydrogel coated substrates has a stronger influence on the release pattern of cytokines after 7 days of culture than surface chemistry. Here, we focused on the analysis of cytokine release over time and a more detailed analysis of cell morphology by scanning electron microscopy (SEM). Therefore, we compared different strategies for SEM sample preparation and found that using osmium tetroxide combined with aqua bidest led to best preparation results. For cytokine release we show significant changes from day 3 to day 7 of cell culture. After 3 days, the sP(EO-stat-PO)-coated substrates led to an induction of pro-angiogenic CCL3 and CCL4, and of low amounts of the anti-inflammatory IL10, which declined at day 7. In contrast, pleiotropic IL6 and the pro-inflammatory TNFα and IL1β were expressed stronger at day 7 than at day 3. - Highlights: • Strategies for the preparation of macrophages on hydrogel materials (Fig. 1) • Cytokine release of immature macrophages on the substrates (Fig. 2 and Table 1) • Changes in cytokine release during macrophage maturation (Table 2)

  16. Effects of estradiol and medroxyprogesterone acetate on morphology, proliferation and apoptosis of human breast tissue in organ cultures

    International Nuclear Information System (INIS)

    Eigėlienė, Natalija; Härkönen, Pirkko; Erkkola, Risto

    2006-01-01

    Human breast tissue undergoes phases of proliferation, differentiation and regression regulated by changes of the levels of circulating sex hormones during the menstrual cycle or aging. Ovarian hormones also likely play a key role in the etiology and biology of breast cancer. Reports concerning the proliferative effects of steroid hormones on the normal epithelium of human breast have been conflicting. Some studies have shown that steroid hormones may predispose breast epithelial cells to malignant changes by stimulating their proliferation, which is known to be regulated tightly by stromal cells. The aim of this study was to investigate the effects of 17β-estradiol and medroxyprogesterone acetate on proliferation, apoptosis, expression of differentiation markers and steroid hormone receptors in breast epithelium using an in vitro model of freshly isolated human breast tissue, in which a proper interaction of breast epithelium and stroma has been maintained. Human breast tissues were obtained from women undergoing surgery for breast tumours. Peritumoral tissues were excised and explants were cultured for 3 weeks in medium supplemented with E 2 or MPA or with E 2 +MPA. Endpoints included histopathological, histomorphometric and immunohistochemical assessment of the breast explants. Culture of breast explants for 14 or 21 days with steroid hormones increased proliferative activity and the thickness of acinar and ductal epithelium. E 2 -treatment led to hyperplastic epithelial morphology, MPA to hypersecretory single-layered epithelium and E 2 +MPA to multilayered but organised epithelium. The proliferative response to E 2 in comparison to control (p < 0.001) was more pronounced than to MPA (p < 0.05) or E 2 +MPA (p < 0.05) at 7 and 14 days for Ki-67 and PCNA. E 2 treatment also decreased the proportion of apoptotic cells after 7 (p < 0.01) and 14 (p < 0.01) days. In addition, the relative number of ERα, ERβ and PR positive epithelial cells was decreased by all

  17. Automated three-dimensional morphology-based clustering of human erythrocytes with regular shapes: stomatocytes, discocytes, and echinocytes

    Science.gov (United States)

    Ahmadzadeh, Ezat; Jaferzadeh, Keyvan; Lee, Jieun; Moon, Inkyu

    2017-07-01

    We present unsupervised clustering methods for automatic grouping of human red blood cells (RBCs) extracted from RBC quantitative phase images obtained by digital holographic microscopy into three RBC clusters with regular shapes, including biconcave, stomatocyte, and sphero-echinocyte. We select some good features related to the RBC profile and morphology, such as RBC average thickness, sphericity coefficient, and mean corpuscular volume, and clustering methods, including density-based spatial clustering applications with noise, k-medoids, and k-means, are applied to the set of morphological features. The clustering results of RBCs using a set of three-dimensional features are compared against a set of two-dimensional features. Our experimental results indicate that by utilizing the introduced set of features, two groups of biconcave RBCs and old RBCs (suffering from the sphero-echinocyte process) can be perfectly clustered. In addition, by increasing the number of clusters, the three RBC types can be effectively clustered in an automated unsupervised manner with high accuracy. The performance evaluation of the clustering techniques reveals that they can assist hematologists in further diagnosis.

  18. Astrocyte Senescence and Metabolic Changes in Response to HIV Antiretroviral Therapy Drugs

    Directory of Open Access Journals (Sweden)

    Justin Cohen

    2017-08-01

    Full Text Available With the advent of highly active antiretroviral therapy (HAART survival rates among patients infected by HIV have increased. However, even though survival has increased HIV-associated neurocognitive disorders (HAND still persist, suggesting that HAART-drugs may play a role in the neurocognitive impairment observed in HIV-infected patients. Given previous data demonstrating that astrocyte senescence plays a role in neurocognitive disorders such as Alzheimer’s disease (AD, we examined the role of HAART on markers of senescence in primary cultures of human astrocytes (HAs. Our results indicate HAART treatment induces cell cycle arrest, senescence-associated beta-galactosidase, and the cell cycle inhibitor p21. Highly active antiretroviral therapy treatment is also associated with the induction of reactive oxygen species and upregulation of mitochondrial oxygen consumption. These changes in mitochondria correlate with increased glycolysis in HAART drug treated astrocytes. Taken together these results indicate that HAART drugs induce the senescence program in HAs, which is associated with oxidative and metabolic changes that could play a role in the development of HAND.

  19. A neuron-astrocyte transistor-like model for neuromorphic dressed neurons.

    Science.gov (United States)

    Valenza, G; Pioggia, G; Armato, A; Ferro, M; Scilingo, E P; De Rossi, D

    2011-09-01

    Experimental evidences on the role of the synaptic glia as an active partner together with the bold synapse in neuronal signaling and dynamics of neural tissue strongly suggest to investigate on a more realistic neuron-glia model for better understanding human brain processing. Among the glial cells, the astrocytes play a crucial role in the tripartite synapsis, i.e. the dressed neuron. A well-known two-way astrocyte-neuron interaction can be found in the literature, completely revising the purely supportive role for the glia. The aim of this study is to provide a computationally efficient model for neuron-glia interaction. The neuron-glia interactions were simulated by implementing the Li-Rinzel model for an astrocyte and the Izhikevich model for a neuron. Assuming the dressed neuron dynamics similar to the nonlinear input-output characteristics of a bipolar junction transistor, we derived our computationally efficient model. This model may represent the fundamental computational unit for the development of real-time artificial neuron-glia networks opening new perspectives in pattern recognition systems and in brain neurophysiology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A porcine astrocyte/endothelial cell co-culture model of the blood-brain barrier.

    Science.gov (United States)

    Jeliazkova-Mecheva, Valentina V; Bobilya, Dennis J

    2003-10-01

    A method for the isolation of porcine atrocytes as a simple extension of a previously described procedure for isolation of brain capillary endothelial cells from adolescent pigs [Methods Cell Sci. 17 (1995) 2] is described. The obtained astroglial culture purified through two passages and by the method of the selective detachment was validated by a phase contrast microscopy and through an immunofluorescent assay for the glial fibrillary acidic protein (GFAP). Porcine astrocytes were co-cultivated with porcine brain capillary endothelial cells (PBCEC) for the development of an in vitro blood-brain barrier (BBB) model. The model was visualized by an electron microscopy and showed elevated transendothellial electrical resistance and reduced inulin permeability. To our knowledge, this is the first report for the establishment of a porcine astrocyte/endothelial cell co-culture BBB model, which avoids interspecies and age differences between the two cell types, usually encountered in the other reported co-culture BBB models. Considering the availability of the porcine brain tissue and the close physiological and anatomical relation between the human and pig brain, the porcine astrocyte/endothelial cell co-culture system can serve as a reliable and easily reproducible model for different in vitro BBB studies.

  1. Apolipoprotein E-specific innate immune response in astrocytes from targeted replacement mice

    Directory of Open Access Journals (Sweden)

    Montine Thomas J

    2006-04-01

    Full Text Available Abstract Background Inheritance of the three different alleles of the human apolipoprotein (apo E gene (APOE are associated with varying risk or clinical outcome from a variety of neurologic diseases. ApoE isoform-specific modulation of several pathogenic processes, in addition to amyloid β metabolism in Alzheimer's disease, have been proposed: one of these is innate immune response by glia. Previously we have shown that primary microglia cultures from targeted replacement (TR APOE mice have apoE isoform-dependent innate immune activation and paracrine damage to neurons that is greatest with TR by the ε4 allele (TR APOE4 and that derives from p38 mitogen-activated protein kinase (p38MAPK activity. Methods Primary cultures of TR APOE2, TR APOE3 and TR APOE4 astrocytes were stimulated with lipopolysaccharide (LPS. ApoE secretion, cytokine production, and nuclear factor-kappa B (NF-κB subunit activity were measured and compared. Results Here we showed that activation of primary astrocytes from TR APOE mice with LPS led to TR APOE-dependent differences in cytokine secretion that were greatest in TR APOE2 and that were associated with differences in NF-κB subunit activity. Conclusion Our results suggest that LPS activation of innate immune response in TR APOE glia results in opposing outcomes from microglia and astrocytes as a result of TR APOE-dependent activation of p38MAPK or NF-κB signaling in these two cell types.

  2. Morphological Effects and Antioxidant Capacity of Solanum crispum (Natre) In Vitro Assayed on Human Erythrocytes.

    Science.gov (United States)

    Suwalsky, Mario; Ramírez, Patricia; Avello, Marcia; Villena, Fernando; Gallardo, María José; Barriga, Andrés; Manrique-Moreno, Marcela

    2016-06-01

    In order to gain insight into the molecular mechanism of the antioxidant properties of Solanum crispum, aqueous extracts of its leaves were assayed on human erythrocytes and molecular models of its membrane. Phenolics and alkaloids were detected by HPLC-MS. Scanning electron and defocusing microscopy showed that S. crispum changed erythrocytes from the normal shape to echinocytes. These results imply that molecules present in the aqueous extracts were located in the outer monolayer of the erythrocyte membrane. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were chosen as representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. X-ray diffraction showed that S. crispum preferentially interacted with DMPC bilayers. Experiments regarding its antioxidant properties showed that S. crispum neutralized the oxidative capacity of HClO on DMPE bilayers; defocusing microscopy and hemolysis assays demonstrated the protective effect of S. crispum against the oxidant effects of HClO on human erythrocytes.

  3. Morphological studies at subchondral bone structures in human early arthrosis. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    Quantitative histomorphometric studies using an image analysis system were performed simultaneously on hyaline cartilage, calcified cartilage and subchondral cancellous bone of human tibial heads for detailed information about the pathogenesis of arthrosis. Joint structures need to be fully detected in three dimensions since measurement values are more affected by topographical aspects than by either age, or sex, or arthrosin stage. Mechanical factors were found to affect essentially the initiation and progression of arthrosis. Results are demonstrated in detail. (orig.) [de

  4. Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics

    OpenAIRE

    Simpson, Siobhan; Dunning, Mark D.; de Brot, Simone; Grau-Roma, Llorenc; Mongan, Nigel P.; Rutland, Catrin S.

    2017-01-01

    Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is poor, with five year osteosarcoma survival rates in people not having improved in decades. For dogs, one year survival rates are only around ~45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with th...

  5. Morphological analysis of the hindlimb in apes and humans. II. Moment arms

    Science.gov (United States)

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-01-01

    Flexion/extension moment arms were obtained for the major muscles crossing the hip, knee and ankle joints in the orang-utan, gibbon, gorilla (Eastern and Western lowland) and bonobo. Moment arms varied with joint motion and were generally longer in proximal limb muscles than distal limb muscles. The shape of the moment arm curves (i.e. the plots of moment arm against joint angle) differed in different hindlimb muscles and in the same muscle in different subjects (both in the same and in different ape species). Most moment arms increased with increasing joint flexion, a finding which may be understood in the context of the employment of flexed postures by most non-human apes (except orang-utans) during both terrestrial and arboreal locomotion. When compared with humans, non-human great apes tended to have muscles better designed for moving the joints through large ranges. This was particularly true of the pedal digital flexors in orang-utans. In gibbons, the only lesser ape studied here, many of the moment arms measured were relatively short compared with those of great apes. This study was performed on a small sample of apes and thus differences noted here warrant further investigation in larger populations. PMID:16761974

  6. Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation

    Directory of Open Access Journals (Sweden)

    J. Michael eGee

    2015-04-01

    Full Text Available Complex interactions between networks of astrocytes and neurons are beginning to be appreciated, but remain poorly understood. Transgenic mice expressing fluorescent protein reporters of cellular activity, such as the GCaMP family of genetically encoded calcium indicators, have been used to explore network behavior. However, in some cases, it may be desirable to use long-established rat models that closely mimic particular aspects of human conditions such as Parkinson’s disease and the development of epilepsy following status epilepticus. Methods for expressing reporter proteins in the rat brain are relatively limited. Transgenic rat technologies exist but are fairly immature. Viral-mediated expression is robust but unstable, requires invasive injections, and only works well for fairly small genes (< 5 kb. In utero electroporation offers a valuable alternative. IUE is a proven method for transfecting populations of astrocytes and neurons in the rat brain without the strict limitations on transgene size. We built a toolset of IUE plasmids carrying GCaMP variants 3, 6s or 6f driven by CAG and targeted to the cytosol or the plasma membrane. Because low baseline fluorescence of GCaMP can hinder identification of transfected cells, we included the option of co-expressing a cytosolic tdTomato protein. A binary system consisting of a plasmid carrying a piggyBac inverted terminal repeat-flanked CAG-GCaMP-IRES-tdTomato cassette and a separate plasmid encoding for expression of piggyBac transposase was employed to stably express GCaMP and tdTomato. The plasmids were co-electroporated on embryonic days 13.5-14.5 and astrocytic and neuronal activity was subsequently imaged in acute or cultured brain slices prepared from the cortex or hippocampus. Large spontaneous transients were detected in slices obtained from rats of varying ages up to 127 days. In this report, we demonstrate the utility of this toolset for interrogating astrocytic and neuronal

  7. Astrocyte and Oligodendrocyte Connexins of the Glial Syncytium in Relation to Astrocyte Anatomical Domains and Spatial Buffering

    OpenAIRE

    NAGY, JAMES I.; RASH, JOHN E.

    2003-01-01

    Astroctyes express a set of three connexins (Cx26, Cx30, and Cx43) that are contained in astrocyte-to-astrocyte (A/A) gap junctions; oligodendrocytes express a different set of three connexins (Cx29, Cx32, and Cx47) that are contained in the oligodendrocyte side of necessarily heterotypic astrocyte-to-oligodendrocyte (A/O) gap junctions, and there is little ultrastructural evidence for gap junction formation between individual oligodendrocytes.