WorldWideScience

Sample records for human antimouse antibody

  1. Transient human anti-mouse antibody generated with immune enhancement in a carbohydrate antigen 19-9 immunoassay after surgical resection of recurrent cancer.

    Science.gov (United States)

    Nakano, Keiichi; Yasuda, Keiko; Shibuya, Hitoshi; Moriyama, Takanori; Kahata, Kaoru; Shimizu, Chikara

    2016-07-01

    We report a case of transient human anti-mouse antibody from a 64-year-old man in a carbohydrate antigen 19-9 immunoassay using an AIA 1800 analyser that generated immune enhancement after surgical resection of recurrent cancer. The carbohydrate antigen 19-9 concentration was measured using an AIA 1800 analyser and a UniCel Dxl 800. Size-exclusion high-performance liquid chromatography was carried out on a Superose 12 column to estimate the carbohydrate antigen 19-9 elution profile using an AIA 1800 analyser. To determine whether IgM in the patient contributed to the carbohydrate antigen 19-9 immunoassay, immunoprecipitation was performed. Furthermore, mouse immunoglobulins were added to the patient's serum to verify that the patient's IgM reacted with it. The carbohydrate antigen 19-9 concentration was >400 and 9.5 kU/L using an AIA 1800 analyser and using a UniCel Dxl 800, respectively. In the single carbohydrate antigen 19-9 peak, the molecular weight corresponded to IgM by size-exclusion high-performance liquid chromatography on a Superose 12 column. In the immunoprecipitation reaction and addition of mouse immunoglobulins, there was interference for anti-human IgM and mouse immunoglobulins whose recoveries were 3.2 and 14.2%, respectively. These results indicated that IgM in the patient's serum interfered with the carbohydrate antigen 19-9 immunoassay using an AIA 1800 analyser. A novel transient human anti-mouse antibody generated with immune activation in a carbohydrate antigen 19-9 immunoassay using an AIA 1800 analyser was identified in a patient with rectal cancer after surgical resection. These findings demonstrate the importance of monitoring tumour markers in patients after treatment with mouse monoclonal antibody. © The Author(s) 2016.

  2. Generation and functional characterization of anti-human and anti-mouse IL-36R antagonist monoclonal antibodies.

    Science.gov (United States)

    Ganesan, Rajkumar; Raymond, Ernest L; Mennerich, Detlev; Woska, Joseph R; Caviness, Gary; Grimaldi, Christine; Ahlberg, Jennifer; Perez, Rocio; Roberts, Simon; Yang, Danlin; Jerath, Kavita; Truncali, Kristopher; Frego, Lee; Sepulveda, Eliud; Gupta, Priyanka; Brown, Su-Ellen; Howell, Michael D; Canada, Keith A; Kroe-Barrett, Rachel; Fine, Jay S; Singh, Sanjaya; Mbow, M Lamine

    2017-10-01

    Deficiency of interleukin (IL)-36 receptor antagonist (DITRA) syndrome is a rare autosomal recessive disease caused by mutations in IL36RN. IL-36R is a cell surface receptor and a member of the IL1R family that is involved in inflammatory responses triggered in skin and other epithelial tissues. Accumulating evidence suggests that IL-36R signaling may play a role in the pathogenesis of psoriasis. Therapeutic intervention of IL-36R signaling offers an innovative treatment paradigm for targeting epithelial cell-mediated inflammatory diseases such as the life-threatening psoriasis variant called generalized pustular psoriasis (GPP). We report the discovery and characterization of MAB92, a potent, high affinity anti-human IL-36 receptor antagonistic antibody that blocks human IL-36 ligand (α, β and γ)-mediated signaling. In vitro treatment with MAB92 directly inhibits human IL-36R-mediated signaling and inflammatory cytokine production in primary human keratinocytes and dermal fibroblasts. MAB92 shows exquisite species specificity toward human IL-36R and does not cross react to murine IL-36R. To enable in vivo pharmacology studies, we developed a mouse cross-reactive antibody, MAB04, which exhibits overlapping binding and pharmacological activity as MAB92. Epitope mapping indicates that MAB92 and MAB04 bind primarily to domain-2 of the human and mouse IL-36R proteins, respectively. Treatment with MAB04 abrogates imiquimod and IL-36-mediated skin inflammation in the mouse, further supporting an important role for IL-36R signaling in epithelial cell-mediated inflammation.

  3. Clinical relevance of human anti-mouse antibodies (HAMA) in immunoscintigraphy. Klinische Relevanz humaner Anti-Maus-Antikoerper (HAMA) in der Immunszintigraphie

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, A.; Baum, R.P.; Herrmann, A.; Hoer, G. (Frankfurt Univ. (Germany, F.R.). Zentrum der Radiologie); Auerbach, B. (Behringwerke AG, Marburg (Germany, F.R.). Forschungslaboratorien)

    1990-11-01

    The aim of this study was to evaluate the clinical relevance of HAMA following IS regarding allergic complications and in vivo effects on IS after repeated applications of Murine monoclonal antibodies (MAbs). Out of over 800 immunoscintigraphic examinations performed during the last 5 years in our department 289 studies (in 190 patients) with up to 10 applications (13 different MAbs all together) were considered. Only 1 patient with a high HAMA titer developed a mild allergic reaction (local urticaria) after the 3rd application of an anti-CEA MAb. In 171 intensively documented serum courses following IS, 50 (29%) showed elevated HAMA (1st application: 25/108 (23%); 2nd application: 20/41 (49%); 3rd application: 5/11 (45%); 4th-10th application: no HAMA/11 (2 anti-CEA, 9 Antimyosin)). Only with strongly increased HAMA values (five times the value before 1st application) there was an altered biodistribution of the MAbs in IS with partially inhibited (8/25 studies with repeated applications) tumor localization. Some patients still demonstrated positive tumor localization despite a HAMA reaction. The problem of HAMA in the diagnostic work-up using MAbs is not the allergic reaction but the potential effects on IS in repeated studies. HAMA should be measured prior to repeated immunoscintigraphic studies. (orig./MG).

  4. New monoclonal anti-mouse DC-SIGN antibodies reactive with acetone-fixed cells

    Science.gov (United States)

    Cheong, Cheolho; Matos, Ines; Choi, Jae-Hoon; Schauer, Joseph D.; Dandamudi, Durga Bhavani; Shrestha, Elina; Makeyeva, Jessy A.; Li, Xiaojun; Li, Pingwei; Steinman, Ralph M.; Park, Chae Gyu

    2010-01-01

    Mouse DC-SIGN CD209a is a type II transmembrane protein, one of a family of C-type lectin genes syntenic and homologous to human DC-SIGN. Current anti-mouse DC-SIGN monoclonal antibodies (MAbs) are unable to react with DC-SIGN in acetone fixed cells, limiting the chance to visualize DC-SIGN in tissue sections. We first produced rabbit polyclonal PAb-DSCYT14 against a 14-aa peptide in the cytosolic domain of mouse DC-SIGN, and it specifically detected DC-SIGN and not the related lectins, SIGN-R1 and SIGN-R3 expressed in transfected CHO cells. MAbs were generated by immunizing rats and DC-SIGN knockout mice with the extracellular region of mouse DC-SIGN.. Five rat IgG2a or IgM MAbs, named BMD10, 11, 24, 25, and 30, were selected and each MAb specifically detected DC-SIGN by FACS and Western blots, although BMD25 was cross-reactive to SIGN-R1. Two mouse IgG2c MAbs MMD2 and MMD3 interestingly bound mouse DC-SIGN but at 10 fold higher levels than the rat MAbs. When the binding epitopes of the new BMD and two other commercial rat anti-DC-SIGN MAbs, 5H10 and LWC06, were examined by competition assays, the epitopes of BMD11, 24, and LWC06 were identical or closely overlapping while BMD10, 30, and 5H10 were shown to bind different epitopes. MMD2 and MMD3 epitopes were on a 3rd noncompeting region of mouse DC-SIGN. DC-SIGN expressed on the cell surface was sensitive to collagenase treatment, as monitored by polyclonal and MAb. These new reagents should be helpful to probe the biology of DC-SIGN in vivo. PMID:20558171

  5. Cloning of a hamster anti-mouse CD79B antibody sequences and identification of a new hamster immunoglobulin lambda constant IGLC gene region.

    Science.gov (United States)

    Haggart, Ryan; Perera, Jason; Huang, Haochu

    2013-06-01

    Anti-CD79 antibodies have been effective at targeting B cell lymphoma cells and depleting B cells in animal models. In order to engineer recombinant antibodies with additional effector functions in mice, we cloned and sequenced the full-length cDNAs of the heavy and light chain of a hamster anti-mouse CD79B antibody. Although hamster antibodies represent a unique source of monoclonal antibodies against mouse, rat, and human antigens, sequence information of hamster immunoglobulins (IG) is sparse. Here, we report a new hamster (Cricetulus migratorius) IG lambda constant (IGLC) gene region that is most homologous to mouse IGLC2 and IGLC3.

  6. A monoclonal rat anti-mouse EMAP II antibody that functionally neutralizes pro- and mature-EMAP II in vitro.

    Science.gov (United States)

    Rajashekhar, Gangaraju; Mitnacht-Kraus, Rita; Ispe, Ute; Garrison, Jana; Hou, Yonghao; Taylor, Brian; Petrache, Irina; Vestweber, Dietmar; Clauss, Matthias

    2009-10-31

    EMAP II is an endothelial cell and monocyte activating proinflammatory cytokine, which has been demonstrated to induce endothelial cell apoptosis. In order to analyze its role in disease models linked to inflammation and endothelial cell death, we aimed to develop a neutralizing antibody against mouse EMAP II. Therefore, we generated rat monoclonal anti-mouse EMAP II antibodies by immunization with recombinant full length, mouse pro-EMAP II protein. We could identify by ELISA, hybridoma clones from fusion with mouse myeloma SP2/0 cells which produced antibodies recognizing both full length and mature EMAP II. We further characterized one antibody, M7/1 and demonstrated its ability to detect both EMAP II forms in Western blotting and to neutralize EMAP II directed migration of human peripheral blood monocytes as well as EMAP II induced apoptosis of tumor and endothelial cells. We conclude that this antibody can be useful to both target and analyze murine disease models, in which EMAP II may be involved.

  7. Evaluation of Novel Antimouse VEGFR2 Antibodies as Potential Antiangiogenic or Vascular Targeting Agents for Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Sophia Ran

    2003-07-01

    Full Text Available We generated a panel of eight rat IgG2a monoclonal antibodies with high affinity for mouse VEGFR2 (KDR/Flk-1, the main receptor that mediates the angiogenic effect of VEGF-A. The antibodies (termed RAFL, Rat Anti Flk bound to dividing endothelial cells more strongly than they did to nondividing cells. Most of the RAFL antibodies blocked [125I]VEGF165 binding to VEGFR2. Three of eight antibodies localized to VEGFR2-positive tumor endothelium after intravenous injection into mice bearing orthotopic MDA-MB-231 breast carcinomas, as judged by indirect immunohistochemistry. An average of 60% of vessels in the tumors was stained. The majority (50–80% of vessels were also stained in a variety of other human and murine tumors growing in mice. The antibodies did not bind detectably to the vascular endothelium in normal heart, lung, liver, and brain cortex, whereas the vascular endothelium in kidney glomerulus and pancreatic islets was stained. Treatment of mice bearing orthotopic MDA-MB-231 tumors with RAFL-1 antibody inhibited tumor growth by an average of 48% and reduced vascular density by 65%, compared to tumors in mice treated with control IgG. Vascular damage was not observed in normal organs, including kidneys and pancreas. These studies demonstrate that anti-VEGFR2 antibodies have potential for vascular targeting and imaging of tumors in vivo.

  8. A function blocking anti-mouse integrin α5β1 antibody inhibits angiogenesis and impedes tumor growth in vivo

    Directory of Open Access Journals (Sweden)

    Powers David

    2007-11-01

    Full Text Available Abstract Background Integrins are important adhesion molecules that regulate tumor and endothelial cell survival, proliferation and migration. The integrin α5β1 has been shown to play a critical role during angiogenesis. An inhibitor of this integrin, volociximab (M200, inhibits endothelial cell growth and movement in vitro, independent of the growth factor milieu, and inhibits tumor growth in vivo in the rabbit VX2 carcinoma model. Although volociximab has already been tested in open label, pilot phase II clinical trials in melanoma, pancreatic and renal cell cancer, evaluation of the mechanism of action of volociximab has been limited because this antibody does not cross-react with murine α5β1, precluding its use in standard mouse xenograft models. Methods We generated a panel of rat-anti-mouse α5β1 antibodies, with the intent of identifying an antibody that recapitulated the properties of volociximab. Hybridoma clones were screened for analogous function to volociximab, including specificity for α5β1 heterodimer and blocking of integrin binding to fibronectin. A subset of antibodies that met these criteria were further characterized for their capacities to bind to mouse endothelial cells, inhibit cell migration and block angiogenesis in vitro. One antibody that encompassed all of these attributes, 339.1, was selected from this panel and tested in xenograft models. Results A panel of antibodies was characterized for specificity and potency. The affinity of antibody 339.1 for mouse integrin α5β1 was determined to be 0.59 nM, as measured by BIAcore. This antibody does not significantly cross-react with human integrin, however 339.1 inhibits murine endothelial cell migration and tube formation and elicits cell death in these cells (EC50 = 5.3 nM. In multiple xenograft models, 339.1 inhibited the growth of established tumors by 40–60% (p Conclusion The results herein demonstrate that 339.1, like volociximab, exhibits potent anti-α5β1

  9. In vivo characterization of rabbit anti-mouse thymocyte globulin: a surrogate for rabbit anti-human thymocyte globulin.

    Science.gov (United States)

    Ruzek, Melanie C; Neff, Kathleen S; Luong, Michael; Smith, Karen A; Culm-Merdek, Kerry; Richards, Susan M; Williams, John M; Perricone, Michael; Garman, Richard D

    2009-07-27

    Polyclonal rabbit anti-human thymocyte globulin (Thymoglobulin) is used clinically for immunosuppression in solid organ transplantation; however, it is difficult to fully characterize the effects of this agent in humans. A surrogate rabbit anti-murine thymocyte globulin (mATG) was generated analogously to the commercial product Thymoglobulin and in vivo activities were evaluated, including pharmacokinetics, T-cell depletion, dose response and kinetics, depletion/sparing of T-cell subsets or other leukocyte populations, and depletion in different lymphoid organs. Within 1 day, T cells are depleted by mATG in the blood, spleen, lymph node, and bone marrow down to doses of 1 mg/kg. Although mATG binds and depletes thymocytes in vitro, there is no thymocyte depletion in vivo at any dose level, suggesting decreased antibody accessibility to the thymus. After two doses of mATG given 3 days apart, T-cell reconstitution begins as early as day 9 and returns to basal levels by day 21 and 29 for CD4 and CD8 T cells, respectively. There is also preferential depletion of naïve T cells that results in increased ratios of regulatory and memory T cells within 1 day after mATG administration. Depletion of natural killer-T cells, natural killer cells, plasma cells, and plasmablasts occurs, but is modest and more transient compared with T cells. B cells, macrophages, dendritic cells, hematopoetic stem cells, and bone marrow stromal cells seem resistant to mATG depletion. These studies characterize the depletive effects of mATG in normal mice and provide insight into mechanisms of action of Thymoglobulin.

  10. MINOR HUMAN-ANTIBODY RESPONSE TO A MOUSE AND CHIMERIC MONOCLONAL-ANTIBODY AFTER A SINGLE IV INFUSION IN OVARIAN-CARCINOMA PATIENTS - A COMPARISON OF 5 ASSAYS

    NARCIS (Netherlands)

    BUIST, MR; KENEMANS, P; VANKAMP, GJ; Haisma, Hidde

    The human anti-(mouse Ig) antibody (HAMA) response was measured in serum of 52 patients suspected of having ovarian carcinoma who had received an i.v. injection of either the murine monoclonal antibody (mAb) OV-TL 3 F(ab')(2) (n = 28, 1 mg) or the chimeric mouse/human mAb MOv18 (cMOv18; n = 24, 3

  11. Tabhu: tools for antibody humanization.

    KAUST Repository

    Olimpieri, Pier Paolo

    2014-10-09

    SUMMARY: Antibodies are rapidly becoming essential tools in the clinical practice, given their ability to recognize their cognate antigens with high specificity and affinity, and a high yield at reasonable costs in model animals. Unfortunately, when administered to human patients, xenogeneic antibodies can elicit unwanted and dangerous immunogenic responses. Antibody humanization methods are designed to produce molecules with a better safety profile still maintaining their ability to bind the antigen. This can be accomplished by grafting the non-human regions determining the antigen specificity into a suitable human template. Unfortunately, this procedure may results in a partial or complete loss of affinity of the grafted molecule that can be restored by back-mutating some of the residues of human origin to the corresponding murine ones. This trial-and-error procedure is hard and involves expensive and time-consuming experiments. Here we present tools for antibody humanization (Tabhu) a web server for antibody humanization. Tabhu includes tools for human template selection, grafting, back-mutation evaluation, antibody modelling and structural analysis, helping the user in all the critical steps of the humanization experiment protocol. AVAILABILITY: http://www.biocomputing.it/tabhu CONTACT: anna.tramontano@uniroma1.it, pierpaolo.olimpieri@uniroma1.it SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

  12. Tabhu: tools for antibody humanization.

    Science.gov (United States)

    Olimpieri, Pier Paolo; Marcatili, Paolo; Tramontano, Anna

    2015-02-01

    Antibodies are rapidly becoming essential tools in the clinical practice, given their ability to recognize their cognate antigens with high specificity and affinity, and a high yield at reasonable costs in model animals. Unfortunately, when administered to human patients, xenogeneic antibodies can elicit unwanted and dangerous immunogenic responses. Antibody humanization methods are designed to produce molecules with a better safety profile still maintaining their ability to bind the antigen. This can be accomplished by grafting the non-human regions determining the antigen specificity into a suitable human template. Unfortunately, this procedure may results in a partial or complete loss of affinity of the grafted molecule that can be restored by back-mutating some of the residues of human origin to the corresponding murine ones. This trial-and-error procedure is hard and involves expensive and time-consuming experiments. Here we present tools for antibody humanization (Tabhu) a web server for antibody humanization. Tabhu includes tools for human template selection, grafting, back-mutation evaluation, antibody modelling and structural analysis, helping the user in all the critical steps of the humanization experiment protocol. http://www.biocomputing.it/tabhu anna.tramontano@uniroma1.it, pierpaolo.olimpieri@uniroma1.it Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  13. Tabhu: tools for antibody humanization

    DEFF Research Database (Denmark)

    Olimpieri, Pier Paolo; Marcatili, Paolo; Tramontano, Anna

    2015-01-01

    Antibodies are rapidly becoming essential tools in the clinical practice, given their ability to recognize their cognate antigens with high specificity and affinity, and a high yield at reasonable costs in model animals. Unfortunately, when administered to human patients, xenogeneic antibodies can...... elicit unwanted and dangerous immunogenic responses. Antibody humanization methods are designed to produce molecules with a better safety profile still maintaining their ability to bind the antigen. This can be accomplished by grafting the non-human regions determining the antigen specificity...... into a suitable human template. Unfortunately, this procedure may results in a partial or complete loss of affinity of the grafted molecule that can be restored by back-mutating some of the residues of human origin to the corresponding murine ones. This trial-and-error procedure is hard and involves expensive...

  14. Integrin alphaIIbbeta3-specific synthetic human monoclonal antibodies and HCDR3 peptides that potently inhibit platelet aggregation.

    Science.gov (United States)

    Chung, Junho; Rader, Christoph; Popkov, Mikhail; Hur, Young-Mi; Kim, Hyun-Kyung; Lee, Young-Joon; Barbas, Carlos F

    2004-02-01

    The interaction of fibrinogen with integrin alphaIIbbeta3 (GPIIb/IIIa), in part mediated by an RGD tripeptide motif, is an essential step in platelet aggregation. Based on their inhibition of platelet aggregation, three integrin alphaIIbbeta3 inhibitors are clinically approved. The clinically most widely used integrin alphaIIbbeta3 inhibitor abciximab is a chimeric mouse/human antibody that induces thrombocytopenia, often severe, in 1-2% of patients due to a human anti-mouse antibody (HAMA) response. In addition, unlike other ligands mimicking small molecular drugs, abciximab cross-reacts with integrin alphavbeta3 and alphaMbeta2. Here we used phage display to select monoclonal antibodies specific to integrin alphaIIbbeta3 from a synthetic human antibody library based on the randomized HCDR3 sequence VGXXXRADXXXYAMDV. The selected antibodies revealed a strong consensus in HCDR3 (V(V/W)CRAD(K/R)RC) and high specificity toward integrin alphaIIbbeta3 but not to other RGD binding integrins such as alphavbeta3, alphavbeta5, and alpha5beta1. The selected antibodies as well as three synthetic peptides (VWCRADRRC, VWCRADKRC, and VVCRADRRC) whose sequences were derived from the HCDR3 sequences of the selected antibodies strongly inhibited the interaction between integrin alphaIIbbeta3 and fibrinogen and platelet aggregation ex vivo. To our knowledge, these are the first fully human monoclonal antibodies that are specific to integrin alphaIIbbeta3 and can potently inhibit platelet aggregation.

  15. Human monoclonal antibodies: the residual challenge of antibody immunogenicity.

    Science.gov (United States)

    Waldmann, Herman

    2014-01-01

    One of the major reasons for seeking human monoclonal antibodies has been to eliminate immunogenicity seen with rodent antibodies. Thus far, there has yet been no approach which absolutely abolishes that risk for cell-binding antibodies. In this short article, I draw attention to classical work which shows that monomeric immunoglobulins are intrinsically tolerogenic if they can be prevented from creating aggregates or immune complexes. Based on these classical studies two approaches for active tolerization to therapeutic antibodies are described.

  16. Indirect solid-phase immunosorbent assay for detection of arenavirus antigens and antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.P.; Rezapkin, G.V.; Dzagurova, T.K.; Tkachenko, E.A. (Institute of Poliomyelitis anU Viral Encephalities of the U.S.S.R. Academy of Medical Sciences, Moscow)

    1984-05-01

    Indirect enzyme-linked immunosorbent assay (ELISA) and solid phase radioimmunoassay (SPRIA) using either enti-human or anti-mouse IgG labelled with horseradish peroxidase and /sup 125/I, respectively, were developed for the detection of Junin, Machupo, Tacaribe, Amapari, Tamiami, Lassa and LCM arenaviruses. Both methods allow high sensitivity detection of arenavirus antigens and antibodies.

  17. Deciphering complement interference in anti-human leukocyte antigen antibody detection with flow beads assays.

    Science.gov (United States)

    Visentin, Jonathan; Vigata, Margaux; Daburon, Sophie; Contin-Bordes, Cécile; Fremeaux-Bacchi, Véronique; Dromer, Claire; Billes, Marc-Alain; Neau-Cransac, Martine; Guidicelli, Gwendaline; Taupin, Jean-Luc

    2014-09-27

    Anti-human leukocyte antigen (HLA) antibody detection in solid-phase flow beads assays can be quenched by complement activation, but the precise mechanism of this interference is not fully elucidated yet. Using the Luminex flow beads screening assay for detection of anti-HLA antibodies, we analyzed the binding of high concentrations of the pan class I anti-HLA monoclonal antibody W6/32 in neat normal, ethylenediaminetetraacetic acid-treated normal and complement factors C1q, C4/C3, C2, C3, factor B or C5-depleted human sera, using anti-mouse immunoglobulin G as the detection antibody. Complement activation and binding to beads were revealed using anti-human C1q, C4d, and C3d antibodies. To translate our findings to the human setting, we used the class I and class II HLA single-antigen flow beads assays and sera from four patients with high titers of antibodies. Detection of W6/32 did not suffer any interference with C1q and C4/C3-depleted sera. A partial quenching was observed with C2, C3, and factor B-depleted sera, but was more pronounced with the factor B-depleted serum. W6/32 was undetectable in presence of C5-depleted serum. The binding of activation products derived from C3 principally, and also from C4, impaired immunoglobulin G and C1q detection. Accordingly, C4d detection was hindered by deposition of activated C3. Similar findings were obtained with patients' sera. Binding of C4 and C3 activation products is the main responsible for complement interference in flow beads assays. A complete quenching requires complement activation through C3 cleavage and its amplification by the alternative pathway.

  18. Antibody humanization methods - a review and update.

    Science.gov (United States)

    Safdari, Yaghoub; Farajnia, Safar; Asgharzadeh, Mohammad; Khalili, Masoumeh

    2013-01-01

    This article reviews recent advances achieved during recent years on various aspects of antibody humanization theories and techniques. Common methods for producing humanized antibodies including framework-homology-based humanization, germline humanization, complementary determining regions (CDR)-homology-based humanization and specificity determining residues (SDR) grafting, as well as advantages and disadvantages of each of these methods and their applications are discussed.

  19. Human antibody technology and the development of antibodies against cytomegalovirus.

    Science.gov (United States)

    Ohlin, Mats; Söderberg-Nauclér, Cecilia

    2015-10-01

    Cytomegalovirus (CMV) is a virus that causes chronic infections in a large set of the population. It may cause severe disease in immunocompromised individuals, is linked to immunosenescence and implied to play an important role in the pathogenesis of cardiovascular diseases and cancer. Modulation of the immune system's abilities to manage the virus represent a highly viable therapeutic option and passive immunotherapy with polyclonal antibody preparations is already in clinical use. Defined monoclonal antibodies offer many advantages over polyclonal antibodies purified from serum. Human CMV-specific monoclonal antibodies have consequently been thoroughly investigated with respect to their potential in the treatment of diseases caused by CMV. Recent advances in human antibody technology have substantially expanded the breadth of antibodies for such applications. This review summarizes the fundamental basis for treating CMV disease by use of antibodies, the basic technologies to be used to develop such antibodies, and relevant human antibody specificities available to target this virus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Production of Monoclonal Antibody against Human Nestin

    OpenAIRE

    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah

    2010-01-01

    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140?250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such a...

  1. Development of a Fully Human Anti-PDGFRβ Antibody That Suppresses Growth of Human Tumor Xenografts and Enhances Antitumor Activity of an Anti-VEGFR2 Antibody

    Directory of Open Access Journals (Sweden)

    Juqun Shen

    2009-06-01

    Full Text Available Platelet-derived growth factor receptor β (PDGFRβ is upregulated in most of solid tumors. It is expressed by pericytes/smooth muscle cells, fibroblast, macrophage, and certain tumor cells. Several PDGF receptor-related antagonists are being developed as potential antitumor agents and have demonstrated promising antitumor activity in both preclinical and clinical settings. Here, we produced a fully human neutralizing antibody, IMC-2C5, directed against PDGFRβ from an antibody phage display library. IMC-2C5 binds to both human and mouse PDGFRβ and blocks PDGF-B from binding to the receptor. IMC-2C5 also blocks ligand-stimulated activation of PDGFRβ and downstream signaling molecules in tumor cells. In animal studies, IMC-2C5 significantly delayed the growth of OVCAR-8 and NCI-H460 human tumor xenografts in nude mice but failed to show antitumor activities in OVCAR-5 and Caki-1 xenografts. Our results indicate that the antitumor efficacy of IMC-2C5 is primarily due to its effects on tumor stroma, rather than on tumor cells directly. Combination of IMC-2C5 and DC101, an anti-mouse vascular endothelial growth factor receptor 2 antibody, resulted in significantly enhanced antitumor activity in BxPC-3, NCI-H460, and HCT-116 xenografts, compared with DC101 alone, and the trend of additive effects to DC101 treatment in several other tumor models. ELISA analysis of NCI-H460 tumor homogenates showed that IMC-2C5 attenuated protein level of vascular endothelial growth factor and basic fibroblast growth factor elevated by DC101 treatment. Finally, IMC-2C5 showed a trend of additive effects when combined with DC101/chemotherapy in MIA-PaCa-2 and NCI-H460 models. Taken together, these results lend great support to the use of PDGFRβ antagonists in combination with other antiangiogenic agents in the treatment of a broad range of human cancers.

  2. Humanization and simultaneous optimization of monoclonal antibody.

    Science.gov (United States)

    Kuramochi, T; Igawa, T; Tsunoda, H; Hattori, K

    2014-01-01

    Antibody humanization is an essential technology for reducing the potential risk of immunogenicity associated with animal-derived antibodies and has been applied to a majority of the therapeutic antibodies on the market. For developing an antibody molecule as a pharmaceutical at the current biotechnology level, however, other properties also have to be considered in parallel with humanization in antibody generation and optimization. This section describes the critical properties of therapeutic antibodies that should be sufficiently qualified, including immunogenicity, binding affinity, physiochemical stability, expression in host cells and pharmacokinetics, and the basic methodologies of antibody engineering involved. By simultaneously optimizing the antibody molecule in the light of these properties, it should prove possible to shorten the research and development period necessary to identify a highly qualified clinical candidate and consequently accelerate the start of the clinical trial.

  3. Conference scene: progress with promising human antibodies.

    Science.gov (United States)

    Larrick, James W

    2012-03-01

    Antibodies and antibody-based therapeutics have become big business, with annual sales over US$50 billion, accounting for >6% of worldwide pharmaceutical revenues. Ten molecules have blockbuster status (>US$1 billion), with six generating more than US$6 billion in sales. In excess of 300 products based on this rapidly maturing technology are in clinical trials. The generation and manufacture of human antibodies is now routine, although the cost of goods remains an issue. Optimizing combinations of antibodies with other therapeutics (e.g., chemotherapy) is a major short-term goal, while target validation and product differentiation remain significant hurdles if growth is to continue. Some of the notable highlights of the recent 16th International Conference on Human Antibodies and Hybridomas meeting in Cannes, France are described below. The conference was sponsored by the international journal Human Antibodies, in association with the Integrative Medical Sciences Association (IMSA). The Program Chairman was Professor Mark Glassy, IMSA, San Diego, CA, USA.

  4. Antibody humanization methods for development of therapeutic applications.

    Science.gov (United States)

    Ahmadzadeh, Vahideh; Farajnia, Safar; Feizi, Mohammad Ali Hosseinpour; Nejad, Ramezan Ali Khavari

    2014-04-01

    Recombinant antibody technologies are rapidly becoming available and showing considerable clinical success. However, the immunogenicity of murine-derived monoclonal antibodies is restrictive in cancer immunotherapy. Humanized antibodies can overcome these problems and are considered to be a promising alternative therapeutic agent. There are several approaches for antibody humanization. In this article we review various methods used in the antibody humanization process.

  5. Human antibody production in transgenic animals.

    Science.gov (United States)

    Brüggemann, Marianne; Osborn, Michael J; Ma, Biao; Hayre, Jasvinder; Avis, Suzanne; Lundstrom, Brian; Buelow, Roland

    2015-04-01

    Fully human antibodies from transgenic animals account for an increasing number of new therapeutics. After immunization, diverse human monoclonal antibodies of high affinity can be obtained from transgenic rodents, while large animals, such as transchromosomic cattle, have produced respectable amounts of specific human immunoglobulin (Ig) in serum. Several strategies to derive animals expressing human antibody repertoires have been successful. In rodents, gene loci on bacterial artificial chromosomes or yeast artificial chromosomes were integrated by oocyte microinjection or transfection of embryonic stem (ES) cells, while ruminants were derived from manipulated fibroblasts with integrated human chromosome fragments or human artificial chromosomes. In all strains, the endogenous Ig loci have been silenced by gene targeting, either in ES or fibroblast cells, or by zinc finger technology via DNA microinjection; this was essential for optimal production. However, comparisons showed that fully human antibodies were not as efficiently produced as wild-type Ig. This suboptimal performance, with respect to immune response and antibody yield, was attributed to imperfect interaction of the human constant region with endogenous signaling components such as the Igα/β in mouse, rat or cattle. Significant improvements were obtained when the human V-region genes were linked to the endogenous CH-region, either on large constructs or, separately, by site-specific integration, which could also silence the endogenous Ig locus by gene replacement or inversion. In animals with knocked-out endogenous Ig loci and integrated large IgH loci, containing many human Vs, all D and all J segments linked to endogenous C genes, highly diverse human antibody production similar to normal animals was obtained.

  6. Glycosylation of plant produced human antibodies.

    Science.gov (United States)

    Kallolimath, Somanath; Steinkellner, Herta

    2015-12-23

    Human immunoglobulins circulate as highly heterogeneously glycosylated mixture of otherwise homogeneous protein backbones. A series of studies, mainly on IgG, have unequivocally proven that antibodies modulate their effector function through sugars present in the Fc domain. However, our limited technology in producing complex proteins such as antibodies, with defined glycan structures hamper in depths studies. This review introduces a plant based expression platform enabling engineering of antibody glycans. The procedure is based on the simultaneous delivery of appropriate constructs, carrying cDNAs of target proteins (e.g. heavy and light chain of antibodies) in combination with human glycosylation enzymes into plant leaves. Harvesting of recombinant proteins one week post construct delivery allows high speed and flexibility. Major achievements include the production of functional active slialylated pentameric IgMs in tobacco leaves. The system provides a viable approach to the generation of antibodies with defined glycoforms on demand, contributing to studies on antibody glycans and the development of novel antibody based drugs.

  7. Orthobunyavirus Antibodies in Humans, Yucatan Peninsula, Mexico

    Science.gov (United States)

    Saiyasombat, Rungrat; Talavera-Aguilar, Lourdes G.; Garcia-Rejon, Julian E.; Farfan-Ale, Jose A.; Machain-Williams, Carlos; Loroño-Pino, Maria A.

    2012-01-01

    We performed a serologic investigation to determine whether orthobunyaviruses commonly infect humans in the Yucatan Peninsula of Mexico. Orthobunyavirus-specific antibodies were detected by plaque reduction neutralization test in 146 (18%) of 823 persons tested. Further studies are needed to determine health risks for humans from this potentially deadly group of viruses. PMID:23017592

  8. Human germline antibody gene segments encode polyspecific antibodies.

    Science.gov (United States)

    Willis, Jordan R; Briney, Bryan S; DeLuca, Samuel L; Crowe, James E; Meiler, Jens

    2013-04-01

    Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.

  9. [Generation of recombinant human antibodies for EV71 virus].

    Science.gov (United States)

    Sun, Li-Na; Zhang, Li; Zhang, Fu-Shun; Li, Chuan; Zhang, Quan-Fu; Li, De-Xin; Liang, Mi-Fang

    2011-06-01

    To obtain recombinant human anti-EV71 antibodies from a EV71-associated hand-foot-and-mouth disease patient-derived antibody phage library. A combinatorial human scFv library to enterovirus 71 (EV71) virus was constructed using antibody genes harvested from the blood of EV71 virus patients. The library was panned and selected by using purified VP1 protein of EV71 virus with phage display. After that the specific antibody was converted to full human IgG antibody with recombinant baculovirus/insect cell system. One unique human scFv antibody specific for EV71 virus VP1 protein was obtained by ELISA, IFA and analysis of the antibody DNA sequence. The specific anti-VP1 human scFv antibody was converted to full human IgG antibody with recombinant baculovirus/insect cell system. The full human IgG antibody was tested in vitro for EV71 virus neutralization, resulting in no neutralizing activity with EV71 A type and EV71 C4 subtype. The obtained human anti-EV71 antibodies without neutralizing activity laid the foundation for diagnosis of human EV71-associated hand-foot-and-mouth disease.

  10. Reshaped Human Monoclonal Antibodies for Therapy and Passive Immunization

    Science.gov (United States)

    1991-11-01

    Monoclonal Antibodies for Therapy and Passive Immunisation by Reshaping Rodent Monoclonal Antibodies". Two mouse monoclonal antibody producing cell...could be simply extended to make human monoclonals, but this has proved not to be the case. There are difficulties in finding appropriately immunised ...human donors and suitable fusion partners for the antibody producing cells. In vitro immunisation techniques have been tried, but only low affinity 1gM

  11. Human anti-Dectin-1 antibody, hybridoma producing said antibody and applications thereof

    OpenAIRE

    Kremer, Leonor; Llorente Gómez, María de las Mercedes; Casasnovas, José María; Fernández Ruíz, Elena; Galán Díez, Marta

    2008-01-01

    [EN] The invention relates to hybridoma MGD3 and the monoclonal antibody produced thereby (also called MGD3), which specifically recognises the human Dectin-1 membrane receptor. Antibody MGD3 is capable of inhibiting the binding of Dectin-1 to the natural ligand thereof, the ss-glucans that are components of the fungal wall. In addition, the aforementioned antibody specifically blocks binding to Candida albicans and the secretion of cytokines induced thereby. The MGD3 antibody obtained enable...

  12. Antibodies to poliovirus detected by immunoradiometric assay with a monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, M.; Fossati, C.A.; Schild, G.C.; Spitz, L.; Brasher, M. (National Inst. for Biological Standards and Control, London (UK))

    1982-10-01

    An immunoradiometric assay (IRMA) for the assay of antibodies to poliovirus antigens is described. Dilutions of the test sera or whole (finger prick) blood samples were incubated with the poliovirus antigen bound to a solid phase and the specific antibody was detected by the addition of a mouse anti-human IgG monoclonal antibody (McAb), which was itself revealed by iodinated sheep IgG antimouse F(ab). The authors have shown that this technique is suitable for the estimation of IgG anti-poliovirus antibodies induced in children following polio vaccine. The present study shows that SPRIA provides a simple and inexpensive method for serological studies with poliovirus particularly for use in large-scale surveys.

  13. Phase Transitions in Antibody Solutions: from Pharmaceuticals to Human Disease

    Science.gov (United States)

    Wang, Ying; Lomakin, Aleksey; Benedek, George; Dana Farber Cancer Institute Collaboration; Amgen Inc. Collaboration

    2014-03-01

    Antibodies are very important proteins. Natural antibodies play essential role in the immune system of human body. Pharmaceutical antibodies are used as drugs. Antibodies are also indispensable tools in biomedical research and diagnostics. Recently, a number of observations of phase transitions of pharmaceutical antibodies have been reported. These phase transitions are undesirable from the perspective of colloid stability of drug solutions in processing and storage, but can be used for protein purification, X-ray crystallography, and improving pharmokinetics of drugs. Phase transitions of antibodies can also take place in human body, particularly in multiple myeloma patients who overproduce monoclonal antibodies. These antibodies, in some cases, crystallize at body temperature and cause severe complications called cryoglobulinemia. I will present the results of our current studies on phase transitions of both pharmaceutical antibodies and cryoglobulinemia-associated antibodies. These studies have shown that different antibodies have different propensity to undergo phase transitions, but their phase behavior has universal features which are remarkably different from those of spherical proteins. I will discuss how studies of phase behavior can be useful in assessing colloid stability of pharmaceutical antibodies and in early diagnostics of cryoglobulinemia, as well as general implications of the fact that some antibodies can precipitate at physiological conditions.

  14. Computationally driven antibody engineering enables simultaneous humanization and thermostabilization.

    Science.gov (United States)

    Choi, Yoonjoo; Ndong, Christian; Griswold, Karl E; Bailey-Kellogg, Chris

    2016-10-01

    Humanization reduces the immunogenicity risk of therapeutic antibodies of non-human origin. Thermostabilization can be critical for clinical development and application of therapeutic antibodies. Here, we show that the computational antibody redesign method Computationally Driven Antibody Humanization (CoDAH) enables these two goals to be accomplished simultaneously and seamlessly. A panel of CoDAH designs for the murine parent of cetuximab, a chimeric anti-EGFR antibody, exhibited both substantially improved thermostabilities and substantially higher levels of humanness, while retaining binding activity near the parental level. The consistently high quality of the turnkey CoDAH designs, over a whole panel of variants, suggests that the computationally directed approach encapsulates key determinants of antibody structure and function. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Progress in HIV-1 antibody research using humanized mice.

    Science.gov (United States)

    Gruell, Henning; Klein, Florian

    2017-05-01

    Recent discoveries of highly potent broadly HIV-1 neutralizing antibodies provide new opportunities to successfully prevent, treat, and potentially cure HIV-1 infection. To test their activity in vivo, humanized mice have been shown to be a powerful model and were used to investigate antibody-mediated prevention and therapy approaches. In this review, we will summarize recent findings in humanized mice that have informed on the potential use of broadly neutralizing antibodies targeting HIV-1 in humans. Humanized mouse models have been used to demonstrate the antiviral efficacy of HIV-1 neutralizing antibodies in vivo. It has been shown that a combination of antibodies can suppress viremia below the limit of detection and targets the HIV-1 reservoir. Moreover, passively administered antibodies and vector-mediated antibody production protect humanized mice from HIV-1 infection. Finally, immunization studies in knock-in/transgenic mice carrying human antibody gene segments have informed on potential vaccination strategies to induce broad and potent HIV-1 neutralizing antibodies. Humanized mouse models are of great value for HIV-1 research. They represent a highly versatile in vivo system to investigate novel approaches for HIV-1 prevention and therapy and expedite the critical translation from basic findings to clinical application.

  16. IgY antibodies in human nutrition for disease prevention

    OpenAIRE

    Müller, Sandra; Schubert, Andreas; Zajac, Julia; Dyck, Terry; Oelkrug, Christopher

    2015-01-01

    Oral administration of preformed specific antibodies is an attractive approach against infections of the digestive system in humans and animals in times of increasing antibiotic resistances. Previous studies showed a positive effect of egg yolk IgY antibodies on bacterial intoxications in animals and humans. Immunization of chickens with specific antigens offers the possibility to create various forms of antibodies. Research shows that orally applied IgY’s isolated from egg yolks can passivel...

  17. Generation of monoclonal antibodies to native active human glycosyltransferases

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene Bech; Bennett, Eric Paul; Clausen, Henrik

    2013-01-01

    using monoclonal antibodies therefore provides an excellent strategy to analyze the glycosylation process in cells. A major drawback has been difficulties in generating antibodies to glycosyltransferases and validating their specificities. Here we describe a simple strategy for generating...... and characterizing monoclonal antibodies to human glycosyltransferases. This strategy includes a process for recombinant production and purification of enzymes for immunization, a simple selection strategy for isolation of antibodies with optimal properties for in situ detection of enzyme expression......, and a comprehensive strategy for characterizing the fine specificity of such antibodies....

  18. A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments

    NARCIS (Netherlands)

    Huls, GA; Heijnen, IAFM; Cuomo, ME; Koningsberger, JC; Boel, E; de Vries, ARV; Loyson, SAJ; Helfrich, W; Henegouwen, GPV; van Meijer, M; de Kruif, J; Logtenberg, T

    A single-chain Fv antibody fragment specific for the tumor-associated Ep-CAM molecule was isolated from a semisynthetic phage display library and converted into an intact, fully human IgG1 monoclonal antibody (huMab), The purified huMab had an affinity of 5 nM and effectively mediated tumor cell

  19. Discovery of diverse and functional antibodies from large human repertoire antibody libraries.

    Science.gov (United States)

    Schwimmer, Lauren J; Huang, Betty; Giang, Hoa; Cotter, Robyn L; Chemla-Vogel, David S; Dy, Francis V; Tam, Eric M; Zhang, Fangjiu; Toy, Pamela; Bohmann, David J; Watson, Susan R; Beaber, John W; Reddy, Nithin; Kuan, Hua-Feng; Bedinger, Daniel H; Rondon, Isaac J

    2013-05-31

    Phage display antibody libraries have a proven track record for the discovery of therapeutic human antibodies, increasing the demand for large and diverse phage antibody libraries for the discovery of new therapeutics. We have constructed naïve antibody phage display libraries in both Fab and scFv formats, with each library having more than 250 billion clones that encompass the human antibody repertoire. These libraries show high fidelity in open reading frame and expression percentages, and their V-gene family distribution, VH-CDR3 length and amino acid usage mirror the natural diversity of human antibodies. Both the Fab and scFv libraries show robust sequence diversity in target-specific binders and differential V-gene usage for each target tested, supporting the use of libraries that utilize multiple display formats and V-gene utilization to maximize antibody-binding diversity. For each of the targets, clones with picomolar affinities were identified from at least one of the libraries and for the two targets assessed for activity, functional antibodies were identified from both libraries. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Crossreactivity of boar sperm monoclonal antibodies with human ...

    African Journals Online (AJOL)

    Monoclonal antibodies against the head (H mabs) and tail (Tmabs) of boar spermatozoa were produced. Spermatozoa from boar, stallion, bull, human, ram, goat and rabbit were independently incubated with the monoclonal antibodies and later stained by immunofluorescence method. There were positive reactions of the ...

  1. Analysis of human chorionic gonadotropin-monoclonal antibody ...

    Indian Academy of Sciences (India)

    However we observed that in a high affinity antigen-antibody system [human chorionic gonadotropin-monoclonal antibody (hCG-mAb)] dissociation is insignificant and the sensogram data cannot be used to measure the equilibrium and kinetic parameters. At low concentrations of mAb the complete sensogram could be ...

  2. Antibody humanization by structure-based computational protein design.

    Science.gov (United States)

    Choi, Yoonjoo; Hua, Casey; Sentman, Charles L; Ackerman, Margaret E; Bailey-Kellogg, Chris

    2015-01-01

    Antibodies derived from non-human sources must be modified for therapeutic use so as to mitigate undesirable immune responses. While complementarity-determining region (CDR) grafting-based humanization techniques have been successfully applied in many cases, it remains challenging to maintain the desired stability and antigen binding affinity upon grafting. We developed an alternative humanization approach called CoDAH ("Computationally-Driven Antibody Humanization") in which computational protein design methods directly select sets of amino acids to incorporate from human germline sequences to increase humanness while maintaining structural stability. Retrospective studies show that CoDAH is able to identify variants deemed beneficial according to both humanness and structural stability criteria, even for targets lacking crystal structures. Prospective application to TZ47, a murine anti-human B7H6 antibody, demonstrates the approach. Four diverse humanized variants were designed, and all possible unique VH/VL combinations were produced as full-length IgG1 antibodies. Soluble and cell surface expressed antigen binding assays showed that 75% (6 of 8) of the computationally designed VH/VL variants were successfully expressed and competed with the murine TZ47 for binding to B7H6 antigen. Furthermore, 4 of the 6 bound with an estimated KD within an order of magnitude of the original TZ47 antibody. In contrast, a traditional CDR-grafted variant could not be expressed. These results suggest that the computational protein design approach described here can be used to efficiently generate functional humanized antibodies and provide humanized templates for further affinity maturation.

  3. Development of Human Monoclonal Antibodies Against Respiratory Syncytial Virus Using a High Efficiency Human Hybridoma Technique.

    Science.gov (United States)

    Alvarado, Gabriela; Crowe, James E

    2016-01-01

    Human monoclonal antibodies against RSV have high potential for use as prophylaxis or therapeutic molecules, and they also can be used to define the structure of protective epitopes for rational vaccine design. In the past, however, isolation of human monoclonal antibodies was difficult and inefficient. Here, we describe contemporary methods for activation and proliferation of primary human memory B cells followed by cytofusion to non-secreting myeloma cells by dielectrophoresis to generate human hybridomas secreting RSV-specific monoclonal antibodies. We also provide experimental methods for screening human B cell lines to obtain RSV-specific lines, especially lines secreting neutralizing antibodies.

  4. Human IgG2 Antibody Disulfide Rearrangement in Vivo*

    OpenAIRE

    Liu, Y. Diana; CHEN, XIAOYU; Enk, Jian Zhang-van; Plant, Matt; Dillon, Thomas M.; Flynn, Gregory C.

    2008-01-01

    Proteins destined to circulate in the blood are first folded and assembled in the endoplasmic reticulum of secretory cells. For antibodies, like many other serum proteins, the folding and assembly steps involve the formation of disulfide bonds. Such bonds have been thought to be static features of proteins, stabilizing domains, and linking polypeptide chains, although some cases of extracellular disulfide bond cleavage have been noted. Recently, the human IgG2 antibody...

  5. Probing cocaine-antibody interactions in buffer and human serum.

    Directory of Open Access Journals (Sweden)

    Muthu Ramakrishnan

    Full Text Available Despite progress in cocaine immunotherapy, the kinetic and thermodynamic properties of antibodies which bind to cocaine and its metabolites are not well understood. It is also not clear how the interactions between them differ in a complex matrix such as the serum present in the human body. In the present study, we have used microscale thermophoresis (MST, isothermal titration calorimetry (ITC, and surface plasmon resonance (SPR we have evaluated the affinity properties of a representative mouse monoclonal (mAb08 as well as those of polyclonal antibodies purified from vaccinated mouse and human patient serum.MST analysis of fluorescently tagged mAb08 binding to cocaine reveals an approximately 15 fold decrease in its equilibrium dissociation constant in 20-50% human serum compared with that in saline buffer. A similar trend was also found using enriched polyclonal antibodies purified from vaccinated mice and patient serum, for which we have used fluorescently tagged bovine serum albumin conjugated to succinyl norcocaine (BSA-SNC. This conjugate closely mimics both cocaine and the hapten used to raise these antibodies. The ITC data also revealed that cocaine has a moderate affinity of about 2 µM to 20% human serum and very little interaction with human serum albumin or nonspecific human IgG at that concentration range. In a SPR inhibition experiment, the binding of mAb08 to immobilized BSA-SNC was inhibited by cocaine and benzoylecgonine in a highly competitive manner, whereas the purified polyclonal antibodies from vaccinated humans and mice, revealed preferential selectivity to pharmacologically active cocaine but not to the inactive metabolite benzoylecgonine. We have also developed a simple binding model to simulate the challenges associated with cocaine immunotherapy using the variable quantitative and kinetic properties of the antibodies.High sensitivity calorimetric determination of antibody binding to cocaine and its metabolites provide

  6. Antibody-dependent enhancement of severe dengue disease in humans.

    Science.gov (United States)

    Katzelnick, Leah C; Gresh, Lionel; Halloran, M Elizabeth; Mercado, Juan Carlos; Kuan, Guillermina; Gordon, Aubree; Balmaseda, Angel; Harris, Eva

    2017-11-17

    For dengue viruses 1 to 4 (DENV1-4), a specific range of antibody titer has been shown to enhance viral replication in vitro and severe disease in animal models. Although suspected, such antibody-dependent enhancement of severe disease has not been shown to occur in humans. Using multiple statistical approaches to study a long-term pediatric cohort in Nicaragua, we show that risk of severe dengue disease is highest within a narrow range of preexisting anti-DENV antibody titers. By contrast, we observe protection from all symptomatic dengue disease at high antibody titers. Thus, immune correlates of severe dengue must be evaluated separately from correlates of protection against symptomatic disease. These results have implications for studies of dengue pathogenesis and for vaccine development, because enhancement, not just lack of protection, is of concern. Copyright © 2017, American Association for the Advancement of Science.

  7. [Neutralizing Monoclonal and Chimeric Antibodies to Human IFN-γ].

    Science.gov (United States)

    Larina, M V; Aliev, T K; Solopova, O N; Pozdnyakova, L P; Korobova, S V; Yakimov, S A; Sveshnikov, P G; Dolgikh, D A; Kirpichnikov, M P

    2015-01-01

    Autoiminune disorders are chronic diseases characterized by abnormal immune response directed against self-antigens that leads to tissue damage and violation of its normal functioning. Such diseases often result in disability or even death of patients. Nowadays a number of monoclonal antibodies to pro-inflammatory cytokines and their receptors are successfully used for the targeted treatment of autoimmune diseases. One of the perspective targets in autoimmune disease therapy is interferon gamma, a key cytokine in Th1 cells differentiation, activation of macrophages, and inflammation. In the present work, 5 monoclonal antibodies to human IFN-γ were obtained. For the development of potential therapeutic agent, we have performed neutralizing activity and affinity analysis of the antibodies. Based on the data obtained, the monoclonal antibody F1 was selected. This antibody has a dissociation constant 1.7 x 10(-9) M and IC90 = 8.9 ± 2.0 nM measured upon antibody inhibition of the IFN-γ-induced HLA-DR expression on the surface of U937 cells. We have constructed a bicistronic vector for the production of recombinant chimeric Fab fragment F1 chim in E. coli cells. The recombinant chimeric Fab fragment Fl chim neutralizes IFN-γ activity in vitro and has a dissociation constant 1.8 x 10(-9) M.

  8. Secondary Mechanisms of Affinity Maturation in the Human Antibody Repertoire

    Directory of Open Access Journals (Sweden)

    Bryan S. Briney

    2013-03-01

    Full Text Available V(DJ recombination and somatic hypermutation (SHM are the primary mechanisms for diversification of the human antibody repertoire. These mechanisms allow for rapid humoral immune responses to a wide range of pathogenic challenges. V(DJ recombination efficiently generate a virtually limitless diversity through random recombination of variable (V, diversity (D and joining (J genes with diverse nontemplated junctions between the selected gene segments. Following antigen stimulation, affinity maturation by SHM produces antibodies with refined specificity mediated by mutations typically focused in complementarity determining regions (CDRs, which form the bulk of the antigen recognition site. While V(DJ recombination and SHM are responsible for much of the diversity of the antibody repertoire, there are several secondary mechanisms that, while less frequent, make substantial contributions to antibody diversity including V(DDJ recombination (or D-D fusion, somatic-hypermutation-associated insertions and deletions, and affinity maturation and antigen contact by non-CDR regions of the antibody. In addition to enhanced diversity, these mechanisms allow the production of antibodies that are critical to response to a variety of viral and bacterial pathogens but that would be difficult to generate using only the primary mechanisms of diversification.

  9. A novel polyclonal antibody against human cytomegalovirus ...

    African Journals Online (AJOL)

    There is no vaccine available for human cytomegalovirus (HCMV) infection and the treatment is very limited; therefore, it is still an important cause of morbidity and occasional mortality in transplant recipients. An HCMV peptide was selected based on the GenBank sequence M60929. The peptide was conjugated with ...

  10. Antibody

    Science.gov (United States)

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  11. Discovery Of Human Antibodies Against Spitting Cobra Toxins

    DEFF Research Database (Denmark)

    Bojsen-Møller, Laura; Lohse, Brian; Harrison, Robert

    spitting cobras are among the most medically important snakes in sub-Saharan regions due to the severity of the clinical outcomes caused by their cytotoxic venom, which is derived from cytotoxins of the 3FTx toxin family and PLA2. Here we report the results of our progress in identifying human antibodies...... targeting relevant toxins from the venom of the black necked spitting cobra (Naja nigricolis)....

  12. De Novo MS/MS Sequencing of Native Human Antibodies.

    Science.gov (United States)

    Guthals, Adrian; Gan, Yutian; Murray, Laura; Chen, Yongmei; Stinson, Jeremy; Nakamura, Gerald; Lill, Jennie R; Sandoval, Wendy; Bandeira, Nuno

    2017-01-06

    One direct route for the discovery of therapeutic human monoclonal antibodies (mAbs) involves the isolation of peripheral B cells from survivors/sero-positive individuals after exposure to an infectious reagent or disease etiology, followed by single-cell sequencing or hybridoma generation. Peripheral B cells, however, are not always easy to obtain and represent only a small percentage of the total B-cell population across all bodily tissues. Although it has been demonstrated that tandem mass spectrometry (MS/MS) techniques can interrogate the full polyclonal antibody (pAb) response to an antigen in vivo, all current approaches identify MS/MS spectra against databases derived from genetic sequencing of B cells from the same patient. In this proof-of-concept study, we demonstrate the feasibility of a novel MS/MS antibody discovery approach in which only serum antibodies are required without the need for sequencing of genetic material. Peripheral pAbs from a cytomegalovirus-exposed individual were purified by glycoprotein B antigen affinity and de novo sequenced from MS/MS data. Purely MS-derived mAbs were then manufactured in mammalian cells to validate potency via antigen-binding ELISA. Interestingly, we found that these mAbs accounted for 1 to 2% of total donor IgG but were not detected in parallel sequencing of memory B cells from the same patient.

  13. 78 FR 7438 - Prospective Grant of Exclusive License: Development of Human Monoclonal Antibodies Against DR4

    Science.gov (United States)

    2013-02-01

    ... Human Monoclonal Antibodies Against DR4 AGENCY: National Institutes of Health, Public Health Service... Monoclonal Antibodies Against DR4'' (HHS Ref. No. E-158-2010/0) to Customized Biosciences, Inc., which is... relates to the development of two human monoclonal antibodies (mAbs) that bind to death receptor 4 (``DR4...

  14. Expression cloning and production of human heavy-chain-only antibodies from murine transgenic plasma cells

    NARCIS (Netherlands)

    D.D. Drabek (Dubravka); R. Janssens (Rick); Boer, E. (Ernie de); Rademaker, R. (Rik); Kloess, J. (Johannes); J.J. Skehel (John ); Grosveld, F. (Frank)

    2016-01-01

    textabstractSeveral technologies have been developed to isolate human antibodies against different target antigens as a source of potential therapeutics, including hybridoma technology, phage and yeast display systems. For conventional antibodies, this involves either random pairing of VH and

  15. Screening for human immunodeficiency virus antibody in urine.

    Science.gov (United States)

    Berrios, D C; Avins, A L; Haynes-Sanstad, K; Eversley, R; Woods, W J

    1995-02-01

    To determine the diagnostic accuracy of an investigational test for human immunodeficiency virus (HIV) envelope antibodies in urine. Matched blood and urine specimens were tested for HIV by two independent laboratories, both of which were blinded to all results at the other site. Duplicate positive enzyme-linked immunoassay (EIA) results were confirmed by immunofluorescent antibody or western blot. Six alcohol treatment centers in the San Francisco metropolitan area. Five hundred ninety-two recovering alcoholics. Diagnosis of HIV infection by blood and urine EIA and western blot. The experimental urine EIA, when confirmed by urine western blot, led to a correct diagnosis in all samples. One sample was negative by urine EIA screening, positive by blood EIA, and exhibited an indeterminate blood western blot pattern (p24 band only). We encountered no false positive or false negative results using an investigational HIV antibody test for urine samples. There are several important advantages to HIV testing of urine versus serum or blood; however, there are also cogent reasons for limiting the use of alternative specimens for HIV testing.

  16. Serum and intestinal isotype antibody responses to Wa human rotavirus in gnotobiotic pigs are modulated by maternal antibodies.

    Science.gov (United States)

    Parreño, V; Hodgins, D C; de Arriba, L; Kang, S Y; Yuan, L; Ward, L A; Tô, T L; Saif, L J

    1999-06-01

    The effects of passive antibodies on protection and active immune responses to human rotavirus were studied in gnotobiotic pigs. Pigs were injected at birth with saline or sow serum of high (immunized) or low (control) antibody titre and subsets of pigs were fed colostrum and milk from immunized or control sows. Pigs were inoculated at 3-5 days of age and challenged at 21 days post-inoculation (p.i.) with virulent Wa human rotavirus. Pigs receiving immune serum with or without immune colostrum/milk were partially protected against diarrhoea and virus shedding after inoculation, but had significantly lower IgA antibody titres in serum and small intestinal contents at 21 days p.i. and lower protection rates after challenge compared with pigs given control or no maternal antibodies. IgG antibody titres were consistently higher in small than in large intestinal contents. Pigs given control serum with control colostrum/milk had lower rates of virus shedding after inoculation than those given control serum alone. In summary, high titres of circulating maternal antibodies with or without local (milk) antibodies provided passive protection after inoculation but suppressed active mucosal antibody responses. These findings may have implications for the use of live, oral rotavirus vaccines in breast-fed infants.

  17. Electrochemical immunosensor detection of antigliadin antibodies from real human serum.

    Science.gov (United States)

    Rosales-Rivera, L C; Acero-Sánchez, J L; Lozano-Sánchez, P; Katakis, I; O'Sullivan, C K

    2011-07-15

    The determination of antigliadin antibodies from human serum samples is of vital importance for the diagnosis of an autoimmune disease such as celiac disease. An electrochemical immunosensor that mimics traditional ELISA type architecture has been constructed for the detection of antigliadin antibodies with control over the orientation and packing of gliadin antigen molecules on the surface of gold electrodes. The orientation of the antigen on the surface has been achieved using a carboxylic-ended bipodal alkanethiol that is covalently linked with amino groups of the antigen protein. The bipodal thiol presents a long poly(ethyleneglycol)-modified chain that acts as an excellent non-specific adsorption barrier. The bipodal nature of the thiol ensured a good spacing and hence good diffusion properties of electroactive species through the self-assembled monolayer, which is vital for the efficiency of the constructed electrochemical immunosensor. The electrochemical immunosensor was characterized using surface plasmon resonance as well as electrochemical impedance spectroscopy. Amperometric evaluation of the sensor with polyclonal antigliadin antibodies showed stable and reproducible low limits of detection (46 ng/mL; % RSD = 8.2, n = 5). The behaviour and performance of the electrochemical immunosensor with more complex matrixes such as reference serum solutions and real patient samples was evaluated and compared with commercial ELISA kits demonstrating an excellent degree of correlation in thirty minutes total assay time; the electrochemical immunosensor not only delivers a positive or negative result, it allows the estimation of semi-quantitative antibody contents based on the comparison against clinical reference solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Antigen-specific human monoclonal antibodies from transgenic mice.

    Science.gov (United States)

    Mompó, Susana Magadán; González-Fernández, Africa

    2014-01-01

    Due to the difficulties found when generating fully human monoclonal antibodies (mAbs) by the traditional method, several efforts have attempted to overcome these problems, with varying levels of success. One approach has been the development of transgenic mice carrying immunoglobulin (Ig) genes in germ line configuration. The engineered mouse genome can undergo productive rearrangement in the B cell population, with the generation of mouse B lymphocytes expressing human Ig (hIg) chains. To avoid the expression of mouse heavy or light chains, the endogenous mouse Ig (mIg) loci must be silenced by gene-targeting techniques. Subsequently, to obtain antigen-specific mAbs, conventional immunization protocols can be followed and the mAb technique used (fusion of activated B cells with mouse myeloma cells, screening, cloning, freezing, and testing) with these animals expressing human Ig genes. This chapter describes the type of transgenic knockout mice generated for various research groups, provides examples of human mAbs developed by research groups and companies, and includes protocols of immunization, generation, production, and purification of human mAbs from such mice. In addition, it also addresses the problems detected, and includes some of the methods that can be used to analyze functional activities with human mAbs.

  19. Mouse-human immunoglobulin G1 chimeric antibodies with activities against Cryptococcus neoformans.

    OpenAIRE

    Zebedee, S L; Koduri, R K; Mukherjee, J; Mukherjee, S.; Lee, S; Sauer, D F; Scharff, M. D.; Casadevall, A

    1994-01-01

    Passive antibody administration is a potentially useful approach for the therapy of human Cryptococcus neoformans infections. To evaluate the efficacy of the human immunoglobulin G1 (IgG1) constant region against C. neoformans and to construct murine antibody derivatives with reduced immunogenicities and longer half-lives in humans, two mouse-human IgG1 chimeric antibodies were generated from the protective murine monoclonal antibodies 2D10 (IgM) and 18B7 (IgG1). The 2D10 mouse-human IgG1 chi...

  20. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY

    Directory of Open Access Journals (Sweden)

    Oliinyk O. S.

    2014-02-01

    Full Text Available Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, and 6 unique restriction patterns were found. Single-chain antibodies were expressed in Escherichia coli XL1-blue. The recombinant proteins were characterized by immunoblotting of bacterial extracts and detection with an anti-E-tag antibody. The toxin B-subunit-binding function of the single-chain antibody was shown by ELISA. The affinity constants for different clones were found to be from 106 to 108 М–1. Due to the fact, that these antibody fragments recognized epitopes in the receptor-binding Bsubunit of diphtheria toxin, further studies are interesting to evaluate their toxin neutralization properties and potential for therapeutic applications. Obtained scFv-antibodies can also be used for detection and investigation of biological properties of diphtheria toxin.

  1. DARPA Antibody Technology Program Standardized Test Bed for Antibody Characterization: Characterization of an MS2 Human IgG Antibody Produced by AnaptysBio, Inc.

    Science.gov (United States)

    2016-02-01

    human IgG antibody produced by AnaptysBio DARPA ATP Standardized Test Bed for Antibody Characterization: Characterization of an MS2 Patricia E...Buckley, Patricia E.; Calm, Alena; Welsh, Heather; Thompson, Roy; Carney, James (ECBC); Warner, Candice; and Zacharko, Melody (Excet) 5d. PROJECT...corresponding aliquot was removed and placed in an ice bath . These samples were then tested for activity using ELISA. 2.7 ELISA ELISAs were

  2. Generation of human antibody fragments against Streptococcus mutans using a phage display chain shuffling approach

    Directory of Open Access Journals (Sweden)

    Barth Stefan

    2005-01-01

    Full Text Available Abstract Background Common oral diseases and dental caries can be prevented effectively by passive immunization. In humans, passive immunotherapy may require the use of humanized or human antibodies to prevent adverse immune responses against murine epitopes. Therefore we generated human single chain and diabody antibody derivatives based on the binding characteristics of the murine monoclonal antibody Guy's 13. The murine form of this antibody has been used successfully to prevent Streptococcus mutans colonization and the development of dental caries in non-human primates, and to prevent bacterial colonization in human clinical trials. Results The antibody derivatives were generated using a chain-shuffling approach based on human antibody variable gene phage-display libraries. Like the parent antibody, these derivatives bound specifically to SAI/II, the surface adhesin of the oral pathogen S. mutans. Conclusions Humanization of murine antibodies can be easily achieved using phage display libraries. The human antibody fragments bind the antigen as well as the causative agent of dental caries. In addition the human diabody derivative is capable of aggregating S. mutans in vitro, making it a useful candidate passive immunotherapeutic agent for oral diseases.

  3. The human antibody repertoire specific for rabies virus glycoprotein as selected from immune libraries

    NARCIS (Netherlands)

    Kramer, R. Arjen; Marissen, Wilfred E.; Goudsmit, Jaap; Visser, Therese J.; Clijsters-van der Horst, Marieke; Bakker, Arjen Q.; de Jong, Maureen; Jongeneelen, Mandy; Thijsse, Sandra; Backus, Harold H. J.; Rice, Amy B.; Weldon, William C.; Rupprecht, Charles E.; Dietzschold, Bernhard; Bakker, Alexander B. H.; de Kruif, John

    2005-01-01

    Antibody phage display technology was used to identify human monoclonal antibodies that neutralize rabies virus (RV). A phage repertoire was constructed using antibody genes harvested from the blood of vaccinated donors. Selections using this repertoire and three different antigen formats of the RV

  4. Reactivity of eleven anti-human leucocyte monoclonal antibodies with lymphocytes from several domestic animals

    DEFF Research Database (Denmark)

    Aasted, Bent; Blixenkrone-Møller, Merete; Larsen, Else Bang

    1988-01-01

    Nine commercially available monoclonal antibodies and two monoclonal antibodies from The American Type Culture Collection, raised against various human leucocyte surface antigens, were tested on lymphocytes from cow, sheep, goat, swine, horse, cat, dog, mink, and rabbit as well as man. Four...... antibodies bound to lymphocytes from some of the animals. These were the antibodies against CD8 and CD4 antigen, the antibody to C3b-receptor, and the antibody to the HLA-DR antigen. The CD8 antigen-reactive antibody reacted with lymphocytes from mink, cat, dog, and sheep, while the CD4 antigen......-reactive antibody reacted with lymphocytes from mink. The anti-C3b-R antibody reacted with lymphocytes from horse, swine, dog, and cat, and the anti-HLA-DR reacted with lymphocytes from cow, goat, sheep, horse, dog, cat, and mink....

  5. Method and cell lines for the production of monoclonal antibodies to human glycophorin A

    Science.gov (United States)

    Bigbee, W.L.; Fong, S.S.N.; Jensen, R.H.; Vanderlaan, M.

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  6. Humanization and Characterization of an Anti-Human TNF-α Murine Monoclonal Antibody

    Science.gov (United States)

    Chiu, Wei-Chun; Lai, Ya-Ping; Chou, Min-Yuan

    2011-01-01

    A murine monoclonal antibody, m357, showing the highly neutralizing activities for human tumor necrosis factor (TNF-α) was chosen to be humanized by a variable domain resurfacing approach. The non-conserved surface residues in the framework regions of both the heavy and light chain variable regions were identified via a molecular modeling of m357 built by computer-assisted homology modeling. By replacing these critical surface residues with the human counterparts, a humanized version, h357, was generated. The humanized h357 IgG1 was then stably expressed in a mammalian cell line and the purified antibody maintained the high antigen binding affinity as compared with the parental m357 based on a soluble TNF-α neutralization bioassay. Furthermore, h357 IgG1 possesses the ability to mediate antibody-dependent cell-mediated cytotoxicity and complement dependent cytotoxicity upon binding to cells bearing the transmembrane form of TNF-α. In a mouse model of collagen antibody-induced arthritis, h357 IgG significantly inhibited disease progression by intra-peritoneal injection of 50 µg/mouse once-daily for 9 consecutive days. These results provided a basis for the development of h357 IgG as therapeutic use. PMID:21305012

  7. Human immunodeficiency virus antibody test and seroprevalence in psychiatric patients.

    Science.gov (United States)

    Naber, D; Pajonk, F G; Perro, C; Löhmer, B

    1994-05-01

    Psychiatric inpatients are at risk for human immunodeficiency virus (HIV) infection. Investigations in the United States revealed seroprevalence rates of 5.5-8.9%. Therefore, inclusion of HIV antibody testing in routine laboratory screening is sometimes suggested. To investigate this issue for inpatients in the Department of Psychiatry, University of Munich, the incidence, reason for HIV testing and results were analyzed. Of 12,603 patients, hospitalized from 1985 to 1993, 4.9% (623 patients, 265 in risk groups) underwent the HIV test after informed consent. Thirty patients (4.8% of those tested) were found to be positive, but only in 5 cases (all of risk groups) was infection newly detected. Data indicate that, in psychiatry, HIV testing is reasonable only in patients in risk groups or if clinical variables suggest HIV infection.

  8. Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor.

    OpenAIRE

    Soos, M A; Siddle, K; Baron, M D; Heward, J M; Luzio, J P; Bellatin, J; Lennox, E S

    1986-01-01

    Monoclonal antibodies for the human insulin receptor were produced following immunization of mice with IM-9 lymphocytes and/or purified placental receptor. Four separate fusions yielded 28 antibodies, all of which reacted with receptor from human placenta, liver and IM-9 cells. Some antibodies cross-reacted to varying degrees with receptor from rabbit, cow, pig and sheep, but none reacted with rat receptor. At least 10 distinct epitopes were recognized as indicated by species specificity and ...

  9. Neutralization of botulinum neurotoxin by a human monoclonal antibody specific for the catalytic light chain.

    Directory of Open Access Journals (Sweden)

    Sharad P Adekar

    2008-08-01

    Full Text Available Botulinum neurotoxins (BoNT are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC, a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored.We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A. The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro.An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components of an antibody antidote for BoNT exposure.

  10. Human monoclonal antibodies broadly neutralizing against influenza B virus.

    Directory of Open Access Journals (Sweden)

    Mayo Yasugi

    2013-02-01

    Full Text Available Influenza virus has the ability to evade host immune surveillance through rapid viral genetic drift and reassortment; therefore, it remains a continuous public health threat. The development of vaccines producing broadly reactive antibodies, as well as therapeutic strategies using human neutralizing monoclonal antibodies (HuMAbs with global reactivity, has been gathering great interest recently. Here, three hybridoma clones producing HuMAbs against influenza B virus, designated 5A7, 3A2 and 10C4, were prepared using peripheral lymphocytes from vaccinated volunteers, and were investigated for broad cross-reactive neutralizing activity. Of these HuMAbs, 3A2 and 10C4, which recognize the readily mutable 190-helix region near the receptor binding site in the hemagglutinin (HA protein, react only with the Yamagata lineage of influenza B virus. By contrast, HuMAb 5A7 broadly neutralizes influenza B strains that were isolated from 1985 to 2006, belonging to both Yamagata and Victoria lineages. Epitope mapping revealed that 5A7 recognizes 316G, 318C and 321W near the C terminal of HA1, a highly conserved region in influenza B virus. Indeed, no mutations in the amino acid residues of the epitope region were induced, even after the virus was passaged ten times in the presence of HuMAb 5A7. Moreover, 5A7 showed significant therapeutic efficacy in mice, even when it was administered 72 hours post-infection. These results indicate that 5A7 is a promising candidate for developing therapeutics, and provide insight for the development of a universal vaccine against influenza B virus.

  11. Tumor necrosis factor alpha (TNF alpha) in human skin : A comparison of different antibodies for immunohistochemistry

    NARCIS (Netherlands)

    van der Laan, N; de Leij, LFMH; Buurman, W; Timens, W; ten Duis, HJ

    Conflicting results have been reported regarding the localization and presence of TNF alpha in normal human skin, To study TNF alpha expression, we tested a panel of antibodies directed against human TNF alpha, First, antibodies were tested for immunoreactivity on cytospots of isolated

  12. Fully human antagonistic antibodies against CCR4 potently inhibit cell signaling and chemotaxis.

    Directory of Open Access Journals (Sweden)

    Urs B Hagemann

    Full Text Available CC chemokine receptor 4 (CCR4 represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs and on tumor cells in several cancer types and its role in metastasis.Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies.For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing. The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.

  13. PRODUCTION OF A HUMAN RECOMBINANT ANTIBODY AGAINST SEROTYPE A CANDIDA ALBICANS

    Directory of Open Access Journals (Sweden)

    A A. Jafari

    2005-07-01

    Full Text Available After using 3 different generations of antibodies including human and non-human hyperimmune sera, monoclonal antibodies and chimeric antibodies, more recently a newer approach has been developed in which the antibody genes are cloned directly from a patient peripheral B-lymphocytes and expressed in a host like E. coli. In this study the Candida albicans serotype A (NCTC 3153 mannan was purified using a modified Fehling method and used for selection of human recombinant antibody from a C. albicans phage antibody library. After four rounds of affinity selecting (panning, 2 predominant clones were chosen by DNA fingerprinting and ELISA. A 248 amino acid DNA fragment coding for anti-C. albicans mannan scFv was sequenced and cloned in a pBAD-TOPO cloning vector to produce a soluble and phage free antibody. The analysis of antibody sequences by V base Index (DNAPLOT confirmed the human antibody origin with the VH4 family in V segment of heavy variable chain and VL3 (Lambda 3 in J segment of the light variable chain. This antibody fragment was purified using immobilized metal affinity chromatography and inmmunoblotted as a 31kDa recombinant protein.

  14. Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination.

    Science.gov (United States)

    Peschl, Patrick; Schanda, Kathrin; Zeka, Bleranda; Given, Katherine; Böhm, Denise; Ruprecht, Klemens; Saiz, Albert; Lutterotti, Andreas; Rostásy, Kevin; Höftberger, Romana; Berger, Thomas; Macklin, Wendy; Lassmann, Hans; Bradl, Monika; Bennett, Jeffrey L; Reindl, Markus

    2017-10-25

    Antibodies to the myelin oligodendrocyte glycoprotein (MOG) are associated with a subset of inflammatory demyelinating diseases of the central nervous system such as acute disseminated encephalomyelitis and neuromyelitis optica spectrum disorders. However, whether human MOG antibodies are pathogenic or an epiphenomenon is still not completely clear. Although MOG is highly conserved within mammals, previous findings showed that not all human MOG antibodies bind to rodent MOG. We therefore hypothesized that human MOG antibody-mediated pathology in animal models may only be evident using species-specific MOG antibodies. We screened 80 human MOG antibody-positive samples for their reactivity to mouse and rat MOG using either a live cell-based assay or immunohistochemistry on murine, rat, and human brain tissue. Selected samples reactive to either human MOG or rodent MOG were subsequently tested for their ability to induce complement-mediated damage in murine organotypic brain slices or enhance demyelination in an experimental autoimmune encephalitis (EAE) model in Lewis rats. The MOG monoclonal antibody 8-18-C5 was used as a positive control. Overall, we found that only a subset of human MOG antibodies are reactive to mouse (48/80, 60%) or rat (14/80, 18%) MOG. Purified serum antibodies from 10 human MOG antibody-positive patients (8/10 reactive to mouse MOG, 6/10 reactive to rat MOG), 3 human MOG-negative patients, and 3 healthy controls were tested on murine organotypic brain slices. Purified IgG from one patient with high titers of anti-human, mouse, and rat MOG antibodies and robust binding to myelin tissue produced significant, complement-mediated myelin loss in organotypic brain slices, but not in the EAE model. Monoclonal 8-18-C5 MOG antibody caused complement-mediated demyelination in both the organotypic brain slice model and in EAE. This study shows that a subset of human MOG antibodies can induce complement-dependent pathogenic effects in a murine ex vivo

  15. A novel antibody discovery platform identifies anti-influenza A broadly neutralizing antibodies from human memory B cells.

    Science.gov (United States)

    Xiao, Xiaodong; Chen, Yan; Varkey, Reena; Kallewaard, Nicole; Koksal, Adem C; Zhu, Qing; Wu, Herren; Chowdhury, Partha S; Dall'Acqua, William F

    2016-07-01

    Monoclonal antibody isolation directly from circulating human B cells is a powerful tool to delineate humoral responses to pathological conditions and discover antibody therapeutics. We have developed a platform aimed at improving the efficiencies of B cell selection and V gene recovery. Here, memory B cells are activated and amplified using Epstein-Barr virus infection, co-cultured with CHO-muCD40L cells, and then assessed by functional screenings. An in vitro transcription and translation (IVTT) approach was used to analyze variable (V) genes recovered from each B cell sample and identify the relevant heavy/light chain pair(s). We achieved efficient amplification and activation of memory B cells, and eliminated the need to: 1) seed B cells at clonal level (≤1 cell/well) or perform limited dilution cloning; 2) immortalize B cells; or 3) assemble V genes into an IgG expression vector to confirm the relevant heavy/light chain pairing. Cross-reactive antibodies targeting a conserved epitope on influenza A hemagglutinin were successfully isolated from a healthy donor. In-depth analysis of the isolated antibodies suggested their potential uses as anti-influenza A antibody therapeutics and uncovered a distinct affinity maturation pathway. Importantly, our results showed that cognate heavy/light chain pairings contributed to both the expression level and binding abilities of our newly isolated VH1-69 family, influenza A neutralizing antibodies, contrasting with previous observations that light chains do not significantly contribute to the function of this group of antibodies. Our results further suggest the potential use of the IVTT as a powerful antibody developability assessment tool.

  16. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jun [Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Xiang, Jun-Jian, E-mail: txjj@jnu.edu.cn [Laboratory of Antibody Engineering, College of Life Sciences and Technologies, Jinan University, Guangzhou 510632 (China); Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Li, Dan [Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Deng, Ning; Wang, Hong; Gong, Yi-Ping [Laboratory of Antibody Engineering, College of Life Sciences and Technologies, Jinan University, Guangzhou 510632 (China)

    2010-04-09

    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10{sup -9} M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  17. Structure guided homology model based design and engineering of mouse antibodies for humanization.

    Science.gov (United States)

    Kurella, Vinodh B; Gali, Reddy

    2014-01-01

    No universal strategy exists for humanizing mouse antibodies, and most approaches are based on primary sequence alignment and grafting. Although this strategy theoretically decreases the immunogenicity of mouse antibodies, it neither addresses conformational changes nor steric clashes that arise due to grafting of human germline frameworks to accommodate mouse CDR regions. To address these issues, we created and tested a structure-based biologic design approach using a de novo homology model to aid in the humanization of 17 unique mouse antibodies. Our approach included building a structure-based de novo homology model from the primary mouse antibody sequence, mutation of the mouse framework residues to the closest human germline sequence and energy minimization by simulated annealing on the humanized homology model. Certain residues displayed force field errors and revealed steric clashes upon closer examination. Therefore, further mutations were introduced to rationally correct these errors. In conclusion, use of de novo antibody homology modeling together with simulated annealing improved the ability to predict conformational and steric clashes that may arise due to conversion of a mouse antibody into the humanized form and would prevent its neutralization when administered in vivo. This design provides a robust path towards the development of a universal strategy for humanization of mouse antibodies using computationally derived antibody homologous structures.

  18. A novel antibody humanization method based on epitopes scanning and molecular dynamics simulation.

    Science.gov (United States)

    Zhang, Ding; Chen, Cai-Feng; Zhao, Bin-Bin; Gong, Lu-Lu; Jin, Wen-Jing; Liu, Jing-Jun; Wang, Jing-Fei; Wang, Tian-Tian; Yuan, Xiao-Hui; He, You-Wen

    2013-01-01

    1-17-2 is a rat anti-human DEC-205 monoclonal antibody that induces internalization and delivers antigen to dendritic cells (DCs). The potentially clinical application of this antibody is limited by its murine origin. Traditional humanization method such as complementarity determining regions (CDRs) graft often leads to a decreased or even lost affinity. Here we have developed a novel antibody humanization method based on computer modeling and bioinformatics analysis. First, we used homology modeling technology to build the precise model of Fab. A novel epitope scanning algorithm was designed to identify antigenic residues in the framework regions (FRs) that need to be mutated to human counterpart in the humanization process. Then virtual mutation and molecular dynamics (MD) simulation were used to assess the conformational impact imposed by all the mutations. By comparing the root-mean-square deviations (RMSDs) of CDRs, we found five key residues whose mutations would destroy the original conformation of CDRs. These residues need to be back-mutated to rescue the antibody binding affinity. Finally we constructed the antibodies in vitro and compared their binding affinity by flow cytometry and surface plasmon resonance (SPR) assay. The binding affinity of the refined humanized antibody was similar to that of the original rat antibody. Our results have established a novel method based on epitopes scanning and MD simulation for antibody humanization.

  19. Evaluation of human antibody responses to keyhole limpet hemocyanin (KLH) on a carbohydrate microarray

    Science.gov (United States)

    Oyelaran, Oyindasola; Gildersleeve, Jeffrey C.

    2012-01-01

    Purpose Keyhole limpet hemocyanin (KLH) is used as a vaccine adjuvant, as a carrier protein for small haptens, and as a treatment for bladder cancer. Immunization with KLH produces antibodies to tumor-associated carbohydrate antigens in animals, and these antibodies have been postulated as the basis of efficacy for bladder cancer treatment. The purpose of this study was to evaluate antibody responses to KLH in humans. Experimental Design A carbohydrate microarray was used to profile antibody responses in 14 individuals immunized with KLH plus alum adjuvant. Results 8/14 individuals produced antibodies to at least one tumor-associated carbohydrate antigen. Increases to Lewis X, Lewis Y, GA1di, GM3, and sialyl Lewis A were observed in certain individuals, but, in general, antibody profiles were highly variable. Pre-immunization antibody levels to a subset of array antigens had a statistically significant correlation with the magnitude of the antibody response to KLH. Conclusions and Clinical Relevance Antibodies to tumor-associated carbohydrate antigens can be produced in humans, but antibody profiles differ considerably from person to person, which may contribute to variable clinical responses with KLH. Pre-treatment antibody levels to certain antigens may be useful for predicting which patients will respond favorably to KLH. PMID:21137049

  20. Polyclonal antibodies directed against human placental Fcgamma receptor. Characterization of the antibodies and their interaction with the receptor.

    Science.gov (United States)

    Mikulska, J; Lisowski, J

    1987-01-01

    Antibodies to the putative Fc gamma receptor (Fc gamma R) of human placenta were raised by immunization of rabbits with the receptor purified form syncytiotrophoblast plasma membranes of human placenta. The rabbit antibodies were of IgG class and their F(ab')2 fragment interacted with Fc receptors in solubilized form and membrane-bound, as well. Immunological reactivity of the antibodies with Fc gamma R was demonstrated using immunodiffusion, solid-phase immunoassay, and ELISA. Studies on interaction of the antibodies with the isolated placental Fc gamma R showed that antigenic determinants of the receptor were different from the IgG-binding site. Rabbit anti-human placental Fc gamma R crossreacted, to various extent, with Fc gamma R-positive human cell lines showing antigenic relatedness of the placental receptor with Fc gamma R on other cell types. The antibodies showed only a weak crossreactivity with guinea pig peritoneal macrophage Fc gamma R. SDS-PAGE analysis of immunoprecipitates obtained by treatment of detergent lysates of 3H-labeled human placental trophoblasts membranes with the rabbit antibodies or with human IgG showed the presence of the some components which were observed in the case of the isolated, purified placental Fc gamma R: Mr of 123,000 and 52,000-56,000 under nonreducing conditions, and Mr of 64,000-67,000, 52,000-56,000, and 26,000-29,000, under reducing conditions. The polypeptide chains of the purified human placental receptor resolved in SDS-PAGE and transferred on nitrocellulose strips were able to interact both with the rabbit anti-placental receptor IgG F(ab')2 fragments and with human IgG. This gives an evidence that human placental Fc gamma R polypeptide chains Mr of approx. 64,000, 54,000, and 28,000 contain antigenic determinants of the receptor and binding sites for the Fc region of IgG, as well.

  1. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words

    Energy Technology Data Exchange (ETDEWEB)

    Mirick, G. R.; Bradt, B. M.; Denardo, S. J.; Denardo, G. L. [Calfornia Univ., Sacramento (United States). Davis Medical Center

    2004-12-01

    The United States Food and Drugs Administration (FDA) has approved unconjugated monoclonal antibodies (MAbs) for immunotherapy (IT) of B-cell lymphoma, breast cancer and acute myeloid leukemia. More recently, approval has been given for conjugated ZevalinTM ({sup 9}0yttrium ibritumomab tiuxetan, IDEC-Y2B8, Biogen Idec, Cambridge, MA) and BexxarTM ({sup 1}31I-tositumomab, Corixa, Corp., Seattle, WA and GlaxoSmithKline, Philadelphia, PA) antiCD20 MAns for use in radioimmunotherapy (RIT) of non-Hodgikin's lymphoma (NHL), thus redefining the standard care of cancer patients. Because of, and despite a lack of basis for concern about allergic reactions due to human antibody responses to these foreign proteins, essays were developed to determine HAGE (human anti-globulin antibody) levels that developed in patient sera following treatment with MAbs. Strategies were also devised to humanize MAbs and to temporarily block patient immune function with drugs in order to decrease the seroconversion rates, with considerable success. On the other hand, a survival advantage has been observed in some patients who developed a HAGA following treatment. This correlates with development of an anti-idiotype antibody cascade directed toward the MAbs used to treat these patients. What follows is a selective review of HAGA and its effect on cancer treatment over the past 2 decades.

  2. SPAM-8, a mouse-human heteromyeloma fusion partner in the production of human monoclonal antibodies. Establishment of a human monoclonal antibody against cytomegalovirus.

    Science.gov (United States)

    Gustafsson, B; Jondal, M; Sundqvist, V A

    1991-01-01

    A heteromyeloma (mouse x human) cell line (SPAM-8) was produced by fusing mouse myeloma cells (SP2/0) with human peripheral blood lymphocytes. The cells were sensitive to aminopterin and resistant to ouabain. The cells showed a doubling time of about 19 hours and a cloning efficiency of 0.8 cells/well (to obtain growth in 50% of wells seeded) using mouse thymocytes as feeder cells. The number of chromosomes was about 86 and 1% of the total DNA was of human origin. Fusion of SPAM-8 cells with lymphocytes prepared from human spleens resulted in approximately one hybridoma per 10(5) seeded lymphocytes. A trioma (human x [mouse x human]) cell line was established by fusing cells of an Epstein-Barr virus-transformed B cell line with SPAM-8 cells. The trioma cells produced antibodies (IgG1, K) against cytomegalovirus, in a concentration of 7 micrograms/ml in spent medium, over a period of six months of continuous culture. The results obtained indicate that the heteromyeloma SPAM-8 may be used as a fusion partner in the production of human monoclonal antibodies.

  3. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Yi-Fan; Ho, Mitchell

    2016-09-26

    Glypican-3 (GPC3) is a cell-surface heparan sulfate proteoglycan highly expressed in hepatocellular carcinoma (HCC). We have generated a group of high-affinity mouse monoclonal antibodies targeting GPC3. Here, we report the humanization and testing of these antibodies for clinical development. We compared the affinity and cytotoxicity of recombinant immunotoxins containing mouse single-chain variable regions fused with a Pseudomonas toxin. To humanize the mouse Fvs, we grafted the combined KABAT/IMGT complementarity determining regions (CDR) into a human IgG germline framework. Interestingly, we found that the proline at position 41, a non-CDR residue in heavy chain variable regions (VH), is important for humanization of mouse antibodies. We also showed that two humanized anti-GPC3 antibodies (hYP7 and hYP9.1b) in the IgG format induced antibody-dependent cell-mediated cytotoxicity and complement-dependent-cytotoxicity in GPC3-positive cancer cells. The hYP7 antibody was tested and showed inhibition of HCC xenograft tumor growth in nude mice. This study successfully humanizes and validates high affinity anti-GPC3 antibodies and sets a foundation for future development of these antibodies in various clinical formats in the treatment of liver cancer.

  4. Chimeric recombinant antibody fragments in cardiac troponin I immunoassay.

    Science.gov (United States)

    Hyytiä, Heidi; Heikkilä, Taina; Brockmann, Eeva-Christine; Kekki, Henna; Hedberg, Pirjo; Puolakanaho, Tarja; Lövgren, Timo; Pettersson, Kim

    2015-03-01

    To introduce a novel nanoparticle-based immunoassay for cardiac troponin I (cTnI) utilizing chimeric antibody fragments and to demonstrate that removal of antibody Fc-part and antibody chimerization decrease matrix related interferences. A sandwich-type immunoassay for cTnI based on recombinant chimeric (mouse variable/human constant) antigen binding (cFab) antibodies and intrinsically fluorescent nanoparticles was developed. To test whether using chimeric antibody fragments helps to avoid matrix related interferences, samples (n=39) with known amounts of triglycerides, bilirubin, rheumatoid factor (RF) or human anti-mouse antibodies (HAMAs) were measured with the novel assay, along with a previously published nanoparticle-based research assay with the same antibody epitopes. The limit of detection (LoD) was 3.30ng/L. Within-laboratory precision for 29ng/L and 2819ng/L cTnI were 13.7% and 15.9%, respectively. Regression analysis with Siemens ADVIA Centaur® yielded a slope (95% confidence intervals) of 0.18 (0.17-1.19) and a y-intercept of 1.94 (-1.28-3.91) ng/L. When compared to a previously published nanoparticle-based assay, the novel assay showed substantially reduced interference in the tested interference prone samples, 15.4 vs. 51.3%. A rheumatoid factor containing sample was decreased from 241ng/L to

  5. Human antibody response to Lethocerus salivary antigens as a ...

    African Journals Online (AJOL)

    Interestingly in addition to a few immunogenic salivary proteins (85, 64, 37 and 33 kDa bands), a 28 kDa protein derived from salivary glands homogenate of aquatic insects was able to bind to Mycobacterium ulcerans and to be recognized by IgG antibodies of healthy subjects in endemic areas. The antibody responses to ...

  6. Postbooster Antibodies from Humans as Source of Diphtheria Antitoxin.

    Science.gov (United States)

    Bermejo-Martin, Jesús F; Avila-Alonso, Ana; González-Rivera, Milagros; Tamayo, Eduardo; Eiros, Jose María; Almansa, Raquel

    2016-07-01

    Diphtheria antitoxin for therapeutic use is in limited supply. A potential source might be affinity-purified antibodies originally derived from plasma of adults who received a booster dose of a vaccine containing diphtheria toxoid. These antibodies might be useful for treating even severe cases of diphtheria.

  7. Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor.

    Science.gov (United States)

    Soos, M A; Siddle, K; Baron, M D; Heward, J M; Luzio, J P; Bellatin, J; Lennox, E S

    1986-04-01

    Monoclonal antibodies for the human insulin receptor were produced following immunization of mice with IM-9 lymphocytes and/or purified placental receptor. Four separate fusions yielded 28 antibodies, all of which reacted with receptor from human placenta, liver and IM-9 cells. Some antibodies cross-reacted to varying degrees with receptor from rabbit, cow, pig and sheep, but none reacted with rat receptor. At least 10 distinct epitopes were recognized as indicated by species specificity and binding competition experiments. All of these epitopes appeared to be on extracellular domains of the receptor as shown by binding of antibodies to intact cells. In some cases the epitopes were further localized to alpha or beta subunits by immunoblotting. Several antibodies inhibited binding of 125I-insulin to the receptor, some had no effect on binding, and others enhanced the binding of 125I-insulin. It is concluded that these antibodies will be valuable probes of receptor structure and function.

  8. Human antibody repertoire after VSV-Ebola vaccination identifies novel targets and virus-neutralizing IgM antibodies.

    Science.gov (United States)

    Khurana, Surender; Fuentes, Sandra; Coyle, Elizabeth M; Ravichandran, Supriya; Davey, Richard T; Beigel, John H

    2016-12-01

    Development of an effective vaccine against Ebola virus is of high priority. However, knowledge about potential correlates of protection and the durability of immune response after vaccination is limited. Here, we elucidate the human antibody repertoire after administration of vesicular stomatitis virus (VSV)-Ebola vaccine at 3 million, 20 million and 100 million plaque-forming units (PFU) and homologous VSV-Ebola vaccine boost in healthy adult volunteers. Whole genome-fragment phage display libraries, expressing linear and conformational epitopes of Ebola glycoprotein (GP), showed higher diversity of antibody epitopes in individuals vaccinated with 20 million PFU than in those vaccinated with 3 million or 100 million PFU. Surface plasmon resonance kinetics showed higher levels of GP-binding antibodies after a single vaccination with 20 million or 100 million PFU than with 3 million PFU, and these correlated strongly with neutralization titers. A second vaccination did not boost antibody or virus neutralization titers, which declined rapidly, and induced only minimal antibody affinity maturation. Isotype analysis revealed a predominant IgM response even after the second vaccination, which contributed substantially to virus neutralization in vitro. These findings may help identify new vaccine targets and aid development and evaluation of effective countermeasures against Ebola.

  9. The Effects of Anti-Hcg Monoclonal Antibodies on Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Mirshahi M

    2011-12-01

    Full Text Available Background: Human cancer cell lines express human choriogonadotropin (hCG, its subunits and derivatives, regardless of their origin and type. It appears that hCG is a common phenotype in human cancer cell lines. In this research, the effects of hCG targeting monoclonal antibodies (7D9, T18H7 and T8B12 on human cancer cell lines were evaluated. Methods: Monoclonal antibody secreting hybridomas were proliferated and injected intraperitoneally to Balb/C mice after treatment with pristine. Two weeks later, ascites fluid was collected. Purification of aforementioned antibodies from ascites fluid was performed using G-protein affinity followed by ion exchange chromatography. SDS-PAGE and ELISA confirmed the structure and functional integrity of the purified antibodies, respectively. Two human cancer cell lines "Hela" and "MDA" were treated by the purified antibodies. Three days later, different wells were imaged and the cells counted. Results: SDS-PAGE gel (None-reducing indicated consistency of band migration patterns with control antibodies. ELISA test using hCG antigens indicated that the produced antibodies could detect hCG antigens. Cell lines were cultured and treated with different concentrations of each antibody. Counting and imaging different wells of treated plates, indicated that 7D9 antibody had a more significant (P<0.01 cytotoxic effect on cancer cell lines than the control cells. Conclusion: HCG targeting monoclonal antibodies can be used for targeted cancer therapy, as human cancer cells express hCG gene. 7D9 antibody that exhibits protease activity is a proper candidate for this purpose, as it possesses both antagonistic and enzymatic properties.

  10. Molecular Insights into Fully Human and Humanized Monoclonal Antibodies: What are the Differences and Should Dermatologists Care?

    Science.gov (United States)

    Mallbris, Lotus; Davies, Julian; Glasebrook, Andrew; Tang, Ying; Glaesner, Wolfgang; Nickoloff, Brian J

    2016-07-01

    In recent years, a large number of therapeutic monoclonal antibodies have come to market to treat a variety of conditions including patients with immune-mediated chronic inflammation. Distinguishing the relative clinical efficacy and safety profiles of one monoclonal antibody relative to another can be difficult and complex due to different clinical designs and paucity of head-to-head comparator studies. One distinguishing feature in interpreting clinical trial data by dermatologists may begin by determining whether a monoclonal antibody is fully human or humanized, which can be discerned by the generic name of the drug. Herein, this commentary highlights the distinctions and similarities of fully human and humanized monoclonal antibodies in their nomenclature, engineering, and clinical profiles. While there are a number of differences between these types of monoclonal antibodies, current evidence indicates that this designation does not impart any measurable impact on overall clinical efficacy and safety profiles of a given drug. Based on molecular insights provided in this commentary, it is clear that each monoclonal antibody, irrespective of being fully human or humanized, should be individually assessed for its clinical impact regarding safety and efficacy. Going beyond the type of generic name ascribed to a monoclonal antibody will be an ever-increasing theme for dermatologists as more therapeutic monoclonal antibodies emerge to potentially treat a wider scope of diseases with cutaneous manifestations.

  11. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Felix Hart

    2017-05-01

    Full Text Available IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich and hematological (CD20 cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.

  12. Human Papillomavirus Antibody Reference Reagents for Use in Postvaccination Surveillance Serology

    OpenAIRE

    Bissett, Sara L; Wilkinson, Dianna; Tettmar, Kate I.; Jones, Nicky; Stanford, Elaine; Panicker, Gitika; Faust, Helena; Borrow, Ray; Soldan, Kate; Unger, Elizabeth R.; Dillner, Joakim; Minor, Philip; Beddows, Simon

    2012-01-01

    Suitably controlled serosurveillance surveys are essential for evaluating human papillomavirus (HPV) immunization programs. A panel of plasma samples from 18-year-old females was assembled, the majority of the samples being from recipients of the bivalent HPV vaccine. Antibody specificities were evaluated by three independent laboratories, and 3 pools that displayed no antibodies to any HPV type tested or intermediate or high levels of antibody to HPV16, HPV18, HPV31, and HPV45 were created. ...

  13. Selection of apoptotic cell specific human antibodies from adult bone marrow.

    Directory of Open Access Journals (Sweden)

    Caroline Grönwall

    Full Text Available Autoreactive antibodies that recognize neo-determinants on apoptotic cells in mice have been proposed to have protective, homeostatic and immunoregulatory properties, although our knowledge about the equivalent antibodies in humans has been much more limited. In the current study, human monoclonal antibodies with binding specificity for apoptotic cells were isolated from the bone marrow of healthy adults using phage display technology. These antibodies were shown to recognize phosphorylcholine (PC-associated neo-determinants. Interestingly, three of the four identified apoptotic cell-specific antibody clones were encoded by VH3 region rearrangements with germline or nearly germline configuration without evidence of somatic hypermutation. Importantly, the different identified antibody clones had diverse heavy chain CDR3 and deduced binding surfaces as suggested by structure modeling. This may suggest a potentially great heterogeneity in human antibodies recognizing PC-related epitopes on apoptotic cells. To re-construct the postulated structural format of the parental anti-PC antibody, the dominant clone was also expressed as a recombinant human polymeric IgM, which revealed a substantially increased binding reactivity, with dose-dependent and antigen-inhibitable binding of apoptotic cells. Our findings may have implication for improved prognostic testing and therapeutic interventions in human inflammatory disease.

  14. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice.

    Science.gov (United States)

    Klein, Florian; Halper-Stromberg, Ariel; Horwitz, Joshua A; Gruell, Henning; Scheid, Johannes F; Bournazos, Stylianos; Mouquet, Hugo; Spatz, Linda A; Diskin, Ron; Abadir, Alexander; Zang, Trinity; Dorner, Marcus; Billerbeck, Eva; Labitt, Rachael N; Gaebler, Christian; Marcovecchio, Paola; Incesu, Reha-Baris; Eisenreich, Thomas R; Bieniasz, Paul D; Seaman, Michael S; Bjorkman, Pamela J; Ravetch, Jeffrey V; Ploss, Alexander; Nussenzweig, Michel C

    2012-12-06

    Human antibodies to human immunodeficiency virus-1 (HIV-1) can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection. Previous work showed that antibodies exert selective pressure on the virus but escape variants emerge within a short period of time. However, these experiments were performed before the recent discovery of more potent anti-HIV-1 antibodies and their improvement by structure-based design. Here we re-examine passive antibody transfer as a therapeutic modality in HIV-1-infected humanized mice. Although HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies can effectively control HIV-1 infection and suppress viral load to levels below detection. Moreover, in contrast to antiretroviral therapy, the longer half-life of antibodies led to control of viraemia for an average of 60 days after cessation of therapy. Thus, combinations of potent monoclonal antibodies can effectively control HIV-1 replication in humanized mice, and should be re-examined as a therapeutic modality in HIV-1-infected individuals.

  15. Antibody humanization by redesign of complementarity-determining region residues proximate to the acceptor framework.

    Science.gov (United States)

    Hanf, Karl J M; Arndt, Joseph W; Chen, Ling Ling; Jarpe, Matthew; Boriack-Sjodin, P Ann; Li, You; van Vlijmen, Herman W T; Pepinsky, R Blake; Simon, Kenneth J; Lugovskoy, Alexey

    2014-01-01

    Antibodies are key components of the adaptive immune system and are well-established protein therapeutic agents. Typically high-affinity antibodies are obtained by immunization of rodent species that need to be humanized to reduce their immunogenicity. The complementarity-determining regions (CDRs) contain the residues in a defined loop structure that confer antigen binding, which must be retained in the humanized antibody. To design a humanized antibody, we graft the mature murine CDRs onto a germline human acceptor framework. Structural defects due to mismatches at the graft interface can be fixed by mutating some framework residues to murine, or by mutating some residues on the CDRs' backside to human or to a de novo designed sequence. The first approach, framework redesign, can yield an antibody with binding better than the CDR graft and one equivalent to the mature murine, and reduced immunogenicity. The second approach, CDR redesign, is presented here as a new approach, yielding an antibody with binding better than the CDR graft, and immunogenicity potentially less than that from framework redesign. Application of both approaches to the humanization of anti-α4 integrin antibody HP1/2 is presented and the concept of the hybrid humanization approach that retains "difficult to match" murine framework amino acids and uses de novo CDR design to minimize murine amino acid content and reduce cell-mediated cytotoxicity liabilities is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Rapid characterization of binding specificity and cross-reactivity of antibodies using recombinant human protein arrays.

    Science.gov (United States)

    Kijanka, Gregor; Ipcho, Simon; Baars, Sabine; Chen, Hong; Hadley, Katie; Beveridge, Allan; Gould, Edith; Murphy, Derek

    2009-01-30

    Antibodies are routinely used as research tools, in diagnostic assays and increasingly as therapeutics. Ideally, these applications require antibodies with high sensitivity and specificity; however, many commercially available antibodies are limited in their use as they cross-react with non-related proteins. Here we describe a novel method to characterize antibody specificity. Six commercially available monoclonal and polyclonal antibodies were screened on high-density protein arrays comprising of ~10,000 recombinant human proteins (Imagenes). Two of the six antibodies examined; anti-pICln and anti-GAPDH, bound exclusively to their target antigen and showed no cross-reactivity with non-related proteins. However, four of the antibodies, anti-HSP90, anti-HSA, anti-bFGF and anti-Ro52, showed strong cross-reactivity with other proteins on the array. Antibody-antigen interactions were readily confirmed using Western immunoblotting. In addition, the redundant nature of the protein array used, enabled us to define the epitopic region within HSP90 of the anti-HSP90 antibody, and identify possible shared epitopes in cross-reacting proteins. In conclusion, high-density protein array technology is a fast and effective means for determining the specificity of antibodies and can be used to further improve the accuracy of antibody applications.

  17. Urine antibody against human cancer antigen NY-ESO-1

    OpenAIRE

    Jäger, Dirk; Stockert, Elisabeth; Karbach, Julia; Herrlinger, Kristina; Atmaca, Akin; Arand, Michael; Chen, Yao-Tseng; Gnjatic, Sacha; Old, Lloyd J; Knuth, Alexander; Jäger, Elke

    2002-01-01

    NY-ESO-1 is one of the most immunogenic tumor antigens known to date. Spontaneous humoral and cellular immune responses against NY-ESO-1 are detected in a substantial proportion of patients with NY-ESO-1 positive cancers. NY-ESO-1 serum antibody is dependent on the presence of NY-ESO-1+ cancer cells, and antibody titers correlate with the clinical development of the disease. NY-ESO-1 serum antibody is associated with detectable NY-ESO-1-specific CD8+ T cell reactivity. High titers of NY-ESO-1...

  18. Naturalizing activity and safety of human monoclonal antibodies against of hepatitis C virus.

    Science.gov (United States)

    Abelhafez, Tawfeek H; Tabll, Ashraf A; El-Awady, Mostafa K; Mashaly, Mohammad M; El Shenawy, Reem; El-Abd, Yasmine S; Shaker, Maysa H; Abdel Malak, Camelia A

    2017-09-29

    Assessment of neutralizing activity of the human monoclonal antibodies against HCV and also study its safety in experimental small animals (Swiss mice). Assessment of neutralizing activity of the human monoclonal antibodies against HCV envelope regions (E1, E2) by two methods (by HCV cc infectious system and by using positive HCV positive serum as source of HCV particles (neutralizing assay 2). Dot ELISA were used to study the activity of the generated antibodies. We tested the safety and toxicity of the generated human antibodies by assessment the changes in biochemistry of liver function tests and changes in kidney function test, Complete blood counts (CBC) and study the pathological changes with different concentration of purified human antibodies. Human Abs # 5 & 11 showed neutralizing activity by (neutralizing assay 2) but were not neutralizing by HCV cc assay. Human Abs # 12 & 15 showed neutralizing activity by two methods i.e our generated human antibodies Abs# 5 &11 & 12 & 15 were neutralizing for HCV genotype 4a and Abs # 12 & 15 were neutralizing for HCV genotypes 4a and 2a. Liver and kidney functions and CBC results indicated that doses of 10 μg, 100 μg were safe. The histopathological results indicated that the dose of 10 μg of purified human monoclonal antibodies per mouse body weight was safe. The generated human monoclonal antibodies can be used to develop a potent immunotherapy that can be administrated for the post-transplantation patients to prevent the recurrence of HCV infection. Also, the monoclonal antibodies can be used to develop a vaccine against HCV.

  19. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies.

    Science.gov (United States)

    Pleiner, Tino; Bates, Mark; Görlich, Dirk

    2017-12-20

    Polyclonal anti-immunoglobulin G (anti-IgG) secondary antibodies are essential tools for many molecular biology techniques and diagnostic tests. Their animal-based production is, however, a major ethical problem. Here, we introduce a sustainable alternative, namely nanobodies against all mouse IgG subclasses and rabbit IgG. They can be produced at large scale in Escherichia coli and could thus make secondary antibody production in animals obsolete. Their recombinant nature allows fusion with affinity tags or reporter enzymes as well as efficient maleimide chemistry for fluorophore coupling. We demonstrate their superior performance in Western blotting, in both peroxidase- and fluorophore-linked form. Their site-specific labeling with multiple fluorophores creates bright imaging reagents for confocal and superresolution microscopy with much smaller label displacement than traditional secondary antibodies. They also enable simpler and faster immunostaining protocols, and allow multitarget localization with primary IgGs from the same species and of the same class. © 2018 Pleiner et al.

  20. 77 FR 9678 - Prospective Grant of Exclusive License: The Development of Human Anti-CD22 Monoclonal Antibodies...

    Science.gov (United States)

    2012-02-17

    ... Human Anti-CD22 Monoclonal Antibodies for the Treatment of Human Cancers and Autoimmune Disease AGENCY... Monoclonal Antibodies Against CD22'' , U.S. patent application 12/934,214 entitled ``Human Monoclonal... and m972 (SMB-002) monoclonal antibodies as therapies for the treatment of B cell cancers and...

  1. Seroprevalence of maternal and neonatal antibodies to human ...

    African Journals Online (AJOL)

    deficiency virus (HIV) and hepatitis B virus (HBV) was determined in 320 Nigerian parturients through unlinked anonymous study. Five millilitres each of 640 blood samples from consecutive mother-neonatal pairs were screened for HIV antibodies ...

  2. Presence of antibodies against genogroup VI norovirus in humans

    National Research Council Canada - National Science Library

    Mesquita, João Rodrigo; Costantini, Verónica P; Cannon, Jennifer L; Lin, Seh-ching; Nascimento, Maria São José; Vinjé, Jan

    2013-01-01

    .... Sera from 373 small animal veterinarians and 120 age-matched population controls were tested for IgG antibodies to CaNoV by a recombinant virus like particle based enzyme-linked immunosorbent assay...

  3. Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

  4. Production and characterisation of monoclonal antibodies against native and disassembled human catalase

    NARCIS (Netherlands)

    Wiemer, E. A.; Ofman, R.; Middelkoop, E.; de Boer, M.; Wanders, R. J.; Tager, J. M.

    1992-01-01

    Catalase isolated from human erythrocytes was used to immunise mice, in order to generate hybridomas producing specific monoclonal antibodies to the enzyme. Hybridomas secreting anti-(catalase) antibodies were identified by a modified enzyme-linked immunosorbent assay (ELISA) using either

  5. Two monoclonal anti-CD3 antibodies can induce different events in human T lymphocyte activation

    NARCIS (Netherlands)

    Roosnek, E. E.; van Lier, R. A.; Aarden, L. A.

    1987-01-01

    Two monoclonal antibodies, WT32 and CLB-T3/4.2a, directed against the CD3 complex were used to study the mechanism of activation of human peripheral T lymphocytes. WT32, a mouse monoclonal IgG2a antibody with a low avidity (much less than OKT3) for the CD3 complex, effectively induces mitogenesis of

  6. Naturally Acquired Human Immunity to Pneumococcus Is Dependent on Antibody to Protein Antigens

    NARCIS (Netherlands)

    Wilson, R. (Robert); J. Cohen (Jonathan); Reglinski, M. (Mark); R.J. Jose; Chan, W.Y. (Win Yan); Marshall, H. (Helina); C.P. de Vogel (Corné); S.B. Gordon (Stephen); Goldblatt, D. (David); Petersen, F.C. (Fernanda C.); H. Baxendale (Helen); Brown, J.S. (Jeremy S.)

    2017-01-01

    textabstractNaturally acquired immunity against invasive pneumococcal disease (IPD) is thought to be dependent on anti-capsular antibody. However nasopharyngeal colonisation by Streptococcus pneumoniae also induces antibody to protein antigens that could be protective. We have used human intravenous

  7. Humanized versus murine anti-human epidermal growth factor receptor monoclonal antibodies for immunoscintigraphic studies

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alejo A. Morales; Duconge, Jorge; Alvarez-Ruiz, Daniel; Becquer-Viart, Maria de Los Angeles; Nunez-Gandolff, Gilda; Fernandez, Eduardo; Caballero-Torres, Idania; Iznaga-Escobar, Normando

    2000-02-01

    The anti-human epidermal growth factor receptor (EGF-R) humanized antibody h-R3 (IgG{sub 1}), which binds to an extracellular domain of EGF-R, was used to evaluate the biodistribution on nude mice xenografted with A431 epidermoid carcinoma cell line. Results are compared with its murine version ior egf/r3 monoclonal antibody (mAb). Twenty-one athymic female 4NMRI nu/nu mice were injected intravenously with 10 {mu}g/100 {mu}Ci of {sup 99m}Tc-labeled mAbs. The mAb ior C5 that recognizes an antigen expressed preferentially on the surface of malignant and cytoplasm of normal colorectal cells was used as negative control. Immunoreactivity of {sup 99m}Tc-labeled mAbs was measured by enzyme linked immunosorbent assay on A431 cell line and the immunoreactive fractions determined by Lindmo method. Among all organs significant accumulation was found in tumor (6.14{+-}2.50 %ID/g, 5.06{+-}2.61 %ID/g for murine and humanized mAbs, respectively) 4 h after injection. The immunoreactive fractions were found to be 0.88 and 0.81 for murine and humanized mAb, respectively. Thus, we expect better results using the humanized mAb h-R3 for diagnostic immunoscintigraphy.

  8. Measuring serum antibody to human papillomavirus following infection or vaccination.

    Science.gov (United States)

    Frazer, Ian H

    2010-06-01

    The family of human papillomaviruses (HPVs) includes more than 130 genotypes, many of which infect the genital tract, and these can be classified as low risk or high risk for induction of genital neoplasia. Two prophylactic vaccines are currently available for the prevention of genital HPV infection: a quadrivalent (Gardasil); Merck & Co. Inc) and a bivalent (Cervarix; GlaxoSmithKline) vaccine. Protection against HPV infection and associated disease is observed for at least 6.4 years following immunization with the bivalent vaccine and for at least 8.5 years with the HPV 16L1 virus-like particle of the quadrivalent vaccine. HPV vaccines induce robust immune memory, as evidenced by recall of responses after revaccination, suggesting that immunization will afford long-lasting protection. An immunological marker for ongoing protection from infection would provide information to help establish best-practice deployment of these vaccines. However, while HPV-specific antibody is likely the major mechanism of protection against HPV infection following immunization, available serological assays provide only a partial characterization of immune status, and no measured immune response has been shown to define immediate or future protection against HPV infection or associated disease. Future research efforts should therefore be directed towards correlating measures of virus-specific immune memory with continued protection against infection with the HPV types in the available vaccines, and towards determining the duration of cross-protection afforded by these vaccines against HPV types other than those incorporated in the vaccines. Copyright (c) 2010. Published by Elsevier Inc.

  9. Preparation and validation of radio iodinated recombinant human IL-10 for the measurement of natural human antibodies against IL-10

    DEFF Research Database (Denmark)

    de Lemos Rieper, Carina; Galle, Pia; Svenson, Morten

    2009-01-01

    Radio iodinated recombinant human IL-10 was prepared and validated for the measurement of natural human anti-IL-10 antibodies. Iodination of IL-10 was accomplished by means of the chloramine-T method. The crude tracer was purified by size chromatography as homo-dimeric IL-10 with a specific...... activity of 75 cpm/pg. Validation of the tracer confirmed preserved antibody epitopes and receptor binding ability. A robust Radio Immuno Assay (RIA) was developed and validated to detect natural human anti-IL-10 antibodies based on the formation of (125)I-labeled IL-10-IgG complexes in solution...... and separation of the complexes by chromatography on mini-columns. The RIA was applied to 3360 plasma samples derived from normal Danish blood donors. Generally, IL-10 did not bind to plasma factors other than natural anti-IL-10 IgG antibodies. The prevalence of donors high positive for antibodies against IL-10...

  10. Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset.

    Science.gov (United States)

    Chen, Zhe; Bao, Linlin; Chen, Cong; Zou, Tingting; Xue, Ying; Li, Fengdi; Lv, Qi; Gu, Songzhi; Gao, Xiaopan; Cui, Sheng; Wang, Jianmin; Qin, Chuan; Jin, Qi

    2017-06-15

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection in humans is highly lethal, with a fatality rate of 35%. New prophylactic and therapeutic strategies to combat human infections are urgently needed. We isolated a fully human neutralizing antibody, MCA1, from a human survivor. The antibody recognizes the receptor-binding domain of MERS-CoV S glycoprotein and interferes with the interaction between viral S and the human cellular receptor human dipeptidyl peptidase 4 (DPP4). To our knowledge, this study is the first to report a human neutralizing monoclonal antibody that completely inhibits MERS-CoV replication in common marmosets. Monotherapy with MCA1 represents a potential alternative treatment for human infections with MERS-CoV worthy of evaluation in clinical settings. © Crown copyright 2017.

  11. Generation of human antigen-specific monoclonal IgM antibodies using vaccinated "human immune system" mice

    NARCIS (Netherlands)

    Becker, P.D.; Legrand, N.; van Geelen, C.M.M.; Noerder, M.; Huntington, N.D.; Lim, A.; Yasuda, E.; Diehl, S.A.; Scheeren, F.A.; Ott, M.; Weijer, K.; Wedemeyer, H.; Di Santo, J.P.; Beaumont, T.; Guzman, C.A.; Spits, H.

    2010-01-01

    Passive transfer of antibodies not only provides immediate short-term protection against disease, but also can be exploited as a therapeutic tool. However, the 'humanization' of murine monoclonal antibodies (mAbs) is a time-consuming and expensive process that has the inherent drawback of

  12. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays

    DEFF Research Database (Denmark)

    Säll, Anna; Walle, Maria; Wingren, Christer

    2016-01-01

    in a high-throughput manner. To address this we designed and constructed two human synthetic antibody fragment (scFv) libraries denoted HelL-11 and HelL-13. By the use of phage display technology, in total 466 unique scFv antibodies specific for 114 different antigens were generated. The specificities...... of these antibodies were analyzed in a variety of immunochemical assays and a subset was further evaluated for functionality in protein microarray applications. This high-throughput approach demonstrates the ability to rapidly generate a wealth of reagents not only for proteome research, but potentially also......Antibody-based proteomics offers distinct advantages in the analysis of complex samples for discovery and validation of biomarkers associated with disease. However, its large-scale implementation requires tools and technologies that allow development of suitable antibody or antibody fragments...

  13. Human IgG subclass antibodies to the 19 kilodalton carboxy ...

    African Journals Online (AJOL)

    Human IgG subclass antibodies to the 19 kilodalton carboxy terminal fragment of Plasmodium Falciparum merozoite surface protein 1 (MSP1 19 ) and predominance of the MAD20 allelic type of MSP1 in Uganda.

  14. Monoclonal antibodies to human glycophorin A and cell lines for the production thereof

    Science.gov (United States)

    Vanderlaan, Martin; Bigbee, William L.; Jensen, Ronald H.; Fong, Stella S. N.; Langlois, Richard G.

    1988-01-01

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that are highly specific to and exhibit high affinity for glycophorin A.sup.N and differentiate between the M and N forms of human glycophorin A.

  15. Increased levels of IgG antibodies against human HSP60 in patients with spondyloarthritis

    DEFF Research Database (Denmark)

    Hjelholt, Astrid; Carlsen, Thomas; Deleuran, Bent

    2013-01-01

    and Campylobacter jejuni. Disease severity was assessed by the clinical scorings Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI) and Bath Ankylosing Spondylitis Metrology Index (BASMI). Levels of IgG1 and IgG3 antibodies against human HSP60...... bacterial and human HSP60, also named HSPD1, are highly homologous, cross-reactivity has been suggested in disease initiation. In this study, levels of antibodies against bacterial and human HSP60 were analysed in SpA patients and healthy controls, and the association between such antibodies and disease...... severity in relation to HLA-B27 was evaluated.Serum samples from 82 patients and 50 controls were analysed by enzyme-linked immunosorbent assay (ELISA) for immunoglobulin (Ig)G1, IgG2, IgG3 and IgG4 antibodies against human HSP60 and HSP60 from Chlamydia trachomatis, Salmonella enteritidis...

  16. Specific MR imaging of human-lymphocytes by monoclonal antibody-guided dextran-magnetite particles

    NARCIS (Netherlands)

    Bulte, J. W. M.; Hoekstra, Y; Kamman, R. L.; Magin, R. L.; Webb, A. G.; Briggs, R. W.; Go, K. G.; Hulstaert, C. E.; Miltenyi, S.; The, T. Hauw; de Leij, L

    Human lymphocytes were labeled with biotinylated anti-lymphocyte-directed monoclonal antibodies, to which streptavidin and subsequently biotinylated dextran-magnetite particles were coupled. This labeling resulted in a strong and selective negative contrast enhancement of lymphocyte suspensions at

  17. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics

    Directory of Open Access Journals (Sweden)

    Peter Bannas

    2017-11-01

    Full Text Available Monoclonal antibodies have revolutionized cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa of conventional antibodies. The minimal target recognition module of a conventional antibody is composed of two non-covalently associated variable domains (VH and VL. The proper orientation of these domains is mediated by their hydrophobic interface and is stabilized by their linkage to disulfide-linked constant domains (CH1 and CL. VH and VL domains can be fused via a genetic linker into a single-chain variable fragment (scFv. scFv modules in turn can be fused to one another, e.g., to generate a bispecific T-cell engager, or they can be fused in various orientations to antibody hinge and Fc domains to generate bi- and multispecific antibodies. However, the inherent hydrophobic interaction of VH and VL domains limits the stability and solubility of engineered antibodies, often causing aggregation and/or mispairing of V-domains. Nanobodies (15 kDa and nanobody-based human heavy chain antibodies (75 kDa can overcome these limitations. Camelids naturally produce antibodies composed only of heavy chains in which the target recognition module is composed of a single variable domain (VHH or Nb. Advantageous features of nanobodies include their small size, high solubility, high stability, and excellent tissue penetration in vivo. Nanobodies can readily be linked genetically to Fc-domains, other nanobodies, peptide tags, or toxins and can be conjugated chemically at a specific site to drugs, radionuclides, photosensitizers, and nanoparticles. These properties make them particularly suited for specific and efficient targeting of tumors in vivo. Chimeric nanobody-heavy chain antibodies combine advantageous features of nanobodies and human Fc domains in about half the size of a conventional antibody. In this review, we discuss recent developments and perspectives for applications of nanobodies and nanobody

  18. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice.

    Science.gov (United States)

    Sapparapu, Gopal; Fernandez, Estefania; Kose, Nurgun; Bin Cao; Fox, Julie M; Bombardi, Robin G; Zhao, Haiyan; Nelson, Christopher A; Bryan, Aubrey L; Barnes, Trevor; Davidson, Edgar; Mysorekar, Indira U; Fremont, Daved H; Doranz, Benjamin J; Diamond, Michael S; Crowe, James E

    2016-12-15

    Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause severe disease, including congenital birth defects during pregnancy. To develop candidate therapeutic agents against ZIKV, we isolated a panel of human monoclonal antibodies from subjects that were previously infected with ZIKV. We show that a subset of antibodies recognize diverse epitopes on the envelope (E) protein and exhibit potent neutralizing activity. One of the most inhibitory antibodies, ZIKV-117, broadly neutralized infection of ZIKV strains corresponding to African and Asian-American lineages. Epitope mapping studies revealed that ZIKV-117 recognized a unique quaternary epitope on the E protein dimer-dimer interface. We evaluated the therapeutic efficacy of ZIKV-117 in pregnant and non-pregnant mice. Monoclonal antibody treatment markedly reduced tissue pathology, placental and fetal infection, and mortality in mice. Thus, neutralizing human antibodies can protect against maternal-fetal transmission, infection and disease, and reveal important determinants for structure-based rational vaccine design efforts.

  19. Generation of human scFvs antibodies recognizing a prion protein epitope expressed on the surface of human lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Imperiale Valentina

    2007-07-01

    Full Text Available Abstract Background A hallmark of prion disease is the transformation of normal cellular prion protein (PrPc into an infectious disease-associated isoform, (PrPsc. Anti-prion protein monoclonal antibodies are invaluable for structure-function studies of PrP molecules. Furthermore recent in vitro and in vivo studies indicate that anti-PrP monoclonal antibodies can prevent the incorporation of PrPc into propagating prions. In the present article, we show two new human phage antibodies, isolated on recombinant hamster prion protein (rHaPrP. Results We adopted an antibody phage display strategy to isolate specific human antibodies directed towards rHaPrP which has been used as a bait for panning the synthetic ETH-2 antibody phage library. Two phage antibodies clones named MA3.B4 and MA3.G3 were isolated and characterized under genetic biochemical and immunocytochemical aspects. The clones were found to recognize the prion protein in ELISA studies. In flow-cytometry studies, these human single chain Fragment variable (scFv phage-antibodies show a well defined pattern of reactivity on human lymphoblastoid and myeloid cells. Conclusion Sequence analysis of the gene encoding for the antibody fragments and antigen recognition patterns determined by flow-cytometry analysis indicate that the isolated scFvs recognize novel epitopes in the PrPc molecule. These new anti PrPc human antibodies are unique reagents for prion protein detection and may represent a biologic platform to develop new reagents to treat PrPsc associated disease.

  20. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice.

    Science.gov (United States)

    Murphy, Andrew J; Macdonald, Lynn E; Stevens, Sean; Karow, Margaret; Dore, Anthony T; Pobursky, Kevin; Huang, Tammy T; Poueymirou, William T; Esau, Lakeisha; Meola, Melissa; Mikulka, Warren; Krueger, Pamela; Fairhurst, Jeanette; Valenzuela, David M; Papadopoulos, Nicholas; Yancopoulos, George D

    2014-04-08

    Mice genetically engineered to be humanized for their Ig genes allow for human antibody responses within a mouse background (HumAb mice), providing a valuable platform for the generation of fully human therapeutic antibodies. Unfortunately, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which their genetic humanization was carried out. Heretofore, HumAb mice have been generated by disrupting the endogenous mouse Ig genes and simultaneously introducing human Ig transgenes at a different and random location; KO-plus-transgenic humanization. As we describe in the companion paper, we attempted to make mice that more efficiently use human variable region segments in their humoral responses by precisely replacing 6 Mb of mouse Ig heavy and kappa light variable region germ-line gene segments with their human counterparts while leaving the mouse constant regions intact, using a unique in situ humanization approach. We reasoned the introduced human variable region gene segments would function indistinguishably in their new genetic location, whereas the retained mouse constant regions would allow for optimal interactions and selection of the resulting antibodies within the mouse environment. We show that these mice, termed VelocImmune mice because they were generated using VelociGene technology, efficiently produce human:mouse hybrid antibodies (that are rapidly convertible to fully human antibodies) and have fully functional humoral immune systems indistinguishable from those of WT mice. The efficiency of the VelocImmune approach is confirmed by the rapid progression of 10 different fully human antibodies into human clinical trials.

  1. Humanization of Antibodies Using Heavy Chain Complementarity-determining Region 3 Grafting Coupled with in Vitro Somatic Hypermutation*

    Science.gov (United States)

    Bowers, Peter M.; Neben, Tamlyn Y.; Tomlinson, Geoffery L.; Dalton, Jennifer L.; Altobell, Larry; Zhang, Xue; Macomber, John L.; Wu, Betty F.; Toobian, Rachelle M.; McConnell, Audrey D.; Verdino, Petra; Chau, Betty; Horlick, Robert A.; King, David J.

    2013-01-01

    A method for simultaneous humanization and affinity maturation of monoclonal antibodies has been developed using heavy chain complementarity-determining region (CDR) 3 grafting combined with somatic hypermutation in vitro. To minimize the amount of murine antibody-derived antibody sequence used during humanization, only the CDR3 region from a murine antibody that recognizes the cytokine hβNGF was grafted into a nonhomologous human germ line V region. The resulting CDR3-grafted HC was paired with a CDR-grafted light chain, displayed on the surface of HEK293 cells, and matured using in vitro somatic hypermutation. A high affinity humanized antibody was derived that was considerably more potent than the parental antibody, possessed a low pm dissociation constant, and demonstrated potent inhibition of hβNGF activity in vitro. The resulting antibody contained half the heavy chain murine donor sequence compared with the same antibody humanized using traditional methods. PMID:23355464

  2. Humanization of antibodies using heavy chain complementarity-determining region 3 grafting coupled with in vitro somatic hypermutation.

    Science.gov (United States)

    Bowers, Peter M; Neben, Tamlyn Y; Tomlinson, Geoffery L; Dalton, Jennifer L; Altobell, Larry; Zhang, Xue; Macomber, John L; Wu, Betty F; Toobian, Rachelle M; McConnell, Audrey D; Verdino, Petra; Chau, Betty; Horlick, Robert A; King, David J

    2013-03-15

    A method for simultaneous humanization and affinity maturation of monoclonal antibodies has been developed using heavy chain complementarity-determining region (CDR) 3 grafting combined with somatic hypermutation in vitro. To minimize the amount of murine antibody-derived antibody sequence used during humanization, only the CDR3 region from a murine antibody that recognizes the cytokine hβNGF was grafted into a nonhomologous human germ line V region. The resulting CDR3-grafted HC was paired with a CDR-grafted light chain, displayed on the surface of HEK293 cells, and matured using in vitro somatic hypermutation. A high affinity humanized antibody was derived that was considerably more potent than the parental antibody, possessed a low pm dissociation constant, and demonstrated potent inhibition of hβNGF activity in vitro. The resulting antibody contained half the heavy chain murine donor sequence compared with the same antibody humanized using traditional methods.

  3. Immunoreactivity of skate electrocytes towards monoclonal antibodies against human dystrophin and dystrophin-related (DMDL) protein.

    Science.gov (United States)

    Dowdall, M J; Ellis, J M; Nguyen thi Man; Morris, G E

    1992-04-13

    Monoclonal antibodies against human dystrophin have been used to demonstrate the existence of a dystrophin-like protein in the electrocytes of skate electric organ. This protein is also present in skate muscle and resembles that found in Torpedo electric organ. Monoclonal antibodies against a human autosomal homologue of dystrophin (DMDL protein) did not detect a similar protein in skate or Torpedo. Immunocytochemical staining of the innervated and non-innervated faces of the electrocyte membrane was obtained using the anti-dystrophin antibodies only.

  4. VH-VL orientation prediction for antibody humanization candidate selection: A case study.

    Science.gov (United States)

    Bujotzek, Alexander; Lipsmeier, Florian; Harris, Seth F; Benz, Jörg; Kuglstatter, Andreas; Georges, Guy

    2016-01-01

    Antibody humanization describes the procedure of grafting a non-human antibody's complementarity-determining regions, i.e., the variable loop regions that mediate specific interactions with the antigen, onto a β-sheet framework that is representative of the human variable region germline repertoire, thus reducing the number of potentially antigenic epitopes that might trigger an anti-antibody response. The selection criterion for the so-called acceptor frameworks (one for the heavy and one for the light chain variable region) is traditionally based on sequence similarity. Here, we propose a novel approach that selects acceptor frameworks such that the relative orientation of the 2 variable domains in 3D space, and thereby the geometry of the antigen-binding site, is conserved throughout the process of humanization. The methodology relies on a machine learning-based predictor of antibody variable domain orientation that has recently been shown to improve the quality of antibody homology models. Using data from 3 humanization campaigns, we demonstrate that preselecting humanization variants based on the predicted difference in variable domain orientation with regard to the original antibody leads to subsets of variants with a significant improvement in binding affinity.

  5. Germline humanization of a murine Aβ antibody and crystal structure of the humanized recombinant Fab fragment

    Science.gov (United States)

    Robert, Remy; Streltsov, Victor A; Newman, Janet; Pearce, Lesley A; Wark, Kim L; Dolezal, Olan

    2010-01-01

    Alzheimer's disease is the most common form of dementia, affecting 26 million people worldwide. The Aβ peptide (39–43 amino acids) derived from the proteolytic cleavage of the amyloid precursor protein is one of the main constituents of amyloid plaques associated with disease pathogenesis and therefore a validated target for therapy. Recently, we characterized antibody fragments (Fab and scFvs) derived from the murine monoclonal antibody WO-2, which bind the immunodominant epitope (3EFRH6) in the Aβ peptide at the N-terminus. In vitro, these fragments are able to inhibit fibril formation, disaggregate preformed amyloid fibrils, and protect neuroblastoma cells against oligomer-mediated toxicity. In this study, we describe the humanization of WO-2 using complementary determining region loop grafting onto the human germline gene and the determination of the three-dimensional structure by X-ray crystallography. This humanized version retains a high affinity for the Aβ peptide and therefore is a potential candidate for passive immunotherapy of Alzheimer's disease. PMID:20014445

  6. Critical contribution of VH–VL interaction to reshaping of an antibody: The case of humanization of anti-lysozyme antibody, HyHEL-10

    Science.gov (United States)

    Nakanishi, Takeshi; Tsumoto, Kouhei; Yokota, Akiko; Kondo, Hidemasa; Kumagai, Izumi

    2008-01-01

    To clarify the effects of humanizing a murine antibody on its specificity and affinity for its target, we examined the interaction between hen egg white lysozyme (HEL) and its antibody, HyHEL-10 variable domain fragment (Fv). We selected a human antibody framework sequence with high homology, grafted sequences of six complementarity-determining regions of murine HyHEL-10 onto the framework, and investigated the interactions between the mutant Fvs and HEL. Isothermal titration calorimetry indicated that the humanization led to 10-fold reduced affinity of the antibody for its target, due to an unfavorable entropy change. Two mutations together into the interface of the variable domains, however, led to complete recovery of antibody affinity and specificity for the target, due to reduction of the unfavorable entropy change. X-ray crystallography of the complex of humanized antibodies, including two mutants, with HEL demonstrated that the complexes had almost identical structures and also paratope and epitope residues were almost conserved, except for complementary association of variable domains. We conclude that adjustment of the interfacial structures of variable domains can contribute to the reversal of losses of affinity or specificity caused by humanization of murine antibodies, suggesting that appropriate association of variable domains is critical for humanization of murine antibodies without loss of function. PMID:18227432

  7. Monoclonal antibodies to human butyrylcholinesterase reactive with butyrylcholinesterase in animal plasma.

    Science.gov (United States)

    Peng, Hong; Brimijoin, Stephen; Hrabovska, Anna; Krejci, Eric; Blake, Thomas A; Johnson, Rudolph C; Masson, Patrick; Lockridge, Oksana

    2016-01-05

    Five mouse anti-human butyrylcholinesterase (BChE) monoclonal antibodies bind tightly to native human BChE with nanomolar dissociation constants. Pairing analysis in the Octet system identified the monoclonal antibodies that bind to overlapping and independent epitopes on human BChE. The nucleotide and amino acid sequences of 4 monoclonal antibodies are deposited in GenBank. Our goal was to determine which of the 5 monoclonal antibodies recognize BChE in the plasma of animals. Binding of monoclonal antibodies 11D8, B2 18-5, B2 12-1, mAb2 and 3E8 to BChE in animal plasma was measured using antibody immobilized on Pansorbin cells and on Dynabeads Protein G. A third method visualized binding by the shift of BChE activity bands on nondenaturing gels stained for BChE activity. Gels were counterstained for carboxylesterase activity. The three methods agreed that B2 18-5 and mAb2 have broad species specificity, but the other monoclonal antibodies interacted only with human BChE, the exception being 3E8, which also bound chicken BChE. B2 18-5 and mAb2 recognized BChE in human, rhesus monkey, horse, cat, and tiger plasma. A weak response was found with rabbit BChE. Monoclonal mAb2, but not B2 18-5, bound pig and bovine BChE. Gels stained for carboxylesterase activity confirmed that plasma from humans, monkey, pig, chicken, and cow does not contain carboxylesterase, but plasma from horse, cat, tiger, rabbit, guinea pig, mouse, and rat has carboxylesterase. Rabbit plasma carboxylesterase hydrolyzes butyrylthiocholine. In conclusion monoclonal antibodies B2 18-5 and mAb2 can be used to immuno extract BChE from the plasma of humans, monkey and other animals. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Structural basis for the recognition of human cytomegalovirus glycoprotein B by a neutralizing human antibody.

    Directory of Open Access Journals (Sweden)

    Nadja Spindler

    2014-10-01

    Full Text Available Human cytomegalovirus (HCMV infections are life-threating to people with a compromised or immature immune system. Upon adhesion, fusion of the virus envelope with the host cell is initiated. In this step, the viral glycoprotein gB is considered to represent the major fusogen. Here, we present for the first time structural data on the binding of an anti-herpes virus antibody and describe the atomic interactions between the antigenic domain Dom-II of HCMV gB and the Fab fragment of the human antibody SM5-1. The crystal structure shows that SM5-1 binds Dom-II almost exclusively via only two CDRs, namely light chain CDR L1 and a 22-residue-long heavy chain CDR H3. Two contiguous segments of Dom-II are targeted by SM5-1, and the combining site includes a hydrophobic pocket on the Dom-II surface that is only partially filled by CDR H3 residues. SM5-1 belongs to a series of sequence-homologous anti-HCMV gB monoclonal antibodies that were isolated from the same donor at a single time point and that represent different maturation states. Analysis of amino acid substitutions in these antibodies in combination with molecular dynamics simulations show that key contributors to the picomolar affinity of SM5-1 do not directly interact with the antigen but significantly reduce the flexibility of CDR H3 in the bound and unbound state of SM5-1 through intramolecular side chain interactions. Thus, these residues most likely alleviate unfavorable binding entropies associated with extra-long CDR H3s, and this might represent a common strategy during antibody maturation. Models of entire HCMV gB in different conformational states hint that SM5-1 neutralizes HCMV either by blocking the pre- to postfusion transition of gB or by precluding the interaction with additional effectors such as the gH/gL complex.

  9. ImmunoPET and biodistribution with human epidermal growth factor receptor 3 targeting antibody Zr-89-RG7116

    NARCIS (Netherlands)

    Terwisscha Van Scheltinga, Anton G. T.; Lub-de Hooge, Marjolijn N.; Abiraj, Keelara; Schroder, Carolien P.; Pot, Linda; Bossenmaier, Birgit; Thomas, Marlene; Holzlwimmer, Gabriele; Friess, Thomas; Kosterink, Jos G. W.; de Vries, Liesbeth

    2014-01-01

    The humanized monoclonal antibody with high affinity for the human epidermal growth factor receptor (HER) 3, RG7116, is a glycoengineered, IgG1 class antibody. By labeling RG7116 with zirconium-89 (Zr-89) we aimed to visualize in vivo HER 3 expression and study the biodistribution of this antibody

  10. Potent Human Monoclonal Antibodies against SARS CoV, Nipah and Hendra Viruses

    Science.gov (United States)

    Prabakaran, Ponraj; Zhongyu, Zhu; Xiao, Xiaodong; Biragyn, Arya; Dimitrov, Antony S.; Broder, Christopher C.; Dimitrov, Dimiter S.

    2009-01-01

    Polyclonal antibodies have a century-old history of being effective against some viruses; recently, monoclonal antibodies (mAbs) have also shown success. The humanized mAb Synagis (palivizumab) remains still the only mAb against respiratory syncytial virus (RSV) infections approved by the U.S. Food and Drug Administration (FDA). Recently, several potent human monoclonal antibodies (hmAbs) targeting the Severe Acute Respiratory Syndrome-Associated coronavirus (SARS CoV) S glycoproteins were developed quickly after the virus was identified in 2003. Among these antibodies, m396 and S230.15 exhibit exceptional potency and cross-reactivity as they neutralize isolates from the first and second outbreaks and from palm civets both in vitroand in mice. Similarly, the first fully hmAbs against two other paramyxoviruses, Hendra virus (HeV) and Nipah virus (NiV), which can cause up to 75% mortality, were recently developed; one of them, m102.4, shows exceptional cross-reactive potency against both NiV and HeV. Three-dimensional molecular structures of envelope glycoproteins from these viruses in complexes with antibodies and/or receptors were recently determined. Structural analyses along with other experiments have provided insights into the molecular mechanisms of receptor recognition and antibody neutralization, and suggested that these antibodies alone or in combination could successfully fight the viruses’ heterogeneity and mutability which is a major problem in the development of effective therapeutic agents against viruses, including therapeutic antibodies. PMID:19216624

  11. Prevalence of hepatitis C Antibody in Human Immunodeficiency ...

    African Journals Online (AJOL)

    2015-10-25

    Oct 25, 2015 ... + Ear piercing was seen only in girls * Circumcision was seen only among boys. PMV = Patent medicine vendor ΩA cultural practice done by tradi tional barber. Discussion. This study has shown the presence of HCV antibodies in. HIV infected children aged 2 to 15 years as well as in age and sex-matched ...

  12. Increased levels of IgG antibodies against human HSP60 in patients with spondyloarthritis.

    Directory of Open Access Journals (Sweden)

    Astrid Hjelholt

    Full Text Available Spondyloarthritis (SpA comprises a heterogeneous group of inflammatory diseases, with strong association to human leukocyte antigen (HLA-B27. A triggering bacterial infection has been considered as the cause of SpA, and bacterial heat shock protein (HSP seems to be a strong T cell antigen. Since bacterial and human HSP60, also named HSPD1, are highly homologous, cross-reactivity has been suggested in disease initiation. In this study, levels of antibodies against bacterial and human HSP60 were analysed in SpA patients and healthy controls, and the association between such antibodies and disease severity in relation to HLA-B27 was evaluated.Serum samples from 82 patients and 50 controls were analysed by enzyme-linked immunosorbent assay (ELISA for immunoglobulin (IgG1, IgG2, IgG3 and IgG4 antibodies against human HSP60 and HSP60 from Chlamydia trachomatis, Salmonella enteritidis and Campylobacter jejuni. Disease severity was assessed by the clinical scorings Bath Ankylosing Spondylitis Disease Activity Index (BASDAI, Bath Ankylosing Spondylitis Functional Index (BASFI and Bath Ankylosing Spondylitis Metrology Index (BASMI. Levels of IgG1 and IgG3 antibodies against human HSP60, but not antibodies against bacterial HSP60, were elevated in the SpA group compared with the control group. Association between IgG3 antibodies against human HSP60 and BASMI was shown in HLA-B27⁺ patients. Only weak correlation between antibodies against bacterial and human HSP60 was seen, and there was no indication of cross-reaction. These results suggest that antibodies against human HSP60 is associated with SpA, however, the theory that antibodies against human HSP60 is a specific part of the aetiology, through cross-reaction to bacterial HSP60, cannot be supported by results from this study. We suggest that the association between elevated levels of antibodies against human HSP60 and disease may reflect a general activation of the immune system and an increased

  13. Structure of a Human Astrovirus Capsid-Antibody Complex and Mechanistic Insights into Virus Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanoff, Walter A.; Campos, Jocelyn; Perez, Edmundo I.; Yin, Lu; Alexander, David L.; DuBois, Rebecca M. (UCSC)

    2016-11-02

    ABSTRACT

    Human astroviruses (HAstVs) are a leading cause of viral diarrhea in young children, the immunocompromised, and the elderly. There are no vaccines or antiviral therapies against HAstV disease. Several lines of evidence point to the presence of protective antibodies in healthy adults as a mechanism governing protection against reinfection by HAstV. However, development of anti-HAstV therapies is hampered by the gap in knowledge of protective antibody epitopes on the HAstV capsid surface. Here, we report the structure of the HAstV capsid spike domain bound to the neutralizing monoclonal antibody PL-2. The antibody uses all six complementarity-determining regions to bind to a quaternary epitope on each side of the dimeric capsid spike. We provide evidence that the HAstV capsid spike is a receptor-binding domain and that the antibody neutralizes HAstV by blocking virus attachment to cells. We identify patches of conserved amino acids that overlap the antibody epitope and may comprise a receptor-binding site. Our studies provide a foundation for the development of therapies to prevent and treat HAstV diarrheal disease.

    IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies in healthy adults protect them against reinfection. Here, we determined the crystal structure of a complex of the HAstV capsid protein and a virus-neutralizing antibody. We show that the antibody binds to the outermost spike domain of the capsid, and we provide evidence that the antibody blocks virus attachment to human cells. Importantly, our findings suggest that a subunit-based vaccine focusing the immune system on the HAstV capsid spike domain could be effective in protecting children against HAstV disease.

  14. Transgenic mouse strains as platforms for the successful discovery and development of human therapeutic monoclonal antibodies.

    Science.gov (United States)

    Green, Larry L

    2014-03-01

    Transgenic mice have yielded seven of the ten currently-approved human antibody drugs, making them the most successful platform for the discovery of fully human antibody therapeutics. The use of the in vivo immune system helps drive this success by taking advantage of the natural selection process that produces antibodies with desirable characteristics. Appropriately genetically-engineered mice act as robust engines for the generation of diverse repertoires of affinity- matured fully human variable regions with intrinsic properties necessary for successful antibody drug development including high potency, specificity, manufacturability, solubility and low risk of immunogenicity. A broad range of mAb drug targets are addressable in these mice, comprising both secreted and transmembrane targets, including membrane multi-spanning targets, as well as human target antigens that share high sequence identity with their mouse orthologue. Transgenic mice can routinely yield antibodies with sub-nanomolar binding affinity for their antigen, with lead candidate mAbs frequently possessing affinities for binding to their target of less than 100 picomolar, without requiring any ex vivo affinity optimization. While the originator transgenic mice platforms are no longer broadly available, a new generation of transgenic platforms is in development for discovery of the next wave of human therapeutic antibodies.

  15. The Fc and not CD4 Receptor Mediates Antibody Enhancement of HIV Infection in Human Cells

    Science.gov (United States)

    Homsy, Jacques; Meyer, Mia; Tateno, Masatoshi; Clarkson, Sarah; Levy, Jay A.

    1989-06-01

    Antibodies that enhance human immunodeficiency virus (HIV) infectivity have been found in the blood of infected individuals and in infected or immunized animals. These findings raise serious concern for the development of a safe vaccine against acquired immunodeficiency syndrome. To address the in vivo relevance and mechanism of this phenomenon, antibody-dependent enhancement of HIV infectivity in peripheral blood macrophages, lymphocytes, and human fibroblastoid cells was studied. Neither Leu3a, a monoclonal antibody directed against the CD4 receptor, nor soluble recombinant CD4 even at high concentrations prevented this enhancement. The addition of monoclonal antibody to the Fc receptor III (anti-FcRIII), but not of antibodies that react with FcRI or FcRII, inhibited HIV type 1 and HIV type 2 enhancement in peripheral blood macrophages. Although enhancement of HIV infection in CD4+ lymphocytes could not be blocked by anti-FcRIII, it was inhibited by the addition of human immunoglobulin G aggregates. The results indicate that the FcRIII receptor on human macrophages and possibly another Fc receptor on human CD4+ lymphocytes mediate antibody-dependent enhancement of HIV infectivity and that this phenomenon proceeds through a mechanism independent of the CD4 protein.

  16. Molecular Dissection of the Human Antibody Response to the Structural Repeat Epitope of Plasmodium falciparum sporozoite from a Protected Donor

    National Research Council Canada - National Science Library

    Chappel, Jonathan A; Rogers, William O; Hoffman, Stephen L; Kang, Angray S

    2004-01-01

    The circumsporozoite surface protein is the primary target of human antibodies against Plasmodium falciparum sporozoites, these antibodies are predominantly directed to the major repetitive epitope (Asn-Pro-Asn-Ala)n, (NPNA)n...

  17. Antibody humanization by molecular dynamics simulations-in-silico guided selection of critical backmutations.

    Science.gov (United States)

    Margreitter, Christian; Mayrhofer, Patrick; Kunert, Renate; Oostenbrink, Chris

    2016-06-01

    Monoclonal antibodies represent the fastest growing class of biotherapeutic proteins. However, as they are often initially derived from rodent organisms, there is a severe risk of immunogenic reactions, hampering their applicability. The humanization of these antibodies remains a challenging task in the context of rational drug design. "Superhumanization" describes the direct transfer of the complementarity determining regions to a human germline framework, but this humanization approach often results in loss of binding affinity. In this study, we present a new approach for predicting promising backmutation sites using molecular dynamics simulations of the model antibody Ab2/3H6. The simulation method was developed in close conjunction with novel specificity experiments. Binding properties of mAb variants were evaluated directly from crude supernatants and confirmed using established binding affinity assays for purified antibodies. Our approach provides access to the dynamical features of the actual binding sites of an antibody, based solely on the antibody sequence. Thus we do not need structural data on the antibody-antigen complex and circumvent cumbersome methods to assess binding affinities. © 2016 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd.

  18. Detection of early antibodies in human immunodeficiency virus infection by enzyme-linked immunosorbent assay, Western blot, and radioimmunoprecipitation.

    OpenAIRE

    Saah, A J; Farzadegan, H; Fox, R; Nishanian, P; Rinaldo, C R; Phair, J P; Fahey, J L; Lee, T H; Polk, B F

    1987-01-01

    A current concept of the serological response to human immunodeficiency virus (HIV) infection in humans is that antibodies to core antigens (p55, p24, and p15) are detectable earlier during initial stages of antibody production than antibodies against envelope antigens (gp160, gp120, and gp41). Comparative studies of Western blot (immunoblot), radioimmunoprecipitation assay (RIPA), and enzyme-linked immunosorbent assay (ELISA) during initial antibody production are limited to case reports and...

  19. Application of a human monoclonal antibody in a rapid competitive anti-HIV ELISA.

    Science.gov (United States)

    Döpel, S H; Porstmann, T; Grunow, R; Jungbauer, A; Von Baehr, R

    1989-01-17

    The ELISA is the established screening technique for the detection of antibodies directed against HIV. The first generation assays, mostly based on the sandwich principle, employed purified virus from cell culture and gave both false-positive and false-negative results. Sandwich-type assays preferentially detect IgG antibodies, require a high serum dilution and are two-step procedures. In order to detect an immune response as early as possible after infection anti-HIV antibodies of the IgM class should also be measured. To this end a competitive ELISA has been developed using a solid phase-adsorbed recombinant HIV envelope protein and an enzyme-labelled human monoclonal antibody. This detects both IgM and IgG antibodies, the results are available within 1 h and a serum predilution is not necessary.

  20. High prevalence of human anti-bovine IgG antibodies as the major cause of false positive reactions in two-site immunoassays based on monoclonal antibodies

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Koch, Claus; Jensen, Charlotte H

    2004-01-01

    A sandwich ELISA for quantification of the endometrial protein PP14 revealed false positive reactions in 81% of male sera (n = 54). The PP14 ELISA was based on two monoclonal antibodies (Mabs) with different epitope specificities--a catcher and a biotinylated indicator. The monoclonal antibodies...... were purified by protein G affinity chromatography from culture supernatant containing 10% (v/v) fetal calf serum (FCS). Human anti-animal IgG (bovine, mouse, horse, and swine) antibodies and human anti-bovine serum albumin antibodies were measured using an ELISA design, with direct bridging...... of the solid phase and biotinylated antigens. The false positive reactions were abolished by addition of 1% (v/v) bovine serum to the dilution buffer (DB). Human anti-bovine IgG antibodies (HABIA) were detected in 99 out of 104 sera from blood donors (50 females; 54 males). HABIA levels in male sera (n = 54...

  1. A novel human anti-interleukin-1β neutralizing monoclonal antibody showing in vivo efficacy.

    Science.gov (United States)

    Goh, Angeline X H; Bertin-Maghit, Sebastien; Ping Yeo, Siok; Ho, Adrian W S; Derks, Heidi; Mortellaro, Alessandra; Wang, Cheng-I

    2014-01-01

    The pro-inflammatory cytokine interleukin (IL)-1β is a clinical target in many conditions involving dysregulation of the immune system; therapeutics that block IL-1β have been approved to treat diseases such as rheumatoid arthritis (RA), neonatal onset multisystem inflammatory diseases, cryopyrin-associated periodic syndromes, active systemic juvenile idiopathic arthritis. Here, we report the generation and engineering of a new fully human antibody that binds tightly to IL-1β with a neutralization potency more than 10 times higher than that of the marketed antibody canakinumab. After affinity maturation, the derived antibody shows a>30-fold increased affinity to human IL-1β compared with its parent antibody. This anti-human IL-1β IgG also cross-reacts with mouse and monkey IL-1β, hence facilitating preclinical development. In a number of mouse models, this antibody efficiently reduced or abolished signs of disease associated with IL-1β pathology. Due to its high affinity for the cytokine and its potency both in vitro and in vivo, we propose that this novel fully human anti-IL-1β monoclonal antibody is a promising therapeutic candidate and a potential alternative to the current therapeutic arsenal.

  2. Production of secretory IgA antibodies in plants.

    Science.gov (United States)

    Larrick, J W; Yu, L; Naftzger, C; Jaiswal, S; Wycoff, K

    2001-10-15

    adverse effects or human anti-mouse antibodies (HAMA) have been observed in >40 patients receiving topical oral application of a plant produced secretory IgA specific to Streptococcus mutans, for the control of caries [(Nat. Med.)4(1998)601]. The progressive improvement of expression vectors for plantibodies, and purification strategies, as well as the increase in transformable crop species, is expected to lead to almost limitless availability of inexpensive (even edible forms of) recombinant immunoglobulins free of human pathogens for human and animal therapy, and for novel industrial applications (e.g. catalytic antibodies).

  3. Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico.

    Science.gov (United States)

    Robbiani, Davide F; Bozzacco, Leonia; Keeffe, Jennifer R; Khouri, Ricardo; Olsen, Priscilla C; Gazumyan, Anna; Schaefer-Babajew, Dennis; Avila-Rios, Santiago; Nogueira, Lilian; Patel, Roshni; Azzopardi, Stephanie A; Uhl, Lion F K; Saeed, Mohsan; Sevilla-Reyes, Edgar E; Agudelo, Marianna; Yao, Kai-Hui; Golijanin, Jovana; Gristick, Harry B; Lee, Yu E; Hurley, Arlene; Caskey, Marina; Pai, Joy; Oliveira, Thiago; Wunder, Elsio A; Sacramento, Gielson; Nery, Nivison; Orge, Cibele; Costa, Federico; Reis, Mitermayer G; Thomas, Neena M; Eisenreich, Thomas; Weinberger, Daniel M; de Almeida, Antonio R P; West, Anthony P; Rice, Charles M; Bjorkman, Pamela J; Reyes-Teran, Gustavo; Ko, Albert I; MacDonald, Margaret R; Nussenzweig, Michel C

    2017-05-04

    Antibodies to Zika virus (ZIKV) can be protective. To examine the antibody response in individuals who develop high titers of anti-ZIKV antibodies, we screened cohorts in Brazil and Mexico for ZIKV envelope domain III (ZEDIII) binding and neutralization. We find that serologic reactivity to dengue 1 virus (DENV1) EDIII before ZIKV exposure is associated with increased ZIKV neutralizing titers after exposure. Antibody cloning shows that donors with high ZIKV neutralizing antibody titers have expanded clones of memory B cells that express the same immunoglobulin VH3-23/VK1-5 genes. These recurring antibodies cross-react with DENV1, but not other flaviviruses, neutralize both DENV1 and ZIKV, and protect mice against ZIKV challenge. Structural analyses reveal the mechanism of recognition of the ZEDIII lateral ridge by VH3-23/VK1-5 antibodies. Serologic testing shows that antibodies to this region correlate with serum neutralizing activity to ZIKV. Thus, high neutralizing responses to ZIKV are associated with pre-existing reactivity to DENV1 in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof

    Science.gov (United States)

    Jensen, Ronald H.; Vanderlaan, Martin; Bigbee, William L.; Stanker, Larry H.; Branscomb, Elbert W.; Grabske, Robert J.

    1988-01-01

    The present invention provides monoclonal antibodies specific to and distinguish between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype.

  5. Monkeypox-specific antibodies in human and simian sera from the Ivory Coast and Nigeria.

    Science.gov (United States)

    Gispen, R; Brand-Saathof, B B; Hekker, A C

    1976-01-01

    A test for monkeypox-specific antibodies is described. Monkeypox immune sera can be made type-specific by immunoabsorption with heterotypic poxvirus extracts. Monkeypox-specific antibodies were demonstrated in sera from 9 cynomolgus monkeys (Macaca fascicularis) that had previously been experimentally infected with monkeypox. Monkeypox-specific antibodies were found in 3 wild-caught African monkeys (Cercopithecus spp.) and in 3 human sera collected from Africans in the Ivory Coast and Nigeria 3(1/2)-4 years after they had suffered a pox-like infection. Monkeypox had been recognized in one of the patients by virus isolation, and had been suspected in the others for epidemiological reasons. Vaccinia-specific antibodies were found in 4 human sera collected 6 weeks after smallpox vaccination.The serological results provide the first laboratory evidence of a monkeypox reservoir in wild monkeys.

  6. Monkeypox-specific antibodies in human and simian sera from the Ivory Coast and Nigeria*

    Science.gov (United States)

    Gispen, R.; Brand-Saathof, B.; Hekker, A. C.

    1976-01-01

    A test for monkeypox-specific antibodies is described. Monkeypox immune sera can be made type-specific by immunoabsorption with heterotypic poxvirus extracts. Monkeypox-specific antibodies were demonstrated in sera from 9 cynomolgus monkeys (Macaca fascicularis) that had previously been experimentally infected with monkeypox. Monkeypox-specific antibodies were found in 3 wild-caught African monkeys (Cercopithecus spp.) and in 3 human sera collected from Africans in the Ivory Coast and Nigeria 3½-4 years after they had suffered a pox-like infection. Monkeypox had been recognized in one of the patients by virus isolation, and had been suspected in the others for epidemiological reasons. Vaccinia-specific antibodies were found in 4 human sera collected 6 weeks after smallpox vaccination. The serological results provide the first laboratory evidence of a monkeypox reservoir in wild monkeys. PMID:186210

  7. Antigen recognition by IgG4 antibodies in human trichinellosis

    Directory of Open Access Journals (Sweden)

    Pinelli E.

    2001-06-01

    Full Text Available The antibody isotype response to Trichinella spiralis excretory/secretory (ES products of muscle larva was examined using sera from patients with confirmed trichinellosis. Using Western blots we identify components of the ES antigen that are recognized by IgM and IgG antibodies. A 45 kDa component was strongly recognized by different antibody classes and subclasses. We observed a 45 kDa-specific lgG4 response that was detected exclusively using sera of patients with trichinellosis and not of patients with echinococcosis, filariasis, cysticercosis, ascariasis, strongyloidiasis or toxocariasis. These results are relevant for the diagnosis of human trichinellosis.

  8. The Use of Humanized Monoclonal Antibodies for the Prevention of Respiratory Syncytial Virus Infection

    Directory of Open Access Journals (Sweden)

    Marcello Lanari

    2013-01-01

    Full Text Available Monoclonal antibodies are widely used both in infants and in adults for several indications. Humanized monoclonal antibodies (palivizumab have been used for many years for the prevention of respiratory syncytial virus infection in pediatric populations (preterm infants, infants with chronic lung disease or congenital heart disease at high risk of severe and potentially lethal course of the infection. This drug was reported to be safe, well tolerated and effective to decrease the hospitalization rate and mortality in these groups of infants by several clinical trials. In the present paper we report the development and the current use of monoclonal antibodies for prophylaxis against respiratory syncytial virus.

  9. Cloning the Antibody Response in Humans with Chronic Inflammatory Disease: Immunopanning of Subacute Sclerosing Panencephalitis (SSPE) Brain Sections with Antibody Phage Libraries Prepared from SSPE Brain Enriches for Antibody Recognizing Measles Virus Antigens In Situ

    Science.gov (United States)

    Owens, Gregory P.; Williamson, R. Anthony; Burgoon, Mark P.; Ghausi, Omar; Burton, Dennis R.; Gilden, Donald H.

    2000-01-01

    In central nervous system (CNS) infectious and inflammatory diseases of known cause, oligoclonal bands represent antibody directed against the causative agent. To determine whether disease-relevant antibodies can be cloned from diseased brain, we prepared an antibody phage display library from the brain of a human with subacute sclerosing panencephalitis (SSPE), a chronic encephalitis caused by measles virus, and selected the library against SSPE brain sections. Antibodies that were retrieved reacted strongly with measles virus cell extracts by enzyme-linked immunosorbent assay and were specific for the measles virus nucleocapsid protein. These antibodies immunostained cells in different SSPE brains but not in control brain. Our data provide the first demonstration that diseased brain can be used to select in situ for antibodies directed against the causative agent of disease and point to the potential usefulness of this approach in identifying relevant antibodies in chronic CNS or systemic inflammatory diseases of unknown cause. PMID:10627565

  10. Bacterial expression of a human monoclonal antibody-alkaline phosphatase conjugate specific for Entamoeba histolytica.

    Science.gov (United States)

    Tachibana, Hiroshi; Takekoshi, Masataka; Cheng, Xun-Jia; Nakata, Yuta; Takeuchi, Tsutomu; Ihara, Seiji

    2004-01-01

    We previously produced human monoclonal antibody Fab fragments specific to Entamoeba histolytica in Escherichia coli. In order to use these Fab fragments for diagnostic purposes, an expression vector to produce a fusion protein of Fab and alkaline phosphatase (PhoA) in E. coli was designed and constructed. The E. coli PhoA gene was fused to the 3' terminus of the gene encoding the heavy-chain Fd region. The kappa and Fd genes from a previously prepared antibody clone, CP33, which is specific for the 260-kDa lectin of E. histolytica, were used as human antibody genes. When the fusion protein of CP33 and PhoA was incubated with paraformaldehyde-fixed trophozoites of E. histolytica and developed with a substrate, the trophozoites appeared to be stained. These results demonstrate the feasibility of bacterial expression of a human monoclonal antibody-PhoA conjugate specific for E. histolytica and that the antibody can be used to detect E. histolytica antigen without the use of chemically conjugated secondary antibodies.

  11. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants

    NARCIS (Netherlands)

    ter Meulen, Jan; van den Brink, Edward N.; Poon, Leo L. M.; Marissen, Wilfred E.; Leung, Cynthia S. W.; Cox, Freek; Cheung, Chung Y.; Bakker, Arjen Q.; Bogaards, Johannes A.; van Deventer, Els; Preiser, Wolfgang; Doerr, Hans Wilhelm; Chow, Vincent T.; de Kruif, John; Peiris, Joseph S. M.; Goudsmit, Jaap

    2006-01-01

    BACKGROUND: Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of

  12. Human IgG1 antibodies suppress angiogenesis in a target-independent manner

    NARCIS (Netherlands)

    Bogdanovich, Sasha; Kim, Younghee; Mizutani, Takeshi; Yasuma, Reo; Tudisco, Laura; Cicatiello, Valeria; Bastos-Carvalho, Ana; Kerur, Nagaraj; Hirano, Yoshio; Baffi, Judit Z; Tarallo, Valeria; Li, Shengjian; Yasuma, Tetsuhiro; Arpitha, Parthasarathy; Fowler, Benjamin J; Wright, Charles B; Apicella, Ivana; Greco, Adelaide; Brunetti, Arturo; Ruvo, Menotti; Sandomenico, Annamaria; Nozaki, Miho; Ijima, Ryo; Kaneko, Hiroki; Ogura, Yuichiro; Terasaki, Hiroko; Ambati, Balamurali K; Leusen, Jeanette HW; Langdon, Wallace Y; Clark, Michael R; Armour, Kathryn L; Bruhns, Pierre; Verbeek, J Sjef; Gelfand, Bradley D; De Falco, Sandro; Ambati, Jayakrishna

    2016-01-01

    Aberrant angiogenesis is implicated in diseases affecting nearly 10% of the world's population. The most widely used anti-angiogenic drug is bevacizumab, a humanized IgG1 monoclonal antibody that targets human VEGFA. Although bevacizumab does not recognize mouse Vegfa, it inhibits angiogenesis in

  13. RNA recognition by a human antibody against brain cytoplasmic 200 RNA

    Science.gov (United States)

    Jung, Euihan; Lee, Jungmin; Hong, Hyo Jeong; Park, Insoo; Lee, Younghoon

    2014-01-01

    Diverse functional RNAs participate in a wide range of cellular processes. The RNA structure is critical for function, either on its own or as a complex form with proteins and other ligands. Therefore, analysis of the RNA conformation in cells is essential for understanding their functional mechanisms. However, no appropriate methods have been established as yet. Here, we developed an efficient strategy for panning and affinity maturation of anti-RNA human monoclonal antibodies from a naïve antigen binding fragment (Fab) combinatorial phage library. Brain cytoplasmic 200 (BC200) RNA, which is also highly expressed in some tumors, was used as an RNA antigen. We identified MabBC200-A3 as the optimal binding antibody. Mutagenesis and SELEX experiments showed that the antibody recognized a domain of BC200 in a structure- and sequence-dependent manner. Various breast cancer cell lines were further examined for BC200 RNA expression using conventional hybridization and immunoanalysis with MabBC200-A3 to see whether the antibody specifically recognizes BC200 RNA among the total purified RNAs. The amounts of antibody-recognizable BC200 RNA were consistent with hybridization signals among the cell lines. Furthermore, the antibody was able to discriminate BC200 RNA from other RNAs, supporting the utility of this antibody as a specific RNA structure-recognizing probe. Intriguingly, however, when permeabilized cells were subjected to immunoanalysis instead of purified total RNA, the amount of antibody-recognizable RNA was not correlated with the cellular level of BC200 RNA, indicating that BC200 RNA exists as two distinct forms (antibody-recognizable and nonrecognizable) in breast cancer cells and that their distribution depends on the cell type. Our results clearly demonstrate that anti-RNA antibodies provide an effective novel tool for detecting and analyzing RNA conformation. PMID:24759090

  14. RNA recognition by a human antibody against brain cytoplasmic 200 RNA.

    Science.gov (United States)

    Jung, Euihan; Lee, Jungmin; Hong, Hyo Jeong; Park, Insoo; Lee, Younghoon

    2014-06-01

    Diverse functional RNAs participate in a wide range of cellular processes. The RNA structure is critical for function, either on its own or as a complex form with proteins and other ligands. Therefore, analysis of the RNA conformation in cells is essential for understanding their functional mechanisms. However, no appropriate methods have been established as yet. Here, we developed an efficient strategy for panning and affinity maturation of anti-RNA human monoclonal antibodies from a naïve antigen binding fragment (Fab) combinatorial phage library. Brain cytoplasmic 200 (BC200) RNA, which is also highly expressed in some tumors, was used as an RNA antigen. We identified MabBC200-A3 as the optimal binding antibody. Mutagenesis and SELEX experiments showed that the antibody recognized a domain of BC200 in a structure- and sequence-dependent manner. Various breast cancer cell lines were further examined for BC200 RNA expression using conventional hybridization and immunoanalysis with MabBC200-A3 to see whether the antibody specifically recognizes BC200 RNA among the total purified RNAs. The amounts of antibody-recognizable BC200 RNA were consistent with hybridization signals among the cell lines. Furthermore, the antibody was able to discriminate BC200 RNA from other RNAs, supporting the utility of this antibody as a specific RNA structure-recognizing probe. Intriguingly, however, when permeabilized cells were subjected to immunoanalysis instead of purified total RNA, the amount of antibody-recognizable RNA was not correlated with the cellular level of BC200 RNA, indicating that BC200 RNA exists as two distinct forms (antibody-recognizable and nonrecognizable) in breast cancer cells and that their distribution depends on the cell type. Our results clearly demonstrate that anti-RNA antibodies provide an effective novel tool for detecting and analyzing RNA conformation. © 2014 Jung et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. Role of antibodies to human papillomavirus 16 in prostate cancer: A seroscreening by peptide microarray.

    Science.gov (United States)

    Zhao, Xiaojun; Zhou, Zheng; Chen, Ye; Chen, Wen; Ma, Hongwei; Pu, Jinxian

    2017-06-01

    Evidence is accumulating in estimating the potential role of human papillomavirus infection in prostate carcinogenesis. However, the results remain inconclusive. We measured the serostatus of antibodies to one of the high-risk human papillomaviruses, human papillomavirus 16, with a newly developed peptide microarray. Serum samples were collected from 75 untreated prostate cancer patients, along with 80 control subjects. We identified 12 peptides with significant differences in prostate cancer samples from all 241 peptides derived from human papillomavirus 16. Our results showed human papillomavirus 16 infection in 64.0% of prostate cancer serum samples, which is significantly different compared with the controls ( p human papillomavirus 16 infection and risk of prostate cancer. The different serostatus of antibodies in the two subgroups indicated that human papillomavirus 16 infection might occur and play a potential role of progression in a minority of prostate cancer.

  16. Map of sequential B cell epitopes of the HIV-1 transmembrane protein using human antibodies as probe

    NARCIS (Netherlands)

    Goudsmit, J.; Meloen, R. H.; Brasseur, R.

    1990-01-01

    Antibodies of individuals infected with the human immunodeficiency virus type 1 (HIV-1) were used to probe the antigenicity of the HIV-1 transmembrane protein of 41 kD (gp41) by antibody-reactive peptide scanning (Pepscan). Eleven distinct sequential antibody-binding sites were defined by testing

  17. Analysis of Antibodies Directed against Merozoite Surface Protein 1 of the Human Malaria Parasite Plasmodium falciparum

    Science.gov (United States)

    Woehlbier, Ute; Epp, Christian; Kauth, Christian W.; Lutz, Rolf; Long, Carole A.; Coulibaly, Boubacar; Kouyaté, Bocar; Arevalo-Herrera, Myriam; Herrera, Sócrates; Bujard, Hermann

    2006-01-01

    The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria. PMID:16428781

  18. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Tal Noy-Porat

    2016-03-01

    Full Text Available Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1 that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.

  19. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design.

    Science.gov (United States)

    Rey, Félix A; Stiasny, Karin; Vaney, Marie-Christine; Dellarole, Mariano; Heinz, Franz X

    2018-02-01

    Zika and dengue viruses belong to the Flavivirus genus, a close group of antigenically related viruses that cause significant arthropod-transmitted diseases throughout the globe. Although infection by a given flavivirus is thought to confer lifelong protection, some of the patient's antibodies cross-react with other flaviviruses without cross-neutralizing. The original antigenic sin phenomenon may amplify such antibodies upon subsequent heterologous flavivirus infection, potentially aggravating disease by antibody-dependent enhancement (ADE). The most striking example is provided by the four different dengue viruses, where infection by one serotype appears to predispose to more severe disease upon infection by a second one. A similar effect was postulated for sequential infections with Zika and dengue viruses. In this review, we analyze the molecular determinants of the dual antibody response to flavivirus infection or vaccination in humans. We highlight the role of conserved partially cryptic epitopes giving rise to cross-reacting and poorly neutralizing, ADE-prone antibodies. We end by proposing a strategy for developing an epitope-focused vaccine approach to avoid eliciting undesirable antibodies while focusing the immune system on producing protective antibodies only. © 2017 Institut Pasteur. Published under the terms of the CC BY NC ND 4.0 license.

  20. Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis.

    Science.gov (United States)

    De Benedictis, Paola; Minola, Andrea; Rota Nodari, Elena; Aiello, Roberta; Zecchin, Barbara; Salomoni, Angela; Foglierini, Mathilde; Agatic, Gloria; Vanzetta, Fabrizia; Lavenir, Rachel; Lepelletier, Anthony; Bentley, Emma; Weiss, Robin; Cattoli, Giovanni; Capua, Ilaria; Sallusto, Federica; Wright, Edward; Lanzavecchia, Antonio; Bourhy, Hervé; Corti, Davide

    2016-04-01

    Currently available rabies post-exposure prophylaxis (PEP) for use in humans includes equine or human rabies immunoglobulins (RIG). The replacement of RIG with an equally or more potent and safer product is strongly encouraged due to the high costs and limited availability of existing RIG. In this study, we identified two broadly neutralizing human monoclonal antibodies that represent a valid and affordable alternative to RIG in rabies PEP. Memory B cells from four selected vaccinated donors were immortalized and monoclonal antibodies were tested for neutralizing activity and epitope specificity. Two antibodies, identified as RVC20 and RVC58 (binding to antigenic site I and III, respectively), were selected for their potency and broad-spectrum reactivity. In vitro, RVC20 and RVC58 were able to neutralize all 35 rabies virus (RABV) and 25 non-RABV lyssaviruses. They showed higher potency and breath compared to antibodies under clinical development (namely CR57, CR4098, and RAB1) and commercially available human RIG. In vivo, the RVC20-RVC58 cocktail protected Syrian hamsters from a lethal RABV challenge and did not affect the endogenous hamster post-vaccination antibody response. © 2016 Humabs BioMed SA Published under the terms of the CC BY 4.0 license.

  1. The characteristics of antibodies of mice immunized by human unconventional myosin 1c

    Directory of Open Access Journals (Sweden)

    S. L. Myronovskij

    2016-12-01

    Full Text Available Specific antibodies produced against a protein of interest are invaluable tools for monitoring the protein structure, intracellular location and biological activity. Inoculation of murine lymphoma cells into the peritoneal cavity of immunized mice provides generation of ascitic fluid containing a significant amount of antibody with desired antigen specificity. Here we demonstrated that the intraperitoneal administration of murine lymphoma NK/Ly cells in mice immunized with 48 kDa isoform of human blood serum unconventional myosin 1c leads to generation of ascitic fluid that contained specific IgG-antibodies. These antibodies were capable of binding of the unconventional myosin 1c isolated from blood serum of patients with multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosis, and could be used for diagnostics of several autoimmune diseases, the multiple sclerosis in particular.

  2. Recombinant Pvs48/45 antigen expressed in E. coli generates antibodies that block malaria transmission in Anopheles albimanus mosquitoes.

    Directory of Open Access Journals (Sweden)

    Myriam Arévalo-Herrera

    Full Text Available Transmission of malaria parasites from humans to Anopheles mosquitoes can be inhibited by specific antibodies elicited during malaria infection, which target surface Plasmodium gametocyte/gamete proteins. Some of these proteins may have potential for vaccine development. Pvs48/45 is a P. vivax gametocyte surface antigen orthologous to Pfs48/45, which may play a role during parasite fertilization and thus has potential for transmission blocking (TB activity. Here we describe the expression of a recombinant Pvs48/45 protein expressed in Escherichia coli as a ∼60kDa construct which we tested for antigenicity using human sera and for its immunogenicity and transmission blocking activity of specific anti-mouse and anti-monkey Pvs48/45 antibodies. The protein reacted with sera of individuals from malaria-endemic areas and in addition induced specific IgG antibody responses in BALB/c mice and Aotus l. griseimembra monkeys. Sera from both immunized animal species recognized native P. vivax protein in Western blot (WB and immunofluorescence assays. Moreover, sera from immunized mice and monkeys produced significant inhibition of parasite transmission to An. Albimanus mosquitoes as shown by membrane feeding assays. Results indicate the presence of reactive epitopes in the Pvs48/45 recombinant product that induce antibodies with TB activity. Further testing of this protein is ongoing to determine its vaccine potential.

  3. Human and chicken antibodies to gangliosides following infection by Campylobacter jejuni.

    Science.gov (United States)

    Usuki, Seigo; Taguchi, Kyoji; Cawthraw, Shaun A; Shibata, Keiko; Ariga, Toshio; Newell, Diane G; Yu, Robert K

    2006-07-01

    Campylobacteriosis is frequently associated with Guillain-Barré syndrome. Poultry are frequently highly colonized with Campylobacter jejuni and are a major foodborne vehicle for campylobacteriosis. In this study, high titer anti-GM1 antibodies were found in the serum of a laboratory worker who developed campylobacteriosis. The microbiologically confirmed strain VLA2/18 (non-serotyped) was isolated from the worker and subsequently inoculated into chickens, resulting in high titers of serum antibodies to GM1. However, none of the immunized chickens in our study showed any noticeable neurological symptoms, such as paralysis or cramping. High titer anti-GM1 antibodies in chicken and human sera strongly inhibited spontaneous muscle action potential in an in vitro system of spinal cord and muscle cell co-culture. In addition, infection of chickens with C. jejuni strains 81116 (HS6) and 99/419 (HS21) or immunization with purified GM1, GM2, and GM3 resulted in elevation of serum anti-ganglioside antibodies with an inhibitory effect on spontaneous muscle action potential. Immunoabsorption studies demonstrated that this inhibitory activity is due to anti-ganglioside antibodies. On the other hand, anti-GM1 is the only specific human serum antibody to induce an inhibitory effect on neuromuscular junctions. Chicken anti-GM1 antibodies showed a strong inhibitory effect, but anti-GM2 and -GM3 had weaker activities. Taken together, our data suggest that campylobacteriosis in chickens may provide a strong link between infection and the development of anti-ganglioside antibody-mediated peripheral nerve dysfunctions.

  4. Origin, diversity and maturation of human antiviral antibodies analyzed by high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Ponraj ePrabakaran

    2012-08-01

    Full Text Available Our understanding of how antibodies are generated and function could help develop effective vaccines and antibody-based therapeutics against viruses such as HIV-1, SARS Coronavirus (CoV, and Hendra and Nipah viruses (henipaviruses. Although broadly neutralizing antibodies (bnAbs against the HIV-1 were observed in patients, elicitation of such bnAbs remains a major challenge when compared to other viral targets. We previously hypothesized that HIV-1 could have evolved a strategy to evade the immune system due to absent or very weak binding of germline antibodies to the conserved epitopes that may not be sufficient to initiate and/or maintain an effective immune response. To further explore our hypothesis, we used the 454 sequence analysis of a large naïve library of human IgM antibodies which had been used for selecting antibodies against SARS Coronavirus (CoV receptor-binding domain (RBD, and soluble G proteins (sG of Hendra and Nipah viruses (henipaviruses. We found that the human IgM repertoires from the 454 sequencing have diverse germline usages, recombination patterns, junction diversity and a lower extent of somatic mutation. In this study, we identified germline intermediates of antibodies specific to HIV-1 and other viruses as observed in normal individuals, and compared their genetic diversity and somatic mutation level along with available structural and functional data. Further computational analysis will provide framework for understanding the underlying genetic and molecular determinants related to maturation pathways of antiviral bnAbs that could be useful for applying novel approaches to the design of effective vaccine immunogens and antibody-based therapeutics.

  5. Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against Influenza A M2 protein

    Directory of Open Access Journals (Sweden)

    Gwerder Myriam

    2009-12-01

    Full Text Available Abstract Influenza virus infection is a prevalent disease in humans. Antibodies against hemagglutinin have been shown to prevent infection and hence hemagglutinin is the major constituent of current vaccines. Antibodies directed against the highly conserved extracellular domain of M2 have also been shown to mediate protection against Influenza A infection in various animal models. Active vaccination is generally considered the best approach to combat viral diseases. However, passive immunization is an attractive alternative, particularly in acutely exposed or immune compromized individuals, young children and the elderly. We recently described a novel method for the rapid isolation of natural human antibodies by mammalian cell display. Here we used this approach to isolate human monoclonal antibodies directed against the highly conserved extracellular domain of the Influenza A M2 protein. The identified antibodies bound M2 peptide with high affinities, recognized native cell-surface expressed M2 and protected mice from a lethal influenza virus challenge. Moreover, therapeutic treatment up to 2 days after infection was effective, suggesting that M2-specific monoclonals have a great potential as immunotherapeutic agents against Influenza infection.

  6. Elastolytic activity of human blood monocytes characterized by a new monoclonal antibody against human leucocyte elastase. Relationship to rheumatoid arthritis

    DEFF Research Database (Denmark)

    Jensen, H S; Christensen, L D

    1990-01-01

    The leucocyte elastase of human blood monocytes was investigated by applying a new monoclonal antibody which did not block the enzyme activity against elastin. In a fixed population of mononuclear cells (MNC) and using fluorescence activated cell sorting (FACS), the human leucocyte elastase (HLE......) antibody identified a subgroup of CD14+ cells which contained all the elastase activity and which could be blocked by a specific chloromethylketone elastase inhibitor. By anti-CD14 labelling the HLE positive cells were identified as monocytes and amounted to 88% of this cell type (median: range 72...

  7. Development of human B cells and antibodies following human hematopoietic stem cell transplantation to Rag2(-/-)γc(-/-) mice.

    Science.gov (United States)

    Tanner, Anne; Hallam, Steven J; Nielsen, Stanton J; Cuadra, German I; Berges, Bradford K

    2015-06-01

    Humanized mice represent a valuable model system to study the development and functionality of the human immune system. In the RAG-hu mouse model highly immunodeficient Rag2(-/-)γc(-/-) mice are transplanted with human CD34(+) hematopoietic stem cells, resulting in human hematopoiesis and a predominant production of B and T lymphocytes. Human adaptive immune responses have been detected towards a variety of antigens in humanized mice but both cellular and humoral immune responses tend to be weak and sporadically detected. The underlying mechanisms for inconsistent responses are poorly understood. Here, we analyzed the kinetics of human B cell development and antibody production in RAG-hu mice to better understand the lack of effective antibody responses. We found that T cell levels in blood did not significantly change from 8 to 28 weeks post-engraftment, while B cells reached a peak at 14 weeks. Concentrations of 3 antibody classes (IgM, IgG, IgA) were found to be at levels about 0.1% or less of normal human levels, but human antibodies were still detected up to 32 weeks after engraftment. Human IgM was detected in 92.5% of animals while IgG and IgA were detected in about half of animals. We performed flow cytometric analysis of human B cells in bone marrow, spleen, and blood to examine the presence of precursor B cells, immature B cells, naïve B cells, and plasma B cells. We detected high levels of surface IgM(+) B cells (immature and naïve B cells) and low levels of plasma B cells in these organs, suggesting that B cells do not mature properly in this model. Low levels of human T cells in the spleen were observed, and we suggest that the lack of T cell help may explain poor B cell development and antibody responses. We conclude that human B cells that develop in humanized mice do not receive the signals necessary to undergo class-switching or to secrete antibody effectively, and we discuss strategies to potentially overcome these barriers. Copyright © 2015

  8. Production and Characterization of a Murine Monoclonal Antibody Against Human Ferritin

    Science.gov (United States)

    Bayat, Ali Ahmad; Yeganeh, Omid; Ghods, Roya; Zarnani, Amir Hassan; Ardekani, Reza Bahjati; Mahmoudi, Ahmad Reza; Mahmoudian, Jafar; Haghighat-Noutash, Farzaneh; Jeddi-Tehrani, Mahmood

    2013-01-01

    Background Ferritin is an iron storage protein, which plays a key role in iron metabolism. Measurement of ferritin level in serum is one of the most useful indicators of iron status and also a sensitive measurement of iron deficiency. Monoclonal antibodies may be useful as a tool in various aspects of ferritin investigations. In this paper, the production of a murine monoclonal antibody (mAb) against human ferritin was reported. Methods Balb/c mice were immunized with purified human ferritin and splenocytes of hyper immunized mice were fused with Sp2/0 myeloma cells. After four times of cloning by limiting dilution, a positive hybridoma (clone: 2F9-C9) was selected by ELISA using human ferritin. Anti-ferritin mAb was purified from culture supernatants by affinity chromatography. Results Determination of the antibody affinity for ferritin by ELISA revealed a relatively high affinity (2.34×109 M -1) and the isotype was determined to be IgG2a. The anti-ferritin mAb 2F9-C9 reacted with 79.4% of Hela cells in flow cytometry. The antibody detected a band of 20 kDa in K562 cells, murine and human liver lysates, purified ferritin in Western blot and also ferritin in human serum. Conclusion This mAb can specifically recognize ferritin and may serve as a component of ferritin diagnostic kit if other requirements of the kit are met. PMID:24285995

  9. Hersintuzumab: A novel humanized anti-HER2 monoclonal antibody induces potent tumor growth inhibition.

    Science.gov (United States)

    Amiri, Mohammad Mehdi; Golsaz-Shirazi, Forough; Soltantoyeh, Tahereh; Hosseini-Ghatar, Reza; Bahadori, Tannaz; Khoshnoodi, Jalal; Navabi, Shadi Sadat; Farid, Samira; Karimi-Jafari, Mohammad Hossein; Jeddi-Tehrani, Mahmood; Shokri, Fazel

    2017-10-06

    Humanized monoclonal antibodies (mAbs) against HER2 including trastuzumab and pertuzumab are widely used to treat HER2 overexpressing metastatic breast cancers. These two mAbs recognize distinct epitopes on HER2 and their combination induces a more potent blockade of HER2 signaling than trastuzumab alone. Recently, we have reported characterization of a new chimeric mAb (c-1T0) which binds to an epitope different from that recognized by trastuzumab and significantly inhibits proliferation of HER2 overexpressing tumor cells. Here, we describe humanization of this mAb by grafting all six complementarity determining regions (CDRs) onto human variable germline genes. Humanized VH and VL sequences were synthesized and ligated to human γ1 and κ constant region genes using splice overlap extension (SOE) PCR. Subsequently, the humanized antibody designated hersintuzumab was expressed and characterized by ELISA, Western blot and flow cytometry. The purified humanized mAb binds to recombinant HER2 and HER2-overexpressing tumor cells with an affinity comparable with the chimeric and parental mouse mAbs. It recognizes an epitope distinct from those recognized by trastuzumab and pertuzumab. Binding of hersintuzumab to HER2 overexpressing tumor cells induces G1 cell cycle arrest, inhibition of ERK and AKT signaling pathways and growth inhibition. Moreover, hersintuzumab could induce antibody-dependent cell cytotoxicity (ADCC) on BT-474 cells. This new humanized mAb is a potentially valuable tool for single or combination breast cancer therapy.

  10. Distinct human antibody response to the biological warfare agent Burkholderia mallei.

    Science.gov (United States)

    Varga, John J; Vigil, Adam; DeShazer, David; Waag, David M; Felgner, Philip; Goldberg, Joanna B

    2012-10-01

    The genetic similarity between Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis) had led to the general assumption that pathogenesis of each bacterium would be similar. In 2000, the first human case of glanders in North America since 1945 was reported in a microbiology laboratory worker. Leveraging the availability of pre-exposure sera for this individual and employing the same well-characterized protein array platform that has been previously used to study a large cohort of melioidosis patients in southeast Asia, we describe the antibody response in a human with glanders. Analysis of 156 peptides present on the array revealed antibodies against 17 peptides with a > 2-fold increase in this infection. Unexpectedly, when the glanders data were compared with a previous data set from B. pseudomallei infections, there were only two highly increased antibodies shared between these two infections. These findings have implications in the diagnosis and treatment of B. mallei and B. pseudomallei infections.

  11. High prevalence of high risk human papillomavirus-capsid antibodies in human immunodeficiency virus-seropositive men: a serological study

    Directory of Open Access Journals (Sweden)

    Sarcletti Mario

    2003-04-01

    Full Text Available Abstract Background Serological study of human papillomavirus (HPV-antibodies in order to estimate the HPV-prevalence as risk factor for the development of HPV-associated malignancies in human immunodeficiency virus (HIV-positive men. Methods Sera from 168 HIV-positive men and 330 HIV-negative individuals (including 198 controls were tested using a direct HPV-ELISA specific to HPV-6, -11, -16, -18, -31 and bovine PV-1 L1-virus-like particles. Serological results were correlated with the presence of HPV-associated lesions, the history of other sexually transmitted diseases (STD and HIV classification groups. Results In HIV-negative men low risk HPV-antibodies were prevailing and associated with condylomatous warts (25.4%. Strikingly, HIV-positive men were more likely to have antibodies to the high-risk HPV types -16, -18, -31, and low risk antibodies were not increased in a comparable range. Even those HIV-positive heterosexual individuals without any HPV-associated lesions exhibited preferentially antibody responses to the oncogenic HPV-types (cumulative 31.1%. The highest antibody detection rate (88,8% was observed within the subgroup of nine HIV-positive homosexual men with anogenital warts. Three HIV-positive patients had HPV-associated carcinomas, in all of them HPV-16 antibodies were detected. Drug use and mean CD4-cell counts on the day of serologic testing had no influence on HPV-IgG antibody prevalence, as had prior antiretroviral therapy or clinical category of HIV-disease. Conclusion High risk HPV-antibodies in HIV-infected and homosexual men suggest a continuous exposure to HPV-proteins throughout the course of their HIV infection, reflecting the known increased risk for anogenital malignancies in these populations. The extensive increase of high risk antibodies (compared to low risk antibodies in HIV-positive patients cannot be explained by differences in exposure history alone, but suggests defects of the immunological control of

  12. Human antibody recognition of antigenic site IV on Pneumovirus fusion proteins.

    Science.gov (United States)

    Mousa, Jarrod J; Binshtein, Elad; Human, Stacey; Fong, Rachel H; Alvarado, Gabriela; Doranz, Benjamin J; Moore, Martin L; Ohi, Melanie D; Crowe, James E

    2018-02-01

    Respiratory syncytial virus (RSV) is a major human pathogen that infects the majority of children by two years of age. The RSV fusion (F) protein is a primary target of human antibodies, and it has several antigenic regions capable of inducing neutralizing antibodies. Antigenic site IV is preserved in both the pre-fusion and post-fusion conformations of RSV F. Antibodies to antigenic site IV have been described that bind and neutralize both RSV and human metapneumovirus (hMPV). To explore the diversity of binding modes at antigenic site IV, we generated a panel of four new human monoclonal antibodies (mAbs) and competition-binding suggested the mAbs bind at antigenic site IV. Mutagenesis experiments revealed that binding and neutralization of two mAbs (3M3 and 6F18) depended on arginine (R) residue R429. We discovered two R429-independent mAbs (17E10 and 2N6) at this site that neutralized an RSV R429A mutant strain, and one of these mAbs (17E10) neutralized both RSV and hMPV. To determine the mechanism of cross-reactivity, we performed competition-binding, recombinant protein mutagenesis, peptide binding, and electron microscopy experiments. It was determined that the human cross-reactive mAb 17E10 binds to RSV F with a binding pose similar to 101F, which may be indicative of cross-reactivity with hMPV F. The data presented provide new concepts in RSV immune recognition and vaccine design, as we describe the novel idea that binding pose may influence mAb cross-reactivity between RSV and hMPV. Characterization of the site IV epitope bound by human antibodies may inform the design of a pan-Pneumovirus vaccine.

  13. The phase behavior study of human antibody solution using multi-scale modeling

    Science.gov (United States)

    Sun, Gang; Wang, Ying; Lomakin, Aleksey; Benedek, George B.; Stanley, H. Eugene; Xu, Limei; Buldyrev, Sergey V.

    2016-11-01

    Phase transformation in antibody solutions is of growing interest in both academia and the pharmaceutical industry. Recent experimental studies have shown that, as in near-spherical proteins, antibodies can undergo a liquid-liquid phase separation under conditions metastable with respect to crystallization. However, the phase diagram of the Y-shaped antibodies exhibits unique features that differ substantially from those of spherical proteins. Specifically, antibody solutions have an exceptionally low critical volume fraction (CVF) and a broader and more asymmetric liquid-liquid coexistence curve than those of spherical proteins. Using molecular dynamics simulation on a series of trimetric Y-shaped coarse-grained models, we investigate the phase behavior of antibody solutions and compare the results with the experimental phase diagram of human immunoglobulin G (IgG), one of the most common Y-shape typical of antibody molecules. With the fitted size of spheres, our simulation reproduces both the low CVF and the asymmetric shape of the experimental coexistence curve of IgG antibodies. The broadness of the coexistence curve can be attributed to the anisotropic nature of the inter-protein interaction. In addition, the repulsion between the inner parts of the spherical domains of IgG dramatically expands the coexistence region in the scaled phase diagram, while the hinge length has only a minor effect on the CVF and the overall shape of the coexistence curve. We thus propose a seven-site model with empirical parameters characterizing the exclusion volume and the hinge length of the IgG molecules, which provides a base for simulation studies of the phase behavior of IgG antibodies.

  14. Affinity maturation to improve human monoclonal antibody neutralization potency and breadth against hepatitis C virus.

    Science.gov (United States)

    Wang, Yong; Keck, Zhen-yong; Saha, Anasuya; Xia, Jinming; Conrad, Fraser; Lou, Jianlong; Eckart, Michael; Marks, James D; Foung, Steven K H

    2011-12-23

    A potent neutralizing antibody to a conserved hepatitis C virus (HCV) epitope might overcome its extreme variability, allowing immunotherapy. The human monoclonal antibody HC-1 recognizes a conformational epitope on the HCV E2 glycoprotein. Previous studies showed that HC-1 neutralizes most HCV genotypes but has modest potency. To improve neutralization, we affinity-matured HC-1 by constructing a library of yeast-displayed HC-1 single chain Fv (scFv) mutants, using for selection an E2 antigen from one of the poorly neutralized HCVpp. We developed an approach by parallel mutagenesis of the heavy chain variable (VH) and κ-chain variable (Vk) genes separately, then combining the optimized VH and Vk mutants. This resulted in the generation of HC-1-related scFv variants exhibiting improved affinities. The best scFv variant had a 92-fold improved affinity. After conversion to IgG1, some of the antibodies exhibited a 30-fold improvement in neutralization activity. Both surface plasmon resonance and solution kinetic exclusion analysis showed that the increase in affinity was largely due to a lowering of the dissociation rate constant, Koff. Neutralization against a panel of HCV pseudoparticles and infectious 2a HCV virus improved with the affinity-matured IgG1 antibodies. Interestingly, some of these antibodies neutralized a viral isolate that was not neutralized by wild-type HC-1. Moreover, propagating 2a HCVcc under the selective pressure of WT HC-1 or affinity-matured HC-1 antibodies yielded no viral escape mutants and, with the affinity-matured IgG1, needed 100-fold less antibody to achieve complete virus elimination. Taken together, these findings suggest that affinity-matured HC-1 antibodies are excellent candidates for therapeutic development.

  15. Lack of enhancing effect of human anti-human immunodeficiency virus type 1 (HIV-1) antibody on HIV-1 infection of human blood monocytes and peritoneal macrophages.

    OpenAIRE

    Shadduck, P P; Weinberg, J B; Haney, A. F.; Bartlett, J. A.; Langlois, A J; Bolognesi, D P; Matthews, T J

    1991-01-01

    The influence of human anti-human immunodeficiency virus type 1 (HIV-1) antibody on HIV-1 infection of freshly isolated normal human peritoneal macrophages and blood monocytes was examined. Each of 14 HIV antibody-positive human serum samples was found to block the infection of four virus isolates (human T-cell lymphotropic virus type IIIBa-L [HTLV-IIIBa-L], HTLV-IIIB, D.U. 6587-7, and D.U. 7887-8) at serum dilutions ranging from 10(-1) to 10(-2). Three of these isolates (HTLV-IIIBa-L, D.U. 6...

  16. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available BACKGROUND: Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant. METHODS AND FINDINGS: Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation. CONCLUSION: This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  17. Serum anti-BPAG1 auto-antibody is a novel marker for human melanoma.

    Directory of Open Access Journals (Sweden)

    Takashi Shimbo

    2010-05-01

    Full Text Available Malignant melanoma is one of the most aggressive types of tumor. Because malignant melanoma is difficult to treat once it has metastasized, early detection and treatment are essential. The search for reliable biomarkers of early-stage melanoma, therefore, has received much attention. By using a novel method of screening tumor antigens and their auto-antibodies, we identified bullous pemphigoid antigen 1 (BPAG1 as a melanoma antigen recognized by its auto-antibody. BPAG1 is an auto-antigen in the skin disease bullous pemphigoid (BP and anti-BPAG1 auto-antibodies are detectable in sera from BP patients and are used for BP diagnosis. However, BPAG1 has been viewed as predominantly a keratinocyte-associated protein and a relationship between BPAG1 expression and melanoma has not been previously reported. In the present study, we show that bpag1 is expressed in the mouse F10 melanoma cell line in vitro and F10 melanoma tumors in vivo and that BPAG1 is expressed in human melanoma cell lines (A375 and G361 and normal human melanocytes. Moreover, the levels of anti-BPAG1 auto-antibodies in the sera of melanoma patients were significantly higher than in the sera of healthy volunteers (p<0.01. Furthermore, anti-BPAG1 auto-antibodies were detected in melanoma patients at both early and advanced stages of disease. Here, we report anti-BPAG1 auto-antibodies as a promising marker for the diagnosis of melanoma, and we discuss the significance of the detection of such auto-antibodies in cancer biology and patients.

  18. Antibody against Microbial Neuraminidases Recognizes Human Sialidase 3 (NEU3: the Neuraminidase/Sialidase Superfamily Revisited

    Directory of Open Access Journals (Sweden)

    Chiguang Feng

    2017-06-01

    Full Text Available Neuraminidases (NAs are critical virulence factors for several microbial pathogens. With a highly conserved catalytic domain, a microbial NA “superfamily” has been proposed. We previously reported that murine polymorphonuclear leukocyte (PMN sialidase activity was important in leukocyte trafficking to inflamed sites and that antibodies to Clostridium perfringens NA recognized a cell surface molecule(s, presumed to be a sialidase of eukaryotic origin on interleukin-8-stimulated human and murine PMNs. These antibodies also inhibited cell sialidase activity both in vitro and, in the latter instance, in vivo. We therefore hypothesized that mammalian sialidases share structural homology and epitopes with microbial NAs. We now report that antibodies to one of the isoforms of C. perfringens NA, as well as anti-influenza virus NA serum, recognize human NEU3 but not NEU1 and that antibodies to C. perfringens NA inhibit NEU3 enzymatic activity. We conclude that the previously described microbial NA superfamily extends to human sialidases. Strategies designed to therapeutically inhibit microbial NA may need to consider potential compromising effects on human sialidases, particularly those expressed in cells of the immune system.

  19. Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus

    Science.gov (United States)

    Corti, Davide; Zhao, Jincun; Pedotti, Mattia; Simonelli, Luca; Agnihothram, Sudhakar; Fett, Craig; Fernandez-Rodriguez, Blanca; Foglierini, Mathilde; Agatic, Gloria; Vanzetta, Fabrizia; Gopal, Robin; Langrish, Christopher J.; Barrett, Nicholas A; Sallusto, Federica; Baric, Ralph S.; Varani, Luca; Zambon, Maria; Perlman, Stanley; Lanzavecchia, Antonio

    2015-01-01

    Middle East Respiratory Syndrome (MERS) is a highly lethal pulmonary infection caused by a previously unidentified coronavirus (CoV), likely transmitted to humans by infected camels. There is no licensed vaccine or antiviral for MERS, therefore new prophylactic and therapeutic strategies to combat human infections are needed. In this study, we describe, for the first time, to our knowledge, the isolation of a potent MERS-CoV–neutralizing antibody from memory B cells of an infected individual. The antibody, named LCA60, binds to a novel site on the spike protein and potently neutralizes infection of multiple MERS-CoV isolates by interfering with the binding to the cellular receptor CD26. Importantly, using mice transduced with adenovirus expressing human CD26 and infected with MERS-CoV, we show that LCA60 can effectively protect in both prophylactic and postexposure settings. This antibody can be used for prophylaxis, for postexposure prophylaxis of individuals at risk, or for the treatment of human cases of MERS-CoV infection. The fact that it took only 4 mo from the initial screening of B cells derived from a convalescent patient for the development of a stable chinese hamster ovary (CHO) cell line producing neutralizing antibodies at more than 5 g/L provides an example of a rapid pathway toward the generation of effective antiviral therapies against emerging viruses. PMID:26216974

  20. A human monoclonal antibody cocktail as a novel component of rabies postexposure prophylaxis

    NARCIS (Netherlands)

    de Kruif, John; Bakker, Alexander B. H.; Marissen, Wilfred E.; Kramer, R. Arjen; Throsby, Mark; Rupprecht, Charles E.; Goudsmit, Jaap

    2007-01-01

    The currently recommended treatment for individuals exposed to rabies virus is the combined administration of rabies vaccine and rabies immune globulin (RIG). This review sets out the criteria used to guide development of a cocktail of human monoclonal antibodies as a replacement for RIG. Using this

  1. Human anti-rhesus D IgG1 antibody produced in transgenic plants

    DEFF Research Database (Denmark)

    Bouquin, Thomas; Thomsen, Mads; Nielsen, Leif Kofoed

    2002-01-01

    Transgenic plants represent an alternative to cell culture systems for producing cheap and safe antibodies for diagnostic and therapeutic use. To evaluate the functional properties of a 'plantibody', we generated transgenic Arabidopsis plants expressing full-length human IgG1 against the Rhesus D...

  2. Human oxidation-specific antibodies reduce foam cell formation and atherosclerosis progression

    DEFF Research Database (Denmark)

    Tsimikas, Sotirios; Miyanohara, Atsushi; Hartvigsen, Karsten

    2011-01-01

    We sought to assess the in vivo importance of scavenger receptor (SR)-mediated uptake of oxidized low-density lipoprotein (OxLDL) in atherogenesis and to test the efficacy of human antibody IK17-Fab or IK17 single-chain Fv fragment (IK17-scFv), which lacks immunologic properties of intact antibod...

  3. Lack of MERS coronavirus neutralizing antibodies in humans, eastern province, Saudi Arabia.

    Science.gov (United States)

    Gierer, Stefanie; Hofmann-Winkler, Heike; Albuali, Waleed H; Bertram, Stephanie; Al-Rubaish, Abdullah M; Yousef, Abdullah A; Al-Nafaie, Awatif N; Al-Ali, Amein K; Obeid, Obeid E; Alkharsah, Khaled R; Pöhlmann, Stefan

    2013-12-01

    We used a lentiviral vector bearing the viral spike protein to detect neutralizing antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV) in persons from the Eastern Province of Saudi Arabia. None of the 268 samples tested displayed neutralizing activity, which suggests that MERS-CoV infections in humans are infrequent in this province.

  4. Viral gene expression, antibody production and immune complex formation in human immunodeficiency virus infection

    NARCIS (Netherlands)

    Lange, J. M.; Paul, D. A.; de Wolf, F.; Coutinho, R. A.; Goudsmit, J.

    1987-01-01

    Human immunodeficiency virus (HIV) antigen (HIV-Ag) in polyethylene glycol (PEG) precipitates and supernatants and HIV antibodies (HIV-Ab) to core and envelope antigens were studied in serial serum samples of three HIV-Ab seroconverters and 11 HIV-Ab seropositive men with a mean follow-up time of

  5. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N...

  6. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Arendrup, M

    1991-01-01

    The cancer-related mucin-type carbohydrate neoantigen Tn was found on gp160 and gp120 of human immunodeficiency virus (HIV). Immunoglobulin G (IgG) and IgM monoclonal antibodies (MAbs) against Tn neutralized infection with cell-free virus and blocked fusion between HIV-infected and uninfected cells...

  7. Domain-Specific Monoclonal Antibodies Against Human Rev-erbβ.

    Science.gov (United States)

    Chen, Fang; Li, Yanqing; Zhao, Junli; Mao, Qinwen; Xia, Haibin

    2017-07-01

    The nuclear receptor Rev-erbβ is a potent transcriptional factor whose functional study has been limited by the lack of suitable antibodies against it. To better understand Rev-erbβ's biological roles, we generated five hybridoma cell lines secreting antibodies against human Rev-erbβ in mice immunized with the purified, prokaryotically expressed recombinant Rev-erbβ-6His fusion protein. Using Western blotting and immunofluorescence analyses, all the five monoclonal antibodies (MAbs) showed strong immunoreactivity to both prokaryotically and eukaryotically expressed recombinant Rev-erbβ. An immunoprecipitation study showed that all five monoclonal antibodies against Rev-erbβ were able to pull down the recombinant Rev-erbβ-Flag protein, but only one of the MAbs against Rev-erbβ, 37H8, could pull down the endogenous Rev-erbβ protein. Furthermore, domain specificity of these MAbs was characterized. Due to the high similarities between Rev-erbα and Rev-erbβ in the C and E domains, those C and E domain-specific anti-Rev-erbβ antibodies can react with human Rev-erbα as well. The MAbs produced in the study will provide a valuable tool for investigating the function of Rev-erbβ.

  8. Class specific antibody responses to newborn larva antigens during Trichinella spiralis human infection

    Directory of Open Access Journals (Sweden)

    Mendez-Loredo B.

    2001-06-01

    Full Text Available A follow-up study of the class antibody responses to newborn larva (NBL antigens in individuals involved in an outbreak of human trichinellosis was carried out by ELISA assays. The data showed that similar kinetics of antibody responses of different magnitude developed in trichinellosis patients; it was low by week 3, a peak raised by week 5 and decreased from week 7 up to the end of the study. The IgA-ELISA assay was the most sensitive and specific while the IgM was the least sensitive and specific. IgA antibodies to NBL antigens were detected in 80 % of patients while IgE, IgG and IgM responses were observed in 44, 31 and 19 % of the patients by week 3, respectively. From weeks 5 to 7, IgA antibodies were found in 89 to 100 % of the patients while lower percentages (0-82 % were found for the other isotypes. Reactivity of IgA, IgE, IgG and IgM to NBL antigens decreased from week 37 to 57 after infection (0-38 %. These results suggest that detection of IgA antibodies may be useful for early diagnosis and epidemiological studies in human trichinellosis.

  9. A novel highly potent therapeutic antibody neutralizes multiple human chemokines and mimics viral immune modulation.

    Science.gov (United States)

    Scalley-Kim, Michelle L; Hess, Bruce W; Kelly, Ryan L; Krostag, Anne-Rachel F; Lustig, Kurt H; Marken, John S; Ovendale, Pamela J; Posey, Aaron R; Smolak, Pamela J; Taylor, Janelle D L; Wood, C L; Bienvenue, David L; Probst, Peter; Salmon, Ruth A; Allison, Daniel S; Foy, Teresa M; Raport, Carol J

    2012-01-01

    Chemokines play a key role in leukocyte recruitment during inflammation and are implicated in the pathogenesis of a number of autoimmune diseases. As such, inhibiting chemokine signaling has been of keen interest for the development of therapeutic agents. This endeavor, however, has been hampered due to complexities in the chemokine system. Many chemokines have been shown to signal through multiple receptors and, conversely, most chemokine receptors bind to more than one chemokine. One approach to overcoming this complexity is to develop a single therapeutic agent that binds and inactivates multiple chemokines, similar to an immune evasion strategy utilized by a number of viruses. Here, we describe the development and characterization of a novel therapeutic antibody that targets a subset of human CC chemokines, specifically CCL3, CCL4, and CCL5, involved in chronic inflammatory diseases. Using a sequential immunization approach, followed by humanization and phage display affinity maturation, a therapeutic antibody was developed that displays high binding affinity towards the three targeted chemokines. In vitro, this antibody potently inhibits chemotaxis and chemokine-mediated signaling through CCR1 and CCR5, primary chemokine receptors for the targeted chemokines. Furthermore, we have demonstrated in vivo efficacy of the antibody in a SCID-hu mouse model of skin leukocyte migration, thus confirming its potential as a novel therapeutic chemokine antagonist. We anticipate that this antibody will have broad therapeutic utility in the treatment of a number of autoimmune diseases due to its ability to simultaneously neutralize multiple chemokines implicated in disease pathogenesis.

  10. Hypogammaglobulinemia in BLT humanized mice--an animal model of primary antibody deficiency.

    Directory of Open Access Journals (Sweden)

    Francisco Martinez-Torres

    Full Text Available Primary antibody deficiencies present clinically as reduced or absent plasma antibodies without another identified disorder that could explain the low immunoglobulin levels. Bone marrow-liver-thymus (BLT humanized mice also exhibit primary antibody deficiency or hypogammaglobulinemia. Comprehensive characterization of B cell development and differentiation in BLT mice revealed other key parallels with primary immunodeficiency patients. We found that B cell ontogeny was normal in the bone marrow of BLT mice but observed an absence of switched memory B cells in the periphery. PC-KLH immunizations led to the presence of switched memory B cells in immunized BLT mice although plasma cells producing PC- or KLH- specific IgG were not detected in tissues. Overall, we have identified the following parallels between the humoral immune systems of primary antibody deficiency patients and those in BLT mice that make this in vivo model a robust and translational experimental platform for gaining a greater understanding of this heterogeneous array of humoral immunodeficiency disorders in humans: (i hypogammaglobulinemia; (ii normal B cell ontogeny in bone marrow; and (iii poor antigen-specific IgG response to immunization. Furthermore, the development of strategies to overcome these humoral immune aberrations in BLT mice may in turn provide insights into the pathogenesis of some primary antibody deficiency patients which could lead to novel clinical interventions for improved humoral immune function.

  11. Analysis of human chorionic gonadotropin-monoclonal antibody ...

    Indian Academy of Sciences (India)

    Unknown

    used in high affinity systems to measure the association rate constant of the reaction and the functional capacity of the ligand (hCG) immobilized on the chip. We provide a rational explanation for the discrepancies generally observed in most of the BIAcore sensograms. [Ashish B and Murthy G S 2004 Analysis of human ...

  12. Discovery of human antibodies against black cobra toxins

    DEFF Research Database (Denmark)

    Øhlenschlæger, Mia; Andersen, Mikael Rørdam; Lohse, Brian

    Snakebite envenoming represents a major health threat intropical parts of the developing world1. Animal-derivedantisera currently constitute the only effective treatment option,but are associated with severe side effects due toincompatibility with the human immune system. We aim atdiscovering hum...

  13. Comparison of an anti-rabies human monoclonal antibody combination with human polyclonal anti-rabies immune globulin

    NARCIS (Netherlands)

    Goudsmit, Jaap; Marissen, Wilfred E.; Weldon, William C.; Niezgoda, Michael; Hanlon, Cathleen A.; Rice, Amy B.; Kruif, John de; Dietzschold, Bernhard; Bakker, Alexander B. H.; Rupprecht, Charles E.

    2006-01-01

    The World Health Organization estimates human mortality from endemic canine rabies to be 55,000 deaths/year. Limited supply hampers the accessibility of appropriate lifesaving treatment, particularly in areas where rabies is endemic. Anti-rabies antibodies are key to protection against lethal

  14. Antibody directed against human YKL-40 increases tumor volume in a human melanoma xenograft model in scid mice

    DEFF Research Database (Denmark)

    Salamon, Johannes; Hoffmann, Tatjana; Elies, Eva

    2014-01-01

    Induced overexpression of the secretory protein YKL-40 promotes tumor growth in xenograft experiments. We investigated if targeting YKL-40 with a monoclonal antibody could inhibit tumor growth. YKL-40 expressing human melanoma cells (LOX) were injected subcutenously in Balb/c scid mice. Animals...

  15. Human antibody fragments specific for Bothrops jararacussu venom reduce the toxicity of other Bothrops sp. venoms.

    Science.gov (United States)

    Roncolato, Eduardo Crosara; Pucca, Manuela Berto; Funayama, Jaqueline Carlos; Bertolini, Thaís Barboza; Campos, Lucas Benício; Barbosa, José Elpidio

    2013-01-01

    Approximately 20,000 snakebites are registered each year in Brazil. The classical treatment for venomous snakebite involves the administration of sera obtained from immunized horses. Moreover, the production and care of horses is costly, and the use of heterologous sera can cause hypersensitivity reactions. The production of human antibody fragments by phage display technology is seen as a means of overcoming some of these disadvantages. The studies here attempted to test human monoclonal antibodies specific to Bothrops jararacussu against other Bothrops sp. venoms, using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Using the Griffin.1 phage antibody library, this laboratory previously produced scFvs capable of inhibiting the phospholipase and myotoxic activities of Bothrops jararacussu venom. The structural and functional similarities of the various forms of phospholipase A2 (PLA₂) in Bothrops venom served as the basis for the present study wherein the effectiveness of those same scFvs were evaluated against B. jararaca, B. neuwiedi, and B. moojeni venoms. Each clone was found to recognize all three Bothrops venoms, and purified scFvs partially inhibited their in vitro phospholipase activity. In vivo assays demonstrated that the scFv clone P2B7 reduced myotoxicity and increased the survival of animals that received the test venoms. The results here indicate that the scFv P2B7 is a candidate for inclusion in a mixture of specific antibodies to produce a human anti-bothropic sera. This data demonstrates that the human scFv P2B7 represents an alternative therapeutic approach to heterologous anti-bothropic sera available today.

  16. Human MSH6 deficiency is associated with impaired antibody maturation.

    Science.gov (United States)

    Gardès, Pauline; Forveille, Monique; Alyanakian, Marie-Alexandra; Aucouturier, Pierre; Ilencikova, Denisa; Leroux, Dominique; Rahner, Nils; Mazerolles, Fabienne; Fischer, Alain; Kracker, Sven; Durandy, Anne

    2012-02-15

    Ig class-switch recombination (Ig-CSR) deficiencies are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect, defective Ig-CSR may also be associated with impaired somatic hypermutation (SHM) of the Ig V regions. Although the mechanisms underlying Ig-CSR and SHM in humans have been revealed (at least in part) by studying natural mutants, the role of mismatch repair in this process has not been fully elucidated. We studied in vivo and in vitro Ab maturation in eight MSH6-deficient patients. The skewed SHM pattern strongly suggests that MSH6 is involved in the human SHM process. Ig-CSR was found to be partially defective in vivo and markedly impaired in vitro. The resolution of γH2AX foci following irradiation of MSH6-deficient B cell lines was also found to be impaired. These data suggest that in human CSR, MSH6 is involved in both the induction and repair of DNA double-strand breaks in switch regions.

  17. Monoclonal Antibodies to the Human Insulin Receptor that Activate Glucose Transport but not Insulin Receptor Kinase Activity

    Science.gov (United States)

    Forsayeth, John R.; Caro, Jose F.; Sinha, Madhur K.; Maddux, Betty A.; Goldfine, Ira D.

    1987-05-01

    Three mouse monoclonal antibodies were produced that reacted with the α subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity.

  18. Antithyroglobulin antibody

    Science.gov (United States)

    Thyroglobulin antibody; Thyroiditis - thyroglobulin antibody; Hypothyroidism - thyroglobulin antibody; Thyroiditis - thyroglobulin antibody; Graves disease - thyroglobulin antibody; Underactive thyroid - thyroglobulin antibody

  19. Targeting Interleukin-11 Receptor-α Impairs Human Endometrial Cancer Cell Proliferation and Invasion In Vitro and Reduces Tumor Growth and Metastasis In Vivo.

    Science.gov (United States)

    Winship, Amy L; Van Sinderen, Michelle; Donoghue, Jacqueline; Rainczuk, Kate; Dimitriadis, Evdokia

    2016-04-01

    Endometrial cancer contributes to significant morbidity and mortality in women with advanced stage or recurrent disease. IL11 is a cytokine that regulates cell cycle, invasion, and migration, all hallmarks of cancer. IL11 is elevated in endometrial tumors and uterine lavage fluid in women with endometrial cancer, and alters endometrial epithelial cancer cell adhesion and migration in vitro, but its role in endometrial tumorigenesis in vivo is unknown. We injected mice subcutaneously with human-derived Ishikawa or HEC1A endometrial epithelial cancer cells (ectopic), or HEC1A cells into the uterus (orthotopic) to develop endometrial cancer mouse models. Administration of anti-human IL11 receptor (R) α blocking antibody dramatically reduced HEC1A-derived tumor growth in both models and reduced peritoneal metastatic lesion spread in the orthotopic model, compared with IgG. Anti-human IL11Rα retained a well-differentiated, endometrial epithelial phenotype in the HEC1A ectopic mice, suggesting it prevented epithelial-to-mesenchymal transition. Blockade of mouse IL11Rα with anti-mouse IL11Rα antibody did not alter tumor growth, suggesting that cancer epithelial cell IL11 signaling is required for tumor progression. In vitro, anti-human IL11Rα antibody significantly reduced Ishikawa and HEC1A cell proliferation and invasion and promoted apoptosis. Anti-human, but not anti-mouse, IL11Rα antibody reduced STAT3, but not ERK, activation in HEC1A cells in vitro and in endometrial tumors in xenograft mice. We demonstrated that targeted blockade of endometrial cancer epithelial cell IL11 signaling reduced primary tumor growth and impaired metastasis in ectopic and orthotopic endometrial cancer models in vivo Our data suggest that therapeutically targeting IL11Rα could inhibit endometrial cancer growth and dissemination. Mol Cancer Ther; 15(4); 720-30. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Seroepidemiology of Human Papillomavirus 16 (HPV16) L2 and Generation of L2-Specific Human Chimeric Monoclonal Antibodies.

    Science.gov (United States)

    Wang, Joshua W; Jagu, Subhashini; Wu, Wai-Hong; Viscidi, Raphael P; Macgregor-Das, Anne; Fogel, Jessica M; Kwak, Kihyuck; Daayana, Sai; Kitchener, Henry; Stern, Peter L; Gravitt, Patti E; Trimble, Cornelia L; Roden, Richard B S

    2015-07-01

    Presently, the seroprevalence of human papillomavirus (HPV) minor capsid antigen L2-reactive antibody is not well understood, and no serologic standard exists for L2-specific neutralizing antibodies. Therefore, we screened a total of 1,078 serum samples for HPV16 L2 reactivity, and these were obtained from four prior clinical studies: a population-based (n = 880) surveillance study with a high-risk HPV DNA prevalence of 10.8%, a cohort study of women (n = 160) with high-grade cervical intraepithelial neoplasia (CIN), and two phase II trials in women with high-grade vulvar intraepithelial neoplasia (VIN) receiving imiquimod therapy combined with either photodynamic therapy (PDT) (n = 19) or vaccination with a fusion protein comprising HPV16 L2, E7, and E6 (TA-CIN) (n = 19). Sera were screened sequentially by HPV16 L2 enzyme-linked immunosorbent assay (ELISA) and then Western blot. Seven of the 1,078 serum samples tested had L2-specific antibodies, but none were detectably neutralizing for HPV16. To develop a standard, we substituted human IgG1 sequences into conserved regions of two rodent monoclonal antibodies (MAbs) specific for neutralizing epitopes at HPV16 L2 residues 17 to 36 and 58 to 64, creating JWW-1 and JWW-2, respectively. These chimeric MAbs retained neutralizing activity and together reacted with 33/34 clinically relevant HPV types tested. In conclusion, our inability to identify an HPV16 L2-specific neutralizing antibody response even in the sera of patients with active genital HPV disease suggests the subdominance of L2 protective epitopes and the value of the chimeric MAbs JWW-1 and JWW-2 as standards for immunoassays to measure L2-specific human antibodies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Detection of Antibodies against Human and Plant Aquaporins in Patients with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Aristo Vojdani

    2015-01-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease that affects the body’s central nervous system. Around 90% of MS sufferers are diagnosed with relapsing-remitting MS (RRMS. We used ELISA to measure IgG, IgA, and IgM antibodies against linear epitopes of human and plant aquaporins (AQP4 as well as neural antigens in RRMS patients and controls to determine whether patients suffering from RRMS have simultaneous elevations in antibodies against these peptides and antigens. In comparison to controls, significant elevations in isotype-specific antibodies against human and plant AQP4 and neural antigens such as MBP, MOG, and S100B were detected in RRMS patients, indicating a high correlation in antibody reaction between plant aquaporins and brain antigens. This correlation between the reactivities of RRMS patients with various tested antigens was the most significant for the IgM isotype. We conclude that a subclass of patients with RRMS reacts to both plant and human AQP4 peptides. This immune reaction against different plant aquaporins may help in the development of dietary modifications for patients with MS and other neuroimmune disorders.

  2. Prevalence of antibodies to Borrelia burgdorferi sensu stricto in humans from a Cuban village

    Directory of Open Access Journals (Sweden)

    Islay Rodríguez

    Full Text Available Lyme disease has not been officially reported in Cuba. However, clinical cases have been serologically reported. Seroprevalence survey of Borrelia burgdorferi sensu stricto antibodies in humans in the country has not been conducted. OBJECTIVE: To estimate the prevalence of borrelial antibodies in inhabitants of a village with historically high level of tick infestation. METHODS: Serum specimens from 247 persons randomly selected from the population of the village were examined by IgG Western blot using B31 strain for estimating the prevalence of antibodies profile. RESULTS: A seroprevalence value interval (95% CI of 0.6%-7.2% was estimated for the studied population. The prevalent borrelial protein bands on immunoblots were 41, 72, 90/93, 34, 47, 60, 58, 56, 65/66 and 31 kDa in a decreasing order of significance. CONCLUSION: These results support the previous serological findings, suggesting the presence of this borreliosis in Cuba.

  3. Characterisation of new monoclonal antibodies reacting with prions from both human and animal brain tissues

    DEFF Research Database (Denmark)

    Cordes, H.; Bergstrom, A.L.; Ohm, J.

    2008-01-01

    Post-mortem diagnosis of transmissible spongiform encephalopathies (prion diseases) is primarily based on the detection of a protease resistant, misfolded disease associated isoform (PrP(Sc)) of the prion protein (PrP(C)) on neuronal cells. These methods depend on antibodies directed against Pr......-type mice and used for western blotting and immunohistochemistry to detect several types of human prion-disease associated PrP(Sc), including sporadic Creutzfeldt-Jakob Disease (CJD) (subtypes MM1 and VV2), familial CJD and Gerstmann-Straussler-Scheinker (GSS) disease PrP(Sc) as well as PrP(Sc) of bovine...... spongiform encephalopathy (bovine brain), scrapie (ovine brain) and experimental scrapie in hamster and in mice. The antibodies were also used for PET-blotting in which PrP(Sc) blotted from brain tissue sections onto a nitrocellulose membrane is visualized with antibodies after protease and denaturant...

  4. Neutralizing antibodies to non-polio enteroviruses in human immune serum globulin.

    Science.gov (United States)

    Dagan, R; Prather, S L; Powell, K R; Menegus, M A

    1983-01-01

    Neutralizing antibodies to selected non-polio enteroviruses were found in three lots of human immune serum globulin (ISG) prepared from the sera of persons from different geographic regions. Reciprocal titers to coxsackieviruses B3 and B4 ranged from 400 to greater than or equal to 2000, whereas titers to coxsackievirus A9 and ECHO viruses 5 and 9 ranged from 100 to 400 in all three lots of ISG. The presence of neutralizing antibodies to commonly occurring (coxsackieviruses B1 to B5 and A9 and ECHO viruses 3, 4 and 9) and infrequently encountered (ECHO viruses 5 and 13) serotypes, coupled with the increasing evidence that antibodies are an important factor in preventing illness, support recommending the administration of ISG to those at high risk for serious disease.

  5. [Characterisation of a monoclonal antibody against Trypanosoma evansi and its application for detecting circulating antibodies].

    Science.gov (United States)

    Monzón, C M

    2006-12-01

    Monoclonal antibodies were obtained against Trypanosoma evansi. The 2-4F6 IgM monoclonal antibody (Mab) was chosen for the study because of its ability to detect antigens and its specificity (as it did not recognise T. cruzi, T. equiperdum, Babesia equi or B. caballi). The immunoblot test revealed that the 2-4F6 IgM Mab recognises epitopes in two antigenic bands, one measuring 85 kDa and the other 122 kDa. An immunoassay for antigen detection in serum using polyclonal antibodies for capture, the Mab 2-4F6 as primary antibody and an antimouse IgM as secondary antibody gave positive results in 10 of the 11 equidae infected with T. evansi, whereas 20 controls gave negative results. These research results show that the Mab 2-4F6 and the antigen it recognises are useful in identifying equidae infected with T. evansi.

  6. Antibody Response to Human Extracellular HER2 Subdomain Proteins in Mice.

    Science.gov (United States)

    Sadri-Ardalani, Fateme; Ahmadi, Moslem; Hemmati, Azam; Emami, Shaghayegh; Farid, Samira; Amiri, Mohammad Mehdi; Jeddi-Tehrani, Mahmood; Shabani, Mahdi; Shokri, Fazel

    2017-06-01

    In addition to passive immunotherapy using anti-HER2 monoclonal antibodies, active immunotherapy via HER2 targeting is an interesting approach to inducing specific anti-tumor immune responses. We have recently reported the immunogenicity of HER2 subdomains following DNA immunization and HER2 protein boosting. In the present study, we evaluated the immunogenicity of different HER2 extracellular subdomains for the induction of anti-HER2 antibody response in BALB/c mice. To investigate and characterize antibody responses to human recombinant proteins of HER2 extracellular subdomains in immunized mice. Four subdomains of HER2 extracellular domain were expressed in E.coli; subsequently, purified recombinant proteins were intraperitoneally injected in BALB/c mice with Freund's adjuvant. The anti-HER2 antibody response was detected by ELISA, immunoblotting and flow cytometry. All the four HER2 subdomains along with the full extracellular domain (fECD) were able to induce specific anti-HER2 antibodies. Although anti-HER2 subdomains antibodies could not react with eukaryotic recombinant fECD protein by ELISA, they were able to recognize this protein by immunoblotting under both reduced and non-reduced conditions. Furthermore, only the sera of mice immunized with fECD protein could recognize native HER2 on HER2 overexpressing tumor cells (>99%) by flow cytometry. Moreover, fECD immunized mice sera inhibited the proliferation of tumor cells by XTT assay. The prokaryotic recombinant proteins of HER2 extracellular subdomains are immunogenic, yet the induced specific antibodies do not react with the native HER2 protein due to the paucity of post-translation modifications and /or distortion of the native conformation of isolated HER2 extracellular subdomains which might be potentially effective for induction of cell mediated immune response against HER2.

  7. A novel human-derived antibody against NY-ESO-1 improves the efficacy of chemotherapy.

    Science.gov (United States)

    Gupta, Anurag; Nuber, Natko; Esslinger, Christoph; Wittenbrink, Mareike; Treder, Martin; Landshammer, Alexandro; Noguchi, Takuro; Kelly, Marcus; Gnjatic, Sacha; Ritter, Erika; von Boehmer, Lotta; Nishikawa, Hiroyoshi; Shiku, Hiroshi; Old, Lloyd; Ritter, Gerd; Knuth, Alexander; van den Broek, Maries

    2013-01-01

    We investigated whether antibodies against intracellular tumor-associated antigens support tumor-specific immunity when administered together with a treatment that destroys the tumor. We propose that released antigens form immune complexes with the antibodies, which are then efficiently taken up by dendritic cells. We cloned the first human monoclonal antibodies against the Cancer/Testis (CT) antigen, NY-ESO-1. We tested whether the monoclonal anti-NY-ESO-1 antibody (12D7) facilitates cross-presentation of a NY-ESO-1-derived epitope by dendritic cells to human CD8+ T cells, and whether this results in the maturation of dendritic cells in vitro. We investigated the efficacy of 12D7 in combination with chemotherapy using BALB/c mice bearing syngeneic CT26 tumors that express intracellular NY-ESO-1. Human dendritic cells that were incubated with NY-ESO-1:12D7 immune complexes efficiently stimulated NY-ESO-1(157-165)/HLA-A2-specific human CD8+ T cells to produce interferon-γ, whereas NY-ESO-1 alone did not. Furthermore, the incubation of dendritic cells with NY-ESO-1:12D7 immune complexes resulted in the maturation of dendritic cells. Treatment of BALB/c mice that bear CT26/NY-ESO-1 tumors with 5-fluorouracil (5-FU) plus 12D7 was significantly more effective than chemotherapy alone. We propose systemic injection of monoclonal antibodies (mAbs) against tumor-associated antigens plus a treatment that promotes the local release of those antigens resulting in immune complex formation as a novel therapeutic modality for cancer.

  8. Development and characterization of a human antibody reference panel against erythropoietin suitable for the standardization of ESA immunogenicity testing.

    Science.gov (United States)

    Mytych, Daniel T; Barger, Troy E; King, Chadwick; Grauer, Stephanie; Haldankar, Raj; Hsu, Eric; Wu, Michelle Min; Shiwalkar, Mukta; Sanchez, Sergio; Kuck, Andrew; Civoli, Francesca; Sun, Jilin; Swanson, Steven J

    2012-08-31

    Recombinant human erythropoietin (EPO) has been used therapeutically for more than two decades in the treatment of anemia. Although EPO is generally well tolerated, in rare cases, patients have developed anti-EPO antibodies that can negatively impact safety and efficacy. Therefore, the detection of antibodies against EPO is a regulatory requirement during clinical development and post-approval. Although it is a rare phenomenon, antibody-mediated pure red cell aplasia (PRCA) is a serious complication than can result from antibodies that develop and neutralize EPO as well as endogenous erythropoietin. Currently, there are no universally accepted analytical methods to detect the full repertoire of binding and neutralizing anti-EPO antibodies. A number of different methods that differ in terms of antibodies detected and assay sensitivities are used by different manufacturers. There is also a lack of antibody reference reagents, and therefore no consistent basis for detecting and measuring anti-EPO antibodies. Reference reagents, with established ranges, are essential to monitor the safety and efficacy of all erythropoiesis-stimulating agents (ESAs) structurally related to human erythropoietin. This is the first report of the development and characterization of a panel of fully human antibodies against EPO suitable as reference reagents. The characteristics of antibodies within the panel were selected based on the prevalence of non-neutralizing IgG and IgM antibodies in non-PRCA patients and neutralizing IgG antibodies, including IgG1 and IgG4, in antibody-mediated PRCA subjects. The reference panel includes antibodies of high- and low-affinity with binding specificity to neutralizing and non-neutralizing erythropoietin epitopes. The subclass of human antibodies in this reference panel includes an IgG1, IgG2, and IgG4, as well as an IgM isotype. This antibody panel could help select appropriate immunogenicity assays, guide validation, and monitor assay performance

  9. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes are coexpr......In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...

  10. Structural Basis for Escape of Human Astrovirus from Antibody Neutralization: Broad Implications for Rational Vaccine Design

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanoff, Walter A.; Perez, Edmundo I.; López, Tomás; Arias, Carlos F.; DuBois, Rebecca M.; Schultz-Cherry, Stacey

    2017-10-25

    ABSTRACT

    Human astroviruses are recognized as a leading cause of viral diarrhea worldwide in children, immunocompromised patients, and the elderly. There are currently no vaccines available to prevent astrovirus infection; however, antibodies developed by healthy individuals during previous infection correlate with protection from reinfection, suggesting that an effective vaccine could be developed. In this study, we investigated the molecular mechanism by which several strains of human astrovirus serotype 2 (HAstV-2) are resistant to the potent HAstV-2-neutralizing monoclonal antibody PL-2 (MAb PL-2). Sequencing of the HAstV-2 capsid genes reveals mutations in the PL-2 epitope within the capsid's spike domain. To understand the molecular basis for resistance from MAb PL-2 neutralization, we determined the 1.35-Å-resolution crystal structure of the capsid spike from one of these HAstV-2 strains. Our structure reveals a dramatic conformational change in a loop within the PL-2 epitope due to a serine-to-proline mutation, locking the loop in a conformation that sterically blocks binding and neutralization by MAb PL-2. We show that mutation to serine permits loop flexibility and recovers MAb PL-2 binding. Importantly, we find that HAstV-2 capsid spike containing a serine in this loop is immunogenic and elicits antibodies that neutralize all HAstV-2 strains. Taken together, our results have broad implications for rational selection of vaccine strains that do not contain prolines in antigenic loops, so as to elicit antibodies against diverse loop conformations.

    IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. In this study, we investigated how several strains of HAstV are resistant to a virus-neutralizing monoclonal antibody. We determined the crystal structure of the capsid protein spike domain from one of these HAstV strains and found that

  11. Expression cloning and production of Human Heavy Chain Only antibodies from murine transgenic plasma cells

    Directory of Open Access Journals (Sweden)

    Dubravka Drabek

    2016-12-01

    Full Text Available Several technologies have been developed to isolate human antibodies against different target antigens as a source of potential therapeutics, including hybridoma technology, phage and yeast display systems. For conventional antibodies this involves either random pairing of VH and VL domains in combinatorial display libraries, or isolation of cognate pairs of VH and VL domains from human B cells or from transgenic mice carrying human immunoglobulin loci followed by single cell sorting, single cell RT-PCR and bulk cloning of isolated natural VH-VL pairs. Heavy chain only antibodies (HCAbs that naturally occur in camelids require only heavy immunoglobulin chain cloning. Here, we present an automatable novel, high-throughput technology, for rapid direct cloning and production of fully human HCAbs from sorted population of transgenic mouse plasma cells carrying a human HCAb locus. Utility of the technique is demonstrated by isolation of diverse sets of sequence unique, soluble, high affinity influenza A strain X-31 hemagglutinin (HA specific HCAbs

  12. Comparative efficacy of antigen and antibody detection tests for human trichinellosis

    Energy Technology Data Exchange (ETDEWEB)

    Ivanoska, D.; Cuperlovic, K.; Gamble, H.R.; Murrell, K.D.

    1989-02-01

    Sera collected from patients with suspected or confirmed exposure to Trichinella spiralis were tested for circulating parasite antigens and antiparasite antibodies. Using an immunoradiometric assay, excretory--secretory antigens from muscle-stage larvae of T. spiralis were detected in the sera of 47% of 62 patients with clinical trichinellosis and 13% of 39 patients without clinical signs but suspected of exposure to infected meat. In comparison, antibodies were detected using an indirect immunofluorescent test in the circulation of 100% of the 62 patients with clinical trichinellosis and 46% of the 39 patients with suspected exposure. The presence of antibodies specific to excretory-secretory products of T. spiralis muscle larvae was confirmed in the majority of the samples tested by a monoclonal antibody-based competitive inhibition assay. These results indicate that antibody detection is a more sensitive diagnostic method for human trichinellosis, but that antigen detection might be a useful confirmatory test because it is a direct demonstration of parasite products in the circulation.

  13. False-positive human immunodeficiency virus antibody test in a dialysis patient.

    Science.gov (United States)

    Silverstein, Douglas M; Aviles, Diego H; Vehaskari, V Matti

    2004-05-01

    A patient developed end-stage renal disease secondary to p-anti-neutrophil cytoplasmic antibody (p-ANCA) positive rapidly progressive glomerulonephritis. He subsequently had human immunodeficiency virus (HIV)-1 antibody screening performed as part of a pre-transplant evaluation. The HIV-1 enzyme immunoassay (EIA) antibody test was repeatedly reactive. The HIV-1 western blot was indeterminate. The western blot pattern revealed "non-specific staining obscuring bands in that region." Another sample of serum was sent and the results were identical to the first result. An HIV-1 proviral qualitative polymerase chain reaction test was then performed several months later and no HIV-1 DNA was detected. One year later, an HIV-1 RNA test was negative. Thus, the positive antibody EIA test and the indeterminate western blot represent a false-positive result, most likely due to cross-reacting antigens in the patient's serum with various HIV antibodies. Throughout this period and thereafter, the patient has exhibited no symptoms of HIV infection.

  14. Utilisation of tracer monoclonal antibodies for the immunoscintigraphic detection of human colorectal cancers

    Energy Technology Data Exchange (ETDEWEB)

    Chatal, J.F.; Douillard, J.Y.; Kremer, M.; Curtet, C.; Le Mevel, B. (INSERM, Faculte de Medecine, Nantes (France)); Fumoleau, P. (Centre Rene Gauducheau, Nantes (France)); Bourdoiseau, M. (Office des Rayonnements Ionisants, CEA Saclay, Gif-sur-Yvette (France))

    1983-01-01

    Two monoclonal antibodies, 17-1A and 19-9, with recognized human gastrointestinal cancers in cell cultures, were labeled with iodine 131 for immunoscintigraphic application. With the intact /sup 131/I-17-1A antibody, 21 out of 35 (60%) primary or secondary colorectal cancer sites were visualized, whereas all 21 nonepitheliomatous colic cancer sites or noncolic cancer sites were negative. With F(ab')/sub 2/ fragments of the 19-9 antibody, 18 out of 27 (67%) colorectal cancer sites were positive. With both radioantibodies, the bestly contrasted tumor images were late, 4 to 5 days after injection. A study with paired-label technique, associating a specific iodine-131-labeled antibody with a non-specific iodine-125-labeled immunoglobulin, demonstrated, that tumor uptake was indeed specific for the 17-1A or 19-9 antibody in tumor and normal colon fragments obtained during operations on 4 patients. A preliminary prospective study showed that only immunoscintigraphy was able to confirm and localize a recurrence of rectal cancer in one patient. A larger series will be necessary to validate the clinical benefit of the technique, as compared with the results of other diagnostic techniques, before immunoscintigraphy can be proposed for routine clinical use.

  15. Single cycle structure-based humanization of an anti-nerve growth factor therapeutic antibody.

    Science.gov (United States)

    Covaceuszach, Sonia; Marinelli, Sara; Krastanova, Ivet; Ugolini, Gabriele; Pavone, Flaminia; Lamba, Doriano; Cattaneo, Antonino

    2012-01-01

    Most forms of chronic pain are inadequately treated by present therapeutic options. Compelling evidence has accumulated, demonstrating that Nerve Growth Factor (NGF) is a key modulator of inflammatory and nociceptive responses, and is a promising target for the treatment of human pathologies linked to chronic and inflammatory pain. There is therefore a growing interest in the development of therapeutic molecules antagonising the NGF pathway and its nociceptor sensitization actions, among which function-blocking anti-NGF antibodies are particularly relevant candidates.In this respect, the rat anti-NGF αD11 monoclonal antibody (mAb) is a potent antagonist, able to effectively antagonize rodent and human NGF in a variety of in vitro and in vivo systems. Here we show that mAb αD11 displays a significant analgesic effect in two different models of persistent pain in mice, with a remarkable long-lasting activity. In order to advance αD11 mAb towards its clinical application in man, anti-NGF αD11 mAb was humanized by applying a novel single cycle strategy based on the a priori experimental determination of the crystal and molecular structure of the parental Fragment antigen-binding (Fab). The humanized antibody (hum-αD11) was tested in vitro and in vivo, showing that the binding mode and the NGF neutralizing biological activities of the parental antibody are fully preserved, with even a significant affinity improvement. The results firmly establish hum-αD11 as a lead candidate for clinical applications in a therapeutic area with a severe unmet medical need. More generally, the single-cycle structure-based humanization method represents a considerable improvement over the standard humanization methods, which are intrinsically empirical and require several refinement cycles.

  16. Single Cycle Structure-Based Humanization of an Anti-Nerve Growth Factor Therapeutic Antibody

    Science.gov (United States)

    Covaceuszach, Sonia; Marinelli, Sara; Krastanova, Ivet; Ugolini, Gabriele; Pavone, Flaminia; Lamba, Doriano; Cattaneo, Antonino

    2012-01-01

    Most forms of chronic pain are inadequately treated by present therapeutic options. Compelling evidence has accumulated, demonstrating that Nerve Growth Factor (NGF) is a key modulator of inflammatory and nociceptive responses, and is a promising target for the treatment of human pathologies linked to chronic and inflammatory pain. There is therefore a growing interest in the development of therapeutic molecules antagonising the NGF pathway and its nociceptor sensitization actions, among which function-blocking anti-NGF antibodies are particularly relevant candidates. In this respect, the rat anti-NGF αD11 monoclonal antibody (mAb) is a potent antagonist, able to effectively antagonize rodent and human NGF in a variety of in vitro and in vivo systems. Here we show that mAb αD11 displays a significant analgesic effect in two different models of persistent pain in mice, with a remarkable long-lasting activity. In order to advance αD11 mAb towards its clinical application in man, anti-NGF αD11 mAb was humanized by applying a novel single cycle strategy based on the a priori experimental determination of the crystal and molecular structure of the parental Fragment antigen-binding (Fab). The humanized antibody (hum-αD11) was tested in vitro and in vivo, showing that the binding mode and the NGF neutralizing biological activities of the parental antibody are fully preserved, with even a significant affinity improvement. The results firmly establish hum-αD11 as a lead candidate for clinical applications in a therapeutic area with a severe unmet medical need. More generally, the single-cycle structure-based humanization method represents a considerable improvement over the standard humanization methods, which are intrinsically empirical and require several refinement cycles. PMID:22403636

  17. A quantitative flow cytometric assay for determining binding characteristics of chimeric, humanized and human antibodies in whole blood: proof of principle with rituximab and ofatumumab.

    Science.gov (United States)

    Engelberts, Patrick J; Badoil, Carole; Beurskens, Frank J; Boulay-Moine, Danièle; Grivel, Karine; Parren, Paul W H I; Moulard, Maxime

    2013-02-28

    Clinical successes of antibody-based drugs has led to extensive (pre-) clinical development of human(ized) monoclonal antibodies in a great number of diseases. The high specificity of targeted therapy with antibodies makes it ideally suited for personalized medicine approaches in which treatments needs are tailored to individual patients. One aspect of patient stratification pertains to the accurate determination of target occupancy and target expression to determine individual pharmacodynamic properties as well as the therapeutic window. The availability of reliable tools to measure target occupancy and expression on diseased and normal cells is therefore essential. Here, we evaluate a novel human antibody detection assay (Human-IgG Calibrator assay), which allows the flow cytometric quantification of therapeutic antibodies bound to the surface of cells circulating in whole blood. This assay not only permits the determination of the number of specific antibody bound per cell (sABC), but, when combined with quantification of exogenously added mouse antibody, also provides information on binding kinetics and antigen modulation. Our data indicate that the calibrator assay has all properties required for a pharmacodynamic tool to quantify target occupancy of chimeric, humanized and human therapeutic antibodies during therapy, as well as to collect valuable information on both antibody and antigen kinetics. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests.

    Science.gov (United States)

    Chan, Kwok-Hung; Chan, Jasper Fuk-Woo; Tse, Herman; Chen, Honglin; Lau, Candy Choi-Yi; Cai, Jian-Piao; Tsang, Alan Ka-Lun; Xiao, Xincai; To, Kelvin Kai-Wang; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Zheng, Bo-Jiang; Wang, Ming; Yuen, Kwok-Yung

    2013-08-01

    A severe acute respiratory syndrome (SARS)-like disease due to a novel betacoronavirus, human coronavirus EMC (HCoV-EMC), has emerged recently. HCoV-EMC is phylogenetically closely related to Tylonycteris-bat-coronavirus-HKU4 and Pipistrellus-bat-coronavirus-HKU5 in Hong Kong. We conducted a seroprevalence study on archived sera from 94 game-food animal handlers at a wild life market, 28 SARS patients, and 152 healthy blood donors in Southern China to assess the zoonotic potential and evidence for intrusion of HCoV-EMC and related viruses into humans. Anti-HCoV-EMC and anti-SARS-CoV antibodies were detected using screening indirect immunofluorescence (IF) and confirmatory neutralizing antibody tests. Two (2.1%) animal handlers had IF antibody titer of ≥ 1:20 against both HCoV-EMC and SARS-CoV with neutralizing antibody titer of SARS patients had significant IF antibody titers with 7/28 (25%) having anti-HCoV-EMC neutralizing antibodies at low titers which significantly correlated with that of HCoV-OC43. Bioinformatics analysis demonstrated a significant B-cell epitope overlapping the heptad repeat-2 region of Spike protein. Virulence of SARS-CoV over other betacoronaviruses may boost cross-reactive neutralizing antibodies against other betacoronaviruses. Convalescent SARS sera may contain cross-reactive antibodies against other betacoronaviruses and confound seroprevalence study for HCoV-EMC. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  19. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Christy A.; Bryson, Steve; McLean, Gary R.; Creagh, A. Louise; Pai, Emil F.; Schrader, John W. (Toronto); (UBC)

    2008-10-17

    Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.

  20. Naturally Acquired Human Immunity to Pneumococcus Is Dependent on Antibody to Protein Antigens.

    Directory of Open Access Journals (Sweden)

    Robert Wilson

    2017-01-01

    Full Text Available Naturally acquired immunity against invasive pneumococcal disease (IPD is thought to be dependent on anti-capsular antibody. However nasopharyngeal colonisation by Streptococcus pneumoniae also induces antibody to protein antigens that could be protective. We have used human intravenous immunoglobulin preparation (IVIG, representing natural IgG responses to S. pneumoniae, to identify the classes of antigens that are functionally relevant for immunity to IPD. IgG in IVIG recognised capsular antigen and multiple S. pneumoniae protein antigens, with highly conserved patterns between different geographical sources of pooled human IgG. Incubation of S. pneumoniae in IVIG resulted in IgG binding to the bacteria, formation of bacterial aggregates, and enhanced phagocytosis even for unencapsulated S. pneumoniae strains, demonstrating the capsule was unlikely to be the dominant protective antigen. IgG binding to S. pneumoniae incubated in IVIG was reduced after partial chemical or genetic removal of bacterial surface proteins, and increased against a Streptococcus mitis strain expressing the S. pneumoniae protein PspC. In contrast, depletion of type-specific capsular antibody from IVIG did not affect IgG binding, opsonophagocytosis, or protection by passive vaccination against IPD in murine models. These results demonstrate that naturally acquired protection against IPD largely depends on antibody to protein antigens rather than the capsule.

  1. [Research of Human-mouse Chimeric Antibodies Against Ebola Virus Nucleoprotein].

    Science.gov (United States)

    Zhou, Rongping; Sun, Lina; Liu, Yang; Wu, Wei; Li, Chuan; Liang, Mifang; Qiu, Peihong

    2016-01-01

    The Ebola virus is highly infectious and can result in death in ≤ 90% of infected subjects. Detection of the Ebola virus and diagnosis of infection are extremely important for epidemic control. Presently, Chinese laboratories detect the nucleic acids of the Ebola virus by real-time reverse transcription-polymerase chain reaction (RT-PCR). However, such detection takes a relatively long time and necessitates skilled personnel and expensive equipment. Enzyme-linked immunosorbent assay (ELISA) of serum is simple, easy to operate, and can be used to ascertain if a patient is infected with the Ebola virus as well as the degree of infection. Hence, ELISA can be used in epidemiological investigations and is a strong complement to detection of nucleic acids. Cases of Ebola hemorrhagic fever have not been documented in China, so quality-control material for positive serology is needed. Construction and expression of human-mouse chimeric antibodies against the nucleoprotein of the Ebola virus was carried out. Genes encoding variable heavy (VH) and variable light (VL) chains were extracted and amplified from murine hybridoma cells. Genes encoding the VH and VL chains of monoclonal antibodies were amplified by RT-PCR. According to sequence analyses, a primer was designed to amplify functional sequences relative to VH and VL chain. The eukaryotic expression vector HL51-14 carrying some human antibody heavy chain- and light chain-constant regions was used. IgG antibodies were obtained by transient transfection of 293T cells. Subsequently, immunological detection and immunological identification were identified by ELISA, immunofluorescence assay, and western blotting. These results showed that we constructed and purified two human- mouse chimeric antibodies.

  2. Antibodies to PAI-1 alter the invasive and migratory properties of human tumour cells in vitro.

    Science.gov (United States)

    Brooks, T D; Slomp, J; Quax, P H; De Bart, A C; Spencer, M T; Verheijen, J H; Charlton, P A

    2000-01-01

    Recent reports suggest that elevated levels of plasminogen activator inhibitor-1 (PAI-1) may contribute to tumour progression. The studies reported here were designed to help elucidate PAI-1's contribution to the invasive and migratory phenotype. Antibodies to PA-1 dose-dependently, and significantly, inhibited the invasive and migratory potential of human HT1080 fibrosarcoma cells, as did an antibody to uPA and the plasmin inhibitor aprotinin. Invasion of the human melanoma cell line, BLM, was also attenuated by the anti-PAI-1 monoclonal antibody MAI-12. The non-invasive human melanoma cell line, IF6, which does not express uPA, provided further confirmation of PAI-1 and uPA's role as, upon transfection with uPA, this cell line attained an invasive phenotype, which was again attenuated by MAI-12. Although antibodies to PAI-1 did not affect the adhesion of HT1080 cells to vitronectin, the antibody to uPA reduced their attachment. Addition of exogenous PAI-1, however, prevented HT1080 cell adhesion (IC50 180 nM) and promoted cell detachment from vitronectin. Furthermore melanoma cells transfected with a uPA variant, which had an impaired interaction with PAI-1, were not invasive and had impaired binding to vitronectin. These data highlight the importance of a balanced proteolysis and suggest an additional role for PAI-1 distinct from its role in proteolysis. These data also suggest that uPA and PAI-1 may co-operate in the migratory process by respectively facilitating the attachment to, and subsequent detachment from, vitronectin in the extracellular matrix. These results support the clinical findings and indicate that modulation of PAI-1 activity may be of therapeutic benefit for the treatment of cancer.

  3. A monoclonal antibody defining human B cell differentiation antigen (HLB-1 antigen).

    Science.gov (United States)

    Kasai, K; Koshiba, H; Ishii, Y; Kikuchi, K

    1983-01-01

    A new monoclonal antibody specific for human B cell differentiation antigen (HLB-1) is produced by a hybridoma established by fusion of splenocytes of mice immunized with the Epstein-Barr virus (EBV)-transformed peripheral B cell line, RPMI-8057. This monoclonal, antibody designated anti-HLB-1 monoclonal antibody (anti-HLB-1), reacted with surface immunoglobulin (sIg)-positive B cells of normal peripheral blood and lymphoid tissues and sIg-positive leukemic cells. The cells of T cell leukemia, non-T non-B acute lymphoblastic leukemia (ALL) and nonlymphoid leukemia were HLB-1 negative. These data were further confirmed by studying a panel of cultured human hematopoietic cell lines. Anti-HLB-1 reacted with B cell lines derived from pre-B, Burkitt's lymphoma, B cell type ALL and EBV-transformed peripheral B cells. Anti-HLB-1 was reactive with only one of three human myeloma cell lines, and with none of the T cell, myeloid and non-T non-B ALL cell lines. This newly defined HLB-1 antigen is different from other conventional human B cell markers such as sIg, Ia antigens, and receptors for the Fc portion of Ig and complement C3.

  4. The antibody response against human and chimeric anti-TNF therapeutic antibodies primarily targets the TNF binding region

    NARCIS (Netherlands)

    van Schie, K. A.; Hart, M. H.; de Groot, E. R.; Kruithof, S.; Aarden, L. A.; Wolbink, G. J.; Rispens, T.

    2015-01-01

    In a subset of patients, anti tumour necrosis factor (TNF) therapeutic antibodies are immunogenic, resulting in the formation of antidrug antibodies (ADAs). Neutralising ADAs compete with TNF for its binding site and reduces the effective serum concentration, causing clinical non-response. It is

  5. Differences in the interaction of acetylcholine receptor antibodies with receptor from normal, denervated and myasthenic human muscle.

    OpenAIRE

    Lefvert, A. K.

    1982-01-01

    The interaction of acetylcholine receptor antibodies with different kinds of human skeletal muscle receptor was investigated. The reaction of most receptor antibodies was strongest with receptor from a patient with myasthenia gravis and with receptor from denervated muscle. Results obtained with these receptors were well correlated. The binding of most receptor antibodies to receptor from functionally normal muscle was much weaker and also qualitatively different. In a few patients with moder...

  6. Neutralization of Zika virus by germline-like human monoclonal antibodies targeting cryptic epitopes on envelope domain III

    OpenAIRE

    Wu, Yanling; Li, Shun; Du, Lanying; Wang, Chunyu; Zou, Peng; Hong, Binbin; Yuan, Mengjiao; Ren, Xiaonan; Tai, Wanbo; Kong, Yu; Zhou, Chen; Lu, Lu; Zhou, Xiaohui; Jiang, Shibo; Ying, Tianlei

    2017-01-01

    The Zika virus (ZIKV), a flavivirus transmitted by Aedes mosquitoes, has emerged as a global public health concern. Pre-existing cross-reactive antibodies against other flaviviruses could modulate immune responses to ZIKV infection by antibody-dependent enhancement, highlighting the importance of understanding the immunogenicity of the ZIKV envelope protein. In this study, we identified a panel of human monoclonal antibodies (mAbs) that target domain III (DIII) of the ZIKV envelope protein fr...

  7. Human antibody titers to Epstein-Barr Virus (EBV) gp350 correlate with neutralization of infectivity better than antibody titers to EBV gp42 using a rapid flow cytometry-based EBV neutralization assay.

    Science.gov (United States)

    Sashihara, Junji; Burbelo, Peter D; Savoldo, Barbara; Pierson, Theodore C; Cohen, Jeffrey I

    2009-09-01

    Measurement of neutralizing antibodies to Epstein-Barr virus (EBV) is important for evaluation of candidate vaccines. The current neutralization assay is based on antibody inhibition of EBV transformation of B cells and requires 6 weeks to perform. We developed a rapid, quantitative flow cytometry assay and show that neutralizing antibody titers measured by the new assay strongly correlate with antibody titers in the standard transformation-based assay. Antibodies to EBV gp350 and gp42 have been shown to block infection of B cells by EBV. Using new assays to quantify antibodies to these glycoproteins, we show for the first time that human plasma contains high titers of antibody to gp42; these titers correlate with neutralization of EBV infectivity or transformation. Furthermore, we show that antibody titers to EBV gp350 correlate more strongly with neutralization than antibody titers to gp42. These assays should be useful in accessing antibody responses to candidate EBV vaccines.

  8. Fully-human Monoclonal Antibodies Against Human EphrinB2 and EphB4 | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Cancer and Inflammation Program is seeking statements of capability or interest from parties interested in licensing fully-human monoclonal antibodies against human EphrinB2 and EphB4.

  9. The U4 Antibody Epitope on Human Papillomavirus 16 Identified by Cryo-electron Microscopy.

    Science.gov (United States)

    Guan, Jian; Bywaters, Stephanie M; Brendle, Sarah A; Lee, Hyunwook; Ashley, Robert E; Christensen, Neil D; Hafenstein, Susan

    2015-12-01

    The human papillomavirus (HPV) major structural protein L1 composes capsomers that are linked together through interactions mediated by the L1 C terminus to constitute a T=7 icosahedral capsid. H16.U4 is a type-specific monoclonal antibody recognizing a conformation-dependent neutralizing epitope of HPV thought to include the L1 protein C terminus. The structure of human papillomavirus 16 (HPV16) complexed with H16.U4 fragments of antibody (Fab) was solved by cryo-electron microscopy (cryo-EM) image reconstruction. Atomic structures of virus and Fab were fitted into the corresponding cryo-EM densities to identify the antigenic epitope. The antibody footprint mapped predominately to the L1 C-terminal arm with an additional contact point on the side of the capsomer. This footprint describes an epitope that is presented capsid-wide. However, although the H16.U4 epitope suggests the presence of 360 potential binding sites exposed in the capsid valley between each capsomer, H16.U4 Fab bound only to epitopes located around the icosahedral five-fold vertex of the capsid. Thus, the binding characteristics of H16.U4 defined in this study showed a distinctive selectivity for local conformation-dependent interactions with specific L1 invading arms between five-fold related capsomers. Human papillomavirus 16 (HPV16) is the most prevalent oncogenic genotype in HPV-associated anogenital and oral cancers. Here we use cryo-EM reconstruction techniques to solve the structures of the HPV16 capsid complexes using H16.U4 fragment of antibody (Fab). Different from most other antibodies directed against surface loops, H16.U4 monoclonal antibody is unique in targeting the C-terminal arm of the L1 protein. This monoclonal antibody (MAb) is used throughout the HPV research community in HPV serological and vaccine development and to define mechanisms of HPV uptake. The unique binding mode of H16.U4 defined here shows important conformation-dependent interactions within the HPV16 capsid. By

  10. Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination.

    Science.gov (United States)

    Nivarthi, Usha K; Kose, Nurgun; Sapparapu, Gopal; Widman, Douglas; Gallichotte, Emily; Pfaff, Jennifer M; Doranz, Benjamin J; Weiskopf, Daniela; Sette, Alessandro; Durbin, Anna P; Whitehead, Steve S; Baric, Ralph; Crowe, James E; de Silva, Aravinda M

    2017-03-01

    The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination. IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody responses

  11. Vaccine induced antibodies to the first variable loop of human immunodeficiency virus type 1 gp120, mediate antibody-dependent virus inhibition in macaques.

    Science.gov (United States)

    Bialuk, Izabela; Whitney, Stephen; Andresen, Vibeke; Florese, Ruth H; Nacsa, Janos; Cecchinato, Valentina; Valeri, Valerio W; Heraud, Jean-Michel; Gordon, Shari; Parks, Robyn Washington; Montefiori, David C; Venzon, David; Demberg, Thorsten; Guroff, Marjorie Robert-; Landucci, Gary; Forthal, Donald N; Franchini, Genoveffa

    2011-12-09

    The role of antibodies directed against the hyper variable envelope region V1 of human immunodeficiency virus type 1 (HIV-1), has not been thoroughly studied. We show that a vaccine able to elicit strain-specific non-neutralizing antibodies to this region of gp120 is associated with control of highly pathogenic chimeric SHIV(89.6P) replication in rhesus macaques. The vaccinated animal that had the highest titers of antibodies to the amino terminus portion of V1, prior to challenge, had secondary antibody responses that mediated cell killing by antibody-dependent cellular cytotoxicity (ADCC), as early as 2 weeks after infection and inhibited viral replication by antibody-dependent cell-mediated virus inhibition (ADCVI), by 4 weeks after infection. There was a significant inverse correlation between virus level and binding antibody titers to the envelope protein, (R=-0.83, p=0.015), and ADCVI (R=-0.84 p=0.044). Genotyping of plasma virus demonstrated in vivo selection of three SHIV(89.6P) variants with changes in potential N-linked glycosylation sites in V1. We found a significant inverse correlation between virus levels and titers of antibodies that mediated ADCVI against all the identified V1 virus variants. A significant inverse correlation was also found between neutralizing antibody titers to SHIV(89.6) and virus levels (R=-0.72 p=0.0050). However, passive inoculation of purified immunoglobulin from animal M316, the macaque that best controlled virus, to a naïve macaque, resulted in a low serum neutralizing antibodies and low ADCVI activity that failed to protect from SHIV(89.6P) challenge. Collectively, while our data suggest that anti-envelope antibodies with neutralizing and non-neutralizing Fc(R-dependent activities may be important in the control of SHIV replication, they also demonstrate that low levels of these antibodies alone are not sufficient to protect from infection. Published by Elsevier Ltd.

  12. Antibodies in Action: Role of Human Opsonins in Killing Salmonella enterica Serovar Typhi▿

    Science.gov (United States)

    Lindow, Janet C.; Fimlaid, Kelly A.; Bunn, Janice Y.; Kirkpatrick, Beth D.

    2011-01-01

    Although vaccines have been available for over a century, a correlate of protection for typhoid fever has yet to be identified. Antibodies are produced in response to typhoid infection and vaccination and are generally used as the gold standard for determining vaccine immunogenicity, even though their role in clearance of Salmonella enterica serovar Typhi infections is poorly defined. Here, we describe the first functional characterization of S. Typhi-specific antibodies following vaccination with a new vaccine, M01ZH09 (Ty2 ΔaroC ΔssaV). We determined that postvaccination sera increased the uptake of wild-type S. Typhi by human macrophages up to 2.3-fold relative to prevaccination (day 0) or placebo samples. These results were recapitulated using immunoglobulins purified from postvaccination serum, demonstrating that antibodies were largely responsible for increases in uptake. Imaging verified that macrophages internalized 2- to 9.5-fold more S. Typhi when the bacteria were opsonized with postvaccination sera than when the bacteria were opsonized with day 0 or placebo sera. Once inside macrophages, the survival of S. Typhi was reduced as much as 50% when opsonized with postvaccination sera relative to day 0 or placebo serum samples. Lastly, bactericidal assays indicated that antibodies generated postvaccination were recognized by complement factors and assisted in killing S. Typhi: mean postvaccination bactericidal antibody titers were higher at all time points than placebo and day 0 titers. These data clearly demonstrate that there are at least two mechanisms by which antibodies facilitate killing of S. Typhi. Future work could lead to improved immunogenicity tests associated with vaccine efficacy and the identification of correlates of protection against typhoid fever. PMID:21628517

  13. The monoclonal antibody GRC1 produced against human cornea recognizes a common determinant of collagen.

    Science.gov (United States)

    Lopez Nevot, M A; Cardona, L; Doblaré, E; Muñoz, C; Ruiz-Cabello, F; Garrido, F

    1990-02-01

    The monoclonal antibody GRC1 was obtained by immunizing BALB/c mice with human cornea. Screening was performed by indirect immunofluorescence in cryostatic sections of several tissues: cornea, skin, placenta, hyaline cartilage, blood vessels, and nerves. GRC1 was seen to recognize fibrillar structures in all of these tissues. The pattern of reaction was interstitial and membranous. On cornea, GRC1 reacts definitely with Bowman's membrane and diffusely with the stroma, while on skin it shows strongly positive reactivity with the papillary dermis and with the basement membrane. It also reacts on hyaline cartilage at the periphery of the condrocytic lacunae. These immunohistologic results suggest that GRC1 recognized human collagen. In order to investigate further the subtype of collagen defined by GRC1, an ELISA was performed with purified collagens of several types: I, II, III, IV, and V. The monoclonal antibody GRC1 defines a common determinant in types III, IV, and V.

  14. Diagnostic Detection of Human Immunodeficiency Virus Type 1 Antibodies in Urine: a Brazilian Study

    OpenAIRE

    Oelemann, Walter M. R.; Lowndes, Catherine M; Veríssimo Da Costa, Giovani C.; Morgado, Mariza G; Castello-Branco,Luiz Roberto R; Grinsztejn, Beatriz; Alary, Michel; Bastos, Francisco I

    2002-01-01

    We evaluated, for the first time in Latin America, the performance of a commercial enzyme immunoassay (EIA) (Calypte Biomedical Corporation, Berkeley, Calif.) that detects human immunodeficiency virus type 1 (HIV-1)-specific antibodies in urine in comparison to standard serological assays (two commercial EIAs and a commercial Western blot [WB] assay). Paired serum and urine specimens were collected from two different groups of Brazilian patients: 225 drug users with unknown HIV status who att...

  15. Humanization and characterization of an anti-ricin neutralization monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Wei-Gang Hu

    Full Text Available Ricin is regarded as a high terrorist risk for the public due to its high toxicity and ease of production. Currently, there is no therapeutic or vaccine available against ricin. D9, a murine monoclonal antibody developed previously in our laboratory, can strongly neutralize ricin and is therefore a good candidate for humanization. Humanization of D9 variable regions was achieved by a complementarity-determining region grafting approach. The humanized D9 (hD9 variable regions were further grafted onto human heavy and light chain constant regions to assemble the complete antibody gene. A foot-and-mouth-disease virus-derived 2A self-processing sequence was introduced between heavy and light chain DNA sequences to cleave the recombinant protein into a functional full-length antibody molecule from a single open reading frame driven by a single promoter in an adenoviral vector. After expression in mammalian cells and purification, the hD9 was demonstrated to have equimolar expression of the full-length antibody heavy and light chains. More importantly, the hD9 exhibited high affinity to ricin with K(D of 1.63 nM, comparable to its parental murine D9 (2.55 nM. In a mouse model, intraperitoneal (i.p. administration of hD9, at a low dose of 5 µg per mouse, 4 hours after the i.p. challenge with 5×LD50 ricin was found to rescue 100% of the mice. In addition, administered 6 hours post-challenge, hD9 could still rescue 50% of the mice. The hD9 has the potential to be used for prophylactic or therapeutic purposes against ricin poisoning.

  16. Humanization and characterization of an anti-ricin neutralization monoclonal antibody.

    Science.gov (United States)

    Hu, Wei-Gang; Yin, Junfei; Chau, Damon; Negrych, Laurel M; Cherwonogrodzky, John W

    2012-01-01

    Ricin is regarded as a high terrorist risk for the public due to its high toxicity and ease of production. Currently, there is no therapeutic or vaccine available against ricin. D9, a murine monoclonal antibody developed previously in our laboratory, can strongly neutralize ricin and is therefore a good candidate for humanization. Humanization of D9 variable regions was achieved by a complementarity-determining region grafting approach. The humanized D9 (hD9) variable regions were further grafted onto human heavy and light chain constant regions to assemble the complete antibody gene. A foot-and-mouth-disease virus-derived 2A self-processing sequence was introduced between heavy and light chain DNA sequences to cleave the recombinant protein into a functional full-length antibody molecule from a single open reading frame driven by a single promoter in an adenoviral vector. After expression in mammalian cells and purification, the hD9 was demonstrated to have equimolar expression of the full-length antibody heavy and light chains. More importantly, the hD9 exhibited high affinity to ricin with K(D) of 1.63 nM, comparable to its parental murine D9 (2.55 nM). In a mouse model, intraperitoneal (i.p.) administration of hD9, at a low dose of 5 µg per mouse, 4 hours after the i.p. challenge with 5×LD50 ricin was found to rescue 100% of the mice. In addition, administered 6 hours post-challenge, hD9 could still rescue 50% of the mice. The hD9 has the potential to be used for prophylactic or therapeutic purposes against ricin poisoning.

  17. A Simple Saliva-Based Test for Detecting Antibodies to Human Immunodeficiency Virus*

    OpenAIRE

    Schramm, Willfried; Angulo, Gustavo Barriga; Torres, Patricia Castillo; Burgess-Cassler, Anthony

    1999-01-01

    This study was performed to determine the feasibility of using saliva as a diagnostic medium for the detection of antibodies to human immunodeficiency virus type 1 (HIV-1) and HIV-2 under nonlaboratory conditions and to evaluate the performance characteristics of such a test. We developed for this purpose a self-contained kit (Saliva · Strip [ST]), which combines the collection and processing, as well as the analysis, of the specimen. The kit’s performance was eval...

  18. Phage-display libraries of murine and human antibody Fab fragments

    DEFF Research Database (Denmark)

    Engberg, J; Andersen, P S; Nielsen, L K

    1996-01-01

    We provide efficient and detailed procedures for construction, expression, and screening of comprehensive libraries of murine or human antibody Fab fragments displayed on the surface of filamentous phage. In addition, protocols for producing and using ultra-electrocompetent cells, for producing Fab...... phages from libraries, and for selecting antigen binders by panning are presented. The latter protocol includes a procedure for trypsin elution of bound phage....

  19. Production of Potent Fully Human Polyclonal Antibodies Against Zaire Ebola Virus in Transchromosomal Cattle

    Science.gov (United States)

    2016-07-01

    rGP proteins was measured under native (rGP proteins immobilized on a HTG sensor chip) or partially denatured (rGP proteins immobilized on a GLC... syndrome (HPS) DNA vaccine delivered using a spring-powered jet injector elicits a potent neutralizing antibody response in rabbits and nonhuman primates...et al., DNA vaccine-derived human IgG produced in transchromosomal bovines protect in lethal models of hantavirus pulmonary syndrome . Science

  20. Human anti-plague monoclonal antibodies protect mice from Yersinia pestis in a bubonic plague model.

    Directory of Open Access Journals (Sweden)

    Xiaodong Xiao

    2010-10-01

    Full Text Available Yersinia pestis is the etiologic agent of plague that has killed more than 200 million people throughout the recorded history of mankind. Antibiotics may provide little immediate relief to patients who have a high bacteremia or to patients infected with an antibiotic resistant strain of plague. Two virulent factors of Y. pestis are the capsid F1 protein and the low-calcium response (Lcr V-protein or V-antigen that have been proven to be the targets for both active and passive immunization. There are mouse monoclonal antibodies (mAbs against the F1- and V-antigens that can passively protect mice in a murine model of plague; however, there are no anti-Yersinia pestis monoclonal antibodies available for prophylactic or therapeutic treatment in humans. We identified one anti-F1-specific human mAb (m252 and two anti-V-specific human mAb (m253, m254 by panning a naïve phage-displayed Fab library against the F1- and V-antigens. The Fabs were converted to IgG1s and their binding and protective activities were evaluated. M252 bound weakly to peptides located at the F1 N-terminus where a protective mouse anti-F1 mAb also binds. M253 bound strongly to a V-antigen peptide indicating a linear epitope; m254 did not bind to any peptide from a panel of 53 peptides suggesting that its epitope may be conformational. M252 showed better protection than m253 and m254 against a Y, pestis challenge in a plague mouse model. A synergistic effect was observed when the three antibodies were combined. Incomplete to complete protection was achieved when m252 was given at different times post-challenge. These antibodies can be further studied to determine their potential as therapeutics or prophylactics in Y. pestis infection in humans.

  1. Human-monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever.

    Science.gov (United States)

    Mire, Chad E; Cross, Robert W; Geisbert, Joan B; Borisevich, Viktoriya; Agans, Krystle N; Deer, Daniel J; Heinrich, Megan L; Rowland, Megan M; Goba, Augustine; Momoh, Mambu; Boisen, Mathew L; Grant, Donald S; Fullah, Mohamed; Khan, Sheik Humarr; Fenton, Karla A; Robinson, James E; Branco, Luis M; Garry, Robert F; Geisbert, Thomas W

    2017-10-01

    There are no approved treatments for Lassa fever, which is endemic to the same regions of West Africa that were recently devastated by Ebola. Here we show that a combination of human monoclonal antibodies that cross-react with the glycoproteins of all four clades of Lassa virus is able to rescue 100% of cynomolgus macaques when treatment is initiated at advanced stages of disease, including up to 8 d after challenge.

  2. Antibody-Mediated Neutralization of Pertussis Toxin-Induced Mitogenicity of Human Peripheral Blood Mononuclear Cells

    OpenAIRE

    Scott H Millen; Bernstein, David I.; Connelly, Beverly; Ward, Joel I.; Chang, Swei-Ju; Weiss, Alison A.

    2004-01-01

    Antibody-mediated neutralization of pertussis toxin-induced proliferation of human peripheral blood mononuclear cells (PBMC) was assessed using alamarBlue and compared with results from the Chinese hamster ovary (CHO) cell assay using sera from vaccinated adults and convalescent children. Neutralization values for the CHO assay were similar for vaccinated and convalescent subjects; however. the convalescent group had higher titers in the PBMC assay. Results for pertussis toxin neutralization ...

  3. Two new monoclonal antibodies to human monocytes and granulocytes: isolation of membrane antigens and lack of effects of antibodies on leukocyte functions in vitro.

    Science.gov (United States)

    Stevenson, H C; Kimball, E; Schroff, R W; Buescher, S; Clarke, G; Gregorio, T; Wilburn, S; Foon, K A

    1984-01-01

    Mice were immunized with purified human monocytes or granulocytes obtained by leukapheresis and isolated on dextran gradients or by countercurrent centrifugation-elutriation. A monoclonal antibody, Mo95, was generated in response to monocytes and was found to react strongly with monocytes, large granular lymphocytes (LGL), granulocytes, eosinophils, and some myelomonocytic leukemia cells, but not with normal T or B lymphocytes, platelets, red cells, or leukemic cell lines. Mo95 is an IgG1 antibody, which precipitated a 95 kD molecular weight antigen. Addition of the Mo95 antibody to monocytes in the absence of complement did not inhibit lysozyme secretion nor did it affect superoxide production, C3b-rosetting, nitrotetrazolium blue reduction, phagocytosis, or chemotactic responses. A second antibody, PMN70, was found to react exclusively with granulocytes and not with monocytes, lymphocytes, LGL, platelets, red cells, or any of the myelomonocytic, T-cell-derived or B-cell-derived leukemic cell lines tested. The PMN70 antibody immunoprecipitated a 70 kD molecular weight antigen found only on mature granulocytes. Mo95 and PMN70 appear to be distinct from five other tested monoclonal antibodies reactive to monocytes and/or granulocytes on the basis of the fluorescent cell sorter and immunoprecipitation studies performed.

  4. Beyond CDR-grafting: Structure-guided humanization of framework and CDR regions of an anti-myostatin antibody.

    Science.gov (United States)

    Apgar, James R; Mader, Michelle; Agostinelli, Rita; Benard, Susan; Bialek, Peter; Johnson, Mark; Gao, Yijie; Krebs, Mark; Owens, Jane; Parris, Kevin; St Andre, Michael; Svenson, Kris; Morris, Carl; Tchistiakova, Lioudmila

    2016-10-01

    Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall "humanness" was increased for both the light and heavy chain variable regions.

  5. Use of a monoclonal antibody to distinguish between precursor and mature forms of human lysosomal alpha-glucosidase

    NARCIS (Netherlands)

    Oude Elferink, R. P.; Strijland, A.; Surya, I.; Brouwer-Kelder, E. M.; Kroos, M.; Hilkens, J.; Hilgers, J.; Reuser, A. J.; Tager, J. M.

    1984-01-01

    The maturation of lysosomal alpha-glucosidase in cultured human skin fibroblasts was studied using a monoclonal antibody that distinguishes between the precursor and mature forms of the enzyme. Monoclonal antibodies against alpha-glucosidase isolated from placenta were produced by the hybridoma

  6. Detection of MHC class II expression on human basophils is dependent on antibody specificity but independent of atopic disposition

    DEFF Research Database (Denmark)

    Poulsen, Britta Cathrina; Poulsen, Lars K.; Jensen, Bettina M

    2012-01-01

    difference was also observed between the HLA-DR specific antibodies, indicating that the choice of antibody is crucial. Furthermore, critical compensation was essential to avoid false HLA-DR+ basophils. Finally, we found that detection of MHC class II on human basophils was independent of atopic disposition....

  7. Estimation of dose requirements for sustained in vivo activity of a therapeutic human anti-CD20 antibody

    NARCIS (Netherlands)

    Bleeker, Wim K.; Munk, Martin E.; Mackus, Wendy J. M.; van den Brakel, Jeroen H. N.; Pluyter, Marielle; Glennie, Martin J.; van de Winkel, Jan G. J.; Parren, Paul W. H. I.

    We evaluated the dose requirements for sustained in vivo activity of ofatumumab, a human anti-CD20 antibody under development for the treatment of B cell-mediated diseases. In a mouse xenograft model, a single dose, resulting in an initial plasma antibody concentration of 5 mu g/ml, which was

  8. Selective Depletion of Neuropathy-Related Antibodies from Human Serum by Monolithic Affinity Columns Containing Ganglioside Mimics

    NARCIS (Netherlands)

    Tetala, K.K.R.; Heikema, A.P.; Pukin, A.; Weijers, C.A.G.M.; Tio-Gillen, A.P.; Gilbert, M.; Endtz, H.P.; Belkum, van A.; Zuilhof, H.; Visser, G.M.; Jacobs, B.C.; Beek, van T.A.

    2011-01-01

    Monolithic columns containing ganglioside GM2 and GM3 mimics were prepared for selective removal of serum anti-ganglioside antibodies from patients with acute and chronic immune-mediated neuropathies. ELISA results demonstrated that anti-GM2 IgM antibodies in human sera and a mouse monoclonal

  9. An evaluation of specific antibodies to oral streptococcus Mutans in human serum and saliva in relation to dental care

    Directory of Open Access Journals (Sweden)

    S Padmashree

    2003-01-01

    Full Text Available An immunological investigation of denal caries was carried out to detect antibodies in human serum and saliva against streptococcus mutans, in relation with the formation of caries. The level of serum and salivary IgG, IgA & IgM antibodies was determined by an indirect enzyme linked immunosobent assay (ELISA, using formalinized whole bacterial cells as the antigen

  10. Humanization of chimeric anti-CD20 antibody by logical and bioinformatics approach with retention of biological activity.

    Science.gov (United States)

    Khoo, Yoke L; Cheah, Swee H; Chong, Heilly

    2017-06-01

    To develop a fully bioactive humanized antibody from the chimeric rituximab for potential clinical applications using a relatively simpler and faster logical and bioinformatics approach. From bioinformatics data, mismatched mouse amino acids in variable light and heavy chain amphipathic regions were identified and substituted with those common to human antibody framework. Appropriate synthetic DNA sequences inserted into vectors were transfected into HEK293 cells to produce the humanized antibody. Humanized antibodies showed specific binding to CD20 and greater cytotoxicity to cancer WIL2-NS cell proliferation than rituximab in vitro. A humanized version of rituximab with potential to be developed into a biobetter for treatment of B-cell disorders has been successfully generated using a logical and bioinformatics approach.

  11. Principles of Broad and Potent Antiviral Human Antibodies: Insights for Vaccine Design.

    Science.gov (United States)

    Crowe, James E

    2017-08-09

    Antibodies are the principal immune effectors that mediate protection against reinfection following viral infection or vaccination. Robust techniques for human mAb isolation have been developed in the last decade. The study of human mAbs isolated from subjects with prior immunity has become a mainstay for rational structure-based, next-generation vaccine development. The plethora of detailed molecular and genetic studies coupling the structure of antigen-antibody complexes with their antiviral function has begun to reveal common principles of critical interactions on which we can build better vaccines and therapeutic antibodies. This review outlines the approaches to isolating and studying human antiviral mAbs and discusses the common principles underlying the basis for their activity. This review also examines progress toward the goal of achieving a comprehensive understanding of the chemical and physical basis for molecular recognition of viral surface proteins in order to build predictive molecular models that can be used for vaccine design. Copyright © 2017. Published by Elsevier Inc.

  12. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors

    Energy Technology Data Exchange (ETDEWEB)

    Kubota-Koketsu, Ritsuko; Mizuta, Hiroyuki [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Oshita, Masatoshi; Ideno, Shoji [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Yunoki, Mikihiro [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Kuhara, Motoki [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano 396-0002 (Japan); Yamamoto, Naomasa [Department of Biochemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima 963-8611 (Japan); Okuno, Yoshinobu [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa 768-0061 (Japan); Ikuta, Kazuyoshi, E-mail: ikuta@biken.osaka-u.ac.jp [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan)

    2009-09-11

    Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.

  13. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines.

    Science.gov (United States)

    Li, Shuzhao; Rouphael, Nadine; Duraisingham, Sai; Romero-Steiner, Sandra; Presnell, Scott; Davis, Carl; Schmidt, Daniel S; Johnson, Scott E; Milton, Andrea; Rajam, Gowrisankar; Kasturi, Sudhir; Carlone, George M; Quinn, Charlie; Chaussabel, Damien; Palucka, A Karolina; Mulligan, Mark J; Ahmed, Rafi; Stephens, David S; Nakaya, Helder I; Pulendran, Bali

    2014-02-01

    Many vaccines induce protective immunity via antibodies. Systems biology approaches have been used to determine signatures that can be used to predict vaccine-induced immunity in humans, but whether there is a 'universal signature' that can be used to predict antibody responses to any vaccine is unknown. Here we did systems analyses of immune responses to the polysaccharide and conjugate vaccines against meningococcus in healthy adults, in the broader context of published studies of vaccines against yellow fever virus and influenza virus. To achieve this, we did a large-scale network integration of publicly available human blood transcriptomes and systems-scale databases in specific biological contexts and deduced a set of transcription modules in blood. Those modules revealed distinct transcriptional signatures of antibody responses to different classes of vaccines, which provided key insights into primary viral, protein recall and anti-polysaccharide responses. Our results elucidate the early transcriptional programs that orchestrate vaccine immunity in humans and demonstrate the power of integrative network modeling.

  14. Bacterial cytoplasmic display platform Retained Display (ReD) identifies stable human germline antibody frameworks.

    Science.gov (United States)

    Beasley, Matthew D; Niven, Keith P; Winnall, Wendy R; Kiefel, Ben R

    2015-05-01

    Conventional antibody surface display requires fusion protein export through at least one cellular membrane, constraining the yield and occasioning difficulties in achieving scaled production. To circumvent this limitation, we developed a novel cytoplasmic display platform, Retained Display (ReD), and used it to screen for human scFv frameworks that are highly soluble and stable in the bacterial cytoplasm. ReD, based on the retention of high-molecular weight complexes within detergent-permeabilized Escherichia coli, enabled presentation of exogenous targets to antibodies that were expressed and folded in the cytoplasm. All human λ and κ light chain family genes were expressed as IGHV3-23 fusions. Members of the λ subfamilies 1, 3 and 6 were soluble cytoplasmic partners of IGHV3-23. Contrary to previous in vivo screens for soluble reduced scFvs, the pairings identified by ReD were identical to the human germline sequences for the framework, CDR1 and CDR2 regions. Using the most soluble scFv scaffold identified, we demonstrated tolerance to CDR3 diversification and isolated a binding scFv to an exogenous protein target. This screening system has the potential to rapidly produce antibodies to target threats such as emerging infectious diseases and bioterror agents. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An anti-human ICAM-1 antibody inhibits rhinovirus-induced exacerbations of lung inflammation.

    Directory of Open Access Journals (Sweden)

    Stephanie Traub

    Full Text Available Human rhinoviruses (HRV cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD. Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, ∼90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1 as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11 that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo.

  16. A potent human neutralizing antibody Fc-dependently reduces established HBV infections.

    Science.gov (United States)

    Li, Dan; He, Wenhui; Liu, Ximing; Zheng, Sanduo; Qi, Yonghe; Li, Huiyu; Mao, Fengfeng; Liu, Juan; Sun, Yinyan; Pan, Lijing; Du, Kaixin; Ye, Keqiong; Li, Wenhui; Sui, Jianhua

    2017-09-26

    Hepatitis B virus (HBV) infection is a major global health problem. Currently-available therapies are ineffective in curing chronic HBV infection. HBV and its satellite hepatitis D virus (HDV) infect hepatocytes via binding of the preS1 domain of its large envelope protein to sodium taurocholate cotransporting polypeptide (NTCP). Here, we developed novel human monoclonal antibodies that block the engagement of preS1 with NTCP and neutralize HBV and HDV with high potency. One antibody, 2H5-A14, functions at picomolar level and exhibited neutralization-activity-mediated prophylactic effects. It also acts therapeutically by eliciting antibody-Fc-dependent immunological effector functions that impose durable suppression of viral infection in HBV-infected mice, resulting in reductions in the levels of the small envelope antigen and viral DNA, with no emergence of escape mutants. Our results illustrate a novel antibody-Fc-dependent approach for HBV treatment and suggest 2H5-A14 as a novel clinical candidate for HBV prevention and treatment of chronic HBV infection.

  17. Radioimmunoassay of bovine, ovine and porcine luteinizing hormone with a monoclonal antibody and a human tracer

    Energy Technology Data Exchange (ETDEWEB)

    Fosberg, M.; Tagle, R.; Madej, A.; Molina, J.R.; Carlsson, M.-A.

    1993-01-01

    A radioimmunoassay for bovine (bLH), ovine (oLH) and porcine (pLH) luteinizing hormone was developed using a human [sup 125]ILH tracer from a commercial kit and a monoclonal antibody (518B7) specific for LH but with low species specificity. Standard curves demonstrated similar binding kinetics when bLH, oLH and pLH were incubated with tracer and antibody for 2 h at room temperature. A 30-min delay in the addition of the tracer gave sufficient sensitivity when analysing pLH. Separation of antibody-bound LH from free hormone was achieved by using second antibody-coated micro Sepharose beads. The assay was validated and the performance compared with that of an RIA currently in use for determination of bLH (coefficient of correlation: 0.99 and 0.98). Regardless of the standards used, intra-assay coefficients of variation were <10% for LH concentrations exceeding 1 [mu]g/L. The inter-assay coefficients of variation were <15%. The assay was used for clinical evaluation demonstrating the pre-ovulatory LH surge in two cyclic cows, LH pulsatility in an oophorectomized ewe and LH response to GnRH injection in a boar. (au) (7 refs.).

  18. Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus.

    Science.gov (United States)

    Wang, Qihui; Yang, Huabing; Liu, Xiaoqing; Dai, Lianpan; Ma, Tong; Qi, Jianxun; Wong, Gary; Peng, Ruchao; Liu, Sheng; Li, Junfu; Li, Shihua; Song, Jian; Liu, Jianying; He, Jianhua; Yuan, Hui; Xiong, Ying; Liao, Yong; Li, Jianhua; Yang, Jianping; Tong, Zhou; Griffin, Bryan D; Bi, Yuhai; Liang, Mifang; Xu, Xiaoning; Qin, Chuan; Cheng, Gong; Zhang, Xinzheng; Wang, Peiyi; Qiu, Xiangguo; Kobinger, Gary; Shi, Yi; Yan, Jinghua; Gao, George F

    2016-12-14

    The 2015-2016 outbreak of Zika virus (ZIKV) disease has affected many countries and is a major public health concern. ZIKV is associated with fetal microcephaly and neurological complications, and countermeasures are needed to treat and prevent ZIKV infection. We report the isolation of 13 specific human monoclonal antibodies from a single patient infected with ZIKV. Two of the isolated antibodies (Z23 and Z3L1) demonstrated potent ZIKV-specific neutralization in vitro without binding or neutralizing activity against strains 1 to 4 of dengue virus, the closest relative to ZIKV. These two antibodies provided postexposure protection to mice in vivo. Structural studies revealed that Z23 and Z3L1 bound to tertiary epitopes in envelope protein domain I, II, or III, indicating potential targets for ZIKV-specific therapy. Our results suggest the potential of antibody-based therapeutics and provide a structure-based rationale for the design of future ZIKV-specific vaccines. Copyright © 2016, American Association for the Advancement of Science.

  19. Oral mucosal lesions: association with the presence of antibodies to the human immunodeficiency virus.

    Science.gov (United States)

    Melnick, S L; Engel, D; Truelove, E; DeRouen, T; Morton, T; Schubert, M; Dunphy, C; Wood, R W

    1989-07-01

    To assess the relationship between oral lesions and antibodies to the human immunodeficiency virus, oral examinations of 803 homosexual males were conducted at the time of serologic testing. Nineteen percent were HIV seropositive. Thirty percent of antibody-positive subjects had one or more oral lesion(s), as compared with 7% of antibody-negative subjects (p less than 0.001). The presence of oral lesions was significantly associated with HIV seropositivity: a subject was 5.7 times as likely to have serum antibodies if he had one or more oral lesions (95% confidence interval, 3.5 to 9.1; p less than 0.001). This significant association with HIV seropositivity was only partially explained by cigarette smoking (adjusted odds ratio 3.1; 1.4-6.8; less than 0.006). Specific conditions that were significantly associated with seropositivity included candidiasis, hairy leukoplakia, periodontal disease, and Kaposi's sarcoma. Other diseases identified included acute necrotizing ulcerative gingivitis, mucocutaneous ulcerations, and oral warts. Oral findings may occur earlier in the natural history of infection than previously reported.

  20. MicroRNA expression profiles in human CD3(+) T cells following stimulation with anti-human CD3 antibodies.

    Science.gov (United States)

    Sousa, Isabel Garcia; do Almo, Manuela Maragno; Simi, Kelly Cristina Rodrigues; Bezerra, Maryani Andressa Gomes; Andrade, Rosângela Vieira; Maranhão, Andréa Queiroz; Brigido, Marcelo Macedo

    2017-03-14

    Anti-CD3 therapy can induce immunosuppression by several non mutually exclusive mechanisms that have been proposed to explain the therapeutic effect the administration anti-CD3 mAb, but its immunoregulatory mechanism is still not completely clear. In T cells, microRNAs (miRNAs) regulate several pathways, including those associated with immune tolerance. Here, we report changes in miRNA expression in T cells following treatment with anti-human CD3 antibodies. Peripheral blood mononuclear cells were cultured in the presence of the monoclonal antibody OKT3 or a recombinant fragment of humanized anti-CD3. Following these treatments, the expression profiles of 31 miRNA species were assessed in T cells using TaqMan arrays. Eight of the tested miRNAs (miR-155, miR-21, miR-146a, miR-210, miR-17, miR-590-5p, miR-106b and miR-301a) were statistically significantly up- or down-regulated relative to untreated cells. Stimulation of T cells with anti-human CD3 antibodies alters miRNA expression patterns, including of miRNA species associated with immune regulatory pathways.

  1. Human Cytomegalovirus Infection Increases Both Antibody- and Non–Antibody-Dependent Cellular Reactivity by Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Clive M. Michelo, PhD

    2017-12-01

    Conclusions. With regard to organ transplantation, these data suggest that CMV infection enhances NK cell alloreactivity, which may pose an additional adverse effect on graft survival, especially in the presence of donor specific antibodies.

  2. A high affinity recombinant antibody to the human EphA3 receptor with enhanced ADCC activity.

    Science.gov (United States)

    Tomasevic, Nenad; Luehrsen, Kenneth; Baer, Mark; Palath, Varghese; Martinez, David; Williams, Jason; Yi, Christina; Sujatha-Bhaskar, Swathi; Lanke, Rohini; Leung, John; Ching, Wendy; Lee, Andreia; Bai, Lu; Yarranton, Geoffrey; Bebbington, Christopher

    2014-12-01

    EphA3 is expressed in solid tumors and leukemias and is an attractive target for the therapy. We have generated a panel of Humaneered® antibodies to the ligand-binding domain using a Fab epitope-focused library that has the same specificity as monoclonal antibody mIIIA4. A high-affinity antibody was selected that competes with the mIIIA4 antibody for binding to EphA3 and has an improved affinity of ∼1 nM. In order to generate an antibody with potent cell-killing activity the variable regions were assembled with human IgG1k constant regions and expressed in a Chinese hamster ovary (CHO) cell line deficient in fucosyl transferase. Non-fucosylated antibodies have been reported to have enhanced binding affinity for the IgG receptor CD16a (FcγRIIIa). The affinity of the antibody for recombinant CD16a was enhanced approximately 10-fold. This resulted in enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity against EphA3-expressing leukemic cells, providing a potent antibody for the evaluation as a therapeutic agent.

  3. [Construction of full-length human bladder cancer-specific antibody libraries based on mammalian display technology].

    Science.gov (United States)

    Lan, Kaijian; Zhang, Zhehuan; Liang, Zhongkun; Wang, Junjie; Lou, Haibo; Zhou, Yuanping; Liu, Shuwen; Li, Changzheng; Tan, Wanlong; Zhou, Chen

    2013-05-01

    To construct full-length human bladder cancer-specific antibody libraries for efficient display of full-length antibodies on the surface of mammalian cells. The total RNA was isolated from peripheral blood mononuclear cells from patients with bladder cancer. The repertoires of IgG1 heavy chain variable region (VH) and Kappa light chain were amplified by RT-PCR using specific primers. The antibody genes were inserted into the vector pDGB-HC-TM to construct the bladder-cancer-specific antibody libraries of heavy chains and light chains. Ten clones from each library were randomly picked for gene sequencing and transient transfection into FCHO cells to analyze antibody display on mammalian cell surface by flow cytometry after staining with corresponding fluorescent labeled antibodies. The libraries of bladder-cancer-specific antibody heavy chain (IgG1) and light chain (LCk) were successfully constructed. Seven out of the 10 clones randomly selected from the heavy chain library and 9 out of the 10 clones from the light chain library showed correct open reading frame, coding for 7 unique VH and 9 unique LCk. The combinatory library size reached 3.32×10(11). We have successfully constructed a full-length human bladder-cancer-specific antibody library with a combinatory diversity of 3.32×10(11) based on mammalian display technology, which can be used for screening monoclonal antibodies against bladder-cancer-associated antigens.

  4. Human poly- and cross-reactive anti-viral antibodies and their impact on protection and pathology.

    Science.gov (United States)

    Warter, Lucile; Appanna, Ramapraba; Fink, Katja

    2012-09-01

    Anti-viral immune responses have been studied extensively in order to inform rational vaccine design. Following viral infection, the balance of pathologic and protective antibody responses in the host can critically influence clinical outcomes. Comparisons of the different classes of antibodies produced after acute or chronic viral infections have uncovered common features of anti-viral responses, but these analyses have also revealed temporal differences in neutralizing antibody production, variable neutralization potency and differential induction of cross-reactive antibodies. Cross-reactive antibodies are known to play crucial protective roles in host responses to chronic viral infections; recent studies in human immunodeficiency virus long-term controllers have identified a novel class of broadly neutralizing antibodies generated from highly mutated and selected memory B cells. Here, we summarize the various roles played by cross- and poly-reactive antibodies in acute and persistent viral infections, with a focus on the potential contribution of these antibodies to dengue virus (DENV) immunopathology and host protection. Since host antibodies profoundly alter the course of viral infections, effective DENV vaccine design will require a better understanding of the origin, affinity maturation and protective potential of the poly-reactive and cross-reactive antibodies induced by different interventions.

  5. Human autoantibodies to lamin B receptor are also anti-idiotypic to certain anti-lamin B antibodies.

    Science.gov (United States)

    Lassoued, K; Danon, F; Brouet, J C

    1991-08-01

    Autoantibodies reactive with nuclear envelope proteins are mainly detected in human sera from patients with liver diseases. Some of these antibodies are directed to lamin B, lamins A and C, or to the lamin B receptor (LBR). We show here that the latter one are anti-idiotypic to certain anti-lamin B antibodies. Using an enzyme-linked immunosorbent assay specific for lamins we found that serum M containing anti-LBR antibodies inhibited the binding to lamins of anti-lamin B autoantibodies from three of five sera tested. Similar results were obtained using patient's M purified IgG. The binding of monoclonal IgM, lambda anti-lamin B antibodies produced by a lymphoblastoid cell line derived from the patient's blood lymphocytes was also inhibited. Absorption of serum M with nuclei abolished the inhibitory activity. No inhibition was recorded with normal sera or sera containing other antinuclear specificities. Anti-LBR antibodies did not alter the binding to lamins of sera containing anti-lamins A and C antibodies. Altogether these findings demonstrate that anti-LBR antibodies are also combining site related anti-idiotypic antibodies (Ab2) to certain anti-lamin B antibodies, provide further evidence for discrete specificities among anti-lamin B antibodies and suggest that the occurrence of autoantibodies to nuclear envelope antigens may be under idiotypic regulation.

  6. Identification of a human monoclonal antibody to replace equine diphtheria antitoxin for treatment of diphtheria intoxication.

    Science.gov (United States)

    Sevigny, Leila M; Booth, Brian J; Rowley, Kirk J; Leav, Brett A; Cheslock, Peter S; Garrity, Kerry A; Sloan, Susan E; Thomas, William; Babcock, Gregory J; Wang, Yang

    2013-11-01

    Diphtheria antitoxin (DAT) has been the cornerstone of the treatment of Corynebacterium diphtheriae infection for more than 100 years. Although the global incidence of diphtheria has declined steadily over the last quarter of the 20th century, the disease remains endemic in many parts of the world, and significant outbreaks still occur. DAT is an equine polyclonal antibody that is not commercially available in the United States and is in short supply globally. A safer, more readily available alternative to DAT would be desirable. In the current study, we obtained human monoclonal antibodies (hMAbs) directly from antibody-secreting cells in the circulation of immunized human volunteers. We isolated a panel of diverse hMAbs that recognized diphtheria toxoid, as well as a variety of recombinant protein fragments of diphtheria toxin. Forty-five unique hMAbs were tested for neutralization of diphtheria toxin in in vitro cytotoxicity assays with a 50% effective concentration of 0.65 ng/ml for the lead candidate hMAb, 315C4. In addition, 25 μg of 315C4 completely protected guinea pigs from intoxication in an in vivo lethality model, yielding an estimated relative potency of 64 IU/mg. In comparison, 1.6 IU of DAT was necessary for full protection from morbidity and mortality in this model. We further established that our lead candidate hMAb binds to the receptor-binding domain of diphtheria toxin and physically blocks the toxin from binding to the putative receptor, heparin-binding epidermal growth factor-like growth factor. The discovery of a specific and potent human neutralizing antibody against diphtheria toxin holds promise as a potential therapeutic.

  7. Development of fragment-specific osteopontin antibodies and ELISA for quantification in human metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Miesfeldt Susan

    2008-01-01

    Full Text Available Abstract Background Osteopontin (OPN is associated with human cancers, and circulating blood OPN may have diagnostic or prognostic value in clinical oncology. Methods To evaluate OPN as a cancer biomarker, we generated and characterized five novel mouse monoclonal antibodies against the human full-length OPN (fl-OPN. Epitopes recognized by four antibodies (2C5, 2F10, 2H9, and 2E11 map to N-terminal OPN (aa1-166; one (1F11 maps to C-terminal OPN (aa167-314. These antibodies recognize recombinant and native OPN by ELISA and immunoblot, cross reacting with human and mouse OPN. Two of these novel antibodies (2F10 and 1F11 were used to develop a quantitative enzyme linked immunosorbent assay (ELISA for fl-OPN. Results In comparison with commercially available ELISAs, our assay had high accuracy in measuring fl-OPN standards, and high sensitivity. Specifically, our ELISA has a linear dose response between 0.078 ng/ml-10 ng/ml, with a sensitivity of 13.9 pg/ml. We utilized this assay to quantify fl-OPN in the plasma of healthy volunteers in comparison with patients with metastatic breast cancer. The average circulating plasma fl-OPN in healthy volunteers was 1.2 ng/ml, compared to 4.76 ng/ml in patients with metastatic breast cancer (p = 0.0042. Although the increase in fl-OPN in cancer patients is consistent with previous studies, the measured quantity varied greatly between all existing fl-OPN ELISAs. Conclusion Because OPN is a complex molecule with diversity from alternative splicing, post-translational modification, extracellular proteolytic modification, and participation in protein complexes, we suggest that further understanding of specific isoform recognition of multiple OPN species is essential for future studies of OPN biomarker utility.

  8. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    Science.gov (United States)

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  9. Characterisation of new monoclonal antibodies reacting with prions from both human and animal brain tissues.

    Science.gov (United States)

    Cordes, Henriette; Bergström, Ann-Louise; Ohm, Jakob; Laursen, Henning; Heegaard, Peter M H

    2008-09-15

    Post-mortem diagnosis of transmissible spongiform encephalopathies (prion diseases) is primarily based on the detection of a protease resistant, misfolded disease associated isoform (PrP(Sc)) of the prion protein (PrP(C)) on neuronal cells. These methods depend on antibodies directed against PrP(C) and capable of reacting with PrP(Sc)in situ (immunohistochemistry on nervous tissue sections) or with the unfolded form of the protein (western and paraffin embedded tissue (PET) blotting). Here, high-affinity monoclonal antibodies (mAbs 1.5D7, 1.6F4) were produced against synthetic PrP peptides in wild-type mice and used for western blotting and immunohistochemistry to detect several types of human prion-disease associated PrP(Sc), including sporadic Creutzfeldt-Jakob Disease (CJD) (subtypes MM1 and VV2), familial CJD and Gerstmann-Sträussler-Scheinker (GSS) disease PrP(Sc) as well as PrP(Sc) of bovine spongiform encephalopathy (bovine brain), scrapie (ovine brain) and experimental scrapie in hamster and in mice. The antibodies were also used for PET-blotting in which PrP(Sc) blotted from brain tissue sections onto a nitrocellulose membrane is visualized with antibodies after protease and denaturant treatment allowing the detection of protease resistant PrP forms (PrP(RES)) in situ. Monoclonal antibodies 1.5D7 and 1.6F4 were raised against the reported epitope (PrP153-165) of the commercial antibody 6H4. While 1.5D7 and 1.6F4 were completely inhibitable by PrP153-165, 6H4 was not, indicating that the specificity of 6H4 is not defined completely by PrP153-165. The two antibodies performed similarly to 6H4 in western blotting with human samples, but showed less reactivity and enhanced background staining with animal samples in this method. In immunohistochemistry 1.5D7 and 1.6F4 performed better than 6H4 suggesting that the binding affinity of 1.5D7 and 1.6F4 with native (aggregated) PrP(Sc)in situ was higher than that of 6H4. On the other hand in PET-blotting, 6H4

  10. Characterization of a Type-Common Human Recombinant Monoclonal Antibody to Herpes Simplex Virus with High Therapeutic Potential

    Science.gov (United States)

    De Logu, Alessandro; Williamson, R. Anthony; Rozenshteyn, Roman; Ramiro-Ibañez, Fernando; Simpson, Cindy D.; Burton, Dennis R.; Paolo Sanna, Pietro

    1998-01-01

    We report the characterization of a type-common human recombinant monoclonal antibody previously isolated by antigen selection from a phage-displayed combinatorial antibody library established from a herpes simplex virus (HSV)-seropositive individual. Competition with well-characterized murine monoclonal antibodies and immunodetection of gD truncations revealed that this antibody recognizes the group Ib antigenic site of glycoprotein D, a highly conserved and protective type-common determinant. To our knowledge, this is the first human group Ib monoclonal antibody ever described. The antibody also displayed first-order neutralization kinetics and a high neutralization rate constant, was capable of completely inhibiting syncytium formation by a fusogenic strain of HSV type 1, and efficiently neutralized low-passage clinical isolates of both HSV serotypes. Taken together with our earlier observations of the in vivo antiviral activities of this human recombinant antibody in animal models of HSV infection, the present results support the high therapeutic potential of this antibody. PMID:9774565

  11. Development of a sensitive and specific epitope-blocking ELISA for universal detection of antibodies to human enterovirus 71 strains.

    Directory of Open Access Journals (Sweden)

    Fang He

    Full Text Available BACKGROUND: Human Enterovirus 71 (EV71 is a common cause of hand, foot and mouth disease (HFMD in young children. It is often associated with severe neurological diseases and mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no efficient universal antibody test available to detect EV71 infections. METHODOLOGY/PRINCIPAL FINDING: In the present study, an epitope-blocking ELISA was developed to detect specific antibodies to human EV71 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (Mab 1C6 that specifically binds to capsid proteins in whole EV71 viruses without any cross reaction to any EV71 capsid protein expressed alone. The sensitivity and specificity of the epitope-blocking ELISA for EV71 was evaluated and compared to microneutralization using immunized animal sera to multiple virus genotypes of EV71 and coxsackieviruses. Further, 200 serum sample from human individuals who were potentially infected with EV71 viruses were tested in both the blocking ELISA and microneutralization. Results indicated that antibodies to EV71 were readily detected in immunized animals or human sera by the epitope blocking ELISA whereas specimens with antibodies to other enteroviruses yielded negative results. This assay is not only simpler to perform but also shows higher sensitivity and specificity as compared to microneutralization. CONCLUSION: The epitope-blocking ELISA based on a unique Mab 1C6 provided highly sensitive and 100% specific detection of antibodies to human EV71 viruses in human sera.

  12. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Yongjun Yin

    2016-05-01

    Full Text Available Activating mutations in fibroblast growth factor receptor 3 (FGFR3 have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9, a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11 with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3.

  13. The effect of anti-human plasminogen monoclonal antibodies on Glu-plasminogen activation by plasminogen activators

    Directory of Open Access Journals (Sweden)

    M. Akrami

    2006-07-01

    Full Text Available Background: Human plasminogen is a plasma glycoprotein synthesized mainly in the liver. Conversion of plasminogen to plasmin by plasminogen activators is a key event in the fibrinolytic system. In this study, we investigated the effects of two anti-human plasminogen monoclonal antibodies, A1D12 and MC2B8 on Glu-plasminogen activation in presence of u-PA, t-PA and streptokinase. Methods: Producing of Hybridoma antibodies was performed by fusion of spleen cells from BALB/C mice immunized with Glu-plasminogen and NS1 myeloma cells. Antibody binding to Human Glu-plasminogen was assessed using an ELISA assay. Activation of plasminogen was determined by measuring plasmin generation using the chromogenic substrate S-2251 and the effect of monoclonal antibodies, A1D12 and MC2B8 on plasminogen activation in solution was then evaluated. Initial rates and kinetic parameters of plasminogen activation in the presence of monoclonal antibodies were calculated. The effect of the monoclonal antibody MC2B8 on the rate of plasmin hydrolysis was measured. The effect of F(ab'2 fragment of A1D12 on u-PA catalyzed-plasminogen activation also compared with the effect of the whole antibody in this reaction. Results: ELISA assay showed that the antibodies reacted well with antigens. A1D12 increased the maximum velocity (Vmax of plasminogen activation by each of the three plasminogen activators and MC2B8 decreased it. In all activation reactions, the KM value of plasminogen activation did not significantly change in the presence of antibody A1D12 whereas antibody MC2B8 increased the KM value of plasminogen activation by u-PA, fibrin monomer dependent t-PA and streptokinase. Monoclonal antibody MC2B8 had no significant effect on plasmin hydrolysis rate of synthetic substrate S-2251. Activation rate of plasminogen by u-PA in the lower concentration of F (ab2 fragment of A1D12 was identical to activation in the presence of the whole antibody. Conclusion: The binding of

  14. STUDIES ON THE ANTIBODIES IN RABBIT ANTISERA RESPONSIBLE FOR SENSITIZATION OF HUMAN SKIN

    Science.gov (United States)

    Vaughan, John H.; Kabat, Elvin A.

    1953-01-01

    The capacity of rabbit anti-egg albumin sera to sensitize human skin has been studied. It has been shown that passive transfer by these sera is completely unrelated to the egg albumin-anti-egg albumin system, as demonstrated by a failure of passive transfer by some antisera containing ample anti-egg albumin and persistence of passive transfer in other antisera from which all anti-egg albumin had been removed by precipitation with homologous antigen. Three preparations of non-precipitating anti-egg albumin have been shown to have sensitizing capacities which bear no relation to their non-precipitating anti-egg albumin contents. From a portion of one of these the non-precipitating anti-egg albumin was removed without impairing its sensitizing ability, while in another portion obliteration of the sensitizing capacity was accomplished without reducing the anti-egg albumin. Evidence is presented to show that there are at least two possible antibodies in anti-egg albumin sera which are capable of inducing skin sensitivity and that they are antibodies against egg white impurities in crystalline egg albumin other than anti-conalbumin, anti-ovomucoid, and anti-lysozyme. The usefulness of a suitable quantitative precipitin technic for the analysis for antibodies against antigen impurities and for their selective absorption from sera is illustrated. The principle governing the procedure is described. The technic allows for the determination of a given trace antibody by working with such small concentrations of its purified specific antigen that whatever other antigen-antibody compounds are formed simultaneously with that to be determined will be below their solubility levels and consequently will not contribute appreciably to the precipitate. PMID:13069639

  15. Microcalorimetric study of adsorption of human monoclonal antibodies on cation exchange chromatographic materials.

    Science.gov (United States)

    Dieterle, Michael; Blaschke, Tim; Hasse, Hans

    2008-09-26

    Adsorption of two human monoclonal antibodies on two different strong cation exchange resins is studied by isothermal titration microcalorimetry and independent adsorption isotherm measurements. The pH value is varied between 4.5 and 7.0, using different buffer systems, the temperature is always 25 degrees C. The adsorption isotherm data is fitted using two different Langmuir type models. Combining the calorimetric and the adsorption data, the specific enthalpy of adsorption of the protein Deltah(p)(ads) is determined. At pH values near 7.0, where the antibodies are only weakly charged, the adsorption is exothermal. At small loadings the absolute number of Deltah(p)(ads) is then large and almost constant but it significantly decreases at higher loadings. This shows that the arrangement of antibody molecules on the absorber material depends on the loading and is less favourable at higher loadings. Despite the high positive charge of the antibody at pH values of about 5 the value of Deltah(p)(ads) is almost zero along the entire isotherm. Furthermore, at pH 4.5 even endothermal effects are observed, although high binding capacities are found. At these conditions the adsorption process seems to be strongly influenced by the ions bound to the antibody. Their release upon absorption explains the endothermal caloric effect. The adsorption equilibrium constant K(eq) is calculated from the isotherms. From Deltag(p)(ads) and the calorimetric results for Deltah(p)(ads), Deltas(p)(ads), the entropy change upon adsorption of the protein is found for the different studied conditions.

  16. Development of Germline-Humanized Antibodies Neutralizing Botulinum Neurotoxin A and B.

    Directory of Open Access Journals (Sweden)

    Sebastian Miethe

    Full Text Available Botulinum neurotoxins (BoNTs are counted among the most toxic substances known and are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. To date, 7 serologically distinct serotypes of BoNT (serotype A-G are known. Due to the high toxicity of BoNTs the Centers for Disease Control and Prevention (CDC have classified BoNTs as category A agent, including the six biological agents with the highest potential risk of use as bioweapons. Well tolerated antibodies neutralizing BoNTs are required to deal with the potential risk. In a previous work, we described the development of scFv and scFv-Fc (Yumab from macaque origin (Macaca fascicularis neutralizing BoNT/A and B by targeting the heavy and light chain of each serotype. In the present study, we humanized the macaque antibodies SEM120-IIIC1 (anti-BoNT/A light chain, A1HC38 (anti-BoNT/A heavy chain, BLC3 (anti-BoNT/B light chain and B2-7 (anti-BoNT/B heavy chain by germline-humanization to obtain a better potential immunotolerance in humans. We increased the Germinality Index (GI of SEM120-IIIC1 to 94.5%, for A1HC38, to 95% for BLC3 and to 94.4% for B2-7. Furthermore, the neutralization efficacies of the germline-humanized antibodies were analyzed in lethal and non-lethal in vivo mouse assays as full IgG. The germline-humanized IgGs hu8SEM120-IIIC1, hu8A1HC38, hu8BLC3 and hu8B2-7 were protective in vivo, when anti-heavy and anti-light chain antibodies were combined. The synergistic effect and high humanness of the selected IgGs makes them promising lead candidates for further clinical development.

  17. Agglutination by anti-capsular polysaccharide antibody is associated with protection against experimental human pneumococcal carriage.

    Science.gov (United States)

    Mitsi, E; Roche, A M; Reiné, J; Zangari, T; Owugha, J T; Pennington, S H; Gritzfeld, J F; Wright, A D; Collins, A M; van Selm, S; de Jonge, M I; Gordon, S B; Weiser, J N; Ferreira, D M

    2017-03-01

    The ability of pneumococcal conjugate vaccine (PCV) to decrease transmission by blocking the acquisition of colonization has been attributed to herd immunity. We describe the role of mucosal immunoglobulin G (IgG) to capsular polysaccharide (CPS) in mediating protection from carriage, translating our findings from a murine model to humans. We used a flow cytometric assay to quantify antibody-mediated agglutination demonstrating that hyperimmune sera generated against an unencapsulated mutant was poorly agglutinating. Passive immunization with this antiserum was ineffective to block acquisition of colonization compared to agglutinating antisera raised against the encapsulated parent strain. In the human challenge model, samples were collected from PCV and control-vaccinated adults. In PCV-vaccinated subjects, IgG levels to CPS were increased in serum and nasal wash (NW). IgG to the inoculated strain CPS dropped in NW samples after inoculation suggesting its sequestration by colonizing pneumococci. In post-vaccination NW samples pneumococci were heavily agglutinated compared with pre-vaccination samples in subjects protected against carriage. Our results indicate that pneumococcal agglutination mediated by CPS-specific antibodies is a key mechanism of protection against acquisition of carriage. Capsule may be the only vaccine target that can elicit strong agglutinating antibody responses, leading to protection against carriage acquisition and generation of herd immunity.

  18. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, James R.R.; Zhang, Ruijun; Khurana, Surender; King, Lisa R.; Manischewitz, Jody; Golding, Hana; Dormitzer, Philip R.; Haynes, Barton F.; Walter, Emmanuel B.; Moody, M. Anthony; Kepler, Thomas B.; Liao, Hua-Xin; Harrison, Stephen C. (Harvard-Med); (Novartis); (US-FDA); (Duke)

    2011-09-20

    Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocket on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.

  19. [Effect of monoclonal antibodies against LI-cadherin on the proliferation of human hepatocellular carcinoma cells].

    Science.gov (United States)

    Chen, Xiao-ting; DU, Hong-yan; Yuan, Shao-fei; Wang, Sen-ming; Li, Ming

    2009-05-01

    To obtain monoclonal antibodies (mAb) against LI-cadherin and investigate their effects on the proliferation of human hepatocellular carcinoma cells. Balb/c mice were immunized with recombinant LI-cadherin, and hybridoma cell lines secreting monoclonal antibodies against LI-cadherin were established with routine cell fusion and subcloning approach. The specificity of these mAbs was determined by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effect of the mAbs obtained on the growth of HepG2 cells was assessed using inverted microscope and MTT assay. Two hybridoma cell lines (F001 and F002) stably secreting specific mAbs were obtained. Western blot analysis showed that the two antibodies specifically recognized LI-cadherin antigen derived from human eucaryotic cells or tissue. Treatment of the HepG2 cells with the mAbs resulted in reduced viable cell number and changes in the cell morphologies, and the two mAbs inhibited the proliferation of HepG2 cells in a concentration-dependent manner (Pcells in vitro, which facilitates further study of the relationship between LI-cadherin and tumors.

  20. Strategies to Obtain Diverse and Specific Human Monoclonal Antibodies From Transgenic Animals.

    Science.gov (United States)

    Brüggemann, Marianne; Osborn, Michael J; Ma, Biao; Buelow, Roland

    2017-08-01

    Techniques to obtain large quantities of antigen-specific monoclonal antibodies (mAbs) were first established in the 1970s when Georges Köhler and César Milstein immortalized antibody-producing mouse B-lymphocytes by fusion with myeloma cells (http://www.whatisbiotechnology.org/exhibitions/milstein). Combined with the expression of human antibodies in transgenic animals, this technique allowed upon immunization the generation of highly specific fully human mAbs for therapeutic applications. Apart from being extremely beneficial, mAbs are a huge success commercially. However, despite cell fusion generating many useful mAbs questions have been asked about which types of cells are prone to fuse and whether other methods may identify a wider range of binders. The discovery that expression libraries, using Escherichia coli or yeast, produced different specificities was intriguing and more recently Next-Generation Sequencing has identified wide-ranging usage with highly diverse and unique repertoires. Another strategy is the combination of flow cytometry sorting of antigen-binding B lymphocytes and single-cell reverse transcription polymerase chain reaction followed by reexpression, which has identified many high-affinity mAbs.

  1. Emergence of Novel Human Norovirus GII.17 Strains Correlates With Changes in Blockade Antibody Epitopes.

    Science.gov (United States)

    Lindesmith, Lisa C; Kocher, Jacob F; Donaldson, Eric F; Debbink, Kari; Mallory, Michael L; Swann, Excel W; Brewer-Jensen, Paul D; Baric, Ralph S

    2017-12-05

    Human norovirus is a significant public health burden, with >30 genotypes causing endemic levels of disease and strains from the GII.4 genotype causing serial pandemics as the virus evolves new ligand binding and antigenicity features. During 2014-2015, genotype GII.17 cluster IIIb strains emerged as the leading cause of norovirus infection in select global locations. Comparison of capsid sequences indicates that GII.17 is evolving at previously defined GII.4 antibody epitopes. Antigenicity of virus-like particles (VLPs) representative of clusters I, II, and IIIb GII.17 strains were compared by a surrogate neutralization assay based on antibody blockade of ligand binding. Sera from mice immunized with a single GII.17 VLP identified antigenic shifts between each cluster of GII.17 strains. Ligand binding of GII.17 cluster IIIb VLP was blocked only by antisera from mice immunized with cluster IIIb VLPs. Exchange of residues 393-396 from GII.17.2015 into GII.17.1978 ablated ligand binding and altered antigenicity, defining an important varying epitope in GII.17. The capsid sequence changes in GII.17 strains result in loss of blockade antibody binding, indicating that viral evolution, specifically at residues 393-396, may have contributed to the emergence of cluster IIIb strains and the persistence of GII.17 in human populations.

  2. Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack.

    Science.gov (United States)

    Bhatnagar, Deepika; Kaur, Inderpreet; Kumar, Ashok

    2017-02-01

    An ultrasensitive cardiac troponin I antibody conjugated with graphene quantum dots (GQD) and polyamidoamine (PAMAM) nanohybrid modified gold electrode based sensor was developed for the rapid detection of heart attack (myocardial infarction) in human. Screen printed gold (Au) electrode was decorated with 4-aminothiophenol for amine functionalization of the Au surface. These amino groups were further coupled with carboxyl functionalities of GQD with EDC-NHS reaction. In order to enhance the sensitivity of the sensor, PAMAM dendrimer was successively embedded on GQD through carbodiimide coupling to provide ultra-high surface area for antibody immobilization. The activated cardiac troponin I (cTnI) monoclonal antibody was immobilized on PAMAM to form nanoprobe for sensing specific heart attack marker cTnI. Various concentrations of cardiac marker, cTnI were electrochemically measured using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in human blood serum. The modifications on sensor surface were characterized by FTIR and AFM techniques. The sensor is highly specific to cTnI and showed negligible response to non-specific antigens. The sensitivity of the sensor was 109.23μAcm(-2)μg(-1) and lower limit of detection of cTnI was found 20fgmL(-1). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Neutralisation of HIV-1 cell-cell spread by human and llama antibodies.

    Science.gov (United States)

    McCoy, Laura E; Groppelli, Elisabetta; Blanchetot, Christophe; de Haard, Hans; Verrips, Theo; Rutten, Lucy; Weiss, Robin A; Jolly, Clare

    2014-10-02

    Direct cell-cell spread of HIV-1 is a very efficient mode of viral dissemination, with increasing evidence suggesting that it may pose a considerable challenge to controlling viral replication in vivo. Much current vaccine research involves the study of broadly neutralising antibodies (bNabs) that arise during natural infection with the aims of eliciting such antibodies by vaccination or incorporating them into novel therapeutics. However, whether cell-cell spread of HIV-1 can be effectively targeted by bNabs remains unclear, and there is much interest in identifying antibodies capable of efficiently neutralising virus transmitted by cell-cell contact. In this study we have tested a panel of bNAbs for inhibition of cell-cell spread, including some not previously evaluated for inhibition of this mode of HIV-1 transmission. We found that three CD4 binding site antibodies, one from an immunised llama (J3) and two isolated from HIV-1-positive patients (VRC01 and HJ16) neutralised cell-cell spread between T cells, while antibodies specific for glycan moieties (2G12, PG9, PG16) and the MPER (2F5) displayed variable efficacy. Notably, while J3 displayed a high level of potency during cell-cell spread we found that the small size of the llama heavy chain-only variable region (VHH) J3 is not required for efficient neutralisation since recombinant J3 containing a full-length human heavy chain Fc domain was significantly more potent. J3 and J3-Fc also neutralised cell-cell spread of HIV-1 from primary macrophages to CD4+ T cells. In conclusion, while bNabs display variable efficacy at preventing cell-cell spread of HIV-1, we find that some CD4 binding site antibodies can inhibit this mode of HIV-1 dissemination and identify the recently described llama antibody J3 as a particularly potent inhibitor. Effective neutralisation of cell-cell spread between physiologically relevant cell types by J3 and J3-Fc supports the development of VHH J3 nanobodies for therapeutic or

  4. Rare, high-affinity anti-pathogen antibodies from human repertoires, discovered using microfluidics and molecular genomics.

    Science.gov (United States)

    Adler, Adam S; Mizrahi, Rena A; Spindler, Matthew J; Adams, Matthew S; Asensio, Michael A; Edgar, Robert C; Leong, Jackson; Leong, Renee; Roalfe, Lucy; White, Rebecca; Goldblatt, David; Johnson, David S

    Affinity-matured, functional anti-pathogen antibodies are present at low frequencies in natural human repertoires. These antibodies are often excellent candidates for therapeutic monoclonal antibodies. However, mining natural human antibody repertoires is a challenge. In this study, we demonstrate a new method that uses microfluidics, yeast display, and deep sequencing to identify 247 natively paired anti-pathogen single-chain variable fragments (scFvs), which were initially as rare as 1 in 100,000 in the human repertoires. Influenza A vaccination increased the frequency of influenza A antigen-binding scFv within the peripheral B cell repertoire from <0.1% in non-vaccinated donors to 0.3-0.4% in vaccinated donors, whereas pneumococcus vaccination did not increase the frequency of antigen-binding scFv. However, the pneumococcus scFv binders from the vaccinated library had higher heavy and light chain Replacement/Silent mutation (R/S) ratios, a measure of affinity maturation, than the pneumococcus binders from the corresponding non-vaccinated library. Thus, pneumococcus vaccination may increase the frequency of affinity-matured antibodies in human repertoires. We synthesized 10 anti-influenza A and nine anti-pneumococcus full-length antibodies that were highly abundant among antigen-binding scFv. All 10 anti-influenza A antibodies bound the appropriate antigen at KD<10 nM and neutralized virus in cellular assays. All nine anti-pneumococcus full-length antibodies bound at least one polysaccharide serotype, and 71% of the anti-pneumococcus antibodies that we tested were functional in cell killing assays. Our approach has future application in a variety of fields, including the development of therapeutic antibodies for emerging viral diseases, autoimmune disorders, and cancer.

  5. Preferential germline usage and VH/VL pairing observed in human antibodies selected by mRNA display.

    Science.gov (United States)

    Chen, Lei; Kutskova, Yuliya A; Hong, Feng; Memmott, John E; Zhong, Suju; Jenkinson, Megan D; Hsieh, Chung-Ming

    2015-10-01

    Since the invention of phage display, in vitro antibody display technologies have revolutionized the field of antibody discovery. In combination with antibody libraries constructed with sequences of human origin, such technologies enable accelerated therapeutic antibody discovery while bypassing the laborious animal immunization and hybridoma generation processes. Many in vitro display technologies developed since aim to differentiate from phage display by displaying full-length IgG proteins, utilizing eukaryotic translation system and codons, increasing library size or real-time kinetic selection by fluorescent activated cell sorting. We report here the development of an mRNA display technology and an accompanying HCDR3 size spectratyping monitor for human antibody discovery. Importantly, the mRNA display technology maintains a monovalent linkage between the mRNA (genotype) and display binding protein (phenotype), which minimizes avidity effect common in other display systems and allows for a stringent affinity and off-rate selection. The mRNA display technology successfully identified 100 human antibodies in 15 different selections against various targets from naïve human antibody libraries. These antibodies in general have high affinity and diversity. By analyzing the germline usage and combination of antibodies selected by the mRNA display technology, we identified trends and determined the productivity of each germline subgroup in the libraries that could serve as the knowledge base for constructing fully synthetic, next generation antibody libraries. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Characterisation of new monoclonal antibodies reacting with prions from both human and animal brain tissues

    DEFF Research Database (Denmark)

    Hvass, Henriette Cordes; Bergström, Ann-Louise; Ohm, Jakob

    2008-01-01

    Post-mortem diagnosis of transmissible spongiform encephalopaties (prion diseases) is primarily based on the detection of a protease resistant, misfolded disease associated isoform (PrPSc) of the prion protein (PrPc) on neuronal cells. These methods depend on antibodies directed aganinst Pr......Pc and capable of reacting with PrpSc in situ (immunohistochemistry on nervous tissue sections) or with the unfolded form of the protein (western and paraffin embedded tissue (PET) blotting). Here, high-affinity monoclonal antibodies (mAbs 1.5D7, 1.6F4) were produced against synthetic PrP peptides in wild......-type mice and used for western blotting and immunohistochemistry to detect several types of human prion-disease associated PrPSc, including sporadic Creutzfeldt-Jakob Disease (CJD) (subtypes MM1 and V"), familial CJD and Gerstmann-Sträussler-Scheinker (GSS) disease PrPSc as well as PrPSc of bovine...

  7. Mapping the stem cell state: eight novel human embryonic stem and embryonal carcinoma cell antibodies

    DEFF Research Database (Denmark)

    Wright, A; Andrews, N; Bardsley, K

    2011-01-01

    The antigenic profile of human embryonic stem (ES) and embryonal carcinoma (EC) cells has served as a key element of their characterization, with a common panel of surface and intracellular markers now widely used. Such markers have been used to identify cells within the 'undifferentiated state...... of reactivity for all antibodies against both ES and EC cells, suggesting that these markers will afford recognition of unique sub-states within the undifferentiated stem cell compartment....... and EC cells, and herein describe their characterization. The reactivity of these antibodies against a range of cell lines is reported, as well as their developmental regulation, basic biochemistry and reactivity in immunohistochemistry of testicular germ cell tumours. Our data reveal a range...

  8. Isolation, production and characterization of fully human monoclonal antibodies directed to Plasmodium falciparum MSP10.

    Science.gov (United States)

    Maskus, Dominika J; Bethke, Susanne; Seidel, Melanie; Kapelski, Stephanie; Addai-Mensah, Otchere; Boes, Alexander; Edgü, Güven; Spiegel, Holger; Reimann, Andreas; Fischer, Rainer; Barth, Stefan; Klockenbring, Torsten; Fendel, Rolf

    2015-07-16

    Semi-immunity against the malaria parasite is defined by a protection against clinical episodes of malaria and is partially mediated by a repertoire of inhibitory antibodies directed against the blood stage of Plasmodium falciparum, in particular against surface proteins of merozoites, the invasive form of the parasite. Such antibodies may be used for preventive or therapeutic treatment of P. falciparum malaria. Here, the isolation and characterization of novel human monoclonal antibodies (humAbs) for such applications is described. B lymphocytes had been selected by flow cytometry for specificity against merozoite surface proteins, including the merozoite surface protein 10 (MSP10). After Epstein-Barr virus (EBV) transformation and identification of promising resulting lymphoblastoid cell lines (LCLs), human immunoglobulin heavy and light chain variable regions (Vh or Vl regions) were secured, cloned into plant expression vectors and transiently produced in Nicotiana benthamiana in the context of human full-size IgG1:κ. The specificity and the affinity of the generated antibodies were assessed by ELISA, dotblot and surface plasmon resonance (SPR) spectroscopy. The growth inhibitory activity was evaluated based on growth inhibition assays (GIAs) using the parasite strain 3D7A. Supernatants from two LCLs, 5E8 and 5F6, showed reactivity against the second (5E8) or first (5F6) epidermal growth factor (EGF)-like domain of MSP10. The isolated V regions were recombinantly expressed in their natural pairing as well as in combination with each other. The resulting recombinant humAbs showed affinities of 9.27 × 10(-7) M [humAb10.1 (H5F6:κ5E8)], 5.46 × 10(-9) M [humAb10.2 (H5F6:κ5F6)] and 4.34 × 10(-9) M [humAb10.3 (H5E8:κ5E8)]. In GIAs, these antibodies exhibited EC50 values of 4.1 mg/ml [95% confidence interval (CI) 2.6-6.6 mg/ml], 6.9 mg/ml (CI 5.5-8.6 mg/ml) and 9.5 mg/ml (CI 5.5-16.4 mg/ml), respectively. This report describes a platform for the isolation of

  9. The antibody response to Dracunculus medinensis in an endemic human population of northern Ghana

    DEFF Research Database (Denmark)

    Bloch, P.; Simonsen, P. E.; Vennervald, B. J.

    1993-01-01

    The serum antibody response (total, and isotypes IgG1, IgG4, IgM, IgA and IgE) to Guinea worm infection was examined in humans from a highly endemic area of northern Ghana by ELISA and SDS-PAGE/Western blot techniques using an adult D. medinensis antigen. Sera were obtained early and late...... worm from patients with hookworm, O. voivuhis and W. bancrofti infections, and from noninfected controls. Sera from persons living in the Guinea worm endemic area reacted extensively with Guinea worm antigen in both tests, and large numbers of bands were produced in the Western blots (up to 35...... and postpatent categories. The highest specificity in the ELISA and the most homogenous Western blots were obtained when detecting for antibodies of the IgG4 isotype....

  10. Molecular profile of a human monoclonal antibody Fab fragment specific for Epstein-Barr virus gp350/220 antigen.

    Science.gov (United States)

    Bugli, F; Bastidas, R; Burton, D R; Williamson, R A; Clementi, M; Burioni, R

    2001-04-01

    Experimental evidence indicates Epstein Barr virus (EBV) envelope glycoprotein gp350/220 elicits a potent virus neutralizing response in the infected human host that may play an important role in restricting viral pathogenesis. In this study, we report the molecular cloning in combinatorial phage display vectors, of the IgG1 repertoire of an individual naturally infected with EBV, and describe the recovery and characterization of a monoclonal antibody recognizing gp350/220. A detailed understanding of the human antibody response in EBV infection will identify antibodies of potential use in anti-viral prophylaxis and will advance the production of more effective vaccine candidates.

  11. Monoclonal antibodies for human and porcine histamine N-methyltransferase (HMT) facilitate protein expression and localization studies.

    Science.gov (United States)

    Schwelberger, Hubert G; Feurle, Johannes; Houen, Gunnar

    2017-01-01

    The lack of suitable antibodies for the histamine inactivating enzyme histamine N-methyltransferase (HMT) has so far prevented the direct analysis of HMT proteins in man and other mammals. A series of monoclonal antibodies was produced by immunizing mice with human and porcine HMT expressed in vitro. Antibodies were characterized by immunoblotting and immunohistochemical staining. Six different monoclonal antibodies specific for human HMT and four different monoclonal antibodies specific for porcine HMT were obtained that can detect HMT with up to tenfold greater sensitivity than the most sensitive enzymatic assays currently available. Using these antibodies allowed us to confirm the expression and cellular localization of HMT in various human and porcine tissues, where the presence of the enzyme had previously been deduced from activity measurement and HMT mRNA analysis. Immunohistochemical staining of human and porcine tissue sections clearly showed that HMT is a cytosolic protein, which is localized in specific cells of most mammalian tissues. The new monoclonal antibodies not only allow a comprehensive quantitative evaluation of the expression of HMT at the cellular level in man and other mammals but will also facilitate sensitive analyses of disease-associated alterations of this protein.

  12. Inhibition of pneumococcal adherence to human nasopharyngeal epithelial cells by anti-PsaA antibodies.

    Science.gov (United States)

    Romero-Steiner, Sandra; Pilishvili, Tamar; Sampson, Jacquelyn S; Johnson, Scott E; Stinson, Annie; Carlone, George M; Ades, Edwin W

    2003-03-01

    The role of pneumococcal (Pnc) surface adhesin A (PsaA) in the adherence of Streptococcus pneumoniae (pneumococcus) to host cells is not well defined. We examined the effect of anti-PsaA antibodies in an inhibition of adherence assay using Detroit 562 nasopharyngeal human epithelial cells. Rabbit polyclonal (Pab) anti-recombinant PsaA (rPsaA) sera, a purified mouse monoclonal antibody (MAb) (MAb 6F62G8E12), and 22 healthy adult sera with known anti-PsaA IgG levels (obtained by enzyme-linked immunosorbent assay) were evaluated for their abilities to inhibit Pnc adherence to confluent monolayers (measured as percent reduction in CFU counts compared to those of uninhibited controls). Pnc adherence was dependent on capsular phenotype (no or low adherence for opaque strains). With an inoculum of 10(4) to 10(5) bacteria/well, the mean +/- standard deviation count in controls was 163 +/- 32 CFU/well for transparent strains. Low adherence was observed for a PsaA-minus mutant even at higher inoculum doses. Mean percent inhibitions of adherence with Pab and MAb were 54 and 50%, respectively. Adult sera showed inhibition in a dose-response fashion with a range of 98 to 8%, depending on the serum anti-PsaA antibody concentration. Absorption of Pab with rPsaA restored Pnc adherence to control levels. Absorption of sera with a PsaA-minus mutant did not result in a significant decrease (P >0.05) of inhibition of adherence activity. Additionally, nearly 100% of Pnc adherence was inhibited by lipidated rPsaA at 2.5 micro g/ml. Our data support the argument that PsaA is an adhesin that mediates Pnc adherence to human nasopharyngeal cells. This functional assay may be useful in evaluating antibodies elicited in response to PsaA vaccination.

  13. Development of novel mouse hybridomas producing monoclonal antibodies specific to human and mouse nucleolar protein SURF-6.

    Science.gov (United States)

    Polzikov, Mikhail A; Kordyukova, Maria Yu; Zavalishina, Larisa E; Magoulas, Charalambos; Zatsepina, Olga V

    2012-02-01

    SURF-6 is an evolutionarily conserved nucleolar protein that is important for cell viability; however, its function in mammals still remains uncertain. The aim of this study is to generate monoclonal antibodies to human SURF-6 protein suitable for fundamental and biomedical research. The full-size human SURF-6 was expressed as a recombinant GST-fusion protein and used as an antigen to generate monoclonal antibodies, S79 and S148, specific for SURF-6. The monoclonal antibody produced by hybridoma clone S79 specifically recognizes endogenous SURF-6 by Western and immunofluorescence analyses in various cultured human cells, and by immunohistochemistry in paraffin-embedded sections of human breast cancer samples. Moreover, S79 immunoprecipitates protein complexes containing SURF-6 from HeLa cells extracts. The antibody S79 recognizes SURF-6 only in human cells; however, the antibody produced by hybridoma clone S148 can detect SURF-6 of human and mouse origin. Monoclonal antibodies to the nucleolar protein SURF-6 described in this work can be a useful tool for studies of ribosome biogenesis in normal and cancer cells.

  14. A murine monoclonal anti-idiotypic antibody detects a common idiotope on human, mouse and rabbit antibodies to allergen Lol p IV.

    Science.gov (United States)

    Zhou, E M; Dzuba-Fischer, J M; Rector, E S; Sehon, A H; Kisil, F T

    1991-09-01

    A syngeneic mouse monoclonal anti-idiotypic antibody (anti-Id), designated as B1/1, was generated against a monoclonal antibody (MoAb 91) specific for Ryegrass pollen allergen Lol p IV. This anti-Id recognized an idiotope (Id) that was also present on other monoclonal antibodies with the same specificity as MoAb 91. Observations that (i) the anti-Id inhibited the binding of MoAb 91 to Lol p IV and (ii) the Id-anti-Id interaction could be inhibited by Lol p IV indicated that the Id was located within or near the antigen combining site. These properties served to characterize B1/1 as an internal image anti-Id. Evidence that an immune response in different species to Lol p IV elicits the formation of antibodies which express a common Id was provided by the observations that (i) the Id-anti-Id interactions could be inhibited by mouse, human and rabbit antisera to Lol p IV and (ii) the binding of these antisera to Lol p IV could be inhibited by the anti-Id. Interestingly, the internal image anti-Id B1/1 also recognized an Id on a monoclonal antibody which was directed to an epitope of Lol p IV, different from that recognized by MoAb 91.

  15. Lack of ADCC Breadth of Human Nonneutralizing Anti-HIV-1 Antibodies.

    Science.gov (United States)

    Bruel, Timothée; Guivel-Benhassine, Florence; Lorin, Valérie; Lortat-Jacob, Hugues; Baleux, Françoise; Bourdic, Katia; Noël, Nicolas; Lambotte, Olivier; Mouquet, Hugo; Schwartz, Olivier

    2017-04-15

    Anti-human immunodeficiency virus type 1 (HIV-1) nonneutralizing antibodies (nnAbs) capable of antibody-dependent cellular cytotoxicity (ADCC) have been identified as a protective immune correlate in the RV144 vaccine efficacy trial. Broadly neutralizing antibodies (bNAbs) also mediate ADCC in cell culture and rely on their Fc region for optimal efficacy in animal models. Here, we selected 9 monoclonal nnAbs and 5 potent bNAbs targeting various epitopes and conformations of the gp120/41 complex and analyzed the potency of the two types of antibodies to bind and eliminate HIV-1-infected cells in culture. Regardless of their neutralizing activity, most of the selected antibodies recognized and killed cells infected with two laboratory-adapted HIV-1 strains. Some nnAbs also bound bystander cells that may have captured viral proteins. However, in contrast to the bNAbs, the nnAbs bound poorly to reactivated infected cells from 8 HIV-positive individuals and did not mediate effective ADCC against these cells. The nnAbs also inefficiently recognize cells infected with 8 different transmitted-founder (T/F) isolates. The addition of a synthetic CD4 mimetic enhanced the binding and killing efficacy of some of the nnAbs in an epitope-dependent manner without reaching the levels achieved by the most potent bNAbs. Overall, our data reveal important qualitative and quantitative differences between nnAbs and bNAbs in their ADCC capacity and strongly suggest that the breadth of recognition of HIV-1 by nnAbs is narrow.IMPORTANCE Most of the anti-HIV antibodies generated by infected individuals do not display potent neutralizing activities. These nonneutralizing antibodies (nnAbs) with antibody-dependent cellular cytotoxicity (ADCC) have been identified as a protective immune correlate in the RV144 vaccine efficacy trial. However, in primate models, the nnAbs do not protect against simian-human immunodeficiency virus (SHIV) acquisition. Thus, the role of nnAbs with ADCC activity in

  16. Development and characterization of a pre-treatment procedure to eliminate human monoclonal antibody therapeutic drug and matrix interference in cell-based functional neutralizing antibody assays.

    Science.gov (United States)

    Xu, Weifeng; Jiang, Hao; Titsch, Craig; Haulenbeek, Jonathan R; Pillutla, Renuka C; Aubry, Anne-Françoise; DeSilva, Binodh S; Arnold, Mark E; Zeng, Jianing; Dodge, Robert W

    2015-01-01

    Biological therapeutics can induce an undesirable immune response resulting in the formation of anti-drug antibodies (ADA), including neutralizing antibodies (NAbs). Functional (usually cell-based) NAb assays are preferred to determine NAb presence in patient serum, but are often subject to interferences from numerous serum factors, such as growth factors and disease-related cytokines. Many functional cell-based NAb assays are essentially drug concentration assays that imply the presence of NAbs by the detection of small changes in functional drug concentration. Any drug contained in the test sample will increase the total amount of drug in the assay, thus reducing the sensitivity of NAb detection. Biotin-drug Extraction with Acid Dissociation (BEAD) has been successfully applied to extract ADA, thereby removing drug and other interfering factors from human serum samples. However, to date there has been no report to estimate the residual drug level after BEAD treatment when the drug itself is a human monoclonal antibody; mainly due to the limitation of traditional ligand-binding assays. Here we describe a universal BEAD optimization procedure for human monoclonal antibody (mAb) drugs by using a LC-MS/MS method to simultaneously measure drug (a mutant human IgG4), NAb positive control (a mouse IgG), and endogenous human IgGs as an indicator of nonspecific carry-over in the BEAD eluate. This is the first report demonstrating that residual human mAb drug level in clinical sample can be measured after BEAD pre-treatment, which is critical for further BEAD procedure optimization and downstream immunogenicity testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. [New immunological weapons for medicine in the 21st Century: biological therapy based on the use of the latest generation monoclonal antibodies].

    Science.gov (United States)

    Aguillón, Juan C; Contreras, Juan; Dotte, Andrés; Cruzat, Andrea; Catalán, Diego; Salazar, Lorena; Molina, María Carmen; Guerrero, Julia; López, Mercedes; Soto, Lilian; Salazar-Onfray, Flavio; Cuchacovich, Miguel

    2003-12-01

    The fusion of a murine B cell and a myeloma cell generates a hybridoma that produces monoclonal antibody (mAb). These murine mAb induce the HAMA (human anti-mouse antibodies) response. Murine mAb have been modified by genetic engineering, producing molecules with a higher proportion of human protein. At present, chimeric, humanized and fully human mAb are available. mAb block interactions between target molecules and their ligands or trigger the lyses of mAb-coated tumor cells. Numerous mAb have been developed using the recombinant DNA technology and several are available in the market. Trastuzumab, against HER2/neu, is useful in breast cancer; rituximab, against CD20 in B lymphocytes is useful in lymphoma; alemtuzumah, against CD52 is used in lymphoma and leukemia; daclizumab and basiliximab block the IL-2 receptor interaction and reduce acute rejection in kidney transplantation; abciximab, an antagonist of GPIIb/IIIa platelet receptor, is used in patients undergoing acute coronary syndromes. In autoimmunity diseases, blocking tumor necrosis factor by infliximab and adalimumab has demonstrated excellent results. Thus, infliximab is useful in the treatment of rheumatoid arthritis (RA), Crohn's disease and ulcerative colitis while adalimumab is the first fully human mAb available for RA. Infliximab and adalimumab reduce signs and symptoms in RA and they also interfere with progression of joint damage. Finally, the direct benefits of antagonist treatment can occur at the expense of a major adverse effect in some other biological function.

  18. In-Depth Analysis of Human Neonatal and Adult IgM Antibody Repertoires

    Science.gov (United States)

    Hong, Binbin; Wu, Yanling; Li, Wei; Wang, Xun; Wen, Yumei; Jiang, Shibo; Dimitrov, Dimiter S.; Ying, Tianlei

    2018-01-01

    Although high-throughput sequencing and associated bioinformatics technologies have enabled the in-depth, sequence-based characterization of human immune repertoires, only a few studies on a relatively small number of sequences explored the characteristics of antibody repertoires in neonates, with contradictory conclusions. To gain a more comprehensive understanding of the human IgM antibody repertoire, we performed Illumina sequencing and IMGT/HighV-QUEST analysis of IgM heavy chain repertoire of the B lymphocytes from the cord blood (CB) of neonates, as well as the repertoire from peripheral blood of healthy human adults (HH). The comparative study revealed unexpectedly high levels of similarity between the neonatal and adult repertoires. In both repertoires, the VDJ gene usage showed no significant difference, and the most frequently used VDJ gene was IGHV4-59, IGHD3-10, and IGHJ3. The average amino acid (aa) length of CDR1 (CB: 8.5, HH: 8.4) and CDR2 (CB: 7.6, HH: 7.5), as well as the aa composition and the average hydrophobicity of the CDR3 demonstrated no significant difference between the two repertories. However, the average aa length of CDR3 was longer in the HH repertoire than the CB repertoire (CB: 14.5, HH: 15.5). Besides, the frequencies of aa mutations in CDR1 (CB: 19.33%, HH: 25.84%) and CDR2 (CB: 9.26%, HH: 17.82%) were higher in the HH repertoire compared to the CB repertoire. Interestingly, the most prominent difference between the two repertoires was the occurrence of N2 addition (CB: 64.87%, HH: 85.69%), a process that occurs during V-D-J recombination for introducing random nucleotide additions between D- and J-gene segments. The antibody repertoire of healthy adults was more diverse than that of neonates largely due to the higher occurrence of N2 addition. These findings may lead to a better understanding of antibody development and evolution pathways and may have potential practical value for facilitating the generation of more effective

  19. In-Depth Analysis of Human Neonatal and Adult IgM Antibody Repertoires

    Directory of Open Access Journals (Sweden)

    Binbin Hong

    2018-02-01

    Full Text Available Although high-throughput sequencing and associated bioinformatics technologies have enabled the in-depth, sequence-based characterization of human immune repertoires, only a few studies on a relatively small number of sequences explored the characteristics of antibody repertoires in neonates, with contradictory conclusions. To gain a more comprehensive understanding of the human IgM antibody repertoire, we performed Illumina sequencing and IMGT/HighV-QUEST analysis of IgM heavy chain repertoire of the B lymphocytes from the cord blood (CB of neonates, as well as the repertoire from peripheral blood of healthy human adults (HH. The comparative study revealed unexpectedly high levels of similarity between the neonatal and adult repertoires. In both repertoires, the VDJ gene usage showed no significant difference, and the most frequently used VDJ gene was IGHV4-59, IGHD3-10, and IGHJ3. The average amino acid (aa length of CDR1 (CB: 8.5, HH: 8.4 and CDR2 (CB: 7.6, HH: 7.5, as well as the aa composition and the average hydrophobicity of the CDR3 demonstrated no significant difference between the two repertories. However, the average aa length of CDR3 was longer in the HH repertoire than the CB repertoire (CB: 14.5, HH: 15.5. Besides, the frequencies of aa mutations in CDR1 (CB: 19.33%, HH: 25.84% and CDR2 (CB: 9.26%, HH: 17.82% were higher in the HH repertoire compared to the CB repertoire. Interestingly, the most prominent difference between the two repertoires was the occurrence of N2 addition (CB: 64.87%, HH: 85.69%, a process that occurs during V-D-J recombination for introducing random nucleotide additions between D- and J-gene segments. The antibody repertoire of healthy adults was more diverse than that of neonates largely due to the higher occurrence of N2 addition. These findings may lead to a better understanding of antibody development and evolution pathways and may have potential practical value for facilitating the generation of more

  20. RBC Antibody Screen

    Science.gov (United States)

    ... products and services. Advertising & Sponsorship: Policy | Opportunities RBC Antibody Screen Share this page: Was this page helpful? ... Indirect Coombs Test; Indirect Anti-human Globulin Test; Antibody Screen Formal name: Red Blood Cell Antibody Screen ...

  1. Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Christian [Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway); Madshus, Inger Helene [Institute of Pathology, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway); Stang, Espen, E-mail: espsta@rr-research.no [Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway)

    2012-12-10

    The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: Black-Right-Pointing-Pointer Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. Black-Right-Pointing-Pointer Antibody combination causes internalization of EGFR by macropinocytosis. Black-Right-Pointing-Pointer Antibody-induced internalization of EGFR is independent of EGFR kinase activity. Black-Right-Pointing-Pointer Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.

  2. Detection of MHC class II expression on human basophils is dependent on antibody specificity but independent of atopic disposition.

    Science.gov (United States)

    Poulsen, Britta C; Poulsen, Lars K; Jensen, Bettina M

    2012-07-31

    A debate has recently arisen as to whether murine basophils can function as antigen presenting cells in allergic inflammation. However, mouse and human basophils differ considerably, and the expression of MHC class II on human basophils has been investigated as a proxy for their capability of antigen presentation but conflicting results have emerged. In this technical note, we show that an antibody specific for all three MHC class II subtypes (HLA-DR, -DP, and -DQ), leads to a significantly higher amount of MHC class II+ basophils compared to antibodies specific for HLA-DR only. A significant difference was also observed between the HLA-DR specific antibodies, indicating that the choice of antibody is crucial. Furthermore, critical compensation was essential to avoid false HLA-DR+ basophils. Finally, we found that detection of MHC class II on human basophils was independent of atopic disposition. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Synthesis and characterization of C@CdS dots in aqueous solution and their application in labeling human gastric carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wei, E-mail: dongwei5873@126.com [Shenyang Medical College, Department of Chemistry (China); Zhou, Siqi [Fengtian Hospital Affiliated to Shenyang Medical College, ICU (China); Dong, Yan [Shenyang Pharmaceutical University, Experiment Center of Traditional Chinese Medicine Department (China); Wang, Jingwen; Liu, Shuang; Zhu, Pengxia [Shenyang Medical College, Department of Chemistry (China)

    2015-03-15

    Colloidal carbon spheres coated with cadmium sulfide nanoparticle quantum dots (C@CdS dots) with the particle size smaller than 50 nm were synthesized by an aqueous approach. The effects of different reaction times, temperatures, and pH values were carefully investigated to optimize the synthesis conditions. The as-prepared C@CdS dots were linked with mouse anti-human carcinoembryonic antigen antibody and goat anti-mouse immunoglobulin (IgG) to directly and indirectly label fixed human gastric carcinoma cells, respectively. The cytotoxicity of the C@CdS dots was also tested using the human gastric carcinoma cells. No apparent cytotoxicity was observed, which suggested the potential application of the as-prepared C@CdS dots in bioimaging.

  4. Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties.

    Science.gov (United States)

    Carnahan, Josette; Wang, Paul; Kendall, Richard; Chen, Ching; Hu, Sylvia; Boone, Tom; Juan, Todd; Talvenheimo, Jane; Montestruque, Silvia; Sun, Jilin; Elliott, Gary; Thomas, John; Ferbas, John; Kern, Brent; Briddell, Robert; Leonard, John P; Cesano, Alessandra

    2003-09-01

    Epratuzumab is a novel humanized antihuman CD22 IgG1 antibody that has recently shown promising clinical activity, both as a single agent and in combination with rituximab, in patients with non-Hodgkin's lymphomas (NHL). In an attempt to better understand the mode of action of epratuzumab, the antibody was tested in vitro in a variety of cell-based assays similar to those used to evaluate the biological activity of other therapeutic monoclonal antibodies, including rituximab. In this report, we present epratuzumab activities as they relate to binding, signaling, and internalization of the receptor CD22. Chinese hamster ovary-expressed CD22 extracellular domain was used to measure epratuzumab affinity on Biacore. CD22 receptor density and internalization rate were measured indirectly using a monovalently labeled, noncompeting (with epratuzumab) anti-CD22 antibody on Burkitt lymphoma cell lines, primary B cells derived from fresh tonsils, and B cells separated from peripheral blood samples obtained from patients with chronic lymphocytic leukemia or healthy volunteers. Epratuzumab-induced CD22 phosphorylation was measured by immunoprecipitation/Western blot and compared with that induced by anti-IgM stimulation. Epratuzumab binds to CD22-extracellular domain, with an affinity of K(D) = 0.7 nM. Binding of epratuzumab to B cell lines, or primary B cells from healthy individuals and patients with NHL, results in rapid internalization of the CD22/antibody complex. Internalization appears to be faster at early time points in cell lines than in primary B cells and NHL patient-derived B cells, but the maximum internalization reached is comparable for all B cell populations after several hours of treatment and appears to reach saturation at antibody concentrations of 1-5 micro g/ml. Finally, epratuzumab binding results in modest but significant CD22 phosphorylation. Epratuzumab represents an excellent anti-CD22 ligating agent, highly efficacious in inducing CD22

  5. Kinetics of the Human Papillomavirus Type 16 E6 Antibody Response Prior to Oropharyngeal Cancer.

    Science.gov (United States)

    Kreimer, Aimée R; Johansson, Mattias; Yanik, Elizabeth L; Katki, Hormuzd A; Check, David P; Lang Kuhs, Krystle A; Willhauck-Fleckenstein, Martina; Holzinger, Dana; Hildesheim, Allan; Pfeiffer, Ruth; Williams, Craig; Freedman, Neal D; Huang, Wen-Yi; Purdue, Mark P; Michel, Angelika; Pawlita, Michael; Brennan, Paul; Waterboer, Tim

    2017-08-01

    In a European cohort, it was previously reported that 35% of oropharyngeal cancer (OPC) patients were human papillomavirus type-16 (HPV16) seropositive up to 10 years before diagnosis vs 0.6% of cancer-free controls. Here, we describe the kinetics of HPV16-E6 antibodies prior to OPC diagnosis. We used annual serial prediagnostic blood samples from the PLCO Cancer Screening Trial. Antibodies to HPV were initially assessed in prediagnostic blood drawn at study enrollment from 198 incident head and neck cancer patients (median years to cancer diagnosis = 6.6) and 924 matched control subjects using multiplex serology, and subsequently in serial samples (median = 5/individual). Available tumor samples were identified and tested for HPV16 RNA to define HPV-driven OPC. HPV16-E6 antibodies were present at baseline in 42.3% of 52 OPC patients and 0.5% of 924 control subjects. HPV16-E6 antibody levels were highly elevated and stable across serial blood samples for 21 OPC patients who were seropositive at baseline, as well as for one OPC patient who seroconverted closer to diagnosis. All five subjects with HPV16-driven OPC tumors were HPV16-E6-seropositive, and the four subjects with HPV16-negative OPC tumors were seronegative. The estimated 10-year cumulative risk of OPC was 6.2% (95% confidence interval [CI] = 1.8% to 21.5%) for HPV16-E6-seropositive men, 1.3% (95% CI = 0.1% to 15.3%) for HPV16-E6-seropositive women, and 0.04% (95% CI = 0.03% to 0.06%) among HPV16-E6-seronegative individuals. Forty-two percent of subjects diagnosed with OPC between 1994 and 2009 in a US cohort were HPV16-E6 seropositive, with stable antibody levels during annual follow-up for up to 13 years prior to diagnosis. Tumor analysis indicated that the sensitivity and specificity of HPV16-E6 antibodies were exceptionally high in predicting HPV-driven OPC.

  6. Serial Killing of Tumor Cells by Human Natural Killer Cells – Enhancement by Therapeutic Antibodies

    Science.gov (United States)

    Bhat, Rauf; Watzl, Carsten

    2007-01-01

    Background Natural killer cells are an important component of the innate immune system. Anti-cancer therapies utilizing monoclonal antibodies also rely on the cytotoxicity of NK cells for their effectiveness. Here, we study the dynamics of NK cell cytotoxicity. Methodology/Principal Findings We observe that IL-2 activated human NK cells can serially hit multiple targets. Using functional assays, we demonstrate that on an average, a single IL-2 activated NK cell can kill four target cells. Data using live video microscopy suggest that an individual NK cell can make serial contacts with multiple targets and majority of contacts lead to lysis of target cells. Serial killing is associated with a loss of Perforin and Granzyme B content. A large majority of NK cells survive serial killing, and IL-2 can replenish their granular stock and restore the diminished cytotoxicity of ‘exhausted’ NK cells. IL-2 and IL-15 are equally effective in enhancing the killing frequency of resting NK cells. Significantly, Rituximab, a therapeutic monoclonal antibody increases the killing frequency of both resting and IL-2 activated NK cells. Conclusion/Significance Our data suggest that NK cell-based therapies for overcoming tumors rely on their serial killing ability. Therefore, strategies augmenting the killing ability of NK cells can boost the immune system and enhance the effectiveness of monoclonal antibody-based therapies. PMID:17389917

  7. Serial killing of tumor cells by human natural killer cells--enhancement by therapeutic antibodies.

    Science.gov (United States)

    Bhat, Rauf; Watzl, Carsten

    2007-03-28

    Natural killer cells are an important component of the innate immune system. Anti-cancer therapies utilizing monoclonal antibodies also rely on the cytotoxicity of NK cells for their effectiveness. Here, we study the dynamics of NK cell cytotoxicity. We observe that IL-2 activated human NK cells can serially hit multiple targets. Using functional assays, we demonstrate that on an average, a single IL-2 activated NK cell can kill four target cells. Data using live video microscopy suggest that an individual NK cell can make serial contacts with multiple targets and majority of contacts lead to lysis of target cells. Serial killing is associated with a loss of Perforin and Granzyme B content. A large majority of NK cells survive serial killing, and IL-2 can replenish their granular stock and restore the diminished cytotoxicity of 'exhausted' NK cells. IL-2 and IL-15 are equally effective in enhancing the killing frequency of resting NK cells. Significantly, Rituximab, a therapeutic monoclonal antibody increases the killing frequency of both resting and IL-2 activated NK cells. Our data suggest that NK cell-based therapies for overcoming tumors rely on their serial killing ability. Therefore, strategies augmenting the killing ability of NK cells can boost the immune system and enhance the effectiveness of monoclonal antibody-based therapies.

  8. Serial killing of tumor cells by human natural killer cells--enhancement by therapeutic antibodies.

    Directory of Open Access Journals (Sweden)

    Rauf Bhat

    Full Text Available BACKGROUND: Natural killer cells are an important component of the innate immune system. Anti-cancer therapies utilizing monoclonal antibodies also rely on the cytotoxicity of NK cells for their effectiveness. Here, we study the dynamics of NK cell cytotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: We observe that IL-2 activated human NK cells can serially hit multiple targets. Using functional assays, we demonstrate that on an average, a single IL-2 activated NK cell can kill four target cells. Data using live video microscopy suggest that an individual NK cell can make serial contacts with multiple targets and majority of contacts lead to lysis of target cells. Serial killing is associated with a loss of Perforin and Granzyme B content. A large majority of NK cells survive serial killing, and IL-2 can replenish their granular stock and restore the diminished cytotoxicity of 'exhausted' NK cells. IL-2 and IL-15 are equally effective in enhancing the killing frequency of resting NK cells. Significantly, Rituximab, a therapeutic monoclonal antibody increases the killing frequency of both resting and IL-2 activated NK cells. CONCLUSION/SIGNIFICANCE: Our data suggest that NK cell-based therapies for overcoming tumors rely on their serial killing ability. Therefore, strategies augmenting the killing ability of NK cells can boost the immune system and enhance the effectiveness of monoclonal antibody-based therapies.

  9. Generation of human bispecific common light chain antibodies by combining animal immunization and yeast display.

    Science.gov (United States)

    Krah, Simon; Schröter, Christian; Eller, Carla; Rhiel, Laura; Rasche, Nicolas; Beck, Jan; Sellmann, Carolin; Günther, Ralf; Toleikis, Lars; Hock, Björn; Kolmar, Harald; Becker, Stefan

    2017-04-01

    Bispecific antibodies (bsAbs) pave the way for novel therapeutic modes of action along with potential benefits in several clinical applications. However, their generation remains challenging due to the necessity of correct pairings of two different heavy and light chains and related manufacturability issues. We describe a generic approach for the generation of fully human IgG-like bsAbs. For this, heavy chain repertoires from immunized transgenic rats were combined with either a randomly chosen common light chain or a light chain of an existing therapeutic antibody and screened for binders against tumor-related targets CEACAM5 and CEACAM6 by yeast surface display. bsAbs with subnanomolar affinities were identified, wherein each separate binding arm mediated specific binding to the respective antigen. Altogether, the described strategy represents a combination of in vivo immunization with an in vitro selection method, which allows for the integration of existing therapeutic antibodies into a bispecific format. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Germline-encoded neutralization of a Staphylococcus aureus virulence factor by the human antibody repertoire.

    Science.gov (United States)

    Yeung, Yik Andy; Foletti, Davide; Deng, Xiaodi; Abdiche, Yasmina; Strop, Pavel; Glanville, Jacob; Pitts, Steven; Lindquist, Kevin; Sundar, Purnima D; Sirota, Marina; Hasa-Moreno, Adela; Pham, Amber; Melton Witt, Jody; Ni, Irene; Pons, Jaume; Shelton, David; Rajpal, Arvind; Chaparro-Riggers, Javier

    2016-11-18

    Staphylococcus aureus is both an important pathogen and a human commensal. To explore this ambivalent relationship between host and microbe, we analysed the memory humoral response against IsdB, a protein involved in iron acquisition, in four healthy donors. Here we show that in all donors a heavily biased use of two immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that neutralize the two IsdB NEAT domains, IGHV4-39 for NEAT1 and IGHV1-69 for NEAT2. In contrast to the typical antibody/antigen interactions, the binding is primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39, with a binding mechanism nearly identical for each antibody derived from different donors. Our results suggest that IGHV1-69 and IGHV4-39, while part of the adaptive immune system, may have evolved under selection pressure to encode a binding motif innately capable of recognizing and neutralizing a structurally conserved protein domain involved in pathogen iron acquisition.

  11. Characterization of a human monoclonal antibody against Shiga toxin 2 expressed in Chinese hamster ovary cells.

    Science.gov (United States)

    Akiyoshi, D E; Rich, C M; O'Sullivan-Murphy, S; Richard, L; Dilo, J; Donohue-Rolfe, A; Sheoran, A S; Chapman-Bonofiglio, S; Tzipori, S

    2005-07-01

    Shiga toxin-producing Escherichia coli infections can often lead to the development of hemolytic-uremic syndrome (HUS) in a small percentage of infected humans. Patients with HUS receive only supportive treatment as the benefit of antibiotic therapy remains uncertain. We have previously reported the generation and preclinical evaluation of neutralizing human monoclonal antibodies (HuMAbs) against the Shiga toxins (Stx). In this paper, we describe the expression in Chinese hamster ovary (CHO) cells of 5C12 HuMAb, which is directed against the A subunit of Stx2. The cDNAs of the light and heavy chain immunoglobulin (Ig) variable regions of 5C12 HuMAb were isolated and cloned into an expression vector containing human IgG1 constant regions. The vector was transfected into CHO cells, and transfectants secreting Stx2-specific antibody were screened by an Stx2-specific enzyme-linked immunosorbent assay. The CHO-produced recombinant 5C12 (r5C12) showed similar specificity and binding affinity to Stx2 as the parent hybridoma-produced 5C12. More significantly, the r5C12 displayed the same neutralizing activity as the parent 5C12 in vitro and in vivo. In the mouse toxicity model, both antibodies significantly and equally prolonged survival at a dose of 0.312 microg/mouse. The data showed that since r5C12, produced in CHO cells, was equally effective as the parent 5C12, it is our choice candidate as a potential prophylactic or therapeutic agent against hemolytic-uremic syndrome.

  12. An extended range generic immunoassay for total human therapeutic antibodies in preclinical pharmacokinetic studies.

    Science.gov (United States)

    Hall, Colin M; Pearson, Josh T; Patel, Vimal; Wienkers, Larry C; Greene, Robert J

    2013-07-31

    Bioanalytical support of discovery programs for human monoclonal antibody therapies involves quantitation by immunoassay. Historically, preclinical samples have been analyzed by the traditional Enzyme-Linked Immuno-Sorbent Assay (ELISA). We investigated transferring our generic ELISA for quantitating human IgG constructs in preclinical serum samples to an automated microfluidics immunoassay platform based on nanoscale streptavidin bead columns. Transfer of our immunoassay to the automated platform resulted in not only the anticipated reduction in analysts' time required for manual manipulation (ELISA) but also a substantial increase in the dynamic range of the immunoassay. The generic nature and wide dynamic range of this automated microcolumn immunoassay permit bioanalytical support of novel therapeutic candidates without the need to develop new, specific assay reagents and minimize the chances that sample reassays will be required due to out of range concentration results. Improved process efficiencies and enhanced workflow during the analysis of preclinical PK samples that enable high throughput assessment of a human monoclonal antibody lead in early discovery programs. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Matrix metalloproteinase sensing via porous silicon microcavity devices functionalized with human antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Marta; Gergely, Csilla [GES-UMR 5650, CNRS, Universite Montpellier 2, Pl. Eugene Bataillon 34095, Montpellier Cedex 5 (France); Taleb Bendiab, Chakib; Massif, Laurent; Cuisinier, Frederic [EA4203, Faculte d' Odontologie, Universite Montpellier 1, Montpellier Cedex 5 (France); Palestino, Gabriela [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Salvador Nava 6, 78000 San Luis Potosi (Mexico); Agarwal, Vivechana [CIICAP, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Mor. (Mexico)

    2011-06-15

    Porous silicon microcavity (PSiMc) structures were used as support material for specific sensing of matrix metalloproteinases (MMPs). For lower concentrations of MMP-8, the structures were tested with two types of functionalization methods. Silanization of the oxidized porous silicon structures, followed by glutaraldehyde chemistry was found to give very inconsistent results. The use of biotinilated bovine serum albumin linked to the naked PSiMc was found to be an alternative method to attach the anti MMP-8 human antibody, previously modified with streptavidin, which was further used to sense MMP-8 (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Arendrup, M

    1991-01-01

    The cancer-related mucin-type carbohydrate neoantigen Tn was found on gp160 and gp120 of human immunodeficiency virus (HIV). Immunoglobulin G (IgG) and IgM monoclonal antibodies (MAbs) against Tn neutralized infection with cell-free virus and blocked fusion between HIV-infected and uninfected cells....... This inhibition was found in infection of both lymphocytic cells and monocytoid cells. Viruses tested included six HIV-1 and five HIV-2 isolates propagated in different cells, as well as infectious plasma from AIDS patients. The antiviral effect of anti-Tn MAbs occurred by specific binding of the MAb to the virus...

  15. Human Cytomegalovirus Particles Treated with Specific Antibodies Induce Intrinsic and Adaptive but Not Innate Immune Responses.

    Science.gov (United States)

    Wu, Zeguang; Qin, Ruifang; Wang, Li; Bosso, Matteo; Scherer, Myriam; Stamminger, Thomas; Hotter, Dominik; Mertens, Thomas; Frascaroli, Giada

    2017-11-15

    Human cytomegalovirus (HCMV) persistently infects 40% to 100% of the human population worldwide. Experimental and clinical evidence indicates that humoral immunity to HCMV plays an important role in restricting virus dissemination and protecting the infected host from disease. Specific immunoglobulin preparations from pooled plasma of adults selected for high titers of HCMV antibodies have been used for the prevention of CMV disease in transplant recipients and pregnant women. Even though incubation of HCMV particles with these preparations leads to the neutralization of viral infectivity, it is still unclear whether the antibody-treated HCMV particles (referred to here as HCMV-Ab) enter the cells and modulate antiviral immune responses. Here we demonstrate that HCMV-Ab did enter macrophages. HCMV-Ab did not initiate the expression of immediate early antigens (IEAs) in macrophages, but they induced an antiviral state and rendered the cells less susceptible to HCMV infection upon challenge. Resistance to HCMV infection seemed to be due to the activation of intrinsic restriction factors and was independent of interferons. In contrast to actively infected cells, autologous NK cells did not degranulate against HCMV-Ab-treated macrophages, suggesting that these cells may not be eliminated by innate effector cells. Interestingly, HCMV-Ab-treated macrophages stimulated the proliferation of autologous adaptive CD4+ and CD8+ T cells. Our findings not only expand the current knowledge on virus-antibody immunity but may also be relevant for future vaccination strategies.IMPORTANCE Human cytomegalovirus (HCMV), a common herpesvirus, establishes benign but persistent infections in immunocompetent hosts. However, in subjects with an immature or dysfunctional immune system, HCMV is a major cause of morbidity and mortality. Passive immunization has been used in different clinical settings with variable clinical results. Intravenous hyperimmune globulin preparations (IVIg) are

  16. Human plasma contains cross-reactive Abeta conformer-specific IgG antibodies.

    Science.gov (United States)

    O'Nuallain, Brian; Acero, Luis; Williams, Angela D; Koeppen, Helen P McWilliams; Weber, Alfred; Schwarz, Hans P; Wall, Jonathan S; Weiss, Deborah T; Solomon, Alan

    2008-11-25

    Two conformers of aggregated Abeta, i.e., fibrils and oligomers, have been deemed important in the pathogenesis of Alzheimer's disease. We now report that intravenous immune globulin (IVIG) derived from pools of human plasma contains IgGs that recognize conformational epitopes present on fibrils and oligomers, but not their soluble monomeric precursor. We have used affinity chromatography to isolate these antibodies and have shown that they cross-reacted with comparable nanomolar avidity with both types of Abeta aggregates; notably, binding was not inhibited by soluble Abeta monomers. Our studies provide further support for investigating the therapeutic use of IVIG in Alzheimer's disease.

  17. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120

    Energy Technology Data Exchange (ETDEWEB)

    Nara, P.L.; Robey, W.G.; Gonda, M.A.; Carter, S.G.; Fischinger, P.J.

    1987-06-01

    The presence of antibody-dependent complement-mediated cytotoxicity (ACC) was assessed in humans and chimpanzees, which are capable of infection with human immunodeficiency virus isolate HTLV-IIIb, and examined in the goat after immunization with the major viral glycoprotein (gp120) of HTLV-IIIb. In infected humans no antibody mediating ACC was observed regardless of the status of disease. Even healthy individuals with high-titer, broadly reactive, neutralizing antibodies has no ACC. In contrast, chimpanzees infected with HTLV-IIIb, from whom virus could be isolated, not only had neutralizing antibody but also antibodies broadly reactive in ACC, even against distantly related human immunodeficiency virus isolates, as well as against their own reisolated virus. In the goat, the gp120 of HTLV-IIIb induced a highly type-specific response as measured by both ACC and flow cytofluorometry of live infected H9 cells. Normal human cells were not subject to ACC by animal anti-HTLV-III gp120-specific sera. Induction of ACC and neutralizing antibody were closely correlated in the animal experimental models but not in humans. The presence of ACC in gp120-inoculated goats and HTLV-III-infected chimpanzees represent a qualitative difference that may be important in the quest for the elicitation of a protective immunity in humans.

  18. Intra-Blood-Brain Barrier Synthesis of Human Immunodeficiency Virus Antigen and Antibody in Humans and Chimpanzees

    Science.gov (United States)

    Goudsmit, Jaap; Epstein, Leon G.; Paul, Deborah A.; van der Helm, Hayo J.; Dawson, George J.; Asher, David M.; Yanagihara, Richard; Wolff, Axel V.; Gibbs, Clarence J.; Carleton Gajdusek, D.

    1987-06-01

    The presence of human immunodeficiency virus (HIV) antigens in cerebrospinal fluid (CSF) was associated with progressive encephalopathy in adult and pediatric patients with acquired immunodeficiency syndrome (AIDS). HIV antigen was detected in CSF from 6 of 7 AIDS patients with progressive encephalopathy. By contrast, HIV antigen, whether free or complexed, was detected in CSF from only 1 of 18 HIV antibody seropositive patients without progressive encephalopathy and from 0 of 8 experimentally infected chimpanzees without clinical signs. Intra-blood-brain barrier synthesis of HIV-specific antibody was demonstrated in the majority of patients with AIDS (9/12) or at risk for AIDS (8/13) as well as in the experimentally infected chimpanzees, indicating HIV-specific B-cell reactivity in the brain without apparent neurological signs. In 6 of 11 patients with HIV infection, antibodies synthesized in the central nervous system were directed against HIV envelope proteins. Active viral expression appears to be necessary for both the immunodeficiency and progressive encephalopathy associated with HIV infection.

  19. Proteasome activator complex PA28 identified as an accessible target in prostate cancer by in vivo selection of human antibodies

    Science.gov (United States)

    Sánchez-Martín, David; Martínez-Torrecuadrada, Jorge; Teesalu, Tambet; Sugahara, Kazuki N.; Alvarez-Cienfuegos, Ana; Ximénez-Embún, Pilar; Fernández-Periáñez, Rodrigo; Martín, M. Teresa; Molina-Privado, Irene; Ruppen-Cañás, Isabel; Blanco-Toribio, Ana; Cañamero, Marta; Cuesta, Ángel M.; Compte, Marta; Kremer, Leonor; Bellas, Carmen; Alonso-Camino, Vanesa; Guijarro-Muñoz, Irene; Sanz, Laura; Ruoslahti, Erkki; Alvarez-Vallina, Luis

    2013-01-01

    Antibody cancer therapies rely on systemically accessible targets and suitable antibodies that exert a functional activity or deliver a payload to the tumor site. Here, we present proof-of-principle of in vivo selection of human antibodies in tumor-bearing mice that identified a tumor-specific antibody able to deliver a payload and unveils the target antigen. By using an ex vivo enrichment process against freshly disaggregated tumors to purge the repertoire, in combination with in vivo biopanning at optimized phage circulation time, we have identified a human domain antibody capable of mediating selective localization of phage to human prostate cancer xenografts. Affinity chromatography followed by mass spectrometry analysis showed that the antibody recognizes the proteasome activator complex PA28. The specificity of soluble antibody was confirmed by demonstrating its binding to the active human PA28αβ complex. Whereas systemically administered control phage was confined in the lumen of blood vessels of both normal tissues and tumors, the selected phage spread from tumor vessels into the perivascular tumor parenchyma. In these areas, the selected phage partially colocalized with PA28 complex. Furthermore, we found that the expression of the α subunit of PA28 [proteasome activator complex subunit 1 (PSME1)] is elevated in primary and metastatic human prostate cancer and used anti-PSME1 antibodies to show that PSME1 is an accessible marker in mouse xenograft tumors. These results support the use of PA28 as a tumor marker and a potential target for therapeutic intervention in prostate cancer. PMID:23918357

  20. Mechanism of action and in vivo efficacy of a human-derived antibody against Staphylococcus aureus α-hemolysin.

    Science.gov (United States)

    Foletti, Davide; Strop, Pavel; Shaughnessy, Lee; Hasa-Moreno, Adela; Casas, Meritxell Galindo; Russell, Marcella; Bee, Christine; Wu, Si; Pham, Amber; Zeng, Zhilan; Pons, Jaume; Rajpal, Arvind; Shelton, Dave

    2013-05-27

    The emergence and spread of multi-drug-resistant strains of Staphylococcus aureus in hospitals and in the community emphasize the urgency for the development of novel therapeutic interventions. Our approach was to evaluate the potential of harnessing the human immune system to guide the development of novel therapeutics. We explored the role of preexisting antibodies against S. aureus α-hemolysin in the serum of human individuals by isolating and characterizing one antibody with a remarkably high affinity to α-hemolysin. The antibody provided protection in S. aureus pneumonia, skin, and bacteremia mouse models of infection and also showed therapeutic efficacy when dosed up to 18 h post-infection in the pneumonia model. Additionally, in pneumonia and bacteremia animal models, the therapeutic efficacy of the α-hemolysin antibody appeared additive to the antibiotic linezolid. To better understand the mechanism of action of this isolated antibody, we solved the crystal structure of the α-hemolysin:antibody complex. To our knowledge, this is the first report of the crystal structure of the α-hemolysin monomer. The structure of the complex shows that the antibody binds α-hemolysin between the cap and the rim domains. In combination with biochemical data, the structure suggests that the antibody neutralizes the activity of the toxin by preventing binding to the plasma membrane of susceptible host cells. The data presented here suggest that protective antibodies directed against S. aureus molecules exist in some individuals and that such antibodies have a therapeutic potential either alone or in combination with antibiotics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. [Prokaryotic expression and antibody preparation of human GALNT3-sol protein].

    Science.gov (United States)

    Kong, Yun; Gao, Hai-tao; Li, Shu-fang; Wang, Peng; Gu, Li

    2011-10-01

    In order to detect the expression of GALNT3 in various tumor tissues, the prokaryotic expression vector of human GALNT3-sol (a truncation of GALNT3 being deleted of the hydrophobic trans-membrane domain) was constructed, and then the recombinant GALNT3-sol protein was expressed and purified from E.coli, followed by the preparation of polyclonal antibody against GALNT3-sol and characterization of its properties. The human cDNA of GALNT3-sol (1 755 bp)was amplified from MKN45 cell line and cloned into expression vector pET5b/GALNT3-sol, then transformed into E.coli BL21(DE3), in which the GALNT3-sol protein was induced by IPTG and then purified by Electrophoresis.Mice were immunized with the purified protein and the anti-serum was collected at different time intervals.Properties of the anti-serum were further detected by ELISA and Western blot. The prokaryotic expression vector of pET15b/GALNT3-sol was constructed successfully.Human GALNT3-sol protein was expressed in E.coli after IPTG induction.The titer of the obtained anti-serum reached 1:25 600, and its specificity was proved by Western blot. Human GALNT3-sol protein can be successfully expressed in E.coli, and the specific anti-human GALNT3-sol antibody can be obtained by immunization of mice, which makes it possible to further investigate the role of GALNT3 in the progression of various tumors.

  2. Protection of rabbits and immunodeficient mice against lethal poxvirus infections by human monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Lindsay Crickard

    Full Text Available Smallpox (variola virus is a bioweapon concern. Monkeypox is a growing zoonotic poxvirus threat. These problems have resulted in extensive efforts to develop potential therapeutics that can prevent or treat potentially lethal poxvirus infections in humans. Monoclonal antibodies (mAbs against smallpox are a conservative approach to this problem, as the licensed human smallpox vaccine (vaccinia virus, VACV primarily works on the basis of protective antibody responses against smallpox. Fully human mAbs (hmAbs against vaccinia H3 (H3L and B5 (B5R, targeting both the mature virion (MV and extracellular enveloped virion (EV forms, have been developed as potential therapeutics for use in humans. Post-exposure prophylaxis was assessed in both murine and rabbit animal models. Therapeutic efficacy of the mAbs was assessed in three good laboratory practices (GLP studies examining severe combined immunodeficiency mice (SCID given a lethal VACV infection. Pre-exposure combination hmAb therapy provided significantly better protection against disease and death than either single hmAb or vaccinia immune globulin (VIG. Post-exposure combination mAb therapy provided significant protection against disease and death, and appeared to fully cure the VACV infection in ≥50% of SCID mice. Therapeutic efficacy was then assessed in two rabbit studies examining post-exposure hmAb prophylaxis against rabbitpox (RPXV. In the first study, rabbits were infected with RPVX and then provided hmAbs at 48 hrs post-infection, or 1 hr and 72 hrs post-infection. Rabbits in both groups receiving hmAbs were 100% protected from death. In the second rabbitpox study, 100% of animal treated with combination hmAb therapy and 100% of animals treated with anti-B5 hmAb were protected. These findings suggest that combination hmAb treatment may be effective at controlling smallpox disease in immunocompetent or immunodeficient humans.

  3. Epitope specificity of myeloperoxidase antibodies: identification of candidate human immunodominant epitopes.

    Science.gov (United States)

    Bruner, B F; Vista, E S; Wynn, D M; James, J A

    2011-06-01

    Anti-neutrophil cytoplasmic autoantibodies (ANCA) are a common feature of systemic vasculitides and have been classified as autoimmune conditions based, in part, on these autoantibodies. ANCA are subdivided further based on their primary target: cytoplasm (c-ANCA) or perinuclear region (p-ANCA). p-ANCAs commonly target myeloperoxidase (MPO), an enzyme with microbicidal and degradative activity. MPO antibodies are non-specific for any single disease and found in a variety of vasculitides, most commonly microscopic polyangiitis. Despite their prevalence, their role in human disease pathogenesis remains undefined. We sought to characterize the sequential antigenic determinants of MPO in vasculitis patients with p-ANCA. Of 68 patients with significant levels of p-ANCA, 12 have significant levels of MPO antibodies and were selected for fine specificity epitope mapping. Sequential antigenic targets, including those containing amino acids (aa) 213-222 (WTPGVKRNGF) and aa 511-522 (RLDNRYQPMEPN), were commonly targeted with a prevalence ranging from 33% to 58%. Subsequent analysis of autoantibody binding to the RLDNRYQPMEPN peptide was assessed using a confirmatory enzyme-linked immunosorbent assay format, with six patients displaying significant binding using this method. Antibodies against this epitope, along with four others (aa 393-402, aa 437-446, aa 479-488 and aa 717-726), were reactive to the heavy chain structure of the MPO protein. One epitope, GSASPMELLS (aa 91-100), was within the pro-peptide structure of MPO. B cell epitope prediction algorithms identified all or part of the seven epitopes defined. These results provide major common human anti-MPO immunodominant antigenic targets which can be used to examine further the potential pathogenic mechanisms for these autoantibodies. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  4. A high-affinity human monoclonal IgM antibody reacting with multiple strains of Mycoplasma hominis

    DEFF Research Database (Denmark)

    Moller, SA; Birkelund, Svend; Borrebaeck, CA

    1990-01-01

    Human monoclonal antibodies were produced against Mycoplasma hominis by in vitro immunization of peripheral blood lymphocytes from a healthy seropositive donor using low amounts of antigen (5 ng/ml). The immune B lymphocytes were subsequently immortalized by Epstein-Barr virus transformation...... (24 hr x 10(6) cells)-1. The specificity of one antibody, 129.1, was further characterized by enzyme-linked immunosorbent assay against several different species of Mycoplasma and by Western blot analysis. The antibody specifically bound to a protein of Mr 100,000 present in 10 of 12 different strains...

  5. Applying antibody-sensitive hypervariable region 1-deleted hepatitis C virus to the study of escape pathways of neutralizing human monoclonal antibody AR5A

    DEFF Research Database (Denmark)

    Velazquez-Moctezuma, Rodrigo; Law, Mansun; Bukh, Jens

    2017-01-01

    isolates with high antibody resistance, or antibodies with moderate potency, it remains challenging to induce escape mutations in vitro. Here, as proof-of-concept, we used antibody-sensitive HVR1-deleted (ΔHVR1) viruses to generate escape mutants for a human monoclonal antibody, AR5A, targeting a rare....... The mutation did not induce viral fitness loss, but abrogated AR5A binding to HCV particles and intracellular E1/E2 complexes. Culturing J6/JFH1ΔHVR1 (genotype 2a), for which fitness was decreased by L665W, with AR5A generated AR5A-resistant viruses with the substitutions I345V, L665S, and S680T, which we...... effect but sensitized the virus to AR5A. Of note, H77/JFH1L665S was non-viable. The resistance mutations did not affect cell-to-cell spread or E1/E2 interactions. Finally, introducing L665W, identified in genotype 1, into genotypes 2–6 parental and HVR1-deleted variants (not available for genotype 4a) we...

  6. Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile Virus.

    Science.gov (United States)

    Throsby, Mark; Geuijen, Cecile; Goudsmit, Jaap; Bakker, Arjen Q; Korimbocus, Jehanara; Kramer, R Arjen; Clijsters-van der Horst, Marieke; de Jong, Maureen; Jongeneelen, Mandy; Thijsse, Sandra; Smit, Renate; Visser, Therese J; Bijl, Nora; Marissen, Wilfred E; Loeb, Mark; Kelvin, David J; Preiser, Wolfgang; ter Meulen, Jan; de Kruif, John

    2006-07-01

    Monoclonal antibodies (MAbs) neutralizing West Nile Virus (WNV) have been shown to protect against infection in animal models and have been identified as a correlate of protection in WNV vaccine studies. In the present study, antibody repertoires from three convalescent WNV-infected patients were cloned into an scFv phage library, and 138 human MAbs binding to WNV were identified. One hundred twenty-one MAbs specifically bound to the viral envelope (E) protein and four MAbs to the premembrane (prM) protein. Enzyme-linked immunosorbent assay-based competitive-binding assays with representative E protein-specific MAbs demonstrated that 24/51 (47%) bound to domain II while only 4/51 (8%) targeted domain III. In vitro neutralizing activity was demonstrated for 12 MAbs, and two of these, CR4374 and CR4353, protected mice from lethal WNV challenge at 50% protective doses of 12.9 and 357 mug/kg of body weight, respectively. Our data analyzing three infected individuals suggest that the human anti-WNV repertoire after natural infection is dominated by nonneutralizing or weakly neutralizing MAbs binding to domain II of the E protein, while domain III-binding MAbs able to potently neutralize WNV in vitro and in vivo are rare.

  7. Mouse and human HSPC immobilization in liquid culture by CD43 or CD44-antibody coating.

    Science.gov (United States)

    Loeffler, Dirk; Wang, Weijia; Hopf, Alois; Hilsenbeck, Oliver; Bourgine, Paul E; Rudolf, Fabian; Martin, Ivan; Schroeder, Timm

    2018-02-16

    Keeping track of individual cell identifications is imperative to the study of dynamic single cell behavior over time. Highly motile hematopoietic stem and progenitor cells (HSPCs) migrate quickly and do not adhere, and thus must be imaged very frequently to keep cell identifications. Even worse, they are also flushed away during medium exchange. To overcome these limitations, we tested antibody coating for reducing HSPC motility in vitro. Anti-CD43 and -CD44 antibody coating reduced cell motility of mouse and human HSPCs in a concentration dependent manner. This enables 2D colony formation without cell mixing in liquid cultures, massively increases time-lapse imaging throughput, and maintains cell positions also during media exchange. Anti-CD43, but not -CD44 coating reduces mouse HSPC proliferation with increasing concentrations. No relevant effects on cell survival or myeloid and megakaryocyte differentiation of hematopoietic stem cells and multipotent progenitors 1-5 (MPPs) were detected. Human umbilical cord hematopoietic CD34+ cell survival, proliferation and differentiation was not affected by either coating. This approach both, massively simplifies and accelerates continuous analysis of suspension cells, and enables the study of their behavior in dynamic rather than static culture conditions over time. Copyright © 2018 American Society of Hematology.

  8. Humanization of a phosphothreonine peptide-specific chicken antibody by combinatorial library optimization of the phosphoepitope-binding motif.

    Science.gov (United States)

    Baek, Du-San; Kim, Yong-Sung

    2015-07-31

    Detection of protein phosphorylation at a specific residue has been achieved by using antibodies, which have usually been raised by animal immunization. However, there have been no reports of the humanization of phosphospecific non-human antibodies. Here, we report the humanization of a chicken pT231 antibody specific to a tau protein-derived peptide carrying the phosphorylated threonine at residue 231 (pT231 peptide) as a model for better understanding the phosphoepitope recognition mechanism. In the chicken antibody, the phosphate group of the pT231-peptide antigen is exclusively recognized by complementarity determining region 2 of the heavy chain variable domain (VH-CDR2). Simple grafting of six CDRs of the chicken antibody into a homologous human framework (FR) template resulted in the complete loss of pT231-peptide binding. Using a yeast surface-displayed combinatorial library with permutations of 11 FR residues potentially affecting CDR loop conformations, we identified 5 critical FR residues. The back mutation of these residues to the corresponding chicken residues completely recovered the pT231-peptide binding affinity and specificity of the humanized antibody. Importantly, the back mutation of the FR 76 residue of VH (H76) (Asn to Ser) was critical in preserving the pT231-binding motif conformation via allosteric regulation of ArgH71, which closely interacts with ThrH52 and SerH52a residues on VH-CDR2 to induce the unique phosphate-binding bowl-like conformation. Our humanization approach of CDR grafting plus permutations of FR residues by combinatorial library screening can be applied to other animal antibodies containing unique binding motifs on CDRs specific to posttranslationally modified epitopes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling

    DEFF Research Database (Denmark)

    Lindskog, Cecilia; Linne, Jerker; Fagerberg, Linn

    2015-01-01

    a comprehensive list of genes expressed in cardiac and skeletal muscle. The genes with elevated expression were further stratified according to their global expression pattern across the human body as well as their precise localization in the muscle tissues. The functions of the proteins encoded by the elevated......Background: To understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes...... and proteins with elevated expression in cardiac and skeletal muscle in relation to all other major human tissues and organs using a global transcriptomics analysis complemented with antibody-based profiling to localize the corresponding proteins on a single cell level.Results: Our study identified...

  10. Human Monoclonal antibodies - A dual advantaged weapon to tackle cancer and viruses

    Directory of Open Access Journals (Sweden)

    Kurosawa G

    2014-11-01

    Full Text Available Human monoclonal antibodies (mAbs are powerful tools as pharmaceutical agents to tackle cancer and infectious diseases. Antibodies (Abs are present in blood at the concentration of 10 mg/ml and play a vital role in humoral immunity. Many therapeutic Abs have been reported since early 1980s. Human mAb technology was not available at that time and only the hybridoma technology for making mouse mAbs had been well established. In order to avoid various potential problems associated with use of mouse proteins, two different technologies to make human/mouse chimeric Ab as well as humanized Ab were developed crossing the various hurdles for almost twenty years and mAb based drugs such as rituximab, anti-CD20 Ab, and trastuzumab, anti-HER2 Ab, have been approved by the US Food and Drug Administration (FDA for treatment of non-Hodgkin's lymphoma and breast cancer in 1997 and 1998, respectively. These drugs are well recognized and accepted by clinicians for treatment of patients. The clinical outcome of the treatment with mAb has strongly encouraged the researchers to develop much more refined mAbs. In addition to chimeric Ab and humanized Ab, now human mAbs can be produced by two technologies. The first is transgenic mice that produce human Abs and the second is human Ab libraries using phage-display system. Until now, several hundreds of mAbs against several tens of antigens (Ags have been developed and subjected to clinical examinations. While many Abs have been approved as therapeutic agents against hematological malignancies, the successful mAbs against solid tumors are still limited. However, many researchers have suggested that developing potential mAbs agents should be possible and incurable cancers may become curable within another decade. Though it is hard to say explicitly that this prediction is correct, a passion for this development should be worth supporting to lead to a successful outcome which will lead to patient benefits. Our institute

  11. Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico

    OpenAIRE

    Robbiani, Davide F.; Khouri, Ricardo; Gristick, Harry B.; Lee, Yu E.; West, Anthony P.; Bjorkman, Pamela J.

    2017-01-01

    Antibodies to Zika virus (ZIKV) can be protective. To examine the antibody response in individuals who develop high titers of anti-ZIKV antibodies, we screened cohorts in Brazil and Mexico for ZIKV envelope domain III (ZEDIII) binding and neutralization. We find that serologic reactivity to dengue 1 virus (DENV1) EDIII before ZIKV exposure is associated with increased ZIKV neutralizing titers after exposure. Antibody cloning shows that donors with high ZIKV neutralizing antibody titers have e...

  12. Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1985-01-01

    Two methods have been used to examine epidermal growth factor (EGF) receptor distribution in human scalp and foreskin. The first employed [125I]EGF viable explants and autoradiography to determine the EGF binding pattern while the second used a monoclonal antibody to the human EGF receptor to map...

  13. Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: Fine mapping and escape mutant analysis

    NARCIS (Netherlands)

    Marissen, W.E.; Kramer, R.A.; Rice, A.; Weldon, W.C.; Niezgoda, M.; Faber, M.; Slootstra, J.W.; Meloen, R.H.; Clijsters-van der Horst, M.; Visser, T.J.; Jongeneelen, M.; Thijsse, S.; Throsby, M.; Kruif, de J.; Rupprecht, C.E.; Dietzschold, B.; Goudsmit, J.; Bakker, A.B.H.

    2005-01-01

    Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We

  14. Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: fine mapping and escape mutant analysis

    NARCIS (Netherlands)

    Marissen, Wilfred E.; Kramer, R. Arjen; Rice, Amy; Weldon, William C.; Niezgoda, Michael; Faber, Milosz; Slootstra, Jerry W.; Meloen, Rob H.; Clijsters-van der Horst, Marieke; Visser, Therese J.; Jongeneelen, Mandy; Thijsse, Sandra; Throsby, Mark; de Kruif, John; Rupprecht, Charles E.; Dietzschold, Bernhard; Goudsmit, Jaap; Bakker, Alexander B. H.

    2005-01-01

    Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We

  15. Characterization of novel anthracycline prodrugs activated by human beta-glucuronidase for use in antibody-directed enzyme prodrug therapy

    NARCIS (Netherlands)

    Houba, PHJ; Leenders, RGG; Boven, E; Scheeren, JW; Pinedo, HM; Haisma, HJ

    1996-01-01

    Antibody-directed enzyme prodrug therapy (ADEPT) alms at the specific activation of a prodrug by an enzyme-immuoconjugate localized in tumor tissue. The use of an enzyme of human origin is preferable in ADEPT because it might not be immunogenic when administered to patients. In the case of human

  16. Antigenic Fingerprinting of Antibody Response in Humans following Exposure to Highly Pathogenic H7N7 Avian Influenza Virus: Evidence for Anti-PA-X Antibodies

    Science.gov (United States)

    Chung, Ka Yan; Coyle, Elizabeth M.; Meijer, Adam; Golding, Hana

    2016-01-01

    ABSTRACT Infections with H7 highly pathogenic avian influenza (HPAI) viruses remain a major public health concern. Adaptation of low-pathogenic H7N7 to highly pathogenic H7N7 in Europe in 2015 raised further alarm for a potential pandemic. An in-depth understanding of antibody responses to HPAI H7 virus following infection in humans could provide important insight into virus gene expression as well as define key protective and serodiagnostic targets. Here we used whole-genome gene fragment phage display libraries (GFPDLs) expressing peptides of 15 to 350 amino acids across the complete genome of the HPAI H7N7 A/Netherlands/33/03 virus. The hemagglutinin (HA) antibody epitope repertoires of 15 H7N7-exposed humans identified clear differences between individuals with no hemagglutination inhibition (HI) titers (1:40. Several potentially protective H7N7 epitopes close to the HA receptor binding domain (RBD) and neuraminidase (NA) catalytic site were identified. Surface plasmon resonance (SPR) analysis identified a strong correlation between HA1 (but not HA2) binding antibodies and H7N7 HI titers. A proportion of HA1 binding in plasma was contributed by IgA antibodies. Antibodies against the N7 neuraminidase were less frequent but targeted sites close to the sialic acid binding site. Importantly, we identified strong antibody reactivity against PA-X, a putative virulence factor, in most H7N7-exposed individuals, providing the first evidence for in vivo expression of PA-X and its recognition by the immune system during human influenza A virus infection. This knowledge can help inform the development and selection of the most effective countermeasures for prophylactic as well as therapeutic treatments of HPAI H7N7 avian influenza virus. IMPORTANCE An outbreak of pathogenic H7N7 virus occurred in poultry farms in The Netherlands in 2003. Severe outcome included conjunctivitis, influenza-like illness, and one lethal infection. In this study, we investigated convalescent

  17. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals.

    Science.gov (United States)

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J

    2016-01-01

    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  18. Targeting antibody responses to the membrane proximal external region of the envelope glycoprotein of human immunodeficiency virus.

    Directory of Open Access Journals (Sweden)

    Donatien Kamdem Toukam

    Full Text Available Although human immunodeficiency type 1 (HIV-1 infection induces strong antibody responses to the viral envelope glycoprotein (Env only a few of these antibodies possess the capacity to neutralize a broad range of strains. The induction of such antibodies represents an important goal in the development of a preventive vaccine against the infection. Among the broadly neutralizing monoclonal antibodies discovered so far, three (2F5, Z13 and 4E10 target the short and hidden membrane proximal external region (MPER of the gp41 transmembrane protein. Antibody responses to MPER are rarely observed in HIV-infected individuals or after immunization with Env immunogens. To initiate antibody responses to MPER in its membrane-embedded native conformation, we generated expression plasmids encoding the membrane-anchored ectodomain of gp41 with N-terminal deletions of various sizes. Following transfection of these plasmids, the MPER domains are displayed on the cell surface and incorporated into HIV virus like particles (VLP. Transfected cells displaying MPER mutants bound as efficiently to both 2F5 and 4E10 as cells transfected with a plasmid encoding full-length Env. Mice immunized with VLPs containing the MPER mutants produced MPER-specific antibodies, the levels of which could be increased by the trimerization of the displayed proteins as well as by a DNA prime-VLP boost immunization strategy. Although 2F5 competed for binding to MPER with antibodies in sera of some of the immunized mice, neutralizing activity could not be detected. Whether this is due to inefficient binding of the induced antibodies to MPER in the context of wild type Env or whether the overall MPER-specific antibody response induced by the MPER display mutants is too low to reveal neutralizing activity, remains to be determined.

  19. A nylon ball solid-phase radioimmunoassay for specific antibodies in human sera. Application to measurement of IgG antibodies to pollen allergens.

    Science.gov (United States)

    Djurup, R; Søndergaard, I; Minuva, U; Weeke, B

    1983-09-16

    The principle of the radioallergosorbent test (RAST) has been used to measure IgG antibodies to timothy grass pollen allergens in sera from desensitized allergic subjects. 125I-labeled goat anti-human IgG was used as detector protein. Non-specific binding was eliminated by use of a non-porous nylon ball an antigen carrier and by use of a special buffer with high ionic strength and pH, containing 1% bovine gamma globulin and 5% normal rabbit serum as 'balance proteins'. At dilution 1:80 non-specific binding was only 0.28% and the binding ratio for a high-liter serum was about 10. By inhibition experiments the assay was demonstrated to be specific for IgG antibodies to timothy grass pollen. The results obtained with this assay correlated statistically significantly with those found th a double -antibody method (rs equal 0.68, n equal 20, t equal 3.93, P less than 0.001). Serum dilution curves were parallel, indicating that the assay is in allergen excess. The within-assay coefficient of variation ranged from 3.9 to 7.6%; the between-assay coefficient of variation from 8.4 to 19.5%. The assay is very simple to perform, requiring no centrifugation. The allergen-coated balls are stable for at least 3 months. The assay should be applicable to measurement of IgG antibodies and IgG subclass antibodies to any protein antigen of interest.

  20. Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics.

    Science.gov (United States)

    Fei, Chen; Atterby, Christina; Edqvist, Per-Henrik; Pontén, Fredrik; Zhang, Wei Wei; Larsson, Erik; Ryan, Frank P

    2014-01-01

    There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to

  1. Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    Full Text Available CD47 is a widely expressed cell surface protein that functions as a regulator of phagocytosis mediated by cells of the innate immune system, such as macrophages and dendritic cells. CD47 serves as the ligand for a receptor on these innate immune cells, SIRP-alpha, which in turn delivers an inhibitory signal for phagocytosis. We previously found increased expression of CD47 on primary human acute myeloid leukemia (AML stem cells, and demonstrated that blocking monoclonal antibodies directed against CD47 enabled the phagocytosis and elimination of AML, non-Hodgkin's lymphoma (NHL, and many solid tumors in xenograft models. Here, we report the development of a humanized anti-CD47 antibody with potent efficacy and favorable toxicokinetic properties as a candidate therapeutic. A novel monoclonal anti-human CD47 antibody, 5F9, was generated, and antibody humanization was carried out by grafting its complementarity determining regions (CDRs onto a human IgG4 format. The resulting humanized 5F9 antibody (Hu5F9-G4 bound monomeric human CD47 with an 8 nM affinity. Hu5F9-G4 induced potent macrophage-mediated phagocytosis of primary human AML cells in vitro and completely eradicated human AML in vivo, leading to long-term disease-free survival of patient-derived xenografts. Moreover, Hu5F9-G4 synergized with rituximab to eliminate NHL engraftment and cure xenografted mice. Finally, toxicokinetic studies in non-human primates showed that Hu5F9-G4 could be safely administered intravenously at doses able to achieve potentially therapeutic serum levels. Thus, Hu5F9-G4 is actively being developed for and has been entered into clinical trials in patients with AML and solid tumors (ClinicalTrials.gov identifier: NCT02216409.

  2. Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential.

    Science.gov (United States)

    Liu, Jie; Wang, Lijuan; Zhao, Feifei; Tseng, Serena; Narayanan, Cyndhavi; Shura, Lei; Willingham, Stephen; Howard, Maureen; Prohaska, Susan; Volkmer, Jens; Chao, Mark; Weissman, Irving L; Majeti, Ravindra

    2015-01-01

    CD47 is a widely expressed cell surface protein that functions as a regulator of phagocytosis mediated by cells of the innate immune system, such as macrophages and dendritic cells. CD47 serves as the ligand for a receptor on these innate immune cells, SIRP-alpha, which in turn delivers an inhibitory signal for phagocytosis. We previously found increased expression of CD47 on primary human acute myeloid leukemia (AML) stem cells, and demonstrated that blocking monoclonal antibodies directed against CD47 enabled the phagocytosis and elimination of AML, non-Hodgkin's lymphoma (NHL), and many solid tumors in xenograft models. Here, we report the development of a humanized anti-CD47 antibody with potent efficacy and favorable toxicokinetic properties as a candidate therapeutic. A novel monoclonal anti-human CD47 antibody, 5F9, was generated, and antibody humanization was carried out by grafting its complementarity determining regions (CDRs) onto a human IgG4 format. The resulting humanized 5F9 antibody (Hu5F9-G4) bound monomeric human CD47 with an 8 nM affinity. Hu5F9-G4 induced potent macrophage-mediated phagocytosis of primary human AML cells in vitro and completely eradicated human AML in vivo, leading to long-term disease-free survival of patient-derived xenografts. Moreover, Hu5F9-G4 synergized with rituximab to eliminate NHL engraftment and cure xenografted mice. Finally, toxicokinetic studies in non-human primates showed that Hu5F9-G4 could be safely administered intravenously at doses able to achieve potentially therapeutic serum levels. Thus, Hu5F9-G4 is actively being developed for and has been entered into clinical trials in patients with AML and solid tumors (ClinicalTrials.gov identifier: NCT02216409).

  3. Epitope location for two monoclonal antibodies against human cystatin C, representing opposite aggregation inhibitory properties.

    Science.gov (United States)

    Behrendt, Izabela; Prądzińska, Martyna; Spodzieja, Marta; Kołodziejczyk, Aleksandra S; Rodziewicz-Motowidło, Sylwia; Szymańska, Aneta; Czaplewska, Paulina

    2016-07-01

    Human cystatin C (hCC), like many other amyloidogenic proteins, dimerizes and possibly makes aggregates by subdomain swapping. Inhibition of the process should suppress the fibrillogenesis leading to a specific amyloidosis (hereditary cystatin C amyloid angiopathy, HCCAA). It has been reported that exogenous agents like monoclonal antibodies against cystatin C are able to suppress formation of cystatin C dimers and presumably control the neurodegenerative disease. We have studied in detail two monoclonal antibodies (mAbs) representing very different aggregation inhibitory potency, Cyst10 and Cyst28, to find binding sites in hCC sequence responsible for the immunocomplex formation and pave the way for possible immunotherapy of HCCAA. We used the epitope extraction/excision mass spectrometry approach with the use of different enzymes complemented by affinity studies with synthetic hCC fragments as a basic technique for epitope identification. The results were analyzed in the context of hCC structure allowing us to discuss the binding sites for both antibodies. Epitopic sequences for clone Cyst28 which is a highly potent dimerization inhibitor were found in N-terminus, loop 1 and 2 (L1, L2) and fragments of β2 and β3 strands. The crucial difference between conformational epitope sequences found for both mAbs seems to be the lack of interactions with hCC via N-terminus and the loop 1 in the case of mAb Cyst10. Presumably the interactions of mAbs with hCC via L1 and β sheet fragments make the hCC structure rigid and unable to undergo the swapping process.

  4. The preparation, characterization, and application of environment-friendly monoclonal antibodies for human blood cell.

    Science.gov (United States)

    Zhou, Chenjie; Gao, Xuechao; He, Shixiang; Gao, Xiaoling; Zhuang, Jialin; Huang, Lirong; Guo, Hengchang

    2017-03-01

    Monoclonal anti-human blood group A (51A8) and B (63B6) antibody reagents were prepared using the serum-free technique. The aims of this research were to characterize the serum-free reagents and prove their reliabilities in routine use. Experiments including antigen-antibody agglutination testing, stability testing, SDS-PAGE, protein and IgM quantification, flow cytometry, and variable domain sequencing were performed to characterize the anti-A (51A8) and anti-B (63B6) reagents. Over 12 000 samples were tested using these reagents as routine blood grouping reagents. Serum-free anti-A (51A8) and anti-B (63B6) reagents were stable in longitudinal and accelerated testing, and their high purity was shown in SDS-PAGE and IgM quantification. These reagents have high specificity to red blood cells in serologic agglutination testing and flow cytometric analysis. A1 and A2 subgroup antigens can be distinguished clearly by patterns of flow cytometric histograms. No discrepancy was found in clinical trials of 12 000 samples. To reduce the risk of being affected by any animal additives, a serum-free culture system was applied to get mass-production of monoclonal anti-A/B antibodies. The high specificity and the high purity of the reagents were verified by the lab experiments. Lab research and clinical trial showed that serum-free monoclonal anti-A (51A8) and anti-B (63B6) reagents meet the requirements of routine blood grouping reagents. Moreover, these reagents featured ultra-high purity that is missing in other commercial counterparts, and therefore are recommended as more environment-friendly reagents.

  5. VLPs displaying a single L2 epitope induce broadly cross-neutralizing antibodies against human papillomavirus.

    Directory of Open Access Journals (Sweden)

    Ebenezer Tumban

    Full Text Available Virus-like Particles (VLPs display can be used to increase the immunogenicity of heterologous antigens. Here, we report the use of a bacteriophage MS2-based VLP display platform to develop a monovalent vaccine targeting a broadly neutralizing epitope in the minor capsid protein human papillomavirus (HPV that provides broad protection from diverse HPV types in a mouse pseudovirus infection model.Peptides spanning a previously described cross-neutralizing epitope from HPV type 16 were genetically inserted at the N-terminus of MS2 bacteriophage coat protein. Three of the four recombinant L2-coat proteins assembled into VLPs. L2-VLPs elicited high-titer anti-L2 antibodies in mice, similar to recombinant VLPs that we had previously made in which the L2 peptide was displayed on a surface-exposed loop on VLPs of a related bacteriophage, PP7. Somewhat surprisingly, L2-MS2 VLPs elicited antibodies that were much more broadly cross-reactive with L2 peptides from diverse HPV isolates than L2-PP7 VLPs. Similarly, mice immunized with L2-MS2 VLPs were protected from genital and cutaneous infection by highly diverse HPV pseudovirus types.We show that peptides can be displayed in a highly immunogenic fashion at the N-terminus of MS2 coat protein VLPs. A VLP-based vaccine targeting HPV L2 elicits broadly cross-reactive and cross-protective antibodies to heterologous HPV types. L2-VLPs could serve as the basis of a broadly protective second generation HPV vaccine.

  6. N-terminal or signal peptide sequence engineering prevents truncation of human monoclonal antibody light chains.

    Science.gov (United States)

    Gibson, S J; Bond, N J; Milne, S; Lewis, A; Sheriff, A; Pettman, G; Pradhan, R; Higazi, D R; Hatton, D

    2017-09-01

    Monoclonal antibodies (mAbs) contain short N-terminal signal peptides on each individual polypeptide that comprises the mature antibody, targeting them for export from the cell in which they are produced. The signal peptide is cleaved from each heavy chain (Hc) and light chain (Lc) polypeptide after translocation to the ER and prior to secretion. This process is generally highly efficient, producing a high proportion of correctly cleaved Hc and Lc polypeptides. However, mis-cleavage of the signal peptide can occur, resulting in truncation or elongation at the N-terminus of the Hc or Lc. This is undesirable for antibody manufacturing as it can impact efficacy and can result in product heterogeneity. Here, we describe a truncated variant of the Lc that was detected during a routine developability assessment of the recombinant human IgG1 MEDI8490 in Chinese hamster ovary cells. We found that the truncation of the Lc was caused due to the use of the murine Hc signal peptide together with a lambda Lc containing an SYE amino acid motif at the N-terminus. This truncation was not caused by mis-processing of the mRNA encoding the Lc and was not dependent on expression platform (transient or stable), the scale of the fed-batch culture or clonal lineage. We further show that using alternative signal peptides or engineering the Lc SYE N-terminal motif prevented the truncation and that this strategy will improve Lc homogeneity of other SYE lambda Lc-containing mAbs. Biotechnol. Bioeng. 2017;114: 1970-1977. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Preclinical development of AMG 139, a human antibody specifically targeting IL-23.

    Science.gov (United States)

    Köck, K; Pan, W J; Gow, J M; Horner, M J; Gibbs, J P; Colbert, A; Goletz, T J; Newhall, K J; Rees, W A; Sun, Y; Zhang, Y; O'Neill, J C; Umble-Romero, A N; Prokop, S P; Krill, C D; Som, L; Buntich, S A; Trimble, M W; Tsuji, W H; Towne, J E

    2015-01-01

    AMG 139 is a human anti-IL-23 antibody currently in a phase II trial for treating Crohn's disease. To support its clinical development in humans, in vitro assays and in vivo studies were conducted in cynomolgus monkeys to determine the pharmacology, preclinical characteristics and safety of this monoclonal antibody. The in vitro pharmacology, pharmacokinetics (PK), pharmacodynamics and toxicology of AMG 139, after single or weekly i.v. or s.c. administration for up to 26 weeks, were evaluated in cynomolgus monkeys. AMG 139 bound with high affinity to both human and cynomolgus monkey IL-23 and specifically neutralized the biological activity of IL-23 without binding or blocking IL-12. After a single dose, linear PK with s.c. bioavailability of 81% and mean half-life of 8.4-13 days were observed. After weekly s.c. dosing for 3 or 6 months, AMG 139 exposure increased approximately dose-proportionally from 30 to 300 mg·kg(-1) and mean accumulation between the first and last dose ranged from 2- to 3.5-fold. Peripheral blood immunophenotyping, T-cell-dependent antigen responses and bone formation markers were not different between AMG 139 and vehicle treatment. No adverse clinical signs, effects on body weight, vital signs, ophthalmic parameters, clinical pathology, ECG, organ weights or histopathology were observed in the monkeys with the highest dose of AMG 139 tested (300 mg·kg(-1) s.c. or i.v.). The in vitro pharmacology, PK, immunogenicity and safety characteristics of AMG 139 in cynomolgus monkeys support its continued clinical development for the treatment of various inflammatory diseases. © 2014 The British Pharmacological Society.

  8. Induction of Murine Mucosal CCR5-Reactive Antibodies as an Anti-Human Immunodeficiency Virus Strategy

    Science.gov (United States)

    Barassi, C.; Soprana, E.; Pastori, C.; Longhi, R.; Buratti, E.; Lillo, F.; Marenzi, C.; Lazzarin, A.; Siccardi, A. G.; Lopalco, L.

    2005-01-01

    The genital mucosa is the main site of initial human immunodeficiency virus type 1 (HIV-1) contact with its host. In spite of repeated sexual exposure, some individuals remain seronegative, and a small fraction of them produce immunoglobulin G (IgG) and IgA autoantibodies directed against CCR5, which is probably the cause of the CCR5-minus phenotype observed in the peripheral blood mononuclear cells of these subjects. These antibodies recognize the 89-to-102 extracellular loop of CCR5 in its native conformation. The aim of this study was to induce infection-preventing mucosal anti-CCR5 autoantibodies in individuals at high risk of HIV infection. Thus, we generated chimeric immunogens containing the relevant CCR5 peptide in the context of the capsid protein of Flock House virus, a presentation system in which it is possible to engineer conformationally constrained peptide in a highly immunogenic form. Administered in mice via the systemic or mucosal route, the immunogens elicited anti-CCR5 IgG and IgA (in sera and vaginal fluids). Analogous to exposed seronegative individuals, mice producing anti-CCR5 autoantibodies express significantly reduced levels of CCR5 on the surfaces of CD4+ cells from peripheral blood and vaginal washes. In vitro studies have shown that murine IgG and IgA (i) specifically bind human and mouse CD4+ lymphocytes and the CCR5-transfected U87 cell line, (ii) down-regulate CCR5 expression of CD4+ cells from both humans and untreated mice, (iii) inhibit Mip-1β chemotaxis of CD4+ CCR5+ lymphocytes, and (iv) neutralize HIV R5 strains. These data suggest that immune strategies aimed at generating anti-CCR5 antibodies at the level of the genital mucosa might be feasible and represent a strategy to induce mucosal HIV-protective immunity. PMID:15890924

  9. Plant production of anti-β-glucan antibodies for immunotherapy of fungal infections in humans.

    Science.gov (United States)

    Capodicasa, Cristina; Chiani, Paola; Bromuro, Carla; De Bernardis, Flavia; Catellani, Marcello; Palma, Angelina S; Liu, Yan; Feizi, Ten; Cassone, Antonio; Benvenuto, Eugenio; Torosantucci, Antonella

    2011-09-01

    There is an increasing interest in the development of therapeutic antibodies (Ab) to improve the control of fungal pathogens, but none of these reagents is available for clinical use. We previously described a murine monoclonal antibody (mAb 2G8) targeting β-glucan, a cell wall polysaccharide common to most pathogenic fungi, which conferred significant protection against Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans in animal models. Transfer of this wide-spectrum, antifungal mAb into the clinical setting would allow the control of most frequent fungal infections in many different categories of patients. To this aim, two chimeric mouse-human Ab derivatives from mAb 2G8, in the format of complete IgG or scFv-Fc, were generated, transiently expressed in Nicotiana benthamiana plants and purified from leaves with high yields (approximately 50 mg Ab/kg of plant tissues). Both recombinant Abs fully retained the β-glucan-binding specificity and the antifungal activities of the cognate murine mAb against C. albicans. In fact, they recognized preferentially β1,3-linked glucan molecules present at the fungal cell surface and directly inhibited the growth of C. albicans and its adhesion to human epithelial cells in vitro. In addition, both the IgG and the scFv-Fc promoted C. albicans killing by isolated, human polymorphonuclear neutrophils in ex vivo assays and conferred significant antifungal protection in animal models of systemic or vulvovaginal C. albicans infection. These recombinant Abs represent valuable molecules for developing novel, plant-derived immunotherapeutics against candidiasis and, possibly, other fungal diseases. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  10. Monitoring the Systemic Human Memory B Cell Compartment of Melanoma Patients for Anti-Tumor IgG Antibodies

    Science.gov (United States)

    Gilbert, Amy E.; Karagiannis, Panagiotis; Dodev, Tihomir; Koers, Alexander; Lacy, Katie; Josephs, Debra H.; Takhar, Pooja; Geh, Jenny L. C.; Healy, Ciaran; Harries, Mark; Acland, Katharine M.; Rudman, Sarah M.; Beavil, Rebecca L.; Blower, Philip J.; Beavil, Andrew J.; Gould, Hannah J.; Spicer, James; Nestle, Frank O.; Karagiannis, Sophia N.

    2011-01-01

    Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (Pcell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer. PMID:21559411

  11. Critical epitopes in the nucleocapsid protein of SFTS virus recognized by a panel of SFTS patients derived human monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Li Yu

    Full Text Available BACKGROUND: SFTS virus (SFTSV is a newly discovered pathogen to cause severe fever with thrombocytopenia syndrome (SFTS in human. Successful control of SFTSV epidemic requires better understanding of the antigen target in humoral immune responses to the new bunyavirus infection. METHODOLOGY/PRINCIPAL FINDINGS: We have generated a combinatorial Fab antibody phage library from two SFTS patients recovered from SFTSV infection. To date, 94 unique human antibodies have been generated and characterized from over 1200 Fab antibody clones obtained by screening the library with SFTS purified virions. All those monoclonal antibodies (MAbs recognized the nucleocapsid (N protein of SFTSV while none of them were reactive to the viral glycoproteins Gn or Gc. Furthermore, over screening 1000 mouse monoclonal antibody clones derived from SFTSV virions immunization, 462 clones reacted with N protein, while only 16 clones were reactive to glycoprotein. Furthermore, epitope mapping of SFTSV N protein was performed through molecular simulation, site mutation and competitive ELISA, and we found that at least 4 distinct antigenic epitopes within N protein were recognized by those human and mouse MAbs, in particular mutation of Glu10 to Ala10 abolished or significantly reduced the binding activity of nearly most SFTS patients derived MAbs. CONCLUSIONS/SIGNIFICANCE: The large number of human recombinant MAbs derived from SFTS patients recognized the viral N protein indicated the important role of the N protein in humoral responses to SFTSV infection, and the critical epitopes we defined in this study provided molecular basis for detection and diagnosis of SFTSV infection.

  12. Synthetic rabbit-human antibody conjugate as a control in immunoassays for immunoglobulin M specific to hepatitis E virus

    Directory of Open Access Journals (Sweden)

    Zhang Rui

    2010-05-01

    Full Text Available Abstract Background In assays for anti-hepatitis E virus (HEV immunoglobulin M (IgM, large volumes of the patient's sera cannot be easily obtained for use as a positive control. In this study, we investigated an alternative chemical method in which rabbit anti-HEV IgG was conjugated with human IgM and was used as a positive control in the anti-HEV IgM assay. Rabbit anti-HEV IgG was isolated from immune sera by chromatography on protein A-Sepharose and was conjugated with human IgM by using 1-ethyl-3-(3-dimethylaminopropylcarbodiimide (EDC as a crosslinker. Results The specific anti-HEV IgG antibody titer was 100,000 times that of the negative control, i.e., prebleed rabbit serum. The results of anti-HEV IgM enzyme-linked immunosobent assay showed that the antibody conjugate was similar to anti-HEV IgM antibodies produced in humans. The results of a stability experiment showed that the antibody conjugate was stable for use in external quality assessment or internal quality control trials. Conclusions We concluded that the chemically conjugated rabbit-human antibody could be used instead of the traditional serum control as a positive control in the anti-HEV IgM assay.

  13. An H7N1 Influenza Virus Vaccine Induces Broadly Reactive Antibody Responses against H7N9 in Humans

    Science.gov (United States)

    Jul-Larsen, Åsne; Margine, Irina; Hirsh, Ariana; Sjursen, Haakon; Zambon, Maria

    2014-01-01

    Emerging H7N9 influenza virus infections in Asia have once more spurred the development of effective prepandemic H7 vaccines. However, many vaccines based on avian influenza viruses—including H7—are poorly immunogenic, as measured by traditional correlates of protection. Here we reevaluated sera from an H7N1 human vaccine trial performed in 2006. We examined cross-reactive antibody responses to divergent H7 strains, including H7N9, dissected the antibody response into head- and stalk-reactive antibodies, and tested the in vivo potency of these human sera in a passive-transfer H7N9 challenge experiment with mice. Although only a low percentage of vaccinees induced neutralizing antibody responses against the homologous vaccine strain and also H7N9, we detected strong cross-reactivity to divergent H7 hemagglutinins (HAs) in a large proportion of the cohort with a quantitative enzyme-linked immunosorbent assay. Furthermore, H7N1 vaccination induced antibodies to both the head and stalk domains of the HA, which is in sharp contrast to seasonal inactivated vaccines. Finally, we were able to show that both neutralizing and nonneutralizing antibodies improved in vivo virus clearance in a passive-transfer H7N9 challenge mouse model. PMID:24943383

  14. Evaluation of performance of human immunodeficiency virus antigen/antibody combination assays in Taiwan.

    Science.gov (United States)

    Chang, Chun-Kai; Kao, Cheng-Feng; Lin, Pi-Han; Huang, Hui-Lin; Ho, Shu-Yuan; Wong, Kuo-Chen; Lin, Bo-Chang; Yeh, Chang-Ching; Lee, Chia-Yeh; Kao, Chuan-Liang; Lee, Chun-Nan; Chang, Sui-Yuan; Yang, Jyh-Yuan

    2017-08-01

    The fourth-generation human immunodeficiency virus (HIV) combination assay, which can simultaneously detect the presence of anti-HIV antibody and HIV antigen, has been shown to shorten the window period in HIV diagnosis compared with the third-generation HIV antibody immunoassay. This study was aimed to determine the performance of HIV combination assays in Taiwan, where the HIV-1 seroprevalence is 0.007% and HIV-2 infection has never been reported. Performance of three fourth-generation HIV Ag/Ab combination assays (Dia.Pro, Wantai, and Bio-Rad) and one third-generation HIV Ab immunoassay (AxSYM HIV 1/2 gO) was assessed. A total of 152 specimens, including 86 confirmed HIV-seropositive and 66 HIV-seronegative samples, were used in the study. The sensitivity of four assays varied from 98.8% to 100%, and specificity varied from 98.5% to 100%. Performance of the 75 equivocal samples, the HIV status of which was confirmed later, in terms of negative prediction varied from 81.8% to 87.5%. The Bio-Rad and Dia.Pro assays exhibited higher sensitivity for the detection of p24 antigen among the three fourth-generation HIV combination assays. The three fourth-generation HIV Ag/Ab combination assays exhibited better sensitivity, specificity, and negative prediction than the third-generation HIV Ab immunoassay. Copyright © 2015. Published by Elsevier B.V.

  15. High affinity human antibody fragments to dengue virus non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Nicole J Moreland

    Full Text Available BACKGROUND: The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3 are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5' triphosphatase domain which forms the remainder of the 618-aa long protein. METHODOLOGY/PRINCIPAL FINDINGS: In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind α3″ (residues 526 through 531 within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells. CONCLUSIONS/SIGNIFICANCE: Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo.

  16. Structure of the Ebola virus glycoprotein bound to a human survivor antibody

    Science.gov (United States)

    Lee, Jeffrey E.; Fusco, Marnie L.; Hessell, Ann J.; Oswald, Wendelien B.; Burton, Dennis R.; Saphire, Erica Ollmann

    2008-01-01

    Ebola virus (EBOV) entry requires the surface glycoprotein, GP, to initiate attachment and fusion of viral and host membranes. Here, we report the crystal structure of EBOV GP in its trimeric, pre-fusion conformation (GP1+GP2) bound to a neutralizing antibody, KZ52, derived from a human survivor of the 1995 Kikwit outbreak. Three GP1 viral attachment subunits assemble to form a chalice, cradled by the GP2 fusion subunits, while a novel glycan cap and projected mucin-like domain restrict access to the conserved receptor-binding site sequestered in the chalice bowl. The glycocalyx surrounding GP is likely central to immune evasion and may explain why survivors have insignificant neutralizing antibody titres. KZ52 recognizes a protein epitope at the chalice base where it clamps several regions of the pre-fusion GP2 to the N terminus of GP1. This structure now provides a template for unraveling the mechanism of EBOV GP-mediated fusion and for future immunotherapeutic development. PMID:18615077

  17. Microarray-based identification of human antibodies against Staphylococcus aureus antigens.

    Science.gov (United States)

    Kloppot, Peggy; Selle, Martina; Kohler, Christian; Stentzel, Sebastian; Fuchs, Stephan; Liebscher, Volkmar; Müller, Elke; Kale, Devika; Ohlsen, Knut; Bröker, Barbara M; Zipfel, Peter F; Kahl, Barbara C; Ehricht, Ralf; Hecker, Michael; Engelmann, Susanne

    2015-12-01

    The mortality rate of patients with Staphylococcus aureus infections is alarming and urgently demands new strategies to attenuate the course of these infections or to detect them at earlier stages. To study the adaptive immune response to S. aureus antigens in healthy human volunteers, a protein microarray containing 44 S. aureus proteins was developed using the ArrayStrip platform technology. Testing plasma samples from 15 S. aureus carriers and 15 noncarriers 21 immunogenic S. aureus antigens have been identified. Seven antigens were recognized by antibodies present in at least 60% of the samples, representing the core S. aureus immunome of healthy individuals. S. aureus-specific serum immunoglobulin G (IgG) levels were significantly lower in noncarriers than in carriers specifically anti-IsaA, anti-SACOL0479, and anti-SACOL0480 IgGs were found at lower frequencies and quantities. Twenty-two antigens present on the microarray were encoded by all S. aureus carrier isolates. Nevertheless, the immune system of the carriers was responsive to only eight of them and with different intensities. The established protein microarray allows a broad profiling of the S. aureus-specific antibody response and can be used to identify S. aureus antigens that might serve as vaccines or diagnostic markers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-resolution description of antibody heavy-chain repertoires in humans.

    Directory of Open Access Journals (Sweden)

    Ramy Arnaout

    Full Text Available Antibodies' protective, pathological, and therapeutic properties result from their considerable diversity. This diversity is almost limitless in potential, but actual diversity is still poorly understood. Here we use deep sequencing to characterize the diversity of the heavy-chain CDR3 region, the most important contributor to antibody binding specificity, and the constituent V, D, and J segments that comprise it. We find that, during the stepwise D-J and then V-DJ recombination events, the choice of D and J segments exert some bias on each other; however, we find the choice of the V segment is essentially independent of both. V, D, and J segments are utilized with different frequencies, resulting in a highly skewed representation of VDJ combinations in the repertoire. Nevertheless, the pattern of segment usage was almost identical between two different individuals. The pattern of V, D, and J segment usage and recombination was insufficient to explain overlap that was observed between the two individuals' CDR3 repertoires. Finally, we find that while there are a near-infinite number of heavy-chain CDR3s in principle, there are about 3-9 million in the blood of an adult human being.

  19. High-Resolution Description of Antibody Heavy-Chain Repertoires in Humans

    Science.gov (United States)

    Arnaout, Ramy; Lee, William; Cahill, Patrick; Honan, Tracey; Sparrow, Todd; Weiand, Michael; Nusbaum, Chad

    2011-01-01

    Antibodies' protective, pathological, and therapeutic properties result from their considerable diversity. This diversity is almost limitless in potential, but actual diversity is still poorly understood. Here we use deep sequencing to characterize the diversity of the heavy-chain CDR3 region, the most important contributor to antibody binding specificity, and the constituent V, D, and J segments that comprise it. We find that, during the stepwise D-J and then V-DJ recombination events, the choice of D and J segments exert some bias on each other; however, we find the choice of the V segment is essentially independent of both. V, D, and J segments are utilized with different frequencies, resulting in a highly skewed representation of VDJ combinations in the repertoire. Nevertheless, the pattern of segment usage was almost identical between two different individuals. The pattern of V, D, and J segment usage and recombination was insufficient to explain overlap that was observed between the two individuals' CDR3 repertoires. Finally, we find that while there are a near-infinite number of heavy-chain CDR3s in principle, there are about 3–9 million in the blood of an adult human being. PMID:21829618

  20. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption

    Science.gov (United States)

    Scheid, Johannes F.; Horwitz, Joshua A.; Bar-On, Yotam; Kreider, Edward F.; Lu, Ching-Lan; Lorenzi, Julio C. C.; Feldmann, Anna; Braunschweig, Malte; Nogueira, Lilian; Oliveira, Thiago; Shimeliovich, Irina; Patel, Roshni; Burke, Leah; Cohen, Yehuda Z.; Hadrigan, Sonya; Settler, Allison; Witmer-Pack, Maggi; West, Anthony P.; Juelg, Boris; Keler, Tibor; Hawthorne, Thomas; Zingman, Barry; Gulick, Roy M.; Pfeifer, Nico; Learn, Gerald H.; Seaman, Michael S.; Bjorkman, Pamela J.; Klein, Florian; Schlesinger, Sarah J.; Walker, Bruce D.; Hahn, Beatrice H.; Nussenzweig, Michel C.; Caskey, Marina

    2016-01-01

    Interruption of combination antiretroviral therapy in HIV-1-infected individuals leads to rapid viral rebound. Here we report the results of a phase IIa open label clinical trial evaluating 3BNC117, a broad and potent neutralizing antibody (bNAb) against the CD4 binding site of HIV-1 Env1, in the setting of analytical treatment interruption in 13 HIV-1-infected individuals. Participants with 3BNC117-sensitive virus outgrowth cultures were enrolled. Two or four 30 mg kg−1 infusions of 3BNC117, separated by 3 or 2 weeks, respectively, are generally well tolerated. Infusions are associated with a delay in viral rebound for 5–9 weeks after two infusions, and up to 19 weeks after four infusions, or an average of 6.7 and 9.9 weeks respectively, compared with 2.6 weeks for historical controls (P < 0.00001). Rebound viruses arise predominantly from a single provirus. In most individuals, emerging viruses show increased resistance, indicating escape. However, 30% of participants remained suppressed until antibody concentrations waned below 20 μg ml−1, and the viruses emerging in all but one of these individuals showed no apparent resistance to 3BCN117, suggesting failure to escape over a period of 9–19 weeks. We conclude that administration of 3BNC117 exerts strong selective pressure on HIV-1 emerging from latent reservoirs during analytical treatment interruption in humans. PMID:27338952

  1. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    Science.gov (United States)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  2. New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.

    Science.gov (United States)

    O'Brien, Carmel M; Chy, Hun S; Zhou, Qi; Blumenfeld, Shiri; Lambshead, Jack W; Liu, Xiaodong; Kie, Joshua; Capaldo, Bianca D; Chung, Tung-Liang; Adams, Timothy E; Phan, Tram; Bentley, John D; McKinstry, William J; Oliva, Karen; McMurrick, Paul J; Wang, Yu-Chieh; Rossello, Fernando J; Lindeman, Geoffrey J; Chen, Di; Jarde, Thierry; Clark, Amander T; Abud, Helen E; Visvader, Jane E; Nefzger, Christian M; Polo, Jose M; Loring, Jeanne F; Laslett, Andrew L

    2017-03-01

    The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. High affinity humanized antibodies without making hybridomas; immunization paired with mammalian cell display and in vitro somatic hypermutation.

    Directory of Open Access Journals (Sweden)

    Audrey D McConnell

    Full Text Available A method has been developed for the rapid generation of high-affinity humanized antibodies from immunized animals without the need to make conventional hybridomas. Rearranged IgH D(J regions were amplified from the spleen and lymph tissue of mice immunized with the human complement protein C5, fused with a limited repertoire of human germline heavy chain V-genes to form intact humanized heavy chains, and paired with a human light chain library. Completed heavy and light chains were assembled for mammalian cell surface display and transfected into HEK 293 cells co-expressing activation-induced cytidine deaminase (AID. Numerous clones were isolated by fluorescence-activated cell sorting, and affinity maturation, initiated by AID, resulted in the rapid evolution of high affinity, functional antibodies. This approach enables the efficient sampling of an immune repertoire and the direct selection and maturation of high-affinity, humanized IgGs.

  4. Monoclonal antibody GB3, a new probe for the study of human basement membranes and hemidesmosomes

    Energy Technology Data Exchange (ETDEWEB)

    Verrando, P.; Pisani, A.; Serieys, N.; Ortonne, J.P. (UER Medecine, Nice (France)); Hsi, Baeli; Yeh, Changjing (INSERM U210, Nice (France))

    1987-05-01

    A monoclonal antibody, GB3, has been raised against human amnion. Not only does GB3 bind to amniotic basement membrane, but it also recognizes an antigenic structure expressed by epidermal as well as by some other human basement membranes. This antigen is synthesized (and excreted) by cultured normal human epidermal keratinocytes. It is expressed to a lesser extent by the A431 epidermoid carcinoma cell line, but is not expressed by the SV40 virus-transformed SVK14 keratinocyte cell line. In ultrastructural studies, this antigen was located in the epidermal basement membrane, both in the lamina densa and in the lamina lucida, associated with hemidesmosomes. It was identified as a protein by in vitro proteolytic cleavage studies. The radio-immunoprecipitates from cultured human keratinocytes, analyzed by SDS-PAGE, showed that GB3 recognized five polypeptides of 93.5, 125, 130, 146 and 150 kD under reducing conditions. The tissue distribution of the antigen and the molecular weights (MWs) of its constitutive polypeptides suggest that it is different from other known components of basement membranes. It may provide a biochemical marker for hemidesmosomes. Furthermore, GB3 represents an interesting and original clinical probe, since the antigenic structure recognized by GB3 is lacking in Junctional Epidermolysis Bullosa, a lethal genodermatosis in which a dermo-epidermal splitting occurs at the level of lamina lucida.

  5. Oriented immobilized anti-LDL antibody carrying poly(hydroxyethyl methacrylate) cryogel for cholesterol removal from human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bereli, Nilay [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey); Sener, Guelsu [Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara (Turkey); Yavuz, Handan, E-mail: handany@hacettepe.edu.tr [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey); Denizli, Adil [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey)

    2011-07-20

    Low density lipoprotein (LDL) cholesterol is a major ingredient of the plaque that collects in the coronary arteries and causes coronary heart diseases. Among the methods used for the extracorporeal elimination of LDL from intravasal volume, immunoaffinity technique using anti-LDL antibody as a ligand offers superior selectivity and specificity. Proper orientation of the immobilized antibody is the main issue in immunoaffinity techniques. In this study, anti-human {beta}-lipoprotein antibody (anti-LDL antibody) molecules were immobilized and oriented through protein A onto poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel in order to remove LDL from hypercholesterolemic human plasma. PHEMA cryogel was prepared by free radical polymerization initiated with N,N,N',N'-tetramethylene diamine (TEMED). PHEMA cryogel with a swelling degree of 8.89 g H{sub 2}O/g and 67% macro-porosity was characterized by swelling studies, scanning electron microscope (SEM) and blood compatibility tests. All the clotting times were increased when compared with control plasma. The maximum immobilized anti-LDL antibody amount was 63.2 mg/g in the case of random antibody immobilization and 19.6 mg/g in the case of oriented antibody immobilization (protein A loading was 57.0 mg/g). Random and oriented anti-LDL antibody immobilized PHEMA cryogels adsorbed 111 and 129 mg LDL/g cryogel from hypercholesterolemic human plasma, respectively. Up to 80% of the adsorbed LDL was desorbed. The adsorption-desorption cycle was repeated 6 times using the same cryogel. There was no significant loss of LDL adsorption capacity. - Research highlights: {yields} LDL cholesterol is a risk factor in the development of coronary heart diseases. {yields} Antibodies against LDL are used for the selective extracorporeal removal of LDL. {yields} Protein A is used for the oriented immobilization of anti LDL onto PHEMA cryogel. {yields} PHEMA cryogels are biocompatible, exhibit a low pressure drop, lack diffusion

  6. Algae as protein factories: expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Franziska Hempel

    Full Text Available Microalgae are thought to offer great potential as expression system for various industrial, therapeutic and diagnostic recombinant proteins as they combine high growth rates with all benefits of eukaryotic expression systems. Moreover, microalgae exhibit a phototrophic lifestyle like land plants, hence protein expression is fuelled by photosynthesis, which is CO(2-neutral and involves only low production costs. So far, however, research on algal bioreactors for recombinant protein expression is very rare calling for further investigations in this highly promising field. In this study, we present data on the expression of a monoclonal human IgG antibody against the Hepatitis B surface protein and the respective antigen in the diatom Phaeodactylum tricornutum. Antibodies are fully-assembled and functional and accumulate to 8.7% of total soluble protein, which complies with 21 mg antibody per gram algal dry weight. The Hepatitis B surface protein is functional as well and is recognized by algae-produced and commercial antibodies.

  7. Algae as Protein Factories: Expression of a Human Antibody and the Respective Antigen in the Diatom Phaeodactylum tricornutum

    Science.gov (United States)

    Hempel, Franziska; Lau, Julia; Klingl, Andreas; Maier, Uwe G.

    2011-01-01

    Microalgae are thought to offer great potential as expression system for various industrial, therapeutic and diagnostic recombinant proteins as they combine high growth rates with all benefits of eukaryotic expression systems. Moreover, microalgae exhibit a phototrophic lifestyle like land plants, hence protein expression is fuelled by photosynthesis, which is CO2-neutral and involves only low production costs. So far, however, research on algal bioreactors for recombinant protein expression is very rare calling for further investigations in this highly promising field. In this study, we present data on the expression of a monoclonal human IgG antibody against the Hepatitis B surface protein and the respective antigen in the diatom Phaeodactylum tricornutum. Antibodies are fully-assembled and functional and accumulate to 8.7% of total soluble protein, which complies with 21 mg antibody per gram algal dry weight. The Hepatitis B surface protein is functional as well and is recognized by algae-produced and commercial antibodies. PMID:22164289

  8. Serological analysis of human IgG and IgE anti-insulin antibodies by solid-phase radioimmunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, R.G.; Rendell, M.; Adkinson, N.F. Jr.

    1980-12-01

    A single solid-phase assay system which is useful for quantitative measurement of both IgG and IgE anti-insulin antibodies in human serum has been developed. Insulin-specific immunoglobulins are absorbed from human serum by excess quantities of insulin-agarose. After washes to remove unbound immunoglobulins, radioiodinated Staph A or rabbit anti-human IgE is added to detect bound IgG or IgE anbitodies, respectively.

  9. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    OpenAIRE

    Alonso-Camino, Vanesa; Sánchez-Martín, David; Compte, Marta; Nuñez-Prado, Natalia; Diaz, Rosa M; Vile, Richard; Alvarez-Vallina, Luis

    2013-01-01

    A human single-chain variable fragment (scFv) antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs). The repertoire was fused to a first-generation T cell receptor ζ (TCRζ)-based chimeric antigen receptor (CAR). We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire res...

  10. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, M; Nielsen, L K; Andersen, P S

    1995-01-01

    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were used...... for absorption of the Fab phages. Soluble Fab fragments produced from the cloned material showed identical performance to the parental antibody in agglutination assays. Gel filtration confirmed that the Fab fragment consists of a kappa-Fd heterodimer. The successful use of intact cells for selection of specific...

  11. Design and Characterization of a Human Monoclonal Antibody that Modulates Mutant Connexin 26 Hemichannels Implicated in Deafness and Skin Disorders

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2017-09-01

    Full Text Available Background: Mutations leading to changes in properties, regulation, or expression of connexin-made channels have been implicated in 28 distinct human hereditary diseases. Eight of these result from variants of connexin 26 (Cx26, a protein critically involved in cell-cell signaling in the inner ear and skin. Lack of non-toxic drugs with defined mechanisms of action poses a serious obstacle to therapeutic interventions for diseases caused by mutant connexins. In particular, molecules that specifically modulate connexin hemichannel function without affecting gap junction channels are considered of primary importance for the study of connexin hemichannel role in physiological as well as pathological conditions. Monoclonal antibodies developed in the last three decades have become the most important class of therapeutic biologicals. Recombinant methods permit rapid selection and improvement of monoclonal antibodies from libraries with large diversity.Methods: By screening a combinatorial library of human single-chain fragment variable (scFv antibodies expressed in phage, we identified a candidate that binds an extracellular epitope of Cx26. We characterized antibody action using a variety of biochemical and biophysical assays in HeLa cells, organotypic cultures of mouse cochlea and human keratinocyte-derived cells.Results: We determined that the antibody is a remarkably efficient, non-toxic, and completely reversible inhibitor of hemichannels formed by connexin 26 and does not affect direct cell-cell communication via gap junction channels. Importantly, we also demonstrate that the antibody efficiently inhibits hyperative mutant Cx26 hemichannels implicated in autosomal dominant non-syndromic hearing impairment accompanied by keratitis and hystrix-like ichthyosis-deafness (KID/HID syndrome. We solved the crystal structure of the antibody, identified residues that are critical for binding and used molecular dynamics to uncover its mechanism of action

  12. Broadly neutralizing human monoclonal JC polyomavirus VP1–specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy

    Science.gov (United States)

    Jelcic, Ivan; Combaluzier, Benoit; Jelcic, Ilijas; Faigle, Wolfgang; Senn, Luzia; Reinhart, Brenda J.; Ströh, Luisa; Nitsch, Roger M.; Stehle, Thilo; Sospedra, Mireia; Grimm, Jan; Martin, Roland

    2016-01-01

    In immunocompromised individuals, JC polyomavirus (JCPyV) may mutate and gain access to the central nervous system resulting in progressive multifocal leukoencephalopathy (PML), an often fatal opportunistic infection for which no treatments are currently available. Despite recent progress, the contribution of JCPyV-specific humoral immunity to controlling asymptomatic infection throughout life and to eliminating JCPyV from the brain is poorly understood. We examined antibody responses against JCPyV major capsid protein VP1 (viral protein 1) variants in the serum and cerebrospinal fluid (CSF) of healthy donors (HDs), JCPyV-positive multiple sclerosis patients treated with the anti-VLA-4 monoclonal antibody natalizumab (NAT), and patients with NAT-associated PML. Before and during PML, CSF antibody responses against JCPyV VP1 variants show “recognition holes”; however, upon immune reconstitution, CSF antibody titers rise, then recognize PML-associated JCPyV VP1 variants, and may be involved in elimination of the virus. We therefore reasoned that the memory B cell repertoire of individuals who recovered from PML could be a source for the molecular cloning of broadly neutralizing antibodies for passive immunization. We generated a series of memory B cell-derived JCPyV VP1-specific human monoclonal antibodies from HDs and a patient with NAT-associated PML-immune reconstitution inflammatory syndrome (IRIS). These antibodies exhibited diverse binding affinity, cross-reactivity with the closely related BK polyomavirus, recognition of PML-causing VP1 variants, and JCPyV neutralization. Almost all antibodies with exquisite specificity for JCPyV, neutralizing activity, recognition of all tested JCPyV PML variants, and high affinity were derived from one patient who had recovered from PML. These antibodies are promising drug candidates for the development of a treatment of PML. PMID:26400911

  13. Monoclonal antibodies that define canine homologues of human CD antigens: summary of the First International Canine Leukocyte Antigen Workshop (CLAW).

    Science.gov (United States)

    Cobbold, S; Metcalfe, S

    1994-03-01

    A panel of 127 monoclonal antibodies against canine leukocyte antigens, including controls, was distributed to 29 laboratories that performed a variety of experiments to identify groups of antibodies against the canine equivalents of some of the human CD antigens. Cluster analysis was performed centrally, using the submitted antibody binding data from immunofluorescence, ELISA and immuno-histology experiments. Immunoprecipitation for molecular weight determination was also performed centrally with T-cell blasts and a B-cell line as the sources of antigen. Clusters of three or more antibodies were found that defined the canine equivalents of the CD5, CD4, CD8 and Thy-1 antigens, and these could be used to label T-cell subsets from the peripheral blood. Other groups of monoclonal antibodies recognized the canine homologues of the CD11/18 group of antigens, CD44 and the CD45/CD45R antigen family: these should be useful in isolating functional subsets of CD4+ helper T cells. There was a cluster of four antibodies that bound strongly to platelets (probably CD41 antigen), three antibodies that were specific to B cells (including CD21) and two antibodies against a granulocyte antigen (possibly CD15). A number of reagents were found against canine MHC-II and immunoglobulin, with some of the latter able to distinguish between Ig subclasses. Properties of each of the canine antigens defined by these monoclonal antibodies are discussed and compared with other species. The availability of such a panel of reagents should allow rapid improvements in the immunological diagnosis of canine disease, and there might now be a potential for testing novel therapeutic strategies in a clinical veterinary setting.

  14. Anti-Lipid IgG Antibodies Are Produced via Germinal Centers in a Murine Model Resembling Human Lupus

    Science.gov (United States)

    Wong-Baeza, Carlos; Reséndiz-Mora, Albany; Donis-Maturano, Luis; Wong-Baeza, Isabel; Zárate-Neira, Luz; Yam-Puc, Juan Carlos; Calderón-Amador, Juana; Medina, Yolanda; Wong, Carlos; Baeza, Isabel; Flores-Romo, Leopoldo

    2016-01-01

    Anti-lipid IgG antibodies are produced in some mycobacterial infections and in certain autoimmune diseases [such as anti-phospholipid syndrome, systemic lupus erythematosus (SLE)]. However, few studies have addressed the B cell responses underlying the production of these immunoglobulins. Anti-lipid IgG antibodies are consistently found in a murine model resembling human lupus induced by chlorpromazine-stabilized non-bilayer phospholipid arrangements (NPA). NPA are transitory lipid associations found in the membranes of most cells; when NPA are stabilized they can become immunogenic and induce specific IgG antibodies, which appear to be involved in the development of the mouse model of lupus. Of note, anti-NPA antibodies are also detected in patients with SLE and leprosy. We used this model of lupus to investigate in vivo the cellular mechanisms that lead to the production of anti-lipid, class-switched IgG antibodies. In this murine lupus model, we found plasma cells (Gr1−, CD19−, CD138+) producing NPA-specific IgGs in the draining lymph nodes, the spleen, and the bone marrow. We also found a significant number of germinal center B cells (IgD−, CD19+, PNA+) specific for NPA in the draining lymph nodes and the spleen, and we identified in situ the presence of NPA in these germinal centers. By contrast, very few NPA-specific, extrafollicular reaction B cells (B220+, Blimp1+) were found. Moreover, when assessing the anti-NPA IgG antibodies produced during the experimental protocol, we found that the affinity of these antibodies progressively increased over time. Altogether, our data indicate that, in this murine model resembling human lupus, B cells produce anti-NPA IgG antibodies mainly via germinal centers. PMID:27746783

  15. Biochemical characterization of AMG 102: a neutralizing, fully human monoclonal antibody to human and nonhuman primate hepatocyte growth factor.

    Science.gov (United States)

    Burgess, Teresa L; Sun, Jan; Meyer, Susanne; Tsuruda, Trace S; Sun, Jilin; Elliott, Gary; Chen, Qing; Haniu, Mitsuru; Barron, Will F; Juan, Todd; Zhang, Ke; Coxon, Angela; Kendall, Richard L

    2010-02-01

    AMG 102 is a fully human monoclonal antibody that selectively targets and neutralizes hepatocyte growth factor/scatter factor (HGF/SF). A detailed biochemical and functional characterization of AMG 102 was done to support its clinical development for the treatment of cancers dependent on signaling through the HGF/SF:c-Met pathway. In competitive equilibrium binding experiments, AMG 102 bound to human and cynomolgus monkey HGF with affinities of approximately 19 pmol/L and 41 pmol/L, respectively. However, AMG 102 did not detect mouse or rabbit HGF on immunoblots. Immunoprecipitation experiments showed that AMG 102 preferentially bound to the mature, active form of HGF, and incubation of AMG 102/HGF complexes with kallikrein protease indicated that AMG 102 had no apparent effect on proteolytic processing of the inactive HGF precursor. AMG 102 inhibited human and cynomolgus monkey HGF-induced c-Met autophosphorylation in PC3 cells with IC(50) values of 0.12 nmol/L and 0.24 nmol/L, respectively. AMG 102 also inhibited cynomolgus monkey HGF-induced migration of human MDA-MB-435 cells but not rat HGF-induced migration of mouse 4T1 cells. Epitope-mapping studies of recombinant HGF molecules comprising human/mouse chimeras and human-to-mouse amino acid substitutions showed that amino acid residues near the NH(2)-terminus of the beta-chain are critical for AMG 102 binding. Bound AMG 102 protected one trypsin protease cleavage site near the NH(2)-terminus of the beta-chain of human HGF, further substantiating the importance of this region for AMG 102 binding. Currently, AMG 102 is in phase II clinical trials in a variety of solid tumor indications. Mol Cancer Ther; 9(2); 400-9.

  16. Neutralisation of HIV-1 cell-cell spread by human and llama antibodies

    National Research Council Canada - National Science Library

    McCoy, Laura E; Groppelli, Elisabetta; Blanchetot, Christophe; de Haard, Hans; Verrips, Theo; Rutten, Lucy; Weiss, Robin A; Jolly, Clare

    2014-01-01

    .... Much current vaccine research involves the study of broadly neutralising antibodies (bNabs) that arise during natural infection with the aims of eliciting such antibodies by vaccination or incorporating them into novel therapeutics...

  17. Isolation of Osteosarcoma-Associated Human Antibodies from a Combinatorial Fab Phage Display Library

    Directory of Open Access Journals (Sweden)

    Carmela Dantas-Barbosa

    2009-01-01

    Full Text Available Osteosarcoma, a highly malignant disease, is the most common primary bone tumor and is frequently found in children and adolescents. In order to isolate antibodies against osteosarcoma antigens, a combinatorial osteosarcoma Fab library displayed on the surface of phages was used. After three rounds of selection on the surface of tumor cells, several osteosarcoma-reactive Fabs were detected. From these Fabs, five were better characterized, and despite having differences in their VH (heavy chain variable domain and Vκ (kappa chain variable domain regions, they all bound to a protein with the same molecular mass. Further analysis by cell ELISA and immunocytochemistry suggested that the Fabs recognize a membrane-associated tumor antigen expressed in higher amounts in neoplasic cells than in normal tissue. These results suggest that the human Fabs selected in this work are a valuable tool for the study of this neoplasia.

  18. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus

    DEFF Research Database (Denmark)

    Giang, Erick; Dorner, Marcus; Prentoe, Jannick C

    2012-01-01

    Hepatitis C virus (HCV) infects ∼2% of the world's population. It is estimated that there are more than 500,000 new infections annually in Egypt, the country with the highest HCV prevalence. An effective vaccine would help control this expanding global health burden. HCV is highly variable......, and an effective vaccine should target conserved T- and B-cell epitopes of the virus. Conserved B-cell epitopes overlapping the CD81 receptor-binding site (CD81bs) on the E2 viral envelope glycoprotein have been reported previously and provide promising vaccine targets. In this study, we isolated 73 human m......bs on the E1E2 complex, has an exceptionally broad neutralizing activity toward diverse HCV genotypes and protects against heterologous HCV challenge in a small animal model. The mAb panel will be useful for the design and development of vaccine candidates to elicit broadly neutralizing antibodies...

  19. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans

    Science.gov (United States)

    Maus, Marcela V.; Haas, Andrew R.; Beatty, Gregory L.; Albelda, Steven M.; Levine, Bruce L.; Liu, Xiaojun; Zhao, Yangbing; Kalos, Michael; June, Carl H.

    2013-01-01

    T cells can be redirected to overcome tolerance to cancer by engineering with integrating vectors to express a chimeric antigen receptor (CAR). In preclinical models, we have previously demonstrated that transfection of T cells with messenger RNA (mRNA) coding for a CAR is an alternative strategy that has antitumor efficacy and the potential to evaluate the on-target off-tumor toxicity of new CAR targets safely due to transient mRNA CAR expression. Here, we report the safety observed in four patients treated with autologous T cells that had been electroporated with mRNA coding for a CAR derived from a murine antibody to human mesothelin. Due to the transient nature of CAR expression on the T cells, subjects in the clinical study were given repeated infusions of the CAR-T cells in order to assess their safety. One subject developed anaphylaxis and cardiac arrest within minutes of completing the 3rd infusion. Although human anti-mouse IgG antibodies have been known to develop with CAR-transduced T cells, they have been thought to have no adverse clinical consequences. This is the first description of clinical anaphylaxis resulting from CAR-modified T cells, most likely through IgE antibodies specific to the CAR. These results indicate that the potential immunogenicity of CARs derived from murine antibodies may be a safety issue for mRNA CARs, especially when administered using an intermittent dosing schedule. PMID:24432303

  20. Development of a Novel Human Single Chain Antibody Against EGFRVIII Antigen by Phage Display Technology.

    Science.gov (United States)

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Akbari, Bahman; Ahdi Khosroshahi, Shiva

    2016-12-01

    Purpose: EGFRvIII as the most common mutant variant of the epidermal growth factor receptor is resulting from deletion of exons 2-7 in the coding sequence and junction of exons 1 and 8 through a novel glycine residue. EGFRvIII is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. The aim of the present study was identification of a novel single chain antibody against EGFRvIII as a promising target for cancer therapy. Methods: In this study, a synthetic peptide corresponding to EGFRvIII protein was used for screening a naive human scFv phage library. A novel five-round selection strategy was used for enrichment of rare specific clones. Results: After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, only three clones had expected size in PCR reaction. The specific interaction of two of the scFv clones with EGFRvIII was confirmed by indirect ELISA. One phage clone with higher affinity in scFv ELISA was purified for further analysis. The purity of the produced scFv antibody was confirmed using SDS-PAGE and Western blotting analyses. Conclusion: In the present study, a human anti- EGFRvIII scFv with high affinity was first identified from a scFv phage library. This study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers.

  1. [Serological survey for arbovirus antibodies in the human and simian populations of the South-East of Gabon (author's transl)].

    Science.gov (United States)

    Saluzzo, J F; Ivanoff, B; Languillat, G; Georges, A J

    1982-01-01

    A serological survey for arbovirus antibodies was carried out in human and simian populations of the South-East of Gabon. 197 human sera (adults), 34 simian sera (collected in the monkey colony of the Centre International de Recherches Médicales de Franceville) and 28 paired sera of mothers and their new-borns (samples collected from the umbilical cord) were tested using haemagglutination inhibition (HI) for all sera and complement fixation test (CF) for some of them. In the human population, 88% showed antibodies against yellow-fever virus as a consequence of vaccination, 20% against Chikungunya virus and 58% against Orungo virus. The high antibody titers for Chikungunya virus detected by HI test with CF antibodies proved a recent activity of this virus. The serological survey of simian population confirms the activity of Chikungunya virus in this area and demonstrates the circulation of one or more Flaviviruses, especially Zika virus. Transmission of maternal antibodies was established for the following arboviruses: Chikungunya, yellow-fever, Uganda S., Zika and Orungo.

  2. Cross-reactivity of anti-human, anti-porcine and anti-bovine cytokine antibodies with cetacean tissues.

    Science.gov (United States)

    Jaber, J R; Pérez, J; Zafra, R; Herráez, P; Rodríguez, F; Arbelo, M; de los Monteros, A Espinosa; Fernández, A

    2010-07-01

    The cross-reactivity of monoclonal antibodies specific for human, porcine and bovine cytokines was evaluated for three cetacean species: Atlantic spotted dolphins (Stenella frontalis), striped dolphins (Stenella coeruleoalba) and fin whales (Balaenoptera physalus). Formalin-fixed and snap-frozen tissue sections of lung, spleen, liver and mesenteric lymph node were evaluated. T and B lymphocytes and monocytes/macrophages were detected by use of anti-human CD3, IgG and lysozyme polyclonal antibodies (pAbs), respectively. These reagents were successfully applied to both fixed and frozen tissues. Anti-human interleukin (IL)-1 alpha, IL-1 beta, IL-8, tumour necrosis factor (TNF)-alpha and CD25, anti-porcine IL-2, IL-6, IL-10, and anti-bovine IL-4 and interferon (IFN)-gamma antibodies produced immunolabelling in cetacean snap-frozen lymph node sections similar to that obtained with tissue from the species of origin, but they did not react with formalin-fixed tissue sections. Anti-porcine IL-12 pAb did not react with snap-frozen cetacean tissue samples. Macrophages and lymphocytes were the most common cells immunolabelled with the anti-cytokine antibodies. This panel of anti-cytokine antibodies may be used to evaluate cytokine expression in snap-frozen tissue samples from the cetacean species tested. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Evaluation of two types of sponges used to collect cervical secretions and assessment of antibody extraction protocols for recovery of neutralizing anti-human papillomavirus type 16 antibodies.

    Science.gov (United States)

    Kemp, Troy J; Hildesheim, Allan; Falk, Roni T; Schiller, John T; Lowy, Douglas R; Rodriguez, Ana Cecilia; Pinto, Ligia A

    2008-01-01

    Immunogenicity evaluations in human papillomavirus (HPV) vaccine trials have relied on serological samples, yet cervical antibodies are likely to be most relevant for protection against infection. In order to assess functional antibody levels at the cervix, the secreted-alkaline-phosphatase neutralization assay (SEAPNA) was used to measure HPV-neutralizing activity. We assessed the variability of the SEAPNA with serum samples after vaccination with an HPV type 16 (HPV16) L1 virus-like particle vaccine and whether the SEAPNA can be used to monitor neutralizing activity at the cervix. The SEAPNA has an overall coefficient of variation of 29.3%. Recovery from ophthalmic sponges was assessed by spiking V5 (mouse anti-HPV16) antibody onto and extracting it from sterile Merocel and Ultracell sponges and sponges used to collect specimens from participants. V5 recovery from sterile Merocel sponges was complete, yet that from Ultracell sponges was null. The mean V5 recoveries from participant Ultracell and Merocel sponges were 61.2% and 93.5%, respectively, suggesting that Merocel sponges are more appropriate for specimen collection. The SEAPNA can be applied to determine the surrogates of protection and to examine the durability of protection at the cervix.

  4. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma - A pilot study 164/rccm.200206-5250C

    NARCIS (Netherlands)

    Kips, JC; O'Connor, BJ; Langley, SJ; Woodcock, A; Kerstjens, HAM; Postma, DS; Danzig, M; Cuss, F; Pauwels, RA

    2003-01-01

    Antagonizing the effect of interleukin (IL)-5 is a potential new treatment strategy in allergic disorders. We evaluated the safety, biological activity, and pharmacokinetics of SCH55700, a humanized anti-human IL-5 antibody, in subjects with severe persistent asthma treated with oral or high doses

  5. Passive immunization against dental caries and periodontal disease: development of recombinant and human monoclonal antibodies.

    Science.gov (United States)

    Abiko, Y

    2000-01-01

    and periodontal diseases are summarized, and the biotechnological approaches for developing recombinant and human-type antibodies are introduced. Furthermore, our own attempts to construct single-chain variable fragments (ScFv) and human-type antibodies capable of neutralizing virulence factors are discussed.

  6. Intravital imaging reveals improved Kupffer cell-mediated phagocytosis as a mode of action of glycoengineered anti-CD20 antibodies.

    Science.gov (United States)

    Grandjean, Capucine L; Montalvao, Fabricio; Celli, Susanna; Michonneau, David; Breart, Beatrice; Garcia, Zacarias; Perro, Mario; Freytag, Olivier; Gerdes, Christian A; Bousso, Philippe

    2016-10-04

    Anti-CD20 monoclonal antibodies (mAbs) represent an effective treatment for a number of B cell malignancies and autoimmune disorders. Glycoengineering of anti-CD20mAb may contribute to increased anti-tumor efficacy through enhanced antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADP) as reported by in vitro studies. However, where and how glycoengineered Ab may potentiate therapeutic responses in vivo is yet to be elucidated. Here, we have performed mouse liver transplants to demonstrate that the liver is sufficient to mediate systemic B cells depletion after anti-CD20 treatment. Relying on intravital two-photon imaging of human CD20-expressing mice, we provide evidence that ADP by Kupffer cells (KC) is a major mechanism for rituximab-mediated B cell depletion. Notably, a glycoengineered anti-mouse CD20 Ab but not its wild-type counterpart triggered potent KC-mediated B cell depletion at low doses. Finally, distinct thresholds for KC phagocytosis were also observed for GA101 (obinutuzumab), a humanized glycoengineered type II anti-CD20 Ab and rituximab. Thus, we propose that enhanced phagocytosis of circulating B cells by KC represents an important in vivo mechanism underlying the improved activity of glycoengineered anti-CD20 mAbs.

  7. A human inferred germline antibody binds to an immunodominant epitope and neutralizes Zika virus.

    Directory of Open Access Journals (Sweden)

    Diogo M Magnani

    2017-06-01

    Full Text Available The isolation of neutralizing monoclonal antibodies (nmAbs against the Zika virus (ZIKV might lead to novel preventative strategies for infections in at-risk individuals, primarily pregnant women. Here we describe the characterization of human mAbs from the plasmablasts of an acutely infected patient. One of the 18 mAbs had the unusual feature of binding to and neutralizing ZIKV despite not appearing to have been diversified by affinity maturation. This mAb neutralized ZIKV (Neut50 ~ 2 μg/ml but did not react with any of the four dengue virus serotypes. Except for the expected junctional diversity created by the joining of the V-(D-J genes, there was no deviation from immunoglobulin germline genes. This is a rare example of a human mAb with neutralizing activity in the absence of detectable somatic hypermutation. Importantly, binding of this mAb to ZIKV was specifically inhibited by human plasma from ZIKV-exposed individuals, suggesting that it may be of value in a diagnostic setting.

  8. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits

    Science.gov (United States)

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  9. Antibody responses in humans infected with newly emerging strains of West Nile Virus in Europe.

    Directory of Open Access Journals (Sweden)

    Stefan Chabierski

    Full Text Available Infection with West Nile Virus (WNV affects an increasing number of countries worldwide. Although most human infections result in no or mild flu-like symptoms, the elderly and those with a weakened immune system are at higher risk for developing severe neurological disease. Since its introduction into North America in 1999, WNV has spread across the continental United States and caused annual outbreaks with a total of 36,000 documented clinical cases and ∼1,500 deaths. In recent years, outbreaks of neuroinvasive disease also have been reported in Europe. The WNV strains isolated during these outbreaks differ from those in North America, as sequencing has revealed that distinct phylogenetic lineages of WNV concurrently circulate in Europe, which has potential implications for the development of vaccines, therapeutics, and diagnostic tests. Here, we studied the human antibody response to European WNV strains responsible for outbreaks in Italy and Greece in 2010, caused by lineage 1 and 2 strains, respectively. The WNV structural proteins were expressed as a series of overlapping fragments fused to a carrier-protein, and binding of IgG in sera from infected persons was analyzed. The results demonstrate that, although the humoral immune response to WNV in humans is heterogeneous, several dominant peptides are recognized.

  10. Antibody responses in humans infected with newly emerging strains of West Nile Virus in Europe.

    Science.gov (United States)

    Chabierski, Stefan; Makert, Gustavo R; Kerzhner, Alexandra; Barzon, Luisa; Fiebig, Petra; Liebert, Uwe G; Papa, Anna; Richner, Justin M; Niedrig, Matthias; Diamond, Michael S; Palù, Giorgio; Ulbert, Sebastian

    2013-01-01

    Infection with West Nile Virus (WNV) affects an increasing number of countries worldwide. Although most human infections result in no or mild flu-like symptoms, the elderly and those with a weakened immune system are at higher risk for developing severe neurological disease. Since its introduction into North America in 1999, WNV has spread across the continental United States and caused annual outbreaks with a total of 36,000 documented clinical cases and ∼1,500 deaths. In recent years, outbreaks of neuroinvasive disease also have been reported in Europe. The WNV strains isolated during these outbreaks differ from those in North America, as sequencing has revealed that distinct phylogenetic lineages of WNV concurrently circulate in Europe, which has potential implications for the development of vaccines, therapeutics, and diagnostic tests. Here, we studied the human antibody response to European WNV strains responsible for outbreaks in Italy and Greece in 2010, caused by lineage 1 and 2 strains, respectively. The WNV structural proteins were expressed as a series of overlapping fragments fused to a carrier-protein, and binding of IgG in sera from infected persons was analyzed. The results demonstrate that, although the humoral immune response to WNV in humans is heterogeneous, several dominant peptides are recognized.

  11. Monoclonal antibody binding to the macrophage-specific receptor sialoadhesin alters the phagocytic properties of human and mouse macrophages.

    Science.gov (United States)

    De Schryver, Marjorie; Cappoen, Davie; Elewaut, Dirk; Nauwynck, Hans J; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L

    2017-02-01

    Sialoadhesin (Sn) is a surface receptor expressed on macrophages in steady state conditions, but during inflammation, Sn can be upregulated both on macrophages and on circulating monocytes. It was shown for different species that Sn becomes internalized after binding with monoclonal antibodies. These features suggest that Sn is a potential target for immunotherapies. In this study, human and mouse macrophages were treated with anti-Sn monoclonal antibodies or F(ab')2 fragments and the effect of their binding to Sn on phagocytosis was analyzed. Binding of antibodies to Sn resulted in delayed and reduced phagocytosis of fluorescent beads. No effect was observed on Fc-mediated phagocytosis or phagocytosis of bacteria by human macrophages. In contrast, an enhanced phagocytosis of bacteria by mouse macrophages was detected. These results showed that stimulation of Sn could have different effects on macrophage phagocytosis, depending both on the type of phagocytosis and cellular background. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Human IgG antibody response to Glossina saliva: an epidemiologic marker of exposure to Glossina bites.

    Science.gov (United States)

    Poinsignon, Anne; Remoue, Franck; Rossignol, Marie; Cornelie, Sylvie; Courtin, David; Grébaut, Pascal; Garcia, Andre; Simondon, Francois

    2008-05-01

    The evaluation of human antibody response specific to arthropod saliva may be a useful marker of exposure to vector-borne disease. Such an immunologic tool, applied to the evaluation of the exposure to Glossina bites, could be integrated in the control of human African trypanosomiasis (HAT). The antibody (IgG) response specific to uninfected Glossina fuscipes fuscipes saliva was evaluated according to the vector exposure and trypanic status in individuals residing in an HAT-endemic area. A high level of anti-saliva IgG antibodies was only detected in exposed individuals, whether infected or not by Trypanosoma brucei gambiense. In addition, the evaluation of specific IgG response represented spatial heterogeneity according to studied sites. These results suggest that the evaluation of anti-saliva IgG could be an indicator of Glossina exposure and thus could be integrated in other available tools to identify populations presenting risks of HAT transmission.

  13. Characterization of antibodies directed against the Ankrd2 human muscle protein

    Directory of Open Access Journals (Sweden)

    Kojić Snežana

    2009-01-01

    Full Text Available In order to study the function of the Ankrd2 protein, for which commercial antibodies are not available, we report the production and analysis of polyclonal antibodies to full-length Ankrd2 and its C-terminal and N-terminal regions, as well as a monoclonal antibody to the C-terminus of the protein. Epitope mapping making use of recombinant deletion mutants showed that an epitope located in region 323-333 aa of Ankrd2 is detected by the monoclonal antibody. The high specificity of all four anti-Ankrd2 antibodies for recombinant and endogenous Ankrd2 protein is also demon­strated.

  14. Generation and characterization of ixekizumab, a humanized monoclonal antibody that neutralizes interleukin-17A

    Directory of Open Access Journals (Sweden)

    Liu L

    2016-04-01

    Full Text Available Ling Liu,1 Jirong Lu,1 Barrett W Allan,2 Ying Tang,2 Jonathan Tetreault,1 Chi-kin Chow,1 Barbra Barmettler,2 James Nelson,2 Holly Bina,1 Lihua Huang,3 Victor J Wroblewski,4 Kristine Kikly1 1Biotechnology Discovery Research, Indianapolis, IN, 2Applied Molecular Evolution, Lilly Biotechnology Center, San Diego, CA, 3Bioproduct Research and Development, 4Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA Abstract: Interleukin (IL-17A exists as a homodimer (A/A or as a heterodimer (A/F with IL-17F. IL-17A is expressed by a subset of T-cells, called Th17 cells, at inflammatory sites. Most cell types can respond to the local production of IL-17A because of the near ubiquitous expression of IL-17A receptors, IL-17RA and IL-17RC. IL-17A stimulates the release of cytokines and chemokines designed to recruit and activate both neutrophils and memory T-cells to the site of injury or inflammation and maintain a proinflammatory state. IL-17A-producing pathogenic T-cells contribute to the pathogenesis of autoimmune diseases, including psoriasis, psoriatic arthritis, rheumatoid arthritis, and ankylosing spondylitis. This study describes the generation and characterization of ixekizumab, a humanized IgG4 variant IL-17A-neutralizing antibody. Ixekizumab binds human and cynomolgus monkey IL-17A with high affinity and binds rabbit IL-17A weakly but does not bind to rodent IL-17A or other IL-17 family members. Ixekizumab effectively inhibits the interaction between IL-17A and its receptor in binding assays and potently blocks IL-17A-induced GRO or KC secretion in cell-based assays. In an in vivo mouse pharmcodynamic model, ixekizumab blocks human IL-17A-induced mouse KC secretion. These data provide a comprehensive preclinical characterization of ixekizumab, for which the efficacy and safety have been demonstrated in human clinical trials in psoriasis and psoriatic arthritis.Keywords: ixekizumab, IL-17A monoclonal antibody

  15. Enhancement of retroviral infection in vitro by anti-Le(y) IgG: reversal by humanization of monoclonal mouse antibody

    DEFF Research Database (Denmark)

    Hansen, J E; Sørensen, A M; Arendrup, M

    1993-01-01

    also enhanced infection, a human/mouse chimeric antibody and a fully humanized antibody had no enhancing effect on free virus infection. We suggest that binding of anti-Le(y) ABL 364 or its F(ab)2 fragment induced a conformational change in the gp120 oligomers facilitating the process of infection......, and that this function was abrogated by the IgG1 Fc of the chimeric and the humanized antibodies. The observations indicate that the non-paratope domains of antiviral antibodies can influence their function as neutralizing or enhancing for infection....

  16. Cross-protection of newly emerging HPAI H5 viruses by neutralizing human monoclonal antibodies: A viable alternative to oseltamivir.

    Science.gov (United States)

    Ren, Huanhuan; Wang, Guiqin; Wang, Shuangshuang; Chen, Honglin; Chen, Zhiwei; Hu, Hongxing; Cheng, Genhong; Zhou, Paul

    2016-01-01

    Newly emerging highly pathogenic avian influenza (HPAI) H5N2, H5N3, H5N5, H5N6, H5N8 and H5N9 viruses have been spreading in poultry and wild birds. The H5N6 viruses have also caused 10 human infections with 4 fatal cases in China. Here, we assessed the cross-neutralization and cross-protection of human and mouse monoclonal antibodies against 2 viruses: a HPAI H5N8 virus, A/chicken/Netherlands/14015526/2014 (NE14) and a HPAI H5N6 virus, A/Sichuan/26221/2014 (SC14). The former was isolated from an infected chicken in Netherlands in 2014 and the latter was isolated from an infected human patient in Sichuan, China. We show that antibodies FLA5.10, FLD21.140, 100F4 and 65C6, but not AVFluIgG01, AVFluIgG03, S139/1 and the VRC01 control, potently cross-neutralize the H5N8 NE14 and H5N6 SC14 viruses. Furthermore, we show that a single injection of >1 mg/kg of antibody 100F4 at 4 hours before, or 20 mg/kg antibody 100F4 at 72 hours after, a lethal dose of H5N8 NE14 enables mice to withstand the infection. Finally, we show that a single injection of 0.5 or 1 mg/kg antibody 100F4 prophylactically or 10 mg/kg 100F4 therapeutically outperforms a 5-day course of 10 mg/kg/day oseltamivir treatment against lethal H5N8 NE14 or H5N6 SC14 infection in mice. Our results suggest that further preclinical evaluation of human monoclonal antibodies against newly emerging H5 viruses is warranted.

  17. Novel BAFF-receptor antibody to natively folded recombinant protein eliminates drug resistant human B-cell malignancies in vivo.

    Science.gov (United States)

    Qin, Hong; Wei, Guowei; Sakamaki, Ippei; Dong, Zhenyuan; Cheng, Wesley A; Smith, D Lynne; Wen, Feng; Sun, Han; Kim, Kunhwa; Cha, Soung-Chul; Bover, Laura; Neelapu, Sattva S; Kwak, Larry W

    2017-11-27

    Monoclonal antibodies (mAbs) such as anti-CD20 rituximab, are proven therapies in B-cell malignancies, yet many patients develop resistance. Novel therapies against alternative targets are needed to circumvent resistance mechanisms. We sought to generate mAbs against human B-cell activating factor receptor (BAFF-R/TNFRSF13C), which has not yet been targeted successfully for cancer therapy. Novel mAbs were generated against BAFF-R, expressed as a natively folded cell-surface immunogen on mouse fibroblast cells. Chimeric BAFF-R mAbs were developed and assessed for in vitro and in vivo monotherapy cytotoxicity. The chimeric mAbs were tested against human B-cell tumor lines, primary patient samples, and drug-resistant tumors. Chimeric antibodies bound with high affinity to multiple human malignant B-cell lines and induced potent antibody-dependent cellular cytotoxicity (ADCC) against multiple subtypes of human lymphoma and leukemia, including primary tumors from patients who had relapsed after anti-CD20 therapy. Chimeric antibodies also induced ADCC against ibrutinib-resistant and rituximab-insensitive CD20-deficient variant lymphomas, respectively. Importantly, they demonstrated remarkable in vivo growth inhibition of drug-resistant tumor models in immunodeficient mice. Our method generated novel anti-BAFF-R antibody therapeutics with remarkable single-agent antitumor effects. We propose that these antibodies represent an effective new strategy for targeting and treating drug resistant B-cell malignancies and warrant further development. Copyright ©2017, American Association for Cancer Research.

  18. Neutralization of Zika virus by germline-like human monoclonal antibodies targeting cryptic epitopes on envelope domain III.

    Science.gov (United States)

    Wu, Yanling; Li, Shun; Du, Lanying; Wang, Chunyu; Zou, Peng; Hong, Binbin; Yuan, Mengjiao; Ren, Xiaonan; Tai, Wanbo; Kong, Yu; Zhou, Chen; Lu, Lu; Zhou, Xiaohui; Jiang, Shibo; Ying, Tianlei

    2017-10-11

    The Zika virus (ZIKV), a flavivirus transmitted by Aedes mosquitoes, has emerged as a global public health concern. Pre-existing cross-reactive antibodies against other flaviviruses could modulate immune responses to ZIKV infection by antibody-dependent enhancement, highlighting the importance of understanding the immunogenicity of the ZIKV envelope protein. In this study, we identified a panel of human monoclonal antibodies (mAbs) that target domain III (DIII) of the ZIKV envelope protein from a very large phage-display naive antibody library. These germline-like antibodies, sharing 98%-100% hoLogy with their corresponding germline IGHV genes, bound ZIKV DIII specifically with high affinities. One mAb, m301, broadly neutralized the currently circulating ZIKV strains and showed a synergistic effect with another mAb, m302, in neutralizing ZIKV in vitro and in a mouse model of ZIKV infection. Interestingly, epitope mapping and competitive binding studies suggest that m301 and m302 bind adjacent regions of the DIII C-C' loop, which represents a recently identified cryptic epitope that is intermittently exposed in an uncharacterized virus conformation. This study extended our understanding of antigenic epitopes of ZIKV antibodies and has direct implications for the design of ZIKV vaccines.

  19. Chimpanzees Immunized with Recombinant Soluble CD4 Develop Anti-Self CD4 Antibody Responses with Anti-Human Immunodeficiency Virus Activity

    Science.gov (United States)

    Watanabe, Mamoru; Boyson, Jonathan E.; Lord, Carol I.; Letvin, Norman L.

    1992-06-01

    In view of the efficiency with which human immunodeficiency virus replication can be blocked in vitro with anti-CD4 antibodies, the elicitation of an anti-CD4 antibody response through active immunization might represent a useful therapeutic strategy for AIDS. Here we demonstrate that immunization of chimpanzees with recombinant soluble human CD4 elicited an anti-CD4 antibody response. The elicited antibody bound self CD4 on digitonin-treated but not freshly isolated lymphocytes. Nevertheless, this antibody blocked human immunodeficiency virus replication in chimpanzee and human lymphocytes. These observations suggest that immunization with recombinant soluble CD4 from human immunodeficiency virus-infected humans may be feasible and therapeutically beneficial.

  20. Unique biological properties of catalytic domain directed human anti-CAIX antibodies discovered through phage-display technology.

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2010-03-01

    Full Text Available Carbonic anhydrase IX (CAIX, gene G250/MN-encoded transmembrane protein is highly expressed in various human epithelial tumors such as renal clear cell carcinoma (RCC, but absent from the corresponding normal tissues. Besides the CA signal transduction activity, CAIX may serve as a biomarker in early stages of oncogenesis and also as a reliable marker of hypoxia, which is associated with tumor resistance to chemotherapy and radiotherapy. Although results from preclinical and clinical studies have shown CAIX as a promising target for detection and therapy for RCC, only a limited number of murine monoclonal antibodies (mAbs and one humanized mAb are available for clinical testing and development. In this study, paramagnetic proteoliposomes of CAIX (CAIX-PMPLs were constructed and used for anti-CAIX antibody selection from our 27 billion human single-chain antibody (scFv phage display libraries. A panel of thirteen human scFvs that specifically recognize CAIX expressed on cell surface was identified, epitope mapped primarily to the CA domain, and affinity-binding constants (KD determined. These human anti-CAIX mAbs are diverse in their functions including induction of surface CAIX internalization into endosomes and inhibition of the carbonic anhydrase activity, the latter being a unique feature that has not been previously reported for anti-CAIX antibodies. These human anti-CAIX antibodies are important reagents for development of new immunotherapies and diagnostic tools for RCC treatment as well as extending our knowledge on the basic structure-function relationships of the CAIX molecule.

  1. Humanization of JAA-F11, a Highly Specific Anti-Thomsen-Friedenreich Pancarcinoma Antibody and In Vitro Efficacy Analysis

    Directory of Open Access Journals (Sweden)

    Swetha Tati

    2017-09-01

    Full Text Available JAA-F11 is a highly specific mouse monoclonal to the Thomsen-Friedenreich Antigen (TF-Ag which is an alpha-O-linked disaccharide antigen on the surface of ~80% of human carcinomas, including breast, lung, colon, bladder, ovarian, and prostate cancers, and is cryptic on normal cells. JAA-F11 has potential, when humanized, for cancer immunotherapy for multiple cancer types. Humanization of JAA-F11, was performed utilizing complementarity determining regions grafting on a homology framework. The objective herein is to test the specificity, affinity and biology efficacy of the humanized JAA-F11 (hJAA-F11. Using a 609 target glycan array, 2 hJAA-F11 constructs were shown to have excellent chemical specificity, binding only to TF-Ag alpha-linked structures and not to TF-Ag beta-linked structures. The relative affinity of these hJAA-F11 constructs for TF-Ag was improved over the mouse antibody, while T20 scoring predicted low clinical immunogenicity. The hJAA-F11 constructs produced antibody-dependent cellular cytotoxicity in breast and lung tumor lines shown to express TF-Ag by flow cytometry. Internalization of hJAA-F11 into cancer cells was also shown using a surface binding ELISA and confirmed by immunofluorescence microscopy. Both the naked hJAA-F11 and a maytansine-conjugated antibody (hJAA-F11-DM1 suppressed in vivo tumor progression in a human breast cancer xenograft model in SCID mice. Together, our results support the conclusion that the humanized antibody to the TF-Ag has potential as an adjunct therapy, either directly or as part of an antibody drug conjugate, to treat breast cancer, including triple negative breast cancer which currently has no targeted therapy, as well as lung cancer.

  2. A consensus envelope protein domain III can induce neutralizing antibody responses against serotype 2 of dengue virus in non-human primates.

    Science.gov (United States)

    Chen, Hsin-Wei; Liu, Shih-Jen; Li, Yi-Shiuan; Liu, Hsueh-Hung; Tsai, Jy-Ping; Chiang, Chen-Yi; Chen, Mei-Yu; Hwang, Chyi-Sing; Huang, Chin-Cheng; Hu, Hui-Mei; Chung, Han-Hsuan; Wu, Sze-Hsien; Chong, Pele; Leng, Chih-Hsiang; Pan, Chien-Hsiung

    2013-07-01

    We have previously demonstrated that vaccination with a subunit dengue vaccine containing a consensus envelope domain III with aluminum phosphate elicits neutralizing antibodies against all four serotypes of dengue virus in mice. In this study, we evaluated the immunogenicity of the subunit dengue vaccine in non-human primates. After vaccination, monkeys that received the subunit vaccine with aluminum phosphate developed a significantly strong and long-lasting antibody response. A specific T cell response with cytokine production was also induced, and this correlated with the antibody response. Additionally, neutralizing antibodies against serotype 2 were detected in two of three monkeys. The increase in serotype-2-specific antibody titers and avidity observed in these two monkeys suggested that a serotype-2-biased antibody response occurs. These data provide evidence that a protective neutralizing antibody response was successfully elicited in non-human primates by the dengue subunit vaccine with aluminum phosphate adjuvant.

  3. Neutralizing antibody affords comparable protection against vaginal and rectal simian/human immunodeficiency virus challenge in macaques.

    Science.gov (United States)

    Moldt, Brian; Le, Khoa M; Carnathan, Diane G; Whitney, James B; Schultz, Niccole; Lewis, Mark G; Borducchi, Erica N; Smith, Kaitlin M; Mackel, Joseph J; Sweat, Shelby L; Hodges, Andrew P; Godzik, Adam; Parren, Paul W H I; Silvestri, Guido; Barouch, Dan H; Burton, Dennis R

    2016-06-19

    Passive administration of broadly neutralizing antibodies has been shown to protect against both vaginal and rectal challenge in the simian/human immunodeficiency virus (SHIV)/macaque model of HIV transmission. However, the relative efficacy of antibody against the two modes of exposure is unknown and, given differences in the composition and immunology of the two tissue compartments, this is an important gap in knowledge. To investigate the significance of the challenge route for antibody-mediated protection, we performed a comparative protection study in macaques using the highly potent human monoclonal antibody, PGT126. Animals were administered PGT126 at three different doses before challenged either vaginally or rectally with a single dose of SHIVSF163P3. Viral loads, PGT126 serum concentrations, and serum neutralizing titers were monitored. In vaginally challenged animals, sterilizing immunity was achieved in all animals administered 10 mg/kg, in two of five animals administered 2 mg/kg and in one of five animals administered 0.4 mg/kg PGT126. Comparable protection was observed for the corresponding groups challenged rectally as sterilizing immunity was achieved in three of four animals administered 10 mg/kg, in two of four animals administered 2 mg/kg and in none of four animals administered 0.4 mg/kg PGT126. Serological analysis showed similar serum concentrations of PGT126 and serum neutralization titers in animals administered the same antibody dose. Our data suggest that broadly neutralizing antibody-mediated protection is not strongly dependent on the mucosal route of challenge, which indicates that a vaccine aimed to induce a neutralizing antibody response would have broadly similar efficacy against both primary transmission routes for HIV.

  4. Generation and characterization of a human single-chain fragment variable (scFv antibody against cytosine deaminase from Yeast

    Directory of Open Access Journals (Sweden)

    Tombesi Marina

    2008-09-01

    Full Text Available Abstract Background The ability of cytosine deaminase (CD to convert the antifungal agent 5-fluorocytosine (5-FC into one of the most potent and largely used anticancer compound such as 5-fluorouracil (5-FU raised considerable interest in this enzyme to model gene or antibody – directed enzyme-prodrug therapy (GDEPT/ADEPT aiming to improve the therapeutic ratio (benefit versus toxic side-effects of cancer chemotherapy. The selection and characterization of a human monoclonal antibody in single chain fragment (scFv format represents a powerful reagent to allow in in vitro and in vivo detection of CD expression in GDEPT/ADEPT studies. Results An enzymatic active recombinant CD from yeast (yCD was expressed in E. coli system and used as antigen for biopanning approach of the large semi-synthetic ETH-2 antibody phage library. Several scFvs were isolated and specificity towards yCD was confirmed by Western blot and ELISA. Further, biochemical and functional investigations demonstrated that the binding of specific scFv with yCD did not interfere with the activity of the enzyme in converting 5-FC into 5-FU. Conclusion The construction of libraries of recombinant antibody fragments that are displayed on the surface of filamentous phage, and the selection of phage antibodies against target antigens, have become an important biotechnological tool in generating new monoclonal antibodies for research and clinical applications. The scFvH5 generated by this method is the first human antibody which is able to detect yCD in routinary laboratory techniques without interfering with its enzymatic function.

  5. Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants

    NARCIS (Netherlands)

    Bakker, Alexander B. H.; Marissen, Wilfred E.; Kramer, R. Arjen; Rice, Amy B.; Weldon, William C.; Niezgoda, Michael; Hanlon, Cathleen A.; Thijsse, Sandra; Backus, Harold H. J.; de Kruif, John; Dietzschold, Bernhard; Rupprecht, Charles E.; Goudsmit, Jaap

    2005-01-01

    The need to replace rabies immune globulin (RIG) as an essential component of rabies postexposure prophylaxis is widely acknowledged. We set out to discover a unique combination of human monoclonal antibodies (MAbs) able to replace RIG. Stringent criteria concerning neutralizing potency, affinity,

  6. Prevalence of antibodies to Rickettsia conorii in human beings and dogs from Catalonia: a 20-year perspective.

    Science.gov (United States)

    Espejo, E; Andrés, M; Pérez, J; Prat, J; Guerrero, C; Muñoz, M T; Alegre, M D; Lite, J; Bella, F

    2016-07-01

    The incidence of Mediterranean spotted fever (MSF) in Catalonia (Spain) has decreased in the last two decades. The prevalence of antibodies to Rickettsia conorii in human beings and dogs in the region of Vallès Occidental (Catalonia) was assessed by indirect immunofluorescence, and the results compared with those obtained in a similar study from 1987. Nineteen (5·0%) out of 383 human serum samples had antibodies to R. conorii. This seroprevalence was significantly lower (11·5%) (P = 0·003) than that recorded in the 1987 survey. Forty-two out (42·0%) of 100 canine serum samples had antibodies to R. conorii. A high proportion of the studied dogs (91·0%) were receiving anti-tick treatment, mainly with permethrin-imidacloprid spot-on (Advantix, Bayer, Germany). The current canine seroprevalence was not significantly different from that recorded in the 1987 survey (36.9%). In conclusion, this study shows a significant decrease in the prevalence of antibodies to R. conorii in the human population of Catalonia in the last 20 years, which corresponds with a decrease in the number of cases of MSF. We suggest that the widespread use of anti-tick treatment in dogs could limit the introduction of ticks to humans due to a reduction of infestation duration in dogs, thus contributing to the decrease in MSF incidence.

  7. First administration to humans of a monoclonal antibody cocktail against rabies virus: safety, tolerability, and neutralizing activity

    NARCIS (Netherlands)

    Bakker, A. B. H.; Python, C.; Kissling, C. J.; Pandya, P.; Marissen, W. E.; Brink, M. F.; Lagerwerf, F.; Worst, S.; van Corven, E.; Kostense, S.; Hartmann, K.; Weverling, G. J.; Uytdehaag, F.; Herzog, C.; Briggs, D. J.; Rupprecht, C. E.; Grimaldi, R.; Goudsmit, J.

    2008-01-01

    Immediate passive immune prophylaxis as part of rabies post-exposure prophylaxis (PEP) often cannot be provided due to limited availability of human or equine rabies immunoglobulin (HRIG and ERIG, respectively). We report first clinical data from two phase I studies evaluating a monoclonal antibody

  8. Human antibody response to a strain-specific HIV-1 gp120 epitope associated with cell fusion inhibition

    NARCIS (Netherlands)

    Goudsmit, J.; Boucher, C. A.; Meloen, R. H.; Epstein, L. G.; Smit, L.; van der Hoek, L.; Bakker, M.

    1988-01-01

    PEPSCAN analysis, performed using 536 overlapping nonapeptides derived from the HTLV-III B nucleotide sequence of the region encoding the external envelope protein of 120 kDa (gp120), identified in the V3 region of gp120 a major binding site for antibodies of HIV-1-infected humans. The minimal amino

  9. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Russell, Rodney S.; Goossens, Vera

    2008-01-01

    The relative importance of humoral and cellular immunity in the prevention or clearance of hepatitis C virus (HCV) infection is poorly understood. However, there is considerable evidence that neutralizing antibodies are involved in disease control. Here we describe the detailed analysis of human...

  10. SEROPREVALENCE OF ANTIBODIES TO THE HUMAN-IMMUNODEFICIENCY-VIRUS IN DIALYSIS WORKERS - RESULTS OF A MULTICENTER STUDY

    NARCIS (Netherlands)

    BERLYNE, G; KACZMAREK, RG; HAMBURGER, S; HAMILTON, P; MOORE, RM; CHARNEY, AN; KAHN, T; GRUBER, M; KAUFMAN, CE; GOFFINET, J; BERNARD, MA

    1992-01-01

    The Center for Devices and Radiological Health, in collaboration with the Department of Veterans Affairs Medical Center, Brooklyn, N.Y., conducted a multi-center, multi-institutional study of the seroprevalence of antibodies to the human immunodeficiency virus (HIV) among dialysis workers. Seven

  11. Comparison of different assays to assess human papillomavirus (HPV) type 16- and 18-specific antibodies after HPV infection and vaccination

    NARCIS (Netherlands)

    Scherpenisse, Mirte; Schepp, Rutger M.; Mollers, Madelief; Mooij, Sofie H.; Meijer, Chris J. L. M.; Berbers, Guy A. M.; van der Klis, Fiona R. M.

    2013-01-01

    We compared the measurement of human papillomavirus (HPV)-specific serum antibody levels with the virus-like-particle multiplex immunoassay (VLP-MIA), competitive Luminex immunoassay (cLIA), and glutathione S-transferase (GST) L1-based MIA. Using a large panel of serum samples, these assays showed

  12. Characterization of ABT-806, a Humanized Tumor-Specific Anti-EGFR Monoclonal Antibody.

    Science.gov (United States)

    Reilly, Edward B; Phillips, Andrew C; Buchanan, Fritz G; Kingsbury, Gillian; Zhang, Yumin; Meulbroek, Jonathan A; Cole, Todd B; DeVries, Peter J; Falls, Hugh D; Beam, Christine; Gu, Jinming; Digiammarino, Enrico L; Palma, Joann P; Donawho, Cherrie K; Goodwin, Neal C; Scott, Andrew M

    2015-05-01

    Despite clinical efficacy, current approved agents targeting EGFR are associated with on-target toxicities as a consequence of disrupting normal EGFR function. MAb 806 is a novel EGFR antibody that selectively targets a tumor-selective epitope suggesting that a mAb 806-based therapeutic would retain antitumor activity without the on-target toxicities associated with EGFR inhibition. To enable clinical development, a humanized variant of mAb 806 designated ABT-806 was generated and is currently in phase 1 trials. We describe the characterization of binding and functional properties of ABT-806 compared with the clinically validated anti-EGFR antibody cetuximab. ABT-806 binds the mutant EGFRvIII with high affinity and, relative to cetuximab, exhibits increased potency against glioblastoma multiforme cell line and patient-derived xenografts expressing this form of the receptor. ABT-806 also inhibits the growth of squamous cell carcinoma xenograft models expressing high levels of wild-type EGFR, associated with inhibition of EGFR signaling, although higher doses of ABT-806 than cetuximab are required for similar activity. ABT-806 enhances in vivo potency of standard-of-care therapies used to treat glioblastoma multiforme and head and neck squamous cell carcinoma. An indium-labeled version of ABT-806, [(111)In]-ABT-806, used to investigate the relationship between dose and receptor occupancy, revealed greater receptor occupancy at lowers doses in an EGFRvIII-expressing model and significant uptake in an orthotopic model. Collectively, these results suggest that ABT-806 may have antitumor activity superior to cetuximab in EGFRvIII-expressing tumors, and similar activity to cetuximab in tumors highly overexpressing wild-type EGFR with reduced toxicity. ©2015 American Association for Cancer Research.

  13. Evaluation of Human Papillomavirus Antibodies and Risk of Subsequent Head and Neck Cancer

    Science.gov (United States)

    Kreimer, Aimée R.; Johansson, Mattias; Waterboer, Tim; Kaaks, Rudolf; Chang-Claude, Jenny; Drogen, Dagmar; Tjønneland, Anne; Overvad, Kim; Quirós, J. Ramón; González, Carlos A.; Sánchez, Maria José; Larrañaga, Nerea; Navarro, Carmen; Barricarte, Aurelio; Travis, Ruth C.; Khaw, Kay-Tee; Wareham, Nick; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Peeters, Petra H.M.; Panico, Salvatore; Masala, Giovanna; Grioni, Sara; Tumino, Rosario; Vineis, Paolo; Bueno-de-Mesquita, H. Bas; Laurell, Göran; Hallmans, Göran; Manjer, Jonas; Ekström, Johanna; Skeie, Guri; Lund, Eiliv; Weiderpass, Elisabete; Ferrari, Pietro; Byrnes, Graham; Romieu, Isabelle; Riboli, Elio; Hildesheim, Allan; Boeing, Heiner; Pawlita, Michael; Brennan, Paul

    2013-01-01

    Purpose Human papillomavirus type 16 (HPV16) infection is causing an increasing number of oropharyngeal cancers in the United States and Europe. The aim of our study was to investigate whether HPV antibodies are associated with head and neck cancer risk when measured in prediagnostic sera. Methods We identified 638 participants with incident head and neck cancers (patients; 180 oral cancers, 135 oropharynx cancers, and 247 hypopharynx/larynx cancers) and 300 patients with esophageal cancers as well as 1,599 comparable controls from within the European Prospective Investigation Into Cancer and Nutrition cohort. Prediagnostic plasma samples from patients (collected, on average, 6 years before diagnosis) and control participants were analyzed for antibodies against multiple proteins of HPV16 as well as HPV6, HPV11, HPV18, HPV31, HPV33, HPV45, and HPV52. Odds ratios (ORs) of cancer and 95% CIs were calculated, adjusting for potential confounders. All-cause mortality was evaluated among patients using Cox proportional hazards regression. Results HPV16 E6 seropositivity was present in prediagnostic samples for 34.8% of patients with oropharyngeal cancer and 0.6% of controls (OR, 274; 95% CI, 110 to 681) but was not associated with other cancer sites. The increased risk of oropharyngeal cancer among HPV16 E6 seropositive participants was independent of time between blood collection and diagnosis and was observed more than 10 years before diagnosis. The all-cause mortality ratio among patients with oropharyngeal cancer was 0.30 (95% CI, 0.13 to 0.67), for patients who were HPV16 E6 seropositive compared with seronegative. Conclusion HPV16 E6 seropositivity was present more than 10 years before diagnosis of oropharyngeal cancers. PMID:23775966

  14. Dapsone hydroxylamine induces premature removal of human erythrocytes by membrane reorganization and antibody binding

    Science.gov (United States)

    Bordin, Luciana; Fiore, Cristina; Zen, Francesco; Coleman, Michael D; Ragazzi, Eugenio; Clari, Giulio

    2010-01-01

    BACKGROUND AND PURPOSE N-hydroxylation of dapsone leads to the formation of the toxic hydroxylamines responsible for the clinical methaemoglobinaemia associated with dapsone therapy. Dapsone has been associated with decreased lifespan of erythrocytes, with consequences such as anaemia and morbidity in patients treated with dapsone for malaria. Here, we investigated how dapsone and/or its hydroxylamine derivative (DDS-NHOH) induced erythrocyte membrane alterations that could lead to premature cell removal. EXPERIMENTAL APPROACH Erythrocytes from healthy donors were subjected to incubation with dapsone and DDS-NHOH for varying times and the band 3 protein tyrosine-phosphorylation process, band 3 aggregation, membrane alteration and IgG binding were all examined and compared with erythrocytes from two patients receiving dapsone therapy. KEY RESULTS The hydroxylamine derivative, but not dapsone (the parent sulphone) altered membrane protein interactions, leading both to aggregation of band 3 protein and to circulating autologous antibody binding, shown in erythrocytes from patients receiving dapsone therapy. The band 3 tyrosine-phosphorylation process can be used as a diagnostic system to monitor membrane alterations both in vitro, assessing concentration and time-dependent effects of DDS-NHOH treatment, and in vivo, evaluating erythrocytes from dapsone-treated patients, in resting or oxidatively stimulated conditions. CONCLUSIONS AND IMPLICATIONS DDS-NHOH-induced alterations of human erythrocytes can be directly monitored in vitro by tyrosine-phosphorylation level and formation of band 3 protein aggregates. The latter, together with antibody-mediated labelling of erythrocytes, also observed after clinical use of dapsone, may lead to shortening of erythrocyte lifespan. PMID:20662842

  15. Generation and characterization of ixekizumab, a humanized monoclonal antibody that neutralizes interleukin-17A.

    Science.gov (United States)

    Liu, Ling; Lu, Jirong; Allan, Barrett W; Tang, Ying; Tetreault, Jonathan; Chow, Chi-Kin; Barmettler, Barbra; Nelson, James; Bina, Holly; Huang, Lihua; Wroblewski, Victor J; Kikly, Kristine

    2016-01-01

    Interleukin (IL)-17A exists as a homodimer (A/A) or as a heterodimer (A/F) with IL-17F. IL-17A is expressed by a subset of T-cells, called Th17 cells, at inflammatory sites. Most cell types can respond to the local production of IL-17A because of the near ubiquitous expression of IL-17A receptors, IL-17RA and IL-17RC. IL-17A stimulates the release of cytokines and chemokines designed to recruit and activate both neutrophils and memory T-cells to the site of injury or inflammation and maintain a proinflammatory state. IL-17A-producing pathogenic T-cells contribute to the pathogenesis of autoimmune diseases, including psoriasis, psoriatic arthritis, rheumatoid arthritis, and ankylosing spondylitis. This study describes the generation and characterization of ixekizumab, a humanized IgG4 variant IL-17A-neutralizing antibody. Ixekizumab binds human and cynomolgus monkey IL-17A with high affinity and binds rabbit IL-17A weakly but does not bind to rodent IL-17A or other IL-17 family members. Ixekizumab effectively inhibits the interaction between IL-17A and its receptor in binding assays and potently blocks IL-17A-induced GRO or KC secretion in cell-based assays. In an in vivo mouse pharmcodynamic model, ixekizumab blocks human IL-17A-induced mouse KC secretion. These data provide a comprehensive preclinical characterization of ixekizumab, for which the efficacy and safety have been demonstrated in human clinical trials in psoriasis and psoriatic arthritis.

  16. Screening of anti-human leukocyte monoclonal antibodies for reactivity with equine leukocytes.

    Science.gov (United States)

    Ibrahim, Sherif; Saunders, Kelly; Kydd, Julia H; Lunn, D Paul; Steinbach, Falko

    2007-09-15

    Three hundred and seventy-nine monoclonal antibodies (mAbs) against various human CD molecules supplied to the HLDA8 animal homologues section (including four isotype controls) were analysed for cross-reactivity with equine leukocytes. First, flow cytometric identification of positively reacting mAbs was performed in one laboratory. Thereafter, a second round of flow cytometric evaluation was performed, involving three laboratories participating in the study. The first test-round indicated 17 mAbs as potentially positive. After the second round of flow cytometric analysis, 14 mAbs remained (directed against CD2, CD11a, CD18, CD44, CD45, CD49d, CD91, CD163 and CD172) where cross-reactivity was anticipated based on similarities between the human and equine staining pattern. Additionally, there was 1 mAb with weak likely positive reactivity, 12 mAbs with positive staining, which likely do not reflect valuable data, 5 mAbs with clear alternate expression pattern from that expected from humans, 5 mAbs with a questionable staining pattern itself, i.e. that was variable between the three labs, 32 mAbs with weak-positive expression and alternate staining pattern, and 279 negative mAbs (including the four isotype controls) were detected. In 31 cases, more appropriate target cells, such as thymocytes or stem cells, were not available for the screening. The results underline the value of this "cross-reactivity" approach for equine immunology. However, as only a few mAbs against leukocyte surface antigens reacted positively (approximately 4% of the mAbs submitted), the analysis of further anti-human mAbs and directed efforts to develop species-specific anti-CD mAb are still required.

  17. A neutralizing human monoclonal antibody protects African Green monkeys from Hendra virus challenge

    Science.gov (United States)

    Bossart, Katharine N.; Geisbert, Thomas W.; Feldmann, Heinz; Zhu, Zhongyu; Feldmann, Friederike; Geisbert, Joan B.; Yan, Lianying; Feng, Yan-Ru; Brining, Doug; Scott, Dana; Wang, Yanping; Dimitrov, Antony S.; Callison, Julie; Chan, Yee-Peng; Hickey, Andrew C.; Dimitrov, Dimiter S.; Broder, Christopher C.; Rockx, Barry

    2012-01-01

    Hendra virus (HeV) is a recently emerged zoonotic paramyxovirus that can cause a severe and often fatal disease in horses and humans. HeV is categorized as a biosafety level 4 agent, which has made the development of animal models and testing of potential therapeutics and vaccines challenging. Infection of African Green monkeys (AGMs) with HeV was recently demonstrated and disease mirrored fatal HeV infection in humans, manifesting as a multisystemic vasculitis with widespread virus replication in vascular tissues and severe pathologic manifestations in the lung, spleen and brain. Here, we demonstrate that m102.4, a potent HeV neutralizing human monoclonal antibody (hmAb), can protect AGMs from disease post infection (p.i.) with HeV. Fourteen AGMs were challenged intratracheally with a lethal dose of HeV and twelve subjects were infused twice with a 100 mg dose of m102.4 beginning at either 10 hr, 24 hr or 72 hr p.i. and again approximately 48 hrs later. The presence of viral RNA, infectious virus and HeV-specific immune responses demonstrated that all subjects were infected following challenge. All twelve AGMs that received m102.4 survived infection; whereas the untreated control subjects succumbed to disease on day 8 p.i.. Animals in the 72 hr treatment group exhibited neurological signs of disease but all animals started to recover by day 16 p.i.. These results represent successful post-exposure in vivo efficacy by an investigational drug against HeV and highlight the potential impact a hmAb can have on human disease. PMID:22013123

  18. Establishment of replacement International Standard 13/132 for human antibodies to Toxoplasma gondii.

    Science.gov (United States)

    Rijpkema, Sjoerd; Hockley, Jason; Rigsby, Peter; Guy, Edward C

    2016-09-01

    Sixteen laboratories carried out a collaborative study to validate 13/132 as a replacement International Standard (IS) for TOXM (3rd IS for anti-Toxoplasma Serum, Human, 1000 IU). 13/132 is a freeze dried preparation of pooled human plasma from six donors who experienced a recent Toxoplasma gondii infection. The potency of 13/132 was compared to TOXM and 01/600 (1st IS for anti-Toxoplasma IgG, Human, 20 IU). Samples were tested for IgA, IgG, IgG avidity and IgM in agglutination assays; enzyme linked immunosorbent assays (ELISA), enzyme linked fluorescent assays, immunoblots, immunofluorescence assays and the Sabin-Feldman dye test for Ig. 13/132 was strongly positive for Ig, IgA, IgG and IgM and the reproducibility was very good. 13/132 contains high levels of anti-Toxoplasma Ig, IgG and IgM and its potency falls between TOXM and 01/600. The avidity of IgG was found to be low, similar to the avidity of IgG from TOXM. 13/132 was established by the Expert Committee on Biological Standardization as the 4th IS for Antibodies, Human, to T. gondii with an assigned unitage of 160 IU per ampoule for Ig by dye test and 263 U per ampoule for IgG by ELISA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Isolation of a human-like antibody fragment (scFv that neutralizes ricin biological activity

    Directory of Open Access Journals (Sweden)

    Thullier Philippe

    2009-06-01

    Full Text Available Abstract Background Ricin is a lethal toxin that inhibits protein synthesis. It is easily extracted from a ubiquitously grown plant, Ricinus communis, and thus readily available for use as a bioweapon (BW. Anti-ricin antibodies provide the only known therapeutic against ricin intoxication. Results In this study, after immunizing a non-human primate (Macaca fascicularis with the ricin chain A (RTA, a phage-displayed immune library was built (2 × 108 clones, that included the λ light chain fragment. The library was screened against ricin, and specific binders were sequenced and further analyzed. The best clone, 43RCA, was isolated using a new, stringent neutralization test. 43RCA had a high, picomolar affinity (41 pM and neutralized ricin efficiently (IC50 = 23 ± 3 ng/ml, corresponding to a [scFv]/[ricin] molar ratio of 4. The neutralization capacity of 43RCA compared favourably with that of polyclonal anti-deglycosylated A chain (anti-dgRCA IgGs, obtained from hyperimmune mouse serum, which were more efficient than any monoclonal at our disposal. The 43RCA sequence is very similar to that for human IgG germline genes, with 162 of 180 identical amino acids for the VH and VL (90% sequence identity. Conclusion Results of the characterization studies, and the high degree of identity with human germline genes, altogether make this anti-ricin scFv, or an IgG derived from it, a likely candidate for use in humans to minimize effects caused by ricin intoxication.

  20. De novo protein sequencing, humanization and in vitro effects of an antihuman CD34 mouse monoclonal antibody.

    Science.gov (United States)

    Fan, Chia-Yu; Huang, Sheng-Yu; Chou, Min-Yuan; Lyu, Ping-Chiang

    2017-03-01

    QBEND/10 is a mouse immunoglobulin lambda-chain monoclonal antibody with strict specificity against human hematopoietic progenitor cell antigen CD34. Our in vitro study showed that QBEND/10 impairs the tube formation of human umbilical vein endothelial cells (HUVECs), suggesting that the antibody may be of potential benefit in blocking tumor angiogenesis. We provided a de novo protein sequencing method through tandem mass spectrometry to identify the amino acid sequences in the variable heavy and light chains of QBEND/10. To reduce immunogenicity for clinical applications, QBEND/10 was further humanized using the resurfacing approach. We demonstrate that the de novo sequenced and humanized QBEND/10 retains the biological functions of the parental mouse counterpart, including the binding kinetics to CD34 and blockage of the tube formation of the HUVECs.

  1. Applying antibody-sensitive hypervariable region 1-deleted hepatitis C virus to the study of escape pathways of neutralizing human monoclonal antibody AR5A

    Science.gov (United States)

    Velázquez-Moctezuma, Rodrigo; Bukh, Jens

    2017-01-01

    Hepatitis C virus (HCV) is a major cause of end-stage liver diseases. With 3–4 million new HCV infections yearly, a vaccine is urgently needed. A better understanding of virus escape from neutralizing antibodies and their corresponding epitopes are important for this effort. However, for viral isolates with high antibody resistance, or antibodies with moderate potency, it remains challenging to induce escape mutations in vitro. Here, as proof-of-concept, we used antibody-sensitive HVR1-deleted (ΔHVR1) viruses to generate escape mutants for a human monoclonal antibody, AR5A, targeting a rare cross-genotype conserved epitope. By analyzing the genotype 1a envelope proteins (E1/E2) of recovered Core-NS2 recombinant H77/JFH1ΔHVR1 and performing reverse genetic studies we found that resistance to AR5A was caused by substitution L665W, also conferring resistance to the parental H77/JFH1. The mutation did not induce viral fitness loss, but abrogated AR5A binding to HCV particles and intracellular E1/E2 complexes. Culturing J6/JFH1ΔHVR1 (genotype 2a), for which fitness was decreased by L665W, with AR5A generated AR5A-resistant viruses with the substitutions I345V, L665S, and S680T, which we introduced into J6/JFH1 and J6/JFH1ΔHVR1. I345V increased fitness but had no effect on AR5A resistance. L665S impaired fitness and decreased AR5A sensitivity, while S680T combined with L665S compensated for fitness loss and decreased AR5A sensitivity even further. Interestingly, S680T alone had no fitness effect but sensitized the virus to AR5A. Of note, H77/JFH1L665S was non-viable. The resistance mutations did not affect cell-to-cell spread or E1/E2 interactions. Finally, introducing L665W, identified in genotype 1, into genotypes 2–6 parental and HVR1-deleted variants (not available for genotype 4a) we observed diverse effects on viral fitness and a universally pronounced reduction in AR5A sensitivity. Thus, we were able to take advantage of the neutralization-sensitive HVR1

  2. Construction and characterization of a fusion protein of single-chain anti-carcinoma antibody 323/A3 and human beta-glucuronidase

    NARCIS (Netherlands)

    Haisma, HJ; Brakenhoff, RH; Van der Meulen-Muileman, I.H.; Pinedo, HM; Boven, E

    We report the construction and expression of a fusion protein between a single-chain antibody specific for human carcinomas and human beta-glucuronidase by recombinant DNA technology. The sequences encoding the murine monoclonal antibody 323/A3 light- and heavy-chain variable genes were joined by a

  3. Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an antikinetochore antibody

    Energy Technology Data Exchange (ETDEWEB)

    Eastmond, D.A.; Tucker, J.D.

    1989-01-01

    The identification of agents causing aneuploidy in humans, a condition associated with carcinogenesis and birth defects, is currently limited due to the highly skilled and time-consuming nature of cytogenetic analyses. We report the development of a new simple and rapid assay to identify aneuploidy-inducing agents (aneuploidogens). The assay involves the chemical- or radiation-induced formation of micronuclei in cytokinesis-blocked human lymphocytes and the use of an antikinetochore antibody to determine whether the micronuclei contain centromeres--a condition indicating a high potential for aneuploidy. All agents tested produced dose-related increases in the frequency of micronucleated cells. The micronucleated cells induced by the known aneuploidogens--colchicine, vincristine sulfate, and diethylstilbestrol--contained kinetochore-positive micronuclei 92, 87, and 76% of the time, respectively. In contrast, the micronucleated cells induced by the potent clastogens--ionizing radiation and sodium arsenite--contained kinetochore-positive micronuclei only 3 and 19% of the time, respectively. These results indicate that this relatively simple assay can discriminate between aneuploidogens and clastogens and may allow a more rapid identification of environmental and therapeutic agents with aneuploidy-inducing potential.

  4. Large Scale Generation and Characterization of Anti-Human CD34 Monoclonal Antibody in Ascetic Fluid of Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Koushan Sineh sepehr

    2013-02-01

    Full Text Available Purpose: Monoclonal antibodies or specific antibodies are now an essential tool of biomedical research and are of great commercial and medical value. The purpose of this study was to produce large scale of monoclonal antibody against CD34 in order to diagnostic application in leukemia and purification of human hematopoietic stem/progenitor cells. Methods: For large scale production of monoclonal antibody, hybridoma cells that produce monoclonal antibody against human CD34 were injected into the peritoneum of the Balb/c mice which have previously been primed with 0.5 ml Pristane. 5 ml ascitic fluid was harvested from each mouse in two times. Evaluation of mAb titration was assessed by ELISA method. The ascitic fluid was examined for class and subclasses by ELISA mouse mAb isotyping Kit. mAb was purified from ascitic fluid by affinity chromatography on Protein A-Sepharose. Purity of monoclonal antibody was monitored by SDS -PAGE and the purified monoclonal antibody was conjugated with FITC. Results: Monoclonal antibodies with high specificity and sensitivity against human CD34 by hybridoma technology were prepared. The subclass of antibody was IgG1 and its light chain was kappa. Conclusion: The conjugated monoclonal antibody could be a useful tool for isolation, purification and characterization of human hematopoietic stem cells.

  5. Antibody-Secreting Cell Responses and Protective Immunity Assessed in Gnotobiotic Pigs Inoculated Orally or Intramuscularly with Inactivated Human Rotavirus†

    OpenAIRE

    Yuan, Lijuan; Kang, S.-Y.; Ward, Lucy A.; To, Thanh L.; Saif, Linda J.

    1998-01-01

    Newborn gnotobiotic pigs were inoculated twice perorally (p.o.) (group 1) or intramuscularly (i.m.) (group 2) or three times i.m. (group 3) with inactivated Wa strain human rotavirus and challenged with virulent Wa human rotavirus 20 to 24 days later. To assess correlates of protection, antibody-secreting cells (ASC) were enumerated in intestinal and systemic lymphoid tissues from pigs in each group at selected postinoculation days (PID) or postchallenge days. Few virus-specific ASC were dete...

  6. Neutralizing antibody response during human immunodeficiency virus type 1 infection: type and group specificity and viral escape

    DEFF Research Database (Denmark)

    Arendrup, M; Sönnerborg, A; Svennerholm, B

    1993-01-01

    demonstrated, suggesting that the majority of the change in neutralization sensitivity is driven by the selective pressure of type-specific NA. Furthermore, no differences were observed in sensitivity to neutralization by anti-carbohydrate neutralizing monoclonal antibodies or the lectin concanavalin A......The paradox that group-specific neutralizing antibodies (NA) exist in the majority of human immunodeficiency virus type 1 (HIV-1)-infected patients, whereas the NA response against autologous HIV-1 virus isolates is highly type-specific, motivated us to study the type- and group-specific NA...

  7. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...... neutralization gradually increased. Virus neutralization by virion aggregation was minimal, as MAb binding to HIV-1 Env did not interfere with an AMLV Env-mediated infection by HIV-1(AMLV/HIV-1) pseudotypes of CD4(-) HEK293 cells. MAb neutralization of chimeric virions could be described as a third...

  8. [Construction of dengue virus-specific full-length fully human antibody libraries by mammalian display technology].

    Science.gov (United States)

    Wen, Yangming; Lan, Kaijian; Wang, Junjie; Yu, Jingyi; Qu, Yarong; Zhao, Wei; Zhang, Fuchun; Tan, Wanlong; Cao, Hong; Zhou, Chen

    2013-06-01

    To construct dengue virus-specific full-length fully human antibody libraries using mammalian cell surface display technique. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) from convalescent patients with dengue fever. The reservoirs of the light chain and heavy chain variable regions (LCκ and VH) of the antibody genes were amplified by RT-PCR and inserted into the vector pDGB-HC-TM separately to construct the light chain and heavy chain libraries. The library DNAs were transfected into CHO cells and the expression of full-length fully human antibodies on the surface of CHO cells was analyzed by flow cytometry. Using 1.2 µg of the total RNA isolated from the PBMCs as the template, the LCκ and VH were amplified and the full-length fully human antibody mammalian display libraries were constructed. The kappa light chain gene library had a size of 1.45×10(4) and the heavy chain gene library had a size of 1.8×10(5). Sequence analysis showed that 8 out of the 10 light chain clones and 7 out of the 10 heavy chain clones randomly picked up from the constructed libraries contained correct open reading frames. FACS analysis demonstrated that all the 15 clones with correct open reading frames expressed full-length antibodies, which could be detected on CHO cell surfaces. After co-transfection of the heavy chain and light chain gene libraries into CHO cells, the expression of full-length antibodies on CHO cell surfaces could be detected by FACS analysis with an expressible diversity of the antibody library reaching 1.46×10(9) [(1.45×10(4)×80%)×(1.8×10(5)×70%)]. Using 1.2 µg of total RNA as template, the LCκ and VH full-length fully human antibody libraries against dengue virus have been successfully constructed with an expressible diversity of 10(9).

  9. Epitope Mapping of Neutralizing Monoclonal Antibodies to Human Interferon-γ Using Human-Bovine Interferon-γ Chimeras

    Science.gov (United States)

    Zuber, Bartek; Rudström, Karin; Ehrnfelt, Cecilia

    2016-01-01

    Our aim was to identify conformational epitopes, recognized by monoclonal antibodies (mAbs) made against human (h) interferon (IFN)-γ. Based on the mAbs' (n = 12) ability to simultaneously bind hIFN-γ in ELISA, 2 epitope clusters with 5 mAbs in each were defined; 2 mAbs recognized unique epitopes. Utilizing the mAbs' lack of reactivity with bovine (b) IFN-γ, epitopes were identified using 7 h/bIFN-γ chimeras where the helical regions (A-F) or the C terminus were substituted with bIFN-γ residues. Chimeras had a N-terminal peptide tag enabling the analysis of mAb recognition of chimeras in ELISA. The 2 mAb clusters mapped to region A and E, respectively; the epitopes of several mAbs also involved additional regions. MAbs in cluster A neutralized, to various degrees, IFN-γ-mediated activation of human cells, in line with the involvement of region A in the IFN-γ receptor interaction. MAbs mapping to region E displayed a stronger neutralizing capacity although this region has not been directly implicated in the receptor interaction. The results corroborate earlier studies and provide a detailed picture of the link between the epitope specificity and neutralizing capacity of mAbs. They further demonstrate the general use of peptide-tagged chimeric proteins as a powerful and straightforward method for efficient mapping of conformational epitopes. PMID:27336613

  10. From Monoclonal Antibodies to Chimeric Antigen Receptors for the Treatment of Human Malignancies

    OpenAIRE

    Caruana, Ignazio; Diaconu, Iulia; Dotti, Gianpietro

    2014-01-01

    Monoclonal antibodies (mAbs) and their directly derived cell-based application known as chimeric antigen receptors (CARs) ensue from the need to develop novel therapeutic strategies that retain high anti-tumor activity, but carry reduced toxicity compared to conventional chemo- and radio-therapies. In this concise review article we will summarize the application of antibodies designed to target antigens expressed by tumor cells, and the transition from these antibodies to the generation of CARs.

  11. A cocktail of humanized anti-pertussis toxin antibodies limits disease in murine and baboon models of whooping cough.

    Science.gov (United States)

    Nguyen, Annalee W; Wagner, Ellen K; Laber, Joshua R; Goodfield, Laura L; Smallridge, William E; Harvill, Eric T; Papin, James F; Wolf, Roman F; Padlan, Eduardo A; Bristol, Andy; Kaleko, Michael; Maynard, Jennifer A

    2015-12-02

    Despite widespread vaccination, pertussis rates are rising in industrialized countries and remain high worldwide. With no specific therapeutics to treat disease, pertussis continues to cause considerable infant morbidity and mortality. The pertussis toxin is a major contributor to disease, responsible for local and systemic effects including leukocytosis and immunosuppression. We humanized two murine monoclonal antibodies that neutralize pertussis toxin and expressed them as human immunoglobulin G1 molecules with no loss of affinity or in vitro neutralization activity. When administered prophylactically to mice as a binary cocktail, antibody treatment completely mitigated the Bordetella pertussis-induced rise in white blood cell counts and decreased bacterial colonization. When administered therapeutically to baboons, antibody-treated, but not untreated control animals, experienced a blunted rise in white blood cell counts and accelerated bacterial clearance rates. These preliminary findings support further investigation into the use of these antibodies to treat human neonatal pertussis in conjunction with antibiotics and supportive care. Copyright © 2015, American Association for the Advancement of Science.

  12. B-cell display-based one-step method to generate chimeric human IgG monoclonal antibodies.

    Science.gov (United States)

    Lin, Waka; Kurosawa, Kohei; Murayama, Akiho; Kagaya, Eri; Ohta, Kunihiro

    2011-02-01

    The recent development of screening strategies based on the generation and display of large libraries of antibody fragments has allowed considerable advances for the in vitro isolation of monoclonal antibodies (mAbs). We previously developed a technology referred to as the 'ADLib (Autonomously Diversifying Library) system', which allows the rapid screening and isolation in vitro of antigen-specific monoclonal antibodies (mAbs) from libraries of immunoglobulin M (IgM) displayed by the chicken B-cell line DT40. Here, we report a novel application of the ADLib system to the production of chimeric human mAbs. We have designed gene knock-in constructs to generate DT40 strains that coexpress chimeric human IgG and chicken IgM via B-cell-specific RNA alternative splicing. We demonstrate that the application of the ADLib system to these strains allows the one-step selection of antigen-specific human chimeric IgG. In addition, the production of chimeric IgG can be selectively increased when we modulate RNA processing by overexpressing the polyadenylation factor CstF-64. This method provides a new way to efficiently design mAbs suitable for a wide range of purposes including antibody therapy.

  13. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire.

    Science.gov (United States)

    Briney, Bryan S; Willis, Jordan R; Hicar, Mark D; Thomas, James W; Crowe, James E

    2012-09-01

    Antibody heavy-chain recombination that results in the incorporation of multiple diversity (D) genes, although uncommon, contributes substantially to the diversity of the human antibody repertoire. Such recombination allows the generation of heavy chain complementarity determining region 3 (HCDR3) regions of extreme length and enables junctional regions that, because of the nucleotide bias of N-addition regions, are difficult to produce through normal V(D)J recombination. Although this non-classical recombination process has been observed infrequently, comprehensive analysis of the frequency and genetic characteristics of such events in the human peripheral blood antibody repertoire has not been possible because of the rarity of such recombinants and the limitations of traditional sequencing technologies. Here, through the use of high-throughput sequencing of the normal human peripheral blood antibody repertoire, we analysed the frequency and genetic characteristics of V(DD)J recombinants. We found that these recombinations were present in approximately 1 in 800 circulating B cells, and that the frequency was severely reduced in memory cell subsets. We also found that V(DD)J recombination can occur across the spectrum of diversity genes, indicating that virtually all recombination signal sequences that flank diversity genes are amenable to V(DD)J recombination. Finally, we observed a repertoire bias in the diversity gene repertoire at the upstream (5') position, and discovered that this bias was primarily attributable to the order of diversity genes in the genomic locus. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  14. Combination of phage and Gram-positive bacterial display of human antibody repertoires enables isolation of functional high affinity binders.

    Science.gov (United States)

    Hu, Francis Jingxin; Volk, Anna-Luisa; Persson, Helena; Säll, Anna; Borrebaeck, Carl; Uhlen, Mathias; Rockberg, Johan

    2017-08-01

    Surface display couples genotype with a surface exposed phenotype and thereby allows screening of gene-encoded protein libraries for desired characteristics. Of the various display systems available, phage display is by far the most popular, mainly thanks to its ability to harbour large size libraries. Here, we describe the first use of a Gram-positive bacterial host for display of a library of human antibody genes which, when combined with phage display, provides ease of use for screening, sorting and ranking by flow cytometry. We demonstrate the utility of this method by identifying low nanomolar affinity scFv fragments towards human epidermal growth factor receptor 2 (HER2). The ranking and performance of the scFv isolated by flow sorting in surface-immobilised form was retained when expressed as soluble scFv and analysed by biolayer interferometry, as well as after expression as full-length antibodies in mammalian cells. We also demonstrate the possibility of using Gram-positive bacterial display to directly improve the affinity of the identified binders via an affinity maturation step using random mutagenesis and flow sorting. This combined approach has the potential for a more complete scan of the antibody repertoire and for affinity maturation of human antibody formats. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Detection of Signal Regulatory Protein α in Saimiri sciureus (Squirrel Monkey) by Anti-Human Monoclonal Antibody

    Science.gov (United States)

    de Souza, Hugo Amorim dos Santos; Costa-Correa, Edmar Henrique; Bianco-Junior, Cesare; Andrade, Márcia Cristina Ribeiro; Lima-Junior, Josué da Costa; Pratt-Riccio, Lilian Rose; Daniel-Ribeiro, Cláudio Tadeu; Totino, Paulo Renato Rivas

    2017-01-01

    Non-human primates (NHP) are suitable models for studying different aspects of the human system, including pathogenesis and protective immunity to many diseases. However, the lack of specific immunological reagents for neo-tropical monkeys, such as Saimiri sciureus, is still a major factor limiting studies in these models. An alternative strategy to circumvent this obstacle has been the selection of immunological reagents directed to humans, which present cross-reactivity with NHP molecules. In this context and considering the key role of inhibitory immunoreceptors—such as the signal regulatory protein α (SIRPα)—in the regulation of immune responses, in the present study, we attempted to evaluate the ability of anti-human SIRPα monoclonal antibodies to recognize SIRPα in antigen-presenting S. sciureus peripheral blood mononuclear cells (PBMC). As shown by flow cytometry analysis, the profile of anti-SIRPα staining as well as the levels of SIRPα-positive cells in PBMC from S. sciureus were similar to those observed in human PBMC. Furthermore, using anti-SIRPα monoclonal antibody, it was possible to detect a decrease of the SIRPα levels on surface of S. sciureus cells after in vitro stimulation with lipopolysaccharides. Finally, using computed-based analysis, we observed a high degree of conservation of SIRPα across six species of primates and the presence of shared epitopes in the extracellular domain between humans and Saimiri genus that could be targeted by antibodies. In conclusion, we have identified a commercially available anti-human monoclonal antibody that is able to detect SIRPα of S. sciureus monkeys and that, therefore, can facilitate the study of the immunomodulatory role of SIRPα when S. sciureus is used as a model. PMID:29312325

  16. Detection of Signal Regulatory Protein α in Saimiri sciureus (Squirrel Monkey by Anti-Human Monoclonal Antibody

    Directory of Open Access Journals (Sweden)

    Hugo Amorim dos Santos de Souza

    2017-12-01

    Full Text Available Non-human primates (NHP are suitable models for studying different aspects of the human system, including pathogenesis and protective immunity to many diseases. However, the lack of specific immunological reagents for neo-tropical monkeys, such as Saimiri sciureus, is still a major factor limiting studies in these models. An alternative strategy to circumvent this obstacle has been the selection of immunological reagents directed to humans, which present cross-reactivity with NHP molecules. In this context and considering the key role of inhibitory immunoreceptors—such as the signal regulatory protein α (SIRPα—in the regulation of immune responses, in the present study, we attempted to evaluate the ability of anti-human SIRPα monoclonal antibodies to recognize SIRPα in antigen-presenting S. sciureus peripheral blood mononuclear cells (PBMC. As shown by flow cytometry analysis, the profile of anti-SIRPα staining as well as the levels of SIRPα-positive cells in PBMC from S. sciureus were similar to those observed in human PBMC. Furthermore, using anti-SIRPα monoclonal antibody, it was possible to detect a decrease of the SIRPα levels on surface of S. sciureus cells after in vitro stimulation with lipopolysaccharides. Finally, using computed-based analysis, we observed a high degree of conservation of SIRPα across six species of primates and the presence of shared epitopes in the extracellular domain between humans and Saimiri genus that could be targeted by antibodies. In conclusion, we have identified a commercially available anti-human monoclonal antibody that is able to detect SIRPα of S. sciureus monkeys and that, therefore, can facilitate the study of the immunomodulatory role of SIRPα when S. sciureus is used as a model.

  17. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics.

    Science.gov (United States)

    Fagerberg, Linn; Hallström, Björn M; Oksvold, Per; Kampf, Caroline; Djureinovic, Dijana; Odeberg, Jacob; Habuka, Masato; Tahmasebpoor, Simin; Danielsson, Angelika; Edlund, Karolina; Asplund, Anna; Sjöstedt, Evelina; Lundberg, Emma; Szigyarto, Cristina Al-Khalili; Skogs, Marie; Takanen, Jenny Ottosson; Berling, Holger; Tegel, Hanna; Mulder, Jan; Nilsson, Peter; Schwenk, Jochen M; Lindskog, Cecilia; Danielsson, Frida; Mardinoglu, Adil; Sivertsson, Asa; von Feilitzen, Kalle; Forsberg, Mattias; Zwahlen, Martin; Olsson, IngMarie; Navani, Sanjay; Huss, Mikael; Nielsen, Jens; Ponten, Fredrik; Uhlén, Mathias

    2014-02-01

    Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ∼80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.

  18. CROSSREACTIVE ANTIBODIES AND MEMORY T CELLS TO HUMAN AND ZOONOTIC INFLUENZA A VIRUSES IN VOLUNTEERS

    Directory of Open Access Journals (Sweden)

    I. V. Losev

    2015-01-01

    Full Text Available There exists a real hazard of transferring zoonotic influenza A viruses, either swine, or avian, into human population. In such case, severity of such pandemics depends on the pathogen-specific immunity in the population. Virtual absence of such immunity in humans was declared in the literature. In this work, we assessed systemic, local, and T-cell immunity to potentially pandemic H3N2sw, H5N1, H5N2, H7N3, H7N9 and H2N2 influenza A viruses in a group of healthy adults of different age. Our results indicate that these subjects develop the following immune reactions: (i local (i.e., nasal IgA and cellular (CD4+ and CD8v memory T cells heterosubtypic immunity, in absence of detectable virus-specific serum antibodies to avian influenza A viruses; (ii Local immune responses (as nasal IgA to human A (H2N2 virus which circulated in 1957-1968 were detected both in subjects who could be primed at that time, but also in subjects born after 1968; (iii full-scale systemic and local immunity to potentially pandemic А (H3N2sw swine virus was found in the group. Conclusion. In order of proper epidemiological forecasts and planning appropriate preventive measures for potentially pandemic Influenza A viruses, a regular monitoring of collective immunity should be performed using different adaptive markers. In this respect, any conclusion based on molecular analysis only could lead to considerable mistakes, and should be accomplished by the mentioned immunological studies.

  19. Novel Monoclonal Antibodies Recognizing Human Prostate-Specific Membrane Antigen (PSMA) as Research and Theranostic Tools.

    Science.gov (United States)

    Nováková, Zora; Foss, Catherine A; Copeland, Benjamin T; Morath, Volker; Baranová, Petra; Havlínová, Barbora; Skerra, Arne; Pomper, Martin G; Barinka, Cyril

    2017-05-01

    Prostate-specific membrane antigen (PSMA) is a validated target for the imaging and therapy of prostate cancer. Here, we report the detailed characterization of four novel murine monoclonal antibodies (mAbs) recognizing human PSMA as well as PSMA orthologs from different species. Performance of purified mAbs was assayed using a comprehensive panel of in vitro experimental setups including Western blotting, immunofluorescence, immunohistochemistry, ELISA, flow cytometry, and surface-plasmon resonance. Furthermore, a mouse xenograft model of prostate cancer was used to compare the suitability of the mAbs for in vivo applications. All mAbs demonstrate high specificity for PSMA as documented by the lack of cross-reactivity to unrelated human proteins. The 3F11 and 1A11 mAbs bind linear epitopes spanning residues 226-243 and 271-288 of human PSMA, respectively. 3F11 is also suitable for the detection of PSMA orthologs from mouse, pig, dog, and rat in experimental setups where the denatured form of PSMA is used. 5D3 and 5B1 mAbs recognize distinct surface-exposed conformational epitopes and are useful for targeting PSMA in its native conformation. Most importantly, using a mouse xenograft model of prostate cancer we show that both the intact 5D3 and its Fab fragment are suitable for in vivo imaging. With apparent affinities of 0.14 and 1.2 nM as determined by ELISA and flow cytometry, respectively, 5D3 has approximately 10-fold higher affinity for PSMA than the clinically validated mAb J591 and, therefore, is a prime candidate for the development of next-generation theranostics to target PSMA. Prostate 77:749-764, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Fc functional antibodies in humans with severe H7N9 and seasonal influenza

    Science.gov (United States)

    Vanderven, Hillary A.; Liu, Lu; Ana-Sosa-Batiz, Fernanda; Nguyen, Thi H.O.; Wan, Yanmin; Hogarth, P. Mark; Tilmanis, Danielle; Parsons, Matthew S.; Hurt, Aeron C.; Davenport, Miles P.; Kotsimbos, Tom; Cheng, Allen C.; Kedzierska, Katherine; Zhang, Xiaoyan; Xu, Jianqing; Kent, Stephen J.

    2017-01-01

    BACKGROUND. Both seasonal and novel avian influenza viruses can result in severe infections requiring hospitalization. Anti-influenza antibodies (Abs) with Fc-mediated effector functions, such as Ab-dependent cellular cytotoxicity (ADCC), are of growing interest in control of influenza but have not previously been studied during severe human infections. As such, the objective of this study was to examine Fc-mediated Ab functions in humans hospitalized with influenza infection. METHODS. Serum Ab response was studied in subjects hospitalized with either pandemic H7N9 avian influenza virus in China (n = 18) or circulating seasonal influenza viruses in Melbourne, Australia (n = 16). Recombinant soluble Fc receptor dimer ELISAs, natural killer (NK) cell activation assays, and Ab-dependent killing assays with influenza-infected target cells were used to assess the Fc functionality of anti-influenza hemagglutinin (HA) Abs during severe human influenza infection. RESULTS. We found that the peak generation of Fc functional HA Abs preceded that of neutralizing Abs for both severe H7N9 and seasonal influenza infections. Subjects who succumbed to complications of H7N9 infection demonstrated reduced HA-specific Fc receptor–binding Abs (in magnitude and breadth) immediately prior to death compared with those who survived. Subjects who recovered from H7N9 and severe seasonal influenza infections demonstrated increased Fc receptor–binding Abs not only against the homologous infecting strain but against HAs from different influenza A subtypes. CONCLUSION. Collectively, survivors of severe influenza infection rapidly generate a functional Ab response capable of mediating ADCC against divergent influenza viruses. Broadly binding HA Abs with Fc-mediated functions may be a useful component of protective immunity to severe influenza infection. FUNDING. The National Health and Medical Research Council ([NHMRC] grants 1023294, 1041832, and 1071916), the Australian Department of Health

  1. Detection of auto-anti-idiotypic antibodies to Lol p I (rye I) IgE antibodies in human sera by the use of murine idiotypes: levels in atopic and non-atopic subjects and effects of immunotherapy.

    Science.gov (United States)

    Hébert, J; Bernier, D; Mourad, W

    1990-06-01

    Anti-idiotypic antibodies (anti-Id Abs) are involved in the regulation of a number of immune responses including the IgE antibody production. In atopic patients, the increased synthesis of IgE antibodies could be related to a defective production of regulatory anti-Id Abs. In the present study, we first developed a sensitive assay for measuring the levels of anti-Id Abs directed against antibodies specific for Lol p I, the major allergenic determinant of Lolium perenne (rye grass). In this assay, we used previously described murine monoclonal anti-Lol p I antibodies that were shown to share epitopic specificities with human anti-Lol p I IgE and IgG antibodies, thus short-cutting the need for purification of F(ab')2 fragments of human IgG Abs and insuring optimal specificity and sensitivity. Levels of anti-Id Abs against two anti-Lol p I monoclonal antibodies (290A-167, 348A-6) were higher in normal volunteers than in untreated atopic patients. Specific immunotherapy increased the levels of anti-Id Abs to those of normal volunteers. These observations suggest a role for the Id-anti-Id network in the regulation of IgE antibody production.

  2. Generation and epitope analysis of human monoclonal antibody isotypes with specificity for the timothy grass major allergen Phl p 5a

    DEFF Research Database (Denmark)

    Hecker, J.; Diethers, A.; Seismann, H.

    2011-01-01

    and cross-reactivity, standardisation of allergens as well as improvement of allergy diagnostics and therapeutics. Here we report the generation and application of the first set of authentic human IgG, IgE and IgA antibodies. On the basis of a Phl p 5a specific antibody fragment, a lambda light chain...... of the antibodies with the allergen was assessed. Applicability in allergy diagnostics was confirmed by establishment of artificial human sera. Functionality of both antibodies was further demonstrated in receptor binding studies and mediator release assays using humanised rat basophil leukaemia cells (RBL-SX38...

  3. Induction of Ab3 and Ab3' antibody was associated with long-term survival after anti-G(D2) antibody therapy of stage 4 neuroblastoma.

    Science.gov (United States)

    Cheung, N K; Guo, H F; Heller, G; Cheung, I Y

    2000-07-01

    Treatment with anti-G(D2) monoclonal antibody 3F8 (Ab1) at the time of remission may prolong survival for children with stage 4 neuroblastoma. A transient human antimouse antibody (HAMA) response was associated with significantly longer survival (Cheung et al., J. Clin. Oncol., 16: 3053-3060, 1998). Because this response was primarily anti-idiotypic (Ab2), we postulate that the subsequent induction of an idiotype network that included an elevation of anti-anti-idiotypic (Ab3) and anti-G(D2) (Ab3') antibody titers may be responsible for tumor control. Thirty-four patients with stage 4 neuroblastoma diagnosed at >1 year of age were treated with 3F8 at the end of chemotherapy. Most had either bone marrow (31 of 34) or distant bony (29 of 34) metastases at diagnosis. Thirteen patients were treated at second or subsequent remission, and 12 patients in this group had a history of progressive/persistent disease after bone marrow transplantation; 21 patients were treated in the first remission after N6 chemotherapy. Their serum HAMA, Ab3, and Ab3' titers prior to, at 6, and at 14 months after antibody treatment were measured by ELISA. Among these 34 patients, 14 are alive, and 13 (1.8-7.4 years at diagnosis) are progression free (53-143 months from the initiation of 3F8 treatment) without further systemic therapy. Long-term progression-free survival (PFS) and survival correlated significantly with Ab3' (anti-G(D2)) response at 6 months and with Ab3 response at 6 and 14 months. By defining Ab3 threshold ranging from the ratio of 1.1 to 2.6 above pretreatment level, the difference in PFS and survival between the high-Ab3 and low-Ab3 groups became markedly widened. Similarly, increasing the Ab3' threshold at either 6 or 14 months to 300% above pre-3F8 levels also increased the spread between the high versus low Ab3' groups for both PFS and survival curves. Non-idiotype antibody responses (anti-mouse-IgG3 or anti-tumor nuclear HUD antigen) had no apparent impact on PFS or

  4. Treatment of Lassa virus infection in outbred guinea pigs with first-in-class human monoclonal antibodies.

    Science.gov (United States)

    Cross, Robert W; Mire, Chad E; Branco, Luis M; Geisbert, Joan B; Rowland, Megan M; Heinrich, Megan L; Goba, Augustine; Momoh, Mambu; Grant, Donald S; Fullah, Mohamed; Khan, Sheik Humarr; Robinson, James E; Geisbert, Thomas W; Garry, Robert F

    2016-09-01

    Lassa fever is a significant health threat to West African human populations with hundreds of thousands of annual cases. There are no approved medical countermeasures currently available. Compassionate use of the antiviral drug ribavirin or transfusion of convalescent serum has resulted in mixed success depending on when administered or the donor source, respectively. We previously identified several recombinant human monoclonal antibodies targeting the glycoprotein of Lassa virus with strong neutralization profiles in vitro. Here, we demonstrate remarkable therapeutic efficacy using first-in-class human antibodies in a guinea pig model of Lassa infection thereby presenting a promising treatment alternative. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Human sperm antigens and antisperm antibodies I. Studies on vasectomy patients.

    Science.gov (United States)

    Tung, K S

    1975-01-01

    This study documents the types and incidence of antisperm antibody, detectable by indirect immunofluorescence, in 114 patients before vasectomy, 112 at 2 months and 71 patients at 6-9 months after vasectomy. Indirect immunofluorescence techniques revealed antibodies to seven distinct sperm antigens. Five of these antigens were readily accessible to antibody in vitro, and the remaining two were accessible only after treatment of spermatozoa with dithiothreitol and trypsin. Antisperm antibodies were detected in 61% of patients before vasectomy. The incidence rose to 77% at 2 months and 90% at 6-9 months after vasectomy. These antibodies were distinguishable into two groups based on their incidence before vasectomy. The first group included antibodies to antigens in the acrosome with a diffuse distribution, the equatorial region, the postacrosomal region and the midpiece of the tail. Its incidence was 61% before vasectomy; increased to 73% at 2 months and 80% at 6-9 months after vasectomy. The second group included antibodies to the sperm nucleus, the tail and to discrete antigens over the acrosome. They were found rarely (3%) in patients before vasectomy; increased in incidence to 25% at 2 months and 55% at 6-9 months after vasectomy. Antisperm antibodies of both groups existed as IgG and IgM classes; an exception being antibodies to sperm nucleus which were almost exclusively IgG. Of the antibodies, 14% were found to fix complement in vitro. Other autoantibodies, including antinuclear, antimitochondrial and antismooth muscle antibodies, did not develop following vasectomy. Images FIG. 1 PMID:1106922

  6. Chimeric antibodies.

    Science.gov (United States)

    Kurosawa, Kohei; Lin, Waka; Ohta, Kunihiro

    2014-01-01

    Here we describe a detailed protocol for the one-step preparation of antigen-specific human chimeric immunoglobulin G (IgG) monoclonal antibodies (mAbs) using an in vitro antibody design method referred to as the ADLib (Autonomously Diversifying Library) system. This method employs a chicken B cell line DT40-based library in which the variable regions of the Ig gene loci have been highly diversified by treatment with the histone deacetylase inhibitors. DT40 cells express both membrane-bound and secreted forms of chicken IgM. This property allows a rapid screening and selection of antibody-producing B cells from the library by using magnetic beads conjugated with any antigen of interest. To apply the ADLib system to the direct generation of human chimeric antibody, we have inserted a DNA segment coding for the constant region of human IgG into the chicken IgM heavy-chain locus of DT40 cells by homologous gene targeting. By a mechanism of alternative splicing, the resulting DT40 strain simultaneously expresses chimeric human IgG that contain the same Ig variable region sequences as the membrane-bound chicken IgM displayed at the cell surface. Application of the ADLib system to this human Ig-inserted DT40 strain enables the one-step isolation of human chimeric IgG that is specific for any antigen of interest and can be easily purified for immediate use.

  7. Generation of human monoclonal antibodies against ganglioside antigens and their applications in the diagnosis and therapy of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, M. [Dept. of Tumor Cell Biology, Div. of Cancer Biology, Danish Cancer Society, Copenhagen (Denmark)]|[Dept. of Research and Development, Center of Molecular Immunology, Havana (Cuba); Zeuthen, J. [Dept. of Tumor Cell Biology, Div. of Cancer Biology, Danish Cancer Society, Copenhagen (Denmark)

    1996-10-01

    Different approaches to generating human monoclonal antibodies (MAbs) against tumor-associated ganglioside antigens have been carried out in several laboratories. A specific goal addressed by our laboratory is to produce human MAbs to several ganglioside antigens of relevance as therapeutic targets, such as the GM2, GD2, GD3 and GM3 gangliosides in melanoma. In vitro immunization of human B lymphocytes from normal donors was performed using liposomes containing gangliosides as the immunizing antigen combined with either complete tetanus toxoid or a synthetic peptide corresponding to a T helper epitope to stimulate in vitro immunization. Specific human anti-ganglioside antibodies were obtained, indicating that the antibdoy response found in vitro was antigen-driven. To overcome the widely reported problems concerning stability of immunoglobulin production by the antibody-secreting cell lines, a method of positive selection using GM3-coated magnetic beads has been developed in order to rescue unstable clones. Development of new methods to reproducibly generate ganglioside-specific human MAbs will amplify the possibilities for diagnostic and therapeutic applications. (orig.).

  8. Antibody neutralization escape mediated by point mutations in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41.

    Science.gov (United States)

    Kalia, Vandana; Sarkar, Surojit; Gupta, Phalguni; Montelaro, Ronald C

    2005-02-01

    The persistence of human immunodeficiency virus type 1 (HIV-1) infection in the presence of robust host immunity has been associated in part with variation in viral envelope proteins leading to antigenic variation and escape from neutralizing antibodies. Previous studies of natural neutralization escape mutants have predominantly focused on gp120 and gp41 ectodomain sequence variations that alter antibody binding via changes in conformation or glycosylation pattern of the Env, likely due to the immune pressure exerted on the exposed ectodomain component of the glycoprotein. Here, we show for the first time a novel mechanism by which point mutations in the intracytoplasmic tail of the transmembrane component (gp41) of envelope can render the virus resistant to neutralization by monoclonal antibodies and broadly neutralizing polyclonal serum antibodies. Point mutations in a highly conserved structural motif within the intracytoplasmic tail resulted in decreased binding of neutralizing antibodies to the Env ectodomain, evidently due to allosteric changes both in the gp41 ectodomain and in gp120. While receptor binding and infectivity of the mutant virus remained unaltered, the changes in Env antigenicity were associated with an increase in neutralization resistance of the mutant virus. These studies demonstrate the structurally integrated nature of gp120 and gp41 and underscore a previously unrecognized potentially critical role for even minor sequence variation of the intracytoplasmic tail in modulating the antigenicity of the ectodomain of HIV-1 envelope glycoprotein complex.

  9. Genotoxic effect and antigen binding characteristics of SLE auto-antibodies to peroxynitrite-modified human DNA.

    Science.gov (United States)

    Khan, Md Asad; Alam, Khursheed; Mehdi, Syed Hassan; Rizvi, M Moshahid A

    2017-12-01

    Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized by auto-antibodies against native deoxyribonucleic acid after modification and is one of the reasons for the development of SLE. Here, we have evaluated the structural perturbations in human placental DNA by peroxynitrite using spectroscopy, thermal denaturation and high-performance liquid chromatography (HPLC). Peroxynitrite is a powerful potent bi-functional oxidative/nitrative agent that is produced both endogenously and exogenously. In experimental animals, the peroxynitrite-modified DNA was found to be highly immunogenic. The induced antibodies showed cross-reactions with different types of DNA and nitrogen bases that were modified with peroxynitrite by inhibition ELISA. The antibody activity was inhibited by approximately 89% with its immunogen as the inhibitor. The antigen-antibodies interaction between induced antibodies with peroxynitrite-modified DNA showed retarded mobility as compared to the native form. Furthermore, significantly increased binding was also observed in SLE autoantibodies with peroxynitrite-modified DNA than native form. Moreover, DNA isolated from lymphocyte of SLE patients revealed significant recognition of anti-peroxynitrite-modified DNA immunoglobulin G (IgG). Our data indicates that DNA modified with peroxynitrite presents unique antigenic determinants that may induce autoantibody response in SLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Development of a Coxsackievirus A16 neutralization assay based on pseudoviruses for measurement of neutralizing antibody titer in human serum.

    Science.gov (United States)

    Jin, Jun; Ma, Hongxia; Xu, Lin; An, Dong; Sun, Shiyang; Huang, Xueyong; Kong, Wei; Jiang, Chunlai

    2013-02-01

    Serum neutralizing antibody titers are indicative of protective immunity against Coxsackievirus A16 (CV-A16) and Enterovirus 71 (EV71), the two main etiological agents of hand, foot and mouth disease (HFMD), and provide the basis for evaluating vaccine efficacy. The current CV-A16 neutralization assay based on inhibition of cytopathic effects requires manual microscopic examination, which is time-consuming and labor-intensive. In this study, a high-throughput neutralization assay was developed by employing CV-A16 pseudoviruses expressing luciferase for detecting infectivity in rhabdomyosarcoma (RD) cells and measuring serum viral neutralizing antibodies. Without the need to use infectious CV-A16 strains, the neutralizing antibody titer against CV-A16 could be determined within 15h by measuring luciferase signals by this assay. The pseudovirus CV-A16 neutralization assay (pCNA) was validated by comparison with a conventional CV-A16 neutralization assay (cCNA) in testing 174 human serum samples collected from children (age <5 years). The neutralizing antibody titers determined by these two assays were well correlated (R(2)=0.7689). These results suggest that the pCNA can serve as a rapid and objective procedure for the measurement of neutralizing antibodies against CV-A16. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Development of a novel anti-human aspartyl-(asparaginyl) β-hydroxylase monoclonal antibody with diagnostic and therapeutic potential.

    Science.gov (United States)

    Huyan, Ting; Li, Qi; Dong, Dan-Dan; Yang, Hui; Xue, Xiao-Ping; Huang, Qing-Sheng

    2017-03-01

    Human aspartyl-(asparaginyl)-β-hydroxylase (HAAH) has recently been the subject of several studies, as it was previously observed to be overexpressed in numerous types of carcinoma cells and tissues in patient tumor samples. HAAH has been implicated in tumor invasion and metastasis, indicating that it may be an important target and biomarker for tumor diagnosis and treatment. However, the immunological tools currently available for the study of this protein, including monoclonal antibodies, are limited, as is the present knowledge regarding the role of HAAH in tumor therapy and diagnosis. In the present study, a recombinant C-terminal domain of HAAH was expressed in Pichia pastoris and a novel monoclonal antibody (mAb) targeting HAAH (HAAH-C) was constructed. Immunofluorescence and antibody-dependent cellular cytotoxicity (ADCC) assays were used to demonstrate the specificity and ADCC activity of this antibody. The results demonstrated that this anti-C-terminal HAAH mAB, in combination with an existing anti-N terminal HAAH mAb, exhibited a high response to native HAAH from carcinoma cell culture supernatant, as measured with a double antibody sandwich enzyme-linked immunosorbent assay. This validated novel mAB-HAAH-C may prompt further studies into the underlying mechanisms of HAAH, and the exploration of its potential in tumor diagnosis and therapy.

  12. Phage display derived human monoclonal antibodies isolated by binding to the surface of live primary breast cancer cells recognize GRP78

    DEFF Research Database (Denmark)

    Jakobsen, Charlotte G; Rasmussen, Nicolaj; Laenkholm, Anne-Vibeke

    2007-01-01

    of novel targets and human antibodies against them. We have isolated single-chain human mAbs from a large naïve antibody phage display library by panning on a single-cell suspension of freshly isolated live cancer cells from a human breast cancer specimen, and these antibodies were shown to specifically......Clinical trials using monoclonal antibodies (mAb) against cell-surface markers have yielded encouraging therapeutic results in several cancer types. Generally, however, anticancer antibodies are only efficient against a subpopulation of cancers, and there is a strong need for identification...... bound strongly to several cancers, including 45% breast carcinomas, 35% lung cancers, and 86% melanomas, but showed no or weak binding to normal tissues. A yeast two-hybrid screen of a large human testis cDNA library identified the glucose-regulated protein of 78 kDa (GRP78) as the antigen recognized...

  13. Recombinant human C1-inhibitor prevents acute antibody-mediated rejection in alloimmunized baboons

    NARCIS (Netherlands)

    Tillou, Xavier; Poirier, Nicolas; Le Bas-Bernardet, Stephanie; Hervouet, Jeremy; Minault, David; Renaudin, Karine; Vistoli, Fabio; Karam, Georges; Daha, Mohamed; Soulillou, Jean Paul; Blancho, Gilles

    Acute antibody-mediated rejection is an unsolved issue in transplantation, especially in the context of pretransplant immunization. The deleterious effect of preformed cytotoxic anti-HLA antibodies through complement activation is well proven, but very little is known concerning complement blockade

  14. Single amino acid fingerprinting of the human antibody repertoire with high density peptide arrays.

    Science.gov (United States)

    Weber, Laura K; Palermo, Andrea; Kügler, Jonas; Armant, Olivier; Isse, Awale; Rentschler, Simone; Jaenisch, Thomas; Hubbuch, Jürgen; Dübel, Stefan; Nesterov-Mueller, Alexander; Breitling, Frank; Loeffler, Felix F

    2017-04-01

    The antibody species that patrol in a patient's blood are an invaluable part of the immune system. While most of them shield us from life-threatening infections, some of them do harm in autoimmune diseases. If we knew exactly all the antigens that elicited all the antibody species within a group of patients, we could learn which ones correlate with immune protection, are irrelevant, or do harm. Here, we demonstrate an approach to this question: First, we use a plethora of phage-displayed peptides to identify many different serum antibody binding peptides. Next, we synthesize identified peptides in the array format and rescreen the serum used for phage panning to validate antibody binding peptides. Finally, we systematically vary the sequence of validated antibody binding peptides to identify those amino acids within the peptides that are crucial for binding "their" antibody species. The resulting immune fingerprints can then be used to trace them back to potential antigens. We investigated the serum of an individual in this pipeline, which led to the identification of 73 antibody fingerprints. Some fingerprints could be traced back to their most likely antigen, for example the immunodominant capsid protein VP1 of enteroviruses, most likely elicited by the ubiquitous poliovirus vaccination. Thus, with our approach, it is possible, to pinpoint those antibody species that correlate with a certain antigen, without any pre-information. This can help to unravel hitherto enigmatic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A broadly neutralizing human monoclonal antibody is effective against H7N9.

    Science.gov (United States)

    Tharakaraman, Kannan; Subramanian, Vidya; Viswanathan, Karthik; Sloan, Susan; Yen, Hui-Ling; Barnard, Dale L; Leung, Y H Connie; Szretter, Kristy J; Koch, Tyree J; Delaney, James C; Babcock, Gregory J; Wogan, Gerald N; Sasisekharan, Ram; Shriver, Zachary

    2015-09-01

    Emerging strains of influenza represent a significant public health threat with potential pandemic consequences. Of particular concern are the recently emerged H7N9 strains which cause pneumonia with acute respiratory distress syndrome. Estimates are that nearly 80% of hospitalized patients with H7N9 have received intensive care unit support. VIS410, a human antibody, targets a unique conserved epitope on influenza A. We evaluated the efficacy of VIS410 for neutralization of group 2 influenza strains, including H3N2 and H7N9 strains in vitro and in vivo. VIS410, administered at 50 mg/kg, protected DBA mice infected with A/Anhui/2013 (H7N9), resulting in significant survival benefit upon single-dose (-24 h) or double-dose (-12 h, +48 h) administration (P cytokine responses for nine of the 11 cytokines measured. Based on these results, we find that VIS410 may be effective either as monotherapy or combined with antivirals in treating H7N9 disease, as well as disease from other influenza strains.

  16. A recombinant dromedary antibody fragment (VHH or nanobody) directed against human Duffy antigen receptor for chemokines.

    Science.gov (United States)

    Smolarek, Dorota; Hattab, Claude; Hassanzadeh-Ghassabeh, Gholamreza; Cochet, Sylvie; Gutiérrez, Carlos; de Brevern, Alexandre G; Udomsangpetch, Rachanee; Picot, Julien; Grodecka, Magdalena; Wasniowska, Kazimiera; Muyldermans, Serge; Colin, Yves; Le Van Kim, Caroline; Czerwinski, Marcin; Bertrand, Olivier

    2010-10-01

    Fy blood group antigens are carried by the Duffy antigen receptor for chemokines (DARC), a red cells receptor for Plasmodium vivax broadly implicated in human health and diseases. Recombinant VHHs, or nanobodies, the smallest intact antigen binding fragment derivative from the heavy chain-only antibodies present in camelids, were prepared from a dromedary immunized against DARC N-terminal extracellular domain and selected for DARC binding. A described VHH, CA52, does recognize native DARC on cells. It inhibits P. vivax invasion of erythrocytes and displaces interleukin-8 bound to DARC. The targeted epitope overlaps the well-defined DARC Fy6 epitope. K (D) of CA52-DARC equilibrium is sub-nanomolar, hence ideal to develop diagnostic or therapeutic compounds. Immunocapture by immobilized CA52 yielded highly purified DARC from engineered K562 cells. This first report on a VHH with specificity for a red blood cell protein exemplifies VHHs' potentialities to target, to purify, and to modulate the function of cellular markers.

  17. Preparative purification of human monoclonal antibody isoforms in a multi-compartment electrolyser with immobiline membranes.

    Science.gov (United States)

    Righetti, P G; Wenisch, E; Jungbauer, A; Katinger, H; Faupel, M

    1990-02-02

    The performance of a multi-compartment electrolyser with isoelectric Immobiline membranes for large-scale protein purification is evaluated. Owing to the presence of isoelectric membranes possessing a high buffering capacity and ionic strength, isoelectric protein precipitation inside the membranes, one of the major drawbacks of present membrane uses, is fully avoided. In addition, owing to this novel membrane technology, pH gradient decay, typical of isoelectric focusing in carrier ampholytes, is fully eliminated and pH and conductivity constancy is guaranteed in all flow chambers for running periods of more than 11 days (160,000 V h). The membranes described possess a unique selectivity, in that they act by modulating the surface charge (i.e., the mobility) of macroions crossing or tangential to them. The concept of isoelectric Immobiline membranes acting like a pH-stat unit is introduced. Protein homogeneity in each chamber of the electrolyser can be achieved even when purifying human monoclonal antibodies against HIV-1, which possess high pI values (9.0-9.6), are large molecules (Mr 150,000) and are fractionated in the presence of large micelles of neutral detergents.

  18. Detection of MMP-8 via porous silicon microcavity devices functionalized with human antibodies

    Science.gov (United States)

    Martin, Marta; Taleb Bendiab, Chakib; Massif, Laurent; Cuisinier, Frédéric J. G.; Gergely, Csilla

    2010-04-01

    In this work we report on the fabrication of functionalized PSiMc scaffolds that can be used to enhance the detection of MMP-8. Matrix metalloproteinases (MMPs) are the major enzymes that degrade extracellular matrix (ECM) proteins and play a key role in diverse physiological and pathological processes. We are interested in detecting the collagenase-type MMP-8 that is an inflammatory marker in gingival fluid for predicting tooth movement during orthodontic treatment. As presence of an increasing amount of MMP-8 in saliva is directly related with the tooth movement during orthodontic treatment, monitoring continuously the MMP-8 variation is primordial. Porous silicon microcavity (PSiMc) structures were prepared as multilayered stacks of low and high refractive indices and with layer thicknesses in the order of visible light wavelength. Then the PSi surface was functionalized with human antibodies. Both functionalization and MMP-8 infiltration were monitored by specular reflectometry. PSiMc is characterized by a narrow resonance peak in the optical spectrum that is very sensitive to a small change in the refractive index, such as that obtained when a molecule is attached to the large internal surface of porous silicon. The pore dimensions of the used PSiMc structures were evaluated by atomic force microscopy (AFM) and scanning electron microscope (SEM).

  19. Structural comparison of four different antibodies interacting with human papillomavirus 16 and mechanisms of neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jian [Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 (United States); Bywaters, Stephanie M.; Brendle, Sarah A. [Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 (United States); Lee, Hyunwook; Ashley, Robert E. [Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 (United States); Makhov, Alexander M.; Conway, James F. [Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave, Pittsburgh, PA 15260 (United States); Christensen, Neil D. [Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 (United States); Hafenstein, Susan, E-mail: shafenstein@hmc.psu.edu [Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 (United States)

    2015-09-15

    Cryo-electron microscopy (cryo-EM) was used to solve the structures of human papillomavirus type 16 (HPV16) complexed with fragments of antibody (Fab) from three different neutralizing monoclonals (mAbs): H16.1A, H16.14J, and H263.A2. The structure-function analysis revealed predominantly monovalent binding of each Fab with capsid interactions that involved multiple loops from symmetry related copies of the major capsid protein. The residues identified in each Fab-virus interface map to a conformational groove on the surface of the capsomer. In addition to the known involvement of the FG and HI loops, the DE loop was also found to constitute the core of each epitope. Surprisingly, the epitope mapping also identified minor contributions by EF and BC loops. Complementary immunological assays included mAb and Fab neutralization. The specific binding characteristics of mAbs correlated with different neutralizing behaviors in pre- and post-attachment neutralization assays. - Highlights: • We present HPV16-Fab complexes from neutralizing mAbs: H16.1A, H16.14J, and H263.A2. • The structure-function analysis revealed predominantly monovalent binding of each mAb. • Capsid–Fab interactions involved multiple loops from symmetry related L1 proteins. • Besides the known FG and HI loops, epitope mapping also identified DE, EF, and BC loops. • Neutralizing assays complement the structures to show multiple neutralization mechanisms.

  20. Low molecular weight heparin and aspirin exacerbate human endometrial endothelial cell responses to antiphospholipid antibodies.

    Science.gov (United States)

    Quao, Zola Chihombori; Tong, Mancy; Bryce, Elena; Guller, Seth; Chamley, Lawrence W; Abrahams, Vikki M

    2018-01-01

    Women with antiphospholipid antibodies (aPL) are at risk for pregnancy complications despite treatment with low molecular weight heparin (LMWH) or aspirin (ASA). aPL recognizing beta2 glycoprotein I can target the uterine endothelium, however, little is known about its response to aPL. This study characterized the effect of aPL on human endometrial endothelial cells (HEECs), and the influence of LMWH and ASA. HEECs were exposed to aPL or control IgG, with or without low-dose LMWH and ASA, alone or in combination. Chemokine and angiogenic factor secretion were measured by ELISA. A tube formation assay was used to measure angiogenesis. aPL increased HEEC secretion of pro-angiogenic VEGF and PlGF; increased anti-angiogenic sFlt-1; inhibited basal secretion of the chemokines MCP-1, G-CSF, and GRO-α; and impaired angiogenesis. LMWH and ASA, alone and in combination, exacerbated the aPL-induced changes in the HEEC angiogenic factor and chemokine profile. There was no reversal of the aPL inhibition of HEEC angiogenesis by either single or combination therapy. By aPL inhibiting HEEC chemokine secretion and promoting sFlt-1 release, the uterine endothelium may contribute to impaired placentation and vascular transformation. LMWH and ASA may further contribute to endothelium dysfunction in women with obstetric APS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Pharmacology and placental transfer of a human alphav integrin monoclonal antibody in rabbits.

    Science.gov (United States)

    Martin, Pauline L; Zhou, Zhao; Van den Bulck, Kathleen; Kwok, Deborah; Powers, Gordon; Jiao, Qun; Schantz, Allen; Treacy, George

    2010-04-01

    Intetumumab is a human IgG1 anti-alphav-integrin monoclonal antibody that inhibits angiogenesis. Integrin binding and angiogenesis are important in reproduction including fertilization, implantation, and embryofetal development. These studies were designed to determine the pharmacological relevance of the rabbit for the evaluation of potential effects on embryofetal development and to evaluate the placental transfer of intetumumab in rabbits. In vitro pharmacology studies evaluated the binding of intetumumab to rabbit cells and the inhibition of vessel sprouting from rabbit aorta. For the evaluation of placental transfer, pregnant rabbits (8/group) were injected intravenously with intetumumab 50 or 100 mg/kg every 2 days from Gestation Day (GD)7 to GD19. Maternal sera, fetal homogenates/sera, and amniotic fluid were collected at necropsy on GD19 or GD28 for evaluation of intetumumab concentrations. Clinical condition of the dams was monitored and fetuses were screened for abnormalities. Intetumumab (5-40 microg/mL) inhibited aortic cell adhesion to vitronectin and vessel sprouting from rabbit aortic rings. Immunohistochemical staining of rabbit tissues demonstrated binding of intetumumab to placenta. Administration of intetumumab to pregnant rabbits was well tolerated by the dams and the fetuses did not show major abnormalities. Fetal exposure to intetumumab relative to maternal exposure was rabbit is a pharmacologically relevant species for evaluation of potential developmental effects of intetumumab. Intetumumab crosses the rabbit placenta during the fetal period (GD 19-28). 2010 Wiley-Liss, Inc.

  2. Biochemical characterization and structure determination of a potent, selective antibody inhibitor of human MMP9.

    Science.gov (United States)

    Appleby, Todd C; Greenstein, Andrew E; Hung, Magdeleine; Liclican, Albert; Velasquez, Maile; Villaseñor, Armando G; Wang, Ruth; Wong, Melanie H; Liu, Xiaohong; Papalia, Giuseppe A; Schultz, Brian E; Sakowicz, Roman; Smith, Victoria; Kwon, Hyock Joo

    2017-04-21

    Matrix metalloproteinase 9 (MMP9) is a member of a large family of proteases that are secreted as inactive zymogens. It is a key regulator of the extracellular matrix, involved in the degradation of various extracellular matrix proteins. MMP9 plays a pathological role in a variety of inflammatory and oncology disorders and has long been considered an attractive therapeutic target. GS-5745, a potent, highly selective humanized monoclonal antibody inhibitor of MMP9, has shown promise in treating ulcerative colitis and gastric cancer. Here we describe the crystal structure of GS-5745·MMP9 complex and biochemical studies to elucidate the mechanism of inhibition of MMP9 by GS-5745. GS-5745 binds MMP9 distal to the active site, near the junction between the prodomain and catalytic domain, and inhibits MMP9 by two mechanisms. Binding to pro-MMP9 prevents MMP9 activation, whereas binding to active MMP9 allosterically inhibits activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern.

    Science.gov (United States)

    Schähs, Matthias; Strasser, Richard; Stadlmann, Johannes; Kunert, Renate; Rademacher, Thomas; Steinkellner, Herta

    2007-09-01

    In recent years, plants have become an attractive alternative for the production of recombinant proteins. However, their inability to perform authentic mammalian N-glycosylation may cause limitations for the production of therapeutics. A major concern is the presence of beta1,2-xylose and core alpha1,3-fucose residues on complex N-linked glycans, as these N-glycan epitopes are immunogenic in mammals. In our attempts towards the humanization of plant N-glycans, we have generated an Arabidopsis thaliana knockout line that synthesizes complex N-glycans lacking immunogenic xylose and fucose epitopes. Here, we report the expression of a monoclonal antibody in these glycan-engineered plants that carry a homogeneous mammalian-like complex N-glycan pattern without beta1,2-xylose and core alpha1,3-fucose. Plant and Chinese hamster ovary (CHO)-derived immunoglobulins (IgGs) exhibited no differences in electrophoretic mobility and enzyme-linked immunosorbent specificity assays. Our results demonstrate the feasibility of a knockout strategy for N-glycan engineering of plants towards mammalian-like structures, thus providing a significant improvement in the use of plants as an expression platform.

  4. Applications of monoclonal antibodies and recombinant cytokines for the treatment of human colorectal and other carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, J.W.; Smalley, R.V.; Borden, E.C.; Martin, E.W.; Guadagni, F.; Roselli, M.; Schlom, J. (Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States))

    1991-01-01

    Monoclonal antibodies (MAbs) which recognize a human tumor antigen, termed tumor-associated glycoprotein-72 (TAG-72), have successfully been used to localize primary as well as metastatic colorectal tumor lesions in patients. The localization of the anti-TAG-72 MAbs has also been exploited intraoperatively using a hand-held gamma probe. That procedure, termed radioimmunoguided surgery (RIGS), has identified occult tumors which were not detected using standard external imaging techniques. In another clinical trial, interferon-gamma (IFN-gamma) was administered intraperitoneally to patients diagnosed with either gastrointestinal or ovarian carcinoma with secondary ascites. Analysis of the tumor cells isolated from the malignant ascites revealed a substantial increase in TAG-72 expression on the surface of tumor cells isolated from seven of eight patients. The results provide evidence that the combination of an anti-carcinoma MAb with the administration of a cytokine, such as IFN-gamma, may be an effective approach for the detection and subsequent treatment, of colorectal carcinoma. 15 references.

  5. A simple method for assessment of human anti-Neu5Gc antibodies applied to Kawasaki disease.

    Directory of Open Access Journals (Sweden)

    Vered Padler-Karavani

    Full Text Available N-glycolylneuraminic acid (Neu5Gc is an immunogenic sugar of dietary origin that metabolically incorporates into diverse native glycoconjugates in humans. Anti-Neu5Gc antibodies are detected in all human sera, though with variable levels and epitope-recognition profiles. These antibodies likely play a role in several inflammation-mediated pathologies including cardiovascular diseases and cancer. In cancer, they have dualistic and opposing roles, either stimulating or repressing disease, as a function of their dose, and some of these antibodies serve as carcinoma biomarkers. Thus, anti-Neu5Gc antibodies may signify risk of inflammation-mediated diseases, and changes in their levels could potentially be used to monitor disease progression and/or response to therapy. Currently, it is difficult to determine levels of anti-Neu5Gc antibodies in individual human samples because these antibodies recognize multiple Neu5Gc-epitopes. Here we describe a simple and specific method for detection and overall estimation of human anti-Neu5Gc antibodies. We exploit the difference between two mouse models that differ only by Neu5Gc-presence (wild-type or Neu5Gc-absence (Cmah(-/- knockout. We characterize mouse serum from both strains by HPLC, lectin and mass-spectrometry analysis and show the target Neu5Gc-epitopes. We then use Cmah(-/- knockout sera to inhibit all non-Neu5Gc-reactivity followed by binding to wild-type sera to detect overall anti-Neu5Gc response in a single assay. We applied this methodology to characterize and quantify anti-Neu5Gc IgG and IgA in sera of patients with Kawasaki disease (KD at various stages compared to controls. KD is an acute childhood febrile disease characterized by inflammation of coronary arteries that untreated may lead to coronary artery aneurysms with risk of thrombosis and myocardial infarction. This estimated response is comparable to the average of detailed anti-Neu5Gc IgG profile analyzed by a sialoglycan microarray

  6. Generation and selection of immunized Fab phage display library against human B cell lymphoma.

    Science.gov (United States)

    Shen, Yongmei; Yang, Xiaochun; Dong, Ningzheng; Xie, Xiaofang; Bai, Xia; Shi, Yizhen

    2007-07-01

    The approval of using monoclonal antibodies as a targeted therapy in the management of patients with B cell lymphoma has led to new treatment options for this group of patients. Production of monoclonal antibodies by the traditional hybridoma technology is costly, and the resulting murine antibodies often have the disadvantage of triggering human anti-mouse antibody (HAMA) response. Therefore recombinant Fab antibodies generated by the phage display technology can be a suitable alternative in managing B cell lymphoma. In this study, we extracted total RNA from spleen cells of BALB/c mice immunized with human B lymphoma cells, and used RT-PCR to amplify cDNAs coding for the kappa light chains and Fd fragments of heavy chains. After appropriate restriction digests, these cDNA fragments were successively inserted into the phagemid vector pComb3H-SS to construct an immunized Fab phage display library. The diversity of the constructed library was approximately 1.94x10(7). Following five rounds of biopanning, soluble Fab antibodies were produced from positive clones identified by ELISA. From eight positive clones, FabC06, FabC21, FabC43 and FabC59 were selected for sequence analysis. At the level of amino acid sequences, the variable heavy domains (V(H)) and variable light domains (V(L)) were found to share 88-92% and 89-94% homology with sequences coded by the corresponding murine germline genes respectively. Furthermore, reactivity with membrane proteins of the B cell lymphoma was demonstrated by immunohistochemistry and western blotting. These immunized Fab antibodies may provide a valuable tool for further study of B cell lymphoma and could also contribute to the improvement of disease therapy.

  7. Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies.

    Science.gov (United States)

    Pietsch, E C; Dong, J; Cardoso, R; Zhang, X; Chin, D; Hawkins, R; Dinh, T; Zhou, M; Strake, B; Feng, P-H; Rocca, M; Santos, C Dos; Shan, X; Danet-Desnoyers, G; Shi, F; Kaiser, E; Millar, H J; Fenton, S; Swanson, R; Nemeth, J A; Attar, R M

    2017-02-24

    CD47, a broadly expressed cell surface protein, inhibits cell phagocytosis via interaction with phagocyte-expressed SIRPα. A variety of hematological malignancies demonstrate elevated CD47 expression, suggesting that CD47 may mediate immune escape. We discovered three unique CD47-SIRPα blocking anti-CD47 monoclonal antibodies (mAbs) with low nano-molar affinity to human and cynomolgus monkey CD47, and no hemagglutination and platelet aggregation activity. To characterize the anti-cancer activity elicited by blocking CD47, the mAbs were cloned into effector function silent and competent Fc backbones. Effector function competent mAbs demonstrated potent activity in vitro and in vivo, while effector function silent mAbs demonstrated minimal activity, indicating that blocking CD47 only leads to a therapeutic effect in the presence of Fc effector function. A non-human primate study revealed that the effector function competent mAb IgG1 C47B222-(CHO) decreased red blood cells (RBC), hematocrit and hemoglobin by >40% at 1 mg/kg, whereas the effector function silent mAb IgG2σ C47B222-(CHO) had minimal impact on RBC indices at 1 and 10 mg/kg. Taken together, our findings suggest that targeting CD47 is an attractive therapeutic anti-cancer approach. However, the anti-cancer activity observed with anti-CD47 mAbs is Fc effector dependent as are the side effects observed on RBC indices.

  8. Monoclonal antibodies to the reactive centre loop (RCL) of human corticosteroid-binding globulin (CBG) can protect against proteolytic cleavage.

    Science.gov (United States)

    Lewis, John G; Elder, Peter A

    2017-07-01

    Corticosteroid-binding globulin (CBG) binds most of the cortisol in circulation and is a non-functional member of the family of serine protease inhibitors (serpins) with an exposed elastase sensitive reactive centre loop (RCL). The RCL can be cleaved by human neutrophil elastase, released from activated neutrophils, and can also be cleaved at nearby site(s) by elastase released by Pseudomonas aeruginosa, and at two further sites, also within the RCL, by bovine chymotrypsin. Cleavage of the RCL results in a conformational change accompanied by a marked decrease in affinity for cortisol and hence its release at the site of proteolysis. These cleavages are irreversible and the similar half-lives of cleaved and intact CBG could mean that there may be some advantage in slowing the rate of CBG cleavage in acute inflammation thereby increasing the proportion of intact CBG in circulation. Here we show, for the first time, that pre-incubation of tethered human CBG with two monoclonal antibodies to the RCL of CBG protects against cleavage by all three enzymes. Furthermore, in plasma, pre-incubation with both RCL monoclonal antibodies delays neutrophil elastase cleavage of the RCL and one of these RCL monoclonal antibodies also delays bovine chymotrypsin cleavage of the RCL. These findings may provide a basis and rationale for the concept of the use of RCL antibodies as therapeutic agents to effectively increase the proportion of intact CBG in circulation which may be of benefit in acute inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Feasibility Study of an Optical Caustic Plasmonic Light Scattering Sensor for Human Serum Anti-Dengue Protein E Antibody Detection.

    Science.gov (United States)

    García, Antonio A; Franco, Lina S; Pirez-Gomez, Miguel A; Pech-Pacheco, José L; Mendez-Galvan, Jorge F; Machain-Williams, Carlos; Talavera-Aguilar, Lourdes; Espinosa-Carrillo, José H; Duarte-Villaseñor, Miriam M; Be-Ortiz, Christian; Espinosa-de Los Monteros, Luz E; Castillo-Pacheco, Ariel; Garcina-Rejon, Julian E

    2017-08-17

    Antibody detection and accurate diagnosis of tropical diseases is essential to help prevent the spread of disease. However, most detection methods lack cost-effectiveness and field portability, which are essential features for achieving diagnosis in a timely manner. To address this, 3D-printed oblate spheroid sample chambers were fabricated to measure green light scattering of gold nanoparticles using an optical caustic focus to detect antibodies. Scattering signals of 20-200 nm gold nanoparticles using a green laser were compared to green light emitting diode (LED) light source signals and to Mie theory. The change in signal from 60 to 120 nm decreased in the order of Mie Theory > optical caustic scattering > 90° scattering. These results suggested that conjugating 60 nm gold nanoparticles and using an optical caustic system to detect plasmonic light scattering, would result in a sensitive test for detecting human antibodies in serum. Therefore, we studied the light scattering response of conjugated gold nanoparticles exposed to different concentrations of anti-protein E antibody, and a feasibility study of 10 human serum samples using dot blot and a handheld optical caustic-based sensor device. The overall agreement between detection methods suggests that the new sensor concept shows promise to detect gold nanoparticle aggregation in