WorldWideScience

Sample records for human asm cells

  1. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration.

    Science.gov (United States)

    Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P

    2006-01-01

    Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.

  2. Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A.

    Science.gov (United States)

    Kaur, Manminder; Holden, Neil S; Wilson, Sylvia M; Sukkar, Maria B; Chung, Kian Fan; Barnes, Peter J; Newton, Robert; Giembycz, Mark A

    2008-09-01

    In diseases such as asthma, airway smooth muscle (ASM) cells play a synthetic role by secreting inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, or IL-8 and by expressing surface adhesion molecules, including ICAM-1. In the present study, PGE(2), forskolin, and short-acting (salbutamol) and long-acting (salmeterol and formoterol) beta(2)-adrenoceptor agonists reduced the expression of ICAM-1 and the release of GM-CSF evoked by IL-1beta in ASM cells. IL-1beta-induced IL-8 release was also repressed by PGE(2) and forskolin, whereas the beta(2)-adrenoceptor agonists were ineffective. In each case, repression of these inflammatory indexes was prevented by adenoviral overexpression of PKIalpha, a highly selective PKA inhibitor. These data indicate a PKA-dependent mechanism of repression and suggest that agents that elevate intracellular cAMP, and thereby activate PKA, may have a widespread anti-inflammatory effect in ASM cells. Since ICAM-1 and GM-CSF are highly NF-kappaB-dependent genes, we used an adenoviral-delivered NF-kappaB-dependent luciferase reporter to examine the effects of forskolin and the beta(2)-adrenoceptor agonists on NF-kappaB activation. There was no effect on luciferase activity measured in the presence of forskolin or beta(2)-adrenoceptor agonists. This finding is consistent with the observation that IL-1beta-induced expression of IL-6, a known NF-kappaB-dependent gene in ASM, was also unaffected by beta(2)-adrenoceptor agonists, forskolin, PGE(2), 8-bromo-cAMP, or rolipram. Collectively, these results indicate that repression of IL-1beta-induced ICAM-1 expression and GM-CSF release by cAMP-elevating agents, including beta(2)-adrenoceptor agonists, may not occur through a generic effect on NF-kappaB.

  3. Anti-CTGF single-chain variable fragment dimers inhibit human airway smooth muscle (ASM) cell proliferation by down-regulating p-Akt and p-mTOR levels.

    Science.gov (United States)

    Gao, Wei; Cai, Liting; Xu, Xudong; Fan, Juxiang; Xue, Xiulei; Yan, Xuejiao; Qu, Qinrong; Wang, Xihua; Zhang, Chen; Wu, Guoqiu

    2014-01-01

    Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma.

  4. IL-17A acts via p38 MAPK to increase stability of TNF-alpha-induced IL-8 mRNA in human ASM.

    Science.gov (United States)

    Henness, Sheridan; van Thoor, Eveline; Ge, Qi; Armour, Carol L; Hughes, J Margaret; Ammit, Alaina J

    2006-06-01

    Human airway smooth muscle (ASM) plays an immunomodulatory role in asthma. Recently, IL-17A has become of increasing interest in asthma, being found at elevated levels in asthmatic airways and emerging as playing an important role in airway neutrophilia. IL-17A predominantly exerts its neutrophil orchestrating role indirectly via the induction of cytokines by resident airway structural cells. Here, we perform an in vitro study to show that although IL-17A did not induce secretion of the CXC chemokine IL-8 from ASM cells, IL-17A significantly potentiates TNF-alpha-induced IL-8 protein secretion and gene expression in a concentration- and time-dependent manner (P ASM cells, acting via a p38 MAPK-dependent posttranscriptional pathway to augment TNF-alpha-induced secretion of the potent neutrophil chemoattractant IL-8 from ASM cells.

  5. Cyclin D1 in ASM Cells from Asthmatics Is Insensitive to Corticosteroid Inhibition.

    Science.gov (United States)

    Allen, Jodi C; Seidel, Petra; Schlosser, Tobias; Ramsay, Emma E; Ge, Qi; Ammit, Alaina J

    2012-01-01

    Hyperplasia of airway smooth muscle (ASM) is a feature of the remodelled airway in asthmatics. We examined the antiproliferative effectiveness of the corticosteroid dexamethasone on expression of the key regulator of G(1) cell cycle progression-cyclin D1-in ASM cells from nonasthmatics and asthmatics stimulated with the mitogen platelet-derived growth factor BB. While cyclin D1 mRNA and protein expression were repressed in cells from nonasthmatics in contrast, cyclin D1 expression in asthmatics was resistant to inhibition by dexamethasone. This was independent of a repressive effect on glucocorticoid receptor translocation. Our results corroborate evidence demonstrating that corticosteroids inhibit mitogen-induced proliferation only in ASM cells from subjects without asthma and suggest that there are corticosteroid-insensitive proliferative pathways in asthmatics.

  6. Corticosteroids reduce IL-6 in ASM cells via up-regulation of MKP-1.

    Science.gov (United States)

    Quante, Timo; Ng, Yee Ching; Ramsay, Emma E; Henness, Sheridan; Allen, Jodi C; Parmentier, Johannes; Ge, Qi; Ammit, Alaina J

    2008-08-01

    The mechanisms by which corticosteroids reduce airway inflammation are not completely understood. Traditionally, corticosteroids were thought to inhibit cytokines exclusively at the transcriptional level. Our recent evidence, obtained in airway smooth muscle (ASM), no longer supports this view. We have found that corticosteroids do not act at the transcriptional level to reduce TNF-alpha-induced IL-6 gene expression. Rather, corticosteroids inhibit TNF-alpha-induced IL-6 secretion by reducing the stability of the IL-6 mRNA transcript. TNF-alpha-induced IL-6 mRNA decays at a significantly faster rate in ASM cells pretreated with the corticosteroid dexamethasone (t(1/2) = 2.4 h), compared to vehicle (t(1/2) = 9.0 h; P ASM cells.

  7. Roles of the outer membrane protein AsmA of Salmonella enterica in the control of marRAB expression and invasion of epithelial cells.

    Science.gov (United States)

    Prieto, Ana I; Hernández, Sara B; Cota, Ignacio; Pucciarelli, M Graciela; Orlov, Yuri; Ramos-Morales, Francisco; García-del Portillo, Francisco; Casadesús, Josep

    2009-06-01

    A genetic screen for suppressors of bile sensitivity in DNA adenine methylase (dam) mutants of Salmonella enterica serovar Typhimurium yielded insertions in an uncharacterized locus homologous to the Escherichia coli asmA gene. Disruption of asmA suppressed bile sensitivity also in phoP and wec mutants of S. enterica and increased the MIC of sodium deoxycholate for the parental strain ATCC 14028. Increased levels of marA mRNA were found in asmA, asmA dam, asmA phoP, and asmA wec strains of S. enterica, suggesting that lack of AsmA activates expression of the marRAB operon. Hence, asmA mutations may enhance bile resistance by inducing gene expression changes in the marRAB-controlled Mar regulon. In silico analysis of AsmA structure predicted the existence of one transmembrane domain. Biochemical analysis of subcellular fractions revealed that the asmA gene of S. enterica encodes a protein of approximately 70 kDa located in the outer membrane. Because AsmA is unrelated to known transport and/or efflux systems, we propose that activation of marRAB in asmA mutants may be a consequence of envelope reorganization. Competitive infection of BALB/c mice with asmA(+) and asmA isogenic strains indicated that lack of AsmA attenuates Salmonella virulence by the oral route but not by the intraperitoneal route. Furthermore, asmA mutants showed a reduced ability to invade epithelial cells in vitro.

  8. Activated sludge models ASM1, ASM2, ASM2d and ASM3

    DEFF Research Database (Denmark)

    Henze, Mogens; Gujer, W.; Mino, T.;

    This book has been produced to give a total overview of the Activated Sludge Model (ASM) family at the start of 2000 and to give the reader easy access to the different models in their original versions. It thus presents ASM1, ASM2, ASM2d and ASM3 together for the first time.Modelling of activated...... sludge processes has become a common part of the design and operation of wastewater treatment plants. Today models are being used in design, control, teaching and research.ContentsASM3: Introduction, Comparison of ASM1 and ASM3, ASM3: Definition of compounds in the model, ASM3: Definition of processes...... in the Model, ASM3: Stoichiometry, ASM3: Kinetics, Limitations of ASM3, Aspects of application of ASM3, ASM3C: A Carbon based model, Conclusion ASM 2d: Introduction, Conceptual Approach, ASM 2d, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Limitations, Conclusion ASM 2...

  9. Corticosteroid-Induced MKP-1 Represses Pro-Inflammatory Cytokine Secretion by Enhancing Activity of Tristetraprolin (TTP) in ASM Cells.

    Science.gov (United States)

    Prabhala, Pavan; Bunge, Kristin; Ge, Qi; Ammit, Alaina J

    2016-10-01

    Exaggerated cytokine secretion drives pathogenesis of a number of chronic inflammatory diseases, including asthma. Anti-inflammatory pharmacotherapies, including corticosteroids, are front-line therapies and although they have proven clinical utility, the molecular mechanisms responsible for their actions are not fully understood. The corticosteroid-inducible gene, mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1, DUSP1) has emerged as a key molecule responsible for the repressive effects of steroids. MKP-1 is known to deactivate p38 MAPK phosphorylation and can control the expression and activity of the mRNA destabilizing protein-tristetraprolin (TTP). But whether corticosteroid-induced MKP-1 acts via p38 MAPK-mediated modulation of TTP function in a pivotal airway cell type, airway smooth muscle (ASM), was unknown. While pretreatment of ASM cells with the corticosteroid dexamethasone (preventative protocol) is known to reduce ASM synthetic function in vitro, the impact of adding dexamethasone after stimulation (therapeutic protocol) had not been explored. Whether dexamethasone modulates TTP in a p38 MAPK-dependent manner in this cell type was also unknown. We address this herein and utilize an in vitro model of asthmatic inflammation where ASM cells were stimulated with the pro-asthmatic cytokine tumor necrosis factor (TNF) and the impact of adding dexamethasone 1 h after stimulation assessed. IL-6 mRNA expression and protein secretion was significantly repressed by dexamethasone acting in a temporally distinct manner to increase MKP-1, deactivate p38 MAPK, and modulate TTP phosphorylation status. In this way, dexamethasone-induced MKP-1 acts via p38 MAPK to switch on the mRNA destabilizing function of TTP to repress pro-inflammatory cytokine secretion from ASM cells. J. Cell. Physiol. 231: 2153-2158, 2016. © 2016 Wiley Periodicals, Inc.

  10. ASM-024, a piperazinium compound, promotes the in vitro relaxation of β2-adrenoreceptor desensitized tracheas.

    Science.gov (United States)

    Israël-Assayag, Evelyne; Beaulieu, Marie-Josée; Cormier, Yvon

    2015-01-01

    Inhaled β2-adrenoreceptor agonists are widely used in asthma and chronic obstructive pulmonary disease (COPD) for bronchoconstriction relief. β2-Adrenoreceptor agonists relax airway smooth muscle cells via cyclic adenosine monophosphate (cAMP) mediated pathways. However, prolonged stimulation induces functional desensitization of the β2-adrenoreceptors (β2-AR), potentially leading to reduced clinical efficacy with chronic or prolonged administration. ASM-024, a small synthetic molecule in clinical stage development, has shown activity at the level of nicotinic receptors and possibly at the muscarinic level and presents anti-inflammatory and bronchodilator properties. Aerosolized ASM-024 reduces airway resistance in mice and promotes in-vitro relaxation of tracheal and bronchial preparations from animal and human tissues. ASM-024 increased in vitro relaxation response to maximally effective concentration of short-acting beta-2 agonists in dog and human bronchi. Although the precise mechanisms by which ASM-024 promotes airway smooth muscle (ASM) relaxation remain unclear, we hypothesized that ASM-024 will attenuate and/or abrogate agonist-induced contraction and remain effective despite β2-AR tachyphylaxis. β2-AR tachyphylaxis was induced with salbutamol, salmeterol and formoterol on guinea pig tracheas. The addition of ASM-024 relaxed concentration-dependently intact or β2-AR desensitized tracheal rings precontracted with methacholine. ASM-024 did not induce any elevation of intracellular cAMP in isolated smooth muscle cells; moreover, blockade of the cAMP pathway with an adenylate cyclase inhibitor had no significant effect on ASM-024-induced guinea pig trachea relaxation. Collectively, these findings show that ASM-024 elicits relaxation of β2-AR desensitized tracheal preparations and suggest that ASM-024 mediates smooth muscle relaxation through a different target and signaling pathway than β2-adrenergic receptor agonists. These findings suggest ASM-024

  11. PAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasthmatic airway smooth muscle cells

    NARCIS (Netherlands)

    Chambers, Linda S.; Black, Judith L.; Ge, Qi; Carlin, Stephen M.; Au, Wendy W.; Poniris, Maree; Thompson, Joanne; Johnson, Peter R.; Burgess, Janette K.

    2003-01-01

    The protease-activated receptor-2 (PAR-2) is present on human airway smooth muscle (ASM) cells and can be activated by mast cell tryptase, trypsin, or an activating peptide (AP). Trypsin induced significant increases in PGE 2 release from human ASM cells after 6 and 24 h and also induced cyclooxygen

  12. PAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasthmatic airway smooth muscle cells

    NARCIS (Netherlands)

    Chambers, Linda S; Black, Judith L; Ge, Qi; Carlin, Stephen M; Au, Wendy W; Poniris, Maree; Thompson, Joanne; Johnson, Peter R; Burgess, Janette K

    2003-01-01

    The protease-activated receptor-2 (PAR-2) is present on human airway smooth muscle (ASM) cells and can be activated by mast cell tryptase, trypsin, or an activating peptide (AP). Trypsin induced significant increases in PGE2 release from human ASM cells after 6 and 24 h and also induced cyclooxygena

  13. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    Science.gov (United States)

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms

  14. Sdz asm 981.

    Science.gov (United States)

    Wellington, K; Spencer, C M

    2000-12-01

    SDZ ASM 981 is an anti-inflammatory macrolactam which binds with high affinity to macrophilin-12. The resulting complex inhibits calcineurin, thus blocking the synthesis of inflammatory cytokines. Twice daily application of topical SDZ ASM 981 1% cream was effective in the treatment of atopic dermatitis in adults and children in clinical trials. Summarised results from 260 patients with atopic dermatitis indicate that the efficacy of SDZ ASM 981 is dose dependent. The highest concentration evaluated (1% cream) was not as effective as betamethasone valerate 1% cream in this 3-week trial. The efficacy of SDZ ASM 981 and clobetasol ointments, used under occlusion, did not differ significantly in 10 patients with chronic psoriasis. Likewise, SDZ ASM 981 0.6% and betamethasone valerate 1% creams were similarly effective in 66 patients with allergic contact dermatitis. Concentrations of SDZ ASM 981 in the blood during topical treatment were invariably below 2.1 microg/L. Oral SDZ ASM 981 20mg or 30mg twice daily were effective in a dose dependent manner in the reduction of psoriasis in adults with no evidence of adverse effects. SDZ ASM 981 was well tolerated in the available trials, exhibiting no potential for systemic adverse reactions and no atrophogenic potential, a problem commonly associated with corticosteroid treatment.

  15. Eosinophils induce airway smooth muscle cell proliferation.

    Science.gov (United States)

    Halwani, Rabih; Vazquez-Tello, Alejandro; Sumi, Yuki; Pureza, Mary Angeline; Bahammam, Ahmed; Al-Jahdali, Hamdan; Soussi-Gounni, Abdelillah; Mahboub, Bassam; Al-Muhsen, Saleh; Hamid, Qutayba

    2013-04-01

    Asthma is characterized by eosinophilic airway inflammation and remodeling of the airway wall. Features of airway remodeling include increased airway smooth muscle (ASM) mass. However, little is known about the interaction between inflammatory eosinophils and ASM cells. In this study, we investigated the effect of eosinophils on ASM cell proliferation. Eosinophils were isolated from peripheral blood of mild asthmatics and non-asthmatic subjects and co-cultured with human primary ASM cells. ASM proliferation was estimated using Ki-67 expression assay. The expression of extracellular matrix (ECM) mRNA in ASM cells was measured using quantitative real-time PCR. The role of eosinophil derived Cysteinyl Leukotrienes (CysLTs) in enhancing ASM proliferation was estimated by measuring the release of leukotrienes from eosinophils upon their direct contact with ASM cells using ELISA. This role was confirmed either by blocking eosinophil-ASM contact or co-culturing them in the presence of leukotrienes antagonist. ASM cells co-cultured with eosinophils, isolated from asthmatics, but not non-asthmatics, had a significantly higher rate of proliferation compared to controls. This increase in ASM proliferation was independent of their release of ECM proteins but dependent upon eosinophils release of CysLTs. Eosinophil-ASM cell to cell contact was required for CysLTs release. Preventing eosinophil contact with ASM cells using anti-adhesion molecules antibodies, or blocking the activity of eosinophil derived CysLTs using montelukast inhibited ASM proliferation. Our results indicated that eosinophils contribute to airway remodeling during asthma by enhancing ASM cell proliferation and hence increasing ASM mass. Direct contact of eosinophils with ASM cells triggers their release of CysLTs which enhance ASM proliferation. Eosinophils, and their binding to ASM cells, constitute a potential therapeutic target to interfere with the series of biological events leading to airway remodeling

  16. Endogenous laminin is required for human airway smooth muscle cell maturation

    Directory of Open Access Journals (Sweden)

    Tran Thai

    2006-09-01

    Full Text Available Abstract Background Airway smooth muscle (ASM contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. Methods Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. Results Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. Conclusion While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the

  17. The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yu-Ling Lin

    2013-01-01

    Full Text Available Glioblastoma multiforme (GBM is a highly vascularized and invasive neoplasm. The methanol extract of Angelica sinensis (AS-M is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis. AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival. In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer.

  18. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    Science.gov (United States)

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  19. TRPC3 Regulates Release of Brain-Derived Neurotrophic Factor From Human Airway Smooth Muscle

    OpenAIRE

    Vohra, Pawan K.; Thompson, Michael A.; Sathish, Venkatachalem; Kiel, Alexander; Jerde, Calvin; Pabelick, Christina M.; Singh, Brij B.; Prakash, Y. S.

    2013-01-01

    Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca2+ signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca2+ entry (SOCE; including in ASM) and secretion of factors suc...

  20. Cisco ASM Router

    CERN Multimedia

    2001-01-01

    One of the two "ASM/2-32EM" boxes installed in 1988, from "Cisco Systems Inc." - then an unknown 20-employee company in Menlo Park, California (USA). This is one of the first two Cisco boxes to appear in Switzerland, and possibly Europe. The 220v power supply was a special modification made for use at CERN. They supported IP address filtering, which seemed just what CERN needed to help protect the new Cray XMP-48 super computer from network hackers. The two ASM boxes were both routers and terminal servers. They protected a secure private Ethernet segment used by the Cray project, as well as providing secure terminal connections to that segment, including CERN's first dialback terminal service, which allowed Cray and CERN system analysts to work on the machine from home, using another Cisco feature called TACACS. (Kindly offered by B. Segal who discovered this company while at a Usenix Conference in Phoenix, Arizona in June 1987.)

  1. 维药异常黑胆质成熟剂对人肝癌HepG2细胞生物行为和Rho/ROCK信号通路的影响%Effect of Uyghur medicine ASM on cytobiology behavier and Rho/ROCK signal transduction pathway in human hepatoma HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    张敏芳; 袁芳; 汤建安; 谢凤莲; 哈木拉提·吾甫尔; 胡汉华

    2015-01-01

    为探讨维药异常黑胆质成熟剂(ASM)对人肝癌细胞(HepG2)增殖、侵袭转移的影响及Rho/ROCK信号传导通路相关蛋白表达影响,采用四甲基偶氮唑蓝(MMT)法检测不同浓度ASM(10、20、25、50 mg/mL)和10 μmol/L Y-27632作用24、48、72 h后,对HepG2细胞增殖的影响;采用扫描电镜技术和细胞侵袭实验测定ASM不同剂量组和10μmol/L Y-27632作用24h癌细胞侵袭运动能力,Westem Blot检测ASM不同剂量组和10μmol/L Y-27632作用24 h癌细胞RhoA、ROCK1、ROCK2的表达.结果显示,ASM对肝癌细胞增殖有明显抑制作用,且表现为有明显的剂量效应关系:在10、20 mg/mL ASM剂量组,ASM药物作用24、48、72 h后,HepG2细胞增殖抑制作用随时间的延长而抑制增加,而25、50 mg/mL剂量组,ASM抑制细胞增殖作用不明显;ASM抑制瘤细胞侵袭运动能力,扫描电镜结果显示ASM抑制肿瘤细胞伪足的生长,ASM中高剂量组ROCK1、ROCK2的表达明显降低,RhoA表达无明显变化.由此推论,ASM对人肝癌细胞生长增殖和侵袭运动能力有抑制作用,其机制可能与ROCK酶表达降低有关.

  2. Nonclinical safety assessment of recombinant human acid sphingomyelinase (rhASM) for the treatment of acid sphingomyelinase deficiency:the utility of animal models of disease in the toxicological evaluation of potential therapeutics.

    Science.gov (United States)

    Murray, James M; Thompson, Anne Marie; Vitsky, Allison; Hawes, Michael; Chuang, Wei-Lien; Pacheco, Joshua; Wilson, Stephen; McPherson, John M; Thurberg, Beth L; Karey, Kenneth P; Andrews, Laura

    2015-02-01

    Recombinant human acid sphingomyelinase (rhASM) is being developed as an enzyme replacement therapy for patients with acid sphingomyelinase deficiency (Niemann-Pick disease types A and B), which causes sphingomyelin to accumulate in lysosomes. In the acid sphingomyelinase knock-out (ASMKO) mouse, intravenously administered rhASM reduced tissue sphingomyelin levels in a dose-dependent manner. When rhASM was administered to normal rats, mice, and dogs, no toxicity was observed up to a dose of 30mg/kg. However, high doses of rhASM≥10mg/kg administered to ASMKO mice resulted in unexpected toxicity characterized by cardiovascular shock, hepatic inflammation, adrenal hemorrhage, elevations in ceramide and cytokines (especially IL-6, G-CSF, and keratinocyte chemoattractant [KC]), and death. The toxicity could be completely prevented by the administration of several low doses (3mg/kg) of rhASM prior to single or repeated high doses (≥20mg/kg). These results suggest that the observed toxicity involves the rapid breakdown of large amounts of sphingomyelin into ceramide and/or other toxic downstream metabolites, which are known signaling molecules with cardiovascular and pro-inflammatory effects. Our results suggest that the nonclinical safety assessment of novel therapeutics should include the use of specific animal models of disease whenever feasible.

  3. The ECM deposited by basal asthmatic and non-asthmatic ASM cells is different in composition but not biological function

    NARCIS (Netherlands)

    Harkness, L.; Ashton, A.; Burgess, J.

    2015-01-01

    Aim: The remodelled asthmatic airway has increased airway smooth muscle cell (ASMC) growth, expanded vasculature, and altered extracellular matrix (ECM). The ECM is the external cellular microenvironment which regulates cell behaviour. Under proliferative, inflammatory, or fibrotic conditions, the a

  4. 76 FR 36231 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases

    Science.gov (United States)

    2011-06-21

    ... Engineers (ASME) Codes and New and Revised ASME Code Cases; Final Rule #0;#0;Federal Register / Vol. 76 , No... 50 RIN 3150-AI35 American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code... 2004 ASME Boiler and Pressure Vessel Code, Section III, Division 1; 2007 ASME Boiler and...

  5. ASME Code Efforts Supporting HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    D.K. Morton

    2011-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  6. ASME Code Efforts Supporting HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    D.K. Morton

    2010-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  7. ASME Code Efforts Supporting HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    D.K. Morton

    2012-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  8. Integrin and GPCR Crosstalk in the Regulation of ASM Contraction Signaling in Asthma.

    Science.gov (United States)

    Teoh, Chun Ming; Tam, John Kit Chung; Tran, Thai

    2012-01-01

    Airway hyperresponsiveness (AHR) is one of the cardinal features of asthma. Contraction of airway smooth muscle (ASM) cells that line the airway wall is thought to influence aspects of AHR, resulting in excessive narrowing or occlusion of the airway. ASM contraction is primarily controlled by agonists that bind G protein-coupled receptor (GPCR), which are expressed on ASM. Integrins also play a role in regulating ASM contraction signaling. As therapies for asthma are based on symptom relief, better understanding of the crosstalk between GPCRs and integrins holds good promise for the design of more effective therapies that target the underlying cellular and molecular mechanism that governs AHR. In this paper, we will review current knowledge about integrins and GPCRs in their regulation of ASM contraction signaling and discuss the emerging concept of crosstalk between the two and the implication of this crosstalk on the development of agents that target AHR.

  9. PPARγ ligand ciglitazone inhibits TNFα-induced ICAM-1 in human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Chien-Da Huang

    2014-08-01

    Full Text Available Background: Modification of human airway smooth muscle (ASM function by proinflammatory cytokines has been regarded as a potential mechanism underlying bronchial hyperresponsiveness in asthma. Human ASM cells express intercellular adhesion molecule (ICAM-1 in response to cytokines. Synthetic ligands for peroxisome proliferator-activated receptor (PPARγ reportedly possess anti-inflammatory and immunomodulatory properties. In this study, we examined whether ciglitazone, a synthetic PPARγ ligand, can modulate the basal and tumor necrosis factor (TNFα-induced ICAM1 gene expression in human ASM cells. Methods: Human ASM cells were treated with TNFα. ICAM-1 expression was assessed by flow cytometry and reverse transcriptase-polymerase chain reaction (RT-PCR analysis. PPARγ activity was inhibited by target-specific small interfering (si RNA targeting PPARγ and GW9662, a PPARγ antagonist. Activity of nuclear factor (NF-κB was assessed by using immunoblot analysis, immune-confocal images, and electrophoretic mobility shift assay (EMSA. Results: By flow cytometry, ciglitazone alone had no effect on ICAM-1 expression in ASM cells, but inhibited ICAM-1 expression in response to TNFα (10 ng/ml in a dose-dependent manner (1-10 μM. It also inhibited TNFα-induced ICAM1 gene expression by RT-PCR analysis. Knockdown of PPARγ gene by target-specific siRNA targeting PPARγ enhanced ICAM-1 expression and the inhibitory effect of ciglitazone on TNFα-induced ICAM-1 expression was reversed by PPARγ siRNA and GW9662. SN-50 (10 μg/ml, an inhibitor for nuclear translocation of NF-κB, inhibited TNFα-induced ICAM-1 expression. Ciglitazone did not prevent TNFα-induced degradation of the cytosolic inhibitor of NF-κB (IκB, but inhibited the nuclear translocation of p65 induced by TNFα and suppressed the NF-κB/DNA binding activity. Conclusion: These findings suggest that ciglitazone inhibits TNFα-induced ICAM1 gene expression in human ASM cells through

  10. Regulation of dynein-mediated autophagosomes trafficking by ASM in CASMCs.

    Science.gov (United States)

    Xu, Ming; Zhang, Qiufang; Li, Pin-Lan; Nguyen, Thaison; Li, Xiang; Zhang, Yang

    2016-01-01

    Acid sphingomyelinase (ASM; gene symbol Smpd1) has been shown to play a crucial role in autophagy maturation by controlling lysosomal fusion with autophagosomes in coronary arterial smooth muscle cells (CASMCs). However, the underlying molecular mechanism by which ASM controls autophagolysosomal fusion remains unknown. In primary cultured CASMCs, lysosomal Ca2+ induced by 7-ketocholesterol (7-Ket, an atherogenic stimulus and autophagy inducer) was markedly attenuated by ASM deficiency or TRPML1 gene silencing suggesting that ASM signaling is required for TRPML1 channel activity and subsequent lysosomal Ca(2+) release. In these CASMCs, ASM deficiency or TRPML1 gene silencing markedly inhibited 7-Ket-induced dynein activation. In addition, 7-Ket-induced autophagosome trafficking, an event associated with lysosomal Ca(2+) release and dynein activity, was significantly inhibited in ASM-deficient (Smpd1(-/-)) CASMCs compared to that in Smpd1(+/+) CASMCs. Finally, overexpression of TRPML1 proteins restored 7-Ket-induced lysosomal Ca(2+) release and autophagosome trafficking in Smpd1-/- CASMCs. Collectively, these results suggest that ASM plays a critical role in regulating lysosomal TRPML1-Ca(2+) signaling and subsequent dynein-mediated autophagosome trafficking, which leads its role in controlling autophagy maturation in CASMCs under atherogenic stimulation.

  11. Recombinant human acid sphingomyelinase as an adjuvant to sorafenib treatment of experimental liver cancer.

    Directory of Open Access Journals (Sweden)

    Radoslav Savić

    Full Text Available BACKGROUND: Hepatocellular carcinoma (HCC is the most common form of liver cancer and the third leading cause of cancer death worldwide. The only approved systemic treatment for unresectable HCC is the oral kinase inhibitor, sorafenib. Recombinant human acid sphingomyelinase (rhASM, which hydrolyzes sphingomyelin to ceramide, is an orphan drug under development for the treatment of Type B Niemann-Pick disease (NPD. Due to the hepatotropic nature of rhASM and its ability to generate pro-apoptotic ceramide, this study evaluated the use of rhASM as an adjuvant treatment with sorafenib in experimental models of HCC. METHODOLOGY/PRINCIPAL FINDINGS: In vitro, rhASM/sorafenib treatment reduced the viability of Huh7 liver cancer cells more than sorafenib. In vivo, using a subcutaneous Huh7 tumor model, mouse survival was increased and proliferation in the tumors decreased to a similar extent in both sorafenib and rhASM/sorafenib treatment groups. However, combined rhASM/sorafenib treatment significantly lowered tumor volume, increased tumor necrosis, and decreased tumor blood vessel density compared to sorafenib. These results were obtained despite poor delivery of rhASM to the tumors. A second (orthotopic model of Huh7 tumors also was established, but modest ASM activity was similarly detected in these tumors compared to healthy mouse livers. Importantly, no chronic liver toxicity or weight loss was observed from rhASM therapy in either model. CONCLUSIONS/SIGNIFICANCE: The rhASM/sorafenib combination exhibited a synergistic effect on reducing the tumor volume and blood vessel density in Huh7 xenografts, despite modest activity of rhASM in these tumors. No significant increases in survival were observed from the rhASM/sorafenib treatment. The poor delivery of rhASM to Huh7 tumors may be due, at least in part, to low expression of mannose receptors. The safety and efficacy of this approach, together with the novel findings regarding enzyme targeting

  12. ASME BPE专家访谈

    Institute of Scientific and Technical Information of China (English)

    王欣

    2009-01-01

    ASME BPE,这一串字符对于药品生产商和设备供应商来说意味着什么?这是否是开启生物制药大门的成功密钥?本刊特邀ASME BPE委员会现任委员、资深专家为您详细破译。

  13. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per...... strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found...... that 68.4% of CpG sites and 80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic...

  14. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells.

    Science.gov (United States)

    Takahara, Norihiro; Ito, Satoru; Furuya, Kishio; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-12-01

    Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway.

  15. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Mythili Dileepan

    Full Text Available Airway smooth muscle (ASM cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma.

  16. ASME Material Challenges for Advanced Reactor Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  17. Improvement of ASME NH for Grade 91

    Energy Technology Data Exchange (ETDEWEB)

    Bernard Riou

    2007-10-09

    This report has been prepared in the context of Task 3 of the ASME/DOE Gen IV material project. It has been identified that creep-fatigue evaluation procedures presently available in ASME (1) and RCC-MR (2) have been mainly developed for austenitic stainless steels and may not be suitable for cyclic softening materials such as mod 9 Cr 1 Mo steel (grade 91). The aim of this document is, starting from experimental test results, to perform a review of the procedures and, if necessary, provide recommendations for their improvements.

  18. 78 FR 37848 - ASME Code Cases Not Approved for Use

    Science.gov (United States)

    2013-06-24

    ... COMMISSION ASME Code Cases Not Approved for Use AGENCY: Nuclear Regulatory Commission. ACTION: Draft... public comment draft regulatory guide (DG), DG-1233, ``ASME Code Cases not Approved for Use.'' This regulatory guide lists the American Society of Mechanical Engineers (ASME) Code Cases that the NRC...

  19. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  20. Neurospora crassa ASM-1 complements the conidiation defect in a stuA mutant of Aspergillus nidulans.

    Science.gov (United States)

    Chung, Dawoon; Upadhyay, Srijana; Bomer, Brigitte; Wilkinson, Heather H; Ebbole, Daniel J; Shaw, Brian D

    2015-01-01

    Aspergillus nidulans StuA and Neurospora crassa ASM-1 are orthologous APSES (ASM-1, PHD1, SOK2, Efg1, StuA) transcription factors conserved across a diverse group of fungi. StuA and ASM-1 have roles in asexual (conidiation) and sexual (ascospore formation) development in both organisms. To address the hypothesis that the last common ancestor of these diverse fungi regulated conidiation with similar genes, asm-1 was introduced into the stuA1 mutant of A. nidulans. Expression of asm-1 complemented defective conidiophore morphology and restored conidia production to wild type levels in stuA1. Expression of asm-1 in the stuA1 strain did not rescue the defect in sexual development. When the conidiation regulator AbaA was tagged at its C-terminus with GFP in A. nidulans, it localized to nuclei in phialides. When expressed in the stuA1 mutant, AbaA::GFP localized to nuclei in conidiophores but no longer was confined to phialides, suggesting that expression of AbaA in specific cell types of the conidiophore was conditioned by StuA. Our data suggest that the function in conidiation of StuA and ASM-1 is conserved and support the view that, despite the great morphological and ontogenic diversity of their condiphores, the last common ancestor of A. nidulans and N. crassa produced an ortholog of StuA that was involved in conidiophore development.

  1. SDZ ASM 981 : an emerging safe and effective treatment for atopic dermatitis

    NARCIS (Netherlands)

    Luger, T; Van Leent, EJM; Graeber, M; Hedgecock, S; Thurston, M; Kandra, A; Berth-Jones, J; Bjerke, J; Christophers, E; Knulst, AC; Morren, M; Morris, A; Reitamo, S; Roed-Petersen, J; Schoepf, E; Thestrup-Pedersen, K; Van der Valk, PGM; Bos, JD

    2001-01-01

    Background SDZ ASM 981 is a selective inhibitor of the production of pro-inflammatory cytokines from T cells and mast cells in vitro. It is the first ascomycin macrolactam derivative under development for the treatment of inflammatory skin diseases. Objectives This study was: designed to determine t

  2. Current Activities of the ASME Subgroup NUPACK

    Energy Technology Data Exchange (ETDEWEB)

    Gerald M. Foster; D. Keith Morton; Paul McConnell

    2007-10-01

    Current activities of the American Society of Mechanical Engineers (ASME), Section III Subgroup on Containment Systems for Spent Fuel High-Level Waste Transport Packagings (also known as Subgroup NUPACK) are reviewed with emphasis on the recent revision of Subsection WB. Also, brief insightson new proposals for the development of rules for internal support structures and for a strain-based acceptance criteria are provided.

  3. Real time analysis of β2-adrenoceptor-mediated signaling kinetics in Human Primary Airway Smooth Muscle Cells reveals both ligand and dose dependent differences

    Directory of Open Access Journals (Sweden)

    Hall Ian P

    2011-07-01

    Full Text Available Abstract Background β2-adrenoceptor agonists elicit bronchodilator responses by binding to β2-adrenoceptors on airway smooth muscle (ASM. In vivo, the time between drug administration and clinically relevant bronchodilation varies significantly depending on the agonist used. Our aim was to utilise a fluorescent cyclic AMP reporter probe to study the temporal profile of β2-adrenoceptor-mediated signaling induced by isoproterenol and a range of clinically relevant agonists in human primary ASM (hASM cells by using a modified Epac protein fused to CFP and a variant of YFP. Methods Cells were imaged in real time using a spinning disk confocal system which allowed rapid and direct quantification of emission ratio imaging following direct addition of β2-adrenoceptor agonists (isoproterenol, salbutamol, salmeterol, indacaterol and formoterol into the extracellular buffer. For pharmacological comparison a radiolabeling assay for whole cell cyclic AMP formation was used. Results Temporal analysis revealed that in hASM cells the β2-adrenoceptor agonists studied did not vary significantly in the onset of initiation. However, once a response was initiated, significant differences were observed in the rate of this response with indacaterol and isoproterenol inducing a significantly faster response than salmeterol. Contrary to expectation, reducing the concentration of isoproterenol resulted in a significantly faster initiation of response. Conclusions We conclude that confocal imaging of the Epac-based probe is a powerful tool to explore β2-adrenoceptor signaling in primary cells. The ability to analyse the kinetics of clinically used β2-adrenoceptor agonists in real time and at a single cell level gives an insight into their possible kinetics once they have reached ASM cells in vivo.

  4. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

    Science.gov (United States)

    Pan, Shi; Sharma, Pawan; Shah, Sushrut D; Deshpande, Deepak A

    2017-07-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases. Copyright © 2017 the American Physiological

  5. Human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem; Kassem, Moustapha

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  6. Defining an olfactory receptor function in airway smooth muscle cells

    Science.gov (United States)

    Aisenberg, William H.; Huang, Jessie; Zhu, Wanqu; Rajkumar, Premraj; Cruz, Randy; Santhanam, Lakshmi; Natarajan, Niranjana; Yong, Hwan Mee; De Santiago, Breann; Oh, Jung Jin; Yoon, A-Rum; Panettieri, Reynold A.; Homann, Oliver; Sullivan, John K.; Liggett, Stephen B.; Pluznick, Jennifer L.; An, Steven S.

    2016-01-01

    Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (Golf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma. PMID:27905542

  7. Engineering students catch top prizes at ASME competition

    OpenAIRE

    Crumbley, Liz

    2006-01-01

    The Virginia Tech chapter of the American Society of Mechanical Engineers (ASME) carried away several top awards - including one for the design of a fishing apparatus for a quadriplegic - during the recent ASME District F student conference hosted by the University of Tennessee.

  8. The DNA methylome of human peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Yingrui Li

    Full Text Available DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand, we report a comprehensive (92.62% methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and 80% displayed allele-specific expression (ASE. These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.

  9. Effect of vascular endothelial growth factor and its receptor KDR on human airway smooth muscle cells proliferation

    Institute of Scientific and Technical Information of China (English)

    ZOU hui; XU Yong-jian; ZHANG Zhen-xiang

    2005-01-01

    @@ Airway remodeling with inflammatory cell infiltration, epithelial shedding, basement membrane thickening and increased mass of airway smooth muscle (ASM) is an important determinant of bronchial obstruction and hyperresponsiveness in asthma.1,2 Increased ASM mass is by far the most important abnormality responsible for excessive airway narrowing and compliance of the airway wall in asthma.1-3 ASM growth and proliferation in asthma is a complex phenomenon of which the underlying mechanisms are difficult to investigate in vivo. The increased amount of ASM in asthmatics is an indication of abnormal cell proliferation and growth, but little is known regarding the molecular mechanisms and factors that regulate ASM cell proliferation and growth in asthma.

  10. Bronchodilatory and anti-inflammatory effects of ASM-024, a nicotinic receptor ligand, developed for the treatment of asthma.

    Science.gov (United States)

    Assayag, Evelyne Israël; Beaulieu, Marie-Josée; Cormier, Yvon

    2014-01-01

    Conventional asthma and COPD treatments include the use of bronchodilators, mainly β2-adrenergic agonists, muscarinic receptor antagonists and corticosteroids or leukotriene antagonists as anti-inflammatory agents. These active drugs are administered either separately or given as a fixed-dose combination medication into a single inhaler. ASM-024, a homopiperazinium compound, derived from the structural modification of diphenylmethylpiperazinium (DMPP), has been developed to offer an alternative mechanism of action that could provide symptomatic control through combined anti-inflammatory and bronchodilator properties in a single entity. A dose-dependent inhibition of cellular inflammation in bronchoalveolar lavage fluid was observed in ovalbumin-sensitized mice, subsequently treated for 3 days by nose-only exposure with aerosolized ASM-024 at doses up to 3.8 mg/kg (ED50 = 0.03 mg/kg). The methacholine ED250 values indicated that airway hyperresponsivenness (AHR) to methacholine decreased following ASM-024 administration by inhalation at a dose of 1.5 mg/kg, with a value of 0.145 ± 0.032 mg/kg for ASM 024-treated group as compared to 0.088 ± 0.023 mg/kg for untreated mice. In in vitro isometric studies, ASM-024 elicited dose-dependent relaxation of isolated mouse tracheal, human, and dog bronchial preparations contracted with methacholine and guinea pig tracheas contracted with histamine. ASM-024 showed also a dose and time dependant protective effect on methacholine-induced contraction. Overall, with its combined anti-inflammatory, bronchodilating and bronchoprotective properties, ASM-024 may represent a new class of drugs with a novel pharmacological approach that could prove useful for the chronic maintenance treatment of asthma and, possibly, COPD.

  11. Bronchodilatory and Anti-Inflammatory Effects of ASM-024, a Nicotinic Receptor Ligand, Developed for the Treatment of Asthma

    Science.gov (United States)

    Assayag, Evelyne Israël; Beaulieu, Marie-Josée; Cormier, Yvon

    2014-01-01

    Conventional asthma and COPD treatments include the use of bronchodilators, mainly β2-adrenergic agonists, muscarinic receptor antagonists and corticosteroids or leukotriene antagonists as anti-inflammatory agents. These active drugs are administered either separately or given as a fixed-dose combination medication into a single inhaler. ASM-024, a homopiperazinium compound, derived from the structural modification of diphenylmethylpiperazinium (DMPP), has been developed to offer an alternative mechanism of action that could provide symptomatic control through combined anti-inflammatory and bronchodilator properties in a single entity. A dose-dependent inhibition of cellular inflammation in bronchoalveolar lavage fluid was observed in ovalbumin-sensitized mice, subsequently treated for 3 days by nose-only exposure with aerosolized ASM-024 at doses up to 3.8 mg/kg (ED50 = 0.03 mg/kg). The methacholine ED250 values indicated that airway hyperresponsivenness (AHR) to methacholine decreased following ASM-024 administration by inhalation at a dose of 1.5 mg/kg, with a value of 0.145±0.032 mg/kg for ASM 024-treated group as compared to 0.088±0.023 mg/kg for untreated mice. In in vitro isometric studies, ASM-024 elicited dose-dependent relaxation of isolated mouse tracheal, human, and dog bronchial preparations contracted with methacholine and guinea pig tracheas contracted with histamine. ASM-024 showed also a dose and time dependant protective effect on methacholine-induced contraction. Overall, with its combined anti-inflammatory, bronchodilating and bronchoprotective properties, ASM-024 may represent a new class of drugs with a novel pharmacological approach that could prove useful for the chronic maintenance treatment of asthma and, possibly, COPD. PMID:24465890

  12. Bronchodilatory and anti-inflammatory effects of ASM-024, a nicotinic receptor ligand, developed for the treatment of asthma.

    Directory of Open Access Journals (Sweden)

    Evelyne Israël Assayag

    Full Text Available Conventional asthma and COPD treatments include the use of bronchodilators, mainly β2-adrenergic agonists, muscarinic receptor antagonists and corticosteroids or leukotriene antagonists as anti-inflammatory agents. These active drugs are administered either separately or given as a fixed-dose combination medication into a single inhaler. ASM-024, a homopiperazinium compound, derived from the structural modification of diphenylmethylpiperazinium (DMPP, has been developed to offer an alternative mechanism of action that could provide symptomatic control through combined anti-inflammatory and bronchodilator properties in a single entity. A dose-dependent inhibition of cellular inflammation in bronchoalveolar lavage fluid was observed in ovalbumin-sensitized mice, subsequently treated for 3 days by nose-only exposure with aerosolized ASM-024 at doses up to 3.8 mg/kg (ED50 = 0.03 mg/kg. The methacholine ED250 values indicated that airway hyperresponsivenness (AHR to methacholine decreased following ASM-024 administration by inhalation at a dose of 1.5 mg/kg, with a value of 0.145 ± 0.032 mg/kg for ASM 024-treated group as compared to 0.088 ± 0.023 mg/kg for untreated mice. In in vitro isometric studies, ASM-024 elicited dose-dependent relaxation of isolated mouse tracheal, human, and dog bronchial preparations contracted with methacholine and guinea pig tracheas contracted with histamine. ASM-024 showed also a dose and time dependant protective effect on methacholine-induced contraction. Overall, with its combined anti-inflammatory, bronchodilating and bronchoprotective properties, ASM-024 may represent a new class of drugs with a novel pharmacological approach that could prove useful for the chronic maintenance treatment of asthma and, possibly, COPD.

  13. Extension of ASME VIII Division 1 design limits

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, D.L. [Stress Engineering Services, Inc., Cincinnati, OH (United States). Consumer Products Division

    1995-12-01

    ASME Subcommittee 2 on materials presented a series of questions to PVRC regarding the acceptability of using the criteria of ASME Section 2, Part D, Appendix 1 for extending design limits for AISI 304 stainless steel beyond 1,500 F to 2,000 F and Alloy 800 HT from 1,650 F to 1,800 F respectively. This paper describes a project supported by PVRC to try and find an answer to this question. The project consisted of three parts. The first was a survey to determine the intent behind the wording of the ASME criteria in order to make an extrapolation of methods for setting design limits to higher temperatures. The second was a demonstration of a methodology for developing very high temperature limits, using a set of creep data for Alloy 800 HT. The third was a parametric study to evaluate the feasibility of using the minimum creep rate based deformation criterion used in the ASME Code to set strain related limits on materials showing predominantly tertiary creep. Based on this study, an alternative method to that currently employed by ASME in Appendix 1 has been proposed for setting high temperature design limits, based on a consistent margin on time to failure. This method has been presented to ASME for possible adoption. In addition, this investigation revealed some more detailed issues involving cyclic loading at very high temperature. It was recommended that these should be examined further by ASME. These issues are summarized briefly in this paper.

  14. TNFα and IFNγ synergistically enhance transcriptional activation of CXCL10 in human airway smooth muscle cells via STAT-1, NF-κB, and the transcriptional coactivator CREB-binding protein.

    Science.gov (United States)

    Clarke, Deborah L; Clifford, Rachel L; Jindarat, Sarawut; Proud, David; Pang, Linhua; Belvisi, Maria; Knox, Alan J

    2010-09-17

    Asthmatic airway smooth muscle (ASM) expresses interferon-γ-inducible protein-10 (CXCL10), a chemokine known to mediate mast cell migration into ASM bundles that has been reported in the airways of asthmatic patients. CXCL10 is elevated in patients suffering from viral exacerbations of asthma and in patients with chronic obstructive pulmonary disease (COPD), diseases in which corticosteroids are largely ineffective. IFNγ and TNFα synergistically induce CXCL10 release from human ASM cells in a steroid-insensitive manner, via an as yet undefined mechanism. We report that TNFα activates the classical NF-κB (nuclear factor κB) pathway, whereas IFNγ activates JAK2/STAT-1α and that inhibition of the JAK/STAT pathway is more effective in abrogating CXCL10 release than the steroid fluticasone. The synergy observed with TNFα and IFNγ together, however, did not lie at the level of NF-κB activation, STAT-1α phosphorylation, or in vivo binding of these transcription factors to the CXCL10 promoter. Stimulation of human ASM cells with TNFα and IFNγ induced histone H4 but not histone H3 acetylation at the CXCL10 promoter, although no synergism was observed when both cytokines were combined. We show, however, that TNFα and IFNγ exert a synergistic effect on the recruitment of CREB-binding protein (CBP) to the CXCL10, which is accompanied by increased RNA polymerase II. Our results provide evidence that synergism between TNFα and IFNγ lies at the level of coactivator recruitment in human ASM and suggest that inhibition of JAK/STAT signaling may be of therapeutic benefit in steroid-resistant airway disease.

  15. Cell encoding recombinant human erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A.K.; Withy, R.M.; Zabrecky, J.R.; Masiello, N.C.

    1990-09-04

    This patent describes a C127 cell transformed with a recombinant DNA vector. It comprises: a DNA sequence encoding human erythropoietin, the transformed cell being capable of producing N-linked and O-linked glycosylated human erythropoietin.

  16. Salmeterol and cytokines modulate inositol-phosphate signalling in Human airway smooth muscle cells via regulation at the receptor locus

    Directory of Open Access Journals (Sweden)

    Swan Caroline

    2007-09-01

    Full Text Available Abstract Background Airway hyper-responsiveness (AHR is a key feature of asthma and a causal relationship between airway inflammation and AHR has been identified. The aim of the current study was to clarify the effect of proinflammatory cytokines and asthma medication on primary human airway smooth muscle (ASM inositol phosphate (IPx signalling and define the regulatory loci involved. Methods Primary Human ASM cells were isolated from explants of trachealis muscle from individuals with no history of respiratory disease. The effect of cytokine or asthma medication on histamine or bradykinin induced IPx signalling was assessed by [3H] inositol incorporation. Quantitative Real Time PCR was used to measure mRNA levels of receptors and downstream signalling components. Transcriptional mechanisms were explored using a combination of 5'Rapid Amplification of cDNA Ends (5'RACE and promoter-reporter techniques. Results Treatment of Human ASM cells with IL-13, IFNγ or salmeterol for 24 hours lead to a modest augmentation of histamine induced IPx responses (144.3 +/- 9.3, 126.4 +/- 7.5 and 117.7 +/- 5.2%, p i.e. H1 Histamine Receptor (HRH1, B2 Bradykinin Receptor (BDKRB2, Gαq/11 and PLC-β1 identified that a significant induction of receptor mRNA (>2 fold was a feature of these responses explaining the cytokine and spasmogen specificity. The HRH1 and BDKRB2 promoter regions were mapped in ASM and promoter-reporter analyses identified that salmeterol can induce HRH1 (>2 fold and BDKRB2 (2–5 fold transcription. The effect of cytokines on HRH1 and BDKRB2 promoter-reporter expression suggested a more complex regulation of mRNA expression involving additional loci to the core promoter. Conclusion Our results indicate that the spasmogen specific receptor locus may be a key site of regulation determining the magnitude of spasmogen mediated ASM IPx responses during airway inflammation or following asthma medication. These data provide further insight into the

  17. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

  18. Auriculoterapia en pacientes asmáticos

    Directory of Open Access Journals (Sweden)

    Adolfo González Salvador

    1997-04-01

    Full Text Available Se realiza un estudio para evaluar la eficacia de la auriculopuntura en 30 asmáticos del área de salud de Aguada de Pasajeros, durante los meses de noviembre de 1992 a abril de 1993. El tratamiento se aplicó durante un mes, con seguimiento durante los 5 meses posteriores. Se observó una disminución en la frecuencia, intensidad y duración de las crisis de asma; la mayoría de los pacientes tuvo una evolución satisfactoria y no se presentaron complicaciones. Se concluye que la auriculoterapia es un método útil en pacientes con asma bronquial debido a su eficacia e inocuidadA study was conducted to evaluate the efficacy of auriculopuncture in 30 asthmatic patients from the health area of Aguada de Pasajeros between November, 1992, and April, 1993. The treatment was applied for a month, with a follow-up during the next 5 months. It was observed a reduction in the frequency, intensity and duration of the asthma crises. Most of the patients had a satisfactory evolution and there were no complications. It is concluded that auriculotherapy is a useful method for patients with bronchial asthma due to its effectiveness and innocuousness.

  19. Safety Analysis Report for the KRI-ASM Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, D. H.; Seo, K. S

    2006-10-15

    Safety evaluation for the KRI-ASM transport package to transport safely I-131, which is produced at HANARO research reactor in KAERI, was carried out. In the safety analyses results for the KRI-ASM transport package, all the maximum stresses as well as the maximum temperature of the surface are lower than their allowable limits. The safety tests to verify the safety analyses results will be performed by using the test model of the KRI-BGM transport package.

  20. Mechanisms of Cigarette Smoke Effects on Human Airway Smooth Muscle.

    Directory of Open Access Journals (Sweden)

    Mark E Wylam

    Full Text Available Cigarette smoke contributes to or exacerbates airway diseases such as asthma and COPD, where airway hyperresponsiveness and airway smooth muscle (ASM proliferation are key features. While factors such as inflammation contribute to asthma in part by enhancing agonist-induced intracellular Ca(2+ ([Ca(2+]i responses of ASM, the mechanisms by which cigarette smoke affect ASM are still under investigation. In the present study, we tested the hypothesis that cigarette smoke enhances the expression and function of Ca(2+ regulatory proteins leading to increased store operated Ca(2+ entry (SOCE and cell proliferation. Using isolated human ASM (hASM cells, incubated in the presence and absence cigarette smoke extract (CSE we determined ([Ca(2+]i responses and expression of relevant proteins as well as ASM proliferation, reactive oxidant species (ROS and cytokine generation. CSE enhanced [Ca(2+]i responses to agonist and SOCE: effects mediated by increased expression of TRPC3, CD38, STIM1, and/or Orai1, evident by attenuation of CSE effects when siRNAs against these proteins were used, particularly Orai1. CSE also increased hASM ROS generation and cytokine secretion. In addition, we found in the airways of patients with long-term smoking history, TRPC3 and CD38 expression were significantly increased compared to life-long never-smokers, supporting the role of these proteins in smoking effects. Finally, CSE enhanced hASM proliferation, an effect confirmed by upregulation of PCNA and Cyclin E. These results support a critical role for Ca(2+ regulatory proteins and enhanced SOCE to alter airway structure and function in smoking-related airway disease.

  1. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  2. Penetration of ASM 981 in canine skin: a comparative study.

    Science.gov (United States)

    Gutzwiller, Meret E Ricklin; Reist, Martin; Persohn, Elke; Peel, John E; Roosje, Petra J

    2006-01-01

    ASM 981 has been developed for topical treatment of inflammatory skin diseases. It specifically inhibits the production and release of pro-inflammatory cytokines. We measured the skin penetration of ASM 981 in canine skin and compared penetration in living and frozen skin. To make penetration of ASM 981 visible in dog skin, tritium labelled ASM 981 was applied to a living dog and to defrosted skin of the same dog. Using qualitative autoradiography the radioactive molecules were detected in the lumen of the hair follicles until the infundibulum, around the superficial parts of the hair follicles and into a depth of the dermis of 200 to 500 microm. Activity could not be found in deeper parts of the hair follicles, the dermis or in the sebaceous glands. Penetration of ASM 981 is low in canine skin and is only equally spread in the upper third of the dermis 24 hours after application. Penetration in frozen skin takes even longer than in living canine skin but shows the same distribution.

  3. New Semantic Model for Authentication Protocols in ASMs

    Institute of Scientific and Technical Information of China (English)

    Rui Xue; Deng-Guo Feng

    2004-01-01

    A new semantic model in Abstract State Model(ASM)for authentication protocols is presented.It highlights the Woo-Lam's ideas for authentication,which is the strongest one in Lowe's definition hierarchy for entity authentication.Apart from the flexible and natural features in forming and analyzing protocols inherited from ASM,the model defines both authentication and secrecy properties explicitly in first order sentences as invariants.The process of proving security properties with respect to an authentication protocol blends the correctness and secrecy properties together to avoid the potential flaws which may happen when treated separately.The security of revised Helsinki protocol is shown as a case study.The new model is different from the previous ones in ASMs.

  4. AsmL Specification of a Ptolemy II Scheduler

    DEFF Research Database (Denmark)

    Lázaro Cuadrado, Daniel; Koch, Peter; Ravn, Anders Peter

    2003-01-01

    Ptolemy II is a tool that combines different computational models for simulation and design of embedded systems. AsmL is a software specification language based on the Abstract State Machine formalism. This paper reports on development of an AsmL model of the Synchronous Dataflow domain scheduler...... of Ptolemy II. By building this model we can give precise semantics to the implementation. Furthermore it allows us to isolate the scheduling problem from the tool and make the potential parallelism of the implementation explicit. The model is executable and is tested against the implementation...

  5. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma.

  6. 14 CFR 330.31 - What data must air carriers submit concerning ASMs or RTMs?

    Science.gov (United States)

    2010-01-01

    ... combination passenger/cargo carrier, you must have submitted your August 2001 total completed ASM report to... correct an error that you document to the Department, you must not alter the ASM or RTM reports...

  7. Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine.

    Science.gov (United States)

    Qiu, Huawei; Edmunds, Tim; Baker-Malcolm, Jennifer; Karey, Kenneth P; Estes, Scott; Schwarz, Cordula; Hughes, Heather; Van Patten, Scott M

    2003-08-29

    One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.

  8. After-School Math PLUS (ASM+) Final Evaluation Report

    Science.gov (United States)

    Academy for Educational Development, 2007

    2007-01-01

    This report summarizes findings from the Academy for Educational Development's (AED's) evaluation of After-School Math PLUS (ASM+). This program was designed to help students find the math in everyday experiences and create awareness about the importance of math skills for future career options. The evaluation was conducted by AED's Center for…

  9. Diffusion inside living human cells

    DEFF Research Database (Denmark)

    Leijnse, N.; Jeon, J. -H.; Loft, Steffen

    2012-01-01

    Naturally occurring lipid granules diffuse in the cytoplasm and can be used as tracers to map out the viscoelastic landscape inside living cells. Using optical trapping and single particle tracking we found that lipid granules exhibit anomalous diffusion inside human umbilical vein endothelial...... cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center...... of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell...

  10. 46 CFR 57.02-2 - Adoption of section IX of the ASME Code.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of section IX of the ASME Code. 57.02-2 Section... AND BRAZING General Requirements § 57.02-2 Adoption of section IX of the ASME Code. (a) The... accordance with section IX of the ASME (American Society of Mechanical Engineers) Code, as limited,...

  11. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self-renewal and......Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self...... of clinical applications, e.g., non-healing bone fractures and defects and also non-skeletal degenerative diseases like heart failure. Currently, the numbers of clinical trials that employ MSC are increasing. However, several biological and biotechnological challenges need to be overcome to benefit from...

  12. A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci

    LENUS (Irish Health Repository)

    Prendergast, James G D

    2012-05-19

    AbstractBackgroundChromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).ResultsUsing a statistically rigorous protocol, we investigated the genomic distribution of ASHM in hESCs, and their relationship to sites of allele-specific expression (ASE) and DNA methylation. We found that, although they were rare, sites of ASHM were substantially enriched at loci displaying ASE. Many were also found at known imprinted regions, hence sites of ASHM are likely to be better markers of imprinted regions than sites of ASM. We also found that sites of ASHM and ASE in hESCs colocalize at risk loci for developmental syndromes mediated by deletions, providing insights into the etiology of these disorders.ConclusionThese results demonstrate the potential importance of ASHM patterns in the interpretation of disease loci, and the protocol described provides a basis for similar studies of ASHM in other cell types to further our understanding of human disease susceptibility.

  13. Glioma cell death induced by irradiation or alkylating agent chemotherapy is independent of the intrinsic ceramide pathway.

    Directory of Open Access Journals (Sweden)

    Dorothee Gramatzki

    Full Text Available BACKGROUND/AIMS: Resistance to genotoxic therapy is a characteristic feature of glioma cells. Acid sphingomyelinase (ASM hydrolyzes sphingomyelin to ceramide and glucosylceramide synthase (GCS catalyzes ceramide metabolism. Increased ceramide levels have been suggested to enhance chemotherapy-induced death of cancer cells. METHODS: Microarray and clinical data for ASM and GCS in astrocytomas WHO grade II-IV were acquired from the Rembrandt database. Moreover, the glioblastoma database of the Cancer Genome Atlas network (TCGA was used for survival data of glioblastoma patients. For in vitro studies, increases in ceramide levels were achieved either by ASM overexpression or by the GCS inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP in human glioma cell lines. Combinations of alkylating chemotherapy or irradiation and ASM overexpression, PPMP or exogenous ceramide were applied in parental cells. The anti-glioma effects were investigated by assessing proliferation, metabolic activity, viability and clonogenicity. Finally, viability and clonogenicity were assessed in temozolomide (TMZ-resistant cells upon treatment with PPMP, exogenous ceramide, alkylating chemotherapy, irradiation or their combinations. RESULTS: Interrogations from the Rembrandt and TCGA database showed a better survival of glioblastoma patients with low expression of ASM or GCS. ASM overexpression or PPMP treatment alone led to ceramide accumulation but did not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PPMP or exogenous ceramide induced acute cytotoxicity in glioblastoma cells. Combined treatments with chemotherapy or irradiation led to additive, but not synergistic effects. Finally, no synergy was found when TMZ-resistant cells were treated with exogenous ceramide or PPMP alone or in combination with TMZ or irradiation. CONCLUSION: Modulation of intrinsic glioma cell ceramide levels by ASM overexpression or GCS

  14. TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle.

    Science.gov (United States)

    Vohra, Pawan K; Thompson, Michael A; Sathish, Venkatachalem; Kiel, Alexander; Jerde, Calvin; Pabelick, Christina M; Singh, Brij B; Prakash, Y S

    2013-12-01

    Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.

  15. Role of purinergic receptors in the activation of human airway smooth muscle cells by the antimicrobial peptide LL-37

    Directory of Open Access Journals (Sweden)

    Suzanne Zuyderduyn

    2006-12-01

    Full Text Available Inflammatory cells that infiltrate and surround the airway smooth muscle (ASM layer express antimicrobial peptides including the cathelicidin LL-37. LL-37 has been shown to activate epithelial cells by transactivation of the epidermal growth factor receptor (EGFR. Previously, we have shown that LL-37-induced IL-8 release by ASM cells was not dependent on either formyl peptide receptors or the EGFR (ATS 2005. In monocytes LL-37 induces processing of IL-1ß through activation of the purinergic P2X7 receptor. Therefore, the aim of our study was to evaluate the role of purinergic receptors in LL-37-induced activation of ASM cells, and to explore the involvement of several intracellular signalling pathways. ASM cells were cultured and serum-deprived 24 hours before stimulation with LL-37 (10 µg·ml–1. The purinergic receptor antagonist suramin and inhibitors of ERK1/2, p38, Src and PI3K were preincubated for one hour. ERK1/2 phosphorylation was assessed by Western Blot, and IL-8 release was determined in supernatants using a sandwich ELISA. RT-PCR was performed for P2X7 on untreated ASM cells. LL-37 induced ERK1/2 phosphorylation and IL-8 release; both were inhibited by suramin (IL-8: 86%. Inhibitors of ERK1/2, p38 and Src signalling also reduced LL-37-induced IL-8 release (by 67%, 63% and 76%, respectively, suggesting a role for these pathways. P2X7 mRNA was expressed in ASM cells. These data show that LL-37-induced IL-8 release is mediated via purinergic receptors, ERK1/2 activation, p38 and Src signalling. Our PCR data are in line with the hypothesis that also in ASM P2X7 is the purinergic receptor involved in LL-37 signalling, although this needs further investigation.

  16. ASME code ductile failure criteria for impulsively loaded pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, Robert E.; Duffey, T. A. (Thomas A.); Rodriguez, E. A. (Edward A.)

    2003-01-01

    Ductile failure criteria suitable for application to impulsively loaded high pressure vessels that are designed to the rules of the ASME Code Section VI11 Division 3 are described and justified. The criteria are based upon prevention of load instability and the associated global failure mechanisms, and on protection against progressive distortion for multiple-use vessels. The criteria are demonstrated by the design and analysis of vessels that contain high explosive charges.

  17. ASME Evaluation on Grid Mobile E-Commerce Process

    OpenAIRE

    Dan Chang; Wei Liao

    2012-01-01

    With the development of E-commerce, more scholars have paid attention to research on Mobile E-commerce and mostly focus on the optimization and evaluation of existing process. This paper researches the evaluation of Mobile E-commerce process with a method called ASME. Based on combing and analyzing current mobile business process and utilizing the grid management theory, mobile business process based on grid are constructed. Firstly, the existing process, namely Non-grid Mobile E-commerce, an...

  18. ASME Evaluation on Grid Mobile E-Commerce Process

    OpenAIRE

    Dan Chang; Wei Liao

    2012-01-01

    With the development of E-commerce, more scholars have paid attention to research on Mobile E-commerce and mostly focus on the optimization and evaluation of existing process. This paper researches the evaluation of Mobile E-commerce process with a method called ASME. Based on combing and analyzing current mobile business process and utilizing the grid management theory, mobile business process based on grid are constructed. Firstly, the existing process, namely Non-grid Mobile E-commerce, an...

  19. Human embryonic stem cells handbook

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-03-01

    Full Text Available After the Nobel prize in physiology or medicine was awarded jointly to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent it became imperative to write down the review for a book entirely devoted to human embryonic stem cells (hES, those cells that are a urgent need for researchers, those cells that rekindle the ethical debates and finally, last but not least, those cells whose study paved the way to obtain induced pluripotent stem cells by the OSKC’s Yamanaka method (the OSKC acronim refers, for those not familiar with the topic, to the four stemness genes used to transfect somatic fibroblasts: Oct4, Sox2, Klf4 and c-Myc....

  20. 专家谈ASME BPE——推动ASME BPE在亚洲的应用

    Institute of Scientific and Technical Information of China (English)

    Tony Cirillo

    2007-01-01

    ASME BPE是一种国际行业规范,其应用的领域包括生物产品的生产,制药业和个人护理品业等,目前已在世界30多个国家进行认证工作。但作为经济飞速发展的亚洲国家一直鲜有参与。因此,ASME BPE委员会非常希望招募亚洲国家成员.并使其参与到规范的制订中,以扩大规范的使用领域。

  1. ASM News Volume 71 Number 9, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Tamar Barkay and Barth F. Smets

    2005-01-01

    Genetic exchanges among prokaryotes, formerly considered only a marginal phenomenon, increasingly are being viewed as profoundly affecting evolution. Indeed, some researchers argue for utterly revamping our concept of microbial speciation and phylogeny by replacing the traditional ''tree'' with a newer ''net'' to account for these horizontal transfers of genes. This conceptual ferment is occurring while molecular biologists reveal how horizontal gene transfers occur even as microbes protect the integrity of their genomes. Other studies reveal the number and diversity and abundance of genetic elements that mediate horizontal gene transfers (HGTs) or facilitate genome rearrangements, deletions, and insertions. Taken together, this information suggests that microbial communities collectively possess a dynamic gene pool, where novel genetic combinations act as a driving force in genomic innovation, compensating individual microbial species for their inability to reproduce sexually. These microbial genomic dynamics can present both environmental threats and promise to humans. One major threat, for example, comes from the spread of antibiotic resistance and virulence genes among pathogenic microbes. Another less-documented issue involves transgenic plants and animals, whose uses are being restricted because of concerns that genes may be transferred to untargeted organisms where they might cause harm. A possible benefit from HGT comes from its potential to enhance the functional diversity of microbial communities and to improve their performance in changing or extreme environments. Such changes might be exploited, for example, as part of efforts to manage environmental pollution and might be achieved by spreading genes into resident microbes to confer specific biochemical activities.

  2. Human fetal mesenchymal stem cells.

    Science.gov (United States)

    O'Donoghue, Keelin; Chan, Jerry

    2006-09-01

    Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The

  3. [Ca2+]i oscillations in ASM: relationship with persistent airflow obstruction in asthma.

    Science.gov (United States)

    Sweeney, David; Hollins, Fay; Gomez, Edith; Saunders, Ruth; Challiss, R A John; Brightling, Christopher E

    2014-07-01

    The cause of airway smooth muscle (ASM) hypercontractility in asthma is not fully understood. The relationship of spontaneous intracellular calcium oscillation frequency in ASM to asthma severity was investigated. Oscillations were increased in subjects with impaired lung function abolished by extracellular calcium removal, attenuated by caffeine and unaffected by verapamil or nitrendipine. Whether modulation of increased spontaneous intracellular calcium oscillations in ASM from patients with impaired lung function represents a therapeutic target warrants further investigation.

  4. Differentiated human stem cells resemble fetal, not adult, β cells.

    Science.gov (United States)

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  5. Significant issues and changes for ANSI/ASME OM-1 1981, part 1, ASME OMc code-1994, and ASME OM Code-1995, Appendix I, inservice testing of pressure relief devices in light water reactor power plants

    Energy Technology Data Exchange (ETDEWEB)

    Seniuk, P.J.

    1996-12-01

    This paper identifies significant changes to the ANSI/ASME OM-1 1981, Part 1, and ASME Omc Code-1994 and ASME OM Code-1995, Appendix I, {open_quotes}Inservice Testing of Pressure Relief Devices in Light-Water Reactor Power Plants{close_quotes}. The paper describes changes to different Code editions and presents insights into the direction of the code committee and selected topics to be considered by the ASME O&M Working Group on pressure relief devices. These topics include scope issues, thermal relief valve issues, as-found and as-left set-pressure determinations, exclusions from testing, and cold setpoint bench testing. The purpose of this paper is to describe some significant issues being addressed by the O&M Working Group on Pressure Relief Devices (OM-1). The writer is currently the chair of OM-1 and the statements expressed herein represents his personal opinion.

  6. Estado asmático en niños.

    Directory of Open Access Journals (Sweden)

    Camilo Cañas

    2009-10-01

    Full Text Available El estado asmático es una entidad que se ve con relativa frecuencia en los servicios de emergencia; el pilar de su tratamiento son los esteroides y los ß-agonistas. Sin embargo cuando el enfermo no responde favorablemente al tratamiento se debe recurrir a otras alternativas como: adrenalina subcutánea, anticolinérgicos, aminofilina, sulfato de magnesio, helio, gases anestésicos, etc. Sólo 5% de los casos de asma severa requieren ventilación mecánica pero en tales ocasiones la mortalidad puede ser 13%.

  7. Chromatin remodeling by rosuvastatin normalizes TSC2-/meth cell phenotype through the expression of tuberin.

    Science.gov (United States)

    Lesma, Elena; Ancona, Silvia; Orpianesi, Emanuela; Grande, Vera; Di Giulio, Anna Maria; Gorio, Alfredo

    2013-05-01

    Tuberous sclerosis complex (TSC) is a multi-systemic syndrome caused by mutations in TSC1 or TSC2 gene. In TSC2-null cells, Rheb, a member of the Ras family of GTPases, is constitutively activated. Statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase and block the synthesis of isoprenoid lipids with inhibition of Rheb farnesylation and RhoA geranylgeranylation. The effects of rosuvastatin on the function of human TSC2(-/-) and TSC2(-/meth) α-actin smooth muscle (ASM) cells have been investigated. The TSC2(-/-) and TSC2(-/meth) ASM cells, previously isolated in our laboratory from the renal angiomyolipoma of two TSC patients, do not express tuberin and bear loss of heterozigosity caused by a double hit on TSC2 and methylation of TSC2 promoter, respectively. Exposure to rosuvastatin affected TSC2(-/meth) ASM cell growth and promoted tuberin expression by acting as a demethylating agent. This occurred without changes in interleukin release. Rosuvastatin also reduced RhoA activation in TSC2(-/meth) ASM cells, and it required coadministration with the specific mTOR (mammalian target of rapamycin) inhibitor rapamycin to be effective in TSC2(-/-) ASM cells. Rapamycin enhanced rosuvastatin effect in inhibiting cell proliferation in TSC2(-/-) and TSC2(-/meth) ASM cells. Rosuvastatin alone did not alter phosphorylation of S6 and extracellular signal-regulated kinase (ERK), and at the higher concentration, rosuvastatin and rapamycin slightly decreased ERK phosphorylation. These results suggest that rosuvastatin may potentially represent a treatment adjunct to the therapy with mTOR inhibitors now in clinical development for TSC. In particular, rosuvastatin appears useful when the disease is originated by epigenetic defects.

  8. ASM Based Synthesis of Handwritten Arabic Text Pages.

    Science.gov (United States)

    Dinges, Laslo; Al-Hamadi, Ayoub; Elzobi, Moftah; El-Etriby, Sherif; Ghoneim, Ahmed

    2015-01-01

    Document analysis tasks, as text recognition, word spotting, or segmentation, are highly dependent on comprehensive and suitable databases for training and validation. However their generation is expensive in sense of labor and time. As a matter of fact, there is a lack of such databases, which complicates research and development. This is especially true for the case of Arabic handwriting recognition, that involves different preprocessing, segmentation, and recognition methods, which have individual demands on samples and ground truth. To bypass this problem, we present an efficient system that automatically turns Arabic Unicode text into synthetic images of handwritten documents and detailed ground truth. Active Shape Models (ASMs) based on 28046 online samples were used for character synthesis and statistical properties were extracted from the IESK-arDB database to simulate baselines and word slant or skew. In the synthesis step ASM based representations are composed to words and text pages, smoothed by B-Spline interpolation and rendered considering writing speed and pen characteristics. Finally, we use the synthetic data to validate a segmentation method. An experimental comparison with the IESK-arDB database encourages to train and test document analysis related methods on synthetic samples, whenever no sufficient natural ground truthed data is available.

  9. ASM Based Synthesis of Handwritten Arabic Text Pages

    Science.gov (United States)

    Al-Hamadi, Ayoub; Elzobi, Moftah; El-etriby, Sherif; Ghoneim, Ahmed

    2015-01-01

    Document analysis tasks, as text recognition, word spotting, or segmentation, are highly dependent on comprehensive and suitable databases for training and validation. However their generation is expensive in sense of labor and time. As a matter of fact, there is a lack of such databases, which complicates research and development. This is especially true for the case of Arabic handwriting recognition, that involves different preprocessing, segmentation, and recognition methods, which have individual demands on samples and ground truth. To bypass this problem, we present an efficient system that automatically turns Arabic Unicode text into synthetic images of handwritten documents and detailed ground truth. Active Shape Models (ASMs) based on 28046 online samples were used for character synthesis and statistical properties were extracted from the IESK-arDB database to simulate baselines and word slant or skew. In the synthesis step ASM based representations are composed to words and text pages, smoothed by B-Spline interpolation and rendered considering writing speed and pen characteristics. Finally, we use the synthetic data to validate a segmentation method. An experimental comparison with the IESK-arDB database encourages to train and test document analysis related methods on synthetic samples, whenever no sufficient natural ground truthed data is available. PMID:26295059

  10. The potency of human testicular stem cells

    NARCIS (Netherlands)

    Chikhovskaya, J.V.

    2013-01-01

    In this thesis, we evaluate the stem cell state of cells present in primary human testicular cell cultures as well as their origin and relation to germ or somatic lineages within testicular tissue. We conclude that human testis-derived embryonic stem cell-like (htES-like) colonies arising in primary

  11. Stem cell differentiation and human liver disease

    Institute of Scientific and Technical Information of China (English)

    Wen-Li Zhou; Claire N Medine; Liang Zhu; David C Hay

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation.This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells.Such an approach has the potential to improve our understanding of human biology and treating disease.In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases.In recent years,efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own.In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology.

  12. ASME Code requirements for multi-canister overpack design and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    SMITH, K.E.

    1998-11-03

    The baseline requirements for the design and fabrication of the MCO include the application of the technical requirements of the ASME Code, Section III, Subsection NB for containment and Section III, Subsection NG for criticality control. ASME Code administrative requirements, which have not historically been applied at the Hanford site and which have not been required by the US Nuclear Regulatory Commission (NRC) for licensed spent fuel casks/canisters, were not invoked for the MCO. As a result of recommendations made from an ASME Code consultant in response to DNFSB staff concerns regarding ASME Code application, the SNF Project will be making the following modifications: issue an ASME Code Design Specification and Design Report, certified by a Registered Professional Engineer; Require the MCO fabricator to hold ASME Section III or Section VIII, Division 2 accreditation; and Use ASME Authorized Inspectors for MCO fabrication. Incorporation of these modifications will ensure that the MCO is designed and fabricated in accordance with the ASME Code. Code Stamping has not been a requirement at the Hanford site, nor for NRC licensed spent fuel casks/canisters, but will be considered if determined to be economically justified.

  13. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    Full Text Available BACKGROUND: The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. CONCLUSION/SIGNIFICANCE: The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of

  14. A Review & Assessment of Current Operating Conditions Allowable Stresses in ASME Section III Subsection NH

    Energy Technology Data Exchange (ETDEWEB)

    R. W. Swindeman

    2009-12-14

    The current operating condition allowable stresses provided in ASME Section III, Subsection NH were reviewed for consistency with the criteria used to establish the stress allowables and with the allowable stresses provided in ASME Section II, Part D. It was found that the S{sub o} values in ASME III-NH were consistent with the S values in ASME IID for the five materials of interest. However, it was found that 0.80 S{sub r} was less than S{sub o} for some temperatures for four of the materials. Only values for alloy 800H appeared to be consistent with the criteria on which S{sub o} values are established. With the intent of undertaking a more detailed evaluation of issues related to the allowable stresses in ASME III-NH, the availabilities of databases for the five materials were reviewed and augmented databases were assembled.

  15. CD4+ T cells enhance the unloaded shortening velocity of airway smooth muscle by altering the contractile protein expression.

    Science.gov (United States)

    Matusovsky, Oleg S; Nakada, Emily M; Kachmar, Linda; Fixman, Elizabeth D; Lauzon, Anne-Marie

    2014-07-15

    Abundant data indicate that pathogenesis in allergic airways disease is orchestrated by an aberrant T-helper 2 (Th2) inflammatory response. CD4(+) T cells have been localized to airway smooth muscle (ASM) in both human asthmatics and in rodent models of allergic airways disease, where they have been implicated in proliferative responses of ASM. Whether CD4(+) T cells also alter ASM contractility has not been addressed. We established an in vitro system to assess the ability of antigen-stimulated CD4(+) T cells to modify contractile responses of the Brown Norway rat trachealis muscle. Our data demonstrated that the unloaded velocity of shortening (Vmax) of ASM was significantly increased upon 24 h co-incubation with antigen-stimulated CD4(+) T cells, while stress did not change. Enhanced Vmax was dependent upon contact between the CD4(+) T cells and the ASM and correlated with increased levels of the fast (+)insert smooth muscle myosin heavy chain isoform. The levels of myosin light chain kinase and myosin light chain phosphorylation were also increased within the muscle. The alterations in mechanics and in the levels of contractile proteins were transient, both declining to control levels after 48 h of co-incubation. More permanent alterations in muscle phenotype might be attainable when several inflammatory cells and mediators interact together or after repeated antigenic challenges. Further studies will await new tissue culture methodologies that preserve the muscle properties over longer periods of time. In conclusion, our data suggest that inflammatory cells promote ASM hypercontractility in airway hyper-responsiveness and asthma.

  16. Endocannabinoids and Human Sperm Cells

    Directory of Open Access Journals (Sweden)

    Giovanna Zolese

    2010-10-01

    Full Text Available N-acylethanolamides (NAEs are naturally occurring signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. Usually they are present in a very small amounts in many mammalian tissues and cells, including human reproductive tracts and fluids. Recently, the presence of N-arachidonoylethanolamide (anandamide, AEA, the most characterised member of endocannabinoids, and its congeners palmitoylethanolamide (PEA and oleylethanolamide (OEA in seminal plasma, oviductal fluid, and follicular fluids was demonstrated. AEA has been shown to bind not only type-1 (CB1 and type-2 (CB2 cannabinoid receptors, but also type-1 vanilloid receptor (TRPV1, while PEA and OEA are inactive with respect to classical cannabinoid CB1 and CB2 but activate TRPV1 or peroxisome proliferator activate receptors (PPARs. This review concerns the most recent experimental data on PEA and OEA, endocannabinoid-like molecules which appear to exert their action exclusively on sperm cells with altered features, such as membrane characteristics and kinematic parameters. Their beneficial effects on these cells could suggest a possible pharmacological use of PEA and OEA on patients affected by some forms of idiopathic infertility.

  17. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (TFH) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of TFH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on TFH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate TFH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing TFH cell maturation. In cocultures they differentiated B cells into CD138(+) plasma and IgD(-)CD27(+) memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented TFH cell development. Added to TFH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3(+)CXCR5(+)PD-1(+) follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on TFH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control TFH cell maturation, expand follicular regulatory T cells, and inhibit the TFH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the TFH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Brain-derived neurotrophic factor enhances calcium regulatory mechanisms in human airway smooth muscle.

    Directory of Open Access Journals (Sweden)

    Amard J Abcejo

    Full Text Available Neurotrophins (NTs, which play an integral role in neuronal development and function, have been found in non-neuronal tissue (including lung, but their role is still under investigation. Recent reports show that NTs such as brain-derived neurotrophic factor (BDNF as well as NT receptors are expressed in human airway smooth muscle (ASM. However, their function is still under investigation. We hypothesized that NTs regulate ASM intracellular Ca(2+ ([Ca(2+](i by altered expression of Ca(2+ regulatory proteins. Human ASM cells isolated from lung samples incidental to patient surgery were incubated for 24 h (overnight in medium (control or 1 nM BDNF in the presence vs. absence of inhibitors of signaling cascades (MAP kinases; PI3/Akt; NFκB. Measurement of [Ca(2+](i responses to acetylcholine (ACh and histamine using the Ca(2+ indicator fluo-4 showed significantly greater responses following BDNF exposure: effects that were blunted by pathway inhibitors. Western analysis of whole cell lysates showed significantly higher expression of CD38, Orai1, STIM1, IP(3 and RyR receptors, and SERCA following BDNF exposure, effects inhibited by inhibitors of the above cascades. The functional significance of BDNF effects were verified by siRNA or pharmacological inhibition of proteins that were altered by this NT. Overall, these data demonstrate that NTs activate signaling pathways in human ASM that lead to enhanced [Ca(2+](i responses via increased regulatory protein expression, thus enhancing airway contractility.

  19. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  20. IMMUNORESPONSES OF HUMANIZED SCID MICE TO HUMAN LUNG CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    陈力真; 王树蕙; 张云; 王世真

    1996-01-01

    HuPBL-SCID mice were used to explore how they would response to human ttmoor cells of 801/MLC.Living 801/MLC cells appeared to be fetal to the the mice due to the production of human TNF. The huP-BL-SCID rniee did not generate any noticeable amotmt of specific human immunoglobttlin either by single immunization with living 801/MLC cells or by repeated immunization with irradiated 801/MLC cells. Our preliminary experiments with huPBL-SCID mice showed that such chimeras would he a very useful models for tumor immunological researches.

  1. Search for naive human pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Simone Aparecida Siqueira Fonseca; Roberta Montero Costas; Lygia Veiga Pereira

    2015-01-01

    Normal mouse pluripotent stem cells were originallyderived from the inner cell mass (ICM) of blastocystsand shown to be the in vitro equivalent of those preimplantationembryonic cells, and thus were calledembryonic stem cells (ESCs). More than a decade later,pluripotent cells were isolated from the ICM of humanblastocysts. Despite being called human ESCs, thesecells differ significantly from mouse ESCs, includingdifferent morphology and mechanisms of control ofpluripotency, suggesting distinct embryonic originsof ESCs from the two species. Subsequently, mousepluripotent stem cells were established from the ICMderivedepiblast of post-implantation embryos. Thesemouse epiblast stem cells (EpiSCs) are morphologicaland epigenetically more similar to human ESCs. Thisraised the question of whether cells from the humanICM are in a more advanced differentiation stage thantheir murine counterpart, or whether the availableculture conditions were not adequate to maintain thosehuman cells in their in vivo state, leading to a transitioninto EpiSC-like cells in vitro . More recently, novel cultureconditions allowed the conversion of human ESCs intomouse ESC-like cells called naive (or ground state)human ESCs, and the derivation of naive human ESCsfrom blastocysts. Here we will review the characteristicsof each type of pluripotent stem cells, how (andwhether) these relate to different stages of embryonicdevelopment, and discuss the potential implications ofnaive human ESCs in research and therapy.

  2. Endothelial cells derived from human embryonic stem cells

    Science.gov (United States)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  3. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  4. Prostaglandin E2 induces expression of MAPK phosphatase 1 (MKP-1) in airway smooth muscle cells.

    Science.gov (United States)

    Rumzhum, Nowshin N; Ammit, Alaina J

    2016-07-05

    Prostaglandin E2 (PGE2) is a prostanoid with diverse actions in health and disease. In chronic respiratory diseases driven by inflammation, PGE2 has both positive and negative effects. An enhanced understanding of the receptor-mediated cellular signalling pathways induced by PGE2 may help us separate the beneficial properties from unwanted actions of this important prostaglandin. PGE2 is known to exert anti-inflammatory and bronchoprotective actions in human airways. To date however, whether PGE2 increases production of the anti-inflammatory protein MAPK phosphatase 1 (MKP-1) was unknown. We address this herein and use primary cultures of human airway smooth muscle (ASM) cells to show that PGE2 increases MKP-1 mRNA and protein upregulation in a concentration-dependent manner. We explore the signalling pathways responsible and show that PGE2-induces CREB phosphorylation, not p38 MAPK activation, in ASM cells. Moreover, we utilize selective antagonists of EP2 (PF-04418948) and EP4 receptors (GW 627368X) to begin to identify EP-mediated functional outcomes in ASM cells in vitro. Taken together with earlier studies, our data suggest that PGE2 increases production of the anti-inflammatory protein MKP-1 via cAMP/CREB-mediated cellular signalling in ASM cells and demonstrates that EP2 may, in part, be involved. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. ASME Non-Nuclear Authorization Certification and Recertification Requirements of Nondestructive Testing%ASME 非核授权证书取换证无损检测要求

    Institute of Scientific and Technical Information of China (English)

    金磊

    2015-01-01

    ASME 取换证过程中,无损检测作为质量保证的一部分,是 ASME 取换证过程中重要的一环。介绍在 ASME 非核授权证书取换证过程中涉及的 ASME 规范2013版中对无损检测的相关要求,给相关技术人员提供借鉴。%In the process of ASME certification and recertification,nondestructive testing as the part of the quality assurance is important.This paper introduces relevant requirements of nondestructive testing involved in ASME 2013 version in the process of the ASME certification and recertification for non-nuclear application,the technician can consult it.

  6. Melanoma cell metastasis via P-selectin-mediated activation of acid sphingomyelinase in platelets.

    Science.gov (United States)

    Becker, Katrin Anne; Beckmann, Nadine; Adams, Constantin; Hessler, Gabriele; Kramer, Melanie; Gulbins, Erich; Carpinteiro, Alexander

    2017-01-01

    Metastatic dissemination of cancer cells is one of the hallmarks of malignancy and accounts for approximately 90 % of human cancer deaths. Within the blood vasculature, tumor cells may aggregate with platelets to form clots, adhere to and spread onto endothelial cells, and finally extravasate to form metastatic colonies. We have previously shown that sphingolipids play a central role in the interaction of tumor cells with platelets; this interaction is a prerequisite for hematogenous tumor metastasis in at least some tumor models. Here we show that the interaction between melanoma cells and platelets results in rapid and transient activation and secretion of acid sphingomyelinase (Asm) in WT but not in P-selectin-deficient platelets. Stimulation of P-selectin resulted in activation of p38 MAPK, and inhibition of p38 MAPK in platelets prevented the secretion of Asm after interaction with tumor cells. Intravenous injection of melanoma cells into WT mice resulted in multiple lung metastases, while in P-selectin-deficient mice pulmonary tumor metastasis and trapping of tumor cells in the lung was significantly reduced. Pre-incubation of tumor cells with recombinant ASM restored trapping of B16F10 melanoma cells in the lung in P-selectin-deficient mice. These findings indicate a novel pathway in tumor metastasis, i.e., tumor cell mediated activation of P-selectin in platelets, followed by activation and secretion of Asm and in turn release of ceramide and tumor metastasis. The data suggest that p38 MAPK acts downstream from P-selectin and is necessary for the secretion of Asm.

  7. The Characteristics and Applied Limits for the Test Code ASME PTC6 and ASME PTC46%发电设备性能试验规程ASME PTC6与ASME PTC46的特点及适用范围

    Institute of Scientific and Technical Information of China (English)

    王兴平

    2003-01-01

    对美国机械工程师协会汽轮机及全厂性试验规程ASME PTC6与ASME PTC46的目的、方法、边界条件等作了分析论述,着重介绍了ASME PTC46的特点和方法,并根据国内的实际情况,并提出了实际应用方面的建议.表1参4

  8. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  9. The ASM Curriculum Guidelines for Undergraduate Microbiology: A Case Study of the Advocacy Role of Societies in Reform Efforts.

    Science.gov (United States)

    Horak, Rachel E A; Merkel, Susan; Chang, Amy

    2015-05-01

    A number of national reports, including Vision and Change in Undergraduate Biology Education: A Call to Action, have called for drastic changes in how undergraduate biology is taught. To that end, the American Society for Microbiology (ASM) has developed new Curriculum Guidelines for undergraduate microbiology that outline a comprehensive curriculum for any undergraduate introductory microbiology course or program of study. Designed to foster enduring understanding of core microbiology concepts, the Guidelines work synergistically with backwards course design to focus teaching on student-centered goals and priorities. In order to qualitatively assess how the ASM Curriculum Guidelines are used by educators and learn more about the needs of microbiology educators, the ASM Education Board distributed two surveys to the ASM education community. In this report, we discuss the results of these surveys (353 responses). We found that the ASM Curriculum Guidelines are being implemented in many different types of courses at all undergraduate levels. Educators indicated that the ASM Curriculum Guidelines were very helpful when planning courses and assessments. We discuss some specific ways in which the ASM Curriculum Guidelines have been used in undergraduate classrooms. The survey identified some barriers that microbiology educators faced when trying to adopt the ASM Curriculum Guidelines, including lack of time, lack of financial resources, and lack of supporting resources. Given the self-reported challenges to implementing the ASM Curriculum Guidelines in undergraduate classrooms, we identify here some activities related to the ASM Curriculum Guidelines that the ASM Education Board has initiated to assist educators in the implementation process.

  10. Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism

    NARCIS (Netherlands)

    Johnson, Peter R A; Burgess, Janette K; Underwood, P Anne; Au, Wendy; Poniris, Maree H; Tamm, Michael; Ge, Qi; Roth, Michael; Black, Judith L

    2004-01-01

    BACKGROUND: Airway remodeling is a key feature of persistent asthma and includes alterations in the extracellular matrix protein profile around the airway smooth muscle (ASM) and hyperplasia of the ASM. We have previously shown that nonasthmatic ASM cells in culture produce a range of extracellular

  11. Developing a set of ancestry-sensitive DNA markers reflecting continental origins of humans

    Directory of Open Access Journals (Sweden)

    den Dunnen Johan T

    2009-10-01

    Full Text Available Abstract Background The identification and use of Ancestry-Sensitive Markers (ASMs, i.e. genetic polymorphisms facilitating the genetic reconstruction of geographical origins of individuals, is far from straightforward. Results Here we describe the ascertainment and application of five different sets of 47 single nucleotide polymorphisms (SNPs allowing the inference of major human groups of different continental origin. For this, we first used 74 cell lines, representing human males from six different geographical areas and screened them with the Affymetrix Mapping 10K assay. In addition to using summary statistics estimating the genetic diversity among multiple groups of individuals defined by geography or language, we also used the program STRUCTURE to detect genetically distinct subgroups. Subsequently, we used a pairwise FST ranking procedure among all pairs of genetic subgroups in order to identify a single best performing set of ASMs. Our initial results were independently confirmed by genotyping this set of ASMs in 22 individuals from Somalia, Afghanistan and Sudan and in 919 samples from the CEPH Human Genome Diversity Panel (HGDP-CEPH Conclusion By means of our pairwise population FST ranking approach we identified a set of 47 SNPs that could serve as a panel of ASMs at a continental level.

  12. Human Neural Cell-Based Biosensor

    Science.gov (United States)

    2013-05-28

    including incubation with factors such as SHH ) and proceed to Human Neural Progenitor Cells Dopaminergic Differentiation β-III Tubulin/TH...exposure in human embryonic stem cells. J Recept Signal Transduct Res. 2011 Jun;31(3):206-13. Gerwe BA, Angel PM, West FD, Hasneen K, Young A

  13. Equilíbrio corporal em crianças e adolescentes asmáticos e não asmáticos

    OpenAIRE

    Marta Cristina Rodrigues da Silva; Sara Teresinha Corazza; Juliana Izabel Katzer; Carlos Bolli Mota; Juliana Côrrea Soares

    2013-01-01

    O objetivo foi analisar e comparar o equilíbrio corporal em crianças e adolescentes asmáticos e não asmáticos. Fizeram parte do grupo de estudos 24 sujeitos com idades de 7 a 14 anos divididos em dois grupos: grupo asmático e grupo controle. Para avaliação do equilíbrio corporal utilizou-se uma plataforma de força. Foram utilizadas as condições, olhos abertos e fechados com três tentativas aleatórias, com duração de 30 segundos cada uma. Os resultados apontaram diferença significativa entre o...

  14. Cortical network from human embryonic stem cells

    OpenAIRE

    2010-01-01

    Abstract The connection of embryonic stem cell technology and developmental biology provides valuable tools to decipher the mechanisms underlying human brain development and diseases, especially among neuronal populations, that are not readily available in primary cultures. It is obviously the case of neurons forming the human cerebral cortex. In the images that are presented, the neurons were generated in vitro from human embryonic stem cells via forebrain-like progenitors. Maintained in cul...

  15. 115-year-old society knows how to reach young scientists: ASM Young Ambassador Program.

    Science.gov (United States)

    Karczewska-Golec, Joanna

    2015-12-25

    With around 40,000 members in more than 150 countries, American Society for Microbiology (ASM) faces the challenge of meeting very diverse needs of its increasingly international members base. The newly launched ASM Young Ambassador Program seeks to aid the Society in this effort. Equipped with ASM conceptual support and financing, Young Ambassadors (YAs) design and pursue country-tailored approaches to strengthen the Society's ties with local microbiological communities. In a trans-national setting, the active presence of YAs at important scientific events, such as 16th European Congress on Biotechnology, forges new interactions between ASM and sister societies. The paper presents an overview of the Young Ambassadors-driven initiatives at both global and country levels, and explores the topic of how early-career scientists can contribute to science diplomacy and international relations.

  16. High Level Analysis, Design and Validation of Distributed Mobile Systems with CoreASM

    Science.gov (United States)

    Farahbod, R.; Glässer, U.; Jackson, P. J.; Vajihollahi, M.

    System design is a creative activity calling for abstract models that facilitate reasoning about the key system attributes (desired requirements and resulting properties) so as to ensure these attributes are properly established prior to actually building a system. We explore here the practical side of using the abstract state machine (ASM) formalism in combination with the CoreASM open source tool environment for high-level design and experimental validation of complex distributed systems. Emphasizing the early phases of the design process, a guiding principle is to support freedom of experimentation by minimizing the need for encoding. CoreASM has been developed and tested building on a broad scope of applications, spanning computational criminology, maritime surveillance and situation analysis. We critically reexamine here the CoreASM project in light of three different application scenarios.

  17. Review of ASME-NH Design Materials for Creep-Fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    To review and recommend the candidate design materials for the Sodium-Cooled Fast Reactor, the material sensitivity evaluations by the comparison of design data between the ASME-NH materials were performed by using the SIE ASME-NH computer program implementing the material database of the ASME-NH. The design material data provided by the ASME-NH code are the elastic modulus and yield Strength, Time-Independent Allowable Stress Intensity value, time-dependent allowable stress intensity value, expected minimum stress-to rupture value, stress rupture Factors for weldment, isochronous stress-strain curves, and design fatigue curves. Among these, the data related with the creep-fatigue evaluation are investigated in this study

  18. The First ASME Code Stamped Cryomodule at SNS

    Energy Technology Data Exchange (ETDEWEB)

    Howell, M P; Crofford, M T; Douglas, D L; Kim, S -H; Steward, S T; Strong, W H; Afanador, R; Hannah, B S; Saunders, J

    2012-07-01

    The first spare cryomodule for the Spallation Neutron Source (SNS) has been designed, fabricated, and tested by SNS personnel. The approach to design for this cryomodule was to hold critical design features identical to the original design such as bayonet positions, coupler positions, cold mass assembly, and overall footprint. However, this is the first SNS cryomodule that meets the pressure requirements put forth in the 10 CFR 851: Worker Safety and Health Program. The most significant difference is that Section VIII of the ASME Boiler and Pressure Vessel Code was applied to the vacuum vessel of this cryomodule. Applying the pressure code to the helium vessels within the cryomodule was considered. However, it was determined to be schedule prohibitive because it required a code case for materials that are not currently covered by the code. Good engineering practice was applied to the internal components to verify the quality and integrity of the entire cryomodule. The design of the cryomodule, fabrication effort, and cryogenic test results will be reported in this paper.

  19. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hu

    Full Text Available Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4 activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM, as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.

  20. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long...

  1. Human embryonic stem cells derived by somatic cell nuclear transfer.

    Science.gov (United States)

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Ma, Hong; Kang, Eunju; Fulati, Alimujiang; Lee, Hyo-Sang; Sritanaudomchai, Hathaitip; Masterson, Keith; Larson, Janine; Eaton, Deborah; Sadler-Fredd, Karen; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard L; Wolf, Don; Mitalipov, Shoukhrat

    2013-06-06

    Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.

  2. A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung.

    Science.gov (United States)

    Guo, Shengwen; Fei, Baowei

    2009-03-27

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  3. A minimal path searching approach for active shape model (ASM)-based segmentation of the lung

    Science.gov (United States)

    Guo, Shengwen; Fei, Baowei

    2009-02-01

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 +/- 0.33 pixels, while the error is 1.99 +/- 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  4. Cell stiffness, contractile stress and the role of extracellular matrix

    Energy Technology Data Exchange (ETDEWEB)

    An, Steven S., E-mail: san@jhsph.edu [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Kim, Jina [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Ahn, Kwangmi [Division of Biostatistics, Penn State College of Medicine, Hershey, PA 17033 (United States); Trepat, Xavier [CIBER, Enfermedades Respiratorias, 07110 Bunyola (Spain); Drake, Kenneth J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Fredberg, Jeffrey J. [Division of Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115 (United States); Biswal, Shyam [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205 (United States); Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 (United States)

    2009-05-15

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  5. Cell stiffness, contractile stress and the role of extracellular matrix

    Science.gov (United States)

    An, Steven S.; Kim, Jina; Ahn, Kwangmi; Trepat, Xavier; Drake, Kenneth J.; Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne; Fredberg, Jeffrey J.; Biswal, Shyam

    2010-01-01

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses. PMID:19327344

  6. Human Neuroepithelial Cells Express NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Cappell B

    2003-11-01

    Full Text Available Abstract L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1 cerebral endothelial barrier and 2 cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR expression via immunohistochemistry and murine neuroepithelial cell line (V1 were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.

  7. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  8. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  9. Derivation of naive human embryonic stem cells.

    Science.gov (United States)

    Ware, Carol B; Nelson, Angelique M; Mecham, Brigham; Hesson, Jennifer; Zhou, Wenyu; Jonlin, Erica C; Jimenez-Caliani, Antonio J; Deng, Xinxian; Cavanaugh, Christopher; Cook, Savannah; Tesar, Paul J; Okada, Jeffrey; Margaretha, Lilyana; Sperber, Henrik; Choi, Michael; Blau, C Anthony; Treuting, Piper M; Hawkins, R David; Cirulli, Vincenzo; Ruohola-Baker, Hannele

    2014-03-25

    The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes, and forced expression of OCT4, KLF4, and KLF2 allows maintenance of human cells in a naïve state [Hanna J, et al. (2010) Proc Natl Acad Sci USA 107(20):9222-9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid, followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics, antibody labeling profile, gene expression, X-inactivation profile, mitochondrial morphology, microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive, but attainable, process, leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.

  10. Regulatory T Cells in Human Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Dong-Jun Peng

    2012-01-01

    Full Text Available Multiple layers of suppressive components including regulatory T (TReg cells, suppressive antigen-presenting cells, and inhibitory cytokines form suppressive networks in the ovarian cancer microenvironment. It has been demonstrated that as a major suppressive element, TReg cells infiltrate tumor, interact with several types of immune cells, and mediate immune suppression through different molecular and cellular mechanisms. In this paper, we focus on human ovarian cancer and will discuss the nature of TReg cells including their subsets, trafficking, expansion, and function. We will briefly review the development of manipulation of TReg cells in preclinical and clinical settings.

  11. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongHui; JIANG Wei; SHI Yan; DENG HongKui

    2009-01-01

    Efficiently obtaining functional pancreaUc islet cells derived from human embryonic stem (hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology. In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro. Since then, many strategies (such as overexpression of key transcription factors,delivery of key proteins for pancreatic development, co-transplantation of differentiated hES cells along with fetal pancreas, stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells. Moreover, patient-specific induced pluripotent stem (iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection. In this review, we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  12. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Efficiently obtaining functional pancreatic islet cells derived from human embryonic stem(hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology.In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro.Since then,many strategies(such as overexpression of key transcription factors,delivery of key proteins for pancreatic development,co-transplantation of differentiated hES cells along with fetal pancreas,stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells.Moreover,patient-specific induced pluripotent stem(iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection.In this review,we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  13. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Braam, S.R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2008-01-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired chromosom

  14. 使用ASME Ⅷ-2规范进行容器建造的基本原则%Basic Principle of Application of ASME Ⅷ-2 Code in Vessel Construction

    Institute of Scientific and Technical Information of China (English)

    于志刚; 董方亮

    2009-01-01

    针对使用ASME Ⅷ-2规范进行容器建造的实际需要,介绍了ASME Ⅷ-2规范的基本原理,分析了ASMEⅧ-2规范的基本要素,总结了按照ASME Ⅷ-2规范进行设计、建造的一些基本要点.

  15. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    Science.gov (United States)

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts.

  16. Consideration of the Construction Code for TBM-body in ASME BPVC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjun; Kim, Yunjae [Korea Univ., Seoul (Korea, Republic of); Kim, Suk Kwon; Park, Sung Dae; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, ASME code is briefly introduced, and the TBM-body is classified for selecting the ASME section. With the classification of TBM-body, the appropriate section is determined. Helium Cooled Ceramic Reflector (HCCR) Test Blanket System (TBS) has been designed to research on the functions of breeding blanket by KO TBM team. The functions has three subjects as 1) Tritium breeding, 2) Heat conversion and extraction, and 3) Neutron and Gamma-ray shielding. For the process of design, it is needed to select the appropriate construction code as the design criteria. ITER Organization (IO) has proposed that RCC-MR Edition 2007 ver. shall be used for TBM-shield. Because the TBM-shield is connected to the vacuum boundary. For the other part of TBM-set, TBM-body, there is no constraint on the selected code, and the manufacturer can appropriately select the construction code to apply design and fabrication parts. KO TBM Team has considered whether it is appropriate to choose any code for TBM-body. One of the things is ASME code. The advantage of ASME choice is suitable to the domestic status. In the domestic nuclear plant, ASME or KEPIC code is used as regulatory requirements. Based on this, it is possible to prepare a domestic fusion plant regulatory. In this paper, the construction code of TBM-body was determined in ASME BPVC. For the determination of code, the structure of ASME BPVC was introduced and the classification for TBM-body was conducted by the ITER criteria. And the operation conditions of TBM-body that contained creep and irradiation effects was considered to determine the construction code.

  17. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  18. Airway smooth muscle cell tone amplifies contractile function in the presence of chronic cyclic strain.

    Science.gov (United States)

    Fairbank, Nigel J; Connolly, Sarah C; Mackinnon, James D; Wehry, Kathrin; Deng, Linhong; Maksym, Geoffrey N

    2008-09-01

    Chronic contractile activation, or tone, in asthma coupled with continuous stretching due to breathing may be involved in altering the contractile function of airway smooth muscle (ASM). Previously, we (11) showed that cytoskeletal remodeling and stiffening responses to acute (2 h) localized stresses were modulated by the level of contractile activation of ASM. Here, we investigated if altered contractility in response to chronic mechanical strain was dependent on repeated modulation of contractile tone. Cultured human ASM cells received 5% cyclic (0.3 Hz), predominantly uniaxial strain for 5 days, with once-daily dosing of either sham, forskolin, carbachol, or histamine to alter tone. Stiffness, contractility (KCl), and "relaxability" (forskolin) were then measured as was cell alignment, myosin light-chain phosphorylation (pMLC), and myosin light-chain kinase (MLCK) content. Cells became aligned and baseline stiffness increased with strain, but repeated lowering of tone inhibited both effects (P negative tone-modulation dependence of MLCK, observed in static conditions in agreement with previous reports, with strain and tone together increasing both MLCK and pMLC. Furthermore, contractility increased 176% (SE 59) with repeated tone elevation. These findings indicate that with strain, and not without, repeated tone elevation promoted contractile function through changes in cytoskeletal organization and increased contractile protein. The ability of repeated contractile activation to increase contractility, but only with mechanical stretching, suggests a novel mechanism for increased ASM contractility in asthma and for the role of continuous bronchodilator and corticosteroid therapy in reversing airway hyperresponsiveness.

  19. 46 CFR 56.01-5 - Adoption of ASME B31.1 for power piping, and other standards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of ASME B31.1 for power piping, and other... ENGINEERING PIPING SYSTEMS AND APPURTENANCES General § 56.01-5 Adoption of ASME B31.1 for power piping, and... accordance with ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), as limited, modified, or...

  20. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...

  1. Human hair genealogies and stem cell latency

    Directory of Open Access Journals (Sweden)

    Tavaré Simon

    2006-02-01

    Full Text Available Abstract Background Stem cells divide to reproduce themselves and produce differentiated progeny. A fundamental problem in human biology has been the inability to measure how often stem cells divide. Although it is impossible to observe every division directly, one method for counting divisions is to count replication errors; the greater the number of divisions, the greater the numbers of errors. Stem cells with more divisions should produce progeny with more replication errors. Methods To test this approach, epigenetic errors (methylation in CpG-rich molecular clocks were measured from human hairs. Hairs exhibit growth and replacement cycles and "new" hairs physically reappear even on "old" heads. Errors may accumulate in long-lived stem cells, or in their differentiated progeny that are eventually shed. Results Average hair errors increased until two years of age, and then were constant despite decades of replacement, consistent with new hairs arising from infrequently dividing bulge stem cells. Errors were significantly more frequent in longer hairs, consistent with long-lived but eventually shed mitotic follicle cells. Conclusion Constant average hair methylation regardless of age contrasts with the age-related methylation observed in human intestine, suggesting that error accumulation and therefore stem cell latency differs among tissues. Epigenetic molecular clocks imply similar mitotic ages for hairs on young and old human heads, consistent with a restart with each new hair, and with genealogies surreptitiously written within somatic cell genomes.

  2. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  3. ASME code considerations for the compact heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Nestell, James [MPR Associates Inc., Alexandria, VA (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-31

    robustness. Classic shell and tube designs will be large and costly, and may only be appropriate in steam generator service in the SHX where boiling inside the tubes occurs. For other energy conversion systems, all of these features can be met in a compact heat exchanger design. This report will examine some of the ASME Code issues that will need to be addressed to allow use of a Code-qualified compact heat exchanger in IHX or SHX nuclear service. Most effort will focus on the IHX, since the safety-related (Class A) design rules are more extensive than those for important-to-safety (Class B) or commercial rules that are relevant to the SHX.

  4. Angiotensin II induces hypertrophy of human airway smooth muscle cells: expression of transcription factors and transforming growth factor-beta1

    NARCIS (Netherlands)

    S. McKay (Sue); J.C. de Jongste (Johan); P.R. Saxena (Pramod Ranjan); H.S. Sharma (Hari)

    1998-01-01

    textabstractIncreased smooth muscle mass due to hyperplasia and hypertrophy of airway smooth muscle (ASM) cells is a common feature in asthma. Angiotensin II (Ang II), a potent vasoconstrictor and mitogen for a wide variety of cells, has recently been implicated in bron

  5. INTERACTIONS BETWEEN THE HUMAN GASTRIC CARCINOMA CELL AND THE HUMAN VASCULAR ENDOTHELIAL CELL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To definite the interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the establishment and maintenance of the tumor vascular system and the tumor hematogenous metastasis.Methods We prepared the conditioned mediums of each cell so as to study the effect of the conditioned medium on itself or others by MTT colorimetry. The comprehensive effect of interactions between two cells was determined by stratified transfilter co-culture or direct contact co-culture.Results The conditioned medium of human gastric carcinoma cell can stimulate the proliferation of the human vascular endothelial cell, but the CM of HVEC can inhibit the growth of HGCC. Both kinds of cells can inhibit the growth of itself. The ultimate comprehensive effect of the interactions between two kinds of cells was increase of total cell numbers.Conclusion There exist the complicated interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the tumor angiogenesis and the tumor hematogenous metastasis. The ultimate comprehensive effect of the interactions is increase of total cells numbers and tumor volume.

  6. Fibronectin production by human mammary cells

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, M.R. (Univ. of California, Berkeley); Vlodavsky, I.; Smith, H.S.; Ford, R.; Becker, F.F.; Riggs, J.

    1981-01-01

    Human mammary cells were examined for the presence of the high-molecular-weight surface glycoprotein fibronectin. Early passage mammary epithelial cell and fibroblast cultures from both carcinomas and normal tissues were tested for the presence of cell-associated fibronectin by immunofluorescence microscopy and for the synthesis and secretion of fibronectin by specific immunoprecipitation of metabolically labeled protein. In vivo frozen sections of primary carcinomas and normal tissues were tested for the localization of fibronectin by immunofluorescence microscopy. In contrast to the extensive fibrillar networks of fibronectin found in the fibroblast cultures, the epithelial cell cultures from both tissue sources displayed a pattern of cell-associated fibronectin characterizd by powdery, punctate staining. However, the cultured epithelial cells, as well as the fibroblasts, secreted large quantities of fibronectin into the medium. Putative myoepithelial cells also displayed extensive fibrillar networks of fibronectin. The difference in cell-associated fibronectin distribution between the epithelial cells and the fibroblasts and putative myoepithelial cells provided a simple means of quantitating stromal and myoepithelial cell contamination of the mammary epithelial cells in culture. In vivo, normal tissues showed fibronectin primarily localized in the basement membrane surrounding the epithelial cells and in the stroma. Most primary carcinomas displayed powdery, punctate staining on the epithelial cells in addition to the fibronectin present in the surrounding stroma.

  7. Laser printing of skin cells and human stem cells.

    Science.gov (United States)

    Koch, Lothar; Kuhn, Stefanie; Sorg, Heiko; Gruene, Martin; Schlie, Sabrina; Gaebel, Ralf; Polchow, Bianca; Reimers, Kerstin; Stoelting, Stephanie; Ma, Nan; Vogt, Peter M; Steinhoff, Gustav; Chichkov, Boris

    2010-10-01

    Laser printing based on laser-induced forward transfer (LIFT) is a new biofabrication technique for the arrangement of biological materials or living cells in well-defined patterns. In the current study, skin cell lines (fibroblasts/keratinocytes) and human mesenchymal stem cells (hMSC) were chosen for laser printing experiments due to their high potential in regeneration of human skin and new application possibilities of stem cell therapy. To evaluate the influence of LIFT on the cells, their survival rate, their proliferation and apoptotic activity, and the DNA damages and modifications of their cell surface markers were assessed and statistically evaluated over several days. The cells survived the transfer procedure with a rate of 98%  +/- 1% standard error of the mean (skin cells) and 90%  +/- 10% (hMSC), respectively. All used cell types maintain their ability to proliferate after LIFT. Further, skin cells and hMSC did not show an increase of apoptosis or DNA fragmentation. In addition, the hMSC keep their phenotype as proven by fluorescence activated cell sorting (FACS) analysis. This study demonstrates LIFT as a suitable technique for unharmed computer-controlled positioning of different cell types and a promising tool for future applications in the ex vivo generation of tissue replacements.

  8. Human spleen and red blood cells

    Science.gov (United States)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  9. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    Science.gov (United States)

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-18

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  10. Autophagy in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thien Tra

    Full Text Available Autophagy (macroautophagy is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.

  11. Roles of the Outer Membrane Protein AsmA of Salmonella enterica in the Control of marRAB Expression and Invasion of Epithelial Cells▿

    OpenAIRE

    Ramos Morales, Francisco; Prieto Ortega, Ana Isabel; Hernández Piñero, Sara Belén; Cota García, Ignacio; Pucciarelli, María Graciela; Orlov, Yuri; García del Portillo, Francisco; Casadesús Pursals, José

    2009-01-01

    A genetic screen for suppressors of bile sensitivity in DNA adenine methylase (dam) mutants of Salmonella enterica serovar Typhimurium yielded insertions in an uncharacterized locus homologous to the Escherichia coli asmA gene. Disruption of asmA suppressed bile sensitivity also in phoP and wec mutants of S. enterica and increased the MIC of sodium deoxycholate for the parental strain ATCC 14028. Increased levels of marA mRNA were found in asmA, asmA dam, asmA phoP, and asmA wec strains of S....

  12. Neutrophil predominance in induced sputum from asthmatic patients: Therapeutic implications and role of clara cell 16-KD protein Predominio de neutrófilos en esputo inducido de asmáticos: Implicancias terapéuticas y rol de la proteína 16-kD de la célula clara

    Directory of Open Access Journals (Sweden)

    Elisa M. Uribe Echevarría

    2011-08-01

    Full Text Available Eosinophil is considered to be a main protagonist in asthma; however, often discordances between clinical manifestations and response to treatment are observed. We aimed to determine the occurrence of neutrophil predominance in asthma and to identify its characteristics on the basis of clinical-functional features, induced sputum cellular pattern and soluble molecules, to guide the appropriated anti-inflammatory therapy. A total of 41 patients were included in randomized groups: 21-40 year-old, with stable mild-to-severe asthma, steroid-naïve and non-smokers. An induced sputum sample was obtained under basal conditions, a second one after treatment with budesonide (400 µg b.i.d. or montelukast (10 mg/d for six weeks, and a final one after a 4-week washout period. By cytospin we evaluated eosinophil (EP or neutrophil predominance (NP, and in supernatant we determined LTE4, and CC16. Peak expiratory flow variability (PEFV was measured. A total of 23/41 patients corresponded to EP and 18/41 patients to NP. The PEFV was higher in EP than in NP. LTE4 was higher with NP than with EP. No difference was found for CC16. Montelukast reduced the predominant cell in both subsets, whereas budesonide only reduced eosinophils in EP. Budesonide and montelukast reduced PEFV in EP but not in NP. Considering the total treated-samples in each subset, CC16 level increased significantly in EP. In conclusion: a NP subset of asthmatic patients was identified. These patients show a lower bronchial lability; the leukotriene pathway is involved which responds to anti-leukotriene treatment. This phenotype shows a poor recovery of CC16 level after treatment.El eosinófilo es considerado la célula protagonista principal en el asma; sin embargo, a menudo se observan discordancias entre las manifestaciones clínicas y la respuesta de los pacientes al tratamiento. Nos propusimos determinar la ocurrencia de predominio de neutrófilos en el asma e identificar las caracter

  13. Human embryonic stem cells for neuronal repair.

    Science.gov (United States)

    Ben-Hur, Tamir

    2006-02-01

    Human embryonic stem cells may serve as a potentially endeless source of transplantable cells to treat various neurologic disorders. Accumulating data have shown the therapeutic value of various neural precursor cell types in experimental models of neurologic diseases. Tailoring cell therapy for specific disorders requires the generation of cells that are committed to specific neural lineages. To this end, protocols were recently developed for the derivation of dopaminergic neurons, spinal motor neurons and oligodendrocytes from hESC. These protocols recapitulate normal development in culture conditions. However, a novel concept emerging from these studies is that the beneficial effect of transplanted stem cells is not only via cell replacement in damaged host tissue, but also by trophic and protective effects, as well as by an immunomodulatory effect that down-regulates detrimental brain inflammation.

  14. Novel agents inhibit human leukemic cells

    Institute of Scientific and Technical Information of China (English)

    Wei-ping YU; Juan LI

    2012-01-01

    Ouabain (OUA) and pyrithione zinc (PZ) have been proved as the potential drugs for treating acute myeloid leukemia (AML).Selected from a screening among 1040 Food and Drug Administration-approved pharmacological agents,both drugs showability to induce apoptosis of the culturing AML cells,exhibiting the poisoning effect on the cells.Studies also reveal the efficiency of the drugs in inhibiting the growth of human AML cells injected into the mice lacking of immunity and killing primary AML cells from the peripheral blood of AML patients[1].

  15. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Olsen, Ole D; Groth-Pedersen, Line

    2013-01-01

    Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome......-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM to its essential lysosomal cofactor, bis(monoacylglycero)phosphate. Like siramesine, several clinically relevant ASM inhibitors trigger cancer-specific lysosomal cell death, reduce tumor growth in vivo, and revert...

  16. 3 CFR - Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the extent...

  17. Myristoylation profiling in human cells and zebrafish

    Directory of Open Access Journals (Sweden)

    Malgorzata Broncel

    2015-09-01

    Full Text Available Human cells (HEK 293, HeLa, MCF-7 and zebrafish embryos were metabolically tagged with an alkynyl myristic acid probe, lysed with an SDS buffer and tagged proteomes ligated to multifunctional capture reagents via copper-catalyzed alkyne azide cycloaddition (CuAAC. This allowed for affinity enrichment and high-confidence identification, by delivering direct MS/MS evidence for the modification site, of 87 and 61 co-translationally myristoylated proteins in human cells and zebrafish, respectively. The data have been deposited to ProteomeXchange Consortium (Vizcaíno et al., 2014 Nat. Biotechnol., 32, 223–6 (PXD001863 and PXD001876 and are described in detail in Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic protein lipidation during vertebrate development׳ by Broncel et al., Angew. Chem. Int. Ed.

  18. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  19. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  20. Efficient derivation and genetic modifications of human pluripotent stem cells on engineered human feeder cell lines.

    Science.gov (United States)

    Zou, Chunlin; Chou, Bin-Kuan; Dowey, Sarah N; Tsang, Kitman; Huang, Xiaosong; Liu, Cyndi F; Smith, Cory; Yen, Jonathan; Mali, Prashant; Zhang, Yu Alex; Cheng, Linzhao; Ye, Zhaohui

    2012-08-10

    Derivation of pluripotent stem cells (iPSCs) induced from somatic cell types and the subsequent genetic modifications of disease-specific or patient-specific iPSCs are crucial steps in their applications for disease modeling as well as future cell and gene therapies. Conventional procedures of these processes require co-culture with primary mouse embryonic fibroblasts (MEFs) to support self-renewal and clonal growth of human iPSCs as well as embryonic stem cells (ESCs). However, the variability of MEF quality affects the efficiencies of all these steps. Furthermore, animal sourced feeders may hinder the clinical applications of human stem cells. In order to overcome these hurdles, we established immortalized human feeder cell lines by stably expressing human telomerase reverse transcriptase, Wnt3a, and drug resistance genes in adult mesenchymal stem cells. Here, we show that these immortalized human feeders support efficient derivation of virus-free, integration-free human iPSCs and long-term expansion of human iPSCs and ESCs. Moreover, the drug-resistance feature of these feeders also supports nonviral gene transfer and expression at a high efficiency, mediated by piggyBac DNA transposition. Importantly, these human feeders exhibit superior ability over MEFs in supporting homologous recombination-mediated gene targeting in human iPSCs, allowing us to efficiently target a transgene into the AAVS1 safe harbor locus in recently derived integration-free iPSCs. Our results have great implications in disease modeling and translational applications of human iPSCs, as these engineered human cell lines provide a more efficient tool for genetic modifications and a safer alternative for supporting self-renewal of human iPSCs and ESCs.

  1. ASM LabCap's contributions to disease surveillance and the International Health Regulations (2005).

    Science.gov (United States)

    Specter, Steven; Schuermann, Lily; Hakiruwizera, Celestin; Sow, Mah-Séré Keita

    2010-12-03

    The revised International Health Regulations [IHR(2005)], which requires the Member States of the World Health Organization (WHO) to develop core capacities to detect, assess, report, and respond to public health threats, is bringing new challenges for national and international surveillance systems. As more countries move toward implementation and/or strengthening of their infectious disease surveillance programs, the strengthening of clinical microbiology laboratories becomes increasingly important because they serve as the first line responders to detect new and emerging microbial threats, re-emerging infectious diseases, the spread of antibiotic resistance, and the possibility of bioterrorism. In fact, IHR(2005) Core Capacity #8, "Laboratory", requires that laboratory services be a part of every phase of alert and response.Public health laboratories in many resource-constrained countries require financial and technical assistance to build their capacity. In recognition of this, in 2006, the American Society for Microbiology (ASM) established an International Laboratory Capacity Building Program, LabCap, housed under the ASM International Board. ASM LabCap utilizes ASM's vast resources and its membership's expertise-40,000 microbiologists worldwide-to strengthen clinical and public health laboratory systems in low and low-middle income countries. ASM LabCap's program activities align with HR(2005) by building the capability of resource-constrained countries to develop quality-assured, laboratory-based information which is critical to disease surveillance and the rapid detection of disease outbreaks, whether they stem from natural, deliberate or accidental causes.ASM LabCap helps build laboratory capacity under a cooperative agreement with the U.S. Centers for Disease Control and Prevention (CDC) and under a sub-contract with the Program for Appropriate Technology in Health (PATH) funded by the United States Agency for International Development (USAID

  2. A Survey of Variable Extragalactic Sources with XTE's All Sky Monitor (ASM)

    Science.gov (United States)

    Jernigan, Garrett

    1998-01-01

    The original goal of the project was the near real-time detection of AGN utilizing the SSC 3 of the ASM on XTE which does a deep integration on one 100 square degree region of the sky. While the SSC never performed sufficiently well to allow the success of this goal, the work on the project has led to the development of a new analysis method for coded aperture systems which has now been applied to ASM data for mapping regions near clusters of galaxies such as the Perseus Cluster and the Coma Cluster. Publications are in preparation that describe both the new method and the results from mapping clusters of galaxies.

  3. [Human pluripotent stem cell and neural differentiation].

    Science.gov (United States)

    Wataya, Takafumi; Muguruma, Keiko; Sasai, Yoshiki

    2008-10-01

    Recovery of lost brain function is an important issue in medical studies because neurons of the central nervous system (CNS) have poor potential for regeneration. Since few CNS diseases can be treated completely by medicines, regenerative therapy by using stem cells should be studied as a new type of therapeutic intervention. The efficacy of cell replacement therapy in Parkinson's disease has been well investigated. Several studies on fetal tissue transplantation have revealed that quantity and purity of transplanted cells are necessary for recovery of symptoms. SFEB (Serum-free floating culture of embryoid body-like aggregates) method is capable of inducing multi-potential CNS progenitors that can be steered to differentiate into region-specific tissues. On the basis of the existing knowledge of embryology, we have succeeded in the generating of various types of neurons such as telencephalic, cerebeller (Purkinje and granule cells), retinal (photoreceptor cells) and hypothalamic neurons. Application of this culture method to human ES (hES) cells is necessary for clinical purpose: however, poor survival of hES cells in SFEB culture might limit the possibility of using these cells for future medical applications. We found that a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, markedly diminished the dissociation-induced apoptosis of hES cells and enabled the cells to form aggregates in SFEB culture. For both mouse and human ES cells, SFEB culture is a favorable method that can generate large amounts of region-specific neurons. However, stem cell-based therapy continues to face several obstacles. It is important that researchers in the basic sciences and clinical medicine should discuss these problems together to overcome both scientific and ethical issues related to stem cells.

  4. T-cell response in human leishmaniasis

    DEFF Research Database (Denmark)

    Kharazmi, A; Kemp, K; Ismail, A

    1999-01-01

    In the present communication we provide evidence for the existence of a Th1/Th2 dichotomy in the T-cell response to Leishmania antigens in human leishmaniasis. Our data suggest that the pattern of IL-4 and IFN-gamma response is polarised in these patients. Lymphocytes from individuals recovered......+. Furthermore, IL-10 plays an important role in the development of post kala azar dermal leishmaniasis (PKDL) from VL. The balance between the parasitic-specific T-cell response plays an important regulatory role in determining the outcome of Leishmania infections in humans....

  5. Characterization of human pluripotent stem cells.

    Science.gov (United States)

    Gokhale, Paul J; Andrews, Peter W

    2013-12-18

    Human pluripotent stem cells (PSCs), whether embryonic stem cells or induced PSCs, offer enormous opportunities for regenerative medicine and other biomedical applications once we have developed the ability to harness their capacity for extensive differentiation. Central to this is our ability to identify and characterize such PSCs, but this is fraught with potential difficulties that arise from a tension between functional definitions of pluripotency and the more convenient use of 'markers', a problem exacerbated by ethical issues, our lack of knowledge of early human embryonic development, and differences from the mouse paradigm.

  6. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    Energy Technology Data Exchange (ETDEWEB)

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  7. Human pluripotent stem cells in contemporary medicine

    Directory of Open Access Journals (Sweden)

    S. A. Rodin

    2015-01-01

    Full Text Available Human pluripotent stem cells (hPSCs are capable of indefinite proliferation and can be differentiated into any cell type of the human body. Therefore, they are a promising source of cells for treatment of numerous degenerative diseases and injuries. Pluripotent stem cells are also associated with a number of ethical, safety and technological issues. In this review, we describe various types of hPSCs, safety issues that concern all or some types of hPSCs and methods of clinical-grade hPSC line development. Also, we discuss current and past clinical trials involving hPSCs, their outcomes and future perspectives of hPSC-based therapy. 

  8. Cell pattern in adult human corneal endothelium.

    Directory of Open Access Journals (Sweden)

    Carlos H Wörner

    Full Text Available A review of the current data on the cell density of normal adult human endothelial cells was carried out in order to establish some common parameters appearing in the different considered populations. From the analysis of cell growth patterns, it is inferred that the cell aging rate is similar for each of the different considered populations. Also, the morphology, the cell distribution and the tendency to hexagonallity are studied. The results are consistent with the hypothesis that this phenomenon is analogous with cell behavior in other structures such as dry foams and grains in polycrystalline materials. Therefore, its driving force may be controlled by the surface tension and the mobility of the boundaries.

  9. Merkel cell distribution in the human eyelid

    Directory of Open Access Journals (Sweden)

    C.A. May

    2013-10-01

    Full Text Available Although Merkel cell carcinoma of the eye lid is reported frequently in the literature, only limited information exists about the distribution of Merkel cells in this tissue. Therefore, serial sections of 18 human cadaver eye lids (donors ages ranging between 63 and 97 years were stained for cytokeratin 20 in various planes. The overall appearance of Merkel cells in these samples was low and mainly located in the outer root layer of the cilia hair follicles. Merkel cells were more frequent in the middle, and almost not detectable at the nasal and temporal edges. The localization is in accordance with that of Merkel cell carcinoma, but concerning the scarce appearance within this adulthood group, a specific physiological role of these cells in the eye lid is difficult to establish.

  10. Natural killer cells in human autoimmune disorders

    Science.gov (United States)

    2013-01-01

    Natural killer (NK) cells are innate lymphocytes that play a critical role in early host defense against viruses. Through their cytolytic capacity and generation of cytokines and chemokines, NK cells modulate the activity of other components of the innate and adaptive immune systems and have been implicated in the initiation or maintenance of autoimmune responses. This review focuses on recent research elucidating a potential immunoregulatory role for NK cells in T-cell and B-cell-mediated autoimmune disorders in humans, with a particular focus on multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematous. A better understanding of the contributions of NK cells to the development of autoimmunity may lead to novel therapeutic targets in these diseases. PMID:23856014

  11. Human Colon Cancer Cells Cultivated in Space

    Science.gov (United States)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  12. Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Haifeng Lan

    2017-09-01

    Full Text Available Background/Aims: Osteosarcoma is a malignant tumor associated with high mortality; however, no effective therapies for the disease have been developed. Several studies have focused on elucidating the pathogenesis of osteosarcoma and have aimed to develop novel therapies for the disease. Quercetin is a vital dietary flavonoid that has been shown to have a variety of anticancer effects, as it induces cell cycle arrest, apoptosis, and differentiation and is involved in cell adhesion, metastasis and angiogenesis. Herein, we aimed to investigate the effects of quercetin on osteosarcoma migration and invasion in vitro and in vivo and to explore the molecular mechanisms underlying its effects on osteosarcoma migration and invasion. Methods: Cell viability, cell cycle activity and cell apoptosis were measured using CCK-8 assay and flow cytometry, and cell migration and invasion were evaluated by wound healing and transwell assays, respectively. The mRNA and protein expression levels of several proteins of interest were assessed by real-time quantitative PCR and western blotting, respectively. Moreover, a nude mouse model of human osteosarcoma lung metastasis was established to assess the anti-metastatic effects of quercetin in vivo. Results: We noted no significant differences in cell cycle activity and apoptosis between HOS and MG63 cells and control cells. Treatment with quercetin significantly attenuated cell migration and invasion in HOS and MG63 cells compared with treatment with control medium. Moreover HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels were significantly downregulated in HOS cells treated with quercetin compared with HOS cells treated with controls. Additionally, treatment with quercetin attenuated metastatic lung tumor formation and growth in the nude mouse model of osteosarcoma compared with treatment with controls. Conclusion: Our findings regarding the inhibitory effects of quercetin on cell migration and

  13. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  14. Genetic Manipulation of Human Embryonic Stem Cells.

    Science.gov (United States)

    Eiges, Rachel

    2016-01-01

    One of the great advantages of embryonic stem (ES) cells over other cell types is their accessibility to genetic manipulation. They can easily undergo genetic modifications while remaining pluripotent, and can be selectively propagated, allowing the clonal expansion of genetically altered cells in culture. Since the first isolation of ES cells in mice, many effective techniques have been developed for gene delivery and manipulation of ES cells. These include transfection, electroporation, and infection protocols, as well as different approaches for inserting, deleting, or changing the expression of genes. These methods proved to be extremely useful in mouse ES cells, for monitoring and directing differentiation, discovering unknown genes, and studying their function, and are now being extensively implemented in human ES cells (HESCs). This chapter describes the different approaches and methodologies that have been applied for the genetic manipulation of HESCs and their applications. Detailed protocols for generating clones of genetically modified HESCs by transfection, electroporation, and infection will be described, with special emphasis on the important technical details that are required for this purpose. All protocols are equally effective in human-induced pluripotent stem (iPS) cells.

  15. 46 CFR 53.01-3 - Adoption of section IV of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of section IV of the ASME Boiler and Pressure...) MARINE ENGINEERING HEATING BOILERS General Requirements § 53.01-3 Adoption of section IV of the ASME Boiler and Pressure Vessel Code. (a) Heating boilers shall be designed, constructed, inspected,...

  16. 46 CFR 52.01-2 - Adoption of section I of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of section I of the ASME Boiler and Pressure...) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-2 Adoption of section I of the ASME Boiler and Pressure Vessel Code. (a) Main power boilers and auxiliary boilers shall be designed,...

  17. Enriched retinal ganglion cells derived from human embryonic stem cells

    Science.gov (United States)

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  18. Human ES cells: starting culture from frozen cells.

    Science.gov (United States)

    Trish, Erin; Dimos, John; Eggan, Kevin

    2006-11-09

    Here we demonstrate how our lab begins a HuES human embryonic stem cell line culture from a frozen stock. First, a one to two day old ten cm plate of approximately one (to two) million irradiated mouse embryonic fibroblast feeder cells is rinsed with HuES media to remove residual serum and cell debris, and then HuES media added and left to equilibrate in the cell culture incubator. A frozen vial of cells from long term liquid nitrogen storage or a -80 C freezer is sourced and quickly submerged in a 37 C water bath for quick thawing. Cells in freezing media are then removed from the vial and placed in a large volume of HuES media. The large volume of HuES media facilitates removal of excess serum and DMSO, which can cause HuES human embryonic stem cells to differentiate. Cells are gently spun out of suspension, and then re-suspended in a small volume of fresh HuES media that is then used to seed the MEF plate. It is considered important to seed the MEF plate by gently adding the HuES cells in a drop wise fashion to evenly disperse them throughout the plate. The newly established HuES culture plate is returned to the incubator for 48 hrs before media is replaced, then is fed every 24 hours thereafter.

  19. Sodium Valproate Induces Cell Senescence in Human Hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hong-Mei An

    2013-12-01

    Full Text Available Hepatocarcinogenesis is associated with epigenetic changes, including histone deacetylases (HDACs. Epigenetic modulation by HDAC inhibition is a potentially valuable approach for hepatocellular carcinoma treatment. In present study, we evaluated the anticancer effects of sodium valproate (SVP, a known HDAC inhibitor, in human hepatocarcinoma cells. The results showed SVP inhibited the proliferation of Bel-7402 cells in a dose-dependent manner. Low dose SVP treatment caused a large and flat morphology change, positive SA-β-gal staining, and G0/G1 phase cell cycle arrest in human hepatocarcinoma cells. Low dose SVP treatment also increased acetylation of histone H3 and H4 on p21 promoter, accompanied by up-regulation of p21 and down-regulation of RB phosphorylation. These observations suggested that a low dose of SVP could induce cell senescence in hepatocarcinoma cells, which might correlate with hyperacetylation of histone H3 and H4, up-regulation of p21, and inhibition of RB phosphorylation. Since the effective concentration inducing cell senescence in hepatocarcinoma cells is clinically available, whether a clinical dose of SVP could induce cell senescence in clinical hepatocarcinoma is worthy of further study.

  20. Human embryonic stem cell lines model experimental human cytomegalovirus latency.

    Science.gov (United States)

    Penkert, Rhiannon R; Kalejta, Robert F

    2013-05-28

    Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34(+) hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34(+) cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34(+) cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

  1. [Immune system evolution. (From cells to humans)].

    Science.gov (United States)

    Belek, A S

    1992-01-01

    The great variety of cells and molecules observed in the mammalian immune system can be explained by stepwise acquisition of them during phylogeny. Self/nonself discrimination and cell-mediated immunity have been present since the early stages of evolution. Although some inducible antimicrobial molecules have been demonstrated in invertebrates, immunoglobulins appear in vertebrates. T and B cell diversity, development of the lymphoid organs, MHC molecules, complement and cytokines are the characteristics that appear through the evolution of vertebrates. Further knowledge that will be obtained from phylogenetic studies will improve our understanding of the immune system of human.

  2. Centre for human development, stem cells & regeneration.

    Science.gov (United States)

    Oreffo, Richard O C

    2014-01-01

    The Centre for Human Development, Stem Cells and Regeneration (CHDSCR) was founded in 2004 as a cross-disciplinary research and translational program within the Faculty of Medicine at the University of Southampton. The Centre undertakes fundamental research into early development and stem cells together with applied translational research for patient benefit. The Centre has vibrant and thriving multidisciplinary research programs that harness the translational strength of the Faculty together with an innovative Stem Cell PhD program, outstanding clinical infrastructure and enterprise to deliver on this vision.

  3. Biobanking human embryonic stem cell lines

    DEFF Research Database (Denmark)

    Holm, Søren

    2016-01-01

    Stem cell banks curating and distributing human embryonic stem cells have been established in a number of countries and by a number of private institutions. This paper identifies and critically discusses a number of arguments that are used to justify the importance of such banks in policy...... are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being...

  4. Original Research: Label-free detection for radiation-induced apoptosis in glioblastoma cells.

    Science.gov (United States)

    Qi, Dandan; Feng, Jingwen; Yang, Chengwen; Jin, Changrong; Sa, Yu; Feng, Yuanming

    2016-10-01

    Current flow cytometry (FCM) requires fluorescent dyes labeling cells which make the procedure costly and time consuming. This manuscript reports a feasibility study of detecting the cell apoptosis with a label-free method in glioblastoma cells. A human glioma cell line M059K was exposed to 8 Gy dose of radiation, which enables the cells to undergo radiation-induced apoptosis. The rates of apoptosis were studied at different time points post-irradiation with two different methods: FCM in combination with Annexin V-FITC/PI staining and a newly developed technique named polarization diffraction imaging flow cytometry. Totally 1000 diffraction images were acquired for each sample and the gray level co-occurrence matrix (GLCM) algorithm was used in morphological characterization of the apoptotic cells. Among the feature parameters extracted from each image pair, we found that the two GLCM parameters of angular second moment (ASM) and sum entropy (SumEnt) exhibit high sensitivities and consistencies as the apoptotic rates (Pa) measured with FCM method. In addition, no significant difference exists between Pa and ASM_S, Pa and SumEnt_S, respectively (P > 0.05). These results demonstrated that the new label-free method can detect cell apoptosis effectively. Cells can be directly used in the subsequent biochemical experiments as the structure and function of cells and biomolecules are well-preserved with this new method.

  5. Advances in human B cell phenotypic profiling

    Directory of Open Access Journals (Sweden)

    Denise A Kaminski

    2012-10-01

    Full Text Available To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (Big Biology, necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort.

  6. Human plasma cells express granzyme B.

    Science.gov (United States)

    Xu, Wei; Narayanan, Priya; Kang, Ning; Clayton, Sandra; Ohne, Yoichiro; Shi, Peiqing; Herve, Marie-Cecile; Balderas, Robert; Picard, Capucine; Casanova, Jean-Laurent; Gorvel, Jean-Pierre; Oh, Sangkon; Pascual, Virginia; Banchereau, Jacques

    2014-01-01

    While studying the plasma cell (PC) compartment in human tonsils, we identified that immunoglobulin kappa or lambda chain-expressing PCs are the main cells expressing granzyme B (GrzB). In vitro studies revealed that activated B cells differentiated into GrzB-expressing PCs when co-cultured with macrophages and follicular helper T cells. This effect could be reproduced on combined stimulation of IL-15 (produced by macrophages) and IL-21 (produced by T follicular helper cells) in a STAT3-dependent manner. Whereas IL-21 triggers the transcription of mRNA of GrzB, IL-15 synergizes the translation of GrzB proteins. The precise role of GrzB in PC biology remains to be understood and studies in mice will not help as their PCs do not express GrzB.

  7. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become...... cytotoxic upon appropriate activation. These cells were shown to play a role in different disease states, such as cancer, autoimmunity, neuroinflammation, and infection. Although their phenotype and functional properties are well known and have been extensively studied, their lineage relationship with other...... NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them....

  8. Human embryonic stem cells: preclinical perspectives

    Directory of Open Access Journals (Sweden)

    Sarda Kanchan

    2008-01-01

    Full Text Available Abstract Human embryonic stem cells (hESCs have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic.

  9. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    Science.gov (United States)

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs.

  10. Technical justification for ASME code section xi crack detection by visual examination

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E. [Applied Science and Technology, Poway, CA (United States); Rashid, Y.R. [ANATECH Corp., San Diego (United States)

    2001-07-01

    A critical technical element of nuclear power plant license renewal in the United States is the demonstration that the effects of aging do not compromise the intended safety function(s) of a system, structure, or component during the extended term of operation. The demonstration may take either of two forms. First, it can be shown that the design basis for the system, structure, or component is sufficiently robust that the aging effects have been insignificant through the current license term, and will continue to be insignificant through the extended term. Alternatively, it can be shown that, while the aging effects may be potentially significant, those effects can be managed and functionality maintained by defined programmatic activities during the extended term of operation. The first of the two approaches is generally provided by the construction basis, such as construction in accordance with the ASME Code Section III and other consensus codes and standards. The second of the two approaches is often provided by periodic inservice inspection and testing, in accordance with the ASME Code Section XI. The purpose of the ASME Section XI inspections and tests is to assure that systems, components, and structures are fit for continued service until the next scheduled inspection or test. The purpose of this paper is to document the effectiveness of the current ASME Code Section XI visual examination procedures in detecting the effects of aging for systems, structures, and components that are tolerant of mature cracks. (author)

  11. PHASE I MATERIALS PROPERTY DATABASE DEVELOPMENT FOR ASME CODES AND STANDARDS

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Lin, Lianshan [ORNL

    2013-01-01

    To support the ASME Boiler and Pressure Vessel Codes and Standard (BPVC) in modern information era, development of a web-based materials property database is initiated under the supervision of ASME Committee on Materials. To achieve efficiency, the project heavily draws upon experience from development of the Gen IV Materials Handbook and the Nuclear System Materials Handbook. The effort is divided into two phases. Phase I is planned to deliver a materials data file warehouse that offers a depository for various files containing raw data and background information, and Phase II will provide a relational digital database that provides advanced features facilitating digital data processing and management. Population of the database will start with materials property data for nuclear applications and expand to data covering the entire ASME Code and Standards including the piping codes as the database structure is continuously optimized. The ultimate goal of the effort is to establish a sound cyber infrastructure that support ASME Codes and Standards development and maintenance.

  12. Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries

    DEFF Research Database (Denmark)

    Høyer, Poul Erik; Byskov, Anne Grete; Møllgård, Kjeld

    2005-01-01

    Prenatal ovary (human), Primordial germ cells, Folliculogenesis, c-Kit, Stem cell factor, immunohistochemistry......Prenatal ovary (human), Primordial germ cells, Folliculogenesis, c-Kit, Stem cell factor, immunohistochemistry...

  13. Differences in the microrheology of human embryonic stem cells and human induced pluripotent stem cells.

    Science.gov (United States)

    Daniels, Brian R; Hale, Christopher M; Khatau, Shyam B; Kusuma, Sravanti; Dobrowsky, Terrence M; Gerecht, Sharon; Wirtz, Denis

    2010-12-01

    Embryonic and adult fibroblasts can be returned to pluripotency by the expression of reprogramming genes. Multiple lines of evidence suggest that these human induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells are behaviorally, karyotypically, and morphologically similar. Here we sought to determine whether the physical properties of hiPS cells, including their micromechanical properties, are different from those of hES cells. To this end, we use the method of particle tracking microrheology to compare the viscoelastic properties of the cytoplasm of hES cells, hiPS cells, and the terminally differentiated parental human fibroblasts from which our hiPS cells are derived. Our results indicate that although the cytoplasm of parental fibroblasts is both viscous and elastic, the cytoplasm of hiPS cells does not exhibit any measurable elasticity and is purely viscous over a wide range of timescales. The viscous phenotype of hiPS cells is recapitulated in parental cells with disassembled actin filament network. The cytoplasm of hES cells is predominantly viscous but contains subcellular regions that are also elastic. This study supports the hypothesis that intracellular elasticity correlates with the degree of cellular differentiation and reveals significant differences in the mechanical properties of hiPS cells and hES cells. Because mechanical stimuli have been shown to mediate the precise fate of differentiating stem cells, our results support the concept that stem cell "softness" is a key feature of force-mediated differentiation of stem cells and suggest there may be subtle functional differences between force-mediated differentiation of hiPS cells and hES cells.

  14. Generation of mature hematopoietic cells from human pluripotent stem cells.

    Science.gov (United States)

    Togarrati, Padma Priya; Suknuntha, Kran

    2012-06-01

    A number of malignant and non-malignant hematological disorders are associated with the abnormal production of mature blood cells or primitive hematopoietic precursors. Their capacity for continuous self-renewal without loss of pluripotency and the ability to differentiate into adult cell types from all three primitive germ layers make human embryonic stem cells and induced pluripotent stem cells (hiPSCs) attractive complementary cell sources for large-scale production of transfusable mature blood cell components in cell replacement therapies. The generation of patient-specific hematopoietic stem/precursor cells from iPSCs by the regulated manipulation of various factors involved in reprograming to ensure complete pluripotency, and developing innovative differentiation strategies for generating unlimited supply of clinically safe, transplantable, HLA-matched cells from hiPSCs to outnumber the inadequate source of hematopoietic stem cells obtained from cord blood, bone marrow and peripheral blood, would have a major impact on the field of regenerative and personalized medicine leading to translation of these results from bench to bedside.

  15. Welding of NPT-Stamped Vessel in Accordance with ASME Code%ASME规范NPT钢印取证容器的焊接

    Institute of Scientific and Technical Information of China (English)

    吴佳

    2014-01-01

    Based on ASME Boiler&Pressure Vessel Code, the paper explains how to conduct welding operation on NPT-Stamped vessels that are certificated in accordance with ASME code.%结合ASME规范,介绍ASME NPT钢印取证容器焊接过程。

  16. Human colostral cells. I. Separation and characterization.

    Science.gov (United States)

    Crago, S S; Prince, S J; Pretlow, T G; McGhee, J R; Mestecky, J

    1979-12-01

    Analyses of the cells present in human colostrum obtained from fifty-four healthy donors during the first four days of lactation revealed that there were 3.3 x 10(6) (range 1.1 x 10(5)--1.2 x 10(7)) cells per ml of colostrum. Based on histochemical examinations, it was found that this population consisted of 30--47% macrophages, 40--60% polymorphonuclear leucocytes, 5.2--8.9% lymphocytes, and 1.3--2.8% colostral corpuscles; epithelial cells were rarely encountered. The identity of various cell types was confirmed by Wright's stain and by a series of histochemical techniques which disclosed the presence of non-specific esterase, peroxidase, and lipids. For further characterization, the different types of cells were separated by various methods, such as Ficoll-Hypaque density centrifugation, isokinetic centrifugation on a linear Ficoll gradient, adherence to glass or plastic, and phagocytosis of carbonyl iron. Immunohistochemical staining with FITC- and/or TRITC-labelled reagents to IgA, IgM, IgG, K- and lambda-chains, secretory component, lactoferrin, and alpha-lactalbumin were applied to unseparated as well as separated colostral cells. Polymorphonuclear leucocytes (staining for peroxidase) as well as macrophages and colostral corpuscles (staining for non-specific esterase) exhibited numerous intracellular vesicles that contained lipids as well as various combinations of milk proteins. Lymphoid cells did not stain with any of these reagents and plasma cells were not detected among the colostral cells. Individual phagocytic cells contained immunoglobulins of the IgA and IgM classes, both K and lambda light chains, secretory component, lactoferrin, and alpha-lactalbumin. The coincidental appearance of these proteins in single, phagocytic cells but not in lymphoid cells indicate that the cells acquired these proteins by ingestion from the environment. Markers commonly used for the identification of B lymphocytes (surface immunoglobulins) and T lymphocytes (receptors

  17. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  18. DNA repair responses in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  19. Late Cenozoic genus Fupingopollenites development and its implications for the Asian summer monsoon (ASM) evolution

    Science.gov (United States)

    Miao, Y.; Song, C.; Fang, X.; Meng, Q.; Zhang, P.; Wu, F.; Yan, X.

    2015-12-01

    An extinct palynomorph, Fupingopollenites, was used as the basis for a discussion of the late Cenozoic Asian summer monsoon (ASM) evolution and its possible driving forces. Based on the spatial and temporal variations in its percentages across Inner and East Asia, we found that Fupingopollenites mainly occurred in East Asia, with boundaries to the NE of ca. 42°N, 135°E and NW of ca. 36°N, 103°E during the Early Miocene (ca. 23-17 Ma). This region enlarged westwards, reaching the eastern Qaidam Basin (ca. 36°N, 97.5°E) during the Middle Miocene (ca. 17-11 Ma), before noticeably retreating to a region bounded to the NW at ca. 33°N, 105°E during ca. 11-5.3 Ma. The region then shrank further in the Pliocene, with the NE boundary shrinking southwards to about 35°N, 120°E; the area then almost disappeared during the Pleistocene (2.6-0 Ma). The flourishing and subsequent extinction of Fupingopollenites is indicative of a narrow ecological amplitude with a critical dependence on habitat humidity and temperature (most likely mean annual precipitation (MAP) >1000 mm and mean annual temperature (MAT) >10°C). Therefore, the Fupingopollenites geographic distribution can indicate the humid ASM evolution during the late Cenozoic, revealing that the strongest ASM period occurred during the Middle Miocene Climate Optimum (MMCO, ~17-14 Ma), after which the ASM weakened coincident with global cooling. We argue that the global cooling played a critical role in the ASM evolution, while the Tibetan Plateau uplifts made a relatively small contribution. This result was supported by a Miocene pollen record at the Qaidam Basin, inner Asia and the contemporaneously compiled pollen records across the Eurasia.

  20. Statistical analysis of geomagnetic field intensity differences between ASM and VFM instruments onboard Swarm constellation

    Science.gov (United States)

    De Michelis, Paola; Tozzi, Roberta; Consolini, Giuseppe

    2017-02-01

    From the very first measurements made by the magnetometers onboard Swarm satellites launched by European Space Agency (ESA) in late 2013, it emerged a discrepancy between scalar and vector measurements. An accurate analysis of this phenomenon brought to build an empirical model of the disturbance, highly correlated with the Sun incidence angle, and to correct vector data accordingly. The empirical model adopted by ESA results in a significant decrease in the amplitude of the disturbance affecting VFM measurements so greatly improving the vector magnetic data quality. This study is focused on the characterization of the difference between magnetic field intensity measured by the absolute scalar magnetometer (ASM) and that reconstructed using the vector field magnetometer (VFM) installed on Swarm constellation. Applying empirical mode decomposition method, we find the intrinsic mode functions (IMFs) associated with ASM-VFM total intensity differences obtained with data both uncorrected and corrected for the disturbance correlated with the Sun incidence angle. Surprisingly, no differences are found in the nature of the IMFs embedded in the analyzed signals, being these IMFs characterized by the same dominant periodicities before and after correction. The effect of correction manifests in the decrease in the energy associated with some IMFs contributing to corrected data. Some IMFs identified by analyzing the ASM-VFM intensity discrepancy are characterized by the same dominant periodicities of those obtained by analyzing the temperature fluctuations of the VFM electronic unit. Thus, the disturbance correlated with the Sun incidence angle could be still present in the corrected magnetic data. Furthermore, the ASM-VFM total intensity difference and the VFM electronic unit temperature display a maximal shared information with a time delay that depends on local time. Taken together, these findings may help to relate the features of the observed VFM-ASM total intensity

  1. Human T Cell Memory: A Dynamic View

    Directory of Open Access Journals (Sweden)

    Derek C. Macallan

    2017-02-01

    Full Text Available Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy.

  2. Biological impact of human embryonic stem cells.

    Science.gov (United States)

    Martín, Miguel; Menéndez, Pablo

    2012-01-01

    Research on human embryonic stem cells (hESCs) and induced pluripotent (iPS) stem cells is currently a field of great potential in biomedicine. These cells represent a highly valuable tool for developmental biology studies, disease models, and drug screening and toxicity. The ultimate goal of hESCs and iPS cell research is the treatment of diseases or disorders for which there is currently no treatment or existing therapies are only partially effective. Despite the disproportionate short-term hopes generated, which are putting too much pressure on scientists, the international scientific community is making rapid progress in understanding hESCs and iPS cells. Nonetheless, great efforts have to be made to provide an answer to still quite basic questions concerning their biology. Moreover, translation to clinical applications in cell replacement therapy requires prior solution to ethical barriers. The recent development of iPS cells has provided a strong alternative to overcome ethical issues concerning hESCs. However, an in-depth characterization of their genetic and epigenetic features, as well as their differentiation potential still remains to be undertaken. This chapter will describe, precisely, what the critical issues are, where scientific and ethical barriers stand, and how we are to overcome them. Only then, we shall finally discover whether hESCs and iPS cells will allow building reproducible disease models, and whether they really are a safe tool, with great potential for regenerative medicine.

  3. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    Science.gov (United States)

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  4. Cell phoney: human cloning after Quintavalle.

    Science.gov (United States)

    Morgan, Derek; Ford, Mary

    2004-12-01

    Reproductive cloning has thrown up new scientific possibilities, ethical conundrums, and legal challenges. An initial question, considered by the English courts in 2003, was whether the technique presently available, that of cell nucleus replacement, falls outside the provisions of the Human Fertilisation and Embryology Act 1990. If it does, the creation and use, including use in research protocols, of human embryos would be unregulated, disclosing a need to consider remedial legislation. The resolution by the courts of this legal question dramatically engages them in a resolution of fundamental ethical dilemmas, and discloses the possibilities and limitation of negotiating science policy through the processes of litigation.

  5. Lymphoid Cell-Glioma Cell Interaction Enhances Cell Coat Production by Human Gliomas: Novel Suppressor Mechanism

    Science.gov (United States)

    Dick, Steven J.; Macchi, Beatrice; Papazoglou, Savvas; Oldfield, Edward H.; Kornblith, Paul L.; Smith, Barry H.; Gately, Maurice K.

    1983-05-01

    Certain human glioma lines produce mucopolysaccharide coats that impair the generation of cytolytic lymphocytes in response to these lines in vitro. Coat production is substantially enhanced by the interaction of glioma cells with a macromolecular factor released by human peripheral blood mononuclear cells in culture. This interaction thus constitutes an unusual mechanism by which inflammatory cells may nonspecifically suppress the cellular immune response to at least one class of solid tumors in humans.

  6. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  7. Human somatic cell nuclear transfer and cloning.

    Science.gov (United States)

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Dopamine receptor repertoire of human granulosa cells

    Directory of Open Access Journals (Sweden)

    Kunz Lars

    2007-10-01

    Full Text Available Abstract Background High levels of dopamine (DA were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well. However, neither the full repertoire of ovarian receptors for DA, nor their specific role, is established. Human granulosa cells (GCs derived from women undergoing in vitro fertilization (IVF are an adequate model for endocrine cells of the follicle and the corpus luteum and were therefore employed in an attempt to decipher their DA receptor repertoire and functionality. Methods Cells were obtained from patients undergoing IVF and examined using cDNA-array, RT-PCR, Western blotting and immunocytochemistry. In addition, calcium measurements (with FLUO-4 were employed. Expression of two DA receptors was also examined by in-situ hybridization in rat ovary. Effects of DA on cell viability and cell volume were studied by using an ATP assay and an electronic cell counter system. Results We found members of the two DA receptor families (D1- and D2 -like associated with different signaling pathways in human GCs, namely D1 (as expected and D5 (both are Gs coupled and linked to cAMP increase and D2, D4 (Gi/Gq coupled and linked to IP3/DAG. D3 was not found. The presence of the trophic hormone hCG (10 IU/ml in the culture medium for several days did not alter mRNA (semiquantitative RT-PCR or protein levels (immunocytochemistry/Western blotting of D1,2,4,5 DA receptors. Expression of prototype receptors for the two families, D1 and D2, was furthermore shown in rat granulosa and luteal cells by in situ hybridization. Among the DA receptors found in human GCs, D2 expression was marked both at mRNA and protein levels and it was therefore further studied. Results of additional RT-PCR and Western blots showed two splice variants (D2L, D2S. Irrespective of these variants, D2 proved to be functional, as DA raised intracellular calcium levels. This calcium mobilizing effect of DA was observed

  9. TALEN-Induced Translocations in Human Cells.

    Science.gov (United States)

    Piganeau, Marion; Renouf, Benjamin; Ghezraoui, Hind; Brunet, Erika

    2016-01-01

    Induction of chromosomal translocations in human cells is of a great interest to study tumorigenesis and genome instability. Here, we explain in detail a method to induce translocations using the transcription activator-like effector nucleases (TALENs). We describe how to detect translocation formation by PCR, calculate translocation frequency by 96-well PCR screen, and analyze breakpoint junctions. When inducing cancer translocations, it is also possible to detect the fusion gene by FISH analysis or western blot.

  10. The core regulatory network in human cells.

    Science.gov (United States)

    Kim, Man-Sun; Kim, Dongsan; Kang, Nam Sook; Kim, Jeong-Rae

    2017-03-04

    In order to discover the common characteristics of various cell types in the human body, many researches have been conducted to find the set of genes commonly expressed in various cell types and tissues. However, the functional characteristics of a cell is determined by the complex regulatory relationships among the genes rather than by expressed genes themselves. Therefore, it is more important to identify and analyze a core regulatory network where all regulatory relationship between genes are active across all cell types to uncover the common features of various cell types. Here, based on hundreds of tissue-specific gene regulatory networks constructed by recent genome-wide experimental data, we constructed the core regulatory network. Interestingly, we found that the core regulatory network is organized by simple cascade and has few complex regulations such as feedback or feed-forward loops. Moreover, we discovered that the regulatory links from genes in the core regulatory network to genes in the peripheral regulatory network are much more abundant than the reverse direction links. These results suggest that the core regulatory network locates at the top of regulatory network and plays a role as a 'hub' in terms of information flow, and the information that is common to all cells can be modified to achieve the tissue-specific characteristics through various types of feedback and feed-forward loops in the peripheral regulatory networks. We also found that the genes in the core regulatory network are evolutionary conserved, essential and non-disease, non-druggable genes compared to the peripheral genes. Overall, our study provides an insight into how all human cells share a common function and generate tissue-specific functional traits by transmitting and processing information through regulatory network.

  11. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  12. Preliminary study on human fibroblasts as feeder layer for human embryonic stem cells culture in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To avoid the direct contact with mouse cells and possible heterogeneous pathogen in future application, we need to replace mouse embryonic fibroblastswith human fibroblasts as the feeder layer to maintain human embryonic stem cells growth in the undifferentiated state. We successfully use human fibroblasts derived from aborted fetus and adult prepuce as feeder layer to maintain human embryonic stem cells growth. During the passage and growth on this feeder layer, the human embryonic stem cells can keep their undifferentiated state.

  13. Primitive cardiac cells from human embryonic stem cells.

    Science.gov (United States)

    Hudson, James; Titmarsh, Drew; Hidalgo, Alejandro; Wolvetang, Ernst; Cooper-White, Justin

    2012-06-10

    Pluripotent stem cell-derived cardiomyocytes are currently being investigated for in vitro human heart models and as potential therapeutics for heart failure. In this study, we have developed a differentiation protocol that minimizes the need for specific human embryonic stem cell (hESC) line optimization. We first reduced the heterogeneity that exists within the starting population of bulk cultured hESCs by using cells adapted to single-cell passaging in a 2-dimensional (2D) culture format. Compared with bulk cultures, single-cell cultures comprised larger fractions of TG30(hi)/OCT4(hi) cells, corresponding to an increased expression of pluripotency markers OCT4 and NANOG, and reduced expression of early lineage-specific markers. A 2D temporal differentiation protocol was then developed, aimed at reducing the inherent heterogeneity and variability of embryoid body-based protocols, with induction of primitive streak cells using bone morphogenetic protein 4 and activin A, followed by cardiogenesis via inhibition of Wnt signaling using the small molecules IWP-4 or IWR-1. IWP-4 treatment resulted in a large percentage of cells expressing low amounts of cardiac myosin heavy chain and expression of early cardiac progenitor markers ISL1 and NKX2-5, thus indicating the production of large numbers of immature cardiomyocytes (~65,000/cm(2) or ~1.5 per input hESC). This protocol was shown to be effective in HES3, H9, and, to a lesser, extent, MEL1 hESC lines. In addition, we observed that IWR-1 induced predominantly atrial myosin light chain (MLC2a) expression, whereas IWP-4 induced expression of both atrial (MLC2a) and ventricular (MLC2v) forms. The intrinsic flexibility and scalability of this 2D protocol mean that the output population of primitive cardiomyocytes will be particularly accessible and useful for the investigation of molecular mechanisms driving terminal cardiomyocyte differentiation, and potentially for the future treatment of heart failure.

  14. Appearance of Human Plasma Cells Following Differentiation of Human B Cells in NOD/SCID Mouse Spleen

    OpenAIRE

    2003-01-01

    Relatively little is known for the differentiation and maturation process of human B cells to plasma cells. This is particularly important in reconstitution work involving transfer of autoantibodies. To address this issue, we transplanted human peripheral blood mononuclear cells (PBMC) directly into the spleen of irradiated NOD/SCID mice depleted of natural killer cell activity. Within 6 weeks, naïve B cells differentiated into memory B cells and, importantly, the numbers of human CD138+ plas...

  15. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2016-01-01

    Full Text Available Human neural progenitor cells (hNPCs have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi. Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  16. Human microglial cells synthesize albumin in brain.

    Directory of Open Access Journals (Sweden)

    Sung-Min Ahn

    Full Text Available Albumin, an abundant plasma protein with multifunctional properties, is mainly synthesized in the liver. Albumin has been implicated in Alzheimer's disease (AD since it can bind to and transport amyloid beta (Abeta, the causative agent of AD; albumin is also a potent inhibitor of Abeta polymerization. Despite evidence of non-hepatic transcription of albumin in many tissues including kidney and pancreas, non-hepatic synthesis of albumin at the protein level has been rarely confirmed. In a pilot phase study of Human Brain Proteome Project, we found evidence that microglial cells in brain may synthesize albumin. Here we report, for the first time, the de novo synthesis of albumin in human microglial cells in brain. Furthermore, we demonstrate that the synthesis and secretion of albumin from microglial cells is enhanced upon microglial activation by Abeta(1-42- or lipopolysaccharide (LPS-treatment. These data indicate that microglial cells may play a beneficial role in AD by secreting albumin that not only inhibits Abeta polymerization but also increases its clearance.

  17. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males......, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex. (C) 2007 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/11...

  18. Characterizing motility dynamics in human RPE cells

    Science.gov (United States)

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Miller, Donald T.

    2017-02-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, however, are often compromised in ageing and ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, but while in vivo biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. Recently we addressed this problem by using organelle motility as a novel contrast agent to enhance the RPE cell in conjunction with 3D resolution of adaptive optics-optical coherence tomography (AO-OCT) to section the RPE layer. In this study, we expand on the central novelty of our method - organelle motility - by characterizing the dynamics of the motility in individual RPE cells, important because of its direct link to RPE physiology. To do this, AO-OCT videos of the same retinal patch were acquired at approximately 1 min intervals or less, time stamped, and registered in 3D with sub-cellular accuracy. Motility was quantified by an exponential decay time constant, the time for motility to decorrelate the speckle field across an RPE cell. In two normal subjects, we found the decay time constant to be just 3 seconds, thus indicating rapid motility in normal RPE cells.

  19. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  20. Appearance of Human Plasma Cells Following Differentiation of Human B Cells in NOD/SCID Mouse Spleen

    Directory of Open Access Journals (Sweden)

    Kentaro Kikuchi

    2003-01-01

    Full Text Available Relatively little is known for the differentiation and maturation process of human B cells to plasma cells. This is particularly important in reconstitution work involving transfer of autoantibodies. To address this issue, we transplanted human peripheral blood mononuclear cells (PBMC directly into the spleen of irradiated NOD/SCID mice depleted of natural killer cell activity. Within 6 weeks, naïve B cells differentiated into memory B cells and, importantly, the numbers of human CD138+ plasma cells in spleen increased by 100 fold after transplantation. Plasma cell numbers correlated with the detection of human IgM and IgG in serum, indicating that human B cells had differentiated into mature plasma cells in the murine spleen. In addition to CD19+ plasma cells, a distinct CD19- plasma cell population was detected, suggesting that downregulation of CD19 associated with maturation of plasma cells occurred. When purified human B cells were transplanted, those findings were not observed. Our results indicate that differentiation and maturation of human B cells and plasma cells can be investigated by transplantation of human PBMC into the spleen of NOD/SCID mice. The model will be useful for studying the differentiation of human B cells and generation of plasma cells.

  1. Human somatic cell nuclear transfer is alive and well.

    Science.gov (United States)

    Cibelli, Jose B

    2014-06-05

    In this issue, Chung et al. (2014) generate human embryonic stem cells by fusing an adult somatic cell to a previously enucleated human oocyte, in agreement with recent reports by the Mitalipov and Egli groups. We can now safely say that human somatic cell nuclear transfer is alive and well.

  2. The association between human papillomavirus and oropharyngeal squamous cell Carcinoma

    DEFF Research Database (Denmark)

    Walvik, Lena; Svensson, Amanda Björk; Friborg, Jeppe

    2016-01-01

    There is emerging evidence of the association between human papillomavirus and a subset of head and neck cancers. However, the role of human papillomavirus as a causal factor is still debated. This review addresses the association between human papillomavirus and oropharyngeal squamous cell...... of well-defined premalignant lesions. However, a causal relationship between human papillomavirus infection and oropharyngeal squamous cell carcinoma seems evident....

  3. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  4. Glycomics of human embryonic stem cells and human induced pluripotent stem cells.

    Science.gov (United States)

    Furukawa, Jun-Ichi; Okada, Kazue; Shinohara, Yasuro

    2016-10-01

    Most cells are coated by a dense glycocalyx composed of glycoconjugates such as glycosphingolipids, glycoproteins, and proteoglycans. The overall glycomic profile is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that regulate cell-cell adhesion, the immune response, microbial pathogenesis, and other cellular events. Many cell surface markers were discovered and identified as glycoconjugates such as stage-specific embryonic antigen, Tra-1-60/81 and various other cell surface molecules (e.g., cluster of differentiation). Recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). The glycomic profiles of these cells are highly cell type-specific and reflect cellular alterations, such as development, differentiation and cancerous change. In this mini review, we briefly summarize the glycosylation spectra specific to hESCs and hiPSCs, which cover glycans of all major glycoconjugates (i.e., glycosphingolipids, N- and O-glycans of glycoproteins, and glycosaminoglycans) and free oligosaccharides.

  5. Isolation and characterization of human spermatogonial stem cells

    Directory of Open Access Journals (Sweden)

    Liu Shixue

    2011-10-01

    Full Text Available Abstract Background To isolate and characterization of human spermatogonial stem cells from stem spermatogonium. Methods The disassociation of spermatogonial stem cells (SSCs were performed using enzymatic digestion of type I collagenase and trypsin. The SSCs were isolated by using Percoll density gradient centrifugation, followed by differential surface-attachment method. Octamer-4(OCT4-positive SSC cells were further identified using immunofluorescence staining and flow cytometry technques. The purity of the human SSCs was also determined, and a co-culture system for SSCs and Sertoli cells was established. Results The cell viability was 91.07% for the suspension of human spermatogonial stem cells dissociated using a two-step enzymatic digestion process. The cells isolated from Percoll density gradient coupled with differential surface-attachement purification were OCT4 positive, indicating the cells were human spermatogonial stem cells. The purity of isolated human spermatogonial stem cells was 86.7% as assessed by flow cytometry. The isolated SSCs were shown to form stable human spermatogonial stem cell colonies on the feeder layer of the Sertoli cells. Conclusions The two-step enzyme digestion (by type I collagenase and trypsin process is an economical, simple and reproducible technique for isolating human spermatogonial stem cells. With little contamination and less cell damage, this method facilitates isolated human spermatogonial stem cells to form a stable cell colony on the supporting cell layer.

  6. Cell entry by human pathogenic arenaviruses.

    Science.gov (United States)

    Rojek, Jillian M; Kunz, Stefan

    2008-04-01

    The arenaviruses Lassa virus (LASV) in Africa and Machupo (MACV), Guanarito (GTOV) and Junin viruses (JUNV) in South America cause severe haemorrhagic fevers in humans with fatality rates of 15-35%. The present review focuses on the first steps of infection with human pathogenic arenaviruses, the interaction with their cellular receptor molecules and subsequent entry into the host cell. While similarities exist in genomic organization, structure and clinical disease caused by pathogenic Old World and New World arenaviruses these pathogens use different primary receptors. The Old World arenaviruses employ alpha-dystroglycan, a cellular receptor for proteins of the extracellular matrix, and the human pathogenic New World arenaviruses use the cellular cargo receptor transferrin receptor 1. While the New World arenavirus JUNV enters cells via clathrin-dependent endocytosis, evidence occurred for clathrin-independent entry of the prototypic Old World arenavirus lymphocytic choriomeningitis virus. Upon internalization, arenaviruses are delivered to the endosome, where pH-dependent membrane fusion is mediated by the envelope glycoprotein (GP). While arenavirus GPs share characteristics with class I fusion GPs of other enveloped viruses, unusual mechanistic features of GP-mediated membrane fusion have recently been discovered for arenaviruses with important implications for viral entry.

  7. Markers of T Cell Senescence in Humans

    Directory of Open Access Journals (Sweden)

    Weili Xu

    2017-08-01

    Full Text Available Many countries are facing the aging of their population, and many more will face a similar obstacle in the near future, which could be a burden to many healthcare systems. Increased susceptibility to infections, cardiovascular and neurodegenerative disease, cancer as well as reduced efficacy of vaccination are important matters for researchers in the field of aging. As older adults show higher prevalence for a variety of diseases, this also implies higher risk of complications, including nosocomial infections, slower recovery and sequels that may reduce the autonomy and overall quality of life of older adults. The age-related effects on the immune system termed as “immunosenescence” can be exemplified by the reported hypo-responsiveness to influenza vaccination of the elderly. T cells, which belong to the adaptive arm of the immune system, have been extensively studied and the knowledge gathered enables a better understanding of how the immune system may be affected after acute/chronic infections and how this matters in the long run. In this review, we will focus on T cells and discuss the surface and molecular markers that are associated with T cell senescence. We will also look at the implications that senescent T cells could have on human health and diseases. Finally, we will discuss the benefits of having these markers for investigators and the future work that is needed to advance the field of T cell senescence markers.

  8. Human embryonic stem cells and microenvironment

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2014-09-01

    Full Text Available Human embryonic stem cells (hESCs possess a great potential in the field of regenerative medicine by their virtue of pluripotent potential with indefinite proliferation capabilities. They can self renew themselves and differentiate into three embryonic germ layers. Although they are conventionally grown on mitotically inactivated mouse feeder cells, there are in vitro culture systems utilizing feeder cells of human origin in order to prevent cross-species contamination. Recently established in vitro culture systems suggested that direct interaction with feeder cells is not necessary but rather attachment to a substrate is required to ensure long-term, efficient hESC culture in vitro. This substrate is usually composed of a mixture of extracellular matrix components representing in vivo natural niche. In hESC biology, the mechanism of interaction of hESCs with extracellular matrix molecules remained insufficiently explored area of research due to their transient nature of interaction with the in vivo niche. However, an in vitro culture system established using extracellular matrix molecules may provide a safer alternative to culture systems with feeder cells while paving the way to Good Manufacturing Practice-GMP production of hESCs for therapeutic purposes. Therefore, it is essential to study the interaction of extracellular matrix molecules with hESCs in order to standardize in vitro culture systems for large-scale production of hESCs in a less labor-intensive way. This would not only provide valuable information regarding the mechanisms that control pluripotency but also serve to dissect the molecular signaling pathways of directed differentiation for prospective therapeutic applications in the future. J Clin Exp Invest 2014; 5 (3: 486-495

  9. Arecoline is cytotoxic for human endothelial cells.

    Science.gov (United States)

    Ullah, Mafaz; Cox, Stephen; Kelly, Elizabeth; Boadle, Ross; Zoellner, Hans

    2014-11-01

    Oral submucous fibrosis is a pre-malignant fibrotic condition caused by areca nut use and involves reduced mucosal vascularity. Arecoline is the principal areca nut alkaloid and is cytotoxic for epithelium and fibroblasts. Endothelial cell cycle arrest is reported on exposure to arecoline, as is cytotoxicity for endothelial-lung carcinoma hybrid cells. We here describe cytotoxicity for primary human endothelial cultures from seven separate donors. Human umbilical vein endothelial cells were exposed to increasing concentrations of arecoline and examined by: phase-contrast microscopy, haemocytometer counts, transmission electron microscopy, lactate dehydrogenase release and the methyl-thiazol-tetrazolium assay. Vacuolation and detachment of endothelium were observed at and above arecoline concentrations of 333 μg/ml or more. Ultrastructural features of cellular stress were seen after 24-h treatment with 111 μg/ml arecoline and included reduced ribosomal studding of endoplasmic reticulum, increased autophagolysosomal structures, increased vacuolation and reduced mitochondrial cristae with slight swelling. Similar changes were seen at 4 h with arecoline at 333 μg/ml or above, but with more severe mitochondrial changes including increased electron density of mitochondrial matrix and greater cristal swelling, while by 24 h, these cells were frankly necrotic. Haemocytometer counts were paralleled by both lactate dehydrogenase release and the methyl-thiazol-tetrazolium assays. Arecoline is cytotoxic via necrosis for endothelium, while biochemical assays indicate no appreciable cellular leakage before death and detachment, as well as no clear effect on mitochondrial function in viable cells. Arecoline toxicity may thus contribute to reduced vascularity in oral submucous fibrosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. PHYSICAL METHODS IN CHEMISTRY INVESTIGATIONS OF THE CHEMISTRY INSTITUTE OF ASM

    Directory of Open Access Journals (Sweden)

    Constantin Turta

    2009-06-01

    Full Text Available The following classes of compounds are presented: terpenes, cyclic nitrogen compounds, dioximates, carboxylates etc., which have been studied with the participation of experts on physical methods of research - IR, UV-Vis, Atomic, Mössbauer spectroscopy, as well as Mass-spectrometry and Nuclear Magnetic Resonance in the IC ASM. Also, a number of significant scientific results obtained in collaboration of chemists and specialists in physical methods are described.

  11. ASME AG-1 Section FC Qualified HEPA Filters; a Particle Loading Comparison - 13435

    Energy Technology Data Exchange (ETDEWEB)

    Stillo, Andrew [Camfil Farr, 1 North Corporate Drive, Riverdale, NJ 07457 (United States); Ricketts, Craig I. [New Mexico State University, Department of Engineering Technology and Surveying Engineering, P.O. Box 30001 MSC 3566, Las Cruces, NM 88003-8001 (United States)

    2013-07-01

    High Efficiency Particulate Air (HEPA) Filters used to protect personnel, the public and the environment from airborne radioactive materials are designed, manufactured and qualified in accordance with ASME AG-1 Code section FC (HEPA Filters) [1]. The qualification process requires that filters manufactured in accordance with this ASME AG-1 code section must meet several performance requirements. These requirements include performance specifications for resistance to airflow, aerosol penetration, resistance to rough handling, resistance to pressure (includes high humidity and water droplet exposure), resistance to heated air, spot flame resistance and a visual/dimensional inspection. None of these requirements evaluate the particle loading capacity of a HEPA filter design. Concerns, over the particle loading capacity, of the different designs included within the ASME AG-1 section FC code[1], have been voiced in the recent past. Additionally, the ability of a filter to maintain its integrity, if subjected to severe operating conditions such as elevated relative humidity, fog conditions or elevated temperature, after loading in use over long service intervals is also a major concern. Although currently qualified HEPA filter media are likely to have similar loading characteristics when evaluated independently, filter pleat geometry can have a significant impact on the in-situ particle loading capacity of filter packs. Aerosol particle characteristics, such as size and composition, may also have a significant impact on filter loading capacity. Test results comparing filter loading capacities for three different aerosol particles and three different filter pack configurations are reviewed. The information presented represents an empirical performance comparison among the filter designs tested. The results may serve as a basis for further discussion toward the possible development of a particle loading test to be included in the qualification requirements of ASME AG-1

  12. ASME B16.34-2004标准核心内容

    Institute of Scientific and Technical Information of China (English)

    韩肇俊

    2007-01-01

    在美国的国家标准中,编号为B16的系列标准是由ASME B16委员会负责编制、与ASME锅炉及压力容器规范配套使用的”管道组成件标准(Piping component standards)”。

  13. Appropriate nominal stresses for use with ASME Code pressure-loading stress indices for nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Rodabaugh, E.C.

    1976-06-01

    This program is part of a cooperative effort with industry to develop and verify analytical methods for assessing the safety of nuclear pressure-vessel and piping-system design. The study of nominal stresses and stress indices described is part of a continuing study of design rules for nozzles in pressure vessels being coordinated by the PVRC Subcommittee on Reinforced Openings and External Loadings. Results from these studies are used by appropriate ASME Code groups in drafting new and improved design rules.

  14. Identification of a candidate stem cell in human gallbladder

    Directory of Open Access Journals (Sweden)

    Rohan Manohar

    2015-05-01

    In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.

  15. Cell cycle regulation by glucosamine in human pulmonary epithelial cells.

    Science.gov (United States)

    Chuang, Kun-Han; Lu, Chih-Shen; Kou, Yu Ru; Wu, Yuh-Lin

    2013-04-01

    Airway epithelial cells play an important role against intruding pathogens. Glucosamine, a commonly used supplemental compound, has recently begun to be regarded as a potential anti-inflammatory molecule. This study aimed to uncover how glucosamine impacts on cellular proliferation in human alveolar epithelial cells (A549) and bronchial epithelial cells (HBECs). With trypan blue-exclusion assay, we observed that glucosamine (10, 20, 50 mM) caused a decrease in cell number at 24 and 48 h; with a flow cytometric analysis, we also noted an enhanced cell accumulation within the G(0)/G(1) phase at 24 h and induction of late apoptosis at 24 and 48 h by glucosamine (10, 20, 50 mM) in A549 cells and HBECs. Examination of phosphorylation in retinoblastoma (Rb) protein, we found an inhibitory effect by glucosamine at 20 and 50 mM. Glucosamine at 50 mM was demonstrated to elevate both the mRNA and protein expression of p53 and heme oxygenase-1 (HO-1), but also caused a reduction in p21 protein expression. In addition, glucosamine attenuated p21 protein stability via the proteasomal proteolytic pathway, as well as inducing p21 nuclear accumulation. Altogether, our results suggest that a high dose of glucosamine may inhibit cell proliferation through apoptosis and disturb cell cycle progression with a halt at G(0)/G(1) phase, and that this occurs, at least in part, by a reduction in Rb phosphorylation together with modulation of p21, p53 and HO-1 expression, and nuclear p21 accumulation.

  16. HB-EGF-Promoted Airway Smooth Muscle Cells and Their Progenitor Migration Contribute to Airway Smooth Muscle Remodeling in Asthmatic Mouse.

    Science.gov (United States)

    Wang, Qing; Li, Hequan; Yao, Yinan; Lu, Guohua; Wang, Yuehong; Xia, Dajing; Zhou, Jianying

    2016-03-01

    The airway smooth muscle (ASM) cells' proliferation, migration, and their progenitor's migration are currently regarded as causative factors for ASM remodeling in asthma. Heparin-binding epidermal growth factor (HB-EGF), a potent mitogen and chemotactic factor, could promote ASM cell proliferation through MAPK pathways. In this study, we obtained primary ASM cells and their progenitors from C57BL/6 mice and went on to explore the role of HB-EGF in these cells migration and the underlying mechanisms. We found that recombinant HB-EGF (rHB-EGF) intratracheal instillation accelerated ASM layer thickening in an OVA-induced asthmatic mouse. Modified Boyden chamber assay revealed that rHB-EGF facilitate ASM cell migration in a dose-dependent manner and ASM cells from asthmatic mice had a greater migration ability than that from normal counterparts. rHB-EGF could stimulate the phosphorylation of ERK1/2 and p38 in ASM cells but further migration assay showed that only epidermal growth factor receptor inhibitor (AG1478) or p38 inhibitor (SB203580), but not ERK1/2 inhibitor (PD98059), could inhibit rHB-EGF-mediated ASM cells migration. Actin cytoskeleton experiments exhibited that rHB-EGF could cause actin stress fibers disassembly and focal adhesions formation of ASM cells through the activation of p38. Finally, airway instillation of rHB-EGF promoted the recruitment of bone marrow-derived smooth muscle progenitor cells, which were transferred via caudal vein, migrating into the airway from the circulation. These observations demonstrated that ASM remodeling in asthma might have resulted from HB-EGF-mediated ASM cells and their progenitor cells migration, via p38 MAPK-dependent actin cytoskeleton remodeling.

  17. 基于ASME SECTION I的集箱旋压封头强度计算

    Institute of Scientific and Technical Information of China (English)

    夏国泉

    2010-01-01

    根据集箱旋压封头的结构特点,研究了ASME SECTION I与GB/T9222-2008适用的强度计算规定,分析了ASME SECTION I与GB/T9222-2008在集箱热旋压收口封头设计方面的异同。

  18. Comparison of SKIFS 2004:1 and Tillsynshandbok PSA against the ASME PRA Standard and European requirements on PSA; Jaemfoerelse av SKIFS 2004:1 och Tillsynshandbok PSA mot ASME PRA Standard och Europeiska krav paa PSA

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, Per

    2005-04-15

    Requirements on PSA for risk informed applications are expressed in different international documents. The ASME PRA standard published in spring 2002 is one such document, PSA requirements are also expressed in the European Utility Requirements (EUR) for new reactors. The Swedish PSA requirements are provided in the Swedish regulators (SKI) statutes SKIFS 2004:1. SKI also has a review handbook for PSA activities (SKI report 2003:48). The review handbook is a support during review of the utilities PSA activities and the PSAs themselves. The review handbook expresses SKIs expectations by providing so called important aspects for both the PSA work and the PSAs, A comparison of SKIFS requirements and the important aspects in the Review handbook, on one side, and the requirements on PSA in EUR and ASME on the other side, is presented. The comparison shows a large difference in the level of detail in the different documents, where ASME is most detailed and specific. This is expected since the SKI review handbook not is a 'PSA guide' in the same way as the ASME PRA standard. A direct comparison of the ASME PRA standard requirements with the important aspects in the review handbook cannot answer the question which ASME capacity level that is achieved by a PSA meeting all important aspects. The conclusion is that it is not likely to achieve capacity level 2 and 3, since very few ASME level 3 attributes are explicitly expressed as important aspects, though many are expressed in general terms. The review handbook important aspects that are most similar to the ASME capacity level 1 attributes are initiating events, sequence analysis, and system analysis while less similarity is found for analysis of operator actions data analysis, quantification and containment analysis (level 2). Less similarity is found for capacity level 2 and 3. However, the number of additional ASME attributes on capacity level 2 and 3 are few. There are also important aspects in the review

  19. Human embryonic stem cells and patent protection

    Directory of Open Access Journals (Sweden)

    Radovanović Sanja M.

    2015-01-01

    Full Text Available Given the importance of biotechnological research in modern diagnostics and therapeutics, on the one hand, and stimulative function of a patent, on the other hand, this work deals with the question of the possibility of pa-tent protection of human embryonic stem cells. Taking into account that this is a biotechnological invention, the key question that this paper highlights is the interpretation of the provisions of their patentability. Namely, thanks to the advanced methods of isolation, purification and preparation for implementation, modern patent systems do not exclude a priori living organisms from patent protection. Therefore, the analysis of representative administrative decisions or court rulings sought to define the criteria that would be applied in order to give patent protection to a certain biotechnological invention (stem cells while others do not.

  20. Generation of human induced pluripotent stem cells from dermal fibroblasts

    OpenAIRE

    2008-01-01

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ...

  1. Restriction of human adenovirus replication in Chinese hamster cell lines and their hybrids with human cells.

    Science.gov (United States)

    Radna, R L; Foellmer, B; Feldman, L A; Francke, U; Ozer, H L

    1987-11-01

    We have found that the replication of human adenovirus (Ad2) is restricted in multiple Chinese hamster cell lines including CHO and V79. The major site of restriction involves differential accumulation of late viral proteins as demonstrated by immunofluorescence assay and polyacrylamide gel electrophoresis with and without prior immunoprecipitation. Synthesis of fiber and penton base are markedly reduced, whereas others, such as the 100K polypeptide, are synthesized efficiently. This pattern of restriction is similar to that previously reported for Ad2 infection of several monkey cell lines; however, the restriction is more marked in the Chinese hamster cell lines. The restriction is most likely due to a deficient cellular function since stable cell hybrids between V79 or CHO and human cells are permissive for virus replication. By analysis of a series of hybrids with reduced numbers of human chromosomes, fiber synthesis was correlated with the presence of the short arm of human chromosome 3. More hybrids showed restoration of fiber synthesis than production of progeny virus, suggesting that more than one unlinked function is required for the latter.

  2. Phenotypic changes of human cells in human-rat liver during partial hepatectomy-induced regeneration

    Institute of Scientific and Technical Information of China (English)

    Yan Sun; Dong Xiao; Hong-An Li; Jin-Fang Jiang; Qing Li; Ruo-Shuang Zhang; Xi-Gu Chen

    2009-01-01

    AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration. METHODS: Human hepatic parenchymal and stromal components and phenotypic changes of human cells during liver regeneration were examined by flow cytometry, in situ hybridization and immunohistochemistry. RESULTS: ISH analysis demonstrated human Alupositive cells in hepatic parenchyma and stroma of recipient liver. Functional human hepatocytes generated in this model potentially constituted human hepatic functional units with the presence of donor-derived human endothelial and biliary duct cells in host liver. Alpha fetoprotein (AFP)+, CD34+ and CD45+ cells were observed in the chimeric liver on day 10 after PHxinduced liver regeneration and then disappeared in PHx group, but not in non-PHx group, suggesting that dynamic phenotypic changes of human cells expressing AFP, CD34 and CD45 cells may occur during the chimeric liver regeneration. Additionally, immunostaining for human proliferating cell nuclear antigen (PCNA) showed that the number of PCNA-positive cells in the chimeric liver of PHx group was markedly increased, as compared to that of control group, indicating that donor-derived human cells are actively proliferated during PHx-induced regeneration of HRC liver.

  3. HIF induces human embryonic stem cell markers in cancer cells.

    Science.gov (United States)

    Mathieu, Julie; Zhang, Zhan; Zhou, Wenyu; Wang, Amy J; Heddleston, John M; Pinna, Claudia M A; Hubaud, Alexis; Stadler, Bradford; Choi, Michael; Bar, Merav; Tewari, Muneesh; Liu, Alvin; Vessella, Robert; Rostomily, Robert; Born, Donald; Horwitz, Marshall; Ware, Carol; Blau, C Anthony; Cleary, Michele A; Rich, Jeremy N; Ruohola-Baker, Hannele

    2011-07-01

    Low oxygen levels have been shown to promote self-renewal in many stem cells. In tumors, hypoxia is associated with aggressive disease course and poor clinical outcomes. Furthermore, many aggressive tumors have been shown to display gene expression signatures characteristic of human embryonic stem cells (hESC). We now tested whether hypoxia might be responsible for the hESC signature observed in aggressive tumors. We show that hypoxia, through hypoxia-inducible factor (HIF), can induce an hESC-like transcriptional program, including the induced pluripotent stem cell (iPSC) inducers, OCT4, NANOG, SOX2, KLF4, cMYC, and microRNA-302 in 11 cancer cell lines (from prostate, brain, kidney, cervix, lung, colon, liver, and breast tumors). Furthermore, nondegradable forms of HIFα, combined with the traditional iPSC inducers, are highly efficient in generating A549 iPSC-like colonies that have high tumorigenic capacity. To test potential correlation between iPSC inducers and HIF expression in primary tumors, we analyzed primary prostate tumors and found a significant correlation between NANOG-, OCT4-, and HIF1α-positive regions. Furthermore, NANOG and OCT4 expressions positively correlated with increased prostate tumor Gleason score. In primary glioma-derived CD133 negative cells, hypoxia was able to induce neurospheres and hESC markers. Together, these findings suggest that HIF targets may act as key inducers of a dynamic state of stemness in pathologic conditions.

  4. GC-ASM: Synergistic Integration of Graph-Cut and Active Shape Model Strategies for Medical Image Segmentation.

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A

    2013-05-01

    Image segmentation methods may be classified into two categories: purely image based and model based. Each of these two classes has its own advantages and disadvantages. In this paper, we propose a novel synergistic combination of the image based graph-cut (GC) method with the model based ASM method to arrive at the GC-ASM method for medical image segmentation. A multi-object GC cost function is proposed which effectively integrates the ASM shape information into the GC framework. The proposed method consists of two phases: model building and segmentation. In the model building phase, the ASM model is built and the parameters of the GC are estimated. The segmentation phase consists of two main steps: initialization (recognition) and delineation. For initialization, an automatic method is proposed which estimates the pose (translation, orientation, and scale) of the model, and obtains a rough segmentation result which also provides the shape information for the GC method. For delineation, an iterative GC-ASM algorithm is proposed which performs finer delineation based on the initialization results. The proposed methods are implemented to operate on 2D images and evaluated on clinical chest CT, abdominal CT, and foot MRI data sets. The results show the following: (a) An overall delineation accuracy of TPVF > 96%, FPVF segmentation step compared to GC which requires seed specification and improves on the accuracy of GC. (e) One disadvantage of GC-ASM is its increased computational expense owing to the iterative nature of the algorithm.

  5. Derivation of human embryonic stem cells in defined conditions.

    Science.gov (United States)

    Ludwig, Tenneille E; Levenstein, Mark E; Jones, Jeffrey M; Berggren, W Travis; Mitchen, Erika R; Frane, Jennifer L; Crandall, Leann J; Daigh, Christine A; Conard, Kevin R; Piekarczyk, Marian S; Llanas, Rachel A; Thomson, James A

    2006-02-01

    We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.

  6. Introduction: characterization and functions of human T regulatory cells.

    Science.gov (United States)

    Romagnani, Sergio

    2005-06-01

    The field of human T regulatory (Treg) cells is a rapidly progressing, but still confused field of immunology. The effects of dendritic cell (DC) manipulation in Treg generation and the main features of human "natural" Treg cells, as well as of different populations of adaptive Treg subsets, are still partially unclear. However, it is clear that Treg cells play an important role in human diseases, such as autoimmune disorders, allergy, HIV infection, tumors and graft-versus-host disease.

  7. Understanding the Long-Term Spectral Variability of Cygnus X-1 from BATSE and ASM Observations

    Science.gov (United States)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Linqing; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present a spectral analysis of observations of Cygnus X-1 by the RXTE/ASM (1.5-12 keV) and CGRO/BATSE (20-300 keV), including about 1200 days of simultaneous data. We find a number of correlations between intensities and hardnesses in different energy bands from 1.5 keV to 300 keV. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness (as previously reported) but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the flux in the 20-100 keV range. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. The observations show that there has to be another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superimposed on a constant soft blackbody component. These variability patterns are in agreement with the dependence of the rms variability on the photon energy in the two states. We interpret the observed correlations in terms of theoretical Comptonization models. In the hard state, the variability appears to be driven mostly by changing flux in seed photons Comptonized in a hot thermal plasma cloud with an approximately constant power supply. In the soft state, the variability is consistent with flares of hybrid, thermal/nonthermal, plasma with variable power above a stable cold disk. Also, based on broadband pointed observations simultaneous with those of the ASM and BATSE, we find the intrinsic bolometric luminosity increases by a

  8. Human pancreatic cell autotransplantation following total pancreatectomy.

    Science.gov (United States)

    Traverso, L W; Abou-Zamzam, A M; Longmire, W P

    1981-01-01

    During total pancreaticoduodenectomy for chronic pancreatitis, four patients received an intraportal pancreatic mixed-cell autograft prepared by collagenase digestion. The technique of this autotransplantation procedure was successfully developed using a normal canine pancreas, but has proved difficult to apply in the human chronic pancreatitis model. Our four patients became insulin-dependent, with proof of intrahepatic insulin production in only one patient. Three factors have contributed to the lack of graft success: 1) the preoperative endocrine status, 2) systemic hypotension and portal hypertension secondary to graft infusion, and 3) difficulty applying the successful technique in a normal dog pancreas to an extensively scarred human pancreas. The preoperative insulin response during a glucose tolerance test was blunted or delayed in the three patients tested. An immediate decrease in blood pressure and rise in portal pressure occurred in every patient and prevented infusion of the entire graft (30-50%) in three patients. Unfortunately, the patient with the most compromised insulin status was the only patient able to receive the entire graft. Our experience would indicate that further refinements in technique are necessary to prevent the vascular reaction and allow infusion of the entire graft. Furthermore, normal islet cell function is necessary before a successful graft can be expected. PMID:6781424

  9. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    OpenAIRE

    Mehta, Rajvi H.

    2014-01-01

    The ability to successfully derive human embryonic stem cells (hESC) lines from human embryos following in vitro fertilization (IVF) opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF...

  10. Efficient Induction and Isolation of Human Primordial Germ Cell-Like Cells from Competent Human Pluripotent Stem Cells.

    Science.gov (United States)

    Irie, Naoko; Surani, M Azim

    2017-01-01

    We recently reported a robust and defined culture system for the specification of human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs), both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in vitro (Irie et al. Cell 160: 253-268, 2015). Similar attempts previously produced hPGCLCs from hPSCs at a very low efficiency, and the resulting cells were not fully characterized. A key step, which facilitated efficient hPGCLC specification from hPSCs, was the induction of a "competent" state for PGC fate via the medium containing a cocktail of four inhibitors. The competency of hPSCs can be maintained indefinitely and interchangeably with the conventional/low-competent hPSCs. Specification of hPGCLC occurs following sequential expression of key germ cell fate regulators, notably SOX17 and BLIMP1, as well as initiation of epigenetic resetting over 5 days. The hPGCLCs can be isolated using specific cell surface markers without the need for generating germ cell-specific reporter hPSC lines. This powerful method for the induction and isolation of hPGCLCs can be applied to both hESCs and iPSCs, which can be used for advances in human germ line biology.

  11. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  12. ASM-3 acid sphingomyelinase functions as a positive regulator of the DAF-2/AGE-1 signaling pathway and serves as a novel anti-aging target.

    Science.gov (United States)

    Kim, Yongsoon; Sun, Hong

    2012-01-01

    In C. elegans, the highly conserved DAF-2/insulin/insulin-like growth factor 1 receptor signaling (IIS) pathway regulates longevity, metabolism, reproduction and development. In mammals, acid sphingomyelinase (ASM) is an enzyme that hydrolyzes sphingomyelin to produce ceramide. ASM has been implicated in CD95 death receptor signaling under certain stress conditions. However, the involvement of ASM in growth factor receptor signaling under physiological conditions is not known. Here, we report that in vivo ASM functions as a positive regulator of the DAF-2/IIS pathway in C. elegans. We have shown that inactivation of asm-3 extends animal lifespan and promotes dauer arrest, an alternative developmental process. A significant cooperative effect on lifespan is observed between asm-3 deficiency and loss-of-function alleles of the age-1/PI 3-kinase, with the asm-3; age-1 double mutant animals having a mean lifespan 259% greater than that of the wild-type animals. The lifespan extension phenotypes caused by the loss of asm-3 are dependent on the functions of daf-16/FOXO and daf-18/PTEN. We have demonstrated that inactivation of asm-3 causes nuclear translocation of DAF-16::GFP protein, up-regulates endogenous DAF-16 protein levels and activates the downstream targeting genes of DAF-16. Together, our findings reveal a novel role of asm-3 in regulation of lifespan and diapause by modulating IIS pathway. Importantly, we have found that two drugs known to inhibit mammalian ASM activities, desipramine and clomipramine, markedly extend the lifespan of wild-type animals, in a manner similar to that achieved by genetic inactivation of the asm genes. Our studies illustrate a novel strategy of anti-aging by targeting ASM, which may potentially be extended to mammals.

  13. Radiosensitivity of Human Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Bergoc, R. M.; Medina, V.; Cricco, G.; Mohamed, N.; Martin, G.; Nunez, M.; Croci, M.; Crescenti, E. J.; Rivera, E. S.

    2004-07-01

    Cutaneous melanoma is a skin cancer resulting from the malign transformation of skin-pigment cells, the melanocytes. The radiotherapy, alone or in combination with other treatment, is an important therapy for this disease. the objective of this paper was to determine in vitro the radiosensitivity of two human melanoma cell lines with different metastatic capability: WM35 and MI/15, and to study the effect of drugs on radiobiological parameters. The Survival Curves were adjusted to the mathematical Linear-quadratic model using GrapsPad Prism software. Cells were seeded in RPMI medium (3000-3500 cells/flask), in triplicate and irradiated 24 h later. The irradiation was performed using an IBL 437C H Type equipment (189 TBq, 7.7 Gy/min) calibrated with a TLD 700 dosimeter. The range of Doses covered from 0 to 10 Gy and the colonies formed were counted at day 7th post-irradiation. Results obtained were: for WM35, {alpha}=0.37{+-}0.07 Gy''-1 and {beta}=0.06{+-}0.02 Gy''-2, for M1/15m {alpha}=0.47{+-}0.03 Gy''-1 and {beta}=0.06{+-}0.01 Gy''-2. The {alpha}/{beta} values WM35: {alpha}/{beta} values WM35: {alpha}/{beta}=6.07 Gy and M1/15: {alpha}/{beta}{sub 7}.33 Gy were similar, independently of their metastatic capabillity and indicate that both lines exhibit high radioresistance. Microscopic observation of irradiated cells showed multinuclear cells with few morphologic changes non-compatible with apoptosis. By means of specific fluorescent dyes and flow cytometry analysis we determined the intracellular levels of the radicals superoxide and hydrogen peroxide and their modulation in response to ionizing radiation. The results showed a marked decreased in H{sub 2}O{sub 2} intracellular levels with a simultaneous increase in superoxide that will be part of a mechanism responsible for induction of cell radioresistance. This response triggered by irradiated cells could not be abrogated by different treatments like histamine or the

  14. Generation of human induced pluripotent stem cells from dermal fibroblasts.

    Science.gov (United States)

    Lowry, W E; Richter, L; Yachechko, R; Pyle, A D; Tchieu, J; Sridharan, R; Clark, A T; Plath, K

    2008-02-26

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ectopic expression of the defined transcription factors KLF4, OCT4, SOX2, and C-MYC. The resultant cell lines are morphologically indistinguishable from human embryonic stem cells (HESC) generated from the inner cell mass of a human preimplantation embryo. Consistent with these observations, human iPS cells share a nearly identical gene-expression profile with two established HESC lines. Importantly, DNA fingerprinting indicates that the human iPS cells were derived from the donor material and are not a result of contamination. Karyotypic analyses demonstrate that reprogramming of human cells by defined factors does not induce, or require, chromosomal abnormalities. Finally, we provide evidence that human iPS cells can be induced to differentiate along lineages representative of the three embryonic germ layers indicating the pluripotency of these cells. Our findings are an important step toward manipulating somatic human cells to generate an unlimited supply of patient-specific pluripotent stem cells. In the future, the use of defined factors to change cell fate may be the key to routine nuclear reprogramming of human somatic cells.

  15. Stereological quantification of mast cells in human synovium

    DEFF Research Database (Denmark)

    Damsgaard, T E; Sørensen, Flemming Brandt; Herlin, T;

    1999-01-01

    Mast cells participate in both the acute allergic reaction as well as in chronic inflammatory diseases. Earlier studies have revealed divergent results regarding the quantification of mast cells in the human synovium. The aim of the present study was therefore to quantify these cells in the human...... synovium, using stereological techniques. Different methods of staining and quantification have previously been used for mast cell quantification in human synovium. Stereological techniques provide precise and unbiased information on the number of cell profiles in two-dimensional tissue sections of......, in this case, human synovium. In 10 patients suffering from osteoarthritis a median of 3.6 mast cells/mm2 synovial membrane was found. The total number of cells (synoviocytes, fibroblasts, lymphocytes, leukocytes) present was 395.9 cells/mm2 (median). The mast cells constituted 0.8% of all the cell profiles...

  16. Technical Challenges in the Derivation of Human Pluripotent Cells

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2011-01-01

    Full Text Available It has long been discovered that human pluripotent cells could be isolated from the blastocyst state of embryos and called human embryonic stem cells (ESCs. These cells can be adapted and propagated indefinitely in culture in an undifferentiated manner as well as differentiated into cell representing the three major germ layers: endoderm, mesoderm, and ectoderm. However, the derivation of human pluripotent cells from donated embryos is limited and restricted by ethical concerns. Therefore, various approaches have been explored and proved their success. Human pluripotent cells can also be derived experimentally by the nuclear reprogramming of somatic cells. These techniques include somatic cell nuclear transfer (SCNT, cell fusion and overexpression of pluripotent genes. In this paper, we discuss the technical challenges of these approaches for nuclear reprogramming, involving their advantages and limitations. We will also highlight the possible applications of these techniques in the study of stem cell biology.

  17. Human B cell activating factor (BCAF): production by a human T cell tumor line.

    Science.gov (United States)

    Fevrier, M; Diu, A; Mollier, P; Abadie, A; Olive, D; Mawas, C; Theze, J

    1989-01-01

    In a previous study, we demonstrated that supernatants from human T cell clones stimulated by a pair of anti-CD2 monoclonal antibodies cause resting human B cells to become activated and to proliferate in the absence of any other signals. The activity responsible for these effects was shown to be different from already characterized lymphokines and in particular from IL-2 and IL-4, and was named B Cell Activating Factor or BCAF. In this paper, we describe the production of BCAF by a human T cell tumor line T687 after phorbol myristate acetate (PMA) stimulation; this production can be potentiated by phytohemagglutinin (PHA). We further show that the stimulatory phase can be separated from the secretory phase thereby avoiding contamination of BCAF-containing supernatant by PMA and PHA. Supernatants produced under these conditions do not contain either IL-4 or IFN but contain traces of lymphotoxin and 2 to 10 ng/ml of IL-2. The T687 cell line will allow us to obtain a large volume of supernatant for biochemical study and purification of the molecule(s) responsible for BCAF activity.

  18. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  19. Human Immunodeficiency Syndromes Affecting Human Natural Killer Cell Cytolytic Activity

    OpenAIRE

    Ham, Hyoungjun; Billadeau, Daniel D.

    2014-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synaps...

  20. Human immunodeficiency virus type 1 infection of human uterine epithelial cells: viral shedding and cell contact-mediated infectivity.

    Science.gov (United States)

    Asin, Susana N; Wildt-Perinic, Dunja; Mason, Sarah I; Howell, Alexandra L; Wira, Charles R; Fanger, Michael W

    2003-05-15

    We examined the mechanism of human immunodeficiency virus (HIV) type 1 infection of human uterine epithelial cells to gain a clearer understanding of the events by which HIV-1 infects cells within the female reproductive tract. We demonstrated that these cells can be productively infected by HIV-1 and that infection is associated with viral RNA reverse transcription, DNA transcription, and secretion of infectious virus. Levels of viral DNA and secreted virus decreased gradually after infection. Moreover, virus released by the uterine epithelial cells shortly after infection was able to infect human T cell lines, but virus released later did not. In contrast, human CD4(+) T cell lines were infected after cocultivation with epithelial cells at both early and late stages of infection. These data demonstrated that HIV-1 infects human epithelial cells of upper reproductive tract origin and that productive viral infection of epithelial cells may be an important mechanism of transmission of HIV-1 infection in women.

  1. Effect of human neural progenitor cells on injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    XU Guang-hui; BAI Jin-zhu; CAI Qin-lin; LI Xiao-xia; LI Ling-song; SHEN Li

    2005-01-01

    Objective: To study whether human neural progenitor cells can differentiate into neural cells in vivo and improve the recovery of injured spinal cord in rats.Methods: Human neural progenitor cells were transplanted into the injured spinal cord and the functional recovery of the rats with spinal cord contusion injury was evaluated with Basso-Beattie-Bresnahan (BBB) locomotor scale and motor evoked potentials. Additionally, the differentiation of human neural progenitor cells was shown by immunocytochemistry.Results: Human neural progenitor cells developed into functional cells in the injured spinal cord and improved the recovery of injured spinal cord in both locomotor scores and electrophysiological parameters in rats.Conclusions: Human neural progenitor cells can treat injured spinal cord, which may provide a new cell source for research of clinical application.

  2. Generation of induced pluripotent stem cells from human blood.

    Science.gov (United States)

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.

  3. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  4. Study on Measurement of Kinetic Parameters in ASM-CN Model%ASM-CN模型中主要动力学参数的测定研究

    Institute of Scientific and Technical Information of China (English)

    刘芳; 陈季华; 顾国维

    2005-01-01

    灵敏度分析表明,ASM-CN模型中的异养菌衰减系数(bH)、异养菌最大比增长速率(μmH)和自养菌最大比增长速率(μmA)对活性污泥系统的性能有显著影响,着重研究了这3个参数.试验结果表明,在20℃时bH的平均值为0.48d-1,μmH的平均值为5.7 d-1,μmA的平均值为0.449 d-1.此外,还对这3个参数测定过程中的影响因素进行了分析.

  5. Enhanced casein kinase II activity in human tumour cell cultures

    DEFF Research Database (Denmark)

    Prowald, K; Fischer, H; Issinger, O G

    1984-01-01

    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...

  6. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    1995-01-01

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  7. Derivation and differentiation of haploid human embryonic stem cells.

    Science.gov (United States)

    Sagi, Ido; Chia, Gloryn; Golan-Lev, Tamar; Peretz, Mordecai; Weissbein, Uri; Sui, Lina; Sauer, Mark V; Yanuka, Ofra; Egli, Dieter; Benvenisty, Nissim

    2016-04-07

    Diploidy is a fundamental genetic feature in mammals, in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species, but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes, leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics, such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover, we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts, they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation, alongside reduction in absolute gene expression levels and cell size. Surprisingly, we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state, but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo, despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development.

  8. Human embryonic stem cells and respect for life

    OpenAIRE

    Meyer, J.(CERN, Geneva, Switzerland)

    2000-01-01

    The purpose of this essay is to stimulate academic discussion about the ethical justification of using human primordial stem cells for tissue transplantation, cell replacement, and gene therapy. There are intriguing alternatives to using embryos obtained from elective abortions and in vitro fertilisation to reconstitute damaged or dysfunctional human organs. These include the expansion and transplantation of latent adult progenitor cells.

  9. Abnormalities in human pluripotent cells due to reprogramming mechanisms.

    Science.gov (United States)

    Ma, Hong; Morey, Robert; O'Neil, Ryan C; He, Yupeng; Daughtry, Brittany; Schultz, Matthew D; Hariharan, Manoj; Nery, Joseph R; Castanon, Rosa; Sabatini, Karen; Thiagarajan, Rathi D; Tachibana, Masahito; Kang, Eunju; Tippner-Hedges, Rebecca; Ahmed, Riffat; Gutierrez, Nuria Marti; Van Dyken, Crystal; Polat, Alim; Sugawara, Atsushi; Sparman, Michelle; Gokhale, Sumita; Amato, Paula; Wolf, Don P; Ecker, Joseph R; Laurent, Louise C; Mitalipov, Shoukhrat

    2014-07-10

    Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.

  10. Smooth muscle in human bronchi is disposed to resist airway distension.

    Science.gov (United States)

    Gazzola, Morgan; Henry, Cyndi; Couture, Christian; Marsolais, David; King, Gregory G; Fredberg, Jeffrey J; Bossé, Ynuk

    2016-07-15

    Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation.

  11. Proteomic analysis of human blastocoel fluid and blastocyst cells

    DEFF Research Database (Denmark)

    Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen

    2013-01-01

    Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of the blastocyst and can differentiate into any cell type in the human body. These cells hold a great potential for regenerative medicine, but to obtain enough cells needed for medical treatment, culture is required......, the blastocoel fluid, which is in contact with all the cells in the blastocyst, including hESCs. Fifty-three surplus human blastocysts were donated after informed consent, and blastocoel fluid was isolated by micromanipulation. Using highly sensitive nano-high-pressure liquid chromatography-tandem mass...

  12. EXPRESSION OF Fas LIGAND IN HUMAN COLON CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁

    2001-01-01

    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  13. Derivation and characterization of human embryonic stem cells on human amnion epithelial cells.

    Science.gov (United States)

    Lai, Dongmei; Wang, Yongwei; Sun, Jian; Chen, Yifei; Li, Ting; Wu, Yi; Guo, Lihe; Wei, Chunsheng

    2015-05-07

    Culture conditions that support the growth of undifferentiated human embryonic stem cells (hESCs) have already been established using primary human amnion epithelial cells (hAECs) as an alternative to traditional mitotically inactivated mouse embryonic fibroblasts (MEFs). In the present work, inner cell masses (ICM) were isolated from frozen embryos obtained as donations from couples undergoing in vitro fertilization (IVF) treatment and four new hESC lines were derived using hAECs as feeder cells. This feeder system was able to support continuous growth of what were, according to their domed shape and markers, undifferentiated naïve-like hESCs. Their pluripotent potential were also demonstrated by embryoid bodies developing to the expected three germ layers in vitro and the productions of teratoma in vivo. The cell lines retained their karyotypic integrity for over 35 passages. Transmission electron microscopy (TEM) indicated that these newly derived hESCs consisted mostly of undifferentiated cells with large nuclei and scanty cytoplasm. The new hESCs cultured on hAECs showed distinct undifferentiated characteristics in comparison to hESCs of the same passage maintained on MEFs. This type of optimized culture system may provide a useful platform for establishing clinical-grade hESCs and assessing the undifferentiated potential of hESCs.

  14. Dynamic behaviour of human neuroepithelial cells in the developing forebrain

    Science.gov (United States)

    Subramanian, Lakshmi; Bershteyn, Marina; Paredes, Mercedes F.; Kriegstein, Arnold R.

    2017-01-01

    To understand how diverse progenitor cells contribute to human neocortex development, we examined forebrain progenitor behaviour using timelapse imaging. Here we find that cell cycle dynamics of human neuroepithelial (NE) cells differ from radial glial (RG) cells in both primary tissue and in stem cell-derived organoids. NE cells undergoing proliferative, symmetric divisions retract their basal processes, and both daughter cells regrow a new process following cytokinesis. The mitotic retraction of the basal process is recapitulated by NE cells in cerebral organoids generated from human-induced pluripotent stem cells. In contrast, RG cells undergoing vertical cleavage retain their basal fibres throughout mitosis, both in primary tissue and in older organoids. Our findings highlight developmentally regulated changes in mitotic behaviour that may relate to the role of RG cells to provide a stable scaffold for neuronal migration, and suggest that the transition in mitotic dynamics can be studied in organoid models. PMID:28139695

  15. 管道剩余强度评价标准ASME B31G-2009的应用及优化改进

    Institute of Scientific and Technical Information of China (English)

    高富超

    2014-01-01

    管道是我国天然气、原油、成品油等能源输送的重要方式,随着国家多条战略能源管道服役年限的增长,腐蚀成为威胁管道安全运行的较大因素.目前我国在役输油气管道体积型腐蚀缺陷评价多采用ASME B31G标准.ASME B31G标准几经修改形成目前的ASME B31G-2009版本,本文通过比较ASME B31G-1984、ASME B31G-2009评定方法的不同,分析得出ASME B31G-2009的优化方法及结论.

  16. Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line.

    Science.gov (United States)

    Ding, Chenhui; Huang, Sunxing; Qi, Quan; Fu, Rui; Zhu, Wanwan; Cai, Bing; Hong, Pingping; Liu, Zhengxin; Gu, Tiantian; Zeng, Yanhong; Wang, Jing; Xu, Yanwen; Zhao, Xiaoyang; Zhou, Qi; Zhou, Canquan

    2015-10-01

    Human embryonic stem cells (hESCs) have long been considered as a promising source for cell replacement therapy. However, one major obstacle for the use of these cells is immune compatibility. Histocompatible human parthenogenetic ESCs have been reported as a new method for generating human leukocyte antigen (HLA)-matched hESCs. To further investigate the possibility of obtaining histocompatible stem cells from uniparental embryos, we tried to produce androgenetic haploid human embryos by injecting a single spermatozoon into enucleated human oocyte, and establish human androgenetic embryonic stem (hAGES) cell lines from androgenetic embryos. In the present study, a diploid hAGES cell line has been established, which exhibits typical features of human ESCs, including the expression of pluripotency markers, having differentiation potential in vitro and in vivo, and stable propagation in an undifferentiated state (>P40). Bisulfite sequencing of the H19, Snrpn, Meg3, and Kv imprinting control regions suggested that hAGES cells maintained to a certain extent a sperm methylation pattern. Genome-wide single nucleotide polymorphism, short tandem repeat, and HLA analyses revealed that the hAGES cell genome was highly homozygous. These results suggest that hAGES cells from spermatozoon could serve as a useful tool for studying the mechanisms underlying genomic imprinting in humans. It might also be used as a potential resource for cell replacement therapy as parthenogenetic stem cells.

  17. Method,Measure,and Immunity of the ASME Standard for Anti-brittle Fracture Thoughts,Methods and Absolution Steps of ASME Code for Anti-Brittle Fracture%ASME标准防脆断的思路、措施和豁免判定步骤

    Institute of Scientific and Technical Information of China (English)

    程涛涛; 黄明松

    2015-01-01

    介绍ASME 标准中防止低温脆断的总体思路和措施,并对该措施进行分析,比较了ASME Ⅷ-Ⅰ和ASME Ⅷ-Ⅱ中对防低温脆断措施方面的主要区别,列出了ASME材料低温冲击试验豁免判定的具体操作步骤。%This paper introduces the general idea and measures of preventing the low temperature brittle frac-ture in ASME standard,and analyzes the measures;it contrasts the main differences between ASME Ⅷ-Ⅰand ASME Ⅷ-Ⅱin preventing the low temperature brittle fracture;it lists the specific steps of impact test exemption of ASME.

  18. Human Cell and Tissue Establishment Registration Public Query

    Data.gov (United States)

    U.S. Department of Health & Human Services — This application provides Human Cell and Tissue registration information for registered, inactive, and pre-registered firms. Query options are by Establishment Name,...

  19. Human Cell and Tissue Establishment Registration Public Query

    Data.gov (United States)

    U.S. Department of Health & Human Services — This application provides Human Cell and Tissue registration information for registered, inactive, and pre-registered firms. Query options are by Establishment Name,...

  20. Human tissue legislation in South Africa: Focus on stem cell ...

    African Journals Online (AJOL)

    Human tissue legislation in South Africa: Focus on stem cell research and therapy. ... Related Substances Act, the Consumer Protection Act, the Children's Act and ... human tissue legislation in SA, the legislator has an opportunity to mirror the ...

  1. Human Stem Cell Derived Cardiomyocytes: An Alternative ...

    Science.gov (United States)

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally, a WHO report on the global composite impact of chemicals on health reported that 16% of the total burden of cardiovascular disease was attributed to environmental chemical exposure with 2.5 million deaths per year. Clearly, the cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by existing and emerging chemicals (e.g., engineered nanomaterials) in a variety of environmental media. The ability to assess chemical cardiac risk and safety is critically needed but extremely challenging due to the number and categories of chemicals in commerce, as indicated. This presentation\\session will evaluate the use of adult human stem cell derived cardiomyocytes, and existing platforms, as an alternative model to evaluate environmental chemical cardiac toxicity as well as provide key information for the development of predictive adverse outcomes pathways associated with environmental chemical exposures. (This abstract does not represent EPA policy) Rapid and translatable chemical safety screening models for cardiotoxicity current status for informing regulatory decisions, a workshop sponsored by the Society

  2. Human pancreatic β-cell G1/S molecule cell cycle atlas.

    Science.gov (United States)

    Fiaschi-Taesch, Nathalie M; Kleinberger, Jeffrey W; Salim, Fatimah G; Troxell, Ronnie; Wills, Rachel; Tanwir, Mansoor; Casinelli, Gabriella; Cox, Amy E; Takane, Karen K; Scott, Donald K; Stewart, Andrew F

    2013-07-01

    Expansion of pancreatic β-cells is a key goal of diabetes research, yet induction of adult human β-cell replication has proven frustratingly difficult. In part, this reflects a lack of understanding of cell cycle control in the human β-cell. Here, we provide a comprehensive immunocytochemical "atlas" of G1/S control molecules in the human β-cell. This atlas reveals that the majority of these molecules, previously known to be present in islets, are actually present in the β-cell. More importantly, and in contrast to anticipated results, the human β-cell G1/S atlas reveals that almost all of the critical G1/S cell cycle control molecules are located in the cytoplasm of the quiescent human β-cell. Indeed, the only nuclear G1/S molecules are the cell cycle inhibitors, pRb, p57, and variably, p21: none of the cyclins or cdks necessary to drive human β-cell proliferation are present in the nuclear compartment. This observation may provide an explanation for the refractoriness of human β-cells to proliferation. Thus, in addition to known obstacles to human β-cell proliferation, restriction of G1/S molecules to the cytoplasm of the human β-cell represents an unanticipated obstacle to therapeutic human β-cell expansion.

  3. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Anisimov, Sergey V.; Christophersen, Nicolaj S.; Correia, Ana S.

    2011-01-01

    the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early...

  4. Human embryonic stem cell research: ethical and legal issues.

    Science.gov (United States)

    Robertson, J A

    2001-01-01

    The use of human embryonic stem cells to replace damaged cells and tissues promises future hope for the treatment of many diseases. However, many countries now face complex ethical and legal questions as a result of the research needed to develop these cell-replacement therapies. The challenge that must be met is how to permit research on human embryonic tissue to occur while maintaining respect for human life generally.

  5. Airway smooth muscle cell proliferation is increased in asthma

    NARCIS (Netherlands)

    Johnson, P R; Roth, Michael; Tamm, M; Hughes, J Margaret; Ge, Q; King, G; Burgess, J K; Black, J L

    2001-01-01

    UNLABELLED: Increased airway smooth muscle (ASM) within the bronchial wall of asthmatic patients has been well documented and is likely to be the result of increased muscle proliferation. We have for the first time been able to culture ASM cells from asthmatic patients and to compare their prolifera

  6. Epigenetic Regulation of Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Qidong eHu

    2012-11-01

    Full Text Available Recently, there has been tremendous progress in characterizing the transcriptional network regulating hESCs (MacArthur et al., 2009; Loh et al., 2011, including those signaling events mediated by Oct4, Nanog and Sox2. There is growing interest in the epigenetic machinery involved in hESC self-renewal and differentiation. In general, epigenetic regulation includeschromatin reorganization, DNA modification and histone modification, which are not directly related to alterations in DNA sequences. Various protein complexes, includingPolycomb, trithorax, NuRD, SWI/SNF andOct4, have been shown to play critical roles in epigenetic control of hESC maintenance and differentiation. Hence, we will formally review recent advances in unraveling the multifaceted role of epigenetic regulation in hESC self-renewal and induced differentiation, particularly with respect to chromatin remodeling and DNA methylation events. Unraveling the molecular mechanisms underlying the maintenance/differentiation of hESCs and reprogramming of somatic cells will greatly strengthen our capacity to generate various types of cells to treat human diseases.

  7. Mast cells and human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Fabio Grizzi; Barbara Franceschini; Maurizio Chiriva-Internati; Young Liu; Paul L. Hermonat; Nicola Dioguardi

    2003-01-01

    AIM: To investigate the density of mast cells (MCs) in human hepatocellular carcinoma (HCC), and to determine whether the MCs density has any correlations with histopathological grading, staging or some baseline patient characteristics.METHODS: Tissue sections of 22 primary HCCs were histochemically stained with toluidine blue, in order to be able to quantify the MCs in and around the neoplasm using a computer-assisted image analysis system. HCC was staged and graded by two independent pathologists. To identify the sinusoidal capillarisation of each specimen 3μm thick sections were histochemically stained with sirius red, and semi-quantitatively evaluated by two independent observers. The data were statistically analysed using Spearman′s correlation and Student′s t-test when appropriate.RESULTS: MCs density did not correlate with the age or sex of the patients, the serum alanine aminotransferase (ALT) or aspartate aminotransferase (AST) levels, or the stage or grade of the HCC. No significant differences were found between the MCs density of the patients with and without hepatitis C virus infection, but they were significantly higher in the specimens showing marked sinusoidal capillarisation.CONCLUSION: The lack of any significant correlation between MCs density and the stage or grade of the neoplastic lesions suggests that there is no causal relationship between MCs recruitment and HCC. However, as capillarisation proceeds concurrently with arterial blood supply during hepatocarcinogenesis, MCs may be considered of primary importance in the transition from sinusoidal to capillary-type endothelial cells and the HCC growth.

  8. Derivation, propagation and differentiation of human embryonic stem cells.

    Science.gov (United States)

    Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard

    2004-04-01

    Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug

  9. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics

    Directory of Open Access Journals (Sweden)

    Nigel G. Kooreman

    2017-08-01

    Full Text Available There is growing interest in using embryonic stem cell (ESC and induced pluripotent stem cell (iPSC derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an “allogenized” mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.

  10. New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?

    Science.gov (United States)

    Goldstein, Lawrence S B

    2012-11-12

    Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.

  11. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Xiaoti Xu

    2015-09-01

    Full Text Available Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2–4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50–70 fiber-associated, or 1,000–5,000 FACS-enriched CD56+/CD29+ human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications.

  12. Assessment of ASME code examinations on regenerative, letdown and residual heat removal heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Gosselin, Stephen R.; Cumblidge, Stephen E.; Anderson, Michael T.; Simonen, Fredric A.; Tinsley, G. A.; Lydell, B.; Doctor, Steven R.

    2005-07-01

    Inservice inspection requirements for pressure retaining welds in the regenerative, letdown, and residual heat removal heat exchangers are prescribed in Section XI Articles IWB and IWC of the ASME Boiler and Pressure Vessel Code. Accordingly, volumetric and/or surface examinations are performed on heat exchanger shell, head, nozzle-to-head, and nozzle-to-shell welds. Inspection difficulties associated with the implementation of these Code-required examinations have forced operating nuclear power plants to seek relief from the U.S. Nuclear Regulatory Commission. The nature of these relief requests are generally concerned with metallurgical, geometry, accessibility, and radiation burden. Over 60% of licensee requests to the NRC identify significant radiation exposure burden as the principle reason for relief from the ASME Code examinations on regenerative heat exchangers. For the residual heat removal heat exchangers, 90% of the relief requests are associated with geometry and accessibility concerns. Pacific Northwest National Laboratory was funded by the NRC Office of Nuclear Regulatory Research to review current practice with regard to volumetric and/or surface examinations of shell welds of letdown heat exchangers regenerative heat exchangers and residual (decay) heat removal heat exchangers Design, operating, common preventative maintenance practices, and potential degradation mechanisms are reviewed. A detailed survey of domestic and international PWR-specific operating experience was performed to identify pressure boundary failures (or lack of failures) in each heat exchanger type and NSSS design. The service data survey was based on the PIPExp® database and covers PWR plants worldwide for the period 1970-2004. Finally a risk assessment of the current ASME Code inspection requirements for residual heat removal, letdown, and regenerative heat exchangers is performed. The results are then reviewed to discuss the examinations relative to plant safety and

  13. The ASM-NSF Biology Scholars Program: An Evidence-Based Model for Faculty Development.

    Science.gov (United States)

    Chang, Amy L; Pribbenow, Christine M

    2016-05-01

    The American Society for Microbiology (ASM) established its ASM-NSF (National Science Foundation) Biology Scholars Program (BSP) to promote undergraduate education reform by 1) supporting biologists to implement evidence-based teaching practices, 2) engaging life science professional societies to facilitate biologists' leadership in scholarly teaching within the discipline, and 3) participating in a teaching community that fosters disciplinary-level science, technology, engineering, and mathematics (STEM) reform. Since 2005, the program has utilized year-long residency training to provide a continuum of learning and practice centered on principles from the scholarship of teaching and learning (SoTL) to more than 270 participants ("scholars") from biology and multiple other disciplines. Additionally, the program has recruited 11 life science professional societies to support faculty development in SoTL and discipline-based education research (DBER). To identify the BSP's long-term outcomes and impacts, ASM engaged an external evaluator to conduct a study of the program's 2010-2014 scholars (n = 127) and society partners. The study methods included online surveys, focus groups, participant observation, and analysis of various documents. Study participants indicate that the program achieved its proposed goals relative to scholarship, professional society impact, leadership, community, and faculty professional development. Although participants also identified barriers that hindered elements of their BSP participation, findings suggest that the program was essential to their development as faculty and provides evidence of the BSP as a model for other societies seeking to advance undergraduate science education reform. The BSP is the longest-standing faculty development program sponsored by a collective group of life science societies. This collaboration promotes success across a fragmented system of more than 80 societies representing the life sciences and helps

  14. CD56 marks human dendritic cell subsets with cytotoxic potential

    NARCIS (Netherlands)

    Roothans, D.; Smits, E.; Lion, E.; Tel, J.; Anguille, S.

    2013-01-01

    Human plasmacytoid and myeloid dendritic cells (DCs), when appropriately stimulated, can express the archetypal natural killer (NK)-cell surface marker CD56. In addition to classical DC functions, CD56+ DCs are endowed with an unconventional cytotoxic capacity.

  15. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2016-01-01

    Full Text Available Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.

  16. Robust boundary detection of left ventricles on ultrasound images using ASM-level set method.

    Science.gov (United States)

    Zhang, Yaonan; Gao, Yuan; Li, Hong; Teng, Yueyang; Kang, Yan

    2015-01-01

    Level set method has been widely used in medical image analysis, but it has difficulties when being used in the segmentation of left ventricular (LV) boundaries on echocardiography images because the boundaries are not very distinguish, and the signal-to-noise ratio of echocardiography images is not very high. In this paper, we introduce the Active Shape Model (ASM) into the traditional level set method to enforce shape constraints. It improves the accuracy of boundary detection and makes the evolution more efficient. The experiments conducted on the real cardiac ultrasound image sequences show a positive and promising result.

  17. Batse/Sax and Batse/RXTE-ASM Joint Spectral Studies of GRBs

    Science.gov (United States)

    Paciesas, William S.

    2002-01-01

    We proposed to make joint spectral analysis of gamma-ray bursts (GRBs) in the BATSE data base that are located within the fields of view of either the BeppoSAX wide field cameras (WFCs) or the RXTE all-sky monitor (ASM). The very broad-band coverage obtained in this way would facilitate various studies of GRB spectra that are difficult to perform with BATSE data alone. Unfortunately, the termination of the CGRO mission in June 2000 was not anticipated at the time of the proposal, and the sample of common events turned out to be smaller than we would have liked.

  18. ASME N510 test results for Savannah River Site AACS filter compartments

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.D.; Punch, T.M. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-02-01

    The K-Reactor at the Savannah River Site recently implemented design improvements for the Airborne Activity Confinement System (AACS) by procuring, installing, and testing new Air Cleaning Units, or filter compartments, to ASME AG-11, N509, and N510 requirements. Specifically, these new units provide documentable seismic resistance to a Design Basis Accident earthquake, provide 2 inch adsorber beds with 0.25 second residence time, and meet all AG-1, N509, and N510 requirements for testability and maintainability. This paper presents the results of the Site acceptance testing and discusses an issue associated with sample manifold qualification testing.

  19. Draft ASME code case on ductile cast iron for transport packaging

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T. [Central Research Inst. of Electric Power Industry, Abiko (Japan); Arai, T. [Central Research Inst. of Electric Power Industry, Yokosuka (Japan); Hirose, M. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan); Kobayashi, T. [Nippon Chuzo, Kawasaki (Japan); Tezuka, Y. [Mitsubishi Materials Co., Tokyo (Japan); Urabe, N. [Kokan Keisoku K. K., Kawasaki (Japan); Hueggenberg, R. [GNB, Essen (Germany)

    2004-07-01

    The current Rules for Construction of ''Containment Systems for Storage and Transport Packagings of Spent Nuclear Fuel and High Level Radioactive Material and Waste'' of Division 3 in Section III of ASME Code (2001 Edition) does not include ductile cast iron in its list of materials permitted for use. The Rules specify required fracture toughness values of ferritic steel material for nominal wall thickness 5/8 to 12 inches (16 to 305 mm). New rule for ductile cast iron for transport packaging of which wall thickness is greater than 12 inches (305mm) is required.

  20. Parameter subset selection for the dynamic calibration of activated sludge models (ASMs): experience versus systems analysis

    DEFF Research Database (Denmark)

    Ruano, MV; Ribes, J; de Pauw, DJW

    2007-01-01

    In this work we address the issue of parameter subset selection within the scope of activated sludge model calibration. To this end, we evaluate two approaches: (i) systems analysis and (ii) experience-based approach. The evaluation has been carried out using a dynamic model (ASM2d) calibrated...... based approaches which excluded them from their analysis. Systems analysis reveals that parameter significance ranking and size of the identifiable parameter subset depend on the information content of data available for calibration. However, it suffers from heavy computational demand. In contrast...

  1. Stem Cells: A Renaissance in Human Biology Research.

    Science.gov (United States)

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-16

    The understanding of human biology and how it relates to that of other species represents an ancient quest. Limited access to human material, particularly during early development, has restricted researchers to only scratching the surface of this inherently challenging subject. Recent technological innovations, such as single cell "omics" and human stem cell derivation, have now greatly accelerated our ability to gain insights into uniquely human biology. The opportunities afforded to delve molecularly into scarce material and to model human embryogenesis and pathophysiological processes are leading to new insights of human development and are changing our understanding of disease and choice of therapy options.

  2. Neoplastic human embryonic stem cells as a model of radiation resistance of human cancer stem cells.

    Science.gov (United States)

    Dingwall, Steve; Lee, Jung Bok; Guezguez, Borhane; Fiebig, Aline; McNicol, Jamie; Boreham, Douglas; Collins, Tony J; Bhatia, Mick

    2015-09-08

    Studies have implicated that a small sub-population of cells within a tumour, termed cancer stem cells (CSCs), have an enhanced capacity for tumour formation in multiple cancers and may be responsible for recurrence of the disease after treatment, including radiation. Although comparisons have been made between CSCs and bulk-tumour, the more important comparison with respect to therapy is between tumour-sustaining CSC versus normal stem cells that maintain the healthy tissue. However, the absence of normal known counterparts for many CSCs has made it difficult to compare the radiation responses of CSCs with the normal stem cells required for post-radiotherapy tissue regeneration and the maintenance of tissue homeostasis. Here we demonstrate that transformed human embryonic stem cells (t-hESCs), showing features of neoplastic progression produce tumours resistant to radiation relative to their normal counterpart upon injection into immune compromised mice. We reveal that t-hESCs have a reduced capacity for radiation induced cell death via apoptosis and exhibit altered cell cycle arrest relative to hESCs in vitro. t-hESCs have an increased expression of BclXL in comparison to their normal counterparts and re-sensitization of t-hESCs to radiation upon addition of BH3-only mimetic ABT737, suggesting that overexpression of BclXL underpins t-hESC radiation insensitivity. Using this novel discovery platform to investigate radiation resistance in human CSCs, our study indicates that chemotherapy targeting Bcl2-family members may prove to be an adjuvant to radiotherapy capable of targeting CSCs.

  3. Biological phosphorus removal in an extended ASM2 model: Roles of extracellular polymeric substances and kinetic modeling.

    Science.gov (United States)

    Yang, Shan-Shan; Pang, Ji-Wei; Guo, Wan-Qian; Yang, Xiao-Yin; Wu, Zhong-Yang; Ren, Nan-Qi; Zhao, Zhi-Qing

    2017-05-01

    This paper presents the results of an extended ASM2 model for the modeling and calibration of the role of extracellular polymeric substances (EPS) in phosphorus (P) removal in an anaerobic-aerobic process. In this extended ASM2 model, two new components, the bound EPS (XEPS) and the soluble EPS (SEPS), are introduced. Compared with the ASM2, 7.71, 8.53, and 9.28% decreases in polyphosphate (polyP) were observed in the extended ASM2 in three sequencing batch reactors feeding with different COD/P ratios, indicating that 7.71-9.28% of P in the liquid was adsorbed by EPS. Sensitive analysis indicated that, five parameters were the significant influential parameters and had been chosen for further model calibration by using the least square method to simulate by MATLAB. This extended ASM2 has been successfully established to simulate the output variables and provides a useful reference for the mathematic simulations of the role of EPS in biological phosphorus removal process. Copyright © 2017. Published by Elsevier Ltd.

  4. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans....... Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular...

  5. Ultrastructure of interstitial cells in subserosa of human colon

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johannes; Vanderwinden, Jean-Marie; Hansen, Alastair;

    2013-01-01

    We studied the ultrastructure of interstitial cells in the subserosal/adventitial layer in human colon. An interstitial cell type with an ultrastructure intermediate between fibroblast-like cells (FLC) and interstitial cells of Cajal was identified (IC-SS). IC-SS had thin and flattened branching...

  6. Differentiation of neuroepithelia from human embryonic stem cells

    OpenAIRE

    2009-01-01

    We describe the method for in vitro differentiation of neuroepithelial cells from human embryonic stem cells under a chemically defined condition. The protocol is established following the fundamental principle of in vivo neuroectodermal specification. The primitive neuroepithelial cells generated by this protocol can be further induced into neuronal and glia cells with forebrain, mid/hind brain, and spinal cord identities.

  7. Identification of a candidate stem cell in human gallbladder.

    Science.gov (United States)

    Manohar, Rohan; Li, Yaming; Fohrer, Helene; Guzik, Lynda; Stolz, Donna Beer; Chandran, Uma R; LaFramboise, William A; Lagasse, Eric

    2015-05-01

    There are currently no reports of identification of stem cells in human gallbladder. The differences between human gallbladder and intrahepatic bile duct (IHBD) cells have also not been explored. The goals of this study were to evaluate if human fetal gallbladder contains a candidate stem cell population and if fetal gallbladder cells are distinct from fetal IHBD cells. We found that EpCAM+CD44+CD13+ cells represent the cell population most enriched for clonal self-renewal from primary gallbladder. Primary EpCAM+CD44+CD13+ cells gave rise to EpCAM+CD44+CD13+ and EpCAM+CD44+CD13- cells in vitro, and gallbladder cells expanded in vitro exhibited short-term engraftment in vivo. Last, we found that CD13, CD227, CD66, CD26 and CD49b were differentially expressed between gallbladder and IHBD cells cultured in vitro indicating clear phenotypic differences between the two cell populations. Microarray analyses of expanded cultures confirmed that both cell types have unique transcriptional profiles with predicted functional differences in lipid, carbohydrate, nucleic acid and drug metabolism. In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.

  8. Comparative mutagenesis of human cells in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, W.G.

    1992-05-01

    This report discusses measuring methods of point mutations; high density cell cultures for low dose studies; measurement and sequence determination of mutations in DNA; the mutational spectra of styrene oxide and ethlyene oxide in TK-6 cells; mutational spectrum of Cr in human lymphoblast cells; mutational spectra of radon in TK-6 cells; and the mutational spectra of smokeless tobacco. (CBS)

  9. Comparative mutagenesis of human cells in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, W.G.

    1992-05-01

    This report discusses measuring methods of point mutations; high density cell cultures for low dose studies; measurement and sequence determination of mutations in DNA; the mutational spectra of styrene oxide and ethlyene oxide in TK-6 cells; mutational spectrum of Cr in human lymphoblast cells; mutational spectra of radon in TK-6 cells; and the mutational spectra of smokeless tobacco. (CBS)

  10. Training human mesenchymal stromal cells for bone tissue engineering applications

    NARCIS (Netherlands)

    Doorn, J.

    2012-01-01

    Human mesenchymal stromal cells (hMSCs) are an interesting source for cell therapies and tissue engineering applications, because these cells are able to differentiate into various target tissues, such as bone, cartilage, fat and endothelial cells. In addition, they secrete a wide array of growth fa

  11. 77 FR 5489 - Identification of Human Cell Lines Project

    Science.gov (United States)

    2012-02-03

    ... working with cells derived from one individual or animal species, only to eventually learn that the cells..., morphology, pathologic or disease-state, hybrid or mixed culture, feeder cells, date of origin, etc), the STR... National Institute of Standards and Technology Identification of Human Cell Lines Project AGENCY: National...

  12. The evolution of human cells in terms of protein innovation.

    Science.gov (United States)

    Sardar, Adam J; Oates, Matt E; Fang, Hai; Forrest, Alistair R R; Kawaji, Hideya; Gough, Julian; Rackham, Owen J L

    2014-06-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type-specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type-specific domain architectures.

  13. Adult human brain cell culture for neuroscience research.

    Science.gov (United States)

    Gibbons, Hannah M; Dragunow, Mike

    2010-06-01

    Studies of the brain have progressed enormously through the use of in vivo and in vitro non-human models. However, it is unlikely such studies alone will unravel the complexities of the human brain and so far no neuroprotective treatment developed in animals has worked in humans. In this review we discuss the use of adult human brain cell culture methods in brain research to unravel the biology of the normal and diseased human brain. The advantages of using adult human brain cells as tools to study human brain function from both historical and future perspectives are discussed. In particular, studies using dissociated cultures of adult human microglia, astrocytes, oligodendrocytes and neurons are described and the applications of these types of study are evaluated. Alternative sources of human brain cells such as adult neural stem cells, induced pluripotent stem cells and slice cultures of adult human brain tissue are also reviewed. These adult human brain cell culture methods could benefit basic research and more importantly, facilitate the translation of basic neuroscience research to the clinic for the treatment of brain disorders. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  15. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  16. Activation of GPR119 Stimulates Human β-Cell Replication and Neogenesis in Humanized Mice with Functional Human Islets

    Science.gov (United States)

    Ansarullah; Free, Colette; Christopherson, Jenica; Chen, Quanhai; Gao, Jie; Liu, Chengyang; Naji, Ali; Rabinovitch, Alex; Guo, Zhiguang

    2016-01-01

    Using humanized mice with functional human islets, we investigated whether activating GPR119 by PSN632408, a small molecular agonist, can stimulate human β-cell regeneration in vivo. Human islets were transplanted under the left kidney capsule of immunodeficient mice with streptozotocin- (STZ-) induced diabetes. The recipient mice were treated with PSN632408 or vehicle and BrdU daily. Human islet graft function in the mice was evaluated by nonfasting glucose levels, oral glucose tolerance, and removal of the grafts. Immunostaining for insulin, glucagon, and BrdU or Ki67 was performed in islet grafts to evaluate α- and β-cell replication. Insulin and CK19 immunostaining was performed to evaluate β-cell neogenesis. Four weeks after human islet transplantation, 71% of PSN632408-treated mice achieved normoglycaemia compared with 24% of vehicle-treated mice. Also, oral glucose tolerance was significantly improved in the PSN632408-treated mice. PSN632408 treatment significantly increased both human α- and β-cell areas in islet grafts and stimulated α- and β-cell replication. In addition, β-cell neogenesis was induced from pancreatic duct cells in the islet grafts. Our results demonstrated that activation of GPR119 increases β-cell mass by stimulating human β-cell replication and neogenesis. Therefore, GPR119 activators may qualify as therapeutic agents to increase human β-cell mass in patients with diabetes. PMID:27413754

  17. Analysis of lead toxicity in human cells

    Directory of Open Access Journals (Sweden)

    Gillis Bruce S

    2012-07-01

    Full Text Available Abstract Background Lead is a metal with many recognized adverse health side effects, and yet the molecular processes underlying lead toxicity are still poorly understood. Quantifying the injurious effects of lead is also difficult because of the diagnostic limitations that exist when analyzing human blood and urine specimens for lead toxicity. Results We analyzed the deleterious impact of lead on human cells by measuring its effects on cytokine production and gene expression in peripheral blood mononuclear cells. Lead activates the secretion of the chemokine IL-8 and impacts mitogen-dependent activation by increasing the secretion of the proinflammatory cytokines IL-6 and TNF-α and of the chemokines IL-8 and MIP1-α in the presence of phytohemagglutinin. The recorded changes in gene expression affected major cellular functions, including metallothionein expression, and the expression of cellular metabolic enzymes and protein kinase activity. The expression of 31 genes remained elevated after the removal of lead from the testing medium thereby allowing for the measurement of adverse health effects of lead poisoning. These included thirteen metallothionein transcripts, three endothelial receptor B transcripts and a number of transcripts which encode cellular metabolic enzymes. Cellular responses to lead correlated with blood lead levels and were significantly altered in individuals with higher lead content resultantly affecting the nervous system, the negative regulation of transcription and the induction of apoptosis. In addition, we identified changes in gene expression in individuals with elevated zinc protoporphyrin blood levels and found that genes regulating the transmission of nerve impulses were affected in these individuals. The affected pathways were G-protein mediated signaling, gap junction signaling, synaptic long-term potentiation, neuropathic pain signaling as well as CREB signaling in neurons. Cellular responses to lead were

  18. In vitro proliferation of adult human beta-cells.

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    Full Text Available A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1 analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells" population were plated on extracellular matrix from rat (804G and human bladder carcinoma cells (HTB9 or bovine corneal endothelial ECM (BCEC. Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted, independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05.These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.

  19. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells

    Science.gov (United States)

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-01-01

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na+/H+ exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade. PMID:28205573

  20. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  1. Derivation of multipotent mesenchymal precursors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. CONCLUSION: Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications.

  2. Nucleosome Organization in Human Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Puya G Yazdi

    Full Text Available The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational

  3. Nucleosome Organization in Human Embryonic Stem Cells.

    Science.gov (United States)

    Yazdi, Puya G; Pedersen, Brian A; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E; Wang, Ping H

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of nucleosome

  4. Immunosurveillance function of human mast cell?

    Institute of Scientific and Technical Information of China (English)

    (O)ner (O)zdemir

    2005-01-01

    Mast cell (MC) is so widely recognized as a critical effector in allergic disorders that it can be difficult to think of MC in any other context. Indeed, MCs are multifunctional and recently shown that MCs can also act as antigen presenters as well as effector elements of human immune system. First observations of their possible role as anti-tumor cells in peri- or intra-tumoral tissue were mentioned five decades ago and a high content of MCs is considered as a favorable prognosis,consistent with this study. Believers of this hypothesis assumed them to be inhibitors of tumor development through their pro-apoptotic and -necrolytic granules e.g.,granzymes and TNF-α. However, some still postulate them to be enhancers of tumor development through their effects on angiogenesis due to mostly tryptase.There are also some data suggesting increased MC density causes tumor development and indicates bad prognosis. Furthermore, since MC-associated mediators have shown to influence various aspects of tumor biology, the net effect of MCs on the development/progression of tumors has been difficult to evaluate. For instance, chymase induces apoptosis in targets; yet,tryptase, another MC protease, is a well-known mitogen.MCs with these various enzyme expression patterns may mediate different functions and the predominant MC type in tissues may be determined by the environmental needs. The coexistence of tryptase-expressing MCs(MCT) and chymase and tryptase-expressing MCs (MCTC)in physiological conditions reflects a naturally occurring balance that contributes to tissue homeostasis. We have recently discussed the role and relevance of MC serine proteases in different bone marrow diseases.

  5. Biological characteristics of cell lines of human dental alveolus

    Institute of Scientific and Technical Information of China (English)

    陈世璋; 黄靖香; 孙明学; 赵斌

    2003-01-01

    Objective To investigate the biological characteristics of cell lines of healthy and diseased human dental alveoli. Methods Primary cell lines from either healthy or diseased human dental alveoli were obtained. Two cell lines, H-258 and H-171 derived from healthy and diseased human tissues respectively, were selected for morphological study and research on their growth and aging, using cell counting, and histochemical and immunohistochemical staining. Results Primary cell lines were successfully established from innormal dental alveoli. After freezing and thawing for three times, cell growth was continued and no morphological alterations were observed. The doubling time was 53.4 hours and mean division index (MDI) was 4‰. Cells were kept normal after twenty generations with no obvious reduction of doubling time and MDI. Of twenty-six primary cell lines derived from healthy human dental alveoli, only three cell lines achieved generation. After freezing and thawing for twice, cultured cells were still alive at a decreased growth speed, with doubling time of 85.9 hours and MDI of 3‰. Both cell lines, H-171 and H-258, shared the characteristics of osteoblast. Conclusions Primary cell lines of diseased human dental alveoli show greater growth potential. All cell lines of dental alveoli share characteristics of osteoblast. The technique we developed may be put into practice for the treatment of abnormal dental alveoli.

  6. Cryopreservation of human embryonic stem cells by vitrification

    Institute of Scientific and Technical Information of China (English)

    周灿权; 麦庆云; 李涛; 庄广伦

    2004-01-01

    Background The efficiency of traditional cryopreservation of human embryonic stem (ES) cells is low, and there have been few attempts to prove new cryopreservation methods effective. This study was designed to evaluate the efficiency of cryopreservation of human ES cells using vitrification method.Methods Human ES cells clumped from an identical cell line were randomly allocated to be cryopreserved by vitrification or by slow freezing. The recovery rates, the growth and differentiation potential of thawed human ES cells were compared between these two groups. The pluripotency of human ES cells after thawing was identified.Results Eighty-one point nine percent (59/72) of human ES cell clumps were recovered after vitrification, while only 22.8% (16/70) were recovered after slow freezing (P<0.01). The colonies after vitrification manifested have not only faster growth but also a lower level of differentiation when compared to colonies subjected to the slow freezing protocol. However, the rates of growth and differentiation in undifferentiated colonies from both groups were identical to the rates in those of non-cryopreserved stem cells after a prolonged culture period. Passage 6 of vitrified human ES cells retained the properties of pluripotent cells, a normal karyotype and expressed the transcription factor OCT-4, stage specific expressed antigen-4 (SSEA-4) and SSEA-3. Teratoma growth of these cells demonstrated the ability to develop into all three germ layers.Conclusions Vitrification is effective in cryopreserving human ES cells. During a prolonged culture, human ES cells retain their pluripotency after cryopreservation.

  7. Identification of skin immune cells in non-human primates.

    Science.gov (United States)

    Adam, Lucille; Rosenbaum, Pierre; Cosma, Antonio; Le Grand, Roger; Martinon, Frédéric

    2015-11-01

    The skin is a valuable target for vaccine delivery because it contains many immune cell populations, notably antigen presenting cells. Skin immune cells have been extensively described in mice and humans but not in non-human primates, which are pertinent models for immunological research in vaccination. The aim of this work was to describe immune cell populations in the epidermis, dermis and skin draining lymph nodes in cynomolgus macaques by a single 12-parameter flow cytometry protocol. Given that skin cells share several markers, we defined a gating strategy to identify accurately immune cells and to limit contamination of one immune cell population by another. The epidermis contained CD1a(+)CD1c(-) Langerhans cells (LCs), CD3(+) T cells and putative NK cells. The dermis contained CD1a(+)CD1c(-) cells, which were similar to LCs, CD1a(+)CD1c(+) dermal dendritic cells (DDCs), CD163(high)CD11b(+) resident macrophages, CD3(+) T cells and putative NK cells. The skin also contained CD66(+) polymorphonuclear cells in some animals. Thus, immune cell populations in the macaque are similar to those in humans despite some differences in phenotype. In skin draining lymph nodes, we identified migratory LCs, CD1a(+)CD1c(+) DDCs and macrophages. The simultaneous identification of these different immune cells with one panel of markers avoids the use of large amounts of precious sample and may improve the understanding of immune mechanisms in the skin after treatment or vaccination.

  8. [In vitro strategies for human gametes production from stem cells].

    Science.gov (United States)

    Tosca, Lucie; Courtot, Anne-Marie; Bennaceur-Griscelli, Annelise; Tachdjian, Gérard

    2011-10-01

    Embryonic stem cells (ESC) are self-renewal and pluripotent cells that are able to differentiate in vitro into several cell types in favourable conditions. Technical protocols for in vitro gametes production have been developed in mice and human species. The functionality of such differentiated cells is not always analysed and an early meiotic arrest is a current observation. These kinds of experimentations have also been tested from human induced pluripotent stem cells (IPSC). However, differentiation ends shortly at the primordial germ cell stage.

  9. Growth in agarose of human cells infected with cytomegalovirus.

    Science.gov (United States)

    Lang, D J; Montagnier, L; Latarjet, R

    1974-08-01

    After infection by human cytomegalovirus (CMV), human diploid fibroblasts could grow in agarose medium for several generations. Clones of infected cells grew for weeks, although in every case they ultimately underwent lysis owing to the cytopathic effect of the virus. Virus was inoculated at high dilution and after UV irradiation in an effort to derive cells infected with noninfectious defective particles still capable of inducing cell stimulation. Dilute or irradiated virus occasionally yielded large colonies of replicating cells, although permanent transformation was not observed. One clone derived from UV-CMV-infected cells was passaged four times before undergoing lysis. During these passages the cells exhibited alterations in morphology and orientation.

  10. Cytotoxinic Mechanism of Hydroxyapatite Nanoparticles on Human Hepatoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    CAO Xian-ying; QI Zhi-tao; DAI Hong-lian; YAN Yu-hua; LI Shi-pu

    2003-01-01

    Stable and single-dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel-7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G1 phase of cell cycle,thus,cancer cells die directly.

  11. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin(+)) and leukemia stem cell population (CD34(+)CD38(-)Lin(-/low)). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G0/G1 (7μM) and G2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Human organomics: a fresh approach to understanding human development using single-cell transcriptomics.

    Science.gov (United States)

    Camp, J Gray; Treutlein, Barbara

    2017-05-01

    Innovative methods designed to recapitulate human organogenesis from pluripotent stem cells provide a means to explore human developmental biology. New technologies to sequence and analyze single-cell transcriptomes can deconstruct these 'organoids' into constituent parts, and reconstruct lineage trajectories during cell differentiation. In this Spotlight article we summarize the different approaches to performing single-cell transcriptomics on organoids, and discuss the opportunities and challenges of applying these techniques to generate organ-level, mechanistic models of human development and disease. Together, these technologies will move past characterization to the prediction of human developmental and disease-related phenomena. © 2017. Published by The Company of Biologists Ltd.

  13. Postharvest ASM or Harpin Treatment Induce Resistance of Muskmelons Against Trichothecium roseum

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; LI Xuan; BI Yang; GE Yong-hong; LI Yong-cai; XIE Fang

    2008-01-01

    Induced resistance was studied in muskmelons(cv.Yindi)inoculated Trichothecium roseum with postharvest 1,2,3-benzothiadiazole-7-carbothioic acid S-methyl ester(ASM)(100 mg L-1)or harpin(50 mg L-1)treatment.Both ASM and harpin significantly reduced lesion diameter in inoculated fruit.Lesion diameter was limited in the treated and untreated halves of the same fruit,indicating that the local and systemic resistance was induced.Inhibiting efficacy of elicitors lasted 7 and 5 days in the treated and untreated halves.The resistance increased by the chemicals was associated with the activation of peroxidase(POD)and chitinase(CHT).The elicitors induced a significantly and progressively increasing activity of POD and CHT in the treated and untreated halves,and the activation lasted at least 5 days.The activities of POD isoenzymes increased in the treated fruit.However,no new enzyme band was found in the treated and untreated halves.

  14. Modelling the biological performance of a side-stream membrane bioreactor using ASM1

    Institute of Scientific and Technical Information of China (English)

    TIAN Ke-jun; LIU Xin-ai; JIANG Tao; M.D. Kennedy; J.C. Schippers; P.A. Vanrolleghem

    2004-01-01

    Membrane bioreactors(MBRs) are attracting global interest but the mathematical modeling of the biological performance of MBRs remains very limited. This study focuses on the modelling of a side-stream MBR system using Activated Sludge Model No.1(ASM1), and comparing the results with the modelling of traditional activated sludge processes. ASM1 parameters relevant for the long-term biological behaviour in MBR systems were calibrated(i.e. YH=0.72gCOD/gCOD, YA=0.25gCOD/gN, bH=0.25 d-1, bA=0.080 d-1 and fP=0.06), and generally agreed with the parameters in traditional activated sludge processes, with the exception that a higher autotrophic biomass decay rate was observed in the MBR. A sensitivity analysis for steady state operation and DO dynamics suggested that the biological performance of the MBR system(the sludge concentration, effluent quality and the DO dynamics) are very sensitive to the parameters(i.e. YH, YA, bH, bA, (maxH and (maxA), and influent wastewater components(XI, Ss, Xs, SNH).

  15. Code cases for implementing risk-based inservice testing in the ASME OM code

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, C.W.

    1996-12-01

    Historically inservice testing has been reasonably effective, but quite costly. Recent applications of plant PRAs to the scope of the IST program have demonstrated that of the 30 pumps and 500 valves in the typical plant IST program, less than half of the pumps and ten percent of the valves are risk significant. The way the ASME plans to tackle this overly-conservative scope for IST components is to use the PRA and plant expert panels to create a two tier IST component categorization scheme. The PRA provides the quantitative risk information and the plant expert panel blends the quantitative and deterministic information to place the IST component into one of two categories: More Safety Significant Component (MSSC) or Less Safety Significant Component (LSSC). With all the pumps and valves in the IST program placed in MSSC or LSSC categories, two different testing strategies will be applied. The testing strategies will be unique for the type of component, such as centrifugal pump, positive displacement pump, MOV, AOV, SOV, SRV, PORV, HOV, CV, and MV. A series of OM Code Cases are being developed to capture this process for a plant to use. One Code Case will be for Component Importance Ranking. The remaining Code Cases will develop the MSSC and LSSC testing strategy for type of component. These Code Cases are planned for publication in early 1997. Later, after some industry application of the Code Cases, the alternative Code Case requirements will gravitate to the ASME OM Code as appendices.

  16. Human dental pulp stem cells: Applications in future regenerative medicine.

    Science.gov (United States)

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-06-26

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine.

  17. Role of human mast cells and basophils in bronchial asthma.

    Science.gov (United States)

    Marone, Gianni; Triggiani, Massimo; Genovese, Arturo; De Paulis, Amato

    2005-01-01

    Mast cells and basophils are the only cells expressing the tetrameric (alphabetagamma2) structure of the high affinity receptor for IgE (FcepsilonRI) and synthesizing histamine in humans. Human FcepsilonRI+ cells are conventionally considered primary effector cells of bronchial asthma. There is now compelling evidence that these cells differ immunologically, biochemically, and pharmacologically, which suggests that they might play distinct roles in the appearance and fluctuation of the asthma phenotype. Recent data have revealed the complexity of the involvement of human mast cells and basophils in asthma and have shed light on the control of recruitment and activation of these cells in different lung compartments. Preliminary evidence suggests that these cells might not always be detrimental in asthma but, under some circumstances, they might exert a protective effect by modulating certain aspects of innate and acquired immunity and allergic inflammation.

  18. Identification of human fibroblast cell lines as a feeder layer for human corneal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Rong Lu

    Full Text Available There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE and cell growth capacity were evaluated on days 5-14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1 × 10(4 in a 35-mm dish (9.6 cm(2 grew to confluence (about 1.87-2.41 × 10(6 cells in 12-14 days, representing 187-241 fold expansion with over 7-8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction.

  19. 3D automatic anatomy segmentation based on iterative graph-cut-ASM

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xinjian; Bagci, Ulas [Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Building 10 Room 1C515, Bethesda, Maryland 20892-1182 and Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi' an 710071 (China); Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Building 10 Room 1C515, Bethesda, Maryland 20892-1182 (United States)

    2011-08-15

    Purpose: This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. Methods: The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al.[Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. Results: The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 deg. and 0.03, and over all foot bones are about 3.5709 mm, 0.35 deg. and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and

  20. Genetic engineering of human pluripotent cells using TALE nucleases.

    Science.gov (United States)

    Hockemeyer, Dirk; Wang, Haoyi; Kiani, Samira; Lai, Christine S; Gao, Qing; Cassady, John P; Cost, Gregory J; Zhang, Lei; Santiago, Yolanda; Miller, Jeffrey C; Zeitler, Bryan; Cherone, Jennifer M; Meng, Xiangdong; Hinkley, Sarah J; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Jaenisch, Rudolf

    2011-07-07

    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator-like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).

  1. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  2. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhumur Ghosh

    Full Text Available Human induced pluripotent stem cells (hiPSCs generated by de-differentiation of adult somatic cells offer potential solutions for the ethical issues surrounding human embryonic stem cells (hESCs, as well as their immunologic rejection after cellular transplantation. However, although hiPSCs have been described as "embryonic stem cell-like", these cells have a distinct gene expression pattern compared to hESCs, making incomplete reprogramming a potential pitfall. It is unclear to what degree the difference in tissue of origin may contribute to these gene expression differences. To answer these important questions, a careful transcriptional profiling analysis is necessary to investigate the exact reprogramming state of hiPSCs, as well as analysis of the impression, if any, of the tissue of origin on the resulting hiPSCs. In this study, we compare the gene profiles of hiPSCs derived from fetal fibroblasts, neonatal fibroblasts, adipose stem cells, and keratinocytes to their corresponding donor cells and hESCs. Our analysis elucidates the overall degree of reprogramming within each hiPSC line, as well as the "distance" between each hiPSC line and its donor cell. We further identify genes that have a similar mode of regulation in hiPSCs and their corresponding donor cells compared to hESCs, allowing us to specify core sets of donor genes that continue to be expressed in each hiPSC line. We report that residual gene expression of the donor cell type contributes significantly to the differences among hiPSCs and hESCs, and adds to the incompleteness in reprogramming. Specifically, our analysis reveals that fetal fibroblast-derived hiPSCs are closer to hESCs, followed by adipose, neonatal fibroblast, and keratinocyte-derived hiPSCs.

  3. On the development of extragonadal and gonadal human germ cells

    Directory of Open Access Journals (Sweden)

    A. Marijne Heeren

    2016-02-01

    Full Text Available Human germ cells originate in an extragonadal location and have to migrate to colonize the gonadal primordia at around seven weeks of gestation (W7, or five weeks post conception. Many germ cells are lost along the way and should enter apoptosis, but some escape and can give rise to extragonadal germ cell tumors. Due to the common somatic origin of gonads and adrenal cortex, we investigated whether ectopic germ cells were present in the human adrenals. Germ cells expressing DDX4 and/or POU5F1 were present in male and female human adrenals in the first and second trimester. However, in contrast to what has been described in mice, where ‘adrenal’ and ‘ovarian’ germ cells seem to enter meiosis in synchrony, we were unable to observe meiotic entry in human ‘adrenal’ germ cells until W22. By contrast, ‘ovarian’ germ cells at W22 showed a pronounced asynchronous meiotic entry. Interestingly, we observed that immature POU5F1+ germ cells in both first and second trimester ovaries still expressed the neural crest marker TUBB3, reminiscent of their migratory phase. Our findings highlight species-specific differences in early gametogenesis between mice and humans. We report the presence of a population of ectopic germ cells in the human adrenals during development.

  4. Generation of human melanocytes from induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Shigeki Ohta

    Full Text Available Epidermal melanocytes play an important role in protecting the skin from UV rays, and their functional impairment results in pigment disorders. Additionally, melanomas are considered to arise from mutations that accumulate in melanocyte stem cells. The mechanisms underlying melanocyte differentiation and the defining characteristics of melanocyte stem cells in humans are, however, largely unknown. In the present study, we set out to generate melanocytes from human iPS cells in vitro, leading to a preliminary investigation of the mechanisms of human melanocyte differentiation. We generated iPS cell lines from human dermal fibroblasts using the Yamanaka factors (SOX2, OCT3/4, and KLF4, with or without c-MYC. These iPS cell lines were subsequently used to form embryoid bodies (EBs and then differentiated into melanocytes via culture supplementation with Wnt3a, SCF, and ET-3. Seven weeks after inducing differentiation, pigmented cells expressing melanocyte markers such as MITF, tyrosinase, SILV, and TYRP1, were detected. Melanosomes were identified in these pigmented cells by electron microscopy, and global gene expression profiling of the pigmented cells showed a high similarity to that of human primary foreskin-derived melanocytes, suggesting the successful generation of melanocytes from iPS cells. This in vitro differentiation system should prove useful for understanding human melanocyte biology and revealing the mechanism of various pigment cell disorders, including melanoma.

  5. Embryonic death and the creation of human embryonic stem cells

    OpenAIRE

    Landry, Donald W.; Zucker, Howard A.

    2004-01-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ ...

  6. Embryonic death and the creation of human embryonic stem cells.

    Science.gov (United States)

    Landry, Donald W; Zucker, Howard A

    2004-11-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ donation.

  7. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  8. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders

    OpenAIRE

    2009-01-01

    Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS ...

  9. Modelling familial dysautonomia in human induced pluripotent stem cells

    OpenAIRE

    Lee, Gabsang; Studer, Lorenz

    2011-01-01

    Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of...

  10. 太钢通过ASME MO(材料组织)核电认证

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    近日,美国机械工程师协会(ASME)正式公布太钢获得了ASME MO(材料组织)核电产品质量体系认证书,标志着太钢成为中国首家通过ASME MO核电认证的钢铁企业,太钢将有资格按照ASME标准和质量体系要求制造核电产品。

  11. Generating trunk neural crest from human pluripotent stem cells.

    Science.gov (United States)

    Huang, Miller; Miller, Matthew L; McHenry, Lauren K; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R; Bronner, Marianne E; Weiss, William A

    2016-01-27

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior "cranial" NCC form craniofacial bone, whereas solely posterior "trunk" NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages.

  12. Generation of human-induced pluripotent stem cells.

    Science.gov (United States)

    Park, In-Hyun; Lerou, Paul H; Zhao, Rui; Huo, Hongguang; Daley, George Q

    2008-01-01

    Pluripotent cells, such as embryonic stem cells, are invaluable tools for research and can potentially serve as a source of cell- and tissue-replacement therapy. Rejection after transplantation of cells and tissue derived from embryonic stem cells is a significant obstacle to their clinical use. Recently, human somatic cells have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Human iPS cells are a potential source of patient-specific pluripotent stem cells that would bypass immune rejection. iPS cells can also be used to study diseases for which there are no adequate human in vitro or animal models. In this protocol, we describe how to establish primary human fibroblasts lines and how to derive iPS cells by retroviral transduction of reprogramming factors. Overall, it takes 2 months to complete reprogramming human primary fibroblasts starting from biopsy.

  13. Identification of bromodomain-containing protein-4 as a novel marker and epigenetic target in mast cell leukemia.

    Science.gov (United States)

    Wedeh, G; Cerny-Reiterer, S; Eisenwort, G; Herrmann, H; Blatt, K; Hadzijusufovic, E; Sadovnik, I; Müllauer, L; Schwaab, J; Hoffmann, T; Bradner, J E; Radia, D; Sperr, W R; Hoermann, G; Reiter, A; Horny, H-P; Zuber, J; Arock, M; Valent, P

    2015-11-01

    Advanced systemic mastocytosis (SM) is a life-threatening neoplasm characterized by uncontrolled growth and accumulation of neoplastic mast cells (MCs) in various organs and a poor survival. So far, no curative treatment concept has been developed for these patients. We identified the epigenetic reader bromodomain-containing protein-4 (BRD4) as novel drug target in aggressive SM (ASM) and MC leukemia (MCL). As assessed by immunohistochemistry and PCR, neoplastic MCs expressed substantial amounts of BRD4 in ASM and MCL. The human MCL lines HMC-1 and ROSA also expressed BRD4, and their proliferation was blocked by a BRD4-specific short hairpin RNA. Correspondingly, the BRD4-targeting drug JQ1 induced dose-dependent growth inhibition and apoptosis in HMC-1 and ROSA cells, regardless of the presence or absence of KIT D816V. In addition, JQ1 suppressed the proliferation of primary neoplastic MCs obtained from patients with ASM or MCL (IC50: 100-500 nm). In drug combination experiments, midostaurin (PKC412) and all-trans retinoic acid were found to cooperate with JQ1 in producing synergistic effects on survival in HMC-1 and ROSA cells. Taken together, we have identified BRD4 as a promising drug target in advanced SM. Whether JQ1 or other BET-bromodomain inhibitors are effective in vivo in patients with advanced SM remains to be elucidated.

  14. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    Science.gov (United States)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  15. The Isolation and Characterization of Human Prostate Cancer Stem Cells

    Science.gov (United States)

    2015-05-01

    IGF1, SOX15, BMPR1B, TGFBR1, etc), which fall into distinct GO categories including SC, development, stress response, and wound healing (unpublished...prostate cancer through the elucidation of the role of cancer stem cells in the pathogenesis of the disease. During the past year, we have made the...studies, ii) in vitro co-culture of human prostate cancer cells (established cell lines and primary patient samples) with human prostate fibroblasts

  16. Isolation, identification and differentiation of human embryonic cartilage stem cells.

    Science.gov (United States)

    Fu, Changhao; Yan, Zi; Xu, Hao; Zhang, Chen; Zhang, Qi; Wei, Anhui; Yang, Xi; Wang, Yi

    2015-07-01

    We isolated human embryonic cartilage stem cells (hECSCs), a novel stem cell population, from the articular cartilage of eight-week-old human embryos. These stem cells demonstrated a marker expression pattern and differentiation potential intermediate to those of human embryonic stem cells (hESCs) and human adult stem cells (hASCs). hECSCs expressed markers associated with both hESCs (OCT4, NANOG, SOX2, SSEA-3 and SSEA-4) and human adult stem cells (hASCs) (CD29, CD44, CD90, CD73 and CD10). These cells also differentiated into adipocytes, osteoblasts, chondrocytes, neurons and islet-like cells under specific inducing conditions. We identified N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) as an inducer of chondrogenic differentiation in hECSCs. Similar results using N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) were obtained for two other types of human embryonic tissue-derived stem cells, human embryonic hepatic stem cells (hEHSCs) and human embryonic amniotic fluid stem cells (hEASCs), both of which exhibited a marker expression pattern similar to that of hECSCs. The isolation of hECSCs and the discovery that N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) induces chondrogenic differentiation in different stem cell populations might aid the development of strategies in tissue engineering and cartilage repair.

  17. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  18. Vasoprotective effects of human CD34+ cells: towards clinical applications

    Directory of Open Access Journals (Sweden)

    Lerman Amir

    2009-07-01

    Full Text Available Abstract Background The development of cell-based therapeutics for humans requires preclinical testing in animal models. The use of autologous animal products fails to address the efficacy of similar products derived from humans. We used a novel immunodeficient rat carotid injury model in order to determine whether human cells could improve vascular remodelling following acute injury. Methods Human CD34+ cells were separated from peripheral buffy coats using automatic magnetic cell separation. Carotid arterial injury was performed in male Sprague-Dawley nude rats using a 2F Fogarty balloon catheter. Freshly harvested CD34+ cells or saline alone was administered locally for 20 minutes by endoluminal instillation. Structural and functional analysis of the arteries was performed 28 days later. Results Morphometric analysis demonstrated that human CD34+ cell delivery was associated with a significant reduction in intimal formation 4 weeks following balloon injury as compared with saline (I/M ratio 0.79 ± 0.18, and 1.71 ± 0.18 for CD34, and saline-treated vessels, respectively P Conclusion Delivery of human CD34+ cells limits neointima formation and improves arterial reactivity after vascular injury. These studies advance the concept of cell delivery to effect vascular remodeling toward a potential human cellular product.

  19. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos.

    Science.gov (United States)

    Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián

    2015-09-01

    Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers.

  20. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos

    Directory of Open Access Journals (Sweden)

    Daniela Ávila-González

    2015-09-01

    Full Text Available Data from the literature suggest that human embryonic stem cell (hESC lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1 from poor-quality (PQ embryos derived and maintained on human amniotic epithelial cells (hAEC. This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers.

  1. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.

    Science.gov (United States)

    Narayanan, Karthikeyan; Schumacher, Karl M; Tasnim, Farah; Kandasamy, Karthikeyan; Schumacher, Annegret; Ni, Ming; Gao, Shujun; Gopalan, Began; Zink, Daniele; Ying, Jackie Y

    2013-04-01

    Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.

  2. Growth suppressive efficacy of human lak cells against human lung-cancer implanted into scid mice.

    Science.gov (United States)

    Teraoka, S; Kyoizumi, S; Suzuki, T; Yamakido, M; Akiyama, M

    1995-06-01

    The purpose of our study was to determine the efficacy of immunotherapy using human lymphokine activated killer (LAK) cells against a human-lung squamous-cell carcinoma cell line (RERF-LC-AI) implanted into severe combined immunodeficient (SCID) mice. A statistically significant growth suppressive effect on RERF-LC-AI implanted into SCID mice was observed when human LAK cells were administered into the caudal vein of the mice treated with a continuous supply (initiated prior to LAK cells injection) of rIL-2. The human LAK cells stained with PKH 2, a fluorescent dye, for later detection using flow cytometry were administered into the caudal vein of RERF-LC-AI bearing SCID mice; the cells persisted for 7 days in the implanted lung cancer tissue and in the mouse peripheral blood, but for 5 days in the mouse spleen. The number of infiltrated human LAK cells in each tissue increased dose-dependently with the number of injected cells. The results indicate that the antitumor effect most likely occurred during the early implantation period of the human LAK cells. These results demonstrate the applicability of this model to the in vivo study of human lung cancer therapy.

  3. Use of human pluripotent stem cells to study and treatretinopathies

    Institute of Scientific and Technical Information of China (English)

    Karim Ben M’Barek; Florian Regent; Christelle Monville

    2015-01-01

    Human cell types affected by retinal diseases (such asage-related macular degeneration or retinitis pimentosa)are limited in cell number and of reduced accessibility. As aconsequence, their isolation for in vitro studies of diseasemechanisms or for drug screening efforts is fastidious.Human pluripotent stem cells (hPSCs), either of embryonicorigin or through reprogramming of adult somatic cells,represent a new promising way to generate models ofhuman retinopathies, explore the physiopathologicalmechanisms and develop novel therapeutic strategies.Disease-specific human embryonic stem cells were thefirst source of material to be used to study certain diseasestates. The recent demonstration that human somaticcells, such as fibroblasts or blood cells, can be geneticallyconverted to induce pluripotent stem cells together withthe continuous improvement of methods to differentiatethese cells into disease-affected cellular subtypes opensnew perspectives to model and understand a largenumber of human pathologies, including retinopathies.This review focuses on the added value of hPSCs for thedisease modeling of human retinopathies and the study oftheir molecular pathological mechanisms. We also discussthe recent use of these cells for establishing the validationstudies for therapeutic intervention and for the screeningof large compound libraries to identify candidate drugs.

  4. Proteomic Analysis of Human Blastocoel Fluid and Blastocyst Cells

    DEFF Research Database (Denmark)

    Linnert Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen;

    the cells of the blastocyst are exposed. The ICM is the starting point for the development of undifferentiated human embryonic stem cells (hESCs), which posses the potential to develop into any cell type present in the adult human body [1,2]. This ability makes hESCs a potential source of cells...... for regenerative medicine, such as in the treatment of diabetes, Parkinson’s disease, blindness, and spinal cord injury. In the context of developing regenerative medicine based on hESCs, it remains a challenge to employ safe, xenofree and defined culture conditions. The blastocoel fluid is per se the in vivo......The human blastocyst consists of 100-200 cells that are organized in an outer layer of differentiated trophectoderm (TE) cells lining the blastocyst cavity into which the undifferentiated inner cell mass (ICM) protrudes. The cavity of the blastocyst is filled with blastocoel fluid to which all...

  5. Proteomic Analysis of Human Blastocoel Fluid and Blastocyst Cells

    DEFF Research Database (Denmark)

    Linnert Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen

    the cells of the blastocyst are exposed. The ICM is the starting point for the development of undifferentiated human embryonic stem cells (hESCs), which posses the potential to develop into any cell type present in the adult human body [1,2]. This ability makes hESCs a potential source of cells......The human blastocyst consists of 100-200 cells that are organized in an outer layer of differentiated trophectoderm (TE) cells lining the blastocyst cavity into which the undifferentiated inner cell mass (ICM) protrudes. The cavity of the blastocyst is filled with blastocoel fluid to which all...... for regenerative medicine, such as in the treatment of diabetes, Parkinson’s disease, blindness, and spinal cord injury. In the context of developing regenerative medicine based on hESCs, it remains a challenge to employ safe, xenofree and defined culture conditions. The blastocoel fluid is per se the in vivo...

  6. Human induced pluripotent stem cells: A disruptive innovation.

    Science.gov (United States)

    De Vos, J; Bouckenheimer, J; Sansac, C; Lemaître, J-M; Assou, S

    2016-01-01

    This year (2016) will mark the 10th anniversary of the discovery of induced pluripotent stem cells (iPSCs). The finding that the transient expression of four transcription factors can radically remodel the epigenome, transcriptome and metabolome of differentiated cells and reprogram them into pluripotent stem cells has been a major and groundbreaking technological innovation. In this review, we discuss the major applications of this technology that we have grouped in nine categories: a model to study cell fate control; a model to study pluripotency; a model to study human development; a model to study human tissue and organ physiology; a model to study genetic diseases in a dish; a tool for cell rejuvenation; a source of cells for drug screening; a source of cells for regenerative medicine; a tool for the production of human organs in animals.

  7. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  8. Phenotype and functions of memory Tfh cells in human blood.

    Science.gov (United States)

    Schmitt, Nathalie; Bentebibel, Salah-Eddine; Ueno, Hideki

    2014-09-01

    Our understanding of the origin and functions of human blood CXCR5(+) CD4(+) T cells found in human blood has changed dramatically in the past years. These cells are currently considered to represent a circulating memory compartment of T follicular helper (Tfh) lineage cells. Recent studies have shown that blood memory Tfh cells are composed of phenotypically and functionally distinct subsets. Here, we review the current understanding of human blood memory Tfh cells and the subsets within this compartment. We present a strategy to define these subsets based on cell surface profiles. Finally, we discuss how increased understanding of the biology of blood memory Tfh cells may contribute insight into the pathogenesis of autoimmune diseases and the mode of action of vaccines.

  9. Human embryonic stem cell lines derived from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhen Fu FANG; Fan JIN; Hui GAI; Ying CHEN; Li WU; Ai Lian LIU; Bin CHEN; Hui Zhen SHENG

    2005-01-01

    Six human embryonic stem cell lines were established from surplus blastocysts. The cell lines expressed alkaline phosphatase and molecules typical of primate embryonic stem cells, including Oct-4, Nanog, TDGF1, Sox2, EBAF,Thy-1, FGF4, Rex-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. Five of the six lines formed embryoid bodies that expressed markers of a variety of cell types; four of them formed teratomas with tissue types representative of all three embryonic germ layers. These human embryonic stem cells are capable of producing clones of undifferentiated morphology, and one of them was propagated to become a subline. Human embryonic stem cell lines from the Chinese population should facilitate stem cell research and may be valuable in studies of population genetics and ecology.

  10. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture

    Directory of Open Access Journals (Sweden)

    Nathalia R. Lestard

    2016-01-01

    Full Text Available Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells.

  11. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall be designed, constructed, and inspected in accordance with section VIII of the ASME Boiler and Pressure...

  12. A Retrospective Look at 20 Years of ASM Education Programs (1990-2010 and a Prospective Look at the Next 20 Years (2011-2030

    Directory of Open Access Journals (Sweden)

    Amy Chang

    2011-03-01

    Full Text Available The Education Board of the American Society for Microbiology (ASM was established in the mid-1970s to address the graduate and medical education needs of ASM members. Since then, I have watched our offerings evolve from a small, graduate-level travel grant program for ASM meetings to a growing suite of professional development and networking opportunities including fellowships, publications, and conferences. Along the way, our audience has expanded from  graduate students to undergraduate biology and K-12 teachers, students of all ages, researchers, and the public.I have been fortunate enough to watch several pivotal programs and projects support our growth and change the status quo by providing opportunities for biology educators to flourish. These include the: (i Coalition for Education in the Life Sciences, (ii ASM Division on Microbiology Education, (iii ASM Conference for Undergraduate Educators, (iv ASM Journal of Microbiology & Biology Education, and (v ASM Fellowship Fund. In this review, the background and details I offer on each initiative help explain ASM Education offerings, how our growth has been supported, and where are we headed.

  13. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    OpenAIRE

    Islam, Mohammad S; Stemig, Melissa E.; Takahashi, Yutaka; Hui, Susanta K.

    2014-01-01

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harv...

  14. The effects of TSH on human vascular endothelial cells and smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    田利民

    2014-01-01

    Objective To study the effect of thyroid-stimulating hormone(TSH)on human vascular endothelial cells and smooth muscle cells and to explore the roles of TSH in the development of atherosclerosis.Methods Human vascular endothelial cells and smooth muscle cells were cultured in vitro.MTT method was used to assay the effect of TSH on cell viability.Real-time PCR was used

  15. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics.

    Science.gov (United States)

    Melton, Douglas A

    2016-01-01

    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes. © 2016 Elsevier Inc. All rights reserved.

  16. Establishment of human embryonic stem cell line from gamete donors

    Institute of Scientific and Technical Information of China (English)

    LI Tao; ZHOU Can-quan; MAI Qing-yun; ZHUANG Guang-lun

    2005-01-01

    Background Human embryonic stem (HES) cell derived from human blastocyst can be propagated indefinitely in the primitive undifferentiated state while remaining pluripotent. It has exciting potential in human developmental biology, drug discovery, and transplantation medicine. But there are insufficient HES cell lines for further study. Methods Three oocyte donors were studied, and 3 in vitro fertilization (IVF) cycles were carried out to get blastocysts for the establishment of HES cell line. Isolated from blastocysts immunosurgically, inner cell mass (ICM) was cultured and propagated on mouse embryonic fibroblasts (MEFs). Once established, morphology, cell surface markers, karyotype and differentiating ability of the cell line were thoroughly analyzed.Results Four ICMs from 7 blastocysts were cultured on MEFs. After culture, one cell line (cHES-1) was established and met the criteria for defining human pluripotent stem cells including a series of markers used to identify pluripotent stem cells, morphological similarity to primate embryonic stem cells and HES reported else where. Normal and stable karyotype maintained over 60 passages, and demonstrated ability to differentiate into a wide variety of cell types.Conclusions HES cell lines can be established from gamete donors at a relatively highly efficient rate. The establishment will exert a widespread impact on biomedical research.

  17. Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy.

    Science.gov (United States)

    Senju, S; Haruta, M; Matsumura, K; Matsunaga, Y; Fukushima, S; Ikeda, T; Takamatsu, K; Irie, A; Nishimura, Y

    2011-09-01

    This report describes generation of dendritic cells (DCs) and macrophages from human induced pluripotent stem (iPS) cells. iPS cell-derived DC (iPS-DC) exhibited the morphology of typical DC and function of T-cell stimulation and antigen presentation. iPS-DC loaded with cytomegalovirus (CMV) peptide induced vigorous expansion of CMV-specific autologous CD8+ T cells. Macrophages (iPS-MP) with activity of zymosan phagocytosis and C5a-induced chemotaxis were also generated from iPS cells. Genetically modified iPS-MPs were generated by the introduction of expression vectors into undifferentiated iPS cells, isolation of transfectant iPS cell clone and subsequent differentiation. By this procedure, we generated iPS-MP expressing a membrane-bound form of single chain antibody (scFv) specific to amyloid β (Aβ), the causal protein of Alzheimer's disease. The scFv-transfectant iPS-MP exhibited efficient Aβ-specific phagocytosis activity. iPS-MP expressing CD20-specific scFv engulfed and killed BALL-1 B-cell leukemia cells. Anti-BALL-1 effect of iPS-MP in vivo was demonstrated in a xeno-transplantation model using severe combined immunodeficient mice. In addition, we established a xeno-free culture protocol to generate iPS-DC and iPS-MP. Collectively, we demonstrated the possibility of application of iPS-DC and macrophages to cell therapy.

  18. Stepwise development of MAIT cells in mouse and human.

    Directory of Open Access Journals (Sweden)

    Emmanuel Martin

    2009-03-01

    Full Text Available Mucosal-associated invariant T (MAIT cells display two evolutionarily conserved features: an invariant T cell receptor (TCRalpha (iTCRalpha chain and restriction by the nonpolymorphic class Ib major histocompatibility complex (MHC molecule, MHC-related molecule 1 (MR1. MR1 expression on thymus epithelial cells is not necessary for MAIT cell development but their accumulation in the gut requires MR1 expressing B cells and commensal flora. MAIT cell development is poorly known, as these cells have not been found in the thymus so far. Herein, complementary human and mouse experiments using an anti-humanValpha7.2 antibody and MAIT cell-specific iTCRalpha and TCRbeta transgenic mice in different genetic backgrounds show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. Mouse MAIT cells are selected in an MR1-dependent manner both in fetal thymic organ culture and in double iTCRalpha and TCRbeta transgenic RAG knockout mice. In the latter mice, MAIT cells do not expand in the periphery unless B cells are added back by adoptive transfer, showing that B cells are not required for the initial thymic selection step but for the peripheral accumulation. In humans, contrary to natural killer T (NKT cells, MAIT cells display a naïve phenotype in the thymus as well as in cord blood where they are in low numbers. After birth, MAIT cells acquire a memory phenotype and expand dramatically, up to 1%-4% of blood T cells. Finally, in contrast with NKT cells, human MAIT cell development is independent of the molecular adaptor SAP. Interestingly, mouse MAIT cells display a naïve phenotype and do not express the ZBTB16 transcription factor, which, in contrast, is expressed by NKT cells and the memory human MAIT cells found in the periphery after birth. In conclusion, MAIT cells are selected by MR1 in the thymus on a non-B non-T hematopoietic cell, and acquire a memory phenotype and expand in the

  19. Human stem cells and articular cartilage regeneration.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  20. Human Stem Cells and Articular Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    A. Hari Reddi

    2012-11-01

    Full Text Available  The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  1. Growth-stimulatory effect of resveratrol in human cancer cells.

    Science.gov (United States)

    Fukui, Masayuki; Yamabe, Noriko; Kang, Ki Sung; Zhu, Bao Ting

    2010-08-01

    Earlier studies have shown that resveratrol could induce death in several human cancer cell lines in culture. Here we report our observation that resveratrol can also promote the growth of certain human cancer cells when they are grown either in culture or in athymic nude mice as xenografts. At relatively low concentrations (cells, but this effect was not observed in several other human cell lines tested. Analysis of cell signaling molecules showed that resveratrol induced the activation of JNK, p38, Akt, and NF-kappaB signaling pathways in these cells. Further analysis using pharmacological inhibitors showed that only the NF-kappaB inhibitor (BAY11-7082) abrogated the growth-stimulatory effect of resveratrol in cultured cells. In athymic nude mice, resveratrol at 16.5 mg/kg body weight enhanced the growth of MDA-MB-435s xenografts compared to the control group, while resveratrol at the 33 mg/kg body weight dose did not have a similar effect. Additional analyses confirmed that resveratrol stimulated cancer cell growth in vivo through activation of the NF-kappaB signaling pathway. Taken together, these observations suggest that resveratrol at low concentrations could stimulate the growth of certain types of human cancer cells in vivo. This cell type-specific mitogenic effect of resveratrol may also partly contribute to the procarcinogenic effect of alcohol consumption (rich in resveratrol) in the development of certain human cancers.

  2. Abnormal number cell division of human thyroid anaplastic carcinoma cell line, SW 1736

    Directory of Open Access Journals (Sweden)

    Keiichi Ikeda

    2015-12-01

    Full Text Available Cell division, during which a mother cell usually divides into two daughter cells during one cell cycle, is the most important physiological event of cell biology. We observed one-to-four cell division during imaging of live SW1736 human thyroid anaplastic carcinoma cells transfected with a plasmid expressing the hybrid protein of green fluorescent protein and histone 2B (plasmid eGFP-H2B. Analysis of the images revealed a mother cell divided into four daughter cells. And one of the abnormally divided daughter cells subsequently formed a dinucleate cell.

  3. Proteins differentially expressed in human beta-cells-enriched pancreatic islet cultures and human insulinomas

    DEFF Research Database (Denmark)

    Terra, Letícia F; Teixeira, Priscila C; Wailemann, Rosangela A M

    2013-01-01

    In view of the great demand for human beta-cells for physiological and medical studies, we generated cell lines derived from human insulinomas which secrete insulin, C-peptide and express neuroendocrine and islet markers. In this study, we set out to characterize their proteomes, comparing them t...

  4. Human CD8+ T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice.

    Science.gov (United States)

    Li, Xiangming; Huang, Jing; Zhang, Min; Funakoshi, Ryota; Sheetij, Dutta; Spaccapelo, Roberta; Crisanti, Andrea; Nussenzweig, Victor; Nussenzweig, Ruth S; Tsuji, Moriya

    2016-08-31

    A number of studies have shown that CD8+ T cells mediate protective anti-malaria immunity in a mouse model. However, whether human CD8+ T cells play a role in protection against malaria remains unknown. We recently established human immune system (HIS) mice harboring functional human CD8+ T cells (HIS-CD8 mice) by transduction with HLA-A∗0201 and certain human cytokines using recombinant adeno-associated virus-based gene transfer technologies. These HIS-CD8 mice mount a potent, antigen-specific HLA-A∗0201-restricted human CD8+ T-cell response upon immunization with a recombinant adenovirus expressing a human malaria antigen, the Plasmodium falciparum circumsporozoite protein (PfCSP), termed AdPfCSP. In the present study, we challenged AdPfCSP-immunized HIS-CD8 mice with transgenic Plasmodium berghei sporozoites expressing full-length PfCSP and found that AdPfCSP-immunized (but not naïve) mice were protected against subsequent malaria challenge. The level of the HLA-A∗0201-restricted, PfCSP-specific human CD8+ T-cell response was closely correlated with the level of malaria protection. Furthermore, depletion of human CD8+ T cells from AdPfCSP-immunized HIS-CD8 mice almost completely abolished the anti-malaria immune response. Taken together, our data show that human CD8+ T cells mediate protective anti-malaria immunity in vivo.

  5. Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters

    Science.gov (United States)

    Lopez, Ana D.; Kayali, Ayse G.; Hayek, Alberto; King, Charles C.

    2014-01-01

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells. PMID:24895054

  6. Isolation, culture, and imaging of human fetal pancreatic cell clusters.

    Science.gov (United States)

    Lopez, Ana D; Kayali, Ayse G; Hayek, Alberto; King, Charles C

    2014-05-18

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation(1-9). However in vitro, genesis of insulin producing cells from human fetal ICCs is low(10); results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust(11-17). A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro(11-22), far fewer exist for ICCs(10,23,24). Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue(6). Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.

  7. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramasharma, K.; Li, C.H.

    1987-05-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and ..cap alpha..-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin.

  8. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin

    OpenAIRE

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34+ hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex...

  9. Human Soluble TRAIL Protein Inducing Apoptosis in Osteosarcoma Cell

    Institute of Scientific and Technical Information of China (English)

    ZHU Shaobo; YU Aixi; ZHANG Zhongning; WU Gang

    2007-01-01

    This study is to examine the effect of human recombinant soluble TRAIL (TNF-related apoptosis-inducing ligand) protein inducing apoptosis in MG-63 human osteosarcoma cells. The inhibitive rates of TRAIL to MG-63 cells were detected by MTT assay. The apoptosis induced by TRAIL in MG-63 human osteosarcoma cells was analyzed with FACS and TUNEL and the apoptotic bodies were observed by transmission electron microscope. MTT assay showed that the inhibitive rates of 500, 1 000,2 000 and 4 000 ng/mL TRAIL for 24 h were 10.1%, 24.3%,50.6% and 97.7% respectively. Flow cytometric analysis showed that after MG-63 cells were treated with 2 μg/mL TRAIL for 6 h,obvious apoptotic peak would immediately appear before diploid peak. Human soluble TRAIL protein can quickly kill MG-63 osteosarcoma cells selectively, and may have potential value for clinical treatment of osteosarcoma.

  10. Generation and application of human iPS cells

    Institute of Scientific and Technical Information of China (English)

    CUI Ghun; RAO LingJun; CHENG LinZhao; XIAO Lei

    2009-01-01

    Human embryonic stem (ES) cells are capable of unlimited proliferation and maintenance of pluripo-tency in vitro; these properties may lead to potential applications in regenerative medicine.However,immune rejection hampers the allogenic application of human ES cells.Over-expression of several specific transcription factors has been used to reprogram human adult cells into induced pluripotent stem (iPS) cells,which are similar to hESCs in many aspects.The iPS technique makes it possible to produce patient-specific pluripotent stem cells for transplantation therapy without immune rejection.However,some challenges remain,including viral vector integration into the genome,the existence of exogenous oncogenic factors,and low induction efficiency.Here,we review recent advances in human iPS methodology,as well as remaining challenges and its potential applications.

  11. Calidad de la atención primaria en el paciente asmático

    Directory of Open Access Journals (Sweden)

    Patricia Varona Pérez

    1998-02-01

    Full Text Available Se ejecuta una investigación en servicios de salud con el objetivo de evaluar la calidad de la atención primaria en el paciente asmático en Ciudad de La Habana, mediante un diseño transversal, que incluyó pacientes asmáticos de los municipios Regla, Arroyo Naranjo y Cerro, seleccionados de forma aleatoria dentro de cada estrato, conformado según la tasa de mortalidad de 1993 a 1995. Se estudian 611 pacientes por medio de un cuestionario contentivo de variables sociodemográficas, relacionadas con conocimientos de la enfermedad, conducta del asmático y servicios vinculados con éste. Se muestra en los principales resultados que la atención brindada fue deficiente, expresada en escasos conocimientos del paciente sobre el manejo de su enfermedad y sus determinantes; conducta inadecuada ante una crisis y en períodos intercrisis; insuficiente atención por el psicólogo y el rehabilitador, en contraste con la aceptable satisfacción de los pacientes con la atención recibida. Se recomienda acciones orientadas a perfeccionar la capacitación del personal de salud, con énfasis en el enfoque preventivo de esta enfermedadAn investigation on the health services was carried out aimed at evaluating the quality of primary health care in the asthmatic patient, in Havana City, by a cross-sectional design that included asthmatics from the municipalities of Regla, Arroyo Naranjo and Cerro, who were selected at random within each stratum formed according to the mortality rate from 1993 to 1995. 611 patients were studied by using a questionnaire incluiding socidemographic variables connected with knowledge about the disease, behavior of the asthmatic and services linked with him. The main results showed that the attention was deficient, that the patient knew a little about the management of the disease and its determinants, that there was an inadequate conduct during the crisis and the intercrisis periods, and that the attention given by the

  12. Effect of Human Cytomegalovirus Infection on Nerve Growth Factor Expression in Human Glioma U251 Cells

    Institute of Scientific and Technical Information of China (English)

    HAI-TAO WANG; BIN WANG; ZHI-JUN LIU; ZHI-QIANG BAI; LING LI; HAI-YAN LIU; DONG-MENG QIAN; ZHI-YONG YAN; XU-XIA SONG

    2009-01-01

    Objectives To explore the change of endogenic nerve growth factor (NGF) expression in human glioma cells infected with human cytomegalovirus (HCMV). Methods U251 cells were cultured in RPMI 1640 culture medium and infected with HCMV AD169 strain in vitro to establish a cell model of viral infection. Morphologic changes of U251 cells were observed under inverted microscope before and after infection with HCMV. Expression of NGF gene and protein of cells was detected by RT-PCR and Western blotting before and after infection with HCMV. Results The cytopathic effects of HCMV-infected cells appeared on day 5 after infection. However, differential NGF expression was evident on day 7. NGF expression was decreased significantly in U251 cells on day 7 after infection in comparison with control group (P<0.05). Conclusion HCMV can down-regulate endogenous NGF levels in human glioma cell line U251.

  13. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  14. Mesenchymal Stem Cell Levels of Human Spinal Tissues.

    Science.gov (United States)

    Harris, Liam; Vangsness, C Thomas

    2017-09-06

    .: Systematic Review. .: The aim of this study was to investigate, quantify, compare and compile the various mesenchymal stem cell tissue sources within human spinal tissues to act as a compendium for clinical and research application. .: Recent years have seen a dramatic increase in academic and clinical understanding of human mesenchymal stem cells (MSCs). Previously limited to cells isolated from bone marrow, the past decade has illicited the characterization and isolation of human MSCs from adipose, bone marrow, synovium, muscle, periosteum, peripheral blood, umbilical cord, placenta and numerous other tissues. As researchers explore practical applications of cells in these tissues, the absolute levels of MSCs in specific spinal tissue will be critical to guide future research. .: The PubMED, MEDLINE, EMBASE and Cochrane databases were searched for articles relating to the harvest, characterization, isolation and quantification of human mesenchymal stem cells from spinal tissues. Selected articles were examined for relevant data, categorized according to type of spinal tissue, and when possible, standardized to facilitate comparisons between sites. .: Human mesenchymal stem cell levels varied widely between spinal tissues. Yields for Intervertebral disc demonstrated roughly 5% of viable cells to be positive for MSC surface markers. Cartilage endplate cells yielded 18,500- 61,875 cells/ 0.8 mm thick sample of cartilage end plate. Ligamentum flavum yielded 250,000- 500,000 cells per gram of tissue. Annulus fibrosus FACS treatment found 29% of cells positive for MSC marker Stro-1. Nucleus pulposus yielded mean tissue samples of 40,584-234,137 MSCs/gram of tissue. .: Numerous tissues within and surrounding the spine represent a consistent and reliable source for the harvest and isolation of human mesenchymal stem cells. Among the tissues of the spine, the annulus fibrosus and ligamentum flavum each offer considerable levels of mesenchymal stem cells, and may

  15. Radiogenic transformation of human mammary epithelial cells in vitro

    Science.gov (United States)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  16. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  17. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    Science.gov (United States)

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  18. In vitro methods to culture primary human breast epithelial cells.

    Science.gov (United States)

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  19. Isolation and culture of human umbilical vein endothelial cells (HUVEC).

    Science.gov (United States)

    Cheung, Ambrose L

    2007-02-01

    Human-derived endothelial cells can now be routinely harvested from human umbilical veins. Studies with human umbilical vein endothelial cells (HUVEC) have been conducted with cells from passage 2 to 5. It is now also possible to cryopreserve primary and early-passaged HUVEC for future propagation and for forwarding to an end user by express courier. Stored HUVEC have been stably retrieved even after several years. These retrieval techniques have facilitated the deployment of HUVEC for many studies, including those for homeostasis, inflammatory disorders, atherosclerosis, cancer, and microbial adhesion and invasion. In this unit, we will delineate the procedure for harvesting, propagation, and storage of HUVEC.

  20. Chemical Conversion of Human Fibroblasts into Functional Schwann Cells

    Directory of Open Access Journals (Sweden)

    Eva C. Thoma

    2014-10-01

    Full Text Available Direct transdifferentiation of somatic cells is a promising approach to obtain patient-specific cells for numerous applications. However, conversion across germ-layer borders often requires ectopic gene expression with unpredictable side effects. Here, we present a gene-free approach that allows efficient conversion of human fibroblasts via a transient progenitor stage into Schwann cells, the major glial cell type of peripheral nerves. Using a multikinase inhibitor, we transdifferentiated fibroblasts into transient neural precursors that were subsequently further differentiated into Schwann cells. The resulting induced Schwann cells (iSCs expressed numerous Schwann cell-specific proteins and displayed neurosupportive and myelination capacity in vitro. Thus, we established a strategy to obtain mature Schwann cells from human postnatal fibroblasts under chemically defined conditions without the introduction of ectopic genes.

  1. Stem cell markers in the heart of the human newborn

    Directory of Open Access Journals (Sweden)

    Armando Faa

    2016-07-01

    Full Text Available The identification of cardiac progenitor cells in mammals raises the possibility that the human heart contains a population of stem cells capable of generating cardiomyocytes and coronary vessels. Several recent studies now show that the different cell types that characterize the adult human heart arise from a common ancestor. Human cardiac stem cells differentiate into cardiomyocytes, and, in lesser extent, into smooth muscle and endothelial cells. The characterization of human cardiac stem cells (CSCs has important clinical implications. In recent years, CD117 (c-kit has been reported to mark a subtype of stem/progenitor cells in the human heart, with stem cell-like properties, including the ability to self-renewal and clonogenicity multipotentiality. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  2. Calorimetric signatures of human cancer cells and their nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Todinova, S. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Stoyanova, E. [Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tzarigradsko shose Blvd. 73, Sofia 1113 (Bulgaria); Krumova, S., E-mail: sakrumo@gmail.com [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Iliev, I. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, Acad. G. Bonchev Str., Bl. 25, Sofia 1113 (Bulgaria); Taneva, S.G. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria)

    2016-01-10

    Graphical abstract: - Highlights: • Two temperature ranges are distinguished in the thermograms of cells/nuclei. • Different thermodynamic properties of cancer and normal human cells/nuclei. • Dramatic reduction of the enthalpy of the low-temperature range in cancer cells. • Oxaliplatin and 5-FU affect the nuclear matrix proteins and the DNA stability. - Abstract: The human cancer cell lines HeLa, JEG-3, Hep G2, SSC-9, PC-3, HT-29, MCF7 and their isolated nuclei were characterized by differential scanning calorimetry. The calorimetric profiles differed from normal human fibroblast (BJ) cells in the two well distinguished temperature ranges—the high-temperature range (H{sub T}, due to DNA-containing structures) and the low-temperature range (L{sub T}, assigned to the nuclear matrix and cellular proteins). The enthalpy of the L{sub T} range, and, respectively the ratio of the enthalpies of the L{sub T}- vs. H{sub T}-range, ΔH{sub L}/ΔH{sub H}, is strongly reduced for all cancer cells compared to normal fibroblasts. On the contrary, for most of the cancer nuclei this ratio is higher compared to normal nuclei. The HT-29 human colorectal cancer cells/nuclei differed most drastically from normal human fibroblast cells/nuclei. Our data also reveal that the treatment of HT-29 cancer cells with cytostatic drugs affects not only the DNA replication but also the cellular proteome.

  3. Human periodontal ligament stem cells repair mental nerve injury*

    Institute of Scientific and Technical Information of China (English)

    Bohan Li; Hun-Jong Jung; Soung-Min Kim; Myung-Jin Kim; Jeong Won Jahng; Jong-Ho Lee

    2013-01-01

    Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were also injected as controls. Real-time reverse transcriptase polymerase chain reaction showed that at 5 days after injection, mRNA expression of low affinity nerve growth factor receptor was sig-nificantaly increased in the left trigeminal ganglion of rats with mental nerve injury. Sensory tests, histomorphometric evaluation and retrograde labeling demonstrated that at 2 and 4 weeks after in-jection, sensory function was significantly improved, the numbers of retrograde labeled sensory neurons and myelinated axons were significantly increased, and human periodontal ligament stem cells and autologous Schwann cells exhibited similar therapeutic effects. These findings suggest that transplantation of human periodontal ligament stem cells show a potential value in repair of mental nerve injury.

  4. Human B cells produce chemokine CXCL10 in the presence of Mycobacterium tuberculosis specific T cells

    DEFF Research Database (Denmark)

    Hoff, Soren T; Salman, Ahmed M; Ruhwald, Morten

    2015-01-01

    BACKGROUND: The role of B cells in human host response to Mycobacterium tuberculosis (Mtb) infection is still controversial, but recent evidence suggest that B cell follicle like structures within the lung may influence host responses through regulation of the local cytokine environment....... A candidate for such regulation could be the chemokine CXCL10. CXCL10 is mainly produced by human monocytes, but a few reports have also found CXCL10 production by human B cells. The objective of this study was to investigate CXCL10 production by human B cells in response to in vitro stimulation with Mtb...... antigens. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed human blood samples from 30 volunteer donors using multiparameter flow cytometry, and identified a subgroup of B cells producing CXCL10 in response to in vitro stimulation with antigens. T cells did not produce CXCL10, but CXCL10 production by B cells...

  5. Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells.

    Science.gov (United States)

    Ghosh, Zhumur; Huang, Mei; Hu, Shijun; Wilson, Kitchener D; Dey, Devaveena; Wu, Joseph C

    2011-07-15

    Pluripotent stem cells, both human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC), can give rise to multiple cell types and hence have tremendous potential for regenerative therapies. However, the tumorigenic potential of these cells remains a great concern, as reflected in the formation of teratomas by transplanted pluripotent cells. In clinical practice, most pluripotent cells will be differentiated into useful therapeutic cell types such as neuronal, cardiac, or endothelial cells prior to human transplantation, drastically reducing their tumorigenic potential. Our work investigated the extent to which these differentiated stem cell derivatives are truly devoid of oncogenic potential. In this study, we analyzed the gene expression patterns from three sets of hiPSC- and hESC-derivatives and the corresponding primary cells, and compared their transcriptomes with those of five different types of cancer. Our analysis revealed a significant gene expression overlap of the hiPSC- and hESC-derivatives with cancer, whereas the corresponding primary cells showed minimum overlap. Real-time quantitative PCR analysis of a set of cancer-related genes (selected on the basis of rigorous functional and pathway analyses) confirmed our results. Overall, our findings suggested that pluripotent stem cell derivatives may still bear oncogenic properties even after differentiation, and additional stringent functional assays to purify these cells should be done before they can be used for regenerative therapy.

  6. Rho GTPase expression in human myeloid cells.

    Directory of Open Access Journals (Sweden)

    Suzanne F G van Helden

    Full Text Available Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.

  7. Human embryonic stem cell derivation and directed differentiation.

    Science.gov (United States)

    Trounson, A

    2005-01-01

    Human embryonic stem cells (hESCs) are produced from normal, chromosomally aneuploid and mutant human embryos, which are available from in vitro fertilisation (IVF) for infertility or preimplantation diagnosis. These hESC lines are an important resource for functional genomics, drug screening and eventually cell and gene therapy. The methods for deriving hESCs are well established and repeatable, and are relatively successful, with a ratio of 1:10 to 1:2 hESC lines established to embryos used. hESCs can be formed from morula and blastocyst-stage embryos and from isolated inner cell mass cell (ICM) clusters. The hESCs can be formed and maintained on mouse or human somatic cells in serum-free conditions, and for several passages in cell-free cultures. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in culture while maintaining their original karyotype but this must be confirmed from time to time. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating attachment cultures and in unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes and characteristic morphology, and the culture thereafter enriched for further culture to more mature cell types. The most advanced directed differentiation pathways have been developed for neural cells and cardiac muscle cells, but many other cell types including haematopoietic progenitors, endothelial cells, lung alveoli, keratinocytes, pigmented retinal epithelium, neural crest cells and motor neurones, hepatic progenitors and cells that have some markers of gut tissue and pancreatic cells have been produced. The prospects for regenerative medicine are significant and there is much

  8. Generating trunk neural crest from human pluripotent stem cells

    OpenAIRE

    Miller Huang; Matthew L. Miller; McHenry, Lauren K.; Tina Zheng; Qiqi Zhen; Shirin Ilkhanizadeh; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typi...

  9. Hematopoietic Development from Human Induced Pluripotent Stem Cells

    OpenAIRE

    2009-01-01

    A decade of research on human embryonic stem cells (ESC) has paved the way for the discovery of alternative approaches to generating pluripotent stem cells.Combinatorial overexpression of a limited number of proteins linked to pluripotency in ESC was recently found to reprogram differentiated somatic cells back to a pluripotent state, enabling the derivation of isogenic (patient-specific) pluripotent stem cell lines. Current research is focusing on improving reprogramming protocols (e.g. circ...

  10. Lymphoreticular cells in human brain tumours and in normal brain.

    OpenAIRE

    1982-01-01

    The present investigation, using various rosetting assays of cell suspensions prepared by mechanical disaggregation or collagenase digestion, demonstrated lymphoreticular cells in human normal brain (cerebral cortex and cerebellum) and in malignant brain tumours. The study revealed T and B lymphocytes and their subsets (bearing receptors for Fc(IgG) and C3) in 5/14 glioma suspensions, comprising less than 15% of the cell population. Between 20-60% of cells in tumour suspensions morphologicall...

  11. 75 FR 80765 - Hazardous Materials: Adoption of ASME Code Section XII and the National Board Inspection Code

    Science.gov (United States)

    2010-12-23

    ... submitting the document (or signing the document, if submitted on behalf of an association, business, labor... membership professional organization that enables collaboration, knowledge-sharing, and skill development across all engineering disciplines. ASME is recognized globally for its leadership in providing the...

  12. Impact of the A18.1 ASME Standard on Platform Lifts and Stairway Chairlifts on Accessibility and Usability

    Science.gov (United States)

    Balmer, David C.

    2010-01-01

    This article summarizes the effect of the ASME A18.1 Standard concerning accessibility and usability of Platform Lifts and their remaining technological challenges. While elevators are currently the most effective means of vertical transportation related to speed, capacity, rise and usability, their major drawbacks for accessibility are cost and…

  13. 76 FR 11191 - Hazardous Materials: Adoption of ASME Code Section XII and the National Board Inspection Code

    Science.gov (United States)

    2011-03-01

    ... Hazardous Materials: Adoption of ASME Code Section XII and the National Board Inspection Code AGENCY... Pressure Vessel Code, Section XII (2010 Edition) and the National Board of Boiler and Pressure Vessel Inspectors' National Board Inspection Code (2007 Edition). Further, PHMSA is extending the comment period...

  14. Acid sphingomyelinase (Asm) deficiency patients in The Netherlands and Belgium: Disease spectrum and natural course in attenuated patients

    NARCIS (Netherlands)

    Hollak, C.E.M.; Sonnaville, E.S. de; Cassiman, D.; Linthorst, G.E.; Groener, J.E.M.; Morava, E.; Wevers, R.A.; Mannens, M.; Aerts, J.M.F.G.; Meersseman, W.; Akkerman, E.; Niezen-Koning, K.E.; Mulder, M.F.; Visser, G.; Wijburg, F.A.; Lefeber, D.; Poorthuis, B.J.H.M.

    2012-01-01

    Niemann-Pick disease (NPD) is a neurovisceral lysosomal storage disorder caused by acid sphingomyelinase (ASM) deficiency, which can be categorized as either Niemann-Pick disease type A [NPD-A], with progressive neurological disease and death in early childhood, or as Niemann-Pick disease type B [NP

  15. Pathogenesis of Human Enterovirulent Bacteria: Lessons from Cultured, Fully Differentiated Human Colon Cancer Cell Lines

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2013-01-01

    SUMMARY Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses. PMID:24006470

  16. Reaction invariant-based reduction of the activated sludge model ASM1 for batch applications

    DEFF Research Database (Denmark)

    Santa Cruz, Judith A.; Mussati, Sergio F.; Scenna, Nicolás J.

    2016-01-01

    that are unaffected by the reaction progress, i.e. so-called reaction invariants. The reaction invariant concept can be used to reduce the number of ordinary differential equations (ODEs) involved in batch bioreactor models. In this paper, a systematic methodology of model reduction based on this concept is applied...... to batch activated sludge processes described by the Activated Sludge Model No. 1 (ASM1) for carbon and nitrogen removal. The objective of the model reduction is to describe the exact dynamics of the states predicted by the original model with a lower number of ODEs. This leads to a reduction...... of the numerical complexity as nonlinear ODEs are replaced by linear algebraic relationships predicting the exact dynamics of the original model....

  17. ASME B89.4.19 Performance Evaluation Tests and Geometric Misalignments in Laser Trackers.

    Science.gov (United States)

    Muralikrishnan, B; Sawyer, D; Blackburn, C; Phillips, S; Borchardt, B; Estler, W T

    2009-01-01

    Small and unintended offsets, tilts, and eccentricity of the mechanical and optical components in laser trackers introduce systematic errors in the measured spherical coordinates (angles and range readings) and possibly in the calculated lengths of reference artifacts. It is desirable that the tests described in the ASME B89.4.19 Standard [1] be sensitive to these geometric misalignments so that any resulting systematic errors are identified during performance evaluation. In this paper, we present some analysis, using error models and numerical simulation, of the sensitivity of the length measurement system tests and two-face system tests in the B89.4.19 Standard to misalignments in laser trackers. We highlight key attributes of the testing strategy adopted in the Standard and propose new length measurement system tests that demonstrate improved sensitivity to some misalignments. Experimental results with a tracker that is not properly error corrected for the effects of the misalignments validate claims regarding the proposed new length tests.

  18. Change of nonlinear acoustics in ASME grade 122 steel welded joint during creep

    Science.gov (United States)

    Ohtani, Toshihiro; Honma, Takumi; Ishii, Yutaka; Tabuchi, Masaaki; Hongo, Hiromichi; Hirao, Masahiko

    2016-02-01

    In this paper, we described the changes of two nonlinear acoustic characterizations; resonant frequency shift and three-wave interaction, with electromagnetic acoustic resonance (EMAR) throughout the creep life in the welded joints of ASME Grade 122, one of high Cr ferritic heat resisting steels. EMAR was a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). These nonlinear acoustic parameters decreased from the start to 50% of creep life. After slightly increased, they rapidly increased from 80% of creep life to rupture. We interpreted these phenomena in terms of dislocation recovery, recrystallization, and restructuring related to the initiation and growth of creep void, with support from the SEM and TEM observation.

  19. Flanged joints with contact outside the bolt circle: ASME Part B design rules

    Energy Technology Data Exchange (ETDEWEB)

    Rodabaugh, E. C.; Moore, S. E.

    1976-05-01

    The ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, gives rules which are subdivided into ''Part A'' and ''Part B''. Part A covers flanged joints where contact between flanges occurs through a gasket located inside the bolt holes. Part B covers flanged joints with contact outside the bolt holes. This report (a) summarizes the theory for Part B flanged joints, (b) presents examples which show the significant differences between Part A flanged joints and Part B flanged joints, (c) presents the available test data relevant to the characteristics of Part B flanged joints, (d) gives listings of two computer programs which can be used to evaluate the characteristics of Part B flanged joints, and (e) gives recommendations for Code revisions and other aspects of Part B flanged-joint design.

  20. ASME power test code ptc 4.1 for steam generators; Codigo de pruebas de potencia ASME ptc 4.1 para generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Plauchu Alcantara, Jorge Alberto [Plauchu Consultores, Morelia, Michoacan (Mexico)

    2001-07-01

    This presentation is oriented towards those who in this subject have experience in the design and equipment specification, plant projects, factory and field testing, operation or result analyses. An important fraction of the national energy supply, approximately 13%, is applied to the steam generation in the different aspects of the industrial activity, in the electrical industry of public service and in the commercial and services sector. The development of the national programs of energy efficiency verifies this when dedicating to this use of the energy important projects, some of them with support of the USAID. The measurement of the energy utilization or the efficiency of steam generators (or boilers) is made applying some procedure agreed by the parts and the one of greater acceptance and best known in Mexico and internationally is the ASME Power Test Code PTC 4.1 for Steam Generators. The purpose and formality in the determination of efficiency and of steam generation capacity behavior, thermal basic regime or fulfillment of guarantees, radically changes the exigencies of strict attachment to the PTC 4.1 This definition will determine the importance of the test method selected, the deviations and convened exceptions, the influence of the precision and the measurement errors, the consideration of auxiliary equipment, etc. An interpretation or incorrect application of the Test Code has lead and will lead to results and nonreliable decisions. [Spanish] Esta exposicion se orienta a quienes en este tema cuenta con experiencia en diseno y especificacion de equipo, proyecto de planta, pruebas en fabrica y campo, operacion o analisis de resultados. Una fraccion importante de la oferta nacional de energia, 13% aproximadamente, se aplica a la generacion de vapor en diferentes giros de actividad industrial, en la industria electrica, de servicio publico y en el sector de servicios y comercial. El desarrollo de los programas nacionales de eficiencia energetica comprueba

  1. Cardiac Progenitor Cell Extraction from Human Auricles

    KAUST Repository

    Di Nardo, Paolo

    2017-02-22

    For many years, myocardial tissue has been considered terminally differentiated and, thus, incapable of regenerating. Recent studies have shown, instead, that cardiomyocytes, at least in part, are slowly substituted by new cells originating by precursor cells mostly embedded into the heart apex and in the atria. We have shown that an elective region of progenitor cell embedding is represented by the auricles, non-contractile atria appendages that can be easily sampled without harming the patient. The protocol here reported describes how from auricles a population of multipotent, cardiogenic cells can be isolated, cultured, and differentiated. Further studies are needed to fully exploit this cell population, but, sampling auricles, it could be possible to treat cardiac patients using their own cells circumventing rejection or organ shortage limitations.

  2. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  3. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    Science.gov (United States)

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  4. Dark cells in human oral leukoplakias

    Energy Technology Data Exchange (ETDEWEB)

    Klein-Szanto, A.J.P. (Oak Ridge National Lab., TN); Sega, M.; Banoczy, J.; Albrecht, M.

    1982-01-01

    Dark basal keratinocytes, characterized by a strong affinity for basic dyes and by electron density of cytoplasm and nucleus, could be recognized in eleven oral leukoplakias. The percentage of dark cells was higher in the group comprising leukoplakias verrucosa, and erosiva (28% of the basal cells) than in the leukoplakia simplex group (10%). The presence of these cells is a good indicator of the degree of histological dysplasia and correlates well with the preneoplastic potential of these lesions.

  5. Cell sources for in vitro human liver cell culture models.

    Science.gov (United States)

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.

  6. Staphylococcal SSL5 Binding to Human Leukemia Cells Inhibits Cell Adhesion to Endothelial Cells and Platelets

    Directory of Open Access Journals (Sweden)

    Annemiek M. E. Walenkamp

    2010-01-01

    Full Text Available Bacterial proteins provide promising tools for novel anticancer therapies. Staphylococcal superantigen-like 5 (SSL5 was recently described to bind P-selectin glycoprotein ligand-1 (PSGL-1 on leukocytes and to inhibit neutrophil rolling on a P-selectin surface. As leukocytes and tumor cells share many characteristics in migration and dissemination, we explored the potential of SSL5 as an antagonist of malignant cell behavior. Previously, it was demonstrated that rolling of human HL-60 leukemia cells on activated endothelial cells was mediated by P-selectin. In this study, we show that SSL5 targets HL-60 cells. Binding of SSL5 was rapid and without observed toxicity. Competition of SSL5 with the binding of three anti-PSGL-1 antibodies and P-selectin to HL-60 cells identified PSGL-1 as the ligand on HL-60 cells. Presence of sialyl Lewis x epitopes on PSGL-1 was crucial for its interaction with SSL5. Importantly, SSL5 not only inhibited the interaction of HL-60 cells with activated endothelial cells but also with platelets, which both play an important role in growth and metastasis of cancers. These data support the concept that SSL5 could be a lead in the search for novel strategies against hematological malignancies.

  7. Using ASM Podcasts to Excite Undergraduate Students about Current Microbiological Research

    Directory of Open Access Journals (Sweden)

    Stacey E. Lettini

    2014-08-01

    Full Text Available Innovative technology is often used as a mechanism to engage students in and out of the classroom and can be used to increase critical thinking skills. Podcasts are an excellent way to introduce students to current topics and research in microbiology. The American Society for Microbiology (ASM produces three podcasts that are microbiologically focused: This Week in Microbiology (TWiM, This Week in Parasitology (TWiP, and This Week in Virology (TWiV. These podcasts are usually presented in a manner similar to a journal club, as the presenters regularly invite guests to discuss current research papers. Since students often find reading scientific literature difficult and get bogged down in the details rather than seeing the over-arching purpose of a paper, these podcasts have been used in a General Microbiology course to introduce recent research articles. The students were first assigned an original research article to read and review, and they were asked to generate questions pertaining to things they did not understand. Next, students listened to the corresponding podcast that discussed the article and used it to answer their questions. This was followed by a classroom discussion of the article and the podcast. The ASM podcast helped to demystify original research by providing details of the experimental design and presentation of the results in a language that is more casual and relatable. Students demonstrated greater critical thinking and comprehension of microbiology literature after listening to the podcast. This activity can be used in a variety of courses in the biology curriculum.

  8. User-inspired design methodology using Affordance Structure Matrix (ASM for construction projects

    Directory of Open Access Journals (Sweden)

    Maheswari J. Uma

    2017-01-01

    Full Text Available Traditionally, design phase of construction projects is often performed with incomplete and inaccurate user preferences. This is due to inefficiencies in the methodologies used for capturing the user requirements that can subsequently lead to inconsistencies and result in non-optimised end-result. Iterations and subsequent reworks due to such design inefficiencies is one of the major reasons for unsuccessful project delivery as they impact project performance measures such as time and cost among others. The existing design theories and practice are primarily based on functional requirements. Function-based design deals with design of artifact alone, which may yield favourable or unfavourable consequences with the design artifact. However, incorporating other interactions such as interactions between user & designer is necessary for optimised end-result. Hence, the objective of this research work is to devise a systematic design methodology considering all the three interactions among users, designers and artefacts for improved design efficiency. In this study, it has been attempted to apply the theory of affordances in a case project that involves the design of an offshore facility. A step-by-step methodology for developing Affordance Structure Matrix (ASM, which integrates House of Quality (HOQ and Design Structure Matrix (DSM, is proposed that can effectively capture the user requirements. HOQ is a popular quality management tool for capturing client requirements and DSM is a matrix-based tool that can capture the interdependency among the design entities. The proposed methodology utilises the strengths of both the tools, as DSM compliments HOQ in the process. In this methodology, different affordances such as AUA (Artifact-User-Affordance, AAA (Artifact-Artifact-Affordance and DDA (Designer-Designer-Affordance are captured systematically. Affordance is considered to be user-driven in this context that is in contrast to prevailing design

  9. Analysis of Intracellular Calcium Signaling in Human Embryonic Stem Cells.

    Science.gov (United States)

    Péntek, Adrienn; Pászty, Katalin; Apáti, Ágota

    2016-01-01

    Measurement of changes in intracellular calcium concentration is one of the most common and useful tools for studying signal transduction pathways or cellular responses in basic research and drug screening purposes as well. Increasing number of such applications using human pluripotent stem cells and their derivatives requires development of calcium signal measurements for this special cell type. Here we describe a modified protocol for analysis of calcium signaling events in human embryonic stem cells, which can be used for other pluripotent cell types (such as iPSC) or their differentiated offspring as well.

  10. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  11. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    Science.gov (United States)

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential.

  12. Antibody-Independent Function of Human B Cells Contributes to Antifungal T Cell Responses.

    Science.gov (United States)

    Li, Rui; Rezk, Ayman; Li, Hulun; Gommerman, Jennifer L; Prat, Alexandre; Bar-Or, Amit

    2017-03-08

    Fungal infections (e.g., Candida albicans) can manifest as serious medical illnesses, especially in the elderly and immune-compromised hosts. T cells are important for Candida control. Whether and how B cells are involved in antifungal immunity has been less clear. Although patients with agammaglobulinemia exhibit normal antifungal immunity, increased fungal infections are reported following B cell-depleting therapy, together pointing to Ab-independent roles of B cells in controlling such infections. To test how human B cells may contribute to fungal-associated human T cell responses, we developed a novel Ag-specific human T cell/B cell in vitro coculture system and found that human B cells could induce C. albicans-associated, MHC class II-restricted responses of naive T cells. Activated B cells significantly enhanced C. albicans-mediated Th1 and Th17 T cell responses, which were both strongly induced by CD80/CD86 costimulation. IL-6(+)GM-CSF(+) B cells were the major responding B cell subpopulation to C. albicans and provided efficient costimulatory signals to the T cells. In vivo B cell depletion in humans resulted in reduced C. albicans-associated T responses. Of note, the decreased Th17, but not Th1, responses could be reversed by soluble factors from B cells prior to depletion, in an IL-6-dependent manner. Taken together, our results implicate an Ab-independent cytokine-defined B cell role in human antifungal T cell responses. These findings may be particularly relevant given the prospects of chronic B cell depletion therapy use in lymphoma and autoimmune disease, as patients age and are exposed to serial combination therapies.

  13. Random mitotic activities across human embryonic stem cell colonies.

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Q.; Duggan, R.; Dasa, S.; Li, F.; Chen, L. (Biosciences Division)

    2010-08-01

    A systemic and quantitative study was performed to examine whether different levels of mitotic activities, assessed by the percentage of S-phase cells at any given time point, existed at different physical regions of human embryonic stem (hES) cell colonies at 2, 4, 6 days after cell passaging. Mitotically active cells were identified by the positive incorporation of 5-bromo-2-deoxyuridine (BrdU) within their newly synthesized DNA. Our data indicated that mitotically active cells were often distributed as clusters randomly across the colonies within the examined growth period, presumably resulting from local deposition of newly divided cells. This latter notion was further demonstrated by the confined growth of enhanced green florescence protein (EGFP) expressing cells amongst non-GFP expressing cells. Furthermore, the overall percentage of mitotically active cells remained constantly at about 50% throughout the 6-day culture period, indicating mitotic activities of hES cell cultures were time-independent under current growth conditions.

  14. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  15. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  16. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  17. Connexin mutant embryonic stem cells and human diseases

    Institute of Scientific and Technical Information of China (English)

    Kiyomasa; Nishii; Yosaburo; Shibata; Yasushi; Kobayashi

    2014-01-01

    Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin(Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells(ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.

  18. Therapeutic potentials of human embryonic stem cells in Parkinson's disease

    National Research Council Canada - National Science Library

    Newman, Mary B; Bakay, Roy A E

    2008-01-01

    .... The isolation, differentiation, and long-term cultivation of human embryonic stem cells and the therapeutic research discovery made in relation to the beneficial properties of neurotrophic and neural...

  19. Connexin mutant embryonic stem cells and human diseases.

    Science.gov (United States)

    Nishii, Kiyomasa; Shibata, Yosaburo; Kobayashi, Yasushi

    2014-11-26

    Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin (Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells (ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.

  20. Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080

    National Research Council Canada - National Science Library

    Nakanishi, T; Tamai, I; Sai, Y; Sasaki, T; Tsuji, A

    1997-01-01

    To explore the feasibility of targeting human tumor cells via their transport systems, dipeptide uptake was studied in the human fibrosarcoma cell line HT1080 and the human fibroblast cell line IMR-90...

  1. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    Science.gov (United States)

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  2. Role of endonuclease G in senescence-associated cell death of human endothelial cells

    OpenAIRE

    2011-01-01

    Mitotic cells in culture show a limited replicative potential and after extended subculturing undergo a terminal growth arrest termed cellular senescence. When cells reach the senescent phenotype, this is accompanied by a significant change in the cellular phenotype and massive changes in gene expression, including the upregulation of secreted factors. In human fibroblasts, senescent cells also acquire resistance to apoptosis. In contrary, in human endothelial cells, both replicative and stre...

  3. A novel method for generating xeno-free human feeder cells for human embryonic stem cell culture.

    Science.gov (United States)

    Meng, Guoliang; Liu, Shiying; Krawetz, Roman; Chan, Michael; Chernos, Judy; Rancourt, Derrick E

    2008-06-01

    Long-term cultures of human embryonic stem (hES) cells require a feeder layer for maintaining cells in an undifferentiated state and increasing karyotype stability. In routine hES cell culture, mouse embryonic fibroblast (MEF) feeders and animal component-containing media (FBS or serum replacement) are commonly used. However, the use of animal materials increases the risk of transmitting pathogens to hES cells and therefore is not optimal for use in cultures intended for human transplantation. There are other limitations with conventional feeder cells, such as MEFs, which have a short lifespan and can only be propagated five to six passages before senescing. Several groups have investigated maintaining existing hES cell lines and deriving new hES cell lines on human feeder layers. However, almost all of these human source feeder cells employed in previous studies were derived and cultured in animal component conditions. Even though one group previously reported the derivation and culture of human foreskin fibroblasts (HFFs) in human serum-containing medium, this medium is not optimal because HFFs routinely undergo senescence after 10 passages when cultured in human serum. In this study we have developed a completely animal-free method to derive HFFs from primary tissues. We demonstrate that animal-free (AF) HFFs do not enter senescence within 55 passages when cultured in animal-free conditions. This methodology offers alternative and completely animal-free conditions for hES cell culture, thus maintaining hES cell morphology, pluripotency, karyotype stability, and expression of pluripotency markers. Moreover, no difference in hES cell maintenance was observed when they were cultured on AF-HFFs of different passage number or independent derivations.

  4. Characterization and functionality of proliferative human Sertoli cells.

    Science.gov (United States)

    Chui, Kitty; Trivedi, Alpa; Cheng, C Yan; Cherbavaz, Diana B; Dazin, Paul F; Huynh, Ai Lam Thu; Mitchell, James B; Rabinovich, Gabriel A; Noble-Haeusslein, Linda J; John, Constance M

    2011-01-01

    It has long been thought that mammalian Sertoli cells are terminally differentiated and nondividing postpuberty. For most previous in vitro studies immature rodent testes have been the source of Sertoli cells and these have shown little proliferative ability when cultured. We have isolated and characterized Sertoli cells from human cadaveric testes from seven donors ranging from 12 to 36 years of age. The cells proliferated readily in vitro under the optimized conditions used with a doubling time of approximately 4 days. Nuclear 5-ethynyl-2'-deoxyuridine (EdU) incorporation confirmed that dividing cells represented the majority of the population. Classical Sertoli cell ultrastructural features, lipid droplet accumulation, and immunoexpression of GATA-4, Sox9, and the FSH receptor (FSHr) were observed by electron and fluorescence microscopy, respectively. Flow cytometry revealed the expression of GATA-4 and Sox9 by more than 99% of the cells, and abundant expression of a number of markers indicative of multipotent mesenchymal cells. Low detection of endogenous alkaline phosphatase activity after passaging showed that few peritubular myoid cells were present. GATA-4 and SOX9 expression were confirmed by reverse transcription polymerase chain reaction (RT-PCR), along with expression of stem cell factor (SCF), glial cell line-derived neurotrophic factor (GDNF), and bone morphogenic protein 4 (BMP4). Tight junctions were formed by Sertoli cells plated on transwell inserts coated with fibronectin as revealed by increased transepithelial electrical resistance (TER) and polarized secretion of the immunoregulatory protein, galectin-1. These primary Sertoli cell populations could be expanded dramatically in vitro and could be cryopreserved. The results show that functional human Sertoli cells can be propagated in vitro from testicular cells isolated from adult testis. The proliferative human Sertoli cells should have important applications in studying infertility

  5. Malaria and human red blood cells.

    Science.gov (United States)

    Mohandas, Narla; An, Xiuli

    2012-11-01

    Invasion by the malaria parasite, Plasmodium falciparum, brings about extensive changes in the host red cells. These include loss of the normal discoid shape, increased rigidity of the membrane, elevated permeability to a wide variety of ionic and other species and increased adhesiveness, most notably to endothelial surfaces. These effects facilitate survival of the parasite within the host cell and tend to increase the virulence of disease that includes cerebral malaria and anemia. Numerous proteins secreted by the internalized parasite and interacting with red cell membrane proteins are responsible for the changes occurring to the host cell. Anemia, a serious clinical manifestation of malaria, is due to increased destruction of both infected and uninfected red cells due to membrane alterations, as well as ineffective erythropoiesis. There is very good evidence that various red cell disorders including hemoglobinopathies and hereditary ovalocytosis decrease the virulence of disease following parasite infection. A number of mechanism(s) are likely responsible for the protective effect of various red cell abnormalities including decreased invasion, impaired intraerythrocytic development of the parasites and altered interaction between exported parasite proteins and the red cell membrane skeleton.

  6. The human T cell receptor alpha variable (TRAV) genes.

    Science.gov (United States)

    Scaviner, D; Lefranc, M P

    2000-01-01

    'Human T Cell Receptor Alpha Variable (TRAV) Genes', the eighth report of the 'IMGT Locus in Focus' section, comprises four tables: (1) 'Number of human germline TRAV genes at 14q11 and potential repertoire'; (2) 'Human germline TRAV genes at 14q11'; (3) 'Human TRAV allele table', and (4) 'Correspondence between the different human TRAV gene nomenclatures'. These tables are available at the IMGT Marie-Paule page of IMGT, the international ImMunoGeneTics database (http://imgt.cines.fr:8104) created by Marie-Paule Lefranc, Université Montpellier II, CNRS, France. Copyright 2000 S. Karger AG, Basel

  7. Spectrum of SMPD1 mutations in Asian-Indian patients with acid sphingomyelinase (ASM)-deficient Niemann-Pick disease.

    Science.gov (United States)

    Ranganath, Prajnya; Matta, Divya; Bhavani, Gandham SriLakshmi; Wangnekar, Savita; Jain, Jamal Mohammed Nurul; Verma, Ishwar C; Kabra, Madhulika; Puri, Ratna Dua; Danda, Sumita; Gupta, Neerja; Girisha, Katta M; Sankar, Vaikom H; Patil, Siddaramappa J; Ramadevi, Akella Radha; Bhat, Meenakshi; Gowrishankar, Kalpana; Mandal, Kausik; Aggarwal, Shagun; Tamhankar, Parag Mohan; Tilak, Preetha; Phadke, Shubha R; Dalal, Ashwin

    2016-10-01

    Acid sphingomyelinase (ASM)-deficient Niemann-Pick disease is an autosomal recessive lysosomal storage disorder caused by biallelic mutations in the SMPD1 gene. To date, around 185 mutations have been reported in patients with ASM-deficient NPD world-wide, but the mutation spectrum of this disease in India has not yet been reported. The aim of this study was to ascertain the mutation profile in Indian patients with ASM-deficient NPD. We sequenced SMPD1 in 60 unrelated families affected with ASM-deficient NPD. A total of 45 distinct pathogenic sequence variants were found, of which 14 were known and 31 were novel. The variants included 30 missense, 4 nonsense, and 9 frameshift (7 single base deletions and 2 single base insertions) mutations, 1 indel, and 1 intronic duplication. The pathogenicity of the novel mutations was inferred with the help of the mutation prediction software MutationTaster, SIFT, Polyphen-2, PROVEAN, and HANSA. The effects of the identified sequence variants on the protein structure were studied using the structure modeled with the help of the SWISS-MODEL workspace program. The p. (Arg542*) (c.1624C>T) mutation was the most commonly identified mutation, found in 22% (26 out of 120) of the alleles tested, but haplotype analysis for this mutation did not identify a founder effect for the Indian population. To the best of our knowledge, this is the largest study on mutation analysis of patients with ASM-deficient Niemann-Pick disease reported in literature and also the first study on the SMPD1 gene mutation spectrum in India. © 2016 Wiley Periodicals, Inc.

  8. Verification of Allowable Stresses In ASME Section III Subsection NH For Grade 91 Steel & Alloy 800H

    Energy Technology Data Exchange (ETDEWEB)

    R. W. Swindeman; M. J. Swindeman; B. W. Roberts; B. E. Thurgood; D. L. Marriott

    2007-11-30

    The database for the creep-rupture of 9Cr-1Mo-V (Grade 91) steel was collected and reviewed to determine if it met the needs for recommending time-dependent strength values, S{sub t}, for coverage in ASME Section III Subsection NH (ASME III-NH) to 650 C (1200 F) and 600,000 hours. The accumulated database included over 300 tests for 1% total strain, nearly 400 tests for tertiary creep, and nearly 1700 tests to rupture. Procedures for analyzing creep and rupture data for ASME III-NH were reviewed and compared to the procedures used to develop the current allowable stress values for Gr 91 for ASME II-D. The criteria in ASME III-NH for estimating S{sub t} included the average strength for 1% total strain for times to 600,000 hours, 80% of the minimum strength for tertiary creep for times to 600,000 hours, and 67% of the minimum rupture strength values for times to 600,000 hours. Time-temperature-stress parametric formulations were selected to correlate the data and make predictions of the long-time strength. It was found that the stress corresponding to 1% total strain and the initiation of tertiary creep were not the controlling criteria over the temperature-time range of concern. It was found that small adjustments to the current values in III-NH could be introduced but that the existing values were conservative and could be retained. The existing database was found to be adequate to extend the coverage to 600,000 hours for temperatures below 650 C (1200 F).

  9. Subsets of human natural killer cells and their regulatory effects

    Science.gov (United States)

    Fu, Binqing; Tian, Zhigang; Wei, Haiming

    2014-01-01

    Human natural killer (NK) cells have distinct functions as NKtolerant, NKcytotoxic and NKregulatory cells and can be divided into different subsets based on the relative expression of the surface markers CD27 and CD11b. CD27+ NK cells, which are abundant cytokine producers, are numerically in the minority in human peripheral blood but constitute the large population of NK cells in cord blood, spleen, tonsil and decidua tissues. Recent data suggest that these NK cells may have immunoregulatory properties under certain conditions. In this review, we will focus on these new NK cell subsets and discuss how regulatory NK cells may serve as rheostats or sentinels in controlling inflammation and maintaining immune homeostasis in various organs. PMID:24303897

  10. Concise review: Human cell engineering: cellular reprogramming and genome editing.

    Science.gov (United States)

    Mali, Prashant; Cheng, Linzhao

    2012-01-01

    Cell engineering is defined here as the collective ability to both reset and edit the genome of a mammalian cell. Until recently, this had been extremely challenging to achieve as nontransformed human cells are significantly refractory to both these processes. The recent success in reprogramming somatic cells into induced pluripotent stem cells that are self-renewable in culture, coupled with our increasing ability to effect precise and predesigned genomic editing, now readily permits cellular changes at both the genetic and epigenetic levels. These dual capabilities also make possible the generation of genetically matched, disease-free stem cells from patients for regenerative medicine. The objective of this review is to summarize the key enabling developments on these two rapidly evolving research fronts in human cell engineering, highlight unresolved issues, and outline potential future research directions.

  11. Preparation of pancreatic β-cells from human iPS cells with small molecules.

    Science.gov (United States)

    Hosoya, Masaki

    2012-01-01

    Human induced pluripotent stem (iPS) cells obtained from patients are expected to be a useful source for cell transplantation therapy, because many patients (including those with type 1 diabetes and severe type 2 diabetes) are on waiting lists for transplantation for a long time due to the shortage of donors. At present, many concerns related to clinical application of human iPS cells have been raised, but rapid development of methods for the establishment, culture, and standardization of iPS cells will lead autologous cell therapy to be realistic sooner or later. However, establishment of a method for preparing some of desired cell types is still challenging. Regarding pancreatic β-cells, there have been many reports about differentiation of these cells from human embryonic stem (ES)/iPS cells, but a protocol for clinical application has still not been established. Since there is clear proof that cell transplantation therapy is effective for diabetes based on the results of clinical islet transplantation, pancreatic β-cells prepared from human iPS cells are considered likely to be effective for reducing the burden on patients. In this article, the current status of procedures for preparing pancreatic β-cells from human ES/iPS cells, including effective use of small molecules, is summarized, and some of the problems that still need to be overcome are discussed.

  12. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  13. Expression of basal cell keratins in human prostate cancer metastases and cell lines.

    NARCIS (Netherlands)

    Leenders, G.J.L.H. van; Aalders, M.W.; Hulsbergen-van de Kaa, C.A.; Ruiter, D.J.; Schalken, J.A.

    2001-01-01

    Within normal human prostate epithelium, basal and luminal cells can be discriminated by their expression of keratins (K). While basal cells express K5/14, luminal cells show expression of K8/18 and an intermediate cell population can be identified by co-expression of K5/18. Prostate cancer is predo

  14. Generation of induced pluripotent stem cells from human β-thalassemia fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    Yixuan Wang; Yonghua Jiang; Sheng Liu; Xiaofang Sun; Shaorong Gao

    2009-01-01

    @@ Dear Editor, Induced pluripotent stem (iPS) cells have recently been generated by directly introducing several transcrip-tion factors into differentiated human somatic cells, and these iPS cells show great similarities to embryo-derived ES cells [1-3].

  15. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells

    OpenAIRE

    Buchholz Thomas A; Lacerda Lara; Xu Wei; Robertson Fredika; Ueno Naoto T; Lucci Anthony; Landis Melissa D; Rodriguez Angel A; Li Li; Cohen Evan; Gao Hui; Krishnamurthy Savitri; Zhang Xiaomei; Debeb Bisrat G; Cristofanilli Massimo

    2010-01-01

    Abstract Background Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced b...

  16. Clonal, self-renewing and differentiating human and porcine urothelial cells, a novel stem cell population.

    Directory of Open Access Journals (Sweden)

    Hans M Larsson

    Full Text Available Although urothelial progenitor-like cells have been described in the human urinary tract, the existence of stem cells remains to be proven. Using a culture system that favors clonogenic epithelial cell growth, we evaluated and characterized clonal human urothelial cells. We isolated human urothelial cells that were clonogenic, capable of self-renewal and could develop into fully differentiated urothelium once re-implanted into the subcapsular space of nude mice. In addition to final urothelial cell differentiation, spontaneous formation of bladder-like microstructures was observed. By examining an epithelial stem cell signature marker, we found p63 to correlate with the self-renewal capacity of the isolated human urothelial clonal populations. Since a clinically relevant, long-term model for functional reconstitution of human cells does not exist, we sought to establish a culture method for porcine urothelial cells in a clinically relevant porcine model. We isolated cells from porcine ureter, urethra and bladder that were clonogenic and capable of self-renewal and differentiation into fully mature urothelium. In conclusion, we could isolate human and porcine cell populations, behaving as urothelial stem cells and showing clonogenicity, self-renewal and, once re-implanted, morphological differentiation.

  17. Toona Sinensis Extracts Induced Cell Cycle Arrest and Apoptosis in the Human Lung Large Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Wang

    2010-02-01

    Full Text Available Toona sinensis extracts have been shown to exhibit anti-cancer effects in human ovarian cancer cell lines, human promyelocytic leukemia cells and human lung adenocarcinoma. Its safety has also been confirmed in animal studies. However, its anti-cancer properties in human lung large cell carcinoma have not been studied. Here, we used a powder obtained by freeze-drying the super-natant of centrifuged crude extract from Toona sinensis leaves (TSL-1 to treat the human lung carcinoma cell line H661. Cell viability was evaluated by the 3-(4-,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay. Flow cytometry analysis revealed that TSL-1 blocked H661 cell cycle progression. Western blot analysis showed decreased expression of cell cycle proteins that promote cell cycle progression, including cyclin-dependent kinase 4 and cyclin D1, and increased the expression of proteins that inhibit cell cycle progression, including p27. Furthermore, flow cytometry analysis showed that TSL-1 induced H661 cell apoptosis. Western blot analysis showed that TSL-1 reduced the expression of the anti-apoptotic protein B-cell lymphoma 2, and degraded the DNA repair protein, poly(ADP-ribose polymerase. TSL-1 shows potential as a novel therapeutic agent or for use as an adjuvant for treating human lung large cell carcinoma.

  18. Novel factors modulating human β-cell proliferation.

    Science.gov (United States)

    Shirakawa, J; Kulkarni, R N

    2016-09-01

    β-Cell dysfunction in type 1 and type 2 diabetes is accompanied by a progressive loss of β-cells, and an understanding of the cellular mechanism(s) that regulate β-cell mass will enable approaches to enhance hormone secretion. It is becoming increasingly recognized that enhancement of human β-cell proliferation is one potential approach to restore β-cell mass to prevent and/or cure type 1 and type 2 diabetes. While several reports describe the factor(s) that enhance β-cell replication in animal models or cell lines, promoting effective human β-cell proliferation continues to be a challenge in the field. In this review, we discuss recent studies reporting successful human β-cell proliferation including WS6, an IkB kinase and EBP1 inhibitor; harmine and 5-IT, both DYRK1A inhibitors; GNF7156 and GNF4877, GSK-3β and DYRK1A inhibitors; osteoprotegrin and Denosmab, receptor activator of NF-kB (RANK) inhibitors; and SerpinB1, a protease inhibitor. These studies provide important examples of proteins and pathways that may prove useful for designing therapeutic strategies to counter the different forms of human diabetes.

  19. Cell diversity and network dynamics in photosensitive human brain organoids.

    Science.gov (United States)

    Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z; Sherwood, John L; Min Yang, Sung; Berger, Daniel R; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin P; Boyden, Edward S; Lichtman, Jeff W; Williams, Ziv M; McCarroll, Steven A; Arlotta, Paola

    2017-05-04

    In vitro models of the developing brain such as three-dimensional brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, the cells generated within organoids and the extent to which they recapitulate the regional complexity, cellular diversity and circuit functionality of the brain remain undefined. Here we analyse gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (more than 9 months), allowing for the establishment of relatively mature features, including the formation of dendritic spines and spontaneously active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photosensitive cells, which may offer a way to probe the functionality of human neuronal circuits using physiological sensory stimuli.

  20. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hou

    Full Text Available PURPOSE: Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. METHODS: Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. RESULTS: Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. CONCLUSION: Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.

  1. Signaling pathways in failing human heart muscle cells.

    Science.gov (United States)

    Drexler, H; Hasenfuss, G; Holubarsch, C

    1997-07-01

    Experimental studies have delineated important signaling pathways in cardiomyocytes and their alterations in heart failure; however, there is now evidence that these observations are not necessarily applicable to human cardiac muscle cells. For example, angiotensin II (A II) does not exert positive inotropic effects in human ventricular muscle cells, in contrast to observation in rats. Thus, it is important to elucidate cardiac signaling pathways in humans in order to appreciate the functional role of neurohumoral or mechanical stimulation in human myocardium in health and disease. In the present article, we review signal pathways in the failing human heart based on studies in human cardiac tissues and in vivo physiological studies related to A II, nitric oxide, and β-adrenergic stimulation. (Trends Cardiovasc Med 1997; 7:151-160). © 1997, Elsevier Science Inc.

  2. AFM-based analysis of human metastatic cancer cells

    Science.gov (United States)

    Cross, Sarah E.; Jin, Yu-Sheng; Tondre, Julianne; Wong, Roger; Rao, Jian Yu; Gimzewski, James K.

    2008-09-01

    Recently biomechanics of cancer cells, in particular stiffness or elasticity, has been identified as an important factor relating to cancer cell function, adherence, motility, transformation and invasion. We report on the nanomechanical responses of metastatic cancer cells and benign mesothelial cells taken from human body cavity fluids using atomic force microscopy. Following our initial study (Cross et al 2007 Nat. Nanotechnol. 2 780-3), we report on the biophysical properties of patient-derived effusion cells and address the influence of cell morphology on measured cell stiffness. Using a cytocentrifugation method, which yields morphologically indistinguishable cells that can be prepared in 1 min and avoids any possible artifacts due to 12 h ex vivo culture, we find that metastatic tumor cells are more than 80% softer than benign cells with a distribution over six times narrower than that of normal cells. Consistent with our previous study, which yielded distinguishable cell populations based on ex vivo growth and morphological characteristics, our results show it is unlikely that morphology alone is sufficient to explain the difference in elastic moduli for these two cell types. Moreover, analysis of non-specific cell adhesion inherent to tumor and normal cells collected from patients show surface adhesion of tumor cells is ~33% less adhesive compared to that of normal cells. Our findings indicate that biomechanical-based functional analysis may provide an additional platform for cytological evaluation and diagnosis of cancer in the future.

  3. AFM-based analysis of human metastatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Sarah E; Gimzewski, James K [Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (United States); Jin Yusheng; Tondre, Julianne; Wong, Roger [Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095 (United States); Rao Jianyu [California NanoSystems Institute, University of California, Los Angeles, CA 90095 (United States)], E-mail: jrao@mednet.ucla.edu, E-mail: gim@chem.ucla.edu

    2008-09-24

    Recently biomechanics of cancer cells, in particular stiffness or elasticity, has been identified as an important factor relating to cancer cell function, adherence, motility, transformation and invasion. We report on the nanomechanical responses of metastatic cancer cells and benign mesothelial cells taken from human body cavity fluids using atomic force microscopy. Following our initial study (Cross et al 2007 Nat. Nanotechnol. 2 780-3), we report on the biophysical properties of patient-derived effusion cells and address the influence of cell morphology on measured cell stiffness. Using a cytocentrifugation method, which yields morphologically indistinguishable cells that can be prepared in 1 min and avoids any possible artifacts due to 12 h ex vivo culture, we find that metastatic tumor cells are more than 80% softer than benign cells with a distribution over six times narrower than that of normal cells. Consistent with our previous study, which yielded distinguishable cell populations based on ex vivo growth and morphological characteristics, our results show it is unlikely that morphology alone is sufficient to explain the difference in elastic moduli for these two cell types. Moreover, analysis of non-specific cell adhesion inherent to tumor and normal cells collected from patients show surface adhesion of tumor cells is {approx}33% less adhesive compared to that of normal cells. Our findings indicate that biomechanical-based functional analysis may provide an additional platform for cytological evaluation and diagnosis of cancer in the future.

  4. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  5. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  6. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen

    2015-01-01

    The presence of AT2 receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT2 receptors including their presence in mitochondria and the role in the induction...... densities in mitochondria. Activation of the cell membrane AT2 receptors by a concomitant treatment with angiotensin II and the AT1 receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT2 receptor...... of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high...

  7. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng;

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold pe...

  8. Differentiation and functional regulation of human fetal NK cells.

    Science.gov (United States)

    Ivarsson, Martin A; Loh, Liyen; Marquardt, Nicole; Kekäläinen, Eliisa; Berglin, Lena; Björkström, Niklas K; Westgren, Magnus; Nixon, Douglas F; Michaëlsson, Jakob

    2013-09-01

    The human fetal immune system is naturally exposed to maternal allogeneic cells, maternal antibodies, and pathogens. As such, it is faced with a considerable challenge with respect to the balance between immune reactivity and tolerance. Here, we show that fetal natural killer (NK) cells differentiate early in utero and are highly responsive to cytokines and antibody-mediated stimulation but respond poorly to HLA class I-negative target cells. Strikingly, expression of killer-cell immunoglobulin-like receptors (KIRs) did not educate fetal NK cells but rendered them hyporesponsive to target cells lacking HLA class I. In addition, fetal NK cells were highly susceptible to TGF-β-mediated suppression, and blocking of TGF-β signaling enhanced fetal NK cell responses to target cells. Our data demonstrate that KIR-mediated hyporesponsiveness and TGF-β-mediated suppression are major factors determining human fetal NK cell hyporesponsiveness to HLA class I-negative target cells and provide a potential mechanism for fetal-maternal tolerance in utero. Finally, our results provide a basis for understanding the role of fetal NK cells in pregnancy complications in which NK cells could be involved, for example, during in utero infections and anti-RhD-induced fetal anemia.

  9. Hormone Production by Epithelial Cells of Human Thymus in vitro.

    Science.gov (United States)

    Yarilin, A. A.; Sharova, N. I.; Bulanova, E. C.; Kotchergina, N. I.; Mitin, A. N.; Kharchenko, T. Yu.; Arshinov, V. Yu.

    1996-12-01

    The conditions of hormone production by human thymic stromal cell line were studied. Human thymic stromal cells did not produce any hormones in 5-day monoculture. Co-cultivation of these cells with human thymocytes induced alpha1-thymosin and thymulin production increased to 4-5 days of co-cultivation. An increase in number of human thymic stromal cells and thymocyte elimination were observed in co-culture. The maximal stimulation of proliferation and hormone secretion by human thymic stromal cell was reached in their co-culturing with thymocytes at relative concentrations of 10(4) and 10(7) cells per ml. Thymocyte viability was important for inducing the stimulatory effect. The effect of viable cells could not be replaced by their supernatant. Stimulatory activity of CD4(-)CD8(-) and CD4(+)CD8(+) thymocytes was comparable, alpha1-thymosin and some of its synthetic fragments did not influence alpha1-thymosin synthesis or slightly inhibited it (in high concentrations). Synthetic peptide corresponding to C-terminal half of alpha1-thymosin molecule strongly enhanced production of this hormone.

  10. Telomere dynamics in human cells reprogrammed to pluripotency.

    Directory of Open Access Journals (Sweden)

    Steven T Suhr

    Full Text Available BACKGROUND: Human induced pluripotent stem cells (IPSCs have enormous potential in the development of cellular models of human disease and represent a potential source of autologous cells and tissues for therapeutic use. A question remains as to the biological age of IPSCs, in particular when isolated from older subjects. Studies of cloned animals indicate that somatic cells reprogrammed to pluripotency variably display telomere elongation, a common indicator of cell "rejuvenation." METHODOLOGY/PRINCIPAL FINDINGS: We examined telomere lengths in human skin fibroblasts isolated from younger and older subjects, fibroblasts converted to IPSCs, and IPSCs redifferentiated through teratoma formation and explant culture. In IPSCs analyzed at passage five (P5, telomeres were significantly elongated in 6/7 lines by >40% and approximated telomere lengths in human embryonic stem cells (hESCs. In cell lines derived from three IPSC-teratoma explants cultured to P5, two displayed telomeres shortened to lengths similar to input fibroblasts while the third line retained elongated telomeres. CONCLUSIONS/SIGNIFICANCE: While these results reveal some heterogeneity in the reprogramming process with respect to telomere length, human somatic cells reprogrammed to pluripotency generally displayed elongated telomeres that suggest that they will not age prematurely when isolated from subjects of essentially any age.

  11. The production and directed differentiation of human embryonic stem cells.

    Science.gov (United States)

    Trounson, Alan

    2006-04-01

    Human embryonic stem cells (hESCs) are being rapidly produced from chromosomally euploid, aneuploid, and mutant human embryos that are available from in vitro fertilization clinics treating patients for infertility or preimplantation genetic diagnosis. These hESC lines are an important resource for functional genomics, drug screening, and, perhaps eventually, cell and gene therapy. The methods for deriving hESCs are well established and repeatable and are relatively successful with a ratio of 1:10 to 1:2 new hESC lines produced from 4- to 8-d-old morula and blastocysts and from isolated inner cell mass cell clusters of human blastocysts. The hESCs can be formed and maintained on human somatic cells in humanized serum-free culture conditions and for several passages in cell-free culture systems. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in vitro while maintaining their original karyotype and epigenetic status, but this needs to be confirmed from time to time in long-term cultures. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating flat attachment cultures and unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes, and characteristic morphology, and the cells thereafter enriched for progenitor types and further culture to more mature cell types. Directed differentiation systems are well developed for ectodermal pathways that result in neural and glial cells and the mesendodermal pathway for cardiac muscle cells and many other cell types including hematopoietic progenitors and endothelial cells. Directed differentiation into endoderm has been more difficult to achieve, perhaps because of the lack of markers of

  12. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    Nina Skolucka; Malgorzata Daczewska; Jolanta Saczko; Agnieszka Chwilkowska; Anna Choromanska; Malgorzata Kotulska; Iwona Kaminska; Julita Kulbacka

    2011-01-01

    Objective:To estimate electroporation (EP) influence on malignant and normal cells.Methods:Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following:250,1000,1750,2500 V/cm;50 μs by5 impulses for every case. The viability of cells after EP was estimated byMTT assay. The ultrastructural analysis was observed by transmission electron microscope (ZeissEM900). Results:In the current study we observed the intracellular effect followingEP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated byEP. Conversely, we showed thatEP in some conditions can stimulate cells to proliferation. Some changes induced byEP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters ofEP (250 and1000 V/cm). After applying higher electric field intensities (2500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications afterEP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters ofEP.Conclusions:We can claim thatEP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude thatEP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells.

  13. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells.

    Science.gov (United States)

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-04-01

    To estimate electroporation (EP) influence on malignant and normal cells. Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells.

  14. EFFECT OF SOMATOSTATIN ON THE CELL CYCLE OF HUMAN GALLBLADDER CANCER CELL

    Institute of Scientific and Technical Information of China (English)

    李济宇; 全志伟; 张强; 刘建文

    2005-01-01

    Objective To explore the effect of somatostatin on the cell cycle of human gallbladder cancer cell. Methods Growth curve of gallbladder cancer cell was measured after somatostatin treated on gradient concentration. Simultaneously, the change of gallbladder cancer cell cycle was detected using flow cytometry.Results Concentration-dependent cell growth inhibition caused by somatostatin was detected in gallbladder cancer cell(P<0.05). Cell growth was arrested in S phase since 12h after somatostatin treated, which reached its peak at 24h, then fell down. The changes in apoptosis index of gallbladder cancer cell caused by somatostatin correlated with that's in cell cycle. Conclusion Somatostatin could inhibit the cell growth of human gallbladder cancer cell in vitro on higher concentration. It might result from inducing growth arrest in S phase in early stage and inducing apoptosis in the late stage.

  15. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  16. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolan, E-mail: huxiaolan1998@yahoo.com.cn [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Zhang, Xianqi [The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou (China); Qiu, Shuifeng [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Yu, Daihua; Lin, Shuxin [Fourth Military Medical University, Xi' an (China)

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  17. Cell shape regulates global histone acetylation in human mammaryepithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Beyec, Johanne; Xu, Ren; Lee, Sun-Young; Nelson, Celeste M.; Rizki, Aylin; Alcaraz, Jordi; Bissell, Mina J.

    2007-02-28

    Extracellular matrix (ECM) regulates cell morphology and gene expression in vivo; these relationships are maintained in three-dimensional (3D) cultures of mammary epithelial cells. In the presence of laminin-rich ECM (lrECM), mammary epithelial cells round up and undergo global histone deacetylation, a process critical for their functional differentiation. However, it remains unclear whether lrECM-dependent cell rounding and global histone deacetylation are indeed part of a common physical-biochemical pathway. Using 3D cultures as well as nonadhesive and micropatterned substrata, here we showed that the cell 'rounding' caused by lrECM was sufficient to induce deacetylation of histones H3 and H4 in the absence of biochemical cues. Microarray and confocal analysis demonstrated that this deacetylation in 3D culture is associated with a global increase in chromatin condensation and a reduction in gene expression. Whereas cells cultured on plastic substrata formed prominent stress fibers, cells grown in 3D lrECM or on micropatterns lacked these structures. Disruption of the actin cytoskeleton with cytochalasin D phenocopied the lrECM-induced cell rounding and histone deacetylation. These results reveal a novel link between ECM-controlled cell shape and chromatin structure, and suggest that this link is mediated by changes in the actin cytoskeleton.

  18. Hematopoietic and nature killer cell development from human pluripotent stem cells.

    Science.gov (United States)

    Ni, Zhenya; Knorr, David A; Kaufman, Dan S

    2013-01-01

    Natural killer (NK) cells are key effectors of the innate immune system, protecting the host from a variety of infections, as well as malignant cells. Recent advances in the field of NK cell biology have led to a better understanding of how NK cells develop. This progress has directly translated to improved outcomes in patients receiving hematopoietic stem cell transplants to treat potentially lethal malignancies. However, key differences between mouse and human NK cell development and biology limits the use of rodents to attain a more in depth understanding of NK cell development. Therefore, a readily accessible and genetically tractable cell source to study human NK cell development is warranted. Our lab has pioneered the development of lymphocytes, specifically NK cells, from human embryonic stem cells (hESCs) and more recently induced pluripotent stem cells (iPSCs). This chapter describes a reliable method to generate NK cells from hESCs and iPSCs using murine stromal cell lines. Additionally, we include an updated approach using a spin-embryoid body (spin-EB) differentiation system that allows for human NK cell development completely defined in vitro conditions.

  19. Alteration of Cell Cycle Mediated by Zinc in Human Bronchial ...

    Science.gov (United States)

    Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examine cell cycle perturbation upon exposure using a normal human bronchial epithelial cell culture (BEAS-2B). BEAS-2B cells were treated with low (0, 1, 2 µM) and apoptotic (3 µM) doses of Zn2+ plus 1 µM pyrithione, a Zn2+-specific ionophore facilitating cellular uptake, for up to 24 h. Fixed cells were then stained with propidium iodine (PI) and cell cycle phase was determined by fluorescent image cytometry. Initial results report the percentage of cells in the S phase after 18 h exposure to 1, 2, and 3 µM Zn2+ were similar (8%, 7%, and 12%, respectively) compared with 7% in controls. Cells exposed to 3 µM Zn2+ increased cell populations in G2/M phase (76% versus 68% in controls). Interestingly, exposure to 1 µM Zn2+ resulted in decreased (59%) cells in G2/M. While preliminary, these pilot studies suggest Zn2+ alters cell cycle in BEAS-2B cells, particularly in the G2/M phase. The G2/M checkpoint maintains DNA integrity by enabling initiation of DNA repair or apoptosis. Our findings suggest that the adaptive and apoptotic responses to Zn2+ exposure may be mediated via perturbation of the cell cycle at the G2/M checkpoint. This work was a collaborative summer student project. The st

  20. Characteristics of Mitochondrial Transformation into Human Cells.

    Science.gov (United States)

    Kesner, E E; Saada-Reich, A; Lorberboum-Galski, H

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process.

  1. Characteristics of Mitochondrial Transformation into Human Cells

    Science.gov (United States)

    Kesner, E. E.; Saada-Reich, A.; Lorberboum-Galski, H.

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process. PMID:27184109

  2. Characterizing human herpes virus 6 following hematopoietic stem cell transplantation.

    Science.gov (United States)

    Perissinotti, Anthony J; Gulbis, Alison; Shpall, Elizabeth J; Howell, Joshua

    2015-04-01

    Human herpes virus 6 reactivation occurs in approximately 50% of patients following hematopoietic stem cell transplant, however, the significance of human herpes virus 6 reactivation remains uncertain. A retrospective study was conducted analyzing clinical data of patients testing positive for human herpes virus 6 by quantitative polymerase chain reaction following hematopoietic stem cell transplant from 1 January 1998 to 1 October 2011. Data retrieved were used to describe the clinical course and outcome of human herpes virus 6 positive hematopoietic stem cell transplant patients. Sixty patients were identified who tested positive for human herpes virus 6 by polymerase chain reaction following hematopoietic stem cell transplant. A high proportion of patients were identified in this cohort with acute myeloid leukemia (28.3%), active disease (65%), transplanted with a matched unrelated donor (30%), ≥ 1 antigen mismatched (28.3%) matched unrelated donor, or an umbilical cord graft (25%), and those who received antithymocyte globulin (42.4%). Thirty-eight (63.3%) patients were treated for human herpes virus 6 with foscarnet alone or in combination with intravenous immunoglobulin, whereas 18 (30%) did not require treatment survival at Day 100 was 73.3%. This study suggests human herpes virus 6 reactivation occurs shortly after hematopoietic stem cell transplant (median of 25 days (interquartile range, 20-31.75) after hematopoietic stem cell transplant). Many potential risk factors are described in this report. Treatment of human herpes virus 6 predominately consisted of foscarnet with or without intravenous immunoglobulin; however, treatment of human herpes virus 6 was not always warranted. Furthermore, the effect of treatment on patient outcomes is uncertain. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Chestnut extract induces apoptosis in AGS human gastric cancer cells.

    Science.gov (United States)

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2011-06-01

    In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with 200 µg/mL CPE for 24 hr. CPE at various concentrations (0-200 µg/mL) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPE exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

  4. Protein dynamics in individual human cells: experiment and theory.

    Directory of Open Access Journals (Sweden)

    Ariel Aharon Cohen

    Full Text Available A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle-dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell-cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell-cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells.

  5. Opiate receptor blockade on human granulosa cells inhibits VEGF release.

    Science.gov (United States)

    Lunger, Fabian; Vehmas, Anni P; Fürnrohr, Barbara G; Sopper, Sieghart; Wildt, Ludwig; Seeber, Beata

    2016-03-01

    The objectives of this study were to determine whether the main opioid receptor (OPRM1) is present on human granulosa cells and if exogenous opiates and their antagonists can influence granulosa cell vascular endothelial growth factor (VEGF) production via OPRM1. Granulosa cells were isolated from women undergoing oocyte retrieval for IVF. Complementary to the primary cells, experiments were conducted using COV434, a well-characterized human granulosa cell line. Identification and localization of opiate receptor subtypes was carried out using Western blot and flow cytometry. The effect of opiate antagonist on granulosa cell VEGF secretion was assessed by enzyme-linked immunosorbent assay. For the first time, the presence of OPRM1 on human granulosa cells is reported. Blocking of opiate signalling using naloxone, a specific OPRM1 antagonist, significantly reduced granulosa cell-derived VEGF levels in both COV434 and granulosa-luteal cells (P opiate receptors and opiate signalling in granulosa cells suggest a possible role in VEGF production. Targeting this signalling pathway could prove promising as a new clinical option in the prevention and treatment of ovarian hyperstimulation syndrome.