Sample records for human anti-v3 antibodies

  1. Production and characterization of human anti-V3 monoclonal antibodies from the cells of HIV-1 infected Indian donors

    Directory of Open Access Journals (Sweden)

    Andrabi Raiees


    Full Text Available Abstract Background Analysis of human monoclonal antibodies (mAbs developed from HIV-1 infected donors have enormously contributed to the identification of neutralization sensitive epitopes on the HIV-1 envelope glycoprotein. The third variable region (V3 is a crucial target on gp120, primarily due to its involvement in co-receptor (CXCR4 or CCR5 binding and presence of epitopes recognized by broadly neutralizing antibodies. Methods Thirty-three HIV-1 seropositive drug naive patients (18 males and 15 females within the age range of 20–57 years (median = 33 years were recruited in this study for mAb production. The mAbs were selected from EBV transformed cultures with conformationally constrained Cholera-toxin-B containing V3C (V3C-CTB fusion protein. We tested the mAbs for their binding with HIV-1 derived proteins and peptides by ELISA and for neutralization against HIV-1 viruses by TZM-bl assays. Results We isolated three anti-V3 mAbs, 277, 903 and 904 from the cells of different individuals. The ELISA binding revealed a subtype-C and subtype-A specific binding of antibody 277 and 903 while mAb 904 exhibited cross reactivity also with subtype-B V3. Epitope mapping of mAbs with overlapping V3 peptides showed exclusive binding to V3 crown. The antibodies displayed high and low neutralizing activity against 2/5 tier 1 and 1/6 tier 2 viruses respectively. Overall, we observed a resistance of the tier 2 viruses to neutralization by the anti-V3 mAbs, despite the exposure of the epitopes recognized by these antibodies on two representative native viruses (Du156.12 and JRFL, suggesting that the affinity of mAb might equally be crucial for neutralization, as the epitope recognition. Conclusions Our study suggests that the anti-V3 antibodies derived from subtype-C infected Indian patients display neutralization potential against tier 1 viruses while such activity may be limited against more resistant tier 2 viruses. Defining the fine epitope

  2. Computational prediction of neutralization epitopes targeted by human anti-V3 HIV monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Evgeny Shmelkov

    Full Text Available The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs. Our data demonstrate that this approach, based purely on calculated energetics and 3D structural information, accurately predicts the presence of neutralization epitopes targeted by V3-specific mAbs 2219 and 447-52D in any HIV-1 strain. The method was used to calculate the range of conservation of these specific epitopes across all circulating HIV-1 viruses. Accurately identifying an Ab-targeted neutralization epitope in a virus by computational means enables easy prediction of the breadth of reactivity of specific mAbs across the diversity of thousands of different circulating HIV-1 variants and facilitates rational design and selection of immunogens mimicking specific mAb-targeted epitopes in a multivalent HIV-1 vaccine. The defined epitopes can also be used for the purpose of epitope-specific analyses of breakthrough sequences recorded in vaccine clinical trials. Thus, our study is a prototype for a valuable tool for rational HIV-1 vaccine design.

  3. Structural basis of clade-specific HIV-1 neutralization by humanized anti-V3 monoclonal antibody KD-247. (United States)

    Kirby, Karen A; Ong, Yee Tsuey; Hachiya, Atsuko; Laughlin, Thomas G; Chiang, Leslie A; Pan, Yun; Moran, Jennifer L; Marchand, Bruno; Singh, Kamalendra; Gallazzi, Fabio; Quinn, Thomas P; Yoshimura, Kazuhisa; Murakami, Toshio; Matsushita, Shuzo; Sarafianos, Stefan G


    Humanized monoclonal antibody KD-247 targets the Gly(312)-Pro(313)-Gly(314)-Arg(315) arch of the third hypervariable (V3) loop of the HIV-1 surface glycoprotein. It potently neutralizes many HIV-1 clade B isolates, but not of other clades. To understand the molecular basis of this specificity, we solved a high-resolution (1.55 Å) crystal structure of the KD-247 antigen binding fragment and examined the potential interactions with various V3 loop targets. Unlike most antibodies, KD-247 appears to interact with its target primarily through light chain residues. Several of these interactions involve Arg(315) of the V3 loop. To evaluate the role of light chain residues in the recognition of the V3 loop, we generated 20 variants of KD-247 single-chain variable fragments with mutations in the antigen-binding site. Purified proteins were assessed for V3 loop binding using AlphaScreen technology and for HIV-1 neutralization. Our data revealed that recognition of the clade-specificity defining residue Arg(315) of the V3 loop is based on a network of interactions that involve Tyr(L32), Tyr(L92), and Asn(L27d) that directly interact with Arg(315), thus elucidating the molecular interactions of KD-247 with its V3 loop target.

  4. Cross-neutralizing activity of human anti-V3 monoclonal antibodies derived from non-B clade HIV-1 infected individuals. (United States)

    Andrabi, Raiees; Williams, Constance; Wang, Xiao-Hong; Li, Liuzhe; Choudhary, Alok K; Wig, Naveet; Biswas, Ashutosh; Luthra, Kalpana; Nadas, Arthur; Seaman, Michael S; Nyambi, Phillipe; Zolla-Pazner, Susan; Gorny, Miroslaw K


    One approach to the development of an HIV vaccine is to design a protein template which can present gp120 epitopes inducing cross-neutralizing antibodies. To select a V3 sequence for immunogen design, we compared the neutralizing activities of 18 anti-V3 monoclonal antibodies (mAbs) derived from Cameroonian and Indian individuals infected with clade AG and C, respectively. It was found that V3 mAbs from the Cameroonian patients were significantly more cross-neutralizing than those from India. Interestingly, superior neutralizing activity of Cameroonian mAbs was also observed among the nine VH5-51/VL lambda genes encoding V3 mAbs which mediate a similar mode of recognition. This correlated with higher relative binding affinity to a variety of gp120s and increased mutation rates in V3 mAbs from Cameroon. These results suggest that clade C V3 is probably weakly immunogenic and that the V3 sequence of CRF02_AG viruses can serve as a plausible template for vaccine immunogen design.

  5. Human immunodeficiency virus type 1 Brazilian subtype B variant showed an increasing avidity of the anti-V3 antibodies over time compared to the subtype B US/European strain in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Casseb Jorge


    Full Text Available The Brazilian variant of human immunodeficiency virus type 1 (HIV-1 subtype B, (serotype B"-GWGR, has a tryptophan replacing the proline in position 328 the HIV-1 envelope. A longer median time period from infection to acquired immunodeficiency syndrome (AIDS for serotype B (B"-GWGR infected subjects compared to the B-GPGR US/European strain was reported. In a cohort study, in São Paulo city, 10 B"-GWGR patients had a statistically significant increased avidity of the anti-V3 antibodies, from 79% ± 33% to 85% ± 75%, versus from 48% ± 59% to 32% ± 17% for the 10 B-GPGR subjects (p = 0.02. The T CD4+ cells showed a mean increase of + 0.45 cells/month for the B-GPGR subjects and for B"-GWGR the slope was + 1.24 cells/month (p = 0.06, for 62 and 55 months of follow up, respectively. RNA plasma viral load decreased from 3.98 ± 1.75 to 2.16 ± 1.54 log10 in the B"-GWGR group while B-GPGR patients showed one log10 reduction in viral load from 4.09 ± 0.38 to 3.17 ± 1.47 log10 over time (p = 0.23, with a decreasing slope of 0.0042 ± log10,/month and 0.0080 ± log10/month, for B-GPGR and B"-GWGR patients, respectively (p = 0.53. Neither group presented any AIDS defining events during the study, according to Center for Diseases Control criteria. Although the sample size is small, these results may indicate that differences in the pathogenicity of the 2 HIV-1 B serotypes which co-circulate in Brazil may be correlated to the avidity of anti-V3 antibodies.

  6. Resistance of Subtype C HIV-1 Strains to Anti-V3 Loop Antibodies

    Directory of Open Access Journals (Sweden)

    David Almond


    Full Text Available HIV-1’s subtype C V3 loop consensus sequence exhibits increased resistance to anti-V3 antibody-mediated neutralization as compared to the subtype B consensus sequence. The dynamic 3D structure of the consensus C V3 loop crown, visualized by ab initio folding, suggested that the resistance derives from structural rigidity and non-β-strand secondary protein structure in the N-terminal strand of the β-hairpin of the V3 loop crown, which is where most known anti-V3 loop antibodies bind. The observation of either rigidity or non-β-strand structure in this region correlated with observed resistance to antibody-mediated neutralization in a series of chimeric pseudovirus (psV mutants. The results suggest the presence of an epitope-independent, neutralization-relevant structural difference in the antibody-targeted region of the V3 loop crown between subtype C and subtype B, a difference that we hypothesize may contribute to the divergent pattern of global spread between these subtypes. As antibodies to a variable loop were recently identified as an inverse correlate of risk for HIV infection, the structure-function relationships discussed in this study may have relevance to HIV vaccine research.

  7. Anti-V3 humanized antibody KD-247 effectively suppresses ex vivo generation of human immunodeficiency virus type 1 and affords sterile protection of monkeys against a heterologous simian/human immunodeficiency virus infection. (United States)

    Eda, Yasuyuki; Murakami, Toshio; Ami, Yasushi; Nakasone, Tadashi; Takizawa, Mari; Someya, Kenji; Kaizu, Masahiko; Izumi, Yasuyuki; Yoshino, Naoto; Matsushita, Shuzo; Higuchi, Hirofumi; Matsui, Hajime; Shinohara, Katsuaki; Takeuchi, Hiroaki; Koyanagi, Yoshio; Yamamoto, Naoki; Honda, Mitsuo


    In an accompanying report (Y. Eda, M. Takizawa, T. Murakami, H. Maeda, K. Kimachi, H. Yonemura, S. Koyanagi, K. Shiosaki, H. Higuchi, K. Makizumi, T. Nakashima, K. Osatomi, S. Tokiyoshi, S. Matsushita, N. Yamamoto, and M. Honda, J. Virol. 80:5552-5562, 2006), we discuss our production of a high-affinity humanized monoclonal antibody, KD-247, by sequential immunization with V3 peptides derived from human immunodeficiency virus type 1 (HIV-1) clade B primary isolates. Epitope mapping revealed that KD-247 recognized the Pro-Gly-Arg V3 tip sequence conserved in HIV-1 clade B isolates. In this study, we further demonstrate that in vitro, KD-247 efficiently neutralizes CXCR4- and CCR5-tropic primary HIV-1 clade B and clade B' with matching neutralization sequence motifs but does not neutralize sequence-mismatched clade B and clade E isolates. Monkeys were provided sterile protection against heterologous simian/human immunodeficiency virus challenge by the passive transfer of a single high dose (45 mg per kg of body weight) of KD-247 and afforded partial protection by lower antibody doses (30 and 15 mg per kg). Protective neutralization endpoint titers in plasma at the time of virus challenge were 1:160 in animals passively transferred with a high dose of the antibody. The antiviral efficacy of the antibody was further confirmed by its suppression of the ex vivo generation of primary HIV-1 quasispecies in peripheral blood mononuclear cell cultures from HIV-infected individuals. Therefore, KD-247 promises to be a valuable tool not only as a passive immunization antibody for the prevention of HIV infection but also as an immunotherapy for the suppression of HIV in phenotype-matched HIV-infected individuals.

  8. A novel strategy for efficient production of anti-V3 human scFvs against HIV-1 clade C

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh


    Full Text Available Abstract Background Production of human monoclonal antibodies that exhibit broadly neutralizing activity is needed for preventing HIV-1 infection, however only a few such antibodies have been generated till date. Isolation of antibodies by the hybridoma technology is a cumbersome process with fewer yields. Further, the loss of unstable or slowly growing clones which may have unique binding specificities often occurs during cloning and propagation and the strongly positive clones are often lost. This has been avoided by the process described in this paper, wherein, by combining the strategy of EBV transformation and recombinant DNA technology, we constructed human single chain variable fragments (scFvs against the third variable region (V3 of the clade C HIV-1 envelope. Results An antigen specific phage library of 7000 clones was constructed from the enriched V3- positive antibody secreting EBV transformed cells. By ligation of the digested scFv DNA into phagemid vector and bio panning against the HIV-1 consensus C and B V3 peptides followed by random selection of 40 clones, we identified 15 clones that showed V3 reactivity in phage ELISA. DNA fingerprinting analysis and sequencing showed that 13 out of the 15 clones were distinct. Expression of the positive clones was tested by SDS-PAGE and Western blot. All the 13 anti-V3 scFvs showed cross-reactivity against both the clade C and B V3 peptides and did not show any reactivity against other unrelated peptides in ELISA. Preliminary neutralization assays indicated varying degrees of neutralization of clade C and B viruses. EBV transformation, followed by antigen selection of lines to identify specific binders, enabled the selection of phage from un-cloned lines for scFv generation, thus avoiding the problems of hybridoma technology. Moreover, as the clones were pretested for antigen binding, a comparatively small library sufficed for the selection of a considerable number of unique antigen binding

  9. Neutralization potential of the plasma of HIV-1 infected Indian patients in the context of anti-V3 antibody content and antiretroviral therapy. [corrected]. (United States)

    Choudhary, Alok Kumar; Andrabi, Raiees; Prakash, Somi Sankaran; Kumar, Rajesh; Choudhury, Shubhasree Dutta; Wig, Naveet; Biswas, Ashutosh; Hazarika, Anjali; Luthra, Kalpana


    We assessed the anti-V3 antibody content and viral neutralization potential of the plasma of 63 HIV-1-infected patients (antiretroviral naïve=39, treated=24) against four primary isolates (PIs) of clade C and a tier 1 clade B isolate SF162. Depletion and inhibition of anti-V3 antibodies in the plasma of five patients with high titers of anti-V3 antibodies led to modest change in the neutralization percentage against two PIs (range 0-21%). The plasma of antiretroviral-treated patients exhibited higher neutralization potential than that of the drug-naïve plasmas against the four PIs tested which was further evidenced by a follow-up study.

  10. Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. (United States)

    Balasubramanian, Preetha; Kumar, Rajnish; Williams, Constance; Itri, Vincenza; Wang, Shixia; Lu, Shan; Hessell, Ann J; Haigwood, Nancy L; Sinangil, Faruk; Higgins, Keith W; Liu, Lily; Li, Liuzhe; Nyambi, Phillipe; Gorny, Miroslaw K; Totrov, Maxim; Nadas, Arthur; Kong, Xiang-Peng; Zolla-Pazner, Susan; Hioe, Catarina E


    The V3 loop in the HIV envelope gp120 is one of the immunogenic sites targeted by Abs. The V3 crown in particular has conserved structural elements recognized by cross-reactive neutralizing Abs, indicating its potential contribution in protection against HIV. Crystallographic analyses of anti-V3 crown mAbs in complex with the V3 peptides have revealed that these mAbs recognize the conserved sites on the V3 crown via two distinct strategies: a cradle-binding mode (V3C) and a ladle-binding (V3L) mode. However, almost all of the anti-V3 crown mAbs studied in the past were isolated from chronically HIV-infected individuals. The extents to which the two types of anti-V3 crown Abs are generated by vaccination are unknown. This study analyzed the prevalence of V3C-type and V3L-type Ab responses in HIV-infected individuals and in HIV envelope-immunized humans and animals using peptide mimotopes that distinguish the two Ab types. The results show that both V3L-type and V3C-type Abs were generated by the vast majority of chronically HIV-infected humans, although the V3L-type were more prevalent. In contrast, only one of the two V3 Ab types was elicited in vaccinated humans or animal models, irrespective of HIV-1 envelope clades, envelope constructs (oligomeric or monomeric), and protocols (DNA plus protein or protein alone) used for vaccinations. The V3C-type Abs were produced by vaccinated humans, macaques, and rabbits, whereas the V3L-type Abs were made by mice. The V3C-type and V3L-type Abs generated by the vaccinations were able to mediate virus neutralization. These data indicate the restricted repertoires and the species-specific differences in the functional V3-specific Ab responses induced by the HIV envelope vaccines. The study implies the need for improving immunogen designs and vaccination strategies to broaden the diversity of Abs in order to target the different conserved epitopes in the V3 loop and, by extension, in the entire HIV envelope. Published by

  11. Relative reactivity of HIV-1 polyclonal plasma antibodies directed to V3 and MPER regions suggests immunodominance of V3 over MPER and dependence of high anti-V3 antibody titers on virus persistence. (United States)

    Andrabi, Raiees; Choudhary, Alok K; Bala, Manju; Kalra, Rajesh; Prakash, S S; Pandey, R M; Luthra, Kalpana


    Antibodies to two crucial regions, the third variable loop (V3) of gp120 and the membrane-proximal external region (MPER) of gp41 are important for HIV-1 neutralization. We here evaluated the relative binding of polyclonal plasma antibodies from 99 HIV-1-infected individuals from India to the consensus-C V3 and MPER peptides and observed immunodominance of V3 over MPER (p antibody correlates with clinical parameters. Our results revealed that anti-V3 antibody titers are significantly lower in patients on ART compared to drug-naive individuals (p antibodies are dependent on persistence of virus in circulation, while antibodies to MPER are probably not.

  12. Characterization of a Large Panel of Rabbit Monoclonal Antibodies against HIV-1 gp120 and Isolation of Novel Neutralizing Antibodies against the V3 Loop.

    Directory of Open Access Journals (Sweden)

    Yali Qin

    Full Text Available We recently reported the induction of potent, cross-clade neutralizing antibodies (nAbs against Human Immunodeficiency Virus type-1 (HIV-1 in rabbits using gp120 based on an M-group consensus sequence. To better characterize these antibodies, 93 hybridomas were generated, which represent the largest panel of monoclonal antibodies (mAbs ever generated from a vaccinated rabbit. The single most frequently recognized epitope of the isolated mAbs was at the very C-terminal end of the protein (APTKAKRRVVEREKR, followed by the V3 loop. A total of seven anti-V3 loop mAbs were isolated, two of which (10A3 and 10A37 exhibited neutralizing activity. In contrast to 10A3 and most other anti-V3 loop nAbs, 10A37 was atypical with its epitope positioned more towards the C-terminal half of the loop. To our knowledge, 10A37 is the most potent and broadly neutralizing anti-V3 loop mAb induced by vaccination. Interestingly, all seven anti-V3 loop mAbs competed with PGT121, suggesting a possibility that early induction of potent anti-V3 loop antibodies could prevent induction of more broadly neutralizing PGT121-like antibodies that target the conserved base of the V3 loop stem.

  13. Tabhu: tools for antibody humanization

    DEFF Research Database (Denmark)

    Olimpieri, Pier Paolo; Marcatili, Paolo; Tramontano, Anna


    Antibodies are rapidly becoming essential tools in the clinical practice, given their ability to recognize their cognate antigens with high specificity and affinity, and a high yield at reasonable costs in model animals. Unfortunately, when administered to human patients, xenogeneic antibodies can...... into a suitable human template. Unfortunately, this procedure may results in a partial or complete loss of affinity of the grafted molecule that can be restored by back-mutating some of the residues of human origin to the corresponding murine ones. This trial-and-error procedure is hard and involves expensive...... and time-consuming experiments. Here we present tools for antibody humanization (Tabhu) a web server for antibody humanization. Tabhu includes tools for human template selection, grafting, back-mutation evaluation, antibody modelling and structural analysis, helping the user in all the critical steps...

  14. Human anti-mouse antibodies. (United States)

    Klee, G G


    Human anti-mouse antibodies (HAMA) are human immunoglobulins with specificity for mouse immunoglobulins. This topic currently is of interest because of the increased use of monoclonal mouse antibodies as diagnostic reagents both for in vitro laboratory measurements and for in vivo imaging studies. Monoclonal mouse antibodies also are being used therapeutically. This short article reviews the production of HAMA in patients receiving monoclonal antibodies and illustrates the potential ways that HAMA can interfere with immunoassay measurements. Methods for measuring and neutralizing HAMA also are discussed.

  15. Tabhu: tools for antibody humanization.

    KAUST Repository

    Olimpieri, Pier Paolo


    SUMMARY: Antibodies are rapidly becoming essential tools in the clinical practice, given their ability to recognize their cognate antigens with high specificity and affinity, and a high yield at reasonable costs in model animals. Unfortunately, when administered to human patients, xenogeneic antibodies can elicit unwanted and dangerous immunogenic responses. Antibody humanization methods are designed to produce molecules with a better safety profile still maintaining their ability to bind the antigen. This can be accomplished by grafting the non-human regions determining the antigen specificity into a suitable human template. Unfortunately, this procedure may results in a partial or complete loss of affinity of the grafted molecule that can be restored by back-mutating some of the residues of human origin to the corresponding murine ones. This trial-and-error procedure is hard and involves expensive and time-consuming experiments. Here we present tools for antibody humanization (Tabhu) a web server for antibody humanization. Tabhu includes tools for human template selection, grafting, back-mutation evaluation, antibody modelling and structural analysis, helping the user in all the critical steps of the humanization experiment protocol. AVAILABILITY: CONTACT:, SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

  16. Production of Monoclonal Antibody against Human Nestin. (United States)

    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah


    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140-250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such as ELISA, flow cytometry, immunocytochemistry, and Western blot assays.

  17. Maternal antibodies to gp120 V3 sequence do not correlate with protection against vertical transmission of human immunodeficiency virus. (United States)

    Robertson, C A; Mok, J Y; Froebel, K S; Simmonds, P; Burns, S M; Marsden, H S; Graham, S


    A retrospective study of sera from mothers infected with human immunodeficiency virus (HIV-1) was undertaken to investigate whether the titers or affinities of antibodies against the third hypervariable region (V3 loop) of gp120 correlated with transmission of the virus from mother to child. The cohort comprised 7 mothers who transmitted HIV-1 to their children and 20 who did not. Sera were screened for reactivity against two synthetic peptides, one encompassing the entire V3 loop of gp120 (amino acids 297-330) and the other containing an immunodominant epitope from gp41 (amino acids 596-614). Doubling dilutions of sera were tested to obtain antibody titers against both peptides: Anti-gp41 titers were used to normalize the anti-V3 titers. Maternal sera were also screened for the presence of high-affinity antibodies against the V3 peptide. No differences were observed in either titers or affinities of maternal antibodies to the V3 sequence from transmitters and nontransmitters.

  18. Antisperm antibodies and human reproduction. (United States)

    Check, J H


    To present strategies in diagnosing and treating infertility related to antisperm antibodies. Antisperm antibodies (ASA) were detected on sperm using the direct immunobead (IBD) test. Treatments included intrauterine insemination (IUI) with pretreatment with chymotrypsin/galactose vs. in vitro fertilization (IVF) with intracytoplasmic sperm injection (ICSI). Intrauterine insemination with protein digestive enzyme treatment was much more effective than IUI without enzymatic therapy. However IVF with ICSI provided three times the pregnancy rate for males with sperm coated with ASA than IUI with chymotrypsin treated sperm. It is advisable to include measurement for ASA on the initial semen analysis. However, another option is to perform it initially only with an abnormal post-coital test. The decision for IUI with chymotrypsin pretreatment of the sperm vs. IVF with ICSI may depend on insurance and financial issues.

  19. Human germline antibody gene segments encode polyspecific antibodies. (United States)

    Willis, Jordan R; Briney, Bryan S; DeLuca, Samuel L; Crowe, James E; Meiler, Jens


    Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.

  20. DARPA Antibody Technology Program Standardized Test Bed for Antibody Characterization: Characterization of an MS2 Human IgG Antibody Produced by AnaptysBio, Inc. (United States)


    ECBC-TR-1339 DARPA ANTIBODY TECHNOLOGY PROGRAM STANDARDIZED TEST BED FOR ANTIBODY...CHARACTERIZATION: CHARACTERIZATION OF AN MS2 HUMAN IGG ANTIBODY PRODUCED BY ANAPTYSBIO, INC. DARPA ATP Standardized Test Bed for Antibody...Characterization: Characterization of an MS2 human IgG antibody produced by AnaptysBio DARPA ATP Standardized Test Bed for Antibody

  1. Monoclonal antibodies to intermediate filament proteins of human cells: unique and cross-reacting antibodies. (United States)

    Gown, A M; Vogel, A M


    Monoclonal antibodies were generated against the intermediate filament proteins of different human cells. The reactivity of these antibodies with the different classes of intermediate filament proteins was determined by indirect immunofluorescence on cultured cells, immunologic indentification on SDS polyacrylamide gels ("wester blot" experiments), and immunoperoxidase assays on intact tissues. The following four antibodies are described: (a) an antivimentin antibody generated against human fibroblast cytoskeleton; (b), (c) two antibodies that recognize a 54-kdalton protein in human hepatocellular carcinoma cells; and (d) an antikeratin antibody made to stratum corneum that recognizes proteins of molecular weight 66 kdaltons and 57 kdaltons. The antivimentin antibody reacts with vimentin (58 kdaltons), glial fibrillary acidic protein (GFAP), and keratins from stratum corneum, but does not recognize hepatoma intermediate filaments. In immunofluorescence assays, the antibody reacts with mesenchymal cells and cultured epithelial cells that express vimentin. This antibody decorates the media of blood vessels in tissue sections. One antihepatoma filament antibody reacts only with the 54 kdalton protein of these cells and, in immunofluorescence and immunoperoxidase assays, only recognizes epithelial cells. It reacts with almost all nonsquamous epithelium. The other antihepatoma filament antibody is much less selective, reacting with vimentin, GFAP, and keratin from stratum corneum. This antibody decorates intermediate filaments of both mesenchymal and epithelial cells. The antikeratin antibody recognizes 66-kdalton and 57-kdalton proteins in extracts of stratum corneum and also identifies proteins of similar molecular weights in all cells tested. However, by immunofluorescence, this antibody decorates only the intermediate filaments of epidermoid carcinoma cells. When assayed on tissue sections, the antibody reacts with squamous epithelium and some, but not all

  2. Human Monoclonal Antibodies as a Countermeasure Against Botulinum Toxins (United States)


    REPORT Human monoclonal antibodies as a countermeasure against Botulinum toxins 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: In this report, we...Prescribed by ANSI Std. Z39.18 - 31-Aug-2012 Human monoclonal antibodies as a countermeasure against Botulinum toxins Report Title ABSTRACT In this report...DTRA Final Report: Human monoclonal antibodies as a countermeasure against Botulinum toxins   Page 1 of 22 DTRA Final Report: Human monoclonal

  3. [Human single chain antibodies directed to tumor necrosis factor]. (United States)

    Vikhrova, M A; Batanova, T A; Lebedev, L R; Shingarova, L N; Frank, L A; Kirpichnikov, M P; Tikunova, N V


    Six unique phage antibodies to human TNF have been selected from a combinatorial library of human single chain fragment variable. ELISA and Western-blotting was used to study selected phage antibodies binding with TNF. The specificity of selected antibodies was determined by binding with interferon alpha and gamma, bovine serum albumin, ovalbumin and ubiquitin. Two antibodies, sA1 and sB3, were converted into a soluble single-chain antibody form and their affinity was 2.5 and 13.7 nM respectively.

  4. Construction of human antibody gene libraries and selection of antibodies by phage display. (United States)

    Frenzel, André; Kügler, Jonas; Wilke, Sonja; Schirrmann, Thomas; Hust, Michael


    Antibody phage display is the most commonly used in vitro selection technology and has yielded thousands of useful antibodies for research, diagnostics, and therapy.The prerequisite for successful generation and development of human recombinant antibodies using phage display is the construction of a high-quality antibody gene library. Here, we describe the methods for the construction of human immune and naive scFv gene libraries.The success also depends on the panning strategy for the selection of binders from these libraries. In this article, we describe a panning strategy that is high-throughput compatible and allows parallel selection in microtiter plates.

  5. A monoclonal antibody against human MUDENG protein. (United States)

    Wagley, Yadav; Choi, Jun-Ha; Wickramanayake, Dimuthu Dhammika; Choi, Geun-Yeol; Kim, Chang-Kyu; Kim, Tae-Hyoung; Oh, Jae-Wook


    MUDENG (mu-2-related death-inducing gene, MuD) encodes a predicted ∼54-kDa protein in humans, considered to be involved in trafficking proteins from endosomes toward other membranous compartments as well as in inducing cell death. Here we report on the generation of a mouse monoclonal antibody (MAb) against the middle domain of human (h) MuD. This IgG sub 1 MAb, named M3H9, recognizes residues 244-326 in the middle domain of the MuD protein. Thus, the MuD proteins expressed in an astroglioma cell line and primary astrocytes can be detected by the M3H9 MAb. We showed that M3H9 MAb can be useful in enzyme-linked immunosorbent assay (ELISA) and immunoblot experiments. In addition, M3H9 MAb can detect the expression of the MuD protein in formalin-fixed, paraffin-embedded mouse ovary and uterus tissues. These results indicate that the MuD MAb M3H9 could be useful as a new biomarker of hereditary spastic paraplegia and other related diseases.

  6. A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments

    NARCIS (Netherlands)

    Huls, GA; Heijnen, IAFM; Cuomo, ME; Koningsberger, JC; Boel, E; de Vries, ARV; Loyson, SAJ; Helfrich, W; Henegouwen, GPV; van Meijer, M; de Kruif, J; Logtenberg, T


    A single-chain Fv antibody fragment specific for the tumor-associated Ep-CAM molecule was isolated from a semisynthetic phage display library and converted into an intact, fully human IgG1 monoclonal antibody (huMab), The purified huMab had an affinity of 5 nM and effectively mediated tumor cell kil


    Institute of Scientific and Technical Information of China (English)

    白银; 王琰; 周丽君; 俞莉章


    To construct and express a human-mouse chimeric antibody against human bladder cancer. Method: The variable region genes of anti-human bladder cancer monoclonal antibody BDI-1 were cloned by RT-PCR. A human-mouse chimeric antibody expression vector was constructed and transfected into CHO cells. The chimeric antibody against bladder cancer was expressed and characterized. Result: Eukaryotic expression vector of the chimeric antibody against human bladder carcinoma was successfully constructed, and was expressed in eukaryotic cells; the expressed chimeric antibody ch-BDI showed same specificity as its parent McAb against human bladder cancer cells. Conclusion: The constructed chimeric antibody was expressed successfully in eukaryotic cells, and the chimeric antibody had desired affinity against human bladder cancer cells.

  8. Mechanism of human antibody-mediated neutralization of Marburg virus. (United States)

    Flyak, Andrew I; Ilinykh, Philipp A; Murin, Charles D; Garron, Tania; Shen, Xiaoli; Fusco, Marnie L; Hashiguchi, Takao; Bornholdt, Zachary A; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Ward, Andrew B; Saphire, Erica Ollmann; Bukreyev, Alexander; Crowe, James E


    The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably, several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP, but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site, revealing a mechanism of filovirus inhibition.

  9. Discovery of diverse and functional antibodies from large human repertoire antibody libraries. (United States)

    Schwimmer, Lauren J; Huang, Betty; Giang, Hoa; Cotter, Robyn L; Chemla-Vogel, David S; Dy, Francis V; Tam, Eric M; Zhang, Fangjiu; Toy, Pamela; Bohmann, David J; Watson, Susan R; Beaber, John W; Reddy, Nithin; Kuan, Hua-Feng; Bedinger, Daniel H; Rondon, Isaac J


    Phage display antibody libraries have a proven track record for the discovery of therapeutic human antibodies, increasing the demand for large and diverse phage antibody libraries for the discovery of new therapeutics. We have constructed naïve antibody phage display libraries in both Fab and scFv formats, with each library having more than 250 billion clones that encompass the human antibody repertoire. These libraries show high fidelity in open reading frame and expression percentages, and their V-gene family distribution, VH-CDR3 length and amino acid usage mirror the natural diversity of human antibodies. Both the Fab and scFv libraries show robust sequence diversity in target-specific binders and differential V-gene usage for each target tested, supporting the use of libraries that utilize multiple display formats and V-gene utilization to maximize antibody-binding diversity. For each of the targets, clones with picomolar affinities were identified from at least one of the libraries and for the two targets assessed for activity, functional antibodies were identified from both libraries.

  10. Sperm-immobilizing monoclonal antibody to human seminal plasma antigens. (United States)

    Shigeta, M; Watanabe, T; Maruyama, S; Koyama, K; Isojima, S


    Rat spleen cells immunized to human azoospermic semen (a mixture of seminal plasma components) and mouse myeloma cells (P3/X63 Ag8U1; P3U1) (Marguilies et al., 1976) were successfully fused with polyethylene glycol (PEG 1500) and 19 of 89 fused cell cultures were found to produce sperm-immobilizing antibody. The cells that produced antibody indicating the highest sperm-immobilizing activity were distributed into wells for further recloning and 10 clones producing sperm-immobilizing antibody were established. The clone (1C4) producing the highest antibody titre was found to produce a large amount of IgG in culture supernatants and to contain a mixture of rat and mouse chromosomes. It was proved by immunodiffusion test that the monoclonal antibody was produced to the human seminal plasma antigen No. 7 which is common to human milk protein. Using this hybridoma which produced a large amount of monoclonal sperm-immobilizing antibody, a new method could be developed for purifying human seminal plasma antigen by immunoaffinity chromatography with bound antibody from the hybridoma. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:6783353

  11. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library. (United States)

    Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei


    Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.

  12. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library (United States)

    Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei


    Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective. PMID:27626445

  13. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library

    Directory of Open Access Journals (Sweden)

    Han Wang


    Full Text Available Tetanus neurotoxin (TeNT produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.

  14. Recombinant anti-human melanoma antibodies are versatile molecules. (United States)

    Neri, D; Natali, P G; Petrul, H; Soldani, P; Nicotra, M R; Vola, R; Rivella, A; Creighton, A M; Neri, P; Mariani, M


    The low cost, high versatility, and reliable production of bacterially produced recombinant antibody fragments speeds up the development of tumor-targeting agents. High-quality recombinant anti-melanoma antibodies are much sought after in the scientific community. We cloned the murine antibody 225.28S, currently used in radioimmunoimaging of human melanoma lesions, in single-chain Fv configuration (scFv) for soluble expression in bacteria. The recombinant antibody fragment conserved the binding specificity of the parental antibody. In order to arm the scFv(225.28S) with biologically useful effector functions, we developed vectors for soluble expression of scFv(225.28S) in bacteria that allow both covalent and noncovalent chemical antibody modification at positions that do not interfere with antigen binding. An expression vector was developed that appends a cysteine residue at the C-terminal extremity of the recombinant antibody, thus allowing reaction with thiol-specific reagents, including 99mTc labeling, at a position that does not interfere with antigen binding. The scFv(225.28S) was also successfully expressed with a casein kinase II substrate tag that enables efficient and stable 32P labeling. For noncovalent antibody modification, we developed an expression vector that appends the human calmodulin gene at the C-terminal extremity of scFv(225.28S). The calmodulin domain is poorly immunogenic and can be targeted with chemically modified high-affinity calmodulin ligands. The recombinant anti-human melanoma antibodies described in this article should prove useful "building blocks" for the development of anti-melanoma diagnostic and therapeutic strategies.

  15. Anti-epitope antibody,a novel site-directed antibody against human acetylcholinesterase

    Institute of Scientific and Technical Information of China (English)

    Xing-mei ZHANG; Gang LIU; Man-ji SUN


    AIM: To construct synthetic antigens using the epitope of human brain acetylcholinesterase (hbAChE) for induction and detection of the specific antibody against the epitope, and to analyse the immunogenicity of the antibody.METHODS: The epitope (RTVLVSMNYR, amino acids 143-152) of hbAChE was chemically synthesized, coupled with the carrier protein keyhole limpet hemocyanin (KLH) to construct an artificial immunogen (KLH-epitope), and injected into rabbits to raise antibody. The epitope conjugated with bovine serum albumin (BSA) was used as the detection antigen. The specificity of the antibody was tested by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The immunoreaction between the anti-recombinant human butyrylcholinesterase (rhBChE)polyclonal antibody and the biotinylated-epitope was examined by indirect ELISA. RESULTS: The erythrocyte AChE, the hbAChE, rhBChE and the BSA-epitope all immunoreacted with the anti-epitope antibody against the epitope (143-152) of hbAChE, whereas the torpedo AChE did not. CONCLUSION: The hbAChE, the human erythrocyte AChE and hBChE share the conservative antigenic epitope RTVLVSMNYR, hence they can all immunoreact with the anti-epitope antibody. Since the epitope of hbAChE is less similar with the aligned amino acid sequences of AChE of Torpedo californica or Torpedo marmorata, there is not any immunoreactivity between them. The R, M, and N residues in the epitope seem to be necessary radicals for the conservation of antigenicity.

  16. Human antibody and antigen response to IncA antibody of Chlamydia trachomatis. (United States)

    Tsai, P Y; Hsu, M C; Huang, C T; Li, S Y


    The high prevalence of C. trachomatis worldwide has underscored the importance of identifying specific immunogenic antigens in facilitating diagnosis as well as vaccine development. The aim of this study is to evaluate IncA antibody and antigen production in natural human infections. Our temporal expression study showed that IncA transcription and protein expression could be detected as early as 4 hours after the start of infection. Antibody responses could be detected in urine and genital swab samples from C. trachomatis-positive patients. It is especially interesting to note that the IncA antigen could be detected in urine. In conclusion, we have identified IncA as an important antigen in human. The potential applicability of the IncA antibody or antigen in the diagnosis as well as to vaccine development for C. trachomatis is also discussed.

  17. Probing cocaine-antibody interactions in buffer and human serum.

    Directory of Open Access Journals (Sweden)

    Muthu Ramakrishnan

    Full Text Available BACKGROUND: Despite progress in cocaine immunotherapy, the kinetic and thermodynamic properties of antibodies which bind to cocaine and its metabolites are not well understood. It is also not clear how the interactions between them differ in a complex matrix such as the serum present in the human body. In the present study, we have used microscale thermophoresis (MST, isothermal titration calorimetry (ITC, and surface plasmon resonance (SPR we have evaluated the affinity properties of a representative mouse monoclonal (mAb08 as well as those of polyclonal antibodies purified from vaccinated mouse and human patient serum. RESULTS: MST analysis of fluorescently tagged mAb08 binding to cocaine reveals an approximately 15 fold decrease in its equilibrium dissociation constant in 20-50% human serum compared with that in saline buffer. A similar trend was also found using enriched polyclonal antibodies purified from vaccinated mice and patient serum, for which we have used fluorescently tagged bovine serum albumin conjugated to succinyl norcocaine (BSA-SNC. This conjugate closely mimics both cocaine and the hapten used to raise these antibodies. The ITC data also revealed that cocaine has a moderate affinity of about 2 µM to 20% human serum and very little interaction with human serum albumin or nonspecific human IgG at that concentration range. In a SPR inhibition experiment, the binding of mAb08 to immobilized BSA-SNC was inhibited by cocaine and benzoylecgonine in a highly competitive manner, whereas the purified polyclonal antibodies from vaccinated humans and mice, revealed preferential selectivity to pharmacologically active cocaine but not to the inactive metabolite benzoylecgonine. We have also developed a simple binding model to simulate the challenges associated with cocaine immunotherapy using the variable quantitative and kinetic properties of the antibodies. CONCLUSIONS: High sensitivity calorimetric determination of antibody binding to

  18. Current status of cancer immunodetection with radiolabeled human monoclonal antibodies. (United States)

    De Jager, R; Abdel-Nabi, H; Serafini, A; Pecking, A; Klein, J L; Hanna, M G


    The use of radiolabeled murine monoclonal antibodies (MoAbs) for cancer immunodetection has been limited by the development of human antimouse antibodies (HAMA). Human monoclonal antibodies do not elicit a significant human antihuman (HAHA) response. The generation and production of human monoclonal antibodies met with technical difficulties that resulted in delaying their clinical testing. Human monoclonal antibodies of all isotypes have been obtained. Most were immunoglobulin (Ig) M directed against intracellular antigens. Two antibodies, 16.88 (IgM) and 88BV59 (IgG3k), recognize different epitopes on a tumor-associated antigen, CTA 16.88, homologous to cytokeratins 8, 18, and 19. CTA 16.88 is expressed by most epithelial-derived tumors including carcinomas of the colon, pancreas, breast, ovary, and lung. The in vivo targeting by these antibodies is related to their localization in nonnecrotic areas of tumors. Repeated administration of 16.88 over 5 weeks to a cumulative dose of 1,000 mg did not elicit a HAHA response. Two of 53 patients developed a low titer of HAHA 1 to 3 months after a single administration of 88BV59. Planar imaging of colorectal cancer with Iodine-131 (131I)-16.88 was positive in two studies in 9 of 12 and 16 of 20 patients preselected by immunohistochemistry. Tumors less than 2 cm in diameter are usually not detected. The lack of immunogenicity and long tumor residence time (average = 17 days) makes 16.88 a good candidate for therapy. Radioimmunlymphoscintigraphy with indium-111 (111In)-LiLo-16.88 administered by an intramammary route was used in the presurgical staging of primary breast cancer. The negative predictive value of lymph node metastases for tumors less than 3 cm was 90.5%. Planar and single photon emission computed tomography imaging of colorectal carcinoma with technetium-99m (99mTc) 88BV59 was compared with computed tomography (CT) scan in 36 surgical patients. The antibody scan was more sensitive than the CT scan in detecting


    NARCIS (Netherlands)



    The selectivity of anticancer agents may be improved by antibody-directed enzyme prodrug therapy (ADEPT), The immunogenicity of antibody-enzyme conjugates and the low tumor to normal tissue ratio calls for the use of a human enzyme and the development of a monoclonal antibody (MAb) against that enzy

  20. Broad epitope coverage of a human in vitro antibody library (United States)

    Sivasubramanian, Arvind; Lynaugh, Heather; Yu, Yao; Miles, Adam; Eckman, Josh; Schutz, Kevin; Piffath, Crystal; Boland, Nadthakarn; Durand, Stéphanie; Boland, Todd; Vásquez, Maximiliano; Xu, Yingda; Abdiche, Yasmina


    ABSTRACT Successful discovery of therapeutic antibodies hinges on the identification of appropriate affinity binders targeting a diversity of molecular epitopes presented by the antigen. Antibody campaigns that yield such broad “epitope coverage” increase the likelihood of identifying candidates with the desired biological functions. Accordingly, epitope binning assays are employed in the early discovery stages to partition antibodies into epitope families or “bins” and prioritize leads for further characterization and optimization. The collaborative program described here, which used hen egg white lysozyme (HEL) as a model antigen, combined 3 key capabilities: 1) access to a diverse panel of antibodies selected from a human in vitro antibody library; 2) application of state-of-the-art high-throughput epitope binning; and 3) analysis and interpretation of the epitope binning data with reference to an exhaustive set of published antibody:HEL co-crystal structures. Binning experiments on a large merged panel of antibodies containing clones from the library and the literature revealed that the inferred epitopes for the library clones overlapped with, and extended beyond, the known structural epitopes. Our analysis revealed that nearly the entire solvent-exposed surface of HEL is antigenic, as has been proposed for protein antigens in general. The data further demonstrated that synthetic antibody repertoires provide as wide epitope coverage as those obtained from animal immunizations. The work highlights molecular insights contributed by increasingly higher-throughput binning methods and their broad utility to guide the discovery of therapeutic antibodies representing a diverse set of functional epitopes. PMID:27748644

  1. Identification of antigen-specific human monoclonal antibodies using high-throughput sequencing of the antibody repertoire. (United States)

    Liu, Ju; Li, Ruihua; Liu, Kun; Li, Liangliang; Zai, Xiaodong; Chi, Xiangyang; Fu, Ling; Xu, Junjie; Chen, Wei


    High-throughput sequencing of the antibody repertoire provides a large number of antibody variable region sequences that can be used to generate human monoclonal antibodies. However, current screening methods for identifying antigen-specific antibodies are inefficient. In the present study, we developed an antibody clone screening strategy based on clone dynamics and relative frequency, and used it to identify antigen-specific human monoclonal antibodies. Enzyme-linked immunosorbent assay showed that at least 52% of putative positive immunoglobulin heavy chains composed antigen-specific antibodies. Combining information on dynamics and relative frequency improved identification of positive clones and elimination of negative clones. and increase the credibility of putative positive clones. Therefore the screening strategy could simplify the subsequent experimental screening and may facilitate the generation of antigen-specific antibodies.

  2. Rescue and expression of human immunoglobulin genes to generate functional human monoclonal antibodies. (United States)

    Lewis, A P; Parry, N; Peakman, T C; Crowe, J S


    Human monoclonal antibody production has been hampered for many years by the instability of cell lines and low levels of expression of the antibodies. We describe here the rescue of human immunoglobulin genes utilizing micro-mRNA preparation from a small number of human hybridoma cells and conventional cDNA cloning. This allows cloning and immediate high-level expression from full-length human heavy and light chain cDNA molecules and provides a mechanism to rescue whole human monoclonal antibodies of proven efficacy.

  3. Human cysticercosis: antigens, antibodies and non-responders. (United States)

    Flisser, A; Woodhouse, E; Larralde, C


    Immunoelectrophoresis of sera from patients with brain cysticercosis against a crude antigenic extract from Cysticercus cellulosae indicates that nearly 50% of the patients do not make sufficient antibodies to ostensively precipitate. The other 50% of the patients who do make precipitating antibodies show a very heterogeneous response in the number of antigens they recognize as well as in the type of antigen--as classified by their electrophoretic mobilities. The most favoured, called antigen B, is recognized by 84% of positive sera and corresponds to one or a limited number of antigens isoelectric at pH 8.6. Indirect immunofluorescence with monospecific anti-human immunoglobulins, performed upon the immunoelectrophoretic preparations, reveal that all cysticercus antigens induced the synthesis of antibodies in the immunoglobulin classes in the order G greater than M greater than E greater than A greater than D. Finally, antigen H (an anodic component) seems to favour IgE relative to its ability to induce IgG. Thus, although in natural infection a good proportion of cysticercotic patients do not seem to mount an energetic antibody response against the parasite, giving rise to some speculations about immunosuppression, the fact that 50% do synthesize antibodies allows for some optimistic expectations from vaccination of humans--in view of the good results of vaccination in experimental animals mediated by IgG antibodies. A likely prospect for a human vaccine would be antigen B because it is the most frequently detected by humans, although its immunizing and toxic properties remain to be properly studied. Images FIG. 1 FIG. 3 FIG. 6 PMID:7389197

  4. [Neutralizing Monoclonal and Chimeric Antibodies to Human IFN-γ]. (United States)

    Larina, M V; Aliev, T K; Solopova, O N; Pozdnyakova, L P; Korobova, S V; Yakimov, S A; Sveshnikov, P G; Dolgikh, D A; Kirpichnikov, M P


    Autoiminune disorders are chronic diseases characterized by abnormal immune response directed against self-antigens that leads to tissue damage and violation of its normal functioning. Such diseases often result in disability or even death of patients. Nowadays a number of monoclonal antibodies to pro-inflammatory cytokines and their receptors are successfully used for the targeted treatment of autoimmune diseases. One of the perspective targets in autoimmune disease therapy is interferon gamma, a key cytokine in Th1 cells differentiation, activation of macrophages, and inflammation. In the present work, 5 monoclonal antibodies to human IFN-γ were obtained. For the development of potential therapeutic agent, we have performed neutralizing activity and affinity analysis of the antibodies. Based on the data obtained, the monoclonal antibody F1 was selected. This antibody has a dissociation constant 1.7 x 10(-9) M and IC90 = 8.9 ± 2.0 nM measured upon antibody inhibition of the IFN-γ-induced HLA-DR expression on the surface of U937 cells. We have constructed a bicistronic vector for the production of recombinant chimeric Fab fragment F1 chim in E. coli cells. The recombinant chimeric Fab fragment Fl chim neutralizes IFN-γ activity in vitro and has a dissociation constant 1.8 x 10(-9) M.

  5. Secondary Mechanisms of Affinity Maturation in the Human Antibody Repertoire

    Directory of Open Access Journals (Sweden)

    Bryan S. Briney


    Full Text Available V(DJ recombination and somatic hypermutation (SHM are the primary mechanisms for diversification of the human antibody repertoire. These mechanisms allow for rapid humoral immune responses to a wide range of pathogenic challenges. V(DJ recombination efficiently generate a virtually limitless diversity through random recombination of variable (V, diversity (D and joining (J genes with diverse nontemplated junctions between the selected gene segments. Following antigen stimulation, affinity maturation by SHM produces antibodies with refined specificity mediated by mutations typically focused in complementarity determining regions (CDRs, which form the bulk of the antigen recognition site. While V(DJ recombination and SHM are responsible for much of the diversity of the antibody repertoire, there are several secondary mechanisms that, while less frequent, make substantial contributions to antibody diversity including V(DDJ recombination (or D-D fusion, somatic-hypermutation-associated insertions and deletions, and affinity maturation and antigen contact by non-CDR regions of the antibody. In addition to enhanced diversity, these mechanisms allow the production of antibodies that are critical to response to a variety of viral and bacterial pathogens but that would be difficult to generate using only the primary mechanisms of diversification.

  6. A human-mouse hybridoma producing monoclonal antibody against human sperm coating antigen. (United States)

    Kyurkchiev, S D; Shigeta, M; Koyama, K; Isojima, S


    Since anti-sperm antibodies were first discovered in the sera of women, the relationship of these antibodies to sterility has been studied by many investigators. In order to determine the antigens of spermatozoa responsible for raising antibodies to spermatozoa in humans, many studies have been carried out by purifying human spermatozoa cell membrane and seminal plasma components. Since it was found that the purification was difficult by physiochemical procedures, the immunoaffinity chromatography bound monoclonal antibody (Mab) to spermatozoa antigens was attempted for this purpose. The establishment of hybridomas producing Mabs to human seminal plasma and human spermatozoa was reported by Shigeta et al. (1980), Isojima, Koyoma & Fujiwara (1982), Lee et al. (1982) and Isahakia & Alexander (1984). The ordinary approaches to obtain the Mabs consisted of xenogenic immunization with human semen and cell fusion of immunized spleen cells with mouse myeloma cells. However, the antigenic epitopes of human spermatozoa, which induced antibody production, are xenogenic for the mouse, and therefore there is a possibility that there is a difference in recognized antigenic epitopes in humans as isotypic and in mice as xenogenic. In order to study these antigenic epitopes, which correspond to antibodies against spermatozoa in women, the establishment of human-mouse hybridomas, which produced anti-semen antibodies as produced in sterile women, became essential. In these studies, we used recently developed cell fusion techniques to fuse immunized human peripheral lymphocytes with mouse myeloma cells. PMID:3456978

  7. Therapeutic monoclonal antibodies in human breast milk: a case study. (United States)

    Ross, Elle; Robinson, Steven E; Amato, Carol; McMillan, Colette; Westcott, Jay; Wolf, Tiffany; Robinson, William A


    Recently, therapeutic monoclonal antibodies have been introduced for the treatment of advanced melanoma and other diseases. It remains unclear whether these drugs can be safely administered to women who are breast feeding because of the potential hazardous side effects for nursing infants. One such therapy for metastatic melanoma is ipilimumab, a human monoclonal antibody that blocks cytotoxic T-lymphocyte-antigen-4, and is the preferred treatment for patients with metastatic melanoma when other molecular therapies are not viable. This study measured ipilimumab levels in the breast milk of a patient undergoing treatment that were enough to raise concerns for a nursing infant exposed to ipilimumab.

  8. Monoclonal Antibody Production against Human Spermatozoal Surface Antigens

    Directory of Open Access Journals (Sweden)

    M Jedi-Tehrani


    Full Text Available Introduction: As monoclonal antibodies are potential tools for characterization of soluble or cellular surface antigens, use of these proteins has always been considered in infertility and reproduction research. Therefore, in this study, monoclonal antibodies against human sperm surface antigens were produced. Material and Methods: To produce specific clones against human sperm surface antigens, proteins were extracted using solubilization methods. Balb/c mice were immunized intraperitoneally with the proteins using complete Freund’s adjuvant in the first injection and incomplete Adjuvant in the following booster injections. Hybridoma cells producing ASA were cloned by limiting dilution. Results: Five stable ASA producing hybridoma clones were achieved and their antibody isotypes were determined by ELISA. All the isotypes were of IgG class. Their cross reactivity with rat and mice spermatozoa was examined but they did not have any cross reactivity. Conclusion: The produced antibodies can be used in further studies to characterize and evaluate each of the antigens present on human sperm surface and determining their role in fertilization.

  9. Efficient generation of human IgA monoclonal antibodies. (United States)

    Lorin, Valérie; Mouquet, Hugo


    Immunoglobulin A (IgA) is the most abundant antibody isotype produced in humans. IgA antibodies primarily ensure immune protection of mucosal surfaces against invading pathogens, but also circulate and are present in large quantities in blood. IgAs are heterogeneous at a molecular level, with two IgA subtypes and the capacity to form multimers by interacting with the joining (J) chain. Here, we have developed an efficient strategy to rapidly generate human IgA1 and IgA2 monoclonal antibodies in their monomeric and dimeric forms. Recombinant monomeric and dimeric IgA1/IgA2 counterparts of a prototypical IgG1 monoclonal antibody, 10-1074, targeting the HIV-1 envelope protein, were produced in large amounts after expression cloning and transient transfection of 293-F cells. 10-1074 IgAs were FPLC-purified using a novel affinity-based resin engrafted with anti-IgA chimeric Fabs, followed by a monomers/multimers separation using size exclusion-based FPLC. ELISA binding experiments confirmed that the artificial IgA class switching of 10-1074 did not alter its antigen recognition. In summary, our technical approach allows the very efficient production of various forms of purified recombinant human IgA molecules, which are precious tools in dissecting IgA B-cell responses in physiological and pathophysiological conditions, and studying the biology, function and therapeutic potential of IgAs.

  10. An Insertion Mutation That Distorts Antibody Binding Site Architecture Enhances Function of a Human Antibody

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jens C.; Ekiert, Damian C.; Tumpey, Terrence M.; Smith, Patricia B.; Wilson, Ian A.; Crowe, Jr., James E. (Vanderbilt); (Scripps); (CDC)


    The structural and functional significance of somatic insertions and deletions in antibody chains is unclear. Here, we demonstrate that a naturally occurring three-amino-acid insertion within the influenza virus-specific human monoclonal antibody 2D1 heavy-chain variable region reconfigures the antibody-combining site and contributes to its high potency against the 1918 and 2009 pandemic H1N1 influenza viruses. The insertion arose through a series of events, including a somatic point mutation in a predicted hot-spot motif, introduction of a new hot-spot motif, a molecular duplication due to polymerase slippage, a deletion due to misalignment, and additional somatic point mutations. Atomic resolution structures of the wild-type antibody and a variant in which the insertion was removed revealed that the three-amino-acid insertion near the base of heavy-chain complementarity-determining region (CDR) H2 resulted in a bulge in that loop. This enlarged CDR H2 loop impinges on adjacent regions, causing distortion of the CDR H1 architecture and its displacement away from the antigen-combining site. Removal of the insertion restores the canonical structure of CDR H1 and CDR H2, but binding, neutralization activity, and in vivo activity were reduced markedly because of steric conflict of CDR H1 with the hemagglutinin antigen.

  11. The human antibody response to the surface of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Casey C Perley

    Full Text Available Vaccine-induced human antibodies to surface components of Haemophilus influenzae and Streptococcus pneumonia are correlated with protection. Monoclonal antibodies to surface components of Mycobacterium tuberculosis are also protective in animal models. We have characterized human antibodies that bind to the surface of live M. tuberculosis.Plasma from humans with latent tuberculosis (TB infection (n = 23, active TB disease (n = 40, and uninfected controls (n = 9 were assayed by ELISA for reactivity to the live M. tuberculosis surface and to inactivated M. tuberculosis fractions (whole cell lysate, lipoarabinomannan, cell wall, and secreted proteins.When compared to uninfected controls, patients with active TB disease had higher antibody titers to the surface of live M. tuberculosis (Δ = 0.72 log10, whole cell lysate (Δ = 0.82 log10, and secreted proteins (Δ = 0.62 log10, though there was substantial overlap between the two groups. Individuals with active disease had higher relative IgG avidity (Δ = 1.4 to 2.6 to all inactivated fractions. Surprisingly, the relative IgG avidity to the live M. tuberculosis surface was lower in the active disease group than in uninfected controls (Δ =  -1.53, p = 0.004. Patients with active disease had higher IgG than IgM titers for all inactivated fractions (ratios, 2.8 to 10.1, but equal IgG and IgM titers to the live M. tuberculosis surface (ratio, 1.1. Higher antibody titers to the M. tuberculosis surface were observed in active disease patients who were BCG-vaccinated (Δ = 0.55 log10, p = 0.008, foreign-born (Δ = 0.61 log10, p = 0.004, or HIV-seronegative (Δ = 0.60 log10, p = 0.04. Higher relative IgG avidity scores to the M. tuberculosis surface were also observed in active disease patients who were BCG-vaccinated (Δ = 1.12, p < 0.001 and foreign-born (Δ = 0.87, p = 0.01.Humans with active TB disease produce antibodies to the surface of M. tuberculosis with low avidity and with a low IgG/IgM ratio

  12. The Human Antibody Response to the Surface of Mycobacterium tuberculosis (United States)

    Perley, Casey C.; Frahm, Marc; Click, Eva M.; Dobos, Karen M.; Ferrari, Guido; Stout, Jason E.; Frothingham, Richard


    Background Vaccine-induced human antibodies to surface components of Haemophilus influenzae and Streptococcus pneumonia are correlated with protection. Monoclonal antibodies to surface components of Mycobacterium tuberculosis are also protective in animal models. We have characterized human antibodies that bind to the surface of live M. tuberculosis. Methods Plasma from humans with latent tuberculosis (TB) infection (n = 23), active TB disease (n = 40), and uninfected controls (n = 9) were assayed by ELISA for reactivity to the live M. tuberculosis surface and to inactivated M. tuberculosis fractions (whole cell lysate, lipoarabinomannan, cell wall, and secreted proteins). Results When compared to uninfected controls, patients with active TB disease had higher antibody titers to the surface of live M. tuberculosis (Δ = 0.72 log10), whole cell lysate (Δ = 0.82 log10), and secreted proteins (Δ = 0.62 log10), though there was substantial overlap between the two groups. Individuals with active disease had higher relative IgG avidity (Δ = 1.4 to 2.6) to all inactivated fractions. Surprisingly, the relative IgG avidity to the live M. tuberculosis surface was lower in the active disease group than in uninfected controls (Δ = –1.53, p = 0.004). Patients with active disease had higher IgG than IgM titers for all inactivated fractions (ratios, 2.8 to 10.1), but equal IgG and IgM titers to the live M. tuberculosis surface (ratio, 1.1). Higher antibody titers to the M. tuberculosis surface were observed in active disease patients who were BCG-vaccinated (Δ = 0.55 log10, p = 0.008), foreign-born (Δ = 0.61 log10, p = 0.004), or HIV-seronegative (Δ = 0.60 log10, p = 0.04). Higher relative IgG avidity scores to the M. tuberculosis surface were also observed in active disease patients who were BCG-vaccinated (Δ = 1.12, p<0.001) and foreign-born (Δ = 0.87, p = 0.01). Conclusions/Significance Humans

  13. Phase I study of anticolon cancer humanized antibody A33. (United States)

    Welt, Sydney; Ritter, Gerd; Williams, Clarence; Cohen, Leonard S; John, Mary; Jungbluth, Achim; Richards, Elizabeth A; Old, Lloyd J; Kemeny, Nancy E


    Humanized A33 (huA33; IgG1) monoclonal antibody detects a determinant expressed by 95% of colorectal cancers and can activate immune cytolytic mechanisms. The present study was designed to (a) define the toxicities and maximum tolerated dose of huA33 and (b) determine huA33 immunogenicity. Patients (n = 11) with advanced chemotherapy-resistant colorectal cancer received 4-week cycles of huA33 at 10, 25, or 50 mg/m(2)/week. Serum samples were analyzed using biosensor technology for evidence of human antihuman antibody (HAHA) response. Eight of 11 patients developed a HAHA response. Significant toxicity was limited to four patients who developed high HAHA titers. In two of these cases, infusion-related reactions such as fevers, rigors, facial flushing, and changes in blood pressure were observed, whereas in the other two cases, toxicity consisted of skin rash, fever, or myalgia. Of three patients who remained HAHA negative, one achieved a radiographic partial response, with reduction of serum carcinoembryonic antigen from 80 to 3 ng/ml. Four patients had radiographic evidence of stable disease (2, 4, 6, and 12 months), with significant reductions (>25%) in serum carcinoembryonic antigen levels in two cases. The complementarity-determining region-grafted huA33 antibody is immunogenic in the majority of colon cancer patients (73%). HAHA activity can be measured reproducibly and quantitatively by BIACORE analysis. Whereas the huA33 construct tested here may be too immunogenic for further clinical development, the antitumor effects observed in the absence of antibody-mediated toxicity and in this heavily pretreated patient population warrant clinical testing of other IgG1 humanized versions of A33 antibody.

  14. Recognition determinants of broadly neutralizing human antibodies against dengue viruses. (United States)

    Rouvinski, Alexander; Guardado-Calvo, Pablo; Barba-Spaeth, Giovanna; Duquerroy, Stéphane; Vaney, Marie-Christine; Kikuti, Carlos M; Navarro Sanchez, M Erika; Dejnirattisai, Wanwisa; Wongwiwat, Wiyada; Haouz, Ahmed; Girard-Blanc, Christine; Petres, Stéphane; Shepard, William E; Desprès, Philippe; Arenzana-Seisdedos, Fernando; Dussart, Philippe; Mongkolsapaya, Juthathip; Screaton, Gavin R; Rey, Félix A


    Dengue disease is caused by four different flavivirus serotypes, which infect 390 million people yearly with 25% symptomatic cases and for which no licensed vaccine is available. Recent phase III vaccine trials showed partial protection, and in particular no protection for dengue virus serotype 2 (refs 3, 4). Structural studies so far have characterized only epitopes recognized by serotype-specific human antibodies. We recently isolated human antibodies potently neutralizing all four dengue virus serotypes. Here we describe the X-ray structures of four of these broadly neutralizing antibodies in complex with the envelope glycoprotein E from dengue virus serotype 2, revealing that the recognition determinants are at a serotype-invariant site at the E-dimer interface, including the exposed main chain of the E fusion loop and the two conserved glycan chains. This 'E-dimer-dependent epitope' is also the binding site for the viral glycoprotein prM during virus maturation in the secretory pathway of the infected cell, explaining its conservation across serotypes and highlighting an Achilles' heel of the virus with respect to antibody neutralization. These findings will be instrumental for devising novel immunogens to protect simultaneously against all four serotypes of dengue virus.

  15. Antibody (United States)

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  16. Belimumab: anti-BLyS human monoclonal antibody, anti-BLyS monoclonal antibody, BmAb, human monoclonal antibody to B-lymphocyte stimulator. (United States)


    Belimumab is a fully human monoclonal antibody that specifically recognizes and inhibits the biological activity of B-lymphocyte stimulator, or BLyS. Belimumab is in phase III trials for the treatment of systemic lupus erythematosus (SLE) and has completed a phase II trial in rheumatoid arthritis (RA); the product may also have potential in the treatment of other autoimmune disorders. In May 2001, Cambridge Antibody Technology (now MedImmune) completed its discovery programme and Human Genome Sciences identified belimumab as a candidate for clinical development. More than 1000 distinct human antibodies specific to BLyS were characterized by the collaboration.B-lymphocyte stimulator is a naturally occurring protein discovered by Human Genome Sciences that stimulates B-lymphocytes to develop into mature B cells. Laboratory studies have indicated that higher than normal levels of B-lymphocyte stimulator may contribute to the pathogenesis of autoimmune diseases, such as SLE and RA. Human Genome Sciences (HGS) and Cambridge Antibody Technology signed a collaborative agreement in August 1999 to study the B-lymphocyte stimulator as a human protein target. HGS is also developing other BLyS products. In March 2000, HGS and Cambridge Antibody Technology expanded their agreement into a 10-year collaboration and product development alliance, providing Human Genome Sciences with the right to use the antibody technology of Cambridge Antibody Technology to fully develop human antibodies for therapeutic and diagnostic purposes. Cambridge Antibody Technology will receive royalty payments on product sales from HGS, as well as the development and milestone payments it has already received. Belimumab will be manufactured in Human Genome Sciences' manufacturing facility, located in Rockville, MD, USA. HGS holds commercial rights to the drug. In July 2005, GlaxoSmithKline (GSK) exercised its co-development and co-promotion option to belimumab. In an agreement made in June 1996, HGS had

  17. Studies of neutralising antibodies to SV40 in human sera. (United States)

    Minor, P; Pipkin, P; Jarzebek, Z; Knowles, W


    It has been suggested that the low levels of antibody to the simian polyoma virus SV40 found in human sera may be linked to the use of polio vaccines. Panels of sera from areas of the world with different vaccination histories were examined to see if consistent differences could be identified. In a total of 2,054 sera from the United Kingdom, 692 from Africa and 923 from Poland taken between 1985 and 1997, the seroprevalence was generally between 3 and 5%, although exceptionally one collection from Morocco had a prevalence of 100%, and one from Poland of 0.4%. The seroprevalence showed no obvious age-dependent increase and titres were low compared to post infection animal sera. The results are consistent with previous studies and reveal no general geographically based differences related to possible differences in vaccination history, but the origin of the SV40 antibody in human sera remains to be established.

  18. Discovery Of Human Antibodies Against Spitting Cobra Toxins

    DEFF Research Database (Denmark)

    Bojsen-Møller, Laura; Lohse, Brian; Harrison, Robert

    spitting cobras are among the most medically important snakes in sub-Saharan regions due to the severity of the clinical outcomes caused by their cytotoxic venom, which is derived from cytotoxins of the 3FTx toxin family and PLA2. Here we report the results of our progress in identifying human antibodies...... targeting relevant toxins from the venom of the black necked spitting cobra (Naja nigricolis)....

  19. The Use of Monoclonal Antibodies in Human Prion Disease (United States)

    Bodemer, Walter

    Detection of PrP and its pathological isoform(s) is the key to understanding the etiology and pathogenesis of transmissible spongiform encephalopathy. There is ample evidence that PrP isoforms constitute a major component of an unknown and perhaps unconventional infectious agent. An etiological relationship between human and zoonotic transmissible spongiform encephalopathies may be revealed with monoclonal antibodies. Knowledge of the conformational transition rendering a nonpathogenic, almost ubiquitous cellular protein into a pathogenic one is crucial to defining pathomechanisms. The stepwise or even continuous formation of pathogenic molecules can be monitored. Any improvement in the early diagnosis could help to conceive new therapeutic measures which are not currently available. Determination of PrP isoforms in tissue, cells, or body fluids may be of prognostic value. Many experimental approaches in molecular medicine and molecular biology of the prion protein already rely on monoclonal antibodies. Recombinant antibodies such as the single-chain Fv may soon replace traditional hybridoma techniques. Binding affinity can easily be manipulated by a number of techniques, including in vitro mutagenesis - a step which could never be carried out using the traditional hybridoma technology. Monoclonal antibodies are and will remain an essential support for ongoing research on the prion protein in general and on the unconventional infectious prions.

  20. Generation and Characterization of Novel Human IRAS Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Bo Wang


    Full Text Available Imidazoline receptors were first proposed by Bousquet et al., when they studied antihypertensive effect of clonidine. A strong candidate for I1R, known as imidazoline receptor antisera-selected protein (IRAS, has been cloned from human hippocampus. We reported that IRAS mediated agmatine-induced inhibition of opioid dependence in morphine-dependent cells. To elucidate the functional and structure properties of I1R, we developed the newly monoclonal antibody against the N-terminal hIRAS region including the PX domain (10–120aa through immunization of BALB/c mice with the NusA-IRAS fusion protein containing an IRAS N-terminal (10–120aa. Stable hybridoma cell lines were established and monoclonal antibodies specifically recognized full-length IRAS proteins in their native state by immunoblotting and immunoprecipitation. Monoclonal antibodies stained in a predominantly punctate cytoplasmic pattern when applied to IRAS-transfected HEK293 cells by indirect immunofluorescence assays and demonstrated excellent reactivity in flow immunocytometry. These monoclonal antibodies will provide powerful reagents for the further investigation of hIRAS protein functions.

  1. Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4

    DEFF Research Database (Denmark)

    Gram, G J; Hemming, A; Bolmstedt, A;


    Glycosylation is necessary for HIV-1 gp120 to attain a functional conformation, and individual N-linked glycans of gp120 are important, but not essential, for replication of HIV-1 in cell culture. We have constructed a mutant HIV-1 infectious clone lacking a signal for N-linked glycosylation in t...

  2. Human immunodeficiency virus antibodies and the vaccine problem. (United States)

    Chiodi, F; Weiss, R A


    Despite the great advances made in controlling human immunodeficiency virus type 1 (HIV-1) infection with antiretroviral drug treatment, a safe and efficacious HIV vaccine has yet to be developed. Here, we discuss why clinical trials and vaccine development for HIV have so far been disappointing, with an emphasis on the lack of protective antibodies. We review approaches for developing appropriate HIV immunogens and the stimulation of long-lasting B-cell responses with antibody maturation. We conclude that candidate reagents in the pipeline for HIV vaccine development are unlikely to be particularly effective. Although the major funders of HIV vaccine research and development are placing increasing emphasis on clinical product development, a genuine breakthrough in preventing HIV infection through vaccines is more likely to come from novel immunogen research.

  3. Production of monoclonal antibodies to human glomerular basement membrane.

    Directory of Open Access Journals (Sweden)



    Full Text Available Using the technique of somatic cell fusion, we produced monoclonal antibodies to collagenase-digested human glomerular basement membrane (GBM. Fourteen monoclonal antibodies which reacted with normal human kidney in indirect immunofluorescence (IIF studies were produced. An analysis of the binding patterns indicated that the antigens recognized could be divided into six broad groups. Monoclonal antibody B3-H10 (Group 1 reacted with only GBM in a fine granular pattern. A5-B12 and B5-C2 (Group 2 reacted with GBM and peritubular capillary in a linear pattern. B2-A12 (Group 3 reacted with only epithelial cells. Al-C9 and A4-E2 (Group 4 showed a mesangial pattern in glomerulus and a lineal pattern in tubular basement membrane (TBM, Bowman's capsule and peritubular capillary. A1-E1, A1-E11, A2-E6, A3-B6, A4-F8 and B5-H2 (Group 5 recognized determinants common to GBM, TBM, Bowman's capsule and/or peritubular capillary. A3-F1 and B5-E10 (Group 6 reacted with TBM and Bowman's capsule. The staining pattern of B3-H10 (Group 1 was characteristic because it was not linear, but finely granular along the GBM. The staining pattern of B2-A12 (Group 3 was also characteristic because only epithelial cells were stained, and processes of epithelial cells were observed as fine fibrils. To the best of our knowledge, these two types of monoclonal antibodies have not been reported previously.

  4. Expression of Human Immunodeficiency Virus Type 1 Neutralizing Antibody Fragments Using Human Vaginal Lactobacillus (United States)

    Marcobal, Angela; Liu, Xiaowen; Zhang, Wenlei; Dimitrov, Antony S.; Jia, Letong; Lee, Peter P.; Fouts, Timothy R.; Parks, Thomas P.


    Abstract Eradication of human immunodeficiency virus type 1 (HIV-1) by vaccination with epitopes that produce broadly neutralizing antibodies is the ultimate goal for HIV prevention. However, generating appropriate immune responses has proven difficult. Expression of broadly neutralizing antibodies by vaginal colonizing lactobacilli provides an approach to passively target these antibodies to the mucosa. We tested the feasibility of expressing single-chain and single-domain antibodies (dAbs) in Lactobacillus to be used as a topical microbicide/live biotherapeutic. Lactobacilli provide an excellent platform to express anti-HIV proteins. Broadly neutralizing antibodies have been identified against epitopes on the HIV-1 envelope and have been made into active antibody fragments. We tested single-chain variable fragment m9 and dAb-m36 and its derivative m36.4 as prototype antibodies. We cloned and expressed the antibody fragments m9, m36, and m36.4 in Lactobacillus jensenii-1153 and tested the expression levels and functionality. We made a recombinant L. jensenii 1153-1128 that expresses dAb-m36.4. All antibody fragments m9, m36, and m36.4 were expressed by lactobacilli. However, we noted the smaller m36/m36.4 were expressed to higher levels, ≥3 μg/ml. All L. jensenii-expressed antibody fragments bound to gp120/CD4 complex; Lactobacillus-produced m36.4 inhibited HIV-1BaL in a neutralization assay. Using a TZM-bl assay, we characterized the breadth of neutralization of the m36.4. Delivery of dAbs by Lactobacillus could provide passive transfer of these antibodies to the mucosa and longevity at the site of HIV-1 transmission. PMID:26950606

  5. Reactivity of eleven anti-human leucocyte monoclonal antibodies with lymphocytes from several domestic animals

    DEFF Research Database (Denmark)

    Aasted, Bent; Blixenkrone-Møller, Merete; Larsen, Else Bang


    Nine commercially available monoclonal antibodies and two monoclonal antibodies from The American Type Culture Collection, raised against various human leucocyte surface antigens, were tested on lymphocytes from cow, sheep, goat, swine, horse, cat, dog, mink, and rabbit as well as man. Four...... antibodies bound to lymphocytes from some of the animals. These were the antibodies against CD8 and CD4 antigen, the antibody to C3b-receptor, and the antibody to the HLA-DR antigen. The CD8 antigen-reactive antibody reacted with lymphocytes from mink, cat, dog, and sheep, while the CD4 antigen...

  6. Expression cloning and production of human heavy-chain-only antibodies from murine transgenic plasma cells

    NARCIS (Netherlands)

    D.D. Drabek (Dubravka); R. Janssens (Rick); Boer, E. (Ernie de); Rademaker, R. (Rik); Kloess, J. (Johannes); J.J. Skehel (John ); Grosveld, F. (Frank)


    textabstractSeveral technologies have been developed to isolate human antibodies against different target antigens as a source of potential therapeutics, including hybridoma technology, phage and yeast display systems. For conventional antibodies, this involves either random pairing of VH and

  7. Phage display-derived human antibodies in clinical development and therapy. (United States)

    Frenzel, André; Schirrmann, Thomas; Hust, Michael


    Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of "fully" human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.

  8. Activation of human complement by immunoglobulin G antigranulocyte antibody. (United States)

    Rustagi, P K; Currie, M S; Logue, G L


    The ability of antigranulocyte antibody to fix the third component of complement (C3) to the granulocyte surface was investigated by an assay that quantitates the binding of monoclonal anti-C3 antibody to paraformaldehyde-fixed cells preincubated with Felty's syndrome serum in the presence of human complement. The sera from 7 of 13 patients with Felty's syndrome bound two to three times as much C3 to granulocytes as sera from patients with uncomplicated rheumatoid arthritis. The complement-activating ability of Felty's syndrome serum seemed to reside in the monomeric IgG-containing serum fraction. For those sera capable of activating complement, the amount of C3 fixed to granulocytes was proportional to the amount of granulocyte-binding IgG present in the serum. Thus, complement fixation appeared to be a consequence of the binding of antigranulocyte antibody to the cell surface. These studies suggest a role for complement-mediated injury in the pathophysiology of immune granulocytopenia, as has been demonstrated for immune hemolytic anemia and immune thrombocytopenia. PMID:7174786

  9. RA8, A human anti-CD25 antibody against human treg cells

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Robyn; Flanagan, Meg; Miller, Keith D.; Nien, Yu-Chih; Hu, Peisheng; Gray, Dixon; Khawli, Leslie A.; Epstein, Alan L.


    Although anti-CD25 antibodies exist for clinical use in patients, there is a need for the development of a human Treg antibody that will abrogate the immunosuppressive function of this small but critical T cell subtype. Based upon mounting evidence that the level of Treg cells in the tumor microenvironment correlates with clinical prognosis and stage in man, it appears that Treg cells play an important role in the tumor's ability to overcome host immune responses. In mice, the rat anti-mouse CD25 antibody PC61 causes depletion of CD25-bearing Treg cells both peripherally in lymphatic tissues and in the tumor microenvironment, without inducing symptoms of autoimmunity. A similar antibody, though with the ability to delete Treg cells specifically, would be an important new tool for reversing tumor escape associated with Treg immunosuppression in man. To begin to generate such a reagent, we now describe the development of a human anti-CD25 antibody using a novel yeast display library. The target antigen CD25-Fc was constructed and used for five rounds of selection using a non-immune yeast display library that contained as many as 109 single chain variable fragments (scFv). Two unique clones with low KD values (RA4 and RA8) were then selected to construct fully human anti-CD25 antibodies (IgG1/kappa) for stable expression. One antibody, RA8, showed excellent binding to human CD25+ cell lines and to human Treg cells and appears to be an excellent candidate for the generation of a human reagent that may be used in man for the immunotherapy of cancer.

  10. Seroepidemiology of Human Papillomavirus 16 (HPV16) L2 and Generation of L2-Specific Human Chimeric Monoclonal Antibodies

    National Research Council Canada - National Science Library

    Wang, Joshua W; Jagu, Subhashini; Wu, Wai-Hong; Viscidi, Raphael P; Macgregor-Das, Anne; Fogel, Jessica M; Kwak, Kihyuck; Daayana, Sai; Kitchener, Henry; Stern, Peter L; Gravitt, Patti E; Trimble, Cornelia L; Roden, Richard B S


    Presently, the seroprevalence of human papillomavirus (HPV) minor capsid antigen L2-reactive antibody is not well understood, and no serologic standard exists for L2-specific neutralizing antibodies...

  11. New monoclonal antibodies directed against human renin. Powerful tools for the investigation of the renin system.


    Galen, F X; Devaux, C.; Atlas, S; Guyenne, T; Menard, J; Corvol, P; Simon, D.; Cazaubon, C; Richer, P; Badouaille, G


    Monoclonal antibodies directed against human renin were obtained by the fusing of myeloma cells with spleen cells from Balb/c or high-responder Biozzi mice injected with pure tumoral or highly purified renal renin. These procedures resulted in the production of seven stable monoclonal antibodies to human renin. Antibodies in the hybridoma culture medium were screened by binding to pure iodinated renin or insolubilized renin in a solid phase assay. The concentration of purified antibodies that...

  12. Engineering human cells for in vivo secretion of antibody and non-antibody therapeutic proteins. (United States)

    Sánchez-Martín, David; Sanz, Laura; Álvarez-Vallina, Luis


    Purified proteins such as antibodies are widely used as therapeutic agents in clinical medicine. However, clinical-grade proteins for therapeutic use require sophisticated technologies and are extremely expensive to produce. In vivo secretion of therapeutic proteins by genetically engineered human cells may advantageously replace injection of highly purified proteins. The use of gene transfer methods circumvents problems related to large-scale production and purification and offers additional benefits by achieving sustained concentrations of therapeutic protein with a syngenic glycosylation pattern that make the protein potentially less immunogenic. The feasibility of the in vivo production of therapeutic proteins by diverse cells/tissues has now been demonstrated using different techniques, such as ex vivo genetically modified cells and in vivo gene transfer mediated by viral vectors.

  13. The antibody preparation and expression of human Pescadillo

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; NING Kang; ZHU JianHua; LI JieZhi; HUANG CuiFen; LIU AiJun; YE QiNong; LI JiePing; WANG XiaoHui; SUN Yan; YUAN Bin; YANG ZhiHong; JIANG YanChao; ZENG Min; DING LiHua


    To explore the biological roles of human Pescadillo and investigate its potential effect on tumorigene sis, the eDNA of Pescadillo was fused with that of GST. After purification and elution, the purified GST-Pescadillo fusion protein was obtained, and the antibody against the fusion protein was generated.Endogenous Pescadillo protein was observed to be remarkably induced by estrogen. It was mainly distributed in the tissues such as breast, ovary and intestine, all of which contain proliferating cells,and was also detected in many cell lines of human cancer: renal carcinoma, hepatoma, ovarian cancer,colon carcinoma, and breast cancer. The expression level of Pescadillo was increased significantly in breast cancer tissues compared with their paired margin tissues. Taken together, these data suggest that Pescadillo may play important roles in the initiation and development of cancer and may be a potential target in cancer diagnosis and therapy.

  14. The antibody preparation and expression of human Pescadillo

    Institute of Scientific and Technical Information of China (English)


    To explore the biological roles of human Pescadillo and investigate its potential effect on tumorigene- sis, the cDNA of Pescadillo was fused with that of GST. After purification and elution, the purified GST-Pescadillo fusion protein was obtained, and the antibody against the fusion protein was generated. Endogenous Pescadillo protein was observed to be remarkably induced by estrogen. It was mainly distributed in the tissues such as breast, ovary and intestine, all of which contain proliferating cells, and was also detected in many cell lines of human cancer: renal carcinoma, hepatoma, ovarian cancer, colon carcinoma, and breast cancer. The expression level of Pescadillo was increased significantly in breast cancer tissues compared with their paired margin tissues. Taken together, these data suggest that Pescadillo may play important roles in the initiation and development of cancer and may be a po- tential target in cancer diagnosis and therapy.


    Directory of Open Access Journals (Sweden)

    Oliinyk O. S.


    Full Text Available Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, and 6 unique restriction patterns were found. Single-chain antibodies were expressed in Escherichia coli XL1-blue. The recombinant proteins were characterized by immunoblotting of bacterial extracts and detection with an anti-E-tag antibody. The toxin B-subunit-binding function of the single-chain antibody was shown by ELISA. The affinity constants for different clones were found to be from 106 to 108 М–1. Due to the fact, that these antibody fragments recognized epitopes in the receptor-binding Bsubunit of diphtheria toxin, further studies are interesting to evaluate their toxin neutralization properties and potential for therapeutic applications. Obtained scFv-antibodies can also be used for detection and investigation of biological properties of diphtheria toxin.

  16. Generation of human antibody fragments against Streptococcus mutans using a phage display chain shuffling approach

    Directory of Open Access Journals (Sweden)

    Barth Stefan


    Full Text Available Abstract Background Common oral diseases and dental caries can be prevented effectively by passive immunization. In humans, passive immunotherapy may require the use of humanized or human antibodies to prevent adverse immune responses against murine epitopes. Therefore we generated human single chain and diabody antibody derivatives based on the binding characteristics of the murine monoclonal antibody Guy's 13. The murine form of this antibody has been used successfully to prevent Streptococcus mutans colonization and the development of dental caries in non-human primates, and to prevent bacterial colonization in human clinical trials. Results The antibody derivatives were generated using a chain-shuffling approach based on human antibody variable gene phage-display libraries. Like the parent antibody, these derivatives bound specifically to SAI/II, the surface adhesin of the oral pathogen S. mutans. Conclusions Humanization of murine antibodies can be easily achieved using phage display libraries. The human antibody fragments bind the antigen as well as the causative agent of dental caries. In addition the human diabody derivative is capable of aggregating S. mutans in vitro, making it a useful candidate passive immunotherapeutic agent for oral diseases.

  17. Structure of a human rhinovirus-bivalently bound antibody complex: implications for viral neutralization and antibody flexibility.



    The structure of a neutralizing immunoglobulin (monoclonal antibody mAb17-IA), bound to human rhinovirus 14 (HRV14), has been determined by cryo-electron microscopy and image reconstruction. The antibody bound bivalently across icosahedral twofold axes of the virus, and there were no detectable conformational changes in the capsid. Thus, bivalently bound IgGs do not appear to cause gross deformations in the capsid. Differences between the electron density of the constant domains of the bound ...

  18. An ELISA for detection of antibodies against influenza A nucleoprotein in humans and various animal species.

    NARCIS (Netherlands)

    G.F. de Boer; W. Back; A.D.M.E. Osterhaus (Albert)


    textabstractA double antibody sandwich blocking ELISA, using a monoclonal antibody (MAb) against influenza A nucleoprotein (NP) was developed to detect antibodies against influenza. Collections of serum samples were obtained from human and various animal species. All influenza A subtypes induced ant

  19. Neutralization of Botulinum Neurotoxin Type E by a Humanized Antibody (United States)

    Derman, Yağmur; Selby, Katja; Miethe, Sebastian; Frenzel, André; Liu, Yvonne; Rasetti-Escargueil, Christine; Avril, Arnaud; Pelat, Thibaut; Urbain, Remi; Fontayne, Alexandre; Thullier, Philippe; Sesardic, Dorothea; Lindström, Miia; Hust, Michael; Korkeala, Hannu


    Botulinum neurotoxins (BoNTs) cause botulism and are the deadliest naturally-occurring substances known to humans. BoNTs have been classified as one of the category A agents by the Centers for Disease Control and Prevention, indicating their potential use as bioweapons. To counter bio-threat and naturally-occurring botulism cases, well-tolerated antibodies by humans that neutralize BoNTs are relevant. In our previous work, we showed the neutralizing potential of macaque (Macaca fascicularis)-derived scFv-Fc (scFv-Fc ELC18) by in vitro endopeptidase immunoassay and ex vivo mouse phrenic nerve-hemidiaphragm assay by targeting the light chain of the botulinum neurotoxin type E (BoNT/E). In the present study, we germline-humanized scFv-Fc ELC18 into a full IgG hu8ELC18 to increase its immunotolerance by humans. We demonstrated the protection and prophylaxis capacity of hu8ELC18 against BoNT/E in a mouse model. A concentration of 2.5 ng/mouse of hu8ELC18 protected against 5 mouse lethal dose (MLD) in a mouse protection assay and complete neutralization of 1 LD50 of pure BoNT/E toxin was achieved with 8 ng of hu8ELC18 in mouse paralysis assay. Furthermore, hu8ELC18 protected mice from 5 MLD if injected up to 14 days prior to intraperitoneal BoNT/E administration. This newly-developed humanized IgG is expected to have high tolerance in humans. PMID:27626446

  20. Neutralization of Botulinum Neurotoxin Type E by a Humanized Antibody

    Directory of Open Access Journals (Sweden)

    Yağmur Derman


    Full Text Available Botulinum neurotoxins (BoNTs cause botulism and are the deadliest naturally-occurring substances known to humans. BoNTs have been classified as one of the category A agents by the Centers for Disease Control and Prevention, indicating their potential use as bioweapons. To counter bio-threat and naturally-occurring botulism cases, well-tolerated antibodies by humans that neutralize BoNTs are relevant. In our previous work, we showed the neutralizing potential of macaque (Macaca fascicularis-derived scFv-Fc (scFv-Fc ELC18 by in vitro endopeptidase immunoassay and ex vivo mouse phrenic nerve-hemidiaphragm assay by targeting the light chain of the botulinum neurotoxin type E (BoNT/E. In the present study, we germline-humanized scFv-Fc ELC18 into a full IgG hu8ELC18 to increase its immunotolerance by humans. We demonstrated the protection and prophylaxis capacity of hu8ELC18 against BoNT/E in a mouse model. A concentration of 2.5 ng/mouse of hu8ELC18 protected against 5 mouse lethal dose (MLD in a mouse protection assay and complete neutralization of 1 LD50 of pure BoNT/E toxin was achieved with 8 ng of hu8ELC18 in mouse paralysis assay. Furthermore, hu8ELC18 protected mice from 5 MLD if injected up to 14 days prior to intraperitoneal BoNT/E administration. This newly-developed humanized IgG is expected to have high tolerance in humans.

  1. Human immunodeficiency virus antibody test and seroprevalence in psychiatric patients. (United States)

    Naber, D; Pajonk, F G; Perro, C; Löhmer, B


    Psychiatric inpatients are at risk for human immunodeficiency virus (HIV) infection. Investigations in the United States revealed seroprevalence rates of 5.5-8.9%. Therefore, inclusion of HIV antibody testing in routine laboratory screening is sometimes suggested. To investigate this issue for inpatients in the Department of Psychiatry, University of Munich, the incidence, reason for HIV testing and results were analyzed. Of 12,603 patients, hospitalized from 1985 to 1993, 4.9% (623 patients, 265 in risk groups) underwent the HIV test after informed consent. Thirty patients (4.8% of those tested) were found to be positive, but only in 5 cases (all of risk groups) was infection newly detected. Data indicate that, in psychiatry, HIV testing is reasonable only in patients in risk groups or if clinical variables suggest HIV infection.

  2. Generation of monoclonal antibodies to native active human glycosyltransferases

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene Bech; Bennett, Eric Paul; Clausen, Henrik;


    using monoclonal antibodies therefore provides an excellent strategy to analyze the glycosylation process in cells. A major drawback has been difficulties in generating antibodies to glycosyltransferases and validating their specificities. Here we describe a simple strategy for generating...



    Oliinyk O. S.; Kaberniuk A. A.; Kolibo D. V.; Komisarenko S. V.


    Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv) antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized) human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, an...

  4. Addressing the Immunogenicity of the Cargo and of the Targeting Antibodies with a Focus on Demmunized Bacterial Toxins and on Antibody-Targeted Human Effector Proteins. (United States)

    Grinberg, Yehudit; Benhar, Itai


    Third-generation immunotoxins are composed of a human, or humanized, targeting moiety, usually a monoclonal antibody or an antibody fragment, and a non-human effector molecule. Due to the non-human origin of the cytotoxic domain, these molecules stimulate potent anti-drug immune responses, which limit treatment options. Efforts are made to deimmunize such immunotoxins or to combine treatment with immunosuppression. An alternative approach is using the so-called "human cytotoxic fusion proteins", in which antibodies are used to target human effector proteins. Here, we present three relevant approaches for reducing the immunogenicity of antibody-targeted protein therapeutics: (1) reducing the immunogenicity of the bacterial toxin, (2) fusing human cytokines to antibodies to generate immunocytokines and (3) addressing the immunogenicity of the targeting antibodies.

  5. Production of Potent Fully Human Polyclonal Antibodies Against Zaire Ebola Virus in Transchromosomal Cattle (United States)


    1 Production of potent fully human polyclonal antibodies against Zaire Ebola virus in transchromosomal cattle John M. Dye1, Hua Wu2, Jay...mail: Keywords: Ebola virus, virus neutralization assay, human polyclonal antibodies, transchromosomal bovine...recombinant glycoprotein (GP) vaccine consisting of the 2014 Ebola virus (EBOV)-Makona isolate. Serum collected from these hyperimmunized Tc

  6. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jun [Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Xiang, Jun-Jian, E-mail: [Laboratory of Antibody Engineering, College of Life Sciences and Technologies, Jinan University, Guangzhou 510632 (China); Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Li, Dan [Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Deng, Ning; Wang, Hong; Gong, Yi-Ping [Laboratory of Antibody Engineering, College of Life Sciences and Technologies, Jinan University, Guangzhou 510632 (China)


    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10{sup -9} M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  7. Neutralization of botulinum neurotoxin by a human monoclonal antibody specific for the catalytic light chain.

    Directory of Open Access Journals (Sweden)

    Sharad P Adekar

    Full Text Available BACKGROUND: Botulinum neurotoxins (BoNT are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC, a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored. METHODS AND FINDINGS: We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A. The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro. CONCLUSIONS: An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components of an antibody antidote for BoNT exposure.

  8. Human Monoclonal Antibodies Broadly Neutralizing against Influenza B Virus (United States)

    Yasugi, Mayo; Kubota-Koketsu, Ritsuko; Yamashita, Akifumi; Kawashita, Norihito; Du, Anariwa; Sasaki, Tadahiro; Nishimura, Mitsuhiro; Misaki, Ryo; Kuhara, Motoki; Boonsathorn, Naphatsawan; Fujiyama, Kazuhito; Okuno, Yoshinobu; Nakaya, Takaaki; Ikuta, Kazuyoshi


    Influenza virus has the ability to evade host immune surveillance through rapid viral genetic drift and reassortment; therefore, it remains a continuous public health threat. The development of vaccines producing broadly reactive antibodies, as well as therapeutic strategies using human neutralizing monoclonal antibodies (HuMAbs) with global reactivity, has been gathering great interest recently. Here, three hybridoma clones producing HuMAbs against influenza B virus, designated 5A7, 3A2 and 10C4, were prepared using peripheral lymphocytes from vaccinated volunteers, and were investigated for broad cross-reactive neutralizing activity. Of these HuMAbs, 3A2 and 10C4, which recognize the readily mutable 190-helix region near the receptor binding site in the hemagglutinin (HA) protein, react only with the Yamagata lineage of influenza B virus. By contrast, HuMAb 5A7 broadly neutralizes influenza B strains that were isolated from 1985 to 2006, belonging to both Yamagata and Victoria lineages. Epitope mapping revealed that 5A7 recognizes 316G, 318C and 321W near the C terminal of HA1, a highly conserved region in influenza B virus. Indeed, no mutations in the amino acid residues of the epitope region were induced, even after the virus was passaged ten times in the presence of HuMAb 5A7. Moreover, 5A7 showed significant therapeutic efficacy in mice, even when it was administered 72 hours post-infection. These results indicate that 5A7 is a promising candidate for developing therapeutics, and provide insight for the development of a universal vaccine against influenza B virus. PMID:23408886

  9. Fully human antagonistic antibodies against CCR4 potently inhibit cell signaling and chemotaxis.

    Directory of Open Access Journals (Sweden)

    Urs B Hagemann

    Full Text Available CC chemokine receptor 4 (CCR4 represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs and on tumor cells in several cancer types and its role in metastasis.Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies.For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing. The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.

  10. Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS.

    Directory of Open Access Journals (Sweden)

    Sung Sun Yim

    Full Text Available Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS. First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show K(D values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼ 10(6. These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required.

  11. A novel antibody humanization method based on epitopes scanning and molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Ding Zhang

    Full Text Available 1-17-2 is a rat anti-human DEC-205 monoclonal antibody that induces internalization and delivers antigen to dendritic cells (DCs. The potentially clinical application of this antibody is limited by its murine origin. Traditional humanization method such as complementarity determining regions (CDRs graft often leads to a decreased or even lost affinity. Here we have developed a novel antibody humanization method based on computer modeling and bioinformatics analysis. First, we used homology modeling technology to build the precise model of Fab. A novel epitope scanning algorithm was designed to identify antigenic residues in the framework regions (FRs that need to be mutated to human counterpart in the humanization process. Then virtual mutation and molecular dynamics (MD simulation were used to assess the conformational impact imposed by all the mutations. By comparing the root-mean-square deviations (RMSDs of CDRs, we found five key residues whose mutations would destroy the original conformation of CDRs. These residues need to be back-mutated to rescue the antibody binding affinity. Finally we constructed the antibodies in vitro and compared their binding affinity by flow cytometry and surface plasmon resonance (SPR assay. The binding affinity of the refined humanized antibody was similar to that of the original rat antibody. Our results have established a novel method based on epitopes scanning and MD simulation for antibody humanization.

  12. Structure guided homology model based design and engineering of mouse antibodies for humanization. (United States)

    Kurella, Vinodh B; Gali, Reddy


    No universal strategy exists for humanizing mouse antibodies, and most approaches are based on primary sequence alignment and grafting. Although this strategy theoretically decreases the immunogenicity of mouse antibodies, it neither addresses conformational changes nor steric clashes that arise due to grafting of human germline frameworks to accommodate mouse CDR regions. To address these issues, we created and tested a structure-based biologic design approach using a de novo homology model to aid in the humanization of 17 unique mouse antibodies. Our approach included building a structure-based de novo homology model from the primary mouse antibody sequence, mutation of the mouse framework residues to the closest human germline sequence and energy minimization by simulated annealing on the humanized homology model. Certain residues displayed force field errors and revealed steric clashes upon closer examination. Therefore, further mutations were introduced to rationally correct these errors. In conclusion, use of de novo antibody homology modeling together with simulated annealing improved the ability to predict conformational and steric clashes that may arise due to conversion of a mouse antibody into the humanized form and would prevent its neutralization when administered in vivo. This design provides a robust path towards the development of a universal strategy for humanization of mouse antibodies using computationally derived antibody homologous structures.

  13. Radioimmunoassay for zearalenone and zearalanol in human serum: production, properties, and use of porcine antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Thouvenot, D.; Morfin, R.F.


    To produce antigens susceptible to raise antibodies for resorcylic acid lactones, the 6'-carboxymethyloxime derivatives of zearalenone and zearalanone were bound to bovine serum albumin. Pigs could be immunized by using these antigens, the best titer in antibodies being obtained with the zearalenone antigen. The procine antibodies were specific for the resorcylic acid lactones of structural resemblance with zearalenone. This specificity made the antibodies usable for a radioimmunoassay of zearalenone and zearalanol, which may be found in human and animal sera. The range of the assay was between 0.25 and 10 ng. The limit of detection was 5 ppb (5 ng/ml) in human serum.

  14. Characterization of Two Human Monoclonal Antibodies Neutralizing Influenza A H7N9 Viruses (United States)

    Wang, Jianmin; Chen, Zhe; Bao, Linlin; Zhang, Weijia; Xue, Ying; Pang, XingHuo; Zhang, Xi


    H7N9 was a cause of significant global health concern due to its severe infection and approximately 35% mortality in humans. By screening a Fab antibody phage library derived from patients who recovered from H7N9 infections, we characterized two human monoclonal antibodies (HuMAbs), HNIgGD5 and HNIgGH8. The epitope of these two antibodies was dependent on two residues in the receptor binding site at positions V186 and L226 of the hemagglutinin glycoprotein. Both antibodies possessed high neutralizing activity. PMID:26063436

  15. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma (United States)

    Zhang, Yi-Fan; Ho, Mitchell


    Glypican-3 (GPC3) is a cell-surface heparan sulfate proteoglycan highly expressed in hepatocellular carcinoma (HCC). We have generated a group of high-affinity mouse monoclonal antibodies targeting GPC3. Here, we report the humanization and testing of these antibodies for clinical development. We compared the affinity and cytotoxicity of recombinant immunotoxins containing mouse single-chain variable regions fused with a Pseudomonas toxin. To humanize the mouse Fvs, we grafted the combined KABAT/IMGT complementarity determining regions (CDR) into a human IgG germline framework. Interestingly, we found that the proline at position 41, a non-CDR residue in heavy chain variable regions (VH), is important for humanization of mouse antibodies. We also showed that two humanized anti-GPC3 antibodies (hYP7 and hYP9.1b) in the IgG format induced antibody-dependent cell-mediated cytotoxicity and complement-dependent-cytotoxicity in GPC3-positive cancer cells. The hYP7 antibody was tested and showed inhibition of HCC xenograft tumor growth in nude mice. This study successfully humanizes and validates high affinity anti-GPC3 antibodies and sets a foundation for future development of these antibodies in various clinical formats in the treatment of liver cancer. PMID:27667400

  16. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words

    Energy Technology Data Exchange (ETDEWEB)

    Mirick, G. R.; Bradt, B. M.; Denardo, S. J.; Denardo, G. L. [Calfornia Univ., Sacramento (United States). Davis Medical Center


    The United States Food and Drugs Administration (FDA) has approved unconjugated monoclonal antibodies (MAbs) for immunotherapy (IT) of B-cell lymphoma, breast cancer and acute myeloid leukemia. More recently, approval has been given for conjugated ZevalinTM ({sup 9}0yttrium ibritumomab tiuxetan, IDEC-Y2B8, Biogen Idec, Cambridge, MA) and BexxarTM ({sup 1}31I-tositumomab, Corixa, Corp., Seattle, WA and GlaxoSmithKline, Philadelphia, PA) antiCD20 MAns for use in radioimmunotherapy (RIT) of non-Hodgikin's lymphoma (NHL), thus redefining the standard care of cancer patients. Because of, and despite a lack of basis for concern about allergic reactions due to human antibody responses to these foreign proteins, essays were developed to determine HAGE (human anti-globulin antibody) levels that developed in patient sera following treatment with MAbs. Strategies were also devised to humanize MAbs and to temporarily block patient immune function with drugs in order to decrease the seroconversion rates, with considerable success. On the other hand, a survival advantage has been observed in some patients who developed a HAGA following treatment. This correlates with development of an anti-idiotype antibody cascade directed toward the MAbs used to treat these patients. What follows is a selective review of HAGA and its effect on cancer treatment over the past 2 decades.

  17. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. (United States)

    Mirick, G R; Bradt, B M; Denardo, S J; Denardo, G L


    The United States Food and Drug Administration (FDA) has approved unconjugated monoclonal antibodies (MAbs) for immunotherapy (IT) of B-cell lymphoma, breast cancer and acute myeloid leukemia. More recently, approval has been given for conjugated ZevalinTM ((90)yttrium ibritumomab tiuxetan, IDEC-Y2B8, Biogen Idec, Cambridge, MA) and BexxarTM ((131)I-tositumomab, Corixa, Corp., Seattle, WA and GlaxoSmithKline, Philadelphia, PA) anti-CD20 MAbs for use in radioimmunotherapy (RIT) of non-Hodgkin's lymphoma (NHL), thus redefining the standard care of cancer patients. Because of, and despite a lack of basis for concern about allergic reactions due to human antibody responses to these foreign proteins, assays were developed to determine HAGA (human anti-globulin antibody) levels that developed in patient sera following treatment with MAbs. Strategies were also devised to ''humanize'' MAbs and to temporarily block patient immune function with drugs in order to decrease the seroconversion rates, with considerable success. On the other hand, a survival advantage has been observed in some patients who developed a HAGA following treatment. This correlates with development of an anti-idiotype antibody cascade directed toward the MAbs used to treat these patients. What follows is a selective review of HAGA and its effect on cancer treatment over the past 2 decades.

  18. Production and Characterization of Monoclonal Antibody Against Recombinant Human Erythropoietin

    Institute of Scientific and Technical Information of China (English)



    Objective To produce specific monoclonal antibody(mAb)against recombinant human erythropoietin(rHuEPO)for development of higmy efficient methods for erythropoietin detection in biological fluids.Methods rHuEPO was covalently coupled with bovine serum albumin(BSA)and the conjugate was used to immunize mice to produce specific mAb against rHuEPO based on hybridoma technology.The obtained F3-mAb was characterized by enzyme-linked immunosorbent assay (ELISA),SDS-PAGE and Western blot.Results The isotype of F3-mAb Was found to be IgM with an affinity constant of 2.1x108 L/mol.The competitive ELISA using the obtained IgM showed a broader linear range and lower detection limit compared with previous work.Conclusions The modification of rHuEPO was proved to be successful in generating required specific mAb with high avidity to rHuEPO.

  19. Human lymphocyte markers defined by antibodies derived from somatic cell hybrids. II. A hybridoma secreting antibody against an antigen expressed by human B and null lymphocytes. (United States)

    Beckman, I G; Bradley, J; Brooks, D A; Kupa, A; McNamara, P J; Thomas, M E; Zola, H


    A hybridoma (FMC4) has been derived which secretes antibody showing selective reaction with human B lymphocytes, monocytes and some null lymphocytes. Few, if any, T lymphocytes in normal blood are stained, although stimulation of lymphocytes with PHA leads to an increase in the proportion of cells reacting with the hybridoma antibody. The antibody reacts with B and null lymphoblastoid cell lines but not with T cell lines. B chronic lymphocytic leukaemia (CLL) cells but not T-CLLs are stained and null-type acute lymphoblastic leukaemia (ALL) cells but not T-type ALL also react. Normal blood myeloid cells do not react with FMC4 supernatant whilst some myeloid leukaemias do. The expression of the antigen reacting with FMC4 supernatant suggests that FMC4 may secrete an antibody against the human equivalent of the Ia antigen.

  20. The Effects of Anti-Hcg Monoclonal Antibodies on Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Mirshahi M


    Full Text Available Background: Human cancer cell lines express human choriogonadotropin (hCG, its subunits and derivatives, regardless of their origin and type. It appears that hCG is a common phenotype in human cancer cell lines. In this research, the effects of hCG targeting monoclonal antibodies (7D9, T18H7 and T8B12 on human cancer cell lines were evaluated. Methods: Monoclonal antibody secreting hybridomas were proliferated and injected intraperitoneally to Balb/C mice after treatment with pristine. Two weeks later, ascites fluid was collected. Purification of aforementioned antibodies from ascites fluid was performed using G-protein affinity followed by ion exchange chromatography. SDS-PAGE and ELISA confirmed the structure and functional integrity of the purified antibodies, respectively. Two human cancer cell lines "Hela" and "MDA" were treated by the purified antibodies. Three days later, different wells were imaged and the cells counted. Results: SDS-PAGE gel (None-reducing indicated consistency of band migration patterns with control antibodies. ELISA test using hCG antigens indicated that the produced antibodies could detect hCG antigens. Cell lines were cultured and treated with different concentrations of each antibody. Counting and imaging different wells of treated plates, indicated that 7D9 antibody had a more significant (P<0.01 cytotoxic effect on cancer cell lines than the control cells. Conclusion: HCG targeting monoclonal antibodies can be used for targeted cancer therapy, as human cancer cells express hCG gene. 7D9 antibody that exhibits protease activity is a proper candidate for this purpose, as it possesses both antagonistic and enzymatic properties.

  1. A human monoclonal antibody to high-frequency red cell antigen Jra. (United States)

    Miyazaki, T; Kwon, K W; Yamamoto, K; Tone, Y; Ihara, H; Kato, T; Ikeda, H; Sekiguchi, S


    A human-mouse heterohybridoma (HMR0921) secreting human monoclonal IgG3, lambda antibody was produced from peripheral blood lymphocytes of a healthy blood donor with serum antibody to Jra, by EBV transformation and hybridization with mouse myeloma cell line P3X63Ag8.653. The reactivity of HMR0921 antibody was assessed by antiglobulin test with a panel of red cells including 14 different rare blood types. Only Jr(a-) red cells were negative. The strict specificity of this antibody to Jra antigen was further confirmed by absorption test with fluorescence flow cytometry. On screening of 28,744 blood donor samples by HMR0921 antibody, we detected 19 agglutination-negative samples, which were confirmed as Jr(a-) by conventional anti-Jra antisera. Therefore, our HMR0921 antibody is extremely useful for detecting rare Jr(a-) blood.

  2. Changes in antibody profile after treatment of human onchocerciasis. (United States)

    Lee, S J; Francis, H L; Awadzi, K; Ottesen, E A; Nutman, T B


    To define the changes in antibody response to Onchocerca volvulus antigens after treatment of patients with onchocerciasis, IgG and IgE antibodies were examined quantitatively and qualitatively in 21 patients and 3 control individuals before and sequentially for 14 days after treatment with diethylcarbamazine. The quantitative levels of IgE and IgG responses (both polyclonal and O. volvulus-specific) remained essentially unchanged for all patients, but 9 of the 21 patients showed intensified responses to one or more parasite-specific antigens, and 8 of 21 developed antibodies to previously undetected antigens. There was a significant correlation between the intensities of infection and the development of newly recognized anti-O. volvulus antibodies. These studies demonstrate that O. volvulus-specific IgE and IgG antibody responses are, at least transiently, enhanced by treatment with diethylcarbamazine and that after treatment, parasites possibly release antigens previously hidden from the host's immune response.

  3. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy (United States)

    Hart, Felix; Danielczyk, Antje; Goletz, Steffen


    IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich) and hematological (CD20) cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.

  4. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Felix Hart


    Full Text Available IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich and hematological (CD20 cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.

  5. Selection of apoptotic cell specific human antibodies from adult bone marrow.

    Directory of Open Access Journals (Sweden)

    Caroline Grönwall

    Full Text Available Autoreactive antibodies that recognize neo-determinants on apoptotic cells in mice have been proposed to have protective, homeostatic and immunoregulatory properties, although our knowledge about the equivalent antibodies in humans has been much more limited. In the current study, human monoclonal antibodies with binding specificity for apoptotic cells were isolated from the bone marrow of healthy adults using phage display technology. These antibodies were shown to recognize phosphorylcholine (PC-associated neo-determinants. Interestingly, three of the four identified apoptotic cell-specific antibody clones were encoded by VH3 region rearrangements with germline or nearly germline configuration without evidence of somatic hypermutation. Importantly, the different identified antibody clones had diverse heavy chain CDR3 and deduced binding surfaces as suggested by structure modeling. This may suggest a potentially great heterogeneity in human antibodies recognizing PC-related epitopes on apoptotic cells. To re-construct the postulated structural format of the parental anti-PC antibody, the dominant clone was also expressed as a recombinant human polymeric IgM, which revealed a substantially increased binding reactivity, with dose-dependent and antigen-inhibitable binding of apoptotic cells. Our findings may have implication for improved prognostic testing and therapeutic interventions in human inflammatory disease.

  6. Discovery and Characterization of Phage Display-Derived Human Monoclonal Antibodies against RSV F Glycoprotein.

    Directory of Open Access Journals (Sweden)

    Zhifeng Chen

    Full Text Available Respiratory syncytial virus (RSV is a leading cause of lower respiratory tract infection in infants, the elderly and in immunosuppressed populations. The vast majority of neutralizing antibodies isolated from human subjects target the RSV fusion (F glycoprotein, making it an attractive target for the development of vaccines and therapeutic antibodies. Currently, Synagis® (palivizumab is the only FDA approved antibody drug for the prevention of RSV infection, and there is a great need for more effective vaccines and therapeutics. Phage display is a powerful tool in antibody discovery with the advantage that it does not require samples from immunized subjects. In this study, Morphosys HuCAL GOLD® phage libraries were used for panning against RSV prefusion and postfusion F proteins. Panels of human monoclonal antibodies (mAbs against RSV F protein were discovered following phage library panning and characterized. Antibodies binding specifically to prefusion or postfusion F proteins and those binding both conformations were identified. 3B1 is a prototypic postfusion F specific antibody while 2E1 is a prototypic prefusion F specific antibody. 2E1 is a potent broadly neutralizing antibody against both RSV A and B strains. Epitope mapping experiments identified a conformational epitope spanning across three discontinuous sections of the RSV F protein, as well as critical residues for antibody interaction.

  7. Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. (United States)

    Ritter, G; Cohen, L S; Williams, C; Richards, E C; Old, L J; Welt, S


    Mouse monoclonal antibody A33 (mAb A33) recognizes a M(r) 43,000 cell surface glycoprotein (designated A33) expressed in human colonic epithelium and colon cancer but absent from most other normal tissues. In patients, mAb A33 localizes with high specificity to colon cancer and is retained for up to 6 weeks in the cancer but cleared rapidly from normal colon (5-6 days). As a carrier of (125)I or (131)I, mAb A33 has shown antitumor activity. Induction of strong human anti-mouse antibody (immunoglobulin; HAMA) responses in patients, however, limits the use of the murine mAb A33 to very few injections. A humanized version of this antibody (huAb A33) has been prepared for Phase I and II clinical studies in patients with colon cancer. In those studies, immunogenicity of huAb A33 has been monitored using a novel, highly sensitive BIACORE method, which allows measurement of human anti-human antibodies (HAHAs) without the use of secondary reagents. We found that 63% (26 of 41) of the patients treated with repeated doses of huAb A33 developed HAHAs against a conformational antigenic determinant located in the V(L) and V(H) regions of huAb A33. Detailed serological analysis showed two distinct types of HAHAs. HAHA of type I (49% of patients) was characterized by an early onset with peak HAHA levels after 2 weeks of treatment, which declined with ongoing huAb A33 treatment. HAHA of type II (17% of patients) was characterized by a typically later onset of HAHA than in type I and by progressively increasing HAHA levels with each subsequent huAb A33 administration. Colon cancer patients with type I HAHAs did not develop infusion-related adverse events. In contrast, HAHA of type II was indicative of infusion-related adverse events. By using this new method, we were able to distinguish these two types of HAHAs in patients while on antibody treatment, allowing patients to be removed from study prior to the onset of severe infusion-related adverse events.

  8. Humanized versus murine anti-human epidermal growth factor receptor monoclonal antibodies for immunoscintigraphic studies

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alejo A. Morales; Duconge, Jorge; Alvarez-Ruiz, Daniel; Becquer-Viart, Maria de Los Angeles; Nunez-Gandolff, Gilda; Fernandez, Eduardo; Caballero-Torres, Idania; Iznaga-Escobar, Normando


    The anti-human epidermal growth factor receptor (EGF-R) humanized antibody h-R3 (IgG{sub 1}), which binds to an extracellular domain of EGF-R, was used to evaluate the biodistribution on nude mice xenografted with A431 epidermoid carcinoma cell line. Results are compared with its murine version ior egf/r3 monoclonal antibody (mAb). Twenty-one athymic female 4NMRI nu/nu mice were injected intravenously with 10 {mu}g/100 {mu}Ci of {sup 99m}Tc-labeled mAbs. The mAb ior C5 that recognizes an antigen expressed preferentially on the surface of malignant and cytoplasm of normal colorectal cells was used as negative control. Immunoreactivity of {sup 99m}Tc-labeled mAbs was measured by enzyme linked immunosorbent assay on A431 cell line and the immunoreactive fractions determined by Lindmo method. Among all organs significant accumulation was found in tumor (6.14{+-}2.50 %ID/g, 5.06{+-}2.61 %ID/g for murine and humanized mAbs, respectively) 4 h after injection. The immunoreactive fractions were found to be 0.88 and 0.81 for murine and humanized mAb, respectively. Thus, we expect better results using the humanized mAb h-R3 for diagnostic immunoscintigraphy.

  9. Urine antibody against human cancer antigen NY-ESO-1


    Jäger, Dirk; Stockert, Elisabeth; Karbach, Julia; Herrlinger, Kristina; Atmaca, Akin; Arand, Michael; Chen, Yao-Tseng; Gnjatic, Sacha; Old, Lloyd J.; Knuth, Alexander; Jäger, Elke


    NY-ESO-1 is one of the most immunogenic tumor antigens known to date. Spontaneous humoral and cellular immune responses against NY-ESO-1 are detected in a substantial proportion of patients with NY-ESO-1 positive cancers. NY-ESO-1 serum antibody is dependent on the presence of NY-ESO-1+ cancer cells, and antibody titers correlate with the clinical development of the disease. NY-ESO-1 serum antibody is associated with detectable NY-ESO-1-specific CD8+ T cell reactivity. High titers of NY-ESO-1...

  10. Isolation of Human Antibodies Against Hepatitis E From Phage Display Library by Metal Affinity Chromatography

    Institute of Scientific and Technical Information of China (English)


    Objective To isolate human antibodies against hepatitis E virus from phage display library by a new method of panning phage antibody library based on immobilized metal affinity chromatography (IMAC). Methods Phage antibody library was allowed to mix with hex-His tagged expressed HEV specific antigen, NE2, in solution for adequate binding before affinity resin for hex-His was added. The non-specific phage antibodies were removed by extensive washing and the specific bound phage antibodies could then be eluted to infect TG1 or repeat the binding process for subsequent rounds of purification. The specificity of the selected human antibodies were tested by antigen competitive ELISA, human sera blocking ELISA, scFv expression, and sequence analysis. Results His-NE2 specific recombinant phages were successfully enriched after panning procedure. Two individual phage clones, 126 and 138, showed 50% inhibition in NE2 antigen competition ELISA and obvious blocking effect by HEV positive serum in blocking ELISA. Soluble scFv of 126, 138 bound to NE2 specifically. Conclusion Two specific human phage antibodies against hepatitis E virus (HEV) from phage display library were isolated by immobilized metal affinity chromatography. The immobilized metal affinity chromatography applied to phage antibody selection was a helpful supplement to the selection in solution.

  11. Human monoclonal HLA antibodies reveal interspecies crossreactive swine MHC class I epitopes relevant for xenotransplantation.

    NARCIS (Netherlands)

    Mulder, A.; Kardol, M.J.; Arn, J.S.; Eijsink, C.; Franke, M.E.; Schreuder, G.M.; Haasnoot, G.W.; Doxiadis, I.I.; Sachs, D.H.; Smith, D.M.; Claas, F.H.


    Crossreactivity of anti-HLA antibodies with SLA alleles may limit the use of pig xenografts in some highly sensitized patients. An understanding of the molecular basis for this crossreactivity may allow better selection of xenograft donors. We have tested 68 human monoclonal HLA class I antibodies (

  12. Specificity of antibodies to nitric oxide synthase isoforms in human, guinea pig, rat, and mouse tissues

    NARCIS (Netherlands)

    Coers, W; Timens, W; Kempinga, C; Klok, PA; Moshage, H


    Ten commercially available rabbit polyclonal anti-NOS antibodies were tested for their immunohistological applicability in normal human, guinea pig, rat, and mouse organs. Most antibodies reacted as expected and described in the literature with various tissues of the investigated species. Several an

  13. Expression cloning and production of human heavy-chain-only antibodies from murine transgenic plasma cells

    NARCIS (Netherlands)

    D.D. Drabek (Dubravka); R. Janssens (Rick); Boer, E. (Ernie de); Rademaker, R. (Rik); Kloess, J. (Johannes); J.J. Skehel (John ); Grosveld, F. (Frank)


    textabstractSeveral technologies have been developed to isolate human antibodies against different target antigens as a source of potential therapeutics, including hybridoma technology, phage and yeast display systems. For conventional antibodies, this involves either random pairing of VH and variab

  14. Human single chain antibodies against heparin: selection, characterization, and effect on coagulation.

    NARCIS (Netherlands)

    Westerlo, E.M.A. van de; Smetsers, T.F.; Dennissen, M.A.B.A.; Linhardt, R.J.; Veerkamp, J.H.; Muijen, G.N.P. van; Kuppevelt, A.H.M.S.M. van


    Heparin, located in mast cells and basophilic granulocytes, is widely used as an anticoagulant. It belongs to a class of linear polysaccharides called glycosaminoglycans (GAGs). Using phage display technology, we have selected 19 unique human antiheparin antibodies. Some antibodies react almost excl

  15. Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type (United States)

    He, X. M.; Ruker, F.; Casale, E.; Carter, D. C.


    The three-dimensional structure of a human monoclonal antibody (Fab), which binds specifically to a major epitope of the transmembrane protein gp41 of the human immunodeficiency virus type 1, has been determined by crystallographic methods to a resolution of 2.7 A. It has been previously determined that this antibody recognizes the epitope SGKLICTTAVPWNAS, belongs to the subclass IgG1 (kappa), and exhibits antibody-dependent cellular cytotoxicity. The quaternary structure of the Fab is in an extended conformation with an elbow bend angle between the constant and variable domains of 175 degrees. Structurally, four of the hypervariable loops can be classified according to previously recognized canonical structures. The third hypervariable loops of the heavy (H3) and light chain (L3) are structurally distinct. Hypervariable loop H3, residues 102H-109H, is unusually extended from the surface. The complementarity-determining region forms a hydrophobic binding pocket that is created primarily from hypervariable loops L3, H3, and H2.

  16. Preparation and validation of radio iodinated recombinant human IL-10 for the measurement of natural human antibodies against IL-10

    DEFF Research Database (Denmark)

    de Lemos Rieper, Carina; Galle, Pia; Svenson, Morten


    activity of 75 cpm/pg. Validation of the tracer confirmed preserved antibody epitopes and receptor binding ability. A robust Radio Immuno Assay (RIA) was developed and validated to detect natural human anti-IL-10 antibodies based on the formation of (125)I-labeled IL-10-IgG complexes in solution...

  17. Non-covalent carriage of anticancer agents by humanized antibody trastuzumab. (United States)

    Yadav, Arpita; Sharma, Sweta; Yadav, Veejendra Kumar


    This article explores the internalization and non-covalent carriage of small molecule anticancer agents like vinca alkaloids by humanized monoclonal antibody trastuzumab. Such carriage is marked by significant reduction in side effects and increased therapeutic value of these anticancer agents. This study is coherent with few clinical observations of enhanced efficiency of these anticancer agents when co-administered with therapeutic antibodies. This study will also serve as the foundation for screening a database of anticancer agents for possible compounds that may be co-delivered alongwith the antibody. Based on this study vincristine conformation inside antibody and its charge environment may be used as descriptors for screening purposes.

  18. A Spectrum of Monoclonal Antibodies Reactive with Human Mammary Tumor Cells (United States)

    Colcher, D.; Horan Hand, P.; Nuti, M.; Schlom, J.


    Splenic lymphocytes of mice, immunized with membrane-enriched fractions of metastatic human mammary carcinoma tissues, were fused with the NS-1 non-immunoglobulin-secreting murine myeloma cell line. This resulted in the generation of hybridoma cultures secreting immunoglobulins reactive in solid-phase radioimmunoassays with extracts of metastatic mammary carcinoma cells from involved livers, but not with extracts of apparently normal human liver. As a result of further screening of immunoglobulin reactivities and double cloning of cultures, 11 monoclonal antibodies were chosen that demonstrated reactivities with human mammary tumor cells and not with apparently normal human tissues. These monoclonal antibodies could be placed into at least five major groups on the basis of their differential binding to the surface of various live human mammary tumor cells in culture, to extracts of mammary tumor tissues, or to tissue sections of mammary tumor cells studied by the immunoperoxidase technique. Whereas a spectrum of reactivities to mammary tumors was observed with the 11 monoclonal antibodies, no reactivity was observed to apparently normal cells of the following human tissues: breast, lymph node, lung, skin, testis, kidney, thymus, bone marrow, spleen, uterus, thyroid, intestine, liver, bladder, tonsils, stomach, prostate, and salivary gland. Several of the antibodies also demonstrated a ``pancarcinoma'' reactivity, showing binding to selected non-breast carcinomas. None of the monoclonal antibodies showed binding to purified ferritin or carcinoembryonic antigen. Monoclonal antibodies of all five major groups, however, demonstrated binding to human metastatic mammary carcinoma cells both in axillary lymph nodes and at distal sites.

  19. Generation of human scFvs antibodies recognizing a prion protein epitope expressed on the surface of human lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Imperiale Valentina


    Full Text Available Abstract Background A hallmark of prion disease is the transformation of normal cellular prion protein (PrPc into an infectious disease-associated isoform, (PrPsc. Anti-prion protein monoclonal antibodies are invaluable for structure-function studies of PrP molecules. Furthermore recent in vitro and in vivo studies indicate that anti-PrP monoclonal antibodies can prevent the incorporation of PrPc into propagating prions. In the present article, we show two new human phage antibodies, isolated on recombinant hamster prion protein (rHaPrP. Results We adopted an antibody phage display strategy to isolate specific human antibodies directed towards rHaPrP which has been used as a bait for panning the synthetic ETH-2 antibody phage library. Two phage antibodies clones named MA3.B4 and MA3.G3 were isolated and characterized under genetic biochemical and immunocytochemical aspects. The clones were found to recognize the prion protein in ELISA studies. In flow-cytometry studies, these human single chain Fragment variable (scFv phage-antibodies show a well defined pattern of reactivity on human lymphoblastoid and myeloid cells. Conclusion Sequence analysis of the gene encoding for the antibody fragments and antigen recognition patterns determined by flow-cytometry analysis indicate that the isolated scFvs recognize novel epitopes in the PrPc molecule. These new anti PrPc human antibodies are unique reagents for prion protein detection and may represent a biologic platform to develop new reagents to treat PrPsc associated disease.

  20. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice (United States)

    Klein, Florian; Gruell, Henning; Scheid, Johannes F.; Bournazos, Stylianos; Mouquet, Hugo; Spatz, Linda A.; Diskin, Ron; Abadir, Alexander; Zang, Trinity; Dorner, Marcus; Billerbeck, Eva; Labitt, Rachael N.; Gaebler, Christian; Marcovecchio, Paola; Incesu, Reha-Baris; Eisenreich, Thomas R.; Bieniasz, Paul D.; Seaman, Michael S.; Bjorkman, Pamela J.; Ravetch, Jeffrey V.; Ploss, Alexander; Nussenzweig, Michel C.


    Summary Human antibodies to HIV-1 can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection1,2. Previous work showed that antibodies exert selective pressure on the virus but escape variants emerge within a short period of time3,4. However, these experiments were performed before the recent discovery of more potent anti-HIV-1 antibodies and their improvement by structure-based design5-9. Here we re-examine passive antibody transfer as a therapeutic modality in HIV-1-infected humanized mice (hu-mice). Although HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies (bNAbs) can effectively control HIV-1 infection and suppress viral load to levels below detection. Moreover, in contrast to antiretroviral therapy (ART)10-12, the longer half-life of antibodies led to viremic control for an average of 60 days after cessation of therapy. Thus, combinations of potent monoclonal antibodies can effectively control HIV-1 replication in hu-mice, and should be re-examined as a therapeutic modality in HIV-1-infected individuals. PMID:23103874

  1. A survey for arboviral antibodies in sera of humans and animals in Lombok, Republic of Indonesia. (United States)

    Olson, J G; Ksiazek, T G; Gubler, D J; Lubis, S I; Simanjuntak, G; Lee, V H; Nalim, S; Juslis, K; See, R


    Sera were collected from humans, cattle, horses, goats, ducks, chickens, wild birds, bats and rats in Lombok, Indonesia, and were tested by haemagglutination inhibition (HI) for antibodies to JE, ZIKA, CHIK and RR. Selected sera were tested by microneutralization tests for antibodies to the following viruses: JE, ZIKA, MVE, TMU, LGT, KUN, SEP, DEN-2, CHIK, RR, GET, SIN, BUN, BAT and BAK. Human sera had JE HI antibody in 135 (30%) of 446 tested. Neutralization tests indicated that DEN-2, ZIKA, TMU, KUN and SEP may have caused flavivirus infections. Antibodies to other arboviruses tested for were not found. HI and neutralization tests on animal sera indicated possible flavivirus infections with JE, MVE, KUN and SEP, and also that infections with BAT and BUN had occurred among domestic animals. No neutralizing antibodies were found for alphaviruses or other viruses used in the tests.

  2. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. (United States)

    Murphy, Andrew J; Macdonald, Lynn E; Stevens, Sean; Karow, Margaret; Dore, Anthony T; Pobursky, Kevin; Huang, Tammy T; Poueymirou, William T; Esau, Lakeisha; Meola, Melissa; Mikulka, Warren; Krueger, Pamela; Fairhurst, Jeanette; Valenzuela, David M; Papadopoulos, Nicholas; Yancopoulos, George D


    Mice genetically engineered to be humanized for their Ig genes allow for human antibody responses within a mouse background (HumAb mice), providing a valuable platform for the generation of fully human therapeutic antibodies. Unfortunately, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which their genetic humanization was carried out. Heretofore, HumAb mice have been generated by disrupting the endogenous mouse Ig genes and simultaneously introducing human Ig transgenes at a different and random location; KO-plus-transgenic humanization. As we describe in the companion paper, we attempted to make mice that more efficiently use human variable region segments in their humoral responses by precisely replacing 6 Mb of mouse Ig heavy and kappa light variable region germ-line gene segments with their human counterparts while leaving the mouse constant regions intact, using a unique in situ humanization approach. We reasoned the introduced human variable region gene segments would function indistinguishably in their new genetic location, whereas the retained mouse constant regions would allow for optimal interactions and selection of the resulting antibodies within the mouse environment. We show that these mice, termed VelocImmune mice because they were generated using VelociGene technology, efficiently produce human:mouse hybrid antibodies (that are rapidly convertible to fully human antibodies) and have fully functional humoral immune systems indistinguishable from those of WT mice. The efficiency of the VelocImmune approach is confirmed by the rapid progression of 10 different fully human antibodies into human clinical trials.


    Medecigo, M.; Manoutcharian, K.; Vasilevko, V.; Govezensky, T.; Munguia, M. E.; Becerril, B.; Luz-Madrigal, A.; Vaca, L.; Cribbs, D. H.; Gevorkian, G.


    Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer’s disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Aβ1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single domain (VH) formats. We demonstrated that these antibody fragments recognize in a specific manner amyloid beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Aβ1-42 in neuroblastoma cell cultures in a concentration-dependently manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Aβ, which makes them strong therapeutic candidates due to the fact that most of the Aβ species found in the brains of AD patients display extensive N-terminus truncations/modifications. PMID:20451261

  4. General in vitro method to analyze the interactions of synthetic polymers with human antibody repertoires. (United States)

    Soshee, Anandakumar; Zürcher, Stefan; Spencer, Nicholas D; Halperin, Avraham; Nizak, Clément


    Recent reports on the hitherto underestimated antigenicity of poly(ethylene glycol) (PEG), which is widely used for pharmaceutical applications, highlight the need for efficient testing of polymer antigenicity and for a better understanding of its molecular origins. With this goal in mind, we have used the phage-display technique to screen large, recombinant antibody repertoires of human origin in vitro for antibodies that bind poly(vinylpyrrolidone) (PVP). PVP is a neutral synthetic polymer of industrial and clinical interest that is also a well-known model antigen in animal studies, thus allowing the comparison of in vitro and in vivo responses. We have identified 44 distinct antibodies that bind specifically to PVP. Competitive binding assays show that the PVP-antibody binding constant is proportional to the polymerization degree of PVP and that specific binding is detected down to the vinylpyrrolidone (VP) monomer level. Statistical analysis of anti-PVP antibody sequences identifies an amino-acid motif that is shared by many phage-display-selected anti-PVP antibodies that are similar to a previously described natural anti-PVP antibody. This suggests a role for this motif in specific antibody/PVP interactions. Interestingly, sequence analysis also suggests that only a single antibody chain containing this shared motif is responsible for antibody binding to PVP, as confirmed upon systematic deletion of either antibody chain for 90% of selected anti-PVP antibodies. Overall, a large number of antibodies in the human repertoires we have screened bind specifically to PVP through a small number of shared amino acid motifs, and preliminary comparison points to significant correlations between the sequences of phage-display-selected anti-PVP antibodies and their natural counterparts isolated from immunized mice in previous studies. This study pioneers the use of antibody phage-display to explore the antigenicity of biotechnologically relevant polymers. It also paves the

  5. VH-VL orientation prediction for antibody humanization candidate selection: A case study. (United States)

    Bujotzek, Alexander; Lipsmeier, Florian; Harris, Seth F; Benz, Jörg; Kuglstatter, Andreas; Georges, Guy


    Antibody humanization describes the procedure of grafting a non-human antibody's complementarity-determining regions, i.e., the variable loop regions that mediate specific interactions with the antigen, onto a β-sheet framework that is representative of the human variable region germline repertoire, thus reducing the number of potentially antigenic epitopes that might trigger an anti-antibody response. The selection criterion for the so-called acceptor frameworks (one for the heavy and one for the light chain variable region) is traditionally based on sequence similarity. Here, we propose a novel approach that selects acceptor frameworks such that the relative orientation of the 2 variable domains in 3D space, and thereby the geometry of the antigen-binding site, is conserved throughout the process of humanization. The methodology relies on a machine learning-based predictor of antibody variable domain orientation that has recently been shown to improve the quality of antibody homology models. Using data from 3 humanization campaigns, we demonstrate that preselecting humanization variants based on the predicted difference in variable domain orientation with regard to the original antibody leads to subsets of variants with a significant improvement in binding affinity.

  6. Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor α. (United States)

    Shealy, David J; Cai, Ann; Staquet, Kim; Baker, Audrey; Lacy, Eilyn R; Johns, Laura; Vafa, Omid; Gunn, George; Tam, Susan; Sague, Sarah; Wang, Dana; Brigham-Burke, Mike; Dalmonte, Paul; Emmell, Eva; Pikounis, Bill; Bugelski, Peter J; Zhou, Honghui; Scallon, Bernard J; Giles-Komar, Jill


    We prepared and characterized golimumab (CNTO148), a human IgG1 tumor necrosis factor alpha (TNFα) antagonist monoclonal antibody chosen for clinical development based on its molecular properties. Golimumab was compared with infliximab, adalimumab and etanercept for affinity and in vitro TNFα neutralization. The affinity of golimumab for soluble human TNFα, as determined by surface plasmon resonance, was similar to that of etanercept (18 pM versus 11 pM), greater than that of infliximab (44 pM) and significantly greater than that of adalimumab (127 pM, p=0.018).  The concentration of golimumab necessary to neutralize TNFα-induced E-selectin expression on human endothelial cells by 50% was significantly less than those for infliximab (3.2 fold; p=0.017) and adalimumab (3.3-fold; p=0.008) and comparable to that for etanercept. The conformational stability of golimumab was greater than that of infliximab (primary melting temperature [Tm] 74.8 °C vs. 69.5 °C) as assessed by differential scanning calorimetry.  In addition, golimumab showed minimal aggregation over the intended shelf life when formulated as a high concentration liquid product (100 mg/mL) for subcutaneous administration.  In vivo, golimumab at doses of 1 and 10 mg/kg significantly delayed disease progression in a mouse model of human TNFα-induced arthritis when compared with untreated mice, while infliximab was effective only at 10 mg/kg. Golimumab also significantly reduced histological scores for arthritis severity and cartilage damage, as well as serum levels of pro-inflammatory cytokines and chemokines associated with arthritis. Thus, we have demonstrated that golimumab is a highly stable human monoclonal antibody with high affinity and capacity to neutralize human TNFα in vitro and in vivo.

  7. Human immune system mice: current potential and limitations for translational research on human antibody responses. (United States)

    Vuyyuru, Raja; Patton, John; Manser, Tim


    It has recently become possible to generate chimeric mice durably engrafted with many components of the human immune system (HIS mice). We have characterized the maturation and function of the B cell compartment of HIS mice. The antibody response of HIS mice to T cell-dependent B cell antigens is limited, and contributing factors may be the general immaturity of the B cell compartment, infrequent helper T cells selected on human MHC class II antigens, and incomplete reconstitution of secondary lymphoid organs and their microenvironments. In contrast, HIS mice generate protective antibody responses to the bacterium Borrelia hermsii, which acts as a T cell-independent antigen in mice, but do not respond to purified polysaccharide antigens (PPS). We speculate that the anti-B. hermsii response of HIS mice is derived from an abundant B cell subset that may be analogous to B1 B cells in mice. We suggest that failure of HIS mice to respond to PPS is due to the lack of a B cell subset that may originate from adult bone marrow and is highly dependent on human interleukin-7 for development.

  8. Antibody response to Salmonella typhi lw human Schistosomiasis mansoni

    Directory of Open Access Journals (Sweden)

    Maria Imaculada Muniz-Junqueira


    Full Text Available Antibody response to Salmonella typhi O and H antigens was evaluated in 24 individuals with either hepatointestinal or hepatosplenic schistosomiasis mansoni before and after typhoid vaccination, and compared with that of non-infected controls. Before vaccination, Schistosoma-infected patients showed a higher frequency of positive antibody to O antigen and the same frequency to H antigen when compared with that of healthy individuals. However, those with hepatosplenic schistosomiasis showed higher titres of antibody to H antigen than those with hepatointestinal disease or healthy individuals. Infected subjects, particularly those with hepatointestinal disease, showed a decreased response after typhoid vaccine. Tins diminished ability to mount an immune response towards typhoid antigens dining schistosomiasis may interfere ivith the clearance of the bacteria from blood stream and, therefore, play a role in the prolonged survival of salmonella as obsewed in some patients with chronic salmonellosis associated with schistosomiasis.

  9. Antibody protection reveals extended epitopes on the human TSH receptor.

    Directory of Open Access Journals (Sweden)

    Rauf Latif

    Full Text Available Stimulating, and some blocking, antibodies to the TSH receptor (TSHR have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD. However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity.

  10. The Interplay of Dengue Virus Morphological Diversity and Human Antibodies. (United States)

    Lok, Shee-Mei


    Dengue virus (DENV) infects ∼400 million people annually, and there is no available vaccine or therapeutics. It is not clear why candidate vaccines provide only modest protection. In addition to the presence of four different dengue serotypes, there is also structural heterogeneity in DENV infectious particles, even within a strain. This severely complicates the development of vaccines and therapeutics. The currently known different morphologies of DENV are: immature, partially mature, compact mature, and expanded mature forms of the virus. In this review I describe these forms of the virus, their infectivity, and how antibodies could recognize these morphologies. I also discuss possible vaccine and antibody therapeutic formulations to protect against all morphologies.

  11. Increased levels of IgG antibodies against human HSP60 in patients with spondyloarthritis.

    Directory of Open Access Journals (Sweden)

    Astrid Hjelholt

    Full Text Available Spondyloarthritis (SpA comprises a heterogeneous group of inflammatory diseases, with strong association to human leukocyte antigen (HLA-B27. A triggering bacterial infection has been considered as the cause of SpA, and bacterial heat shock protein (HSP seems to be a strong T cell antigen. Since bacterial and human HSP60, also named HSPD1, are highly homologous, cross-reactivity has been suggested in disease initiation. In this study, levels of antibodies against bacterial and human HSP60 were analysed in SpA patients and healthy controls, and the association between such antibodies and disease severity in relation to HLA-B27 was evaluated.Serum samples from 82 patients and 50 controls were analysed by enzyme-linked immunosorbent assay (ELISA for immunoglobulin (IgG1, IgG2, IgG3 and IgG4 antibodies against human HSP60 and HSP60 from Chlamydia trachomatis, Salmonella enteritidis and Campylobacter jejuni. Disease severity was assessed by the clinical scorings Bath Ankylosing Spondylitis Disease Activity Index (BASDAI, Bath Ankylosing Spondylitis Functional Index (BASFI and Bath Ankylosing Spondylitis Metrology Index (BASMI. Levels of IgG1 and IgG3 antibodies against human HSP60, but not antibodies against bacterial HSP60, were elevated in the SpA group compared with the control group. Association between IgG3 antibodies against human HSP60 and BASMI was shown in HLA-B27⁺ patients. Only weak correlation between antibodies against bacterial and human HSP60 was seen, and there was no indication of cross-reaction. These results suggest that antibodies against human HSP60 is associated with SpA, however, the theory that antibodies against human HSP60 is a specific part of the aetiology, through cross-reaction to bacterial HSP60, cannot be supported by results from this study. We suggest that the association between elevated levels of antibodies against human HSP60 and disease may reflect a general activation of the immune system and an increased

  12. Antigen nature and complexity influence human antibody light chain usage and specificity. (United States)

    Smith, Kenneth; Shah, Hemangi; Muther, Jennifer J; Duke, Angie L; Haley, Kathleen; James, Judith A


    Human antibodies consist of a heavy chain and one of two possible light chains, kappa (κ) or lambda (λ). Here we tested how these two possible light chains influence the overall antibody response to polysaccharide and protein antigens by measuring light chain usage in human monoclonal antibodies from antibody secreting cells obtained following vaccination with Pneumovax23. Remarkably, we found that individuals displayed restricted light chain usage to certain serotypes and that lambda antibodies have different specificities and modes of cross-reactivity than kappa antibodies. Thus, at both the monoclonal (7 kappa, no lambda) and serum levels (145μg/mL kappa, 2.82μg/mL lambda), antibodies to cell wall polysaccharide were nearly always kappa. The pneumococcal reference serum 007sp was analyzed for light chain usage to 12 pneumococcal serotypes for which it is well characterized. Similar to results at the monoclonal level, certain serotypes tended to favor one of the light chains (14 and 19A, lambda; 6A and 23F, kappa). We also explored differences in light chain usage at the serum level to a variety of antigens. We examined serum antibodies to diphtheria toxin mutant CRM197 and Epstein-Barr virus protein EBNA-1. These responses tended to be kappa dominant (average kappa-to-lambda ratios of 4.52 and 9.72 respectively). Responses to the influenza vaccine were more balanced with kappa-to-lambda ratio averages having slight strain variations: seasonal H1N1, 1.1; H3N2, 0.96; B, 0.91. We conclude that antigens with limited epitopes tend to produce antibodies with restricted light chain usage and that in most individuals, antibodies with lambda light chains have specificities different and complementary to kappa-containing antibodies.

  13. Role of anti-human lymphocyte culture cytotoxic antibodies in recurrent spontaneous pregnancy loss women

    Directory of Open Access Journals (Sweden)

    Shankarkumar Umapathy


    Full Text Available Background : Recurrent spontaneous pregnancy (RSA is defined as a sequence of three or more consecutive spontaneous abortions. One of the major causes of RSA is immunological where alloimmune antibodies develop towards human leucocyte antigen (HLA antigens. Earlier research had suggested that anti-HLA antibodies are produced in normal women; studies have been reported that normal pregnant women develop anti-HLA antibodies, mostly after 20-28 weeks of gestation. Aim : To evaluate the role of anti-HLA antibodies in RSA patients Materials and Methods : A total of 80 randomly selected couples with unexplained three or more RSA and control group of 50 normal pregnant women were screened for anti-HLA A and B antibodies. The anti-HLA antibodies were analyzed following the standard two-stage NIH microlymphocytotoxicity assay. Results : In our study group a high frequency of anti-HLA antibodies among women with RSA (26.25% was detected compared to normal pregnant women (8.0%. Most of the sera showed HLA-A and HLA-B antibodies which had high titer, up to a dilution of 1: 4096. Conclusion : This incidence of high anti-HLA antibodies in RSA women during early weeks of gestation may explain the recurrent pregnancy loss.

  14. Structure of a Human Astrovirus Capsid-Antibody Complex and Mechanistic Insights into Virus Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanoff, Walter A.; Campos, Jocelyn; Perez, Edmundo I.; Yin, Lu; Alexander, David L.; DuBois, Rebecca M. (UCSC)



    Human astroviruses (HAstVs) are a leading cause of viral diarrhea in young children, the immunocompromised, and the elderly. There are no vaccines or antiviral therapies against HAstV disease. Several lines of evidence point to the presence of protective antibodies in healthy adults as a mechanism governing protection against reinfection by HAstV. However, development of anti-HAstV therapies is hampered by the gap in knowledge of protective antibody epitopes on the HAstV capsid surface. Here, we report the structure of the HAstV capsid spike domain bound to the neutralizing monoclonal antibody PL-2. The antibody uses all six complementarity-determining regions to bind to a quaternary epitope on each side of the dimeric capsid spike. We provide evidence that the HAstV capsid spike is a receptor-binding domain and that the antibody neutralizes HAstV by blocking virus attachment to cells. We identify patches of conserved amino acids that overlap the antibody epitope and may comprise a receptor-binding site. Our studies provide a foundation for the development of therapies to prevent and treat HAstV diarrheal disease.

    IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies in healthy adults protect them against reinfection. Here, we determined the crystal structure of a complex of the HAstV capsid protein and a virus-neutralizing antibody. We show that the antibody binds to the outermost spike domain of the capsid, and we provide evidence that the antibody blocks virus attachment to human cells. Importantly, our findings suggest that a subunit-based vaccine focusing the immune system on the HAstV capsid spike domain could be effective in protecting children against HAstV disease.

  15. The Fc and not CD4 Receptor Mediates Antibody Enhancement of HIV Infection in Human Cells (United States)

    Homsy, Jacques; Meyer, Mia; Tateno, Masatoshi; Clarkson, Sarah; Levy, Jay A.


    Antibodies that enhance human immunodeficiency virus (HIV) infectivity have been found in the blood of infected individuals and in infected or immunized animals. These findings raise serious concern for the development of a safe vaccine against acquired immunodeficiency syndrome. To address the in vivo relevance and mechanism of this phenomenon, antibody-dependent enhancement of HIV infectivity in peripheral blood macrophages, lymphocytes, and human fibroblastoid cells was studied. Neither Leu3a, a monoclonal antibody directed against the CD4 receptor, nor soluble recombinant CD4 even at high concentrations prevented this enhancement. The addition of monoclonal antibody to the Fc receptor III (anti-FcRIII), but not of antibodies that react with FcRI or FcRII, inhibited HIV type 1 and HIV type 2 enhancement in peripheral blood macrophages. Although enhancement of HIV infection in CD4+ lymphocytes could not be blocked by anti-FcRIII, it was inhibited by the addition of human immunoglobulin G aggregates. The results indicate that the FcRIII receptor on human macrophages and possibly another Fc receptor on human CD4+ lymphocytes mediate antibody-dependent enhancement of HIV infectivity and that this phenomenon proceeds through a mechanism independent of the CD4 protein.

  16. Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3. (United States)

    Rauchenberger, Robert; Borges, Eric; Thomassen-Wolf, Elisabeth; Rom, Eran; Adar, Rivka; Yaniv, Yael; Malka, Michael; Chumakov, Irina; Kotzer, Sarit; Resnitzky, Dalia; Knappik, Achim; Reiffert, Silke; Prassler, Josef; Jury, Karin; Waldherr, Dirk; Bauer, Susanne; Kretzschmar, Titus; Yayon, Avner; Rothe, Christine


    The human combinatorial antibody library Fab 1 (HuCAL-Fab 1) was generated by transferring the heavy and light chain variable regions from the previously constructed single-chain Fv library (Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wölle, J., Plückthun, A., and Virnekäs, B. (2000) J. Mol. Biol. 296, 57-86), diversified in both complementarity-determining regions 3 into a novel Fab display vector, yielding 2.1 x 10(10) different antibody fragments. The modularity has been retained in the Fab display and screening plasmids, ensuring rapid conversion into various antibody formats as well as antibody optimization using prebuilt maturation cassettes. HuCAL-Fab 1 was challenged against the human fibroblast growth factor receptor 3, a potential therapeutic antibody target, against which, to the best of our knowledge, no functional antibodies could be generated so far. A unique screening mode was designed utilizing recombinant functional proteins and cell lines differentially expressing fibroblast growth factor receptor isoforms diversified in expression and receptor dependence. Specific Fab fragments with subnanomolar affinities were isolated by selection without any maturation steps as determined by fluorescence flow cytometry. Some of the selected Fab fragments completely inhibit target-mediated cell proliferation, rendering them the first monoclonal antibodies against fibroblast growth factor receptors having significant function blocking activity. This study validates HuCAL-Fab 1 as a valuable source for the generation of target-specific antibodies for therapeutic applications.

  17. Monoclonal antibodies against human granulocytes and myeloid differentiation antigens. (United States)

    Mannoni, P; Janowska-Wieczorek, A; Turner, A R; McGann, L; Turc, J M


    Monoclonal antibodies (MCA) were obtained by immunizing BALB/c mice with 99% pure granulocytes from normal donors or with a whole leukocyte suspension obtained from a chronic myelogenous leukemia (CML) patient, and then fusing the mouse spleen cells with a 315-43 myeloma cell clone. Four MCA were selected and studied using ELISA, immunofluorescence, cytotoxicity assays, and FACS analysis. Antibodies 80H.1, 80H.3, and 80H.5 (from normals) and 81H.1 (from CML) detected antigens expressed on neutrophils. Antibodies 80H.1 and 80H.3 (IgG) also reacted with monocytes but not with other blood cell subsets. Antibodies 80H.5 and 81H.1 (IgM) were cytotoxic and reacted strongly with most of the cells of the neutrophil maturation sequence, i.e., myeloblasts, promyelocytes, myelocytes, and mature granulocytes. Antibodies 80H.5 and 81H.1 also inhibited CFU-GM growth stimulated by leukocyte feeder layers or placental conditioned media, but did not inhibit BFU-E and CFU-E. Antigens recognized by 80H.3, 80H.5, and 81H.1 were expressed both on a proportion of cells from HL.60, KG.1, ML.1, and K562 myeloid cell lines, and on a proportion of blast cells isolated from patients with acute myelogenous leukemia. They were not found on lymphoid cell lines or lymphoid leukemia cells. These MCA recognize either late differentiation antigens expressed on mature neutrophils and monocytes (80H.1 and 80H.3) or early differentiation antigens (80H.5 and 81H.1) specific to the granulocytic lineage. They may be useful for a better definition of those antigens specific to hematopoietic stem cells and their relationship with normal or neoplastic hematopoiesis.

  18. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII. (United States)

    Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah


    Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII.

  19. Recombinant human antibody fragment against tetanus toxoid produced by phage display (United States)

    Neelakantam, B.; Sridevi, N. V.; Shukra, A. M.; Sugumar, P.; Samuel, S.


    Phage display technology is a powerful in vitro method for the identification of specific monoclonal antibodies (antibody fragments) to an antigenic target and allows the rapid generation and selection of high affinity, fully human antibodies directed toward any disease target appropriate for antibody therapy. In the present study, we exploited the phage display technology for the selection of an antigen binding fragment (Fabs) toward tetanus toxoid using human naïve phage antibody library constructed from peripheral blood lymphocytes of naïve human donors. The phages displaying Fab were subjected to three rounds of bio-panning with tetanus toxoid as antigen on a solid phase. The high affinity antibody fragments were expressed in HB2151 strain of Escherichia coli and purified by immobilized metal affinity chromatography. The binding activity and specificity of the antibody fragment was established by its reactivity toward tetanus toxoid and non-reactivity toward other related toxins as determined by enzyme-linked immunosorbent assay and immunoblot analysis. The selected Fab fragment forming the antigen-binding complexes with the toxoid in flocculation assay indicates that the Fab may have a potential neutralizing ability toward antigen. PMID:24678405

  20. Human single chain antibody to vascular endothelial growth factor:gene cloning, high-level expression, affinity maturation and bioactivity

    Institute of Scientific and Technical Information of China (English)


    Using antibody phage display technique,a human single chain antibody to vascular endothelial growth factor (VEGF) has been cloned.The antibody expression reached 45% of the total bacterial proteins.The purification and refolding of the antibody were completed in one step by using gel filtration chromatograph.ELISA analysis showed that the antibody not only specifically bound to human VEGF,but also competitively inhibited VEGF reacting with its receptors.In order to raise the affinity of the single chain antibody,its heavy chain variable region was randomly mutated using error-prone PCR and an antibody mutant library was constructed,from which a mutant with higher affinity was screened out.The three-dimensional structure and binding affinity of wild type and mutant antibody were compared.Our study provided a potential reagent for tumor angiogenic therapy and a significant model for antibody high-level expression and affinity maturation.

  1. Human single chain antibody to vascular endothelial growth factor: gene cloning, high-level expression, affinity maturation and bioactivity

    Institute of Scientific and Technical Information of China (English)

    阎锡蕴[1; 汤健[2; 吴小平[3; 王凤采[4; 李建生[5; 杨东玲[6


    Using antibody phage display technique, a human single chain antibody to vascular endothelial growth factor (VEGF) has been cloned. The antibody expression reached 45% of the total bacterial proteins. The purification and refolding of the antibody were completed in one step by using gel filtration chromatograph. ELISA analysis showed that the antibody not only specifically bound to human VEGF, but also competitively inhibited VEGF reacting with its receptors. In order to raise the affinity of the single chain antibody, its heavy chain variable region was randomly mutated using error-prone PCR and an antibody mutant library was constructed, from which a mutant with higher affinity was screened out. The three-dimensional structure and binding affinity of wild type and mutant antibody were compared. Our study provided a potential reagent for tumor angiogenic therapy and a significant model for antibody high-level expression and affinity maturation.

  2. Uptake of antigen-antibody complexes by human dendritic cells. (United States)

    Fanger, N A; Guyre, P M; Graziano, R F


    Fc receptors specific for IgG (FcγR) potentiate the immune response by facilitating the interaction between myeloid cells and antibody-coated targets (1-3). Monocyte and neutrophil FcyR engagement can lead to the induction of lytic-type mechanisms associated with innate responses. FcyR triggering can also play a key role in adaptive immune responses. For example, FcyR-directed capture and uptake of antigens (Ag) by dendritic cells (DC) results in processing and presentation to naive Ag-specific T cells, leading to their expansion and maturation into effector T-cell populations. This chapter describes methodology currently in use to explore and manipulate antigen-antibody (Ag-Ab) uptake by FcyR expressed on DC.

  3. Agonistic antibodies reveal the function of GPR56 in human glioma U87-MG cells. (United States)

    Ohta, Shigeyuki; Sakaguchi, Sayaka; Kobayashi, Yuki; Mizuno, Norikazu; Tago, Kenji; Itoh, Hiroshi


    GPR56 is a member of the adhesion G protein-coupled receptor (GPCR) and is highly expressed in parts of tumor cells. The involvement of GPR56 in tumorigenesis has been reported. We generated agonistic monoclonal antibodies against human GPR56 and analyzed the action and signaling pathway of GPR56. The antibodies inhibited cell migration through the Gq and Rho pathway in human glioma U87-MG cells. Co-immunoprecipitation analysis indicated that the interaction between the GPR56 extracellular domain and transmembrane domain was potentiated by agonistic antibodies. These results demonstrated that functional antibodies are invaluable tools for GPCR research and should open a new avenue for therapeutic treatment of tumors.

  4. Exquisite specificity and peptide epitope recognition promiscuity, properties shared by antibodies from sharks to humans. (United States)

    Marchalonis, J J; Adelman, M K; Robey, I F; Schluter, S F; Edmundson, A B


    This review considers definitions of the specificity of antibodies including the development of recent concepts of recognition polyspecificity and epitope promiscuity. Using sets of homologous and unrelated peptides derived from the sequences of immunoglobulin and T cell receptor chains we offer operational definitions of cross-reactivity by investigating correlations of either identities in amino acid sequence, or in hydrophobicity/hydrophilicity profiles with degree of binding in enzyme-linked immunosorbent assays. Polyreactivity, or polyspecificity, are terms used to denote binding of a monoclonal antibody or purified antibody preparation to large complex molecules that are structurally unrelated, such as thyroglobulin and DNA. As a first approximation, there is a linear correlation between degree of sequence identity or hydrophobicity/hydrophilicity and antigenic cross-binding. However, catastrophic interchanges of amino acids can occur where changing of one amino acid out of 16 in a synthetic peptide essentially eliminates binding to certain antibodies. An operational definition of epitope promiscuity for peptides is the case where two peptides show little or no identity in amino acid sequence but bind strongly to the same antibody as shown by either direct binding or competitive inhibition. Analysis of antibodies of humans and sharks, the two most divergent species in evolution to express antibodies and the combinatorial immune response, indicates that the capacity for both exquisite specificity and epitope recognition promiscuity are essential conserved features of individual vertebrate antibodies.

  5. Efficient Methods To Isolate Human Monoclonal Antibodies from Memory B Cells and Plasma Cells. (United States)

    Corti, Davide; Lanzavecchia, Antonio


    In this article, we highlight the advantages of isolating human monoclonal antibodies from the human memory B cells and plasma cell repertoires by using high-throughput cellular screens. Memory B cells are immortalized with high efficiency using Epstein-Barr virus (EBV) in the presence of a toll-like receptor (TLR) agonist, while plasma cells are maintained in single-cell cultures by using interleukin 6 (IL-6) or stromal cells. In both cases, multiple parallel assays, including functional assays, can be used to identify rare cells that produce antibodies with unique properties. Using these methods, we have isolated potent and broadly neutralizing antibodies against a variety of viruses, in particular, a pan-influenza-A-neutralizing antibody and an antibody that neutralizes four different paramyxoviruses. Given the high throughput and the possibility of directly screening for function (rather than just binding), these methods are instrumental to implement a target-agnostic approach to identify the most effective antibodies and, consequently, the most promising targets for vaccine design. This approach is exemplified by the identification of unusually potent cytomegalovirus-neutralizing antibodies that led to the identification of the target, a pentameric complex that we are developing as a candidate vaccine.

  6. Expression of secreted human single-chain fragment variable antibody against human amyloid beta peptide in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Jiong Cai; Fang Li; Shizhen Wang


    BACKGROUND: Studies have shown that monoclonal or polyclonal antibody injections ofamyloid β peptide arc effective in removing amyloid β peptide overload in the brain.OBJECTIVE: Based on successful screening of a human single-chain fragment variable antibody specific to amyloid β peptide, this paper aimed to express recombinant human single-chain variable antibody against amyloid β peptide.DESIGN, TIME AND SETTING: A single sample experiment was performed at the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Hospital (Beijing, China) from January to July 2006.MATERIALS: Human single-chain fragment variable antibody gene against amyloid β peptide was screened from a human phage-display antibody library.METHODS: Human single-chain fragment variable antibody gene was mutated to eliminate a BamHI restriction site and cloned into a Teasy plasmid for pT-seFvAβ construction, which was identified by PCR amplification and endonuclease digestion. Plasmid pT-scFvA β was cut by EcoRl and Notl endonucleases, and the antibody gene was cloned into pPIC9K plasmid to construct pPIC9K-scFvA β expression vector, which was confirmed by gene sequencing. Linearized pPICgK-scFvA β was used to transform a Pichia pastoris GS115 cell line, and the recombinant was induced by 0.5 % methanol to express human single-chain fragment variable antibody specific to amyloid β peptide.MAIN OUTCOME MEASURES: Protein electrophoresis was used to identify PCR products, gene sequencing was uscd to verify the pPIC9K-scFvA sequence, and SDS-PAGE was used to detect recombinant expression of human single-chain fragment variable antibody specific to amyloid β peptide in Pichia pastoris.RESULTS: Gene sequencing confirmed pPICgK-scFvA β orientation. Rccomhinants were obtained by lineadzed pPIC9K-scFvA β transformation. After induction with 0.5% methanol, the recombinant yeast cells secreted proteins of 33-ku size

  7. Antigen recognition by IgG4 antibodies in human trichinellosis

    Directory of Open Access Journals (Sweden)

    Pinelli E.


    Full Text Available The antibody isotype response to Trichinella spiralis excretory/secretory (ES products of muscle larva was examined using sera from patients with confirmed trichinellosis. Using Western blots we identify components of the ES antigen that are recognized by IgM and IgG antibodies. A 45 kDa component was strongly recognized by different antibody classes and subclasses. We observed a 45 kDa-specific lgG4 response that was detected exclusively using sera of patients with trichinellosis and not of patients with echinococcosis, filariasis, cysticercosis, ascariasis, strongyloidiasis or toxocariasis. These results are relevant for the diagnosis of human trichinellosis.

  8. Human oxidation-specific antibodies reduce foam cell formation and atherosclerosis progression

    DEFF Research Database (Denmark)

    Tsimikas, Sotirios; Miyanohara, Atsushi; Hartvigsen, Karsten


    We sought to assess the in vivo importance of scavenger receptor (SR)-mediated uptake of oxidized low-density lipoprotein (OxLDL) in atherogenesis and to test the efficacy of human antibody IK17-Fab or IK17 single-chain Fv fragment (IK17-scFv), which lacks immunologic properties of intact antibod...... antibodies other than the ability to inhibit uptake of OxLDL by macrophages, to inhibit atherosclerosis....

  9. Improved radioimmunoscintigraphy of human mammary carcinoma xenografts after injection of an anti-antibody

    Energy Technology Data Exchange (ETDEWEB)

    Senekowitsch, R.; Bode, W.; Glaessner, H.; Moellenstaedt, S.; Kriegel, H.; Reidel, G.; Pabst, H.W.


    The low tumor-to-background ratio obtained after administration of radiolabeled whole monoclonal antibodies (MAbs) is one of the major problems in immunoscintigraphy and -therapy. To reduce the blood pool label caused by the circulation of radiolabeled MAb we have investigated the advantage of injecting an anti-antibody after administration of tumor-specific MAb in nude mice bearing human mammary carcinoma xenografts. The MAb MA 10-11 of rat origin, used in these studies, had shown a high affinity to human mammary carcinoma tissue on frozen sections and low cross-reactivity with various normal human tissues. 24 h after injection of 1.5 MBq /sup 131/I-labeled MAb containing 10 IgG/sub 2a/ one group of mice received an additional injection of 100 anti-rat antibody. Blood taken 2 min after the second antibody injection showed nearly the whole activity bound to antibody aggregates, that cleared very rapidly from the circulation and accumulated in liver and spleen. The transitory high liver activity decreased within several hours because of rapid deiodination of the antibody-complex in this organ. The release of radioactivity from the spleen, however, was found to be much slower. The rapid excretion of the radioactivity from the blood pool combined with a nearly constant tumor activity allowed early tumor detection with tumor-to-blood ratios of 250:1 at 48 h after anti-antibody injection compared to 1.1:1 obtained for the control animals. In addition the results may explain the reported reduction of imaging quality and high uptake of radioactivity in the spleen of patients having repeated injections of mouse MAbs due to complex formation after development of human anti-mouse antibodies

  10. Monoclonal antibody to human endothelial cell surface internalization and liposome delivery in cell culture. (United States)

    Trubetskaya, O V; Trubetskoy, V S; Domogatsky, S P; Rudin, A V; Popov, N V; Danilov, S M; Nikolayeva, M N; Klibanov, A L; Torchilin, V P


    A monoclonal antibody (mAb), E25, is described that binds to the surface of cultured human endothelial cells. Upon binding E25 is rapidly internalized and digested intracellularly. Selective liposome targeting to the surface of the cells is performed using a biotinylated E25 antibody and an avidin-biotin system. Up to 30% of the cell-adherent liposomal lipid is internalized.

  11. A two-in-one antibody engineered from a humanized interleukin 4 antibody through mutation in heavy chain complementarity-determining regions. (United States)

    Lee, Chingwei V; Koenig, Patrick; Fuh, Germaine


    A mono-specific antibody may recruit a second antigen binding specificity, thus converting to a dual-specific Two-in-One antibody through mutation at the light chain complementarity-determining regions (CDRs). It is, however, unknown whether mutation at the heavy chain CDRs may evolve such dual specificity. Herein, we examined the CDRs of a humanized interleukin 4 (IL4) antibody using alanine scanning and structural modeling, designed libraries of mutants in regions that tolerate mutation, and isolated dual specific antibodies harboring mutation at the heavy chain CDRs only. We then affinity improved an IL4/IL5 dual specific antibody to variants with dissociation constants in the low nanomolar range for both antigens. The results demonstrate the full capacity of antibodies to evolve dual binding specificity.

  12. Human antibody recognition of Anisakidae and Trichinella spp. in Greenland

    DEFF Research Database (Denmark)

    Møller, L N; Krause, T Grove; Koch, A


    High levels of total IgE are observed among children in Greenland. To evaluate the extent to which Anisakidae and Trichinella spp. contribute to the high total IgE level, an ELISA and a western blot were developed for the detection of IgG antibodies to Anisakidae, based on excretory....../secretory antigens from Anisakidae larvae. Western blots with Anisakidae and Trichinella antigens discriminated between Anisakidae and Trichinella infections, enabling cross-reactivity between the two parasite infections to be eliminated. Serum samples from 1012 children in Greenland were analysed for specific...

  13. Biochemical and pharmacological characterization of human c-Met neutralizing monoclonal antibody CE-355621 (United States)

    Michaud, Neil R.; Jani, Jitesh P.; Hillerman, Stephen; Tsaparikos, Konstantinos E.; Barbacci-Tobin, Elsa G.; Knauth, Elisabeth; Putz Jr., Henry; Campbell, Mary; Karam, George A.; Chrunyk, Boris; Gebhard, David F.; Green, Larry L.; Xu, Jinghai J.; Dunn, Margaret C.; Coskran, Tim M.; Lapointe, Jean-Martin; Cohen, Bruce D.; Coleman, Kevin G.; Bedian, Vahe; Vincent, Patrick; Kajiji, Shama; Steyn, Stefan J.; Borzillo, Gary V.; Los, Gerrit


    The c-Met proto-oncogene is a multifunctional receptor tyrosine kinase that is stimulated by its ligand, hepatocyte growth factor (HGF), to induce cell growth, motility and morphogenesis. Dysregulation of c-Met function, through mutational activation or overexpression, has been observed in many types of cancer and is thought to contribute to tumor growth and metastasis by affecting mitogenesis, invasion, and angiogenesis. We identified human monoclonal antibodies that bind to the extracellular domain of c-Met and inhibit tumor growth by interfering with ligand-dependent c-Met activation. We identified antibodies representing four independent epitope classes that inhibited both ligand binding and ligand-dependent activation of c-Met in A549 cells. In cells, the antibodies antagonized c-Met function by blocking receptor activation and by subsequently inducing downregulation of the receptor, translating to phenotypic effects in soft agar growth and tubular morphogenesis assays. Further characterization of the antibodies in vivo revealed significant inhibition of c-Met activity (≥ 80% lasting for 72–96 h) in excised tumors corresponded to tumor growth inhibition in multiple xenograft tumor models. Several of the antibodies identified inhibited the growth of tumors engineered to overexpress human HGF and human c-Met (S114 NIH 3T3) when grown subcutaneously in athymic mice. Furthermore, lead candidate antibody CE-355621 inhibited the growth of U87MG human glioblastoma and GTL-16 gastric xenografts by up to 98%. The findings support published pre-clinical and clinical data indicating that targeting c-Met with human monoclonal antibodies is a promising therapeutic approach for the treatment of cancer. PMID:23007574

  14. High prevalence of human anti-bovine IgG antibodies as the major cause of false positive reactions in two-site immunoassays based on monoclonal antibodies

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Koch, Claus; Jensen, Charlotte H


    A sandwich ELISA for quantification of the endometrial protein PP14 revealed false positive reactions in 81% of male sera (n = 54). The PP14 ELISA was based on two monoclonal antibodies (Mabs) with different epitope specificities--a catcher and a biotinylated indicator. The monoclonal antibodies ...... of human anti-mouse IgG antibodies (HAMA), described to create false positive results, may be due to a crossreacting fraction of the polyclonal circulating antibodies against bovine IgG.......A sandwich ELISA for quantification of the endometrial protein PP14 revealed false positive reactions in 81% of male sera (n = 54). The PP14 ELISA was based on two monoclonal antibodies (Mabs) with different epitope specificities--a catcher and a biotinylated indicator. The monoclonal antibodies...... were purified by protein G affinity chromatography from culture supernatant containing 10% (v/v) fetal calf serum (FCS). Human anti-animal IgG (bovine, mouse, horse, and swine) antibodies and human anti-bovine serum albumin antibodies were measured using an ELISA design, with direct bridging...

  15. RNA recognition by a human antibody against brain cytoplasmic 200 RNA. (United States)

    Jung, Euihan; Lee, Jungmin; Hong, Hyo Jeong; Park, Insoo; Lee, Younghoon


    Diverse functional RNAs participate in a wide range of cellular processes. The RNA structure is critical for function, either on its own or as a complex form with proteins and other ligands. Therefore, analysis of the RNA conformation in cells is essential for understanding their functional mechanisms. However, no appropriate methods have been established as yet. Here, we developed an efficient strategy for panning and affinity maturation of anti-RNA human monoclonal antibodies from a naïve antigen binding fragment (Fab) combinatorial phage library. Brain cytoplasmic 200 (BC200) RNA, which is also highly expressed in some tumors, was used as an RNA antigen. We identified MabBC200-A3 as the optimal binding antibody. Mutagenesis and SELEX experiments showed that the antibody recognized a domain of BC200 in a structure- and sequence-dependent manner. Various breast cancer cell lines were further examined for BC200 RNA expression using conventional hybridization and immunoanalysis with MabBC200-A3 to see whether the antibody specifically recognizes BC200 RNA among the total purified RNAs. The amounts of antibody-recognizable BC200 RNA were consistent with hybridization signals among the cell lines. Furthermore, the antibody was able to discriminate BC200 RNA from other RNAs, supporting the utility of this antibody as a specific RNA structure-recognizing probe. Intriguingly, however, when permeabilized cells were subjected to immunoanalysis instead of purified total RNA, the amount of antibody-recognizable RNA was not correlated with the cellular level of BC200 RNA, indicating that BC200 RNA exists as two distinct forms (antibody-recognizable and nonrecognizable) in breast cancer cells and that their distribution depends on the cell type. Our results clearly demonstrate that anti-RNA antibodies provide an effective novel tool for detecting and analyzing RNA conformation.

  16. Purification of human monoclonal antibodies and their fragments. (United States)

    Müller-Späth, Thomas; Morbidelli, Massimo


    This chapter summarizes the most common chromatographic mAb and mAb fragment purification methods, starting by elucidating the relevant properties of the compounds and introducing the various chromatography modes that are available and useful for this application. A focus is put on the capture step affinity and ion exchange chromatography. Aspects of scalability play an important role in judging the suitability of the methods. The chapter introduces also analytical chromatographic methods that can be utilized for quantification and purity control of the product. In the case of mAbs, for most purposes the purity obtained using an affinity capture step is sufficient. Polishing steps are required if material of particularly high purity needs to be generated. For mAb fragments, affinity chromatography is not yet fully established, and the capture step potentially may not provide material of high purity. Therefore, the available polishing techniques are touched upon briefly. In the case of mAb isoform and bispecific antibody purification, countercurrent chromatography techniques have been proven to be very useful and a part of this chapter has been dedicated to them, paying tribute to the rising interest in these antibody formats in research and industry.

  17. Generation and characterization of human B lymphocyte stimulator blocking monoclonal antibody. (United States)

    Zhuang, Weiliang; Zhang, Jianjun; Pei, Lili; Fang, Shuping; Liu, Honghao; Wang, Ruixue; Su, Yunpeng


    The cytokine, B lymphocyte stimulator (Blys) is essential for activation and proliferation of B cells and is involved in the pathogenesis of B-cell mediated autoimmune diseases. Based on its essential activity, Blys may be a potential therapeutic target for human autoimmune diseases. In this article, we have described the development of a novel humanized anti-Blys antibody, NMB04, that binds with high affinity and specificity to both soluble and membrane bound Blys. This monoclonal antibody has the potential to block Blys binding to all its three receptors, TACI, BCMA and BR-3. Further in vivo studies revealed that NMB04 possessed more potent inhibitory activity against human Blys as compared to an existing antibody, Belimumab. Therefore, NMB04 may have potential as a therapeutic candidate targeting autoimmune diseases.

  18. Rheumatoid factor interference in immunogenicity assays for human monoclonal antibody therapeutics. (United States)

    Tatarewicz, Suzanna; Miller, Jill M; Swanson, Steven J; Moxness, Michael S


    Rheumatoid factors (RFs) are endogenous human antibodies that bind to human gamma globulins. RFs demonstrate preferential binding to aggregated gamma globulins and are involved in the clearing mechanism of immune complexes. Immunoassays designed to measure human anti-human antibodies (HAHA) after administration of monoclonal antibody therapeutics are thus vulnerable to interference from RFs. When using a sensitive electrochemiluminescent (ECL) bridging immunoassay, samples from subjects with rheumatoid arthritis demonstrated much higher baseline reactivity than healthy subjects. Interference was found to be dependent on the aggregation state of the therapeutic antibody that had been conjugated with the detection reagent (ruthenium). Size exclusion high performance liquid chromatography (SE-HPLC) demonstrated that of the total integrated peaks, as little as 0.55% high molecular weight aggregates (>600kDa) were sufficient to cause increased reactivity. Stability studies of the ruthenium and biotin conjugated therapeutic antibody indicated that storage time, temperature and buffer formulation were critical in maintaining the integrity of the reagents. Through careful SE-HPLC monitoring we were able to choose appropriate storage and buffer conditions which led to a reduction in the false reactivity rate in therapeutic-naïve serum from a rheumatoid arthritis population.

  19. Isolation of human anti-serum albumin Fab antibodies with an extended serum-half life. (United States)

    Kang, Hyeon-Ju; Kim, Hye-Jin; Cha, Sang-Hoon


    The serum albumin (SA) has been exploited to generate long-acting biotherapeutics by taking advantage of the FcRn-mediated recycling mechanism in a direct or an indirect way. Since Fab fragments have been proven to be clinically safe for human usage, we assumed that human anti-SA Fab antibodies could have a great potential as a carrier molecule to extend the serum half-life of therapeutic proteins. We, herein, had attempted to isolate anti-SA Fab antibodies from HuDVFab-8L antibody library via a phage display technology, and identified eight discrete human Fab antibodies. One of the Fab antibodies, SL335, showed the strongest binding reactivity to human SA with nM range of affinity at both pH 6 and pH 7.4, and cross-reacted to SAs from various species including rat, mouse, canine and monkey. The in vivo pharmacokinetic assay using a rat model indicated that SL335 has approximately 10 fold longer serum half-life and 26 to 44-fold increase in AUC0 → ∞ compared to the negative control Fab molecule in both intravenous and subcutaneous administrations. Knowing that Fabs have proven to be safe in clinics for a long time, SL335 seems to have a great potential in generating long-acting protein drugs by tagging effector molecules with either chemical conjugation or genetic fusion.

  20. Potential use of humanized antibodies in the treatment of breast cancer. (United States)

    Schaefer, Niklaus G; Pestalozzi, Bernhard C; Knuth, Alexander; Renner, Christoph


    With the growing knowledge of key cellular pathways in tumor induction and evolution, targeted therapies make up an increasing proportion of new drugs entering clinical testing. In the treatment of breast cancer, humanized antibodies have become a major option. The humanized monoclonal antibody trastuzumab (Herceptin); Genentech, Inc., CA, USA) for HER2-overexpressing, metastatic breast cancer, represents a successful agent associated with impressive survival benefits when combined with chemotherapy. Based on impressive results, trastuzumab will become a standard in the adjuvant treatment of HER2-overexpressing breast cancer. The role of trastuzumab in the neoadjuvant setting is promising, but must be further evaluated in large prospective, randomized trials. However, there is still a large proportion of patients overexpressing HER2 that do not respond to trastuzumab. Regarding this patient cohort, the optimal combination of trastuzumab with other agents needs further evaluation. In breast cancer lacking HER2 amplification, the role of the new antibody pertuzumab remains to be defined. The role of antibodies interfering with angiogenesis, tumor stroma or glycoproteins is of a preliminary nature and warrants further investigation. Here, an overview of humanized antibodies in human breast cancer is provided, with emphasis on the recent advances and future prospects in treating malignant breast cancer.

  1. Engineering humanized antibody framework sequences for optimal site-specific conjugation of cytotoxins. (United States)

    Spidel, Jared L; Albone, Earl F; Cheng, Xin; Vaessen, Benjamin; Jacob, Sara; Milinichik, Andrew Z; Verdi, Arielle; Kline, J Bradford; Grasso, Luigi

    The prevailing techniques used to generate antibody-drug conjugates (ADCs) involve random conjugation of the linker-drug to multiple lysines or cysteines in the antibody. Engineering natural and non-natural amino acids into an antibody has been demonstrated to be an effective strategy to produce homogeneous ADC products with defined drug-to-antibody ratios. We recently reported an efficient residue-specific conjugation technology (RESPECT) where thiol-reactive payloads can be efficiently conjugated to a native unpaired cysteine in position 80 (C80) of rabbit light chains. Deimmunizing the rabbit variable domains through humanization is necessary to reduce the risk of anti-drug antibody responses in patients. However, we found that first-generation humanized RESPECT ADCs showed high levels of aggregation and low conjugation efficiency. We correlated these negative properties to the phenylalanine at position 83 present in most human variable kappa frameworks. When position 83 was substituted with selected amino acids, conjugation was restored and aggregation was reduced to levels similar to the chimeric ADC. This engineering strategy allows for development of second-generation humanized RESPECT ADCs with desirable biopharmaceutical properties.

  2. Analysis of Antibodies Directed against Merozoite Surface Protein 1 of the Human Malaria Parasite Plasmodium falciparum (United States)

    Woehlbier, Ute; Epp, Christian; Kauth, Christian W.; Lutz, Rolf; Long, Carole A.; Coulibaly, Boubacar; Kouyaté, Bocar; Arevalo-Herrera, Myriam; Herrera, Sócrates; Bujard, Hermann


    The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria. PMID:16428781

  3. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Tal Noy-Porat


    Full Text Available Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1 that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.

  4. Evaluation of human antibody responses to diphtheria toxin subunits A and B in various age groups. (United States)

    Karakus, R; Caglar, K; Aybay, C


    This study aimed to evaluate human antibody responses to diphtheria toxin subunits in various age groups. Antibodies against the intact diphtheria toxin and the diphtheria toxin subunits A and B were evaluated in 1319 individuals using a double-antigen ELISA. Although high levels of protection (83.6%, 95% CI 79.2-87.4) were found in children and adolescents, the middle-aged adult population was less protected (28.8%, 95% CI 24.3-33.6). An increase in age was associated with a decrease in the frequency of protected individuals in the 0-39-year age group (p antibodies against the intact toxin. In children aged antibodies were observed were found to correlate with the ages at which booster doses are administered. Overall, males appeared to be more protected than females (OR 1.67, 95% CI 1.34-2.08, p antibody levels of > or =0.1 IU/mL against the intact toxin, but did not have protective antibody against subunit B. Determination of anti-subunit B antibody levels should help in evaluating the effectiveness of diphtheria boosters and other aspects of diphtheria immunity.

  5. Generation and Characterization of Specific Antibodies to the Murine and Human Ectonucleotidase NTPDase8. (United States)

    Pelletier, Julie; Salem, Mabrouka; Lecka, Joanna; Fausther, Michel; Bigonnesse, François; Sévigny, Jean


    The ectonucleotidase nucleoside triphosphate diphosphohydrolase-8 (NTPDase8) is the last member of the Ecto-NTPDase family to be discovered and characterized. It is a transmembrane protein which regulates the concentration of the agonists of P1 and P2 receptors at the cell surface. The functions of the enzyme are still not known partly due to the lack of specific tools such as antibodies. In this work, guinea pig polyclonal antibodies against mouse NTPDase8 and mouse monoclonal antibodies against human NTPDase8 have been generated and characterized. For the production of antibodies against mouse NTPDase8 several techniques have been tried. Several peptide antigens in several hosts (rabbit, rat, hamster, and guinea pig) failed to give a positive reaction suggesting that NTPDase8 is poorly immunogenic. In this study, we describe the successful process that led to anti-mouse NTPDase8, namely the cDNA immunization technique. Monoclonal antibodies to human NTPDase8 were also obtained by cDNA immunization followed by a final injection with transfected human embryonic kidney (HEK 293T) cells expressing human NTPDase8. The specificity of these antibodies was evaluated by Western blot, immunocytochemistry, immunohistochemistry and flow cytometry. In contrast, all commercial antibodies to NTPDase8 peptides that we have tested failed to give a specific positive signal against the expressed NTPDase8 protein when used to probe Western blots. In addition, immunohistochemistry experiments confirmed the presence of NTPDase8 in mouse liver canaliculi. The tools generated in this work will help characterize NTPDase8 localization and function in future studies and its contribution to the modulation of P1 and P2 receptor activation.

  6. Antibody response to Salmonella typhi lw human Schistosomiasis mansoni

    Directory of Open Access Journals (Sweden)

    Maria Imaculada Muniz-Junqueira


    Full Text Available Antibody response to Salmonella typhi O and H antigens was evaluated in 24 individuals with either hepatointestinal or hepatosplenic schistosomiasis mansoni before and after typhoid vaccination, and compared with that of non-infected controls. Before vaccination, Schistosoma-infected patients showed a higher frequency of positive antibody to O antigen and the same frequency to H antigen when compared with that of healthy individuals. However, those with hepatosplenic schistosomiasis showed higher titres of antibody to H antigen than those with hepatointestinal disease or healthy individuals. Infected subjects, particularly those with hepatointestinal disease, showed a decreased response after typhoid vaccine. Tins diminished ability to mount an immune response towards typhoid antigens dining schistosomiasis may interfere ivith the clearance of the bacteria from blood stream and, therefore, play a role in the prolonged survival of salmonella as obsewed in some patients with chronic salmonellosis associated with schistosomiasis.A resposta de anticorpos para os antígenos O e H da Salmonella typhi foi avaliada em 24 indivíduos com esquistossomose hepatointestinal ou hepatoesplênica antes e apôs vacinação antitifoídica, e comparada com a resposta de indivíduos controles normais. Antes da vacinação, pacientes esquistossomóticos mostraram uma maior frequência de anticoipos positivos para o antígeno O e a mesma frequência de anticoipos positivos para o antígeno H quando comparada com aquela de indivíduos controles normais. Porém, aqueles com esquistossomose hepatoesplênica mostraram títulos maiores de anticoipos para o antígeno H do que aqueles com a forma hepatointestinal da doença ou os indivíduos controles normais. Pacientes esquistossomóticos, particularmente aqueles com a forma hepatointestinal, mostraram uma menor resposta após a vacinação antitifoídica. Esta menor capacidade para apresentar uma resposta imune para ant

  7. Characterization of human 1,25-dihydroxyvitamin D3 receptor anti-peptide antibodies. (United States)

    Tuohimaa, P; Bläuer, M; Jääskeläinen, T; Itkonen, A; Lindfors, M; Mahonen, A; Palvimo, J; Vilja, P; Mäenpää, P H


    Rabbit and chicken antibodies were raised against two peptides synthesized according to the structure of human 1,25-dihydroxyvitamin D3 receptor (hVDR): rabbit alpha hVDR-103 against the N-terminal amino acids 5-18 and alpha hVDR-104 against the amino acids 172-186 in the hinge region and chicken alpha hVDR-cab11 against the amino acids 172-186, respectively. The specificity of the antibodies was tested by peptide saturation, SDS-PAGE immunoblotting, gel shift assay and sucrose gradient centrifugation. Immunoblotting of a soluble extract (cytosol) from osteosarcoma cell line MG-63 showed a single band with an M(r) of about 48,000 and human intestine cytosol a broad band (50-63,000) for both antibodies. The antibodies recognized activated (3.2S) hVDR by shifting the centrifugation sedimentation profile to 5-6S. The antibodies showed nuclear immunostaining of unoccupied VDR in human osteosarcoma cells MG-63, U2-Os and SaOs-2. The immunoreaction could be saturated with the corresponding synthetic peptide. In immunoblot alpha hVDR-103 reacted with human and rat VDR, whereas alpha hVDR-104 recognized human VDR only. Similarly in immunohistochemistry, alpha hVDR-103 showed staining with hVDR and rVDR, whereas alpha hVDR-104 reacted only with hVDR. All antibodies recognized the native hVDR as verified with sucrose gradient centrifugation or immunoprecipitation but only alpha hVDR-103 and alpha hVDR-cab11 in gel shift assay of hVDR associated with the vitamin D-responsive element of human osteocalcin gene promoter.

  8. The characteristics of human antibody targeting the Epidermal Growth Factor Receptor in vivo for radioimmunotherapy in a small animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Jung; Choi, Tae Hyun; Kim, Byoung Soo; Cheon, Gi Jeong [Korea Institue of Radiological and Medical Sciences, Seoul (Korea, Republic of); Hong, Kwang Won; Chang, Ki Hwan; Shin, Yong Won; Ryoo, Kyung Hwan; Shin, Yong Nam; Kim, Se Ho [Green Cross Corp., Yongin (Korea, Republic of)


    The identification of epidermal growth factor receptor (EGFR) as an oncogene has led to the development of anticancer therapeutics directed against EGFR, including Erbitux for colon cancer. Many therapeutic approaches are aimed at the EGFR. Erbitux is example of monoclonal antibody inhibitors. The monoclonal antibodies block the extracellular ligand binding domain. EGFR4-2, IgG human monoclonal antibody, has been developed on the basis of human antibody gene library in Green Cross Corp. Small animal imaging is useful for preclinical evaluation of radiolabeled antibody to see biodistribution and targeting ability at serial time points in same animals

  9. Lineage Structure of the Human Antibody Repertoire in Response to Influenza Vaccination (United States)

    Jiang, Ning; He, Jiankui; Weinstein, Joshua A.; Penland, Lolita; Sasaki, Sanae; He, Xiao-Song; Dekker, Cornelia L.; Zheng, Nai-ying; Huang, Min; Sullivan, Meghan; Wilson, Patrick C.; Greenberg, Harry B.; Davis, Mark M.; Fisher, Daniel S.; Quake, Stephen R.


    The human antibody repertoire is one of the most important defenses against infectious disease, and the development of vaccines has enabled the conferral of targeted protection to specific pathogens. However, there are many challenges to measuring and analyzing the immunoglobulin sequence repertoire, such as the fact that each B cell contains a distinct antibody sequence encoded in its genome, that the antibody repertoire is not constant but changes over time, and the high similarity between antibody sequences. We have addressed this challenge by using high-throughput long read sequencing to perform immunogenomic characterization of expressed human antibody repertoires in the context of influenza vaccination. Informatic analysis of 5 million antibody heavy chain sequences from healthy individuals allowed us to perform global characterizations of isotype distributions, determine the lineage structure of the repertoire and measure age and antigen related mutational activity. Our analysis of the clonal structure and mutational distribution of individuals’ repertoires shows that elderly subjects have a decreased number of lineages but an increased pre-vaccination mutation load in their repertoire and that some of these subjects have an oligoclonal character to their repertoire in which the diversity of the lineages is greatly reduced relative to younger subjects. We have thus shown that global analysis of the immune system’s clonal structure provides direct insight into the effects of vaccination and provides a detailed molecular portrait of age-related effects. PMID:23390249

  10. Generation of mouse anti-human urate anion exchanger antibody by genetic immunization and its identification

    Institute of Scientific and Technical Information of China (English)

    XU Guo-shuang; WU Di; CHEN Xiang-mei; SHI Suo-zhu; HONG Quan; ZHANG Ping; LU Yang


    Background Human urate anion exchanger (hURAT1) as a major urate transporter expressed on renal tubular epithelial cells regulates blood urate level by reabsorbing uric acid. Antibody is an important tool to study hURAT1. This study aimed, by genetic immunization, to produce mouse anti-hURAT1 polyclonal antibody with high throughput and high specificity and to detect the location of hURAT1 in human kidney.Methods Human renal total RNA was isolated and the entire cDNA of hURAT1 was amplified by RT-PCR. The sequence of intracellular high antigenicity fragment (A280 to R349) was chosen by prediction software of protein antigenicity, and its cDNA was amplified from cDNA of hURAT1, and then cloned into pBQAP-TT vector to construct recombinant plasmid pBQAP-TT-hURAT1-210 for genetic immunization. Mice were inoculated with this recombinant plasmid and two other adjuvant plasmids, pCMVi-GMCSF and pCMVi-Flt3L, which helped to enhance the antibody’s generation. After four weeks, the mice were sacrificed to obtain the anti-hURAT1 antibody from serum. The antibody was identified by western blot analysis and immunohistochemistry. At the same time, rabbit anti-hURAT1 antibody was produced by protein immunization. The specificity and efficiency between the rabbit and mouse anti-hURAT1 antibody were compared by western blot analysis and immunohistochemistry.Results The entire cDNA of hURAT1 and cDNA of its intracellular high immunogenic fragment were amplified successfully. Recombinant plasmid pBQAP-TT-hURAT1-210 for genetic immunization was confirmed by restriction digestion and sequencing. Both the mouse anti-hURAT1 antibody and rabbit anti-hURAT1 antibody recognized 58kD hURAT1 and 64kD glycosylated hURAT1 protein bands in western blot. Immunohistochemically, hURAT1 was located at the brush border membrane of renal proximal tubular cells. In addition, the throughput and specificity of the mouse anti-hURAT1 antibody were higher than those of the rabbit anti-hURAT1 antibody

  11. De Novo Sequencing and Resurrection of a Human Astrovirus-Neutralizing Antibody. (United States)

    Bogdanoff, Walter A; Morgenstern, David; Bern, Marshall; Ueberheide, Beatrix M; Sanchez-Fauquier, Alicia; DuBois, Rebecca M


    Monoclonal antibody (mAb) therapeutics targeting cancer, autoimmune diseases, inflammatory diseases, and infectious diseases are growing exponentially. Although numerous panels of mAbs targeting infectious disease agents have been developed, their progression into clinically useful mAbs is often hindered by the lack of sequence information and/or loss of hybridoma cells that produce them. Here we combine the power of crystallography and mass spectrometry to determine the amino acid sequence and glycosylation modification of the Fab fragment of a potent human astrovirus-neutralizing mAb. We used this information to engineer a recombinant antibody single-chain variable fragment that has the same specificity as the parent monoclonal antibody to bind to the astrovirus capsid protein. This antibody can now potentially be developed as a therapeutic and diagnostic agent.

  12. Bispecific Antibodies that Mediate Killing of Cells Infected with Human Immunodeficiency Virus of Any Strain (United States)

    Berg, Jorg; Lotscher, Erika; Steimer, Kathelyn S.; Capon, Daniel J.; Baenziger, Jurg; Jack, Hans-Martin; Wabl, Matthias


    Although AIDS patients lose human immunodeficiency virus (HIV)-specific cytotoxic T cells, their remaining CD8-positive T lymphocytes maintain cytotoxic function. To exploit this fact we have constructed bispecific antibodies that direct cytotoxic T lymphocytes of any specificity to cells that express gp120 of HIV. These bispecific antibodies comprise one heavy/light chain pair from an antibody to CD3, linked to a heavy chain whose variable region has been replaced with sequences from CD4 plus a second light chain. CD3 is part of the antigen receptor on T cells and is responsible for signal transduction. In the presence of these bispecific antibodies, T cells of irrelevant specificity effectively lyse HIV-infected cells in vitro.

  13. Increased Levels of IgG Antibodies against Human HSP60 in Patients with Spondyloarthritis

    DEFF Research Database (Denmark)

    Nielsen, Astrid Hjelholt; Carlsen, Thomas; Deleuran, Bent


    severity in relation to HLA-B27 was evaluated.Serum samples from 82 patients and 50 controls were analysed by enzyme-linked immunosorbent assay (ELISA) for immunoglobulin (Ig)G1, IgG2, IgG3 and IgG4 antibodies against human HSP60 and HSP60 from Chlamydia trachomatis, Salmonella enteritidis...... and Campylobacter jejuni. Disease severity was assessed by the clinical scorings Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI) and Bath Ankylosing Spondylitis Metrology Index (BASMI). Levels of IgG1 and IgG3 antibodies against human HSP60...

  14. Discovery of human antibodies against black cobra toxins

    DEFF Research Database (Denmark)

    Øhlenschlæger, Mia; Andersen, Mikael Rørdam; Lohse, Brian

    Snakebite envenoming represents a major health threat intropical parts of the developing world1. Animal-derivedantisera currently constitute the only effective treatment option,but are associated with severe side effects due toincompatibility with the human immune system. We aim atdiscovering human...

  15. IgA antibodies to Toxoplasma gondii in human tears

    NARCIS (Netherlands)

    Meek, B.; Klaren, V.N.A.; Haeringen, van N.J.; Kijlstra, A.; Peek, R.


    PURPOSE. To investigate whether mucosal immune responses directed against the ubiquitous parasite Toxoplasma gondii can be detected in tears of healthy humans. METHODS. Nonstimulated tears and blood were obtained from 62 healthy humans (mean age, 35 ± 10 [SD] years). Serum anti-T. gondii immunoglobu

  16. Origin, diversity and maturation of human antiviral antibodies analyzed by high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Ponraj ePrabakaran


    Full Text Available Our understanding of how antibodies are generated and function could help develop effective vaccines and antibody-based therapeutics against viruses such as HIV-1, SARS Coronavirus (CoV, and Hendra and Nipah viruses (henipaviruses. Although broadly neutralizing antibodies (bnAbs against the HIV-1 were observed in patients, elicitation of such bnAbs remains a major challenge when compared to other viral targets. We previously hypothesized that HIV-1 could have evolved a strategy to evade the immune system due to absent or very weak binding of germline antibodies to the conserved epitopes that may not be sufficient to initiate and/or maintain an effective immune response. To further explore our hypothesis, we used the 454 sequence analysis of a large naïve library of human IgM antibodies which had been used for selecting antibodies against SARS Coronavirus (CoV receptor-binding domain (RBD, and soluble G proteins (sG of Hendra and Nipah viruses (henipaviruses. We found that the human IgM repertoires from the 454 sequencing have diverse germline usages, recombination patterns, junction diversity and a lower extent of somatic mutation. In this study, we identified germline intermediates of antibodies specific to HIV-1 and other viruses as observed in normal individuals, and compared their genetic diversity and somatic mutation level along with available structural and functional data. Further computational analysis will provide framework for understanding the underlying genetic and molecular determinants related to maturation pathways of antiviral bnAbs that could be useful for applying novel approaches to the design of effective vaccine immunogens and antibody-based therapeutics.

  17. Commercially available antibodies against human and murine histamine H₄-receptor lack specificity. (United States)

    Beermann, Silke; Seifert, Roland; Neumann, Detlef


    Antibodies are important tools to detect expression and localization of proteins within the living cell. However, for a series of commercially available antibodies which are supposed to recognize G-protein-coupled receptors (GPCR), lack of specificity has been described. In recent publications, antisera against the histamine H₄-receptor (H₄R), which is a member of the GPCR family, have been used to demonstrate receptor expression. However, a comprehensive characterization of these antisera has not been performed yet. Therefore, the purpose of our study was to evaluate the specificity of three commercially available H₄R antibodies. Sf9 insect cells and HEK293 cells expressing recombinant murine and human H₄R, spleen cells obtained from H₄⁻/⁻ and from wild-type mice, and human CD20⁺ and CD20⁻ peripheral blood cells were analyzed by flow cytometry and Western blot using three commercially available H₄R antibodies. Our results show that all tested H₄R antibodies bind to virtually all cells, independently of the expression of H₄R, thus in an unspecific fashion. Also in Western blot, the H₄R antibodies do not bind to the specified protein. Our data underscore the importance of stringent evaluation of antibodies using valid controls, such as cells of H₄R⁻/⁻ mice, to show true receptor expression and antigen specificity. Improved validation of commercially available antibodies prior to release to the market would avoid time-consuming and expensive validation assays by the user.

  18. Molluskan Hemocyanins Activate the Classical Pathway of the Human Complement System through Natural Antibodies (United States)

    Pizarro-Bauerle, Javier; Maldonado, Ismael; Sosoniuk-Roche, Eduardo; Vallejos, Gerardo; López, Mercedes N.; Salazar-Onfray, Flavio; Aguilar-Guzmán, Lorena; Valck, Carolina; Ferreira, Arturo; Becker, María Inés


    Molluskan hemocyanins are enormous oxygen-carrier glycoproteins that show remarkable immunostimulatory properties when inoculated in mammals, such as the generation of high levels of antibodies, a strong cellular reaction, and generation of non-specific antitumor immune responses in some types of cancer, particularly for superficial bladder cancer. These proteins have the ability to bias the immune response toward a Th1 phenotype. However, despite all their current uses with beneficial clinical outcomes, a clear mechanism explaining these properties is not available. Taking into account reports of natural antibodies against the hemocyanin of the gastropod Megathura crenulata [keyhole limpet hemocyanin (KLH)] in humans as well as other vertebrate species, we report here for the first time, the presence, in sera from unimmunized healthy donors, of antibodies recognizing, in addition to KLH, two other hemocyanins from gastropods with documented immunomodulatory capacities: Fisurella latimarginata hemocyanin (FLH) and Concholepas concholepas hemocyanin (CCH). Through an ELISA screening, we found IgM and IgG antibodies reactive with these hemocyanins. When the capacity of these antibodies to bind deglycosylated hemocyanins was studied, no decreased interaction was detected. Moreover, in the case of FLH, deglycosylation increased antibody binding. We evaluated through an in vitro complement deposition assay whether these antibodies activated the classical pathway of the human complement system. The results showed that all three hemocyanins and their deglycosylated counterparts elicited this activation, mediated by C1 binding to immunoglobulins. Thus, this work contributes to the understanding on how the complement system could participate in the immunostimulatory properties of hemocyanins, through natural, complement-activating antibodies reacting with these proteins. Although a role for carbohydrates cannot be completely ruled out, in our experimental setting

  19. Development and characterization of human monoclonal antibodies that neutralize multiple TGFβ isoforms. (United States)

    Bedinger, Daniel; Lao, Llewelyn; Khan, Shireen; Lee, Steve; Takeuchi, Toshihiko; Mirza, Amer M


    Transforming growth factor (TGF)β levels are elevated in, and drive the progression of, numerous disease states such as advanced metastatic cancer and systemic and ocular fibrosis. There are 3 main isoforms, TGFβ1, 2, and 3. As multiple TGFβ isoforms are involved in disease processes, maximal therapeutic efficacy may require neutralization of 2 or more of the TGFβ isoforms. Fully human antibody phage display libraries were used to discover a number of antibodies that bind and neutralize various combinations of TGFβ1, 2 or 3. The primary panning did not yield any uniformly potent pan-isoform neutralizing antibodies; therefore, an antibody that displayed potent TGFβ 1, 2 inhibition, but more modest affinity versus TGFβ3, was affinity matured by shuffling with a light chain sub-library and further screening. This process yielded a high affinity pan-isoform neutralizing clone. Antibodies were analyzed and compared by binding affinity, as well as receptor and epitope competition by surface plasmon resonance methods. The antibodies were also shown to neutralize TGFβ effects in vitro in 3 assays: 1) interleukin (IL)-4 induced HT-2 cell proliferation; 2) TGFβ-mediated IL-11 release by A549 cells; and 3) decreasing SMAD2 phosphorylation in Detroit 562 cells. The antibodies' potency in these in vitro assays correlated well with their isoform-specific affinities. Furthermore, the ability of the affinity-matured clone to decrease tumor burden in a Detroit 562 xenograft study was superior to that of the parent clone. This affinity-matured antibody acts as a very potent inhibitor of all 3 main isoforms of TGFβ and may have utility for therapeutic intervention in human disease.


    Institute of Scientific and Technical Information of China (English)

    王俊梅; 张波; 杨邵敏; 韩继生; 李冰思; 侯琳


    Objective. To develop monoclonal antibodies against the catalytic subunit of human telomerase reverse transcriptase (hTERT) for its expression detection of human tumors. Methods. A dominant epitope in hTERT (peptide hTERT7)was automatically synthesized based on Fmoc method, and was used to immunize Balb/c mice. Hybridomas were generated and screened by ELISA for specific monoclonal antibodies, and the characterization was performed by Western blotting and immunohistochemical staining. The heavy chain variable region of antibody was cloned by RT-PCR and sequenced. Results. Antigenic peptide hTERT7 was synthesized and confirmed by MALDI-TOF-MS and HPLC analysis. One hybridoma cell line secreting anti-hTERT7 antibodies designated as M2 was established after primary screening and consequent 3 rounds of limited dilution. M2 was IgG1 in isotyping. The competi tive assay showed that the M2 antibody was hTERT7 -specific, and the affinity constant was about 1×106 mol-1. The antibody reacted with cell extracts from HeLa cancer cells but not with those from normal 2BS cells in ELISA assay. For in situ staining of immunohistochemistry, the positive staining presented in the nuclear compartment of HeLa, while 2BS was negative. The heavy chain variable region from M2 re vealed that the monoclonal antibody was mouse origin. Conclusions. The developed mouse monoclonal antibody is hTERT-specific and able to recognize native cellular hTERT in ELISA and immunohistochemistry, which makes the immuno-detection of telom erase hTERT expression in cancer cells or tissues possible.

  1. Discrepancy between direct and antibody-dependent cytotoxic activities of human LAK cells. (United States)

    Potapnev, M P; Garbuzenco, T S; Goncharova, N V; Zobnin, V D; Shadrin, O V; Bykovskaya, S N


    Human lymphokine-activated killer (LAK) cells display cytotoxic activity against natural killer (NK)-resistant tumor cells in an antibody-independent and -dependent manner. We compared LAK cell-mediated antibody-independent cytotoxicity (LAK activity) and antibody-dependent cellular cytotoxicity (ADCC) against untreated and antibody-coated Raji cells, respectively. Human lymphocytes showed drastically increased LAK activity after stimulation with interleukin-2 (IL-2) for 3 or 7 days when compared to non-activated cells. The level of ADCC was reduced for 3-day-generated LAK cells and augmented for 7-day-generated LAK cells as compared to non-activated cultured lymphocytes. Phenotypical analysis revealed IL-2-induced up-regulation of the proportion of CD11b+ (but not CD16+) lymphocyte subpopulation in 7-day-generated LAK cells. The data imply that human LAK cells exhibit antibody-dependent and -independent cytotoxic activities via distinct effector pathways at different stages of generation. These stages may be associated with changes in adhesion molecule (CD11b/CD18) expression on the surface of IL-2-activated lymphocytes.

  2. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. (United States)

    Caskey, Marina; Klein, Florian; Lorenzi, Julio C C; Seaman, Michael S; West, Anthony P; Buckley, Noreen; Kremer, Gisela; Nogueira, Lilian; Braunschweig, Malte; Scheid, Johannes F; Horwitz, Joshua A; Shimeliovich, Irina; Ben-Avraham, Sivan; Witmer-Pack, Maggi; Platten, Martin; Lehmann, Clara; Burke, Leah A; Hawthorne, Thomas; Gorelick, Robert J; Walker, Bruce D; Keler, Tibor; Gulick, Roy M; Fätkenheuer, Gerd; Schlesinger, Sarah J; Nussenzweig, Michel C


    HIV-1 immunotherapy with a combination of first generation monoclonal antibodies was largely ineffective in pre-clinical and clinical settings and was therefore abandoned. However, recently developed single-cell-based antibody cloning methods have uncovered a new generation of far more potent broadly neutralizing antibodies to HIV-1 (refs 4, 5). These antibodies can prevent infection and suppress viraemia in humanized mice and nonhuman primates, but their potential for human HIV-1 immunotherapy has not been evaluated. Here we report the results of a first-in-man dose escalation phase 1 clinical trial of 3BNC117, a potent human CD4 binding site antibody, in uninfected and HIV-1-infected individuals. 3BNC117 infusion was well tolerated and demonstrated favourable pharmacokinetics. A single 30 mg kg(-1) infusion of 3BNC117 reduced the viral load in HIV-1-infected individuals by 0.8-2.5 log10 and viraemia remained significantly reduced for 28 days. Emergence of resistant viral strains was variable, with some individuals remaining sensitive to 3BNC117 for a period of 28 days. We conclude that, as a single agent, 3BNC117 is safe and effective in reducing HIV-1 viraemia, and that immunotherapy should be explored as a new modality for HIV-1 prevention, therapy and cure.

  3. Identification of human nonpancreatic-type ribonuclease by antibodies obtained against a synthetic peptide. (United States)

    Bravo, M I; Cuchillo, C M; Nogués, M V


    An antibody that recognizes human nonpancreatic-type ribonuclease was obtained by immunizing a rabbit with a 14-residue synthetic peptide corresponding to the N-terminal sequence of eosinophil-derived neurotoxin which is identical to human liver ribonuclease. This amino acid sequence is unique to this protein. The anti N-peptide antibody was purified by protein A-Sepharose and by using ELISA and SDS-PAGE immunoblot techniques, the antibody reactivity against EDN and partially purified nonpancreatic-type ribonucleases from human plasma and urine was observed. Cross-reactivity with bovine pancreatic ribonuclease A and other proteins was not detected. In addition, the activity of the nonpancreatic-type ribonuclease was not affected by the antibody. The immune response was elicited without the need for a carrier protein showing that the N-terminal sequence of nonpancreatic ribonuclease contains a specific epitope. This antibody can be used for the immunological identification of both the native and denatured forms of this type of enzyme.

  4. Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against Influenza A M2 protein

    Directory of Open Access Journals (Sweden)

    Gwerder Myriam


    Full Text Available Abstract Influenza virus infection is a prevalent disease in humans. Antibodies against hemagglutinin have been shown to prevent infection and hence hemagglutinin is the major constituent of current vaccines. Antibodies directed against the highly conserved extracellular domain of M2 have also been shown to mediate protection against Influenza A infection in various animal models. Active vaccination is generally considered the best approach to combat viral diseases. However, passive immunization is an attractive alternative, particularly in acutely exposed or immune compromized individuals, young children and the elderly. We recently described a novel method for the rapid isolation of natural human antibodies by mammalian cell display. Here we used this approach to isolate human monoclonal antibodies directed against the highly conserved extracellular domain of the Influenza A M2 protein. The identified antibodies bound M2 peptide with high affinities, recognized native cell-surface expressed M2 and protected mice from a lethal influenza virus challenge. Moreover, therapeutic treatment up to 2 days after infection was effective, suggesting that M2-specific monoclonals have a great potential as immunotherapeutic agents against Influenza infection.

  5. Primary structure and functional scFv antibody expression of an antibody against the human protooncogen c-myc. (United States)

    Fuchs, P; Breitling, F; Little, M; Dübel, S


    The immunoglobulin heavy- and light-chain variable region (Vh and Vl) genes were isolated from Myc1-9E10 hybridoma cells, which secreted monoclonal antibody against human oncogen c-myc. The expression vector pOPE52-c-myc was constructed for the recombinant production in E. coli. A 30 kDa single chain fragment (scFv) expression product was found in the periplasmic space by SDS-PAGE and immunoblotting. A significant fraction was processed correctly as demonstrated with an antiserum recognizing the processed aminoterminus only. The specific binding of the scFv fragment to the peptide epitope of the maternal monoclonal antibody was demonstrated and the primary sequence of the variable regions was determined. Sequence comparison with previously published partial Vh and Vl sequences from this hybridoma cell line revealed a genetic heterogeneity for the light chain variable region. The potential use of this scFv as a new tool for detection and purification of tagged proteins, for adding costimulatory signals to the surface of cancer cells as well as for analyzing c-myc function in the living cell by cytoplasmic expression is discussed.

  6. Production and Characterization of a Murine Monoclonal Antibody Against Human Ferritin (United States)

    Bayat, Ali Ahmad; Yeganeh, Omid; Ghods, Roya; Zarnani, Amir Hassan; Ardekani, Reza Bahjati; Mahmoudi, Ahmad Reza; Mahmoudian, Jafar; Haghighat-Noutash, Farzaneh; Jeddi-Tehrani, Mahmood


    Background Ferritin is an iron storage protein, which plays a key role in iron metabolism. Measurement of ferritin level in serum is one of the most useful indicators of iron status and also a sensitive measurement of iron deficiency. Monoclonal antibodies may be useful as a tool in various aspects of ferritin investigations. In this paper, the production of a murine monoclonal antibody (mAb) against human ferritin was reported. Methods Balb/c mice were immunized with purified human ferritin and splenocytes of hyper immunized mice were fused with Sp2/0 myeloma cells. After four times of cloning by limiting dilution, a positive hybridoma (clone: 2F9-C9) was selected by ELISA using human ferritin. Anti-ferritin mAb was purified from culture supernatants by affinity chromatography. Results Determination of the antibody affinity for ferritin by ELISA revealed a relatively high affinity (2.34×109 M -1) and the isotype was determined to be IgG2a. The anti-ferritin mAb 2F9-C9 reacted with 79.4% of Hela cells in flow cytometry. The antibody detected a band of 20 kDa in K562 cells, murine and human liver lysates, purified ferritin in Western blot and also ferritin in human serum. Conclusion This mAb can specifically recognize ferritin and may serve as a component of ferritin diagnostic kit if other requirements of the kit are met. PMID:24285995

  7. Human serum antibodies to a major defined epitope of human herpesvirus 8 small viral capsid antigen. (United States)

    Tedeschi, R; De Paoli, P; Schulz, T F; Dillner, J


    The major antibody-reactive epitope of the small viral capsid antigen (sVCA) of human herpesvirus 8 (HHV-8) was defined by use of overlapping peptides. Strong IgG reactivity was found among approximately 50% of 44 human immunodeficiency virus-positive or -negative patients with Kaposi's sarcoma and 13 subjects who were seropositive by immunofluorescence assay (IFA) for the latent HHV-8 nuclear antigen. Only 1 of 106 subjects seronegative for both lytic and latent HHV-8 antigens and 10 of 81 subjects IFA-seropositive only for the lytic HHV-8 antigen had strong IgG reactivity to this epitope. Among 534 healthy Swedish women, only 1.3% were strongly seropositive. Comparison of the peptide-based and purified sVCA protein-based ELISAs found 55% sensitivity and 98% specificity. However, only 1 of 452 serum samples from healthy women was positive in both tests. In conclusion, the defined sVCA epitope was a specific, but not very sensitive, serologic marker of active HHV-8 infection. Such infection appears to be rare among Swedish women, even with sexual risk-taking behavior.

  8. Human anti-rhesus D IgG1 antibody produced in transgenic plants

    DEFF Research Database (Denmark)

    Bouquin, Thomas; Thomsen, Mads; Nielsen, Leif Kofoed


    antigen, which is responsible for alloimmunization of RhD- mothers carrying an RhD+ fetus. Anti-RhD extracted from plants specifically reacted with RhD+ cells in antiglobulin technique, and elicited a respiratory burst in human peripheral blood mononuclear cells. Plant-derived antibody had equivalent......Transgenic plants represent an alternative to cell culture systems for producing cheap and safe antibodies for diagnostic and therapeutic use. To evaluate the functional properties of a 'plantibody', we generated transgenic Arabidopsis plants expressing full-length human IgG1 against the Rhesus D...... properties to CHO cell-produced anti-RhD antibody, indicating its potential usefulness in diagnostic and therapeutic programs....

  9. The Complexity of a Dengue Vaccine: A Review of the Human Antibody Response.

    Directory of Open Access Journals (Sweden)

    Jacky Flipse

    Full Text Available Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no vaccines or specific antivirals available to prevent or treat the disease. Several dengue vaccines are currently in clinical or preclinical stages. The most advanced vaccine is the chimeric tetravalent CYD-TDV vaccine of Sanofi Pasteur. This vaccine has recently cleared Phase III, and efficacy results have been published. Excellent tetravalent seroconversion was seen, yet the protective efficacy against infection was surprisingly low. Here, we will describe the complicating factors involved in the generation of a safe and efficacious dengue vaccine. Furthermore, we will discuss the human antibody responses during infection, including the epitopes targeted in humans. Also, we will discuss the current understanding of the assays used to evaluate antibody response. We hope this review will aid future dengue vaccine development as well as fundamental research related to the phenomenon of antibody-dependent enhancement of dengue virus infection.

  10. Distinct human antibody response to the biological warfare agent Burkholderia mallei. (United States)

    Varga, John J; Vigil, Adam; DeShazer, David; Waag, David M; Felgner, Philip; Goldberg, Joanna B


    The genetic similarity between Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis) had led to the general assumption that pathogenesis of each bacterium would be similar. In 2000, the first human case of glanders in North America since 1945 was reported in a microbiology laboratory worker. Leveraging the availability of pre-exposure sera for this individual and employing the same well-characterized protein array platform that has been previously used to study a large cohort of melioidosis patients in southeast Asia, we describe the antibody response in a human with glanders. Analysis of 156 peptides present on the array revealed antibodies against 17 peptides with a > 2-fold increase in this infection. Unexpectedly, when the glanders data were compared with a previous data set from B. pseudomallei infections, there were only two highly increased antibodies shared between these two infections. These findings have implications in the diagnosis and treatment of B. mallei and B. pseudomallei infections.

  11. The Complexity of a Dengue Vaccine: A Review of the Human Antibody Response. (United States)

    Flipse, Jacky; Smit, Jolanda M


    Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no vaccines or specific antivirals available to prevent or treat the disease. Several dengue vaccines are currently in clinical or preclinical stages. The most advanced vaccine is the chimeric tetravalent CYD-TDV vaccine of Sanofi Pasteur. This vaccine has recently cleared Phase III, and efficacy results have been published. Excellent tetravalent seroconversion was seen, yet the protective efficacy against infection was surprisingly low. Here, we will describe the complicating factors involved in the generation of a safe and efficacious dengue vaccine. Furthermore, we will discuss the human antibody responses during infection, including the epitopes targeted in humans. Also, we will discuss the current understanding of the assays used to evaluate antibody response. We hope this review will aid future dengue vaccine development as well as fundamental research related to the phenomenon of antibody-dependent enhancement of dengue virus infection.

  12. High prevalence of high risk human papillomavirus-capsid antibodies in human immunodeficiency virus-seropositive men: a serological study

    Directory of Open Access Journals (Sweden)

    Sarcletti Mario


    Full Text Available Abstract Background Serological study of human papillomavirus (HPV-antibodies in order to estimate the HPV-prevalence as risk factor for the development of HPV-associated malignancies in human immunodeficiency virus (HIV-positive men. Methods Sera from 168 HIV-positive men and 330 HIV-negative individuals (including 198 controls were tested using a direct HPV-ELISA specific to HPV-6, -11, -16, -18, -31 and bovine PV-1 L1-virus-like particles. Serological results were correlated with the presence of HPV-associated lesions, the history of other sexually transmitted diseases (STD and HIV classification groups. Results In HIV-negative men low risk HPV-antibodies were prevailing and associated with condylomatous warts (25.4%. Strikingly, HIV-positive men were more likely to have antibodies to the high-risk HPV types -16, -18, -31, and low risk antibodies were not increased in a comparable range. Even those HIV-positive heterosexual individuals without any HPV-associated lesions exhibited preferentially antibody responses to the oncogenic HPV-types (cumulative 31.1%. The highest antibody detection rate (88,8% was observed within the subgroup of nine HIV-positive homosexual men with anogenital warts. Three HIV-positive patients had HPV-associated carcinomas, in all of them HPV-16 antibodies were detected. Drug use and mean CD4-cell counts on the day of serologic testing had no influence on HPV-IgG antibody prevalence, as had prior antiretroviral therapy or clinical category of HIV-disease. Conclusion High risk HPV-antibodies in HIV-infected and homosexual men suggest a continuous exposure to HPV-proteins throughout the course of their HIV infection, reflecting the known increased risk for anogenital malignancies in these populations. The extensive increase of high risk antibodies (compared to low risk antibodies in HIV-positive patients cannot be explained by differences in exposure history alone, but suggests defects of the immunological control of

  13. Inhibiting angiogenesis with human single-chain variable fragment antibody targeting VEGF. (United States)

    Hosseini, Hossien; Rajabibazl, Masoumeh; Ebrahimizadeh, Walead; Dehbidi, Gholamreza Rafiei


    Vascular endothelial growth factor (VEGF) is a highly specific angiogenesis factor which has crucial roles in the angiogenesis of tumors. Anti-angiogenesis agents can inhibit growth and metastasis of tumor cells. Single-chain variable fragments (scFv) have the same affinity as whole antibodies and smaller size, thus result in more tissue permeability and higher production yield. In this research we aim to isolate a human scFv antibody against VEGF that inhibits angiogenesis. For that, we have used human scFv phage library to isolate a specific scFv antibody against binding site of VEGF. The human scFv phage library was amplified according to the manufacture protocol and panned against recombinant VEGF. ScFv antibody was isolated after five rounds of panning. Phage ELISA was used for detection of the highest affinity binder (HR6). Soluble HR6 scFv was expressed in non-suppressor strain of Escherichia coli HB2151 and purified using Ni-NTA chromatography. In vivo and in vitro function of the HR6 scFv was analyzed by chorioallantoic membrane assay and endothelial cell proliferation assay on VEGF stimulated HUVECs. Result of the cross reactivity showed that HR6 scFv specifically bounds to VEGF. The affinity was calculated to be 1.8×10(-7)M. HR6 could stop HUVEC proliferation in a dose dependent manner and anti-angiogenesis activity was observed using 10μg of HR6 in chorioallantoic membrane assay. In this work, we demonstrate that a HR6 scFv selected from human library phage display specifically blocks VEGF signaling, furthermore, this scFv has an anti-angiogenesis effect and because of its small size has more tissue diffusion. The HR6 antibody was isolated form a human library thus, it is not immunogenic for humans and could serve as a potential therapeutic agent in cancer.

  14. A genecentric Human Protein Atlas for expression profiles based on antibodies. (United States)

    Berglund, Lisa; Björling, Erik; Oksvold, Per; Fagerberg, Linn; Asplund, Anna; Szigyarto, Cristina Al-Khalili; Persson, Anja; Ottosson, Jenny; Wernérus, Henrik; Nilsson, Peter; Lundberg, Emma; Sivertsson, Asa; Navani, Sanjay; Wester, Kenneth; Kampf, Caroline; Hober, Sophia; Pontén, Fredrik; Uhlén, Mathias


    An attractive path forward in proteomics is to experimentally annotate the human protein complement of the genome in a genecentric manner. Using antibodies, it might be possible to design protein-specific probes for a representative protein from every protein-coding gene and to subsequently use the antibodies for systematical analysis of cellular distribution and subcellular localization of proteins in normal and disease tissues. A new version (4.0) of the Human Protein Atlas has been developed in a genecentric manner with the inclusion of all human genes and splice variants predicted from genome efforts together with a visualization of each protein with characteristics such as predicted membrane regions, signal peptide, and protein domains and new plots showing the uniqueness (sequence similarity) of every fraction of each protein toward all other human proteins. The new version is based on tissue profiles generated from 6120 antibodies with more than five million immunohistochemistry-based images covering 5067 human genes, corresponding to approximately 25% of the human genome. Version 4.0 includes a putative list of members in various protein classes, both functional classes, such as kinases, transcription factors, G-protein-coupled receptors, etc., and project-related classes, such as candidate genes for cancer or cardiovascular diseases. The exact antigen sequence for the internally generated antibodies has also been released together with a visualization of the application-specific validation performed for each antibody, including a protein array assay, Western blot analysis, immunohistochemistry, and, for a large fraction, immunofluorescence-based confocal microscopy. New search functionalities have been added to allow complex queries regarding protein expression profiles, protein classes, and chromosome location. The new version of the protein atlas thus is a resource for many areas of biomedical research, including protein science and biomarker discovery.

  15. Human C-C chemokine receptor 3 monoclonal antibody inhibits pulmonary inflammation in allergic mice

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Hua-hao SHEN; Wen LI; Hua-qiong HUANG


    Aim:To evaluate the effect of C-C chemokine receptor 3 (CCR3) blockade on pulmonary inflammation and mucus production in allergic mice. Methods:We used the synthetic peptide of the CCR3 NH2-terminal as the immunizing antigen and generated murine monoclonal antibody against the human CCR3. In addition,the generated antibody was administered to mice sensitized and challenged with ovalbumin. The inflammatory cells in bronchoalveolar lavage,cytokine levels,pulmonary histopathology,and mucus secretion were examined. Results:The Western blotting analysis indicated that the generated antibody bound to CCR3 specifically. The allergic mice treated with the antihuman CCR3 antibody exhibited a significant reduction of pulmonary inflammation accompanied with the alteration of cytokine. Conclusion:The antibody we generated was specific to CCR3. The inhibition of airway inflammation and mucus overproduction by the antibody suggested that the blockade of CCR3 is an appealing therapeutical target for asthma. The present research may provide an experimental basis for the further study of this agent.

  16. Fully Human VH Single Domains That Rival the Stability and Cleft Recognition of Camelid Antibodies. (United States)

    Rouet, Romain; Dudgeon, Kip; Christie, Mary; Langley, David; Christ, Daniel


    Human VH single domains represent a promising class of antibody fragments with applications as therapeutic modalities. Unfortunately, isolated human VH domains also generally display poor biophysical properties and a propensity to aggregate. This has encouraged the development of non-human antibody domains as alternative means of antigen recognition and, in particular, camelid (VHH) domains. Naturally devoid of light chain partners, these domains are characterized by favorable biophysical properties and propensity for cleft binding, a highly desirable characteristic, allowing the targeting of cryptic epitopes. In contrast, previously reported structures of human VH single domains had failed to recapitulate this property. Here we report the engineering and characterization of phage display libraries of stable human VH domains and the selection of binders against a diverse set of antigens. Unlike "camelized" human domains, the domains do not rely on potentially immunogenic framework mutations and maintain the structure of the VH/VL interface. Structure determination in complex with hen egg white lysozyme revealed an extended VH binding interface, with complementarity-determining region 3 deeply penetrating into the active site cleft, highly reminiscent of what has been observed for camelid domains. Taken together, our results demonstrate that fully human VH domains can be constructed that are not only stable and well expressed but also rival the cleft binding properties of camelid antibodies.

  17. Detection of sulfur mustard adducts in human callus by phage antibodies

    NARCIS (Netherlands)

    Bikker, F.J.; Mars-Groenendijk, R.H.; Noort, D.; Fidder, A.; Schans, G.P. van der


    As part of a research program to develop novel methods for diagnosis of sulfur mustard exposure in the human skin the suitability of phage display was explored. Phage display is a relative new method that enables researchers to quickly evaluate a huge range of potentially useful antibodies, thereby

  18. Harnessing the immune system's arsenal: producing human monoclonal antibodies for therapeutics and investigating immune responses (United States)

    Sullivan, Meghan; Kaur, Kaval; Pauli, Noel


    Monoclonal antibody technology has undergone rapid and innovative reinvention over the last 30 years. Application of these technologies to human samples revealed valuable therapeutic and experimental insights. These technologies, each with their own benefits and flaws, have proven indispensable for immunological research and in our fight to provide new treatments and improved vaccines for infectious disease. PMID:21876728

  19. B-1 cells and naturally occuring antibodies: influencing the immunogenicity of recombinant human therapeutic proteins

    NARCIS (Netherlands)

    Sauerborn, M.S.; Schellekens, H.


    Recombinant human therapeutic proteins are increasingly being used to treat serious and life-threatening diseases like multiple sclerosis, diabetes mellitus, and cancer. An important side effect of these proteins is the development of antidrug antibodies, which can be neutralizing and thus interfere

  20. Phage-display libraries of murine and human antibody Fab fragments

    DEFF Research Database (Denmark)

    Engberg, J; Andersen, P S; Nielsen, L K


    We provide efficient and detailed procedures for construction, expression, and screening of comprehensive libraries of murine or human antibody Fab fragments displayed on the surface of filamentous phage. In addition, protocols for producing and using ultra-electrocompetent cells, for producing Fab...

  1. Demonstration of immunoglobulin G in normal human epidermis by peroxidase-labeled antibody.

    Directory of Open Access Journals (Sweden)



    Full Text Available Cytoplasmic immunoglobulin G (IgG in normal human epidermis was defined by a peroxidase-labeled antibody method. A correlation between cytoplasmic staining and the serum level of IgG was found. Epidermal cells containing IgG were not present when the serum level of IgG was less than 1000 microgram/ml.

  2. A novel polymorphism of human complement component C3 detected by means of a monoclonal antibody

    DEFF Research Database (Denmark)

    Koch, C; Behrendt, N


    A mouse monoclonal antibody, HAV 4-1, obtained after immunization of a BALB/c mouse with purified C3F, detected a novel genetic polymorphism of human complement component C3 in a simple immunoblotting system. The frequency of HAV 4-1-positive genes was 20.1%. Reactivity of HAV 4-1 was closely rel...

  3. The phase behavior study of human antibody solution using multi-scale modeling (United States)

    Sun, Gang; Wang, Ying; Lomakin, Aleksey; Benedek, George B.; Stanley, H. Eugene; Xu, Limei; Buldyrev, Sergey V.


    Phase transformation in antibody solutions is of growing interest in both academia and the pharmaceutical industry. Recent experimental studies have shown that, as in near-spherical proteins, antibodies can undergo a liquid-liquid phase separation under conditions metastable with respect to crystallization. However, the phase diagram of the Y-shaped antibodies exhibits unique features that differ substantially from those of spherical proteins. Specifically, antibody solutions have an exceptionally low critical volume fraction (CVF) and a broader and more asymmetric liquid-liquid coexistence curve than those of spherical proteins. Using molecular dynamics simulation on a series of trimetric Y-shaped coarse-grained models, we investigate the phase behavior of antibody solutions and compare the results with the experimental phase diagram of human immunoglobulin G (IgG), one of the most common Y-shape typical of antibody molecules. With the fitted size of spheres, our simulation reproduces both the low CVF and the asymmetric shape of the experimental coexistence curve of IgG antibodies. The broadness of the coexistence curve can be attributed to the anisotropic nature of the inter-protein interaction. In addition, the repulsion between the inner parts of the spherical domains of IgG dramatically expands the coexistence region in the scaled phase diagram, while the hinge length has only a minor effect on the CVF and the overall shape of the coexistence curve. We thus propose a seven-site model with empirical parameters characterizing the exclusion volume and the hinge length of the IgG molecules, which provides a base for simulation studies of the phase behavior of IgG antibodies.

  4. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)


    Full Text Available BACKGROUND: Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant. METHODS AND FINDINGS: Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation. CONCLUSION: This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  5. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Pierre Druilhe


    Full Text Available Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant.Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation.This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  6. Serum anti-BPAG1 auto-antibody is a novel marker for human melanoma.

    Directory of Open Access Journals (Sweden)

    Takashi Shimbo

    Full Text Available Malignant melanoma is one of the most aggressive types of tumor. Because malignant melanoma is difficult to treat once it has metastasized, early detection and treatment are essential. The search for reliable biomarkers of early-stage melanoma, therefore, has received much attention. By using a novel method of screening tumor antigens and their auto-antibodies, we identified bullous pemphigoid antigen 1 (BPAG1 as a melanoma antigen recognized by its auto-antibody. BPAG1 is an auto-antigen in the skin disease bullous pemphigoid (BP and anti-BPAG1 auto-antibodies are detectable in sera from BP patients and are used for BP diagnosis. However, BPAG1 has been viewed as predominantly a keratinocyte-associated protein and a relationship between BPAG1 expression and melanoma has not been previously reported. In the present study, we show that bpag1 is expressed in the mouse F10 melanoma cell line in vitro and F10 melanoma tumors in vivo and that BPAG1 is expressed in human melanoma cell lines (A375 and G361 and normal human melanocytes. Moreover, the levels of anti-BPAG1 auto-antibodies in the sera of melanoma patients were significantly higher than in the sera of healthy volunteers (p<0.01. Furthermore, anti-BPAG1 auto-antibodies were detected in melanoma patients at both early and advanced stages of disease. Here, we report anti-BPAG1 auto-antibodies as a promising marker for the diagnosis of melanoma, and we discuss the significance of the detection of such auto-antibodies in cancer biology and patients.

  7. Antibodies against Human Cytomegalovirus in the Pathogenesis of Systemic Sclerosis: A Gene Array Approach.

    Directory of Open Access Journals (Sweden)


    Full Text Available BACKGROUND: Systemic sclerosis is an autoimmune disease characterized by immunological abnormalities, vascular damage, and fibroblast proliferation. We have previously shown that a molecular mimicry mechanism links antibodies against the human-cytomegalovirus-derived protein UL94 to the pathogenesis of systemic sclerosis. The UL94 epitope shows homology with NAG-2, a surface molecule highly expressed on endothelial cells. Anti-UL94 peptide antibodies purified from patients' sera induce apoptosis of endothelial cells upon engagement of the NAG-2-integrin complex. METHODS AND FINDINGS: We show here that NAG-2 is expressed on dermal fibroblasts and that anti-UL94 antibodies bind to fibroblasts. We have used the gene array strategy (Affimetrix oligonucleotide microarrays to analyze the transcriptional profile in response to a 4-h and an 8-h treatment with antibodies against the UL94 peptide in endothelial cells and dermal fibroblasts. Exposure of endothelial cells to anti-UL94 antibodies had a profound impact on gene expression, resulting in the upregulation of 1,645 transcripts. Several gene clusters were upregulated including genes encoding adhesion molecules, chemokines, colony-stimulating factors (CSFs, growth factors, and molecules involved in apoptosis. Following antibody stimulation, dermal fibroblasts showed an upregulation of 989 transcripts and acquired a "scleroderma-like" phenotype. Indeed, genes involved in extracellular matrix deposition, growth factors, chemokines, and cytokines were upregulated. We confirmed the microarray results by real-time quantitative polymerase chain reaction and by measuring some of the corresponding proteins with ELISA and Western blotting. CONCLUSION: Our results show that anti-human-cytomegalovirus antibodies may be linked to the pathogenesis of systemic sclerosis not only by inducing endothelial cell activation and apoptosis but also by causing activation of fibroblasts, one of the hallmarks of the disease.

  8. Antibodies against human cytomegalovirus in the pathogenesis of systemic sclerosis: a gene array approach.

    Directory of Open Access Journals (Sweden)

    Claudio Lunardi


    Full Text Available BACKGROUND: Systemic sclerosis is an autoimmune disease characterized by immunological abnormalities, vascular damage, and fibroblast proliferation. We have previously shown that a molecular mimicry mechanism links antibodies against the human-cytomegalovirus-derived protein UL94 to the pathogenesis of systemic sclerosis. The UL94 epitope shows homology with NAG-2, a surface molecule highly expressed on endothelial cells. Anti-UL94 peptide antibodies purified from patients' sera induce apoptosis of endothelial cells upon engagement of the NAG-2-integrin complex. METHODS AND FINDINGS: We show here that NAG-2 is expressed on dermal fibroblasts and that anti-UL94 antibodies bind to fibroblasts. We have used the gene array strategy (Affimetrix oligonucleotide microarrays to analyze the transcriptional profile in response to a 4-h and an 8-h treatment with antibodies against the UL94 peptide in endothelial cells and dermal fibroblasts. Exposure of endothelial cells to anti-UL94 antibodies had a profound impact on gene expression, resulting in the upregulation of 1,645 transcripts. Several gene clusters were upregulated including genes encoding adhesion molecules, chemokines, colony-stimulating factors (CSFs, growth factors, and molecules involved in apoptosis. Following antibody stimulation, dermal fibroblasts showed an upregulation of 989 transcripts and acquired a "scleroderma-like" phenotype. Indeed, genes involved in extracellular matrix deposition, growth factors, chemokines, and cytokines were upregulated. We confirmed the microarray results by real-time quantitative polymerase chain reaction and by measuring some of the corresponding proteins with ELISA and Western blotting. CONCLUSION: Our results show that anti-human-cytomegalovirus antibodies may be linked to the pathogenesis of systemic sclerosis not only by inducing endothelial cell activation and apoptosis but also by causing activation of fibroblasts, one of the hallmarks of the disease.

  9. Mycobacterium leprae antigens involved in human immune responses. I. Identification of four antigens by monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Britton, W.J.; Hellqvist, L.; Basten, A.; Raison, R.L.


    Four distinct antigens were identified in soluble sonicates of Mycobacterium leprae by using a panel of 11 monoclonal antibodies. Cross-reactivity studies with other mycobacterial species were conducted by using ELISA and immunoblot assays, and demonstrated that determinants on two of the antigens were present in many mycobacteria, whereas the other two were limited in distribution. Competitive inhibition experiments with radiolabeled monoclonal antibodies showed cross-inhibition between antibodies identifying two of the four antigenicbands. These two bands, of M/sub tau/ 4.5 to 6 KD and 30 to 40 KD, were resistant to protease treatment after immunoblotting. In contrast the two other bands of 16 and 70 KD were protease-sensitive. Although all four bands reacted with some human lepromatous leprosy sera in immunoblots, the 4.5 to 6 KD and 30 to 40 KD bands were most prominent. Lepromatous leprosy sera also inhibited the binding of radiolabeled monoclonal antibodies to each of the four antigens, with the mean titer causing 50% inhibition being higher for antibodies reacting with the 4.5 to 6 KD and 30 to 40 KD bands. These findings indicated that all four antigens were involved in the human B cell response to M. leprae.

  10. Pathogen-specific deep sequence-coupled biopanning: A method for surveying human antibody responses (United States)

    Pascale, Juan M.; Moreno, Brechla; Chackerian, Bryce; Peabody, David S.


    Identifying the targets of antibody responses during infection is important for designing vaccines, developing diagnostic and prognostic tools, and understanding pathogenesis. We developed a novel deep sequence-coupled biopanning approach capable of identifying the protein epitopes of antibodies present in human polyclonal serum. Here, we report the adaptation of this approach for the identification of pathogen-specific epitopes recognized by antibodies elicited during acute infection. As a proof-of-principle, we applied this approach to assessing antibodies to Dengue virus (DENV). Using a panel of sera from patients with acute secondary DENV infection, we panned a DENV antigen fragment library displayed on the surface of bacteriophage MS2 virus-like particles and characterized the population of affinity-selected peptide epitopes by deep sequence analysis. Although there was considerable variation in the responses of individuals, we found several epitopes within the Envelope glycoprotein and Non-Structural Protein 1 that were commonly enriched. This report establishes a novel approach for characterizing pathogen-specific antibody responses in human sera, and has future utility in identifying novel diagnostic and vaccine targets. PMID:28152075

  11. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

    Directory of Open Access Journals (Sweden)

    Chiou-Yueh Yeh

    Full Text Available Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6, and thymic stromal lymphopoietin (TSLP. Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.

  12. A human PrM antibody that recognizes a novel cryptic epitope on dengue E glycoprotein. (United States)

    Chan, Annie Hoi Yi; Tan, Hwee Cheng; Chow, Angelia Yee; Lim, Angeline Pei Chiew; Lok, Shee Mei; Moreland, Nicole J; Vasudevan, Subhash G; MacAry, Paul A; Ooi, Eng Eong; Hanson, Brendon J


    Dengue virus (DENV) is a major mosquito-borne pathogen infecting up to 100 million people each year; so far no effective treatment or vaccines are available. Recently, highly cross-reactive and infection-enhancing pre-membrane (prM)-specific antibodies were found to dominate the anti-DENV immune response in humans, raising concern over vaccine candidates that contain native dengue prM sequences. In this study, we have isolated a broadly cross-reactive prM-specific antibody, D29, during a screen with a non-immunized human Fab-phage library against the four serotypes of DENV. The antibody is capable of restoring the infectivity of virtually non-infectious immature DENV (imDENV) in FcγR-bearing K562 cells. Remarkably, D29 also cross-reacted with a cryptic epitope on the envelope (E) protein located to the DI/DII junction as evidenced by site-directed mutagenesis. This cryptic epitope, while inaccessible to antibody binding in a native virus particle, may become exposed if E is not properly folded. These findings suggest that generation of anti-prM antibodies that enhance DENV infection may not be completely avoided even with immunization strategies employing E protein alone or subunits of E proteins.

  13. Hypogammaglobulinemia in BLT humanized mice--an animal model of primary antibody deficiency.

    Directory of Open Access Journals (Sweden)

    Francisco Martinez-Torres

    Full Text Available Primary antibody deficiencies present clinically as reduced or absent plasma antibodies without another identified disorder that could explain the low immunoglobulin levels. Bone marrow-liver-thymus (BLT humanized mice also exhibit primary antibody deficiency or hypogammaglobulinemia. Comprehensive characterization of B cell development and differentiation in BLT mice revealed other key parallels with primary immunodeficiency patients. We found that B cell ontogeny was normal in the bone marrow of BLT mice but observed an absence of switched memory B cells in the periphery. PC-KLH immunizations led to the presence of switched memory B cells in immunized BLT mice although plasma cells producing PC- or KLH- specific IgG were not detected in tissues. Overall, we have identified the following parallels between the humoral immune systems of primary antibody deficiency patients and those in BLT mice that make this in vivo model a robust and translational experimental platform for gaining a greater understanding of this heterogeneous array of humoral immunodeficiency disorders in humans: (i hypogammaglobulinemia; (ii normal B cell ontogeny in bone marrow; and (iii poor antigen-specific IgG response to immunization. Furthermore, the development of strategies to overcome these humoral immune aberrations in BLT mice may in turn provide insights into the pathogenesis of some primary antibody deficiency patients which could lead to novel clinical interventions for improved humoral immune function.

  14. Class specific antibody responses to newborn larva antigens during Trichinella spiralis human infection

    Directory of Open Access Journals (Sweden)

    Mendez-Loredo B.


    Full Text Available A follow-up study of the class antibody responses to newborn larva (NBL antigens in individuals involved in an outbreak of human trichinellosis was carried out by ELISA assays. The data showed that similar kinetics of antibody responses of different magnitude developed in trichinellosis patients; it was low by week 3, a peak raised by week 5 and decreased from week 7 up to the end of the study. The IgA-ELISA assay was the most sensitive and specific while the IgM was the least sensitive and specific. IgA antibodies to NBL antigens were detected in 80 % of patients while IgE, IgG and IgM responses were observed in 44, 31 and 19 % of the patients by week 3, respectively. From weeks 5 to 7, IgA antibodies were found in 89 to 100 % of the patients while lower percentages (0-82 % were found for the other isotypes. Reactivity of IgA, IgE, IgG and IgM to NBL antigens decreased from week 37 to 57 after infection (0-38 %. These results suggest that detection of IgA antibodies may be useful for early diagnosis and epidemiological studies in human trichinellosis.

  15. Characterization of a novel inhibitory human monoclonal antibody directed against Plasmodium falciparum Apical Membrane Antigen 1. (United States)

    Maskus, Dominika J; Królik, Michał; Bethke, Susanne; Spiegel, Holger; Kapelski, Stephanie; Seidel, Melanie; Addai-Mensah, Otchere; Reimann, Andreas; Klockenbring, Torsten; Barth, Stefan; Fischer, Rainer; Fendel, Rolf


    Malaria remains a major challenge to global health causing extensive morbidity and mortality. Yet, there is no efficient vaccine and the immune response remains incompletely understood. Apical Membrane Antigen 1 (AMA1), a leading vaccine candidate, plays a key role during merozoite invasion into erythrocytes by interacting with Rhoptry Neck Protein 2 (RON2). We generated a human anti-AMA1-antibody (humAbAMA1) by EBV-transformation of sorted B-lymphocytes from a Ghanaian donor and subsequent rescue of antibody variable regions. The antibody was expressed in Nicotiana benthamiana and in HEK239-6E, characterized for binding specificity and epitope, and analyzed for its inhibitory effect on Plasmodium falciparum. The generated humAbAMA1 shows an affinity of 106-135 pM. It inhibits the parasite strain 3D7A growth in vitro with an expression system-independent IC50-value of 35 μg/ml (95% confidence interval: 33 μg/ml-37 μg/ml), which is three to eight times lower than the IC50-values of inhibitory antibodies 4G2 and 1F9. The epitope was mapped to the close proximity of the RON2-peptide binding groove. Competition for binding between the RON2-peptide and humAbAMA1 was confirmed by surface plasmon resonance spectroscopy measurements. The particularly advantageous inhibitory activity of this fully human antibody might provide a basis for future therapeutic applications.

  16. Generation and characterization of the human neutralizing antibody fragment Fab091 against rabies virus

    Institute of Scientific and Technical Information of China (English)

    Chen LI; Feng ZHANG; Hong LIN; Zhong-can WANG; Xin-jian LIU; Zhen-qing FENG; Jin ZHU; Xiao-hong GUAN


    Aim: To transform the human anti-rabies virus glycoprotein (anti-RABVG) single-chain variable fragment (scFv) into a Fab fragment and to analyze its immunological activity.Methods: The Fab gene was amplified using overlap PCR and inserted into the vector pComb3XSS. The recombinant vector was then transformed into E coli Top10F' for expression and purification. The purified Fab was characterized using SDS-PAGE, Western blotting,indirect ELISA, competitive ELISA, and the fluorescent antibody virus neutralization test (FAVN), respectively, and examined in a Kunming mouse challenge model in vivo.Results: A recombinant vector was constructed. The Fab was expressed in soluble form In E coll Top10F'. Specific binding of the Fab to rabies virus was confirmed by indirect ELISA and immunoprecipitation (IP). The neutralizing antibody titer of Fab was 10.26 IU/mL.The mouse group treated with both vaccine and human rabies immunoglobulin (HRIG)/Fab091 (32 IU/kg) showed protection against rabies, compared with the control group (P<0.05, Logrank test).Conclusion: The antibody fragment Fab was shown to be a neutralizing antibody against RABVG. It can be used together with other monoclonal antibodies for post-exposure prophylaxis of rabies virus in future studies.

  17. Age-related reduction of antibody response against the human endogenous retrovirus K envelope in women. (United States)

    Kim, Hyoung Jin; Moon, Byung-In; Lee, Jun Woo; Kim, Seung Cheol; Kim, Hong-Jin


    In the present study, the correlation between the antibody response against human endogenous retrovirus K (HERV-K) envelope and human age was investigated. Antibody levels were compared in groups in their 20s (n = 25), 30s (n = 39), 40s (n = 68), 50s (n = 32), and 60s and over (n = 25), which included healthy individuals and breast cancer and/or cervical cancer patients. It appeared that both IgM and IgG responses against the HERV-K envelope fell with increasing age. There were no differences in anti-HERV-K envelope antibody levels between healthy individuals and cancer patients. Therefore, our results indicated that the anti-HERV-K antibody levels cannot be considered as cancer-specific marker. Also, IgG1 appeared to be the predominant subtype in the reduction of the IgG response by age. Receiver operating characteristic curves of anti-HERV-K envelope IgM levels indicated that the groups of people in their 20s or 30s could be distinguished from those in their 40s, 50s or 60s and over with satisfactory sensitivity and specificity. These findings indicate that the serum antibody level of HERV-K envelope is a critical parameter reflecting person's age.

  18. Generation and characterization of recombinant human antibodies specific for native laminin epitopes. Potential application in cancer therapy. Cancer Immunol. Immunother

    DEFF Research Database (Denmark)

    Sanz, Laura; Kristensen, Peter; Russell, Stephen J.


    of human-derived antibody fragments able to modulate laminin-regulated biological functions would allow the development of new strategies to improve treatment of cancer patients. In this report, we explore the use of phage display technology to isolate human anti-laminin antibody fragments. A library...

  19. Preferential germline usage and VH/VL pairing observed in human antibodies selected by mRNA display. (United States)

    Chen, Lei; Kutskova, Yuliya A; Hong, Feng; Memmott, John E; Zhong, Suju; Jenkinson, Megan D; Hsieh, Chung-Ming


    Since the invention of phage display, in vitro antibody display technologies have revolutionized the field of antibody discovery. In combination with antibody libraries constructed with sequences of human origin, such technologies enable accelerated therapeutic antibody discovery while bypassing the laborious animal immunization and hybridoma generation processes. Many in vitro display technologies developed since aim to differentiate from phage display by displaying full-length IgG proteins, utilizing eukaryotic translation system and codons, increasing library size or real-time kinetic selection by fluorescent activated cell sorting. We report here the development of an mRNA display technology and an accompanying HCDR3 size spectratyping monitor for human antibody discovery. Importantly, the mRNA display technology maintains a monovalent linkage between the mRNA (genotype) and display binding protein (phenotype), which minimizes avidity effect common in other display systems and allows for a stringent affinity and off-rate selection. The mRNA display technology successfully identified 100 human antibodies in 15 different selections against various targets from naïve human antibody libraries. These antibodies in general have high affinity and diversity. By analyzing the germline usage and combination of antibodies selected by the mRNA display technology, we identified trends and determined the productivity of each germline subgroup in the libraries that could serve as the knowledge base for constructing fully synthetic, next generation antibody libraries.

  20. Human antibody fragments specific for Bothrops jararacussu venom reduce the toxicity of other Bothrops sp. venoms. (United States)

    Roncolato, Eduardo Crosara; Pucca, Manuela Berto; Funayama, Jaqueline Carlos; Bertolini, Thaís Barboza; Campos, Lucas Benício; Barbosa, José Elpidio


    Approximately 20,000 snakebites are registered each year in Brazil. The classical treatment for venomous snakebite involves the administration of sera obtained from immunized horses. Moreover, the production and care of horses is costly, and the use of heterologous sera can cause hypersensitivity reactions. The production of human antibody fragments by phage display technology is seen as a means of overcoming some of these disadvantages. The studies here attempted to test human monoclonal antibodies specific to Bothrops jararacussu against other Bothrops sp. venoms, using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Using the Griffin.1 phage antibody library, this laboratory previously produced scFvs capable of inhibiting the phospholipase and myotoxic activities of Bothrops jararacussu venom. The structural and functional similarities of the various forms of phospholipase A2 (PLA₂) in Bothrops venom served as the basis for the present study wherein the effectiveness of those same scFvs were evaluated against B. jararaca, B. neuwiedi, and B. moojeni venoms. Each clone was found to recognize all three Bothrops venoms, and purified scFvs partially inhibited their in vitro phospholipase activity. In vivo assays demonstrated that the scFv clone P2B7 reduced myotoxicity and increased the survival of animals that received the test venoms. The results here indicate that the scFv P2B7 is a candidate for inclusion in a mixture of specific antibodies to produce a human anti-bothropic sera. This data demonstrates that the human scFv P2B7 represents an alternative therapeutic approach to heterologous anti-bothropic sera available today.

  1. Prevalence of hepatitis C Antibody in Human Immunodeficiency ...

    African Journals Online (AJOL)


    Oct 25, 2015 ... impacts on the course and man- agement ... cause of the increased incidence and accelerated natural history in co-infected persons.4HCV infection may also impact the ... Hepatitis C virus (HCV) and Human Immunodeficiency .... 8 (88.9). 1 (33.3). 2.67. 0.83 – 33.18. Anti-HCV positive. N u m b er p ositive.

  2. Diagnosis of human African trypanosomiasis and visceral leishmaniasis based on the detection of anti-parasite-enzyme antibodies. (United States)

    Borowy, N K; Schell, D; Schäfer, C; Overath, P


    A sensitive diagnostic assay for parasitic infections based on the detection of anti-enzyme antibodies is presented. All serum antibodies produced in response to parasite antigens are immobilized via their Fc domain on matrix-bound protein G. Incubation of the immobilized antibodies with saturating amounts of parasite extract results in the binding of all recognized antigens, including those directed against a specific and readily measurable enzyme. The amount of bound enzyme is proportional to the anti-enzyme antibody concentration in the serum. The application of this principle is demonstrated for the diagnosis of both human African trypanosomiasis and visceral leishmaniasis by the detection of antibodies against parasite acid phosphatases.

  3. Antibody response to recombinant human coagulation factor VIII in a new rat model of severe hemophilia A

    DEFF Research Database (Denmark)

    Löfgren, Karin Maria; Sondergaard, H.; Skov, Søren


    studies,antibodies developed after 4–6 administrations ofrhFVIII, and neutralizing antibodies reached levels simi-lar to human patients (range 1–111 BU, median 6.0 BU)at the end of the study. There was no significant differ-ence between the two studies or between genotypes intime to response or levels...... reached for binding and neu-tralizing antibodies. Interestingly, early spontaneousbleeds were associated with a faster antibody response. Conclusions: Following intravenous administration ofhuman FVIII, according to a clinical prophylaxis regi-men, a robust and reproducible antibody response is seenin...

  4. Characterisation of new monoclonal antibodies reacting with prions from both human and animal brain tissues

    DEFF Research Database (Denmark)

    Cordes, H.; Bergstrom, A.L.; Ohm, J.


    Post-mortem diagnosis of transmissible spongiform encephalopathies (prion diseases) is primarily based on the detection of a protease resistant, misfolded disease associated isoform (PrP(Sc)) of the prion protein (PrP(C)) on neuronal cells. These methods depend on antibodies directed against Pr...... that the specificity of 6H4 is not defined completely by PrP153-165. The two antibodies performed similarly to 6H4 in western blotting with human samples, but showed less reactivity and enhanced background staining with animal samples in this method. In immunohistochemistry 1.5D7 and 1.6F4 performed better than 6H4...

  5. Characterisation of new monoclonal antibodies reacting with prions from both human and animal brain tissues

    DEFF Research Database (Denmark)

    Hvass, Henriette Cordes; Bergström, Ann-Louise; Ohm, Jakob


    Post-mortem diagnosis of transmissible spongiform encephalopaties (prion diseases) is primarily based on the detection of a protease resistant, misfolded disease associated isoform (PrPSc) of the prion protein (PrPc) on neuronal cells. These methods depend on antibodies directed aganinst Pr...... that the specificity of 6H4 is not defined completely by PrP153 - 165. The two antibodies performed similarly to 6H4 in western blotting with human samples, but showed less reactivity and enhanced background staining with animal samples in this method. In immunohistochemistry 1.5D7 and 1.6F4 performed better than 6H4...

  6. A radiomicroassay for cytotoxic antibody to human spermatozoa. Quantification by tritiated actinomycin d. (United States)

    Sung, J S; Shizuya, H; Black, D D; Mumford, D M


    A radiomicroassay for titration of spermocytotoxic antibody is described. The assay used [3H]AACTINOMYCIN D ([3H]Act D) to label damaged spermatozoa in a fashion analogous to penetration by vital dye. Optimal conditions for and some kinetics of the assay are presented. The assay is sensitive, reliable, simple to perform and uses only small amounts of serum and spermatozoa. Applied to sperm antibody positive human postvasectomy sera, the assay compared favourably in sensitivity eith vital dye microscopic observations and with parallel titration by the Isojima's immobilization tests.

  7. Detection of diphtheria toxin antibodies in human sera in New Zealand by ELISA.


    Lau, R. C.


    An enzyme-linked immunosorbent assay (ELISA) was developed to detect IgG antibodies to diphtheria toxin in human serum. Serum samples obtained from 557 normal persons aged 1-65 years from different areas in New Zealand showed maximum antibody levels in the 1-9 years age group (95.1%) and the least in the 60-65 years age group (38.1%). The indirect ELISA is suitable for seroepidemiological survey study as it is simple to perform, economical and precise.

  8. A variety of human monoclonal antibodies against epidermal growth factor receptor isolated from a phage antibody library. (United States)

    Kurosawa, Gene; Kondo, Mariko; Kurosawa, Yoshikazu


    When the technology for constructing human antibody (Ab) libraries using a phage-display system was developed, many researchers in Ab-related fields anticipated that it would be widely applied to the development of pharmaceutical drugs against various diseases, including cancers. However, successful examples of such applications are very limited. Moreover, researchers who utilize phage-display technology now show divergent ways of thinking about phage Ab libraries. For example, there is debate about what should be the source of VH and VL genes for the construction of libraries to cover the whole repertoire of Abs present in the human body. In the immune system, the introduction of mutations into V genes followed by selection based on binding activity, termed Ab maturation, is required for the production of Abs exhibiting high affinity to the antigen (Ag). Therefore, introduction of mutations and selection are required for isolation of Abs with high affinity after isolation of clones from phage Ab libraries. We constructed a large human Ab library termed AIMS, developed a screening method termed ICOS, and succeeded in isolating many human monoclonal Abs (mAbs) that specifically and strongly bind to various tumor-associated Ags. Eight anti-EGFR mAbs were included, which we characterized. These mAbs showed various different activities against EGFR-expressing cancer cells. In this paper, we describe these data and discuss the possibility and necessity that the mAbs isolated from the AIMS library might be developed as therapeutic drugs against cancers without introduction of mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Co-Incubation of Human Spermatozoa with Anti-VDAC Antibody Reduced Sperm Motility

    Directory of Open Access Journals (Sweden)

    Bianjiang Liu


    Full Text Available Background: Voltage-dependent anion channel (VDAC, a channel protein, exists in the outer mitochondrial membrane of somatic cells and is involved in multiple physiological and pathophysiological processes. Up until now, little has been known about VDAC in male germ cells. In the present study, the relationship between VDAC and human sperm motility was explored. Methods: Highly motile human spermatozoa were incubated in vitro with anti-VDAC antibody. Total sperm motility, straight line velocity (VSL, curvilinear velocity (VCL, and average path velocity (VAP were recorded. Intracellular free calcium concentration ([Ca2+]i, pH value (pHi, and ATP content were determined. Results: Co-incubation with anti-VDAC antibody reduced VSL, VCL, and VAP of spermatozoa. Co-incubation further reduced [Ca2+]i. Anti-VDAC antibody did not significantly alter total sperm motility, pHi and intracellular ATP content. Conclusion: The data suggest that co-incubation with anti-VDAC antibody reduces sperm motility through inhibition of Ca2+ transmembrane flow. In this way, VDAC participates in the modulation of human sperm motility through mediating Ca2+ transmembrane transport and exchange.

  10. Production of neutralizing monoclonal antibody against human vascular endothelial growth factor receptor Ⅱ

    Institute of Scientific and Technical Information of China (English)

    Rong LI; Dong-sheng XIONG; Xiao-feng SHAO; Jia LIU; Yuan-fu XU; Yuan-sheng XU; Han-zhi LIU; Zhen-ping ZHU; Chun-zheng YANG


    AIM: To prepare neutralizing monoclonal antibody (mAb) against extracellular immunoglobulin (Ig)-like domainⅢ of vascular endothelial growth factor receptor KDR and study its biological activity. METHODS: Soluble KDR Ig domain Ⅲ (KDR-Ⅲ) fusion protein was expressed in E Coli and purified from the bacterial periplasmic extracts via an affinity chromatography. Monoclonal antibodies against KDR-Ⅲ were prepared by hybridoma technique. ELISA and FACS analysis were used to identify its specificity. Immunoprecipitation and [3H]-thymidine incorporation assay were also used to detect the activity of anti-KDR mAb blocking the phosphorylation of KDR tyrosine kinase receptor and the influence on vascular endothelial growth factor-induced mitogenesis of human endothelial ceils.RESULTS: A monoclonal antibody, Ycom1D3 (IgG1), was generated from a mouse immunized with the recombinant KDR-Ⅲ protein. Ycom1D3 bound specifically to both the soluble KDR-Ⅲ and the cell-surface expressed KDR. Ycom1D3 effectively blocked VEGF/KDR interaction and inhibited VEGF-stimulated KDR activation in human endothelial cells. Furthermore, the antibody efficiently neutralized VEGF-induced mitogenesis of human endothelial cells. CONCLUSION: Our results suggest that the anti-KDR mAb, Ycom1D3, has potential applications in the treatment of cancer and other diseases where pathological angiogenesis is involved.

  11. Development of a human IgG4 bispecific antibody for dual targeting of interleukin-4 (IL-4) and interleukin-13 (IL-13) cytokines. (United States)

    Spiess, Christoph; Bevers, Jack; Jackman, Janet; Chiang, Nancy; Nakamura, Gerald; Dillon, Michael; Liu, Hongbin; Molina, Patricia; Elliott, J Michael; Shatz, Whitney; Scheer, Justin M; Giese, Glen; Persson, Josefine; Zhang, Yin; Dennis, Mark S; Giulianotti, James; Gupta, Prateek; Reilly, Dorothea; Palma, Enzo; Wang, Jianyong; Stefanich, Eric; Scheerens, Heleen; Fuh, Germaine; Wu, Lawren C


    Human bispecific antibodies have great potential for the treatment of human diseases. Although human IgG1 bispecific antibodies have been generated, few attempts have been reported in the scientific literature that extend bispecific antibodies to other human antibody isotypes. In this paper, we report our work expanding the knobs-into-holes bispecific antibody technology to the human IgG4 isotype. We apply this approach to generate a bispecific antibody that targets IL-4 and IL-13, two cytokines that play roles in type 2 inflammation. We show that IgG4 bispecific antibodies can be generated in large quantities with equivalent efficiency and quality and have comparable pharmacokinetic properties and lung partitioning, compared with the IgG1 isotype. This work broadens the range of published therapeutic bispecific antibodies with natural surface architecture and provides additional options for the generation of bispecific antibodies with differing effector functions through the use of different antibody isotypes.

  12. The HIV-1 V3 domain on field isolates: participation in generation of escape virus in vivo and accessibility to neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Akerblom, L; Heegaard, P M


    The V3 domain is highly variable and induces HIV neutralizing antibodies (NA). Here we addressed the issues of 1) the participation of mutations in V3 in generation of neutralization resistant escape virus in vivo and 2) the applicability of synthetic V3 peptides corresponding to field isolates...... to induce neutralizing immune sera. Seven peptides corresponding to the V3 region of primary and escape virus from 3 HIV-1 infected patients were synthesized and used for antibody (Abs) studies and immunizations. The anti-V3 Abs titre in patient serum was generally low against peptides corresponding...... to autologous virus isolated later than the serum sample in contrast to the titre against peptides corresponding to virus isolated earlier than the serum sample. Furthermore, neutralizing anti-V3 monoclonal antibodies (MAbs) raised against V3 peptides from laboratory strains of HIV-1 showed distinct binding...

  13. Monoclonal antibodies against human BAP31 for immunocytochemistry. (United States)

    Song, Chaojun; Wang, Fuli; Xu, Zhuwei; Hu, Jintao; Tao, Haiqiang; Yang, Angang; Yang, Kun; Jin, Boquan


    Human BAP31 is a 28 kDa polytopic integral protein of the ER and part of a large BAP hetero-oligomeric complex that includes the related BAP29 protein and connections to actomyosin. BAP31 interacts with mIgD, cellubrevin, major histocompatibility complex class I, and BCL-2/BCL-X(L), and plays an important role in regulating the egress of these proteins and in apoptosis. Northern blot analyses have revealed BAP31 RNA transcripts in many tissues, including thymus, spleen, brain, kidney, testis, liver, and lung. However, prominent BAP31 protein expression analyzed by immunohistochemistry is restricted to a minority of cells in normal human tissue. Further studies should be made to verify the expression profiles of BAP31 in the protein level. Production of high affinity MAbs suitable for immunohistochemical staining has lagged. Here we generate a set of MAbs that could be used in Western blot, immunoprecipitation, and immunocytochemistry, providing a new powerful tool for investigation of expression profile of BAP31 protein and furthers the study of BAP31 functions.

  14. A novel human-derived antibody against NY-ESO-1 improves the efficacy of chemotherapy. (United States)

    Gupta, Anurag; Nuber, Natko; Esslinger, Christoph; Wittenbrink, Mareike; Treder, Martin; Landshammer, Alexandro; Noguchi, Takuro; Kelly, Marcus; Gnjatic, Sacha; Ritter, Erika; von Boehmer, Lotta; Nishikawa, Hiroyoshi; Shiku, Hiroshi; Old, Lloyd; Ritter, Gerd; Knuth, Alexander; van den Broek, Maries


    We investigated whether antibodies against intracellular tumor-associated antigens support tumor-specific immunity when administered together with a treatment that destroys the tumor. We propose that released antigens form immune complexes with the antibodies, which are then efficiently taken up by dendritic cells. We cloned the first human monoclonal antibodies against the Cancer/Testis (CT) antigen, NY-ESO-1. We tested whether the monoclonal anti-NY-ESO-1 antibody (12D7) facilitates cross-presentation of a NY-ESO-1-derived epitope by dendritic cells to human CD8+ T cells, and whether this results in the maturation of dendritic cells in vitro. We investigated the efficacy of 12D7 in combination with chemotherapy using BALB/c mice bearing syngeneic CT26 tumors that express intracellular NY-ESO-1. Human dendritic cells that were incubated with NY-ESO-1:12D7 immune complexes efficiently stimulated NY-ESO-1(157-165)/HLA-A2-specific human CD8+ T cells to produce interferon-γ, whereas NY-ESO-1 alone did not. Furthermore, the incubation of dendritic cells with NY-ESO-1:12D7 immune complexes resulted in the maturation of dendritic cells. Treatment of BALB/c mice that bear CT26/NY-ESO-1 tumors with 5-fluorouracil (5-FU) plus 12D7 was significantly more effective than chemotherapy alone. We propose systemic injection of monoclonal antibodies (mAbs) against tumor-associated antigens plus a treatment that promotes the local release of those antigens resulting in immune complex formation as a novel therapeutic modality for cancer.

  15. Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs. (United States)

    Burlak, C; Paris, L L; Lutz, A J; Sidner, R A; Estrada, J; Li, P; Tector, M; Tector, A J


    Xenotransplantation using genetically modified pig organs could solve the donor organ shortage problem. Two inactivated genes that make humans unique from pigs are GGTA1 and CMAH, the products of which produce the carbohydrate epitopes, aGal and Neu5Gc that attract preformed human antibody. When the GGTA1 and CMAH genes were deleted in pigs, human antibody binding was reduced in preliminary analysis. We analyzed the binding of human IgM and IgG from 121 healthy human serum samples for binding to GGTA1 KO and GGTA1/CMAH KO peripheral blood mononuclear cells (PBMCs). We analyzed a sub population for reactivity toward genetically modified pig PBMCs as compared to chimpanzee and human PBMCs. Deletion of the GGTA1 and CMAH genes in pigs improved the crossmatch results beyond those observed with chimpanzees. Sorting the 121 human samples tested against the GGTA1/CMAH KO pig PBMCs did not reveal a distinguishing feature such as blood group, age or gender. Modification of genes to make pig carbohydrates more similar to humans has improved the crossmatch with human serum significantly.

  16. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S


    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes are coexpr......In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...

  17. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S;


    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes are coexpr......In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...

  18. Direct detection of antibody concentration and affinity in human serum using microscale thermophoresis. (United States)

    Lippok, Svenja; Seidel, Susanne A I; Duhr, Stefan; Uhland, Kerstin; Holthoff, Hans-Peter; Jenne, Dieter; Braun, Dieter


    The direct quantification of both the binding affinity and absolute concentration of disease-related biomarkers in biological fluids is particularly beneficial for differential diagnosis and therapy monitoring. Here, we extend microscale thermophoresis to target immunological questions. Optically generated thermal gradients were used to deplete fluorescently marked antigens in 2- and 10-fold-diluted human serum. We devised and validated an autocompetitive strategy to independently fit the concentration and dissociation constant of autoimmune antibodies against the cardiac β1-adrenergic receptor related to dilated cardiomyopathy. As an artificial antigen, the peptide COR1 was designed to mimic the second extracellular receptor loop. Thermophoresis resolved antibody concentrations from 2 to 200 nM and measured the dissociation constant as 75 nM. The approach quantifies antibody binding in its native serum environment within microliter volumes and without any surface attachments. The simplicity of the mix and probe protocol minimizes systematic errors, making thermophoresis a promising detection method for personalized medicine.


    Institute of Scientific and Technical Information of China (English)


    Objective: Preparation of anti-human androgen receptor(hAR) monoclonal antibody (McAb). Methods: Four cells lines of hybridoma secreting specific monoclonal antibodies against AR were first established by fusion SP2/0 cell with spleen cell from BALB/c mice immunized with the coupling complex of hAR-KLH. Results: Paraffin-embedded sections of 45 prostate cancers were detected. There was an overall concordance of 91% using Immunohistochemistry between AR polyclonal antibody from Zymed and hAR-N McAb selfmade. Conclusion: The results show that the McAb obtained in this study would be a useful tool to detect the AR status in prostate cancer.


    Institute of Scientific and Technical Information of China (English)

    刘秉慈; MelvinSpira; 许增禄


    Injectable bovine collagen has been used clinically for years.But both the necessity of repeated injections to maintain corrections and the question of adverse allergic reactions developing from the use of a xenogenic collagen have been an area of serious concern.To overoome these adyerse effects,we have developed injectable collagen preparations from human placenta.Gamma irradiation was used for sterilization and crosslinking of the collagen.We observed the mouse immune respose to gamma-irradiated human placenta soluble and insoluble collagen follow-ing multiple injections.After six injections of these materials,no total IgG level increase was found,nor was anti-body specifically directed against human collagen found.Mouse antibody levels were also observed following Zyderm Ⅱ and Zyplast repetitive injections and follow-ing repetitive implantations of coated vicryl and chromic gut.No humoral immune response was found in this het-erologous type system.

  1. Development and characterization of a human antibody reference panel against erythropoietin suitable for the standardization of ESA immunogenicity testing. (United States)

    Mytych, Daniel T; Barger, Troy E; King, Chadwick; Grauer, Stephanie; Haldankar, Raj; Hsu, Eric; Wu, Michelle Min; Shiwalkar, Mukta; Sanchez, Sergio; Kuck, Andrew; Civoli, Francesca; Sun, Jilin; Swanson, Steven J


    Recombinant human erythropoietin (EPO) has been used therapeutically for more than two decades in the treatment of anemia. Although EPO is generally well tolerated, in rare cases, patients have developed anti-EPO antibodies that can negatively impact safety and efficacy. Therefore, the detection of antibodies against EPO is a regulatory requirement during clinical development and post-approval. Although it is a rare phenomenon, antibody-mediated pure red cell aplasia (PRCA) is a serious complication than can result from antibodies that develop and neutralize EPO as well as endogenous erythropoietin. Currently, there are no universally accepted analytical methods to detect the full repertoire of binding and neutralizing anti-EPO antibodies. A number of different methods that differ in terms of antibodies detected and assay sensitivities are used by different manufacturers. There is also a lack of antibody reference reagents, and therefore no consistent basis for detecting and measuring anti-EPO antibodies. Reference reagents, with established ranges, are essential to monitor the safety and efficacy of all erythropoiesis-stimulating agents (ESAs) structurally related to human erythropoietin. This is the first report of the development and characterization of a panel of fully human antibodies against EPO suitable as reference reagents. The characteristics of antibodies within the panel were selected based on the prevalence of non-neutralizing IgG and IgM antibodies in non-PRCA patients and neutralizing IgG antibodies, including IgG1 and IgG4, in antibody-mediated PRCA subjects. The reference panel includes antibodies of high- and low-affinity with binding specificity to neutralizing and non-neutralizing erythropoietin epitopes. The subclass of human antibodies in this reference panel includes an IgG1, IgG2, and IgG4, as well as an IgM isotype. This antibody panel could help select appropriate immunogenicity assays, guide validation, and monitor assay performance

  2. Antibodies against high-risk human papillomavirus proteins as markers for invasive cervical cancer. (United States)

    Combes, Jean-Damien; Pawlita, Michael; Waterboer, Tim; Hammouda, Doudja; Rajkumar, Thangarajan; Vanhems, Philippe; Snijders, Peter; Herrero, Rolando; Franceschi, Silvia; Clifford, Gary


    Different human papillomavirus (HPV) genes are expressed during the various phases of the HPV life cycle and may elicit immune responses in the process towards malignancy. To evaluate their association with cervical cancer, antibodies against proteins from HPV16 (L1, E1, E2, E4, E6 and E7) and HPV18/31/33/35/45/52/58 (L1, E6 and E7) were measured in serum of 307 invasive cervical cancer cases and 327 controls from Algeria and India. Antibody response was evaluated using a glutathione S-transferase-based multiplex serology assay and HPV DNA detected from exfoliated cervical cells using a GP5+/6+-mediated PCR assay. Among HPV16 DNA-positive cases, seroprevalence of HPV16 antibodies ranged from 16% for HPV16 E1 to 50% for HPV16 E6 and all were significantly higher than controls. Seroprevalence of E6, E7 and L1 antibodies for HPV18 and for at least one of HPV31/33/35/45/52/58 were also higher in cases positive for DNA of the corresponding type (50% and 30% for E6 of HPV18 and HPV31/33/35/45/52/58 combined, respectively). E6 and E7 antibodies were rarely found in controls, but cross-reactivity was evident among cancer cases positive for DNA of closely phylogenetically-related HPV types. E6 or E7 antibodies against any of the eight HPV types were detected in 66.1% of all cervical cancer cases, as compared to 10.1% of controls. E6, and to a lesser extent E7, antibodies appear to be specific markers of HPV-related malignancy. However, even among cases positive for the same type of HPV DNA, approximately one-third of cervical cancer cases show no detectable immune response to either E6 or E7.

  3. Dissection of the Antibody Response against Herpes Simplex Virus Glycoproteins in Naturally Infected Humans (United States)

    Huang, Zhen-Yu; Whitbeck, J. Charles; Ponce de Leon, Manuel; Lou, Huan; Wald, Anna; Krummenacher, Claude; Eisenberg, Roselyn J.; Cohen, Gary H.


    ABSTRACT Relatively little is known about the extent of the polyclonal antibody (PAb) repertoire elicited by herpes simplex virus (HSV) glycoproteins during natural infection and how these antibodies affect virus neutralization. Here, we examined IgGs from 10 HSV-seropositive individuals originally classified as high or low virus shedders. All PAbs neutralized virus to various extents. We determined which HSV entry glycoproteins these PAbs were directed against: glycoproteins gB, gD, and gC were recognized by all sera, but fewer sera reacted against gH/gL. We previously characterized multiple mouse monoclonal antibodies (MAbs) and mapped those with high neutralizing activity to the crystal structures of gD, gB, and gH/gL. We used a biosensor competition assay to determine whether there were corresponding human antibodies to those epitopes. All 10 samples had neutralizing IgGs to gD epitopes, but there were variations in which epitopes were seen in individual samples. Surprisingly, only three samples contained neutralizing IgGs to gB epitopes. To further dissect the nature of these IgGs, we developed a method to select out gD- and gB-specific IgGs from four representative sera via affinity chromatography, allowing us to determine the contribution of antibodies against each glycoprotein to the overall neutralization capacity of the serum. In two cases, gD and gB accounted for all of the neutralizing activity against HSV-2, with a modest amount of HSV-1 neutralization directed against gC. In the other two samples, the dominant response was to gD. IMPORTANCE Antibodies targeting functional epitopes on HSV entry glycoproteins mediate HSV neutralization. Virus-neutralizing epitopes have been defined and characterized using murine monoclonal antibodies. However, it is largely unknown whether these same epitopes are targeted by the humoral response to HSV infection in humans. We have shown that during natural infection, virus-neutralizing antibodies are principally

  4. Single cycle structure-based humanization of an anti-nerve growth factor therapeutic antibody.

    Directory of Open Access Journals (Sweden)

    Sonia Covaceuszach

    Full Text Available Most forms of chronic pain are inadequately treated by present therapeutic options. Compelling evidence has accumulated, demonstrating that Nerve Growth Factor (NGF is a key modulator of inflammatory and nociceptive responses, and is a promising target for the treatment of human pathologies linked to chronic and inflammatory pain. There is therefore a growing interest in the development of therapeutic molecules antagonising the NGF pathway and its nociceptor sensitization actions, among which function-blocking anti-NGF antibodies are particularly relevant candidates.In this respect, the rat anti-NGF αD11 monoclonal antibody (mAb is a potent antagonist, able to effectively antagonize rodent and human NGF in a variety of in vitro and in vivo systems. Here we show that mAb αD11 displays a significant analgesic effect in two different models of persistent pain in mice, with a remarkable long-lasting activity. In order to advance αD11 mAb towards its clinical application in man, anti-NGF αD11 mAb was humanized by applying a novel single cycle strategy based on the a priori experimental determination of the crystal and molecular structure of the parental Fragment antigen-binding (Fab. The humanized antibody (hum-αD11 was tested in vitro and in vivo, showing that the binding mode and the NGF neutralizing biological activities of the parental antibody are fully preserved, with even a significant affinity improvement. The results firmly establish hum-αD11 as a lead candidate for clinical applications in a therapeutic area with a severe unmet medical need. More generally, the single-cycle structure-based humanization method represents a considerable improvement over the standard humanization methods, which are intrinsically empirical and require several refinement cycles.

  5. Single Cycle Structure-Based Humanization of an Anti-Nerve Growth Factor Therapeutic Antibody (United States)

    Covaceuszach, Sonia; Marinelli, Sara; Krastanova, Ivet; Ugolini, Gabriele; Pavone, Flaminia; Lamba, Doriano; Cattaneo, Antonino


    Most forms of chronic pain are inadequately treated by present therapeutic options. Compelling evidence has accumulated, demonstrating that Nerve Growth Factor (NGF) is a key modulator of inflammatory and nociceptive responses, and is a promising target for the treatment of human pathologies linked to chronic and inflammatory pain. There is therefore a growing interest in the development of therapeutic molecules antagonising the NGF pathway and its nociceptor sensitization actions, among which function-blocking anti-NGF antibodies are particularly relevant candidates. In this respect, the rat anti-NGF αD11 monoclonal antibody (mAb) is a potent antagonist, able to effectively antagonize rodent and human NGF in a variety of in vitro and in vivo systems. Here we show that mAb αD11 displays a significant analgesic effect in two different models of persistent pain in mice, with a remarkable long-lasting activity. In order to advance αD11 mAb towards its clinical application in man, anti-NGF αD11 mAb was humanized by applying a novel single cycle strategy based on the a priori experimental determination of the crystal and molecular structure of the parental Fragment antigen-binding (Fab). The humanized antibody (hum-αD11) was tested in vitro and in vivo, showing that the binding mode and the NGF neutralizing biological activities of the parental antibody are fully preserved, with even a significant affinity improvement. The results firmly establish hum-αD11 as a lead candidate for clinical applications in a therapeutic area with a severe unmet medical need. More generally, the single-cycle structure-based humanization method represents a considerable improvement over the standard humanization methods, which are intrinsically empirical and require several refinement cycles. PMID:22403636

  6. Crystallization of the Fab from a human monoclonal antibody against gp 41 of human immunodeficiency virus type I (United States)

    Casale, Elena; He, Xiao-Min; Snyder, Robert S.; Carter, Daniel C.; Wenisch, Elisabeth; Jungbauer, Alois; Tauer, Christa; Ruker, Florian; Righetti, Pier Giorgio


    A monoclonal IgG antibody directed against gp 41 from the human immunodeficiency virus (HIV-1) has been crystallized in both intact and Fab forms. Crystals of the intact antibody grow as tetragonal-like prisms too small for conventional X-ray analysis. However, the Fab portion of the antibody produces suitable platelike crystals which belong to the space group P2(1)2(1)2(1) with unit cell constants of a = 66.5 A, b = 74.3 A, and c = 105.3 A. There is one molecule of Fab in the asymmetric unit. The Fab crystals show diffraction to d-spacings less than 3.0 A.

  7. Human peripheral blood monocytes display surface antigens recognized by monoclonal antinuclear antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Holers, V.M.; Kotzin, B.L.


    The authors used monoclonal anti-nuclear autoantibodies and indirect immunofluorescence to examine normal human peripheral blood mononuclear leukocytes for the presence of cell surface nuclear antigens. Only one monoclonal anti-histone antibody (MH-2) was found to bind to freshly isolated PBL, staining approximately 10% of large cells. However, after cells were placed into culture for 16-24 h, a high percentage (up to 60%) of large-sized cells were recognized by an anti-DNA (BWD-1) and several different antihistone monoclonal antibodies (BWH-1, MH-1, and MH-2). These antibodies recognize separate antigenic determinants on chromatin and histones extracted from chromatin. The histone antigen-positive cells were viable, and the monoclonal antibodies could be shown to be binding to the cell surface and not to the nucleus. Using monoclonal antibodies specific for monocytes and T cells, and complement-mediated cytotoxicity, the cells bearing histone antigens were shown to be primarily monocytes. The appearance of histone and DNA antigen-positive cells was nearly completely inhibited by the addition of low concentrations of cycloheximide at initiation of the cultures. In contrast, little effect on the percentage of positive cells was detected if cells were exposed to high doses of gamma irradiation before culture. These data further support the existence of cell surface nuclear antigens on selected cell subsets, which may provide insight into the immunopathogenesis of systemic lupus erythematosus and related autoimmune diseases.

  8. Generation and tumor recognition properties of two human monoclonal antibodies specific to cell surface anionic phospholipids. (United States)

    Bujak, Emil; Pretto, Francesca; Neri, Dario


    Phosphatidylserine (PS) and other anionic phospholipids, which become exposed on the surface of proliferating endothelial cells, tumor cells and certain leukocytes, have been used as targets for the development of clinical-stage biopharmaceuticals. One of these products (bavituximab) is currently being investigated in Phase 3 clinical trials. There are conflicting reports on the ability of bavituximab and other antibodies to recognize PS directly or through beta-2 glycoprotein 1, a serum protein that is not highly conserved across species. Here, we report on the generation and characterization of two fully human antibodies directed against phosphatidylserine. One of these antibodies (PS72) bound specifically to phosphatidylserine and to phosphatidic acid, but did not recognize other closely related phospholipids, while the other antibody (PS41) also bound to cardiolipin. Both PS72 and PS41 stained 8/9 experimental tumor models in vitro, but both antibodies failed to exhibit a preferential tumor accumulation in vivo, as revealed by quantitative biodistribution analysis. Our findings indicate that anionic phospholipids are exposed and accessible in most tumor types, but cast doubts about the possibility of efficiently targeting tumors in vivo with PS-specific reagents.

  9. Antiidiotypic antibody related to the 84 kD human sperm membrane protein

    Institute of Scientific and Technical Information of China (English)



    Wistar rats were inoculated with purified YWK-I antibody.The anti-idiotypic antibodies were isolated from rat sera by successive passage over affinity chromatography columns of YWK-I mAb and normal mouse Igs.Specificity of anti-Id antibody was established by ELISA.The 84kD protein inhibited the binding of anti-Id to YWK-I mAb,but failed to repress antibody against normal mouse Ig binding to YWK-I mAb.In competitive inhibition assay,84kD protein had shown the ability to compete with anti-Id binding to YWK-I mAb in a dose-dependent manner.Crude sperm extract showed a lower competitive ability.No effect was found with the irrelevant 36kD sperm protein.The antisera from the Balb/C micr immunized with AId contained Ab3 that reacted with 84kD sperm protein.The binding of anti-Id to YWK-I mAb was inhibited by Ab3 in a dose-dependent fashion and Ab3 was shown to be able to induce human sperm agglutination.These results indicate that anti-Id which may mimic an epitope of the 84kD protein could be exploited as an antigen to raise antibodies against sperm protein.

  10. Structural basis for Marburg virus neutralization by a cross-reactive human antibody. (United States)

    Hashiguchi, Takao; Fusco, Marnie L; Bornholdt, Zachary A; Lee, Jeffrey E; Flyak, Andrew I; Matsuoka, Rei; Kohda, Daisuke; Yanagi, Yusuke; Hammel, Michal; Crowe, James E; Saphire, Erica Ollmann


    The filoviruses, including Marburg and Ebola, express a single glycoprotein on their surface, termed GP, which is responsible for attachment and entry of target cells. Filovirus GPs differ by up to 70% in protein sequence, and no antibodies are yet described that cross-react among them. Here, we present the 3.6 Å crystal structure of Marburg virus GP in complex with a cross-reactive antibody from a human survivor, and a lower resolution structure of the antibody bound to Ebola virus GP. The antibody, MR78, recognizes a GP1 epitope conserved across the filovirus family, which likely represents the binding site of their NPC1 receptor. Indeed, MR78 blocks binding of the essential NPC1 domain C. These structures and additional small-angle X-ray scattering of mucin-containing MARV and EBOV GPs suggest why such antibodies were not previously elicited in studies of Ebola virus, and provide critical templates for development of immunotherapeutics and inhibitors of entry.

  11. Structural and functional characterization of a human IgG monoclonal antiphospholipid antibody. (United States)

    Prinz, Nadine; Häuser, Friederike; Lorenz, Mareike; Lackner, Karl J; von Landenberg, Philipp


    Antiphospholipid antibodies (aPL) are likely involved in the pathogenesis of the antiphospholipid syndrome (APS). This study analyzes the structural and functional characteristics of a human monoclonal aPL (HL7G) from the IgG2 subtype with λ light chains generated from a patient with primary APS and recurrent cerebral microemboli. DNA encoding the variable region of heavy and light chains of the antibody was sequenced, analyzed, and compared to HL5B a previously described monoclonal aPL from the same patient. Both antibodies are derived from the same germline genes. HL7G had similar but more extensive somatic mutations in the CDR1 and 2 regions than HL5B, indicating that both antibodies are closely related and derived by a T cell-dependent antigen driven process. In ELISA assays HL7G bound to cardiolipin and several other phospholipid antigens in the absence of protein cofactors. Different from HL5B this aPL bound to β2-glycoprotein I (β2GPII). This suggests that reactivity of aPL against β2GPI is determined by only few specific amino acid exchanges. HL7G was able to induce tissue factor (TF) as one of the procoagulant effects of aPL. Our data suggest that the binding specificity of aPL is only of limited value to predict the biological effect and the pathophysiological impact of the antibodies. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Production and characterisation of a monoclonal antibody to human papillomavirus type 16 using recombinant vaccinia virus. (United States)

    McLean, C S; Churcher, M J; Meinke, J; Smith, G L; Higgins, G; Stanley, M; Minson, A C


    A monoclonal antibody was raised against the major capsid protein L1 of human papillomavirus type 16, using a recombinant vaccinia virus that expresses the L1 protein, as a target for screening. This antibody, designated CAMVIR-1, reacted with a 56 kilodalton protein in cells infected with L1-vaccinia virus, and the protein was present in a predominantly nuclear location. The antibody also detects the HPV-16 L1 antigen in formalin fixed, paraffin wax embedded biopsy specimens and on routine cervical smears. The antibody reacts strongly and consistently with biopsy specimens containing HPV-16 or HPV-33, but very weak reactions were occasionally observed with biopsy specimens or smears containing HPV-6 or HPV-11. The potential advantages of using a vaccinia recombinant are (i) the target protein is synthesised in a eukoryotic cell so that its "processing" and location are normal; (ii) cells infected with vaccinia recombinants can be subjected to various fixing procedures similar to those used for routine clinical material. This greatly increases the probability that an identified antibody will be useful in a clinical setting.

  13. Expression and purification of human ARP1 protein and rapid preparation of polyclonal antibody. (United States)

    Sun, Mingjuan; Zou, Rongjiang; Dong, Xiaoyi; Zong, Ying; Gao, Yun; Wang, Lianghua; Jiao, Binghua


    Angiopoietin-related protein 1 (ARP1) is one of the antiangiogenic factors and plays an important role in endothelial cell proliferation, migration, and blood vessel network formation. Here a rapid method to prepare ARP1 polyclonal antibody in 1 month was developed. The gene of fibrinogen homology domain (FD) for ARP1 was cloned and the protein was expressed in a soluble form of MBP-FD fused protein. The MBP-FD protein was purified using amylose affinity chromatography of maltose-binding protein. Polyclonal antibodies against MBP-FD were obtained through immunization in BALB/c mice. The titer was determined by indirect enzyme-linked immunosorbent assay (ELISA), and the antibody specificity was assessed by Western blot. The full-length ARP1 protein in stable form expressed in transfected human large lung cancer cell lines NCI-H460 was detected by immunocytochemistry (ICC) analysis using ARP1 polyclonal antibodies. The result shows that the antibody possesses good specificity and sensitivity. This work provides a substantial base for the further studies of ARP1 function and associated mechanisms. Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.

  14. Antithyroglobulin antibody (United States)

    Thyroglobulin antibody; Thyroiditis - thyroglobulin antibody; Hypothyroidism - thyroglobulin antibody; Thyroiditis - thyroglobulin antibody; Graves disease - thyroglobulin antibody; Underactive thyroid - thyroglobulin antibody

  15. [Immunohistochemical study of human breast tumors using monoclonal antibodies to intermediate filament proteins (nonproliferating epithelial structures in breast dysplasia)]. (United States)

    Gel'shteĭn, V I; Chipysheva, T A; Litvinova, L V; Ermilova, V D; Bannikov, G A


    An immunohistochemical analysis of nonproliferating epithelial structures was carried out in 10 samples of human breast dysplasia and in 4 samples of tissue surrounding mammary gland carcinoma. Monoclonal mouse antibodies against individual prekeratins of rat monolayer epithelial antibodies of clone C12 against rat prekeratin with the molecular mass 49 kilodalton and antibodies of clone E3 against rat prekeratin with the molecular mass 40 kilodalton-monoclonal antibodies against vimentin (clone 30), as well as polyclonal antibodies against smooth muscle myosin and against the basement membrane glycoprotein laminin were used. The lining epithelium of all glandular structures reacted only with C12 antibodies. Two variants of myoepithelial cells containing myosin were detected. Variant I contains myosin and vimentin and is localized in intralobular ducts. Variant 2 contains myosin and prekeratin, recognized by E3 antibodies and is found in extralobular ducts.

  16. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries. (United States)

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard


    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents.

  17. Construction of human Fab library and screening of a single-domain antibody of amyloid-beta 42 oligomers

    Institute of Scientific and Technical Information of China (English)

    Zuanning Yuan; Minge Du; Yiwen Chen; Fei Dou


    Screening humanized antibodies from a human Fab phage display library is an effective and quick method to obtain beta-amyloid oligomers. Thus, the present study prepared amyloid-beta 42 oli-gomers and constructed a naïve human Fab phage display library based on blood samples from six healthy people. After three rounds of biopanning in vitro, a human single-domain antibody that spe-cifical y recognized amyloid-beta 42 oligomers was identified. Western blot and enzyme-linked immunosorbent assay demonstrated this antibody bound specifical y to human amyloid-beta 42 te-tramer and nonamer, but not the monomer or high molecular weight oligomers. This study suc-cessful y constructed a human phage display library and screened a single-domain antibody that specifical y recognized amyloid-beta 42 oligomers.

  18. Cytotoxic murine monoclonal antibody LAM8 with specificity for human small cell carcinoma of the lung. (United States)

    Stahel, R A; O'Hara, C J; Mabry, M; Waibel, R; Sabbath, K; Speak, J A; Bernal, S D


    The reactivity of the murine immunoglobulin monoclonal antibody LAM8 directed against a membrane antigen of human small cell carcinoma (SCC) of the lung was investigated on human cell lines and tissues. Indirect immunofluorescence staining, radioimmunoassays, and cytotoxicity assays showed LAM8 antibody to selectively react with SCC but not with non-SCC lung cancer cell lines and extrapulmonary tumor cell lines. Unlike other SCC antibodies, including those we have previously described, highly preferential reactivity with SCC tissues was also demonstrated by immunoperoxidase staining of deparaffinized formalin-fixed tissue sections. Membrane and cytoplasmic staining was seen in of 9 of 12 SCC tissues. No significant staining was seen in non-SCC lung cancer and a wide range of other tumors, including mesothelioma and bronchial carcinoids. Significant LAM8 reactivity was also absent in normal tissues of all major organs. Few tumors and epithelial tissues, including bronchial epithelium had rare LAM8 positive cells which were always less than 2% of the entire cell population. In vitro treatment with antibody and human complement was highly cytotoxic to SCC cells, but had not effect on bone marrow progenitor cells. Immunoblotting of membrane extracts separated on sodium dodecyl sulfate-polyacrylamide gels showed the LAM8 antigen to have a band of an approximate molecular weight of 135,000 and a cluster of bands with approximate molecular weights of 90,000. This reactivity was lost after incubation of the extracts with periodate. LAM8 antibody shows a highly preferential reactivity with SCC cell lines and formalin-fixed paraffin-embedded SCC tissues and is selectively cytotoxic to cells expressing LAM8 antigen.

  19. [Research of Human-mouse Chimeric Antibodies Against Ebola Virus Nucleoprotein]. (United States)

    Zhou, Rongping; Sun, Lina; Liu, Yang; Wu, Wei; Li, Chuan; Liang, Mifang; Qiu, Peihong


    The Ebola virus is highly infectious and can result in death in ≤ 90% of infected subjects. Detection of the Ebola virus and diagnosis of infection are extremely important for epidemic control. Presently, Chinese laboratories detect the nucleic acids of the Ebola virus by real-time reverse transcription-polymerase chain reaction (RT-PCR). However, such detection takes a relatively long time and necessitates skilled personnel and expensive equipment. Enzyme-linked immunosorbent assay (ELISA) of serum is simple, easy to operate, and can be used to ascertain if a patient is infected with the Ebola virus as well as the degree of infection. Hence, ELISA can be used in epidemiological investigations and is a strong complement to detection of nucleic acids. Cases of Ebola hemorrhagic fever have not been documented in China, so quality-control material for positive serology is needed. Construction and expression of human-mouse chimeric antibodies against the nucleoprotein of the Ebola virus was carried out. Genes encoding variable heavy (VH) and variable light (VL) chains were extracted and amplified from murine hybridoma cells. Genes encoding the VH and VL chains of monoclonal antibodies were amplified by RT-PCR. According to sequence analyses, a primer was designed to amplify functional sequences relative to VH and VL chain. The eukaryotic expression vector HL51-14 carrying some human antibody heavy chain- and light chain-constant regions was used. IgG antibodies were obtained by transient transfection of 293T cells. Subsequently, immunological detection and immunological identification were identified by ELISA, immunofluorescence assay, and western blotting. These results showed that we constructed and purified two human- mouse chimeric antibodies.

  20. Serrumab: a novel human single chain-fragment antibody with multiple scorpion toxin-neutralizing capacities. (United States)

    Pucca, Manuela Berto; Cerni, Felipe Augusto; Peigneur, Steve; Arantes, Eliane Candiani; Tytgat, Jan; Barbosa, José Elpidio


    In Brazil, scorpion envenomation is an important public health problem. The yellow scorpion, Tityus serrulatus (Ts), is considered the most dangerous species in the country, being responsible for the most severe clinical cases of envenomation. Currently, the administration of serum produced in horses is recognized and used as a treatment for accidents with scorpions. However, horse herds' maintenance is costly and the antibodies are heterologous, which can cause anaphylaxis and Serum Sickness. In the present work, a human monoclonal fragment antibody, Serrumab, has been analysed. Toxin neutralizing effects of Serrumab were evaluated using a two-electrode voltage-clamp technique. The results show that Serrumab presented a high neutralizing effect against Ts β-toxins (Ts1, 43.2% and Ts2, 68.8%) and none or low neutralizing effect against α-toxins (Ts3, 0% and Ts5, 10%). Additional experiments demonstrated that Serrumab was also able to neutralize the action of toxins from other scorpion genus (Css II, 45.96% and Lqh III, 100%/β- and α-toxins, respectively). This work indicated that Serrumab is able to neutralize many toxins in Ts venom, and could being considered as a neutralizing antibody for formulating a human anti-scorpion serum in Brazil. Additionally, this work demonstrated that Serrumab could neutralize different toxins from distinct scorpion genus. All these results reinforce the idea that Serrumab is a scFv antibody with multiple neutralizing capacities and a promising candidate for inclusion in scorpion anti-venoms against different genera.

  1. Preexisting human antibodies neutralize recently emerged H7N9 influenza strains (United States)

    Henry Dunand, Carole J.; Leon, Paul E.; Kaur, Kaval; Tan, Gene S.; Zheng, Nai-Ying; Andrews, Sarah; Huang, Min; Qu, Xinyan; Huang, Yunping; Salgado-Ferrer, Marlene; Ho, Irvin Y.; Taylor, William; Hai, Rong; Wrammert, Jens; Ahmed, Rafi; García-Sastre, Adolfo; Palese, Peter; Krammer, Florian; Wilson, Patrick C.


    The emergence and seasonal persistence of pathogenic H7N9 influenza viruses in China have raised concerns about the pandemic potential of this strain, which, if realized, would have a substantial effect on global health and economies. H7N9 viruses are able to bind to human sialic acid receptors and are also able to develop resistance to neuraminidase inhibitors without a loss in fitness. It is not clear whether prior exposure to circulating human influenza viruses or influenza vaccination confers immunity to H7N9 strains. Here, we demonstrate that 3 of 83 H3 HA-reactive monoclonal antibodies generated by individuals that had previously undergone influenza A virus vaccination were able to neutralize H7N9 viruses and protect mice against homologous challenge. The H7N9-neutralizing antibodies bound to the HA stalk domain but exhibited a difference in their breadth of reactivity to different H7 influenza subtypes. Mapping viral escape mutations suggested that these antibodies bind at least two different epitopes on the stalk region. Together, these results indicate that these broadly neutralizing antibodies may contribute to the development of therapies against H7N9 strains and may also be effective against pathogenic H7 strains that emerge in the future. PMID:25689254

  2. Human bocavirus infections are common in Beijing population indicated by sero-antibody prevalence analysis

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lin-qing; QIAN Yuan; ZHU Ru-nan; DENG Jie; WANG Fang; DONG Hui-jin; SUN Yu; LI Yan


    Background Human bocavirus (HBoV) is a newly identified human parvovirus that was originally detected in the respiratory secretions of children with respiratory infections. This study aimed to learn about the importance of HBoV infections by revealing the prevalence of serum antibodies against HBoV in Beijing population.Methods Two batches of serum specimens collected in different periods were tested by Western blotting for specific IgG against HBoV using recombinant VP2 as antigen.Results Out of 677 serum specimens collected during April 1996 to March 1997, 400 (59.1%) were positive and antibody positive rate for another batch of 141 serum specimens collected in August, 2005 from adults aged from 20 years to over 60 years was 78.7% (111/141). Comparison of the sero-prevalence profiles for serum specimens collected during 1996-1997 to those collected in 2005 indicated that the antibody positive rate for specimens collected in 2005 was higher than that of the corresponding age groups collected during 1996-1997.Conclusions The data suggest that HBoV has been circulating in Beijing population for at least over 10 years, and most of children had been exposed to HBoV by age of 7 years. Higher HBoV antibody positive rate shown in the serum specimens collected in 2005 suggested that infections by HBoV have been increased in Beijing population in recent years.

  3. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes (United States)

    Yeap, Wei Hseun; Wong, Kok Loon; Shimasaki, Noriko; Teo, Esmeralda Chi Yuan; Quek, Jeffrey Kim Siang; Yong, Hao Xiang; Diong, Colin Phipps; Bertoletti, Antonio; Linn, Yeh Ching; Wong, Siew Cheng


    Antibody-dependent cellular cytotoxicity (ADCC) is exerted by immune cells expressing surface Fcγ receptors (FcγRs) against cells coated with antibody, such as virus-infected or transformed cells. CD16, the FcγRIIIA, is essential for ADCC by NK cells, and is also expressed by a subset of human blood monocytes. We found that human CD16− expressing monocytes have a broad spectrum of ADCC capacities and can kill cancer cell lines, primary leukemic cells and hepatitis B virus-infected cells in the presence of specific antibodies. Engagement of CD16 on monocytes by antibody bound to target cells activated β2-integrins and induced TNFα secretion. In turn, this induced TNFR expression on the target cells, making them susceptible to TNFα-mediated cell death. Treatment with TLR agonists, DAMPs or cytokines, such as IFNγ, further enhanced ADCC. Monocytes lacking CD16 did not exert ADCC but acquired this property after CD16 expression was induced by either cytokine stimulation or transient transfection. Notably, CD16+ monocytes from patients with leukemia also exerted potent ADCC. Hence, CD16+ monocytes are important effectors of ADCC, suggesting further developments of this property in the context of cellular therapies for cancer and infectious diseases. PMID:27670158

  4. In Vitro Characterization of Human Cytomegalovirus-Targeting Therapeutic Monoclonal Antibodies LJP538 and LJP539 (United States)

    Patel, Hetalkumar D.; Nikitin, Pavel; Gesner, Thomas; Lin, James J.; Barkan, David T.; Ciferri, Claudio; Carfi, Andrea; Akbarnejad Yazdi, Tahmineh; Skewes-Cox, Peter; Wiedmann, Brigitte; Jarousse, Nadine; Zhong, Weidong; Feire, Adam


    Human cytomegalovirus (HCMV) infection is usually benign in healthy individuals but can cause life-threatening disease in those with compromised immune systems. Approved drugs available to treat HCMV disease, including ganciclovir, cidofovir, and foscarnet, have significant toxicities that limit their use in certain patient populations. LJP538 and LJP539 are human monoclonal antibodies that are being evaluated as immunoglobulin therapeutics. The antibodies target glycoproteins gB and the gH/gL/UL128/UL130/UL131a pentameric complex, respectively. Here we present an in vitro characterization of these antibodies. We show that LJP538 and LJP539 are more potent than a marketed immunoglobulin at inhibiting HCMV infection of various cell lines relevant to pathogenesis. We find that LJP538 and LJP539 are active against a panel of clinical isolates in vitro and demonstrate minor-to-moderate synergy in combination. Passage of HCMV in the presence of LJP538 or LJP539 alone resulted in resistance-associated mutations that mapped to the target genes. However, no loss of susceptibility to the combination of antibodies was observed for >400 days in culture. Finally, the binding regions of LJP538 and LJP539 are conserved among clinical isolates. Taken together, these data support the use of LJP538 and LJP539 in combination for clinical trials in HCMV patients. PMID:27270290

  5. Purification of human seminal plasma no. 7 antigen by immunoaffinity chromatography on bound monoclonal antibody. (United States)

    Isojima, S; Koyama, K; Fujiwara, N


    Human seminal plasma (HSP) No. 7 antigen was purified by immunoaffinity chromatography on bound 1C4 monoclonal antibody (Moab) (Shigeta et al., 1980b). The pooled HSP protein was applied to a CNBr-activated Sepharose 4B column of bound 1C4 Moab gamma globulin and the antibody bound fraction (fr) eluted was further purified by rechromatography in the same way. The purified antigen in the antibody bound fr obtained by rechromatography gave a single band on SDS-PAGE in a position corresponding to a molecular weight of 15,000 daltons. This preparation was 196.2 times more effective than the original HSP protein in neutralizing the sperm immobilizing activity of 1C4 Moab. The purified HSP No. 7 antigen contained iron, but was different from lactoferrin and transferrin. It did not show any enzymatic activities, such as those of acid phosphatase, LDH or trypsin inhibitor, and shared antigenicity with human milk protein. It was present in seminal plasma as a molecule with a higher molecular weight but seemed to be cleaved to a monomer of 15,000 daltons during purification procedures. This antigen is present on spermatozoa as sperm-coating antigen and the corresponding antibody can immobilize spermatozoa with complement. Images Fig. 3 PMID:7127911

  6. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Christy A.; Bryson, Steve; McLean, Gary R.; Creagh, A. Louise; Pai, Emil F.; Schrader, John W. (Toronto); (UBC)


    Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.

  7. Cross-reactivity of human and bovine antibodies in striped dolphin paraffin wax-embedded tissues. (United States)

    Jaber, J R; Fernández, A; Herráez, P; Espinosa de los Monteros, A; Ramírez, G A; García, P M; Fernández, T; Arbelo, M; Pérez, J


    This study evaluates the cross-reactivity of seven anti-human and one anti-bovine antibodies in formalin-fixed, paraffin-embedded tissue samples of liver and mesenteric lymph nodes of 13 striped dolphins (Stenella coeruleoalba). Four antibodies (CD3, IgG, lysozyme and S100 protein) reacted with striped dolphin lymph nodes in a similar pattern to that observed in the species of origin. The anti-human MHC class II mAb reacted strongly with macrophages and dendritic-like cells of striped dolphins, whereas a small number of lymphocytes were labelled with this antibody. These antibodies were used to study the immunophenotype of the inflammatory infiltrated in non-specific chronic reactive hepatitis (eight cases) and chronic parasite cholangitis (two cases) and normal liver (three cases) of striped dolphins. Non-specific chronic reactive hepatitis was composed of inflammatory infiltration of CD3+ T lymphocytes and IgG+ plasma cells in portal spaces and hepatic sinusoids. Lymphonodular aggregates observed in chronic parasitic cholangitis showed a cellular distribution similar to that found in lymph node cortex, including the presence of S100+ and MHC class II+ dendritic-like cells in lymphoid follicles and interfollicular areas. This result suggests that those inflammatory infiltrates are highly organised to enhance antigen presentation to B and T cells.

  8. Generation and characterization of a polyclonal antibody against human high mobility group box 4. (United States)

    Yang, Fen; Li, Runsheng; Hong, Aizhen; Duan, Fei; Li, Yuhua


    A human high mobility group box 4 (hHMGB4) expression construct (pET‑28a/hHMGB4) was generated by cloning the hHMGB4 full‑length cDNA in the expression vector pET‑28a(+). The hHMGB4 fusion protein with His6‑Tag was prepared using E.coli BL21 (DE3) transformed with pET‑28a/hHMGB4 and purified via preparative SDS‑PAGE plus electroelution. Immunization of rabbits with the purified hHMGB4 generated polyclonal antibodies. The titer of the antiserum was determined to be 1:102,400 by ELISA analysis. Western blotting analysis showed that the antibody specifically recognized the recombinant hHMGB4 protein and also the endogenous hHMGB4 protein in prostate cancer cells. In addition, immunohistochemical staining analysis using the prepared antibody revealed marked hHMGB4 staining in the nuclei of the human prostate tissue. These data demonstrate that the anti‑hHMGB4 polyclonal antibody may be a useful reagent for the functional study of hHMGB4.

  9. The natural antibody repertoire of sharks and humans recognizes the potential universe of antigens. (United States)

    Adelman, Miranda K; Schluter, Samuel F; Marchalonis, John J


    In ancestral sharks, a rapid emergence in the evolution of the immune system occurred, giving jawed-vertebrates the necessary components for the combinatorial immune response (CIR). To compare the natural antibody (NAb) repertoires of the most divergent vertebrates with the capacity to produce antibodies, we isolated NAbs to the same set of antigens by affinity chromatography from two species of Carcharhine sharks and from human polyclonal IgG and IgM antibody preparations. The activities of the affinity-purified anti-T-cell receptor (anti-TCR) NAbs were compared with those of monoclonal anti-TCR NAbs that were generated from a systemic lupus erythematosus patient. We report that sharks and humans, representing the evolutionary extremes of vertebrate species sharing the CIR, have NAbs to human TCRs, Igs, the human senescent cell antigen, and to numerous retroviral antigens, indicating that essential features of the combinatorial repertoire and the capacity to recognize the potential universe of antigens is shared among all jawed-vertebrates.

  10. The human liver-specific proteome defined by transcriptomics and antibody-based profiling. (United States)

    Kampf, Caroline; Mardinoglu, Adil; Fagerberg, Linn; Hallström, Björn M; Edlund, Karolina; Lundberg, Emma; Pontén, Fredrik; Nielsen, Jens; Uhlen, Mathias


    Human liver physiology and the genetic etiology of the liver diseases can potentially be elucidated through the identification of proteins with enriched expression in the liver. Here, we combined data from RNA sequencing (RNA-Seq) and antibody-based immunohistochemistry across all major human tissues to explore the human liver proteome with enriched expression, as well as the cell type-enriched expression in hepatocyte and bile duct cells. We identified in total 477 protein-coding genes with elevated expression in the liver: 179 genes have higher expression as compared to all the other analyzed tissues; 164 genes have elevated transcript levels in the liver shared with at least one other tissue type; and an additional 134 genes have a mild level of increased expression in the liver. We identified the precise localization of these proteins through antibody-based protein profiling and the subcellular localization of these proteins through immunofluorescent-based profiling. We also identified the biological processes and metabolic functions associated with these proteins, investigated their contribution in the occurrence of liver diseases, and identified potential targets for their treatment. Our study demonstrates the use of RNA-Seq and antibody-based immunohistochemistry for characterizing the human liver proteome, as well as the use of tissue-specific proteins in identification of novel drug targets and discovery of biomarkers.-Kampf, C., Mardinoglu, A., Fagerberg, L., Hallström, B. M., Edlund, K., Lundberg, E., Pontén, F., Nielsen, J., Uhlen, M. The human liver-specific proteome defined by transcriptomics and antibody-based profiling. © FASEB.

  11. Antibody-Dependent Cell-Mediated Cytotoxicity Effector-Enhanced EphA2 Agonist Monoclonal Antibody Demonstrates Potent Activity against Human Tumors

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Bruckheimer


    Full Text Available EphA2 is a receptor tyrosine kinase that has been shown to be overexpressed in a variety of human tumor types. Previous studies demonstrated that agonist monoclonal antibodies targeting EphA2 induced the internalization and degradation of the receptor, thereby abolishing its oncogenic effects. In this study, the in vitro and in vivo antibody-dependent cell-mediated cytotoxicity (ADCC activity of EphA2 effector-enhanced agonist monoclonal antibodies was evaluated. With tumor cell lines and healthy human peripheral blood monocytes, the EphA2 antibodies demonstrated ∼80% tumor cell killing. In a dose-dependent manner, natural killer (NK cells were required for the in vitro ADCC activity and became activated as demonstrated by the induction of cell surface expression of CD107a. To assess the role of NK cells on antitumor efficacy in vivo, the EphA2 antibodies were evaluated in xenograft models in severe compromised immunodeficient (SCID mice (which have functional NK cells and monocytes and SCID nonobese diabetic (NOD mice (which largely lack functional NK cells and monocytes. Dosing of EphA2 antibody in the SCID murine tumor model resulted in a 6.2-fold reduction in tumor volume, whereas the SCID/nonobese diabetic model showed a 1.6-fold reduction over the isotype controls. Together, these results demonstrate that the anti-EphA2 monoclonal antibodies may function through at least two mechanisms of action: EphA2 receptor activation and ADCC-mediated activity. These novel EphA2 monoclonal antibodies provide additional means by which host effector mechanisms can be activated for selective destruction of EphA2-expressing tumor cells.

  12. Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. (United States)

    Chan, Kwok-Hung; Chan, Jasper Fuk-Woo; Tse, Herman; Chen, Honglin; Lau, Candy Choi-Yi; Cai, Jian-Piao; Tsang, Alan Ka-Lun; Xiao, Xincai; To, Kelvin Kai-Wang; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Zheng, Bo-Jiang; Wang, Ming; Yuen, Kwok-Yung


    A severe acute respiratory syndrome (SARS)-like disease due to a novel betacoronavirus, human coronavirus EMC (HCoV-EMC), has emerged recently. HCoV-EMC is phylogenetically closely related to Tylonycteris-bat-coronavirus-HKU4 and Pipistrellus-bat-coronavirus-HKU5 in Hong Kong. We conducted a seroprevalence study on archived sera from 94 game-food animal handlers at a wild life market, 28 SARS patients, and 152 healthy blood donors in Southern China to assess the zoonotic potential and evidence for intrusion of HCoV-EMC and related viruses into humans. Anti-HCoV-EMC and anti-SARS-CoV antibodies were detected using screening indirect immunofluorescence (IF) and confirmatory neutralizing antibody tests. Two (2.1%) animal handlers had IF antibody titer of ≥ 1:20 against both HCoV-EMC and SARS-CoV with neutralizing antibody titer of SARS patients had significant IF antibody titers with 7/28 (25%) having anti-HCoV-EMC neutralizing antibodies at low titers which significantly correlated with that of HCoV-OC43. Bioinformatics analysis demonstrated a significant B-cell epitope overlapping the heptad repeat-2 region of Spike protein. Virulence of SARS-CoV over other betacoronaviruses may boost cross-reactive neutralizing antibodies against other betacoronaviruses. Convalescent SARS sera may contain cross-reactive antibodies against other betacoronaviruses and confound seroprevalence study for HCoV-EMC. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  13. Recognition of influenza H3N2 variant virus by human neutralizing antibodies (United States)

    Bangaru, Sandhya; Nieusma, Travis; Kose, Nurgun; Thornburg, Natalie J.; Kaplan, Bryan S.; King, Hannah G.; Singh, Vidisha; Lampley, Rebecca M.; Cisneros, Alberto; Edwards, Kathryn M.; Edupuganti, Srilatha; Lai, Lilin; Richt, Juergen A.; Webby, Richard J.; Ward, Andrew B.; Crowe, James E.


    Since 2011, over 300 human cases of infection, especially in exposed children, with the influenza A H3N2 variant (H3N2v) virus that circulates in swine in the US have been reported. The structural and genetic basis for the lack of protection against H3N2v induced by vaccines containing seasonal H3N2 antigens is poorly understood. We isolated 17 human monoclonal antibodies (mAbs) that neutralized H3N2v virus from subjects experimentally immunized with an H3N2v candidate vaccine. Six mAbs exhibited very potent neutralizing activity (IC50 < 200 ng/ml) against the H3N2v virus but not against current human H3N2 circulating strains. Fine epitope mapping and structural characterization of antigen-antibody complexes revealed that H3N2v specificity was attributable to amino acid polymorphisms in the 150-loop and the 190-helix antigenic sites on the hemagglutinin protein. H3N2v-specific antibodies also neutralized human H3N2 influenza strains naturally circulating between 1995 and 2005. These results reveal a high level of antigenic relatedness between the swine H3N2v virus and previously circulating human strains, consistent with the fact that early human H3 seasonal strains entered the porcine population in the 1990s and reentered the human population, where they had not been circulating, as H3N2v about a decade later. The data also explain the increased susceptibility to H3N2v viruses in young children, who lack prior exposure to human seasonal strains from the 1990s. PMID:27482543

  14. Differences in the interaction of acetylcholine receptor antibodies with receptor from normal, denervated and myasthenic human muscle.


    Lefvert, A. K.


    The interaction of acetylcholine receptor antibodies with different kinds of human skeletal muscle receptor was investigated. The reaction of most receptor antibodies was strongest with receptor from a patient with myasthenia gravis and with receptor from denervated muscle. Results obtained with these receptors were well correlated. The binding of most receptor antibodies to receptor from functionally normal muscle was much weaker and also qualitatively different. In a few patients with moder...

  15. Assay interference caused by antibodies reacting with rat kappa light-chain in human sera. (United States)

    Degn, Søren E; Andersen, Stig Henrik; Jensen, Lisbeth; Thiel, Steffen; Jensenius, Jens C


    The enzyme-linked immunosorbent assay (ELISA) and its derivatives are powerful tools used in research, in the clinic, and in many other analytical and quality control settings. In general, ELISAs are robust, reproducible and reliable. However, a number of pitfalls of ELISAs have been described over the years. The issue of rheumatoid factor (RF), autoantibodies against the Fc portion of IgG, is well recognized (yet often forgotten), as are problems arising from heterophilic antibodies induced by external antigens that cross-react with self-antigens. A few years ago focus was on human anti-mouse antibodies (HAMA) concomitant with the increased use of mouse monoclonal antibody therapy, a problem that is now diminishing due to development of humanized antibodies. Issues pertaining to food antigens or environmentally encountered antigens are less recognized. We report a recently encountered example of the latter resulting in interference in a solid-phase sandwich assay. Due to the set-up employing a monoclonal rat IgG for capture and a monoclonal rat IgM for development the interference had to be human antibodies reacting with rat light-chain. Out of 102 Danish Caucasian blood donors we found a prevalence of anti-rat kappa light chain antibodies of close to 40% (39/102, defined as at least 2-fold elevated measurements), with around 6% (6/102) having very high levels (defined as at least 4-fold elevated measurements), yielding significantly higher measurements in the assay designed to measure the complement component MAp19 in serum samples. The interference could be blocked by the addition of rat immunoglobulin to the sample buffer. An individual, who had been followed over time, demonstrated a periodic increase of interfering antibodies, highlighting that it is an independently varying parameter and thereby a variable interference in assays. Our results highlight a major pitfall of potential relevance to many sandwich-type assays, as well as an approach to rectify such

  16. SARS Patients-derived Human Recombinant Antibodies to S and M Proteins Efficiently Neutralize SARS-Coronavirus Infectivity

    Institute of Scientific and Technical Information of China (English)



    Objective To develop a specific SARS virus-targeted antibody preparation for emergent prophylaxis and treatment of SARS virus infection. Methods By using phage display technology, we constructed a naive antibody library from convalescent SARS patient lymphocytes. To obtain the neutralizing antibody to SARS virus surface proteins, the library panning procedure was performed on purified SARS virions and the specific Fab antibody clones were enriched by four rounds of repeated panning procedure and screened by highthroughput selection. The selected Fab antibodies expressed in the periplasma of E. Coli were soluble and further purified and tested for their binding properties and antiviral function to SARS virus. The functional Fab antibodies were converted to full human IgG antibodies with recombinant baculovirus/insect cell systems and their neutralizing activities were further determined. Results After four rounds of the panning, a number of SARS-CoV virus-targeted human recombinant Fab antibodies were isolated from the SARS patient antibody library. Most of these were identified to recognize both natural and recombinant SARS spike (S) proteins, two Fab antibodies were specific for the virus membrane (M) protein, only one bound to SARS-CoV nucleocapsid protein. The SARS-CoV S and M protein-targeted Fab or IgG antibodies showed significant neutralizing activities in cytopathic effect (CPE) inhibition neutralization test, these antibodies were able to completely neutralize the SARS virus and protect the Vero cells from CPE after virus infection. However, the N protein-targeted Fab or IgG antibodies failed to neutralize the virus. In addition, the SARS N protein-targeted human Fab antibody reacted with the denatured N proteins, whereas none of the S and M protein specific neutralizing antibodies did. These results suggested that the S and M protein-specific neutralizing antibodies could recognize conformational epitopes which might be involved in the binding of virions

  17. Natural and Immune Human Antibodies Reactive with Antigens of Virulent Neisseria gonorrhoeae: Immunoglobulins G, M, and A (United States)

    Cohen, Irun R.


    Natural and immune human antibodies reactive with heat-labile and heat-stable antigens of virulent Neisseria gonorrhoeae were studied by use of an indirect fluorescent-antibody (IFA) procedure. The immunoglobulin class of the reactive antibodies was identified by using fluorescein-conjugated antisera specific for human IgG, IgA, or IgM in the IFA procedure. The effects of heat and mercaptoethanol on IFA reactivities were also studied. It appeared that antibodies of the IgG, IgM, and IgA classes present in the sera of both infected persons (immune antibodies) and normal persons with no history of gonococcal infection (natural antibodies) react with heat-stable somatic antigens. Immune IgG antibodies, however, were distinguishable from natural IgG antibodies by their ability to recognize heat-labile surface antigens. The distinction between natural and immune IgM antibodies was less obvious. IgM antibodies from both infected and normal persons appeared to react with heat-labile antigens. Some, but not all, infected persons had immune IgA antibodies to heat-labile as well as to heat-stable antigens. Treatment of sera with mercaptoethanol had no effect on IgG antibodies. The IFA activity of IgM antibodies was decreased, but not abolished. The effects of mercaptoethanol on IgA antibodies were variable. Some sera showed a decrease in IgA titer, and others showed an increase in IgA activity to certain antigens. Immune IgG antibodies were more resistant to heating than were natural IgG antibodies. Natural and immune IgM antibodies appeared equally sensitive to heating. IgA activity, on the other hand, was increased by heating sera at 60 C, but was decreased at higher temperatures. Thus, it appears that natural and immune human IgG antibodies to N. gonorrhoeae may be distinguished by their interactions with heat-labile antigens and by their resistance to heating. Images PMID:4961630

  18. Human Monoclonal Antibodies as Candidate Therapeutics Against Emerging Viruses and HIV-1

    Institute of Scientific and Technical Information of China (English)

    Zhongyu Zhu; Ponraj Prabakaran; Weizao Chen; Christopher C.Broder; Rui Gong; Dimiter S.Dimitrov


    More than 40 monoclonal antibodies (mAbs) have been approved for a number of disease indications with only one of these (Synagis)-for a viral disease,and not for therapy but for prevention.However,in the last decade novel potent mAbs have been discovered and characterized with potential as therapeutics against viruses of major importance for public health and biosecurity including Hendra virus (HeV),Nipah virus (NiV),severe acute respiratory syndrome coronavirus (SARS-CoV),Ebola virus (EBOV),West Nile virus (WNV),influenza virus (IFV) and human immunodeficiency virus type 1 (HIV-1).Here,we review such mAbs with an emphasis on antibodies of human origin,and highlight recent results as well as technologies and mechanisms related to their potential as therapeutics.

  19. Human monoclonal antibodies as candidate therapeutics against emerging viruses and HIV-1. (United States)

    Zhu, Zhongyu; Prabakaran, Ponraj; Chen, Weizao; Broder, Christopher C; Gong, Rui; Dimitrov, Dimiter S


    More than 40 monoclonal antibodies (mAbs) have been approved for a number of disease indications with only one of these (Synagis) - for a viral disease, and not for therapy but for prevention. However, in the last decade novel potent mAbs have been discovered and characterized with potential as therapeutics against viruses of major importance for public health and biosecurity including Hendra virus (HeV), Nipah virus (NiV), severe acute respiratory syndrome coronavirus (SARS-CoV), Ebola virus (EBOV), West Nile virus (WNV), influenza virus (IFV) and human immunodeficiency virus type 1 (HIV-1). Here, we review such mAbs with an emphasis on antibodies of human origin, and highlight recent results as well as technologies and mechanisms related to their potential as therapeutics.

  20. Generation of human antigen-specific monoclonal IgM antibodies using vaccinated "human immune system" mice.

    Directory of Open Access Journals (Sweden)

    Pablo D Becker

    Full Text Available BACKGROUND: Passive transfer of antibodies not only provides immediate short-term protection against disease, but also can be exploited as a therapeutic tool. However, the 'humanization' of murine monoclonal antibodies (mAbs is a time-consuming and expensive process that has the inherent drawback of potentially altering antigenic specificity and/or affinity. The immortalization of human B cells represents an alternative for obtaining human mAbs, but relies on the availability of biological samples from vaccinated individuals or convalescent patients. In this work we describe a novel approach to generate fully human mAbs by combining a humanized mouse model with a new B cell immortalization technique. METHODOLOGY/PRINCIPAL FINDINGS: After transplantation with CD34+CD38⁻ human hematopoietic progenitor cells, BALB/c Rag2⁻/⁻IL-2Rγc⁻/⁻ mice acquire a human immune system and harbor B cells with a diverse IgM repertoire. "Human Immune System" mice were then immunized with two commercial vaccine antigens, tetanus toxoid and hepatitis B surface antigen. Sorted human CD19+CD27+ B cells were retrovirally transduced with the human B cell lymphoma (BCL-6 and BCL-XL genes, and subsequently cultured in the presence of CD40-ligand and IL-21. This procedure allows generating stable B cell receptor-positive B cells that secrete immunoglobulins. We recovered stable B cell clones that produced IgM specific for tetanus toxoid and the hepatitis B surface antigen, respectively. CONCLUSION/SIGNIFICANCE: This work provides the proof-of-concept for the usefulness of this novel method based on the immunization of humanized mice for the rapid generation of human mAbs against a wide range of antigens.

  1. Humanization and characterization of an anti-ricin neutralization monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Wei-Gang Hu

    Full Text Available Ricin is regarded as a high terrorist risk for the public due to its high toxicity and ease of production. Currently, there is no therapeutic or vaccine available against ricin. D9, a murine monoclonal antibody developed previously in our laboratory, can strongly neutralize ricin and is therefore a good candidate for humanization. Humanization of D9 variable regions was achieved by a complementarity-determining region grafting approach. The humanized D9 (hD9 variable regions were further grafted onto human heavy and light chain constant regions to assemble the complete antibody gene. A foot-and-mouth-disease virus-derived 2A self-processing sequence was introduced between heavy and light chain DNA sequences to cleave the recombinant protein into a functional full-length antibody molecule from a single open reading frame driven by a single promoter in an adenoviral vector. After expression in mammalian cells and purification, the hD9 was demonstrated to have equimolar expression of the full-length antibody heavy and light chains. More importantly, the hD9 exhibited high affinity to ricin with K(D of 1.63 nM, comparable to its parental murine D9 (2.55 nM. In a mouse model, intraperitoneal (i.p. administration of hD9, at a low dose of 5 µg per mouse, 4 hours after the i.p. challenge with 5×LD50 ricin was found to rescue 100% of the mice. In addition, administered 6 hours post-challenge, hD9 could still rescue 50% of the mice. The hD9 has the potential to be used for prophylactic or therapeutic purposes against ricin poisoning.

  2. Construction of Large Human Single-chain Antibody Phage Display Library

    Institute of Scientific and Technical Information of China (English)


    A large human naive single chain antibody (scFv) library is constructed from 60 healthy donors via phage display technique. During the period, some methods are employed to optimize the diversity, such as multi donors, different annealing temperature, half-nest PCR, and assembly by two-way fusion PCR. In this stud y, 78 electroporations resulted in 1010 library, diversity of which is assayed by enzyme fingerprint. The efficiency and diversity are all better than other rese arches.

  3. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer



    The effects of vascular endothelial growth factor (VEGF) blockade on the vascular biology of human tumors are not known. Here we show here that a single infusion of the VEGF-specific antibody bevacizumab decreases tumor perfusion, vascular volume, microvascular density, interstitial fluid pressure and the number of viable, circulating endothelial and progenitor cells, and increases the fraction of vessels with pericyte coverage in rectal carcinoma patients. These data indicate that VEGF block...

  4. Differential expression of anti-glycan antibodies in schistosome-infected humans, rhesus monkeys and mice (United States)

    Luyai, Anthony E; Heimburg-Molinaro, Jamie; Prasanphanich, Nina Salinger; Mickum, Megan L; Lasanajak, Yi; Song, Xuezheng; Nyame, A Kwame; Wilkins, Patricia; Rivera-Marrero, Carlos A; Smith, David F; Van Die, Irma; Secor, W Evan; Cummings, Richard D


    Schistosomiasis is a debilitating parasitic disease of humans, endemic in tropical areas, for which no vaccine is available. Evidence points to glycan antigens as being important in immune responses to infection. Here we describe our studies on the comparative humoral immune responses to defined schistosome-type glycan epitopes in Schistosoma mansoni-infected humans, rhesus monkeys and mice. Rhesus anti-glycan responses over the course of infection were screened on a defined glycan microarray comprising semi-synthetic glycopeptides terminating with schistosome-associated or control mammalian-type glycan epitopes, as well as a defined glycan microarray of mammalian-type glycans representing over 400 glycan structures. Infected rhesus monkeys generated a high immunoglobulin G (IgG) antibody response to the core xylose/core α3 fucose epitope of N-glycans, which peaked at 8–11 weeks post infection, coinciding with maximal ability to kill schistosomula in vitro. By contrast, infected humans generated low antibody levels to this epitope. At 18 months following praziquantel therapy to eliminate the parasite, antibody levels were negligible. Mice chronically infected with S. mansoni generated high levels of anti-fucosylated LacdiNAc (GalNAcβ1, 4(Fucα1, 3)GlcNAc) IgM antibodies, but lacked a robust response to the core xylose/core α3 fucose N-glycan antigens compared with other species studied, and their sera demonstrated an intermediate level of schistosomula killing in vitro. These differential responses to parasite glycan antigens may be related to the ability of rhesus monkeys to self-cure in contrast to the chronic infection seen in humans and mice. Our results validate defined glycan microarrays as a useful technology to evaluate diagnostic and vaccine antigens for schistosomiasis and perhaps other infections. PMID:24727442

  5. Human anti-plague monoclonal antibodies protect mice from Yersinia pestis in a bubonic plague model.

    Directory of Open Access Journals (Sweden)

    Xiaodong Xiao

    Full Text Available Yersinia pestis is the etiologic agent of plague that has killed more than 200 million people throughout the recorded history of mankind. Antibiotics may provide little immediate relief to patients who have a high bacteremia or to patients infected with an antibiotic resistant strain of plague. Two virulent factors of Y. pestis are the capsid F1 protein and the low-calcium response (Lcr V-protein or V-antigen that have been proven to be the targets for both active and passive immunization. There are mouse monoclonal antibodies (mAbs against the F1- and V-antigens that can passively protect mice in a murine model of plague; however, there are no anti-Yersinia pestis monoclonal antibodies available for prophylactic or therapeutic treatment in humans. We identified one anti-F1-specific human mAb (m252 and two anti-V-specific human mAb (m253, m254 by panning a naïve phage-displayed Fab library against the F1- and V-antigens. The Fabs were converted to IgG1s and their binding and protective activities were evaluated. M252 bound weakly to peptides located at the F1 N-terminus where a protective mouse anti-F1 mAb also binds. M253 bound strongly to a V-antigen peptide indicating a linear epitope; m254 did not bind to any peptide from a panel of 53 peptides suggesting that its epitope may be conformational. M252 showed better protection than m253 and m254 against a Y, pestis challenge in a plague mouse model. A synergistic effect was observed when the three antibodies were combined. Incomplete to complete protection was achieved when m252 was given at different times post-challenge. These antibodies can be further studied to determine their potential as therapeutics or prophylactics in Y. pestis infection in humans.

  6. Development of next generation antivenoms based on mixtures of human antibodies

    DEFF Research Database (Denmark)

    Knudsen, Cecilie; Andersen, Mikael Rørdam; Harrison, Robert

    With an annual 150,000 deaths and countless amputations and disfigurements,snakebite envenoming is an ever-present threat in many parts of the rural tropicalworld. In sub-Saharan Africa, only 1-2% of victims are treated with antivenom,which is currently based on animal-derived antibodies. Due to ...... to their heterologousorigin, antivenoms often provoke serious side effects in human recipients, such asserum sickness and anaphylaxis, which in some cases leads to death....

  7. Antibodies against human BLyS and APRIL attenuate EAE development in marmoset monkeys. (United States)

    Jagessar, S Anwar; Heijmans, Nicole; Oh, Luke; Bauer, Jan; Blezer, Erwin L A; Laman, Jon D; Migone, Thi-Sau; Devalaraja, Matt N; 't Hart, Bert A


    B lymphocyte stimulator (BLyS, also indicated as BAFF (B-cell activating factor) and CD257), and A Proliferation Inducing Ligand (APRIL, CD256) are two members of the TNF superfamily with a central role in B cell survival. Antibodies against these factors have potential therapeutic relevance in autoimmune inflammatory disorders with a proven pathogenic contribution of B cells, such as multiple sclerosis (MS). In the current study we performed a multi-parameter efficacy comparison of monoclonal antibodies against human anti-BLyS and anti-APRIL in a common marmoset (Callithrix jacchus) model of experimental autoimmune encephalomyelitis (EAE). A MS-like disease was induced by immunization with recombinant human myelin/oligodendrocyte glycoprotein (rhMOG) in complete Freund's adjuvant. The results show that the anti-BLyS and anti-APRIL antibody cause significant depletion of circulating CD20+ B cells, but a small subset of CD20 + CD40(high) B cells was not depleted. Induction of CD20+ B cell depletion from lymph nodes was only observed in the anti-BLyS treated monkeys. Both antibodies had a significant inhibitory effect on disease development, but all monkeys developed clinically evident EAE. Anti-BLyS treated monkeys were sacrificed with the same clinical signs as saline-treated monkeys, but nevertheless displayed significantly reduced spinal cord demyelination. This effect was not observed in the anti-APRIL treated monkeys. The two antibodies had a different effect on T cell subset activation and the profiles of ex vivo released cytokines. In conclusion, treatment with anti-BLyS and anti-APRIL delays the development of neurological disease in a relevant preclinical model of MS. The two mAbs achieve this effect via different mechanisms.

  8. Interactions between Lipids and Human Anti-HIV Antibody 4E10 Can Be Reduced without Ablating Neutralizing Activity

    NARCIS (Netherlands)

    Xu, Hengyu; Song, Likai; Kim, Mikyung; Holmes, Margaret A.; Kraft, Zane; Sellhorn, George; Reinherz, Ellis L.; Stamatatos, Leonidas; Strong, Roland K.


    Human 4E10 is one of the broadest-specificity, HIV-1-neutralizing monoclonal antibodies known, recognizing a membrane-proximal linear epitope on gp41. The lipid cross-reactivity of 4E10 has been alternately suggested either to contribute to the apparent rarity of 4E10-like antibody responses in HIV

  9. Molecular characterization of the variable heavy and light chain regions of five HIV-1 specific human monoclonal antibodies.

    NARCIS (Netherlands)

    E.M.M. van der Donk; M. Schutten (Martin); A.D.M.E. Osterhaus (Albert); R.W.J. van der Heijden (Roger)


    textabstractWe have reported the generation and characterization of four HIV-1 neutralizing human monoclonal antibodies. Three antibodies recognize a conformational epitope within the CD4-binding site of HIV-1 gp120 and one recognizes a linear epitope located within the hypervariable V3 domain of gp

  10. Therapeutic use of avidin is not hampered by antiavidin antibodies in humans. (United States)

    Petronzelli, Fiorella; Pelliccia, Angela; Anastasi, Anna Maria; Lindstedt, Ragnar; Manganello, Stefania; Ferrari, Liliana Elisa; Albertoni, Claudio; Leoni, Barbara; Rosi, Antonio; D'Alessio, Valeria; Deiana, Katia; Paganelli, Giovanni; De Santis, Rita


    Hen egg white avidin is increasingly used in the clinic as part of multifactor treatments such as pretargeted radionuclide therapy of cancer or as an antidote of biotinylated drugs. Taking into account that naturally occurring human antiavidin antibodies (HAVA) are common in humans, the present work investigates avidin immunogenicity as part of risk/benefit evaluations. Sera from 139 oncology patients naive to avidin were confirmed to exhibit HAVA with lognormally distributed titers. HAVA were boosted after avidin treatment, with no correlation with the avidin dose or with the basal titer. No antibody-related clinical symptoms were observed in 21 HAVA-positive patients treated with avidin. In mouse models, high mouse antiavidin antibody titers, induced to simulate the worst human condition, neither reduced the biotin uptake of intratissue-injected avidin nor affected the capacity of intravenously injected avidin to clear a biotinylated drug from circulation. In both models the avidin treatment was well tolerated. Results indicate that avidin immunogenicity does not affect its safety and efficacy, thus encouraging its further use in clinical applications.

  11. Cloning and Sequence Analysis of Light Variable Region Gene of Anti-human Retinoblastoma Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Zhong; Yongping Li; Shuqi Huang; Bo Ning; Chunyan Zhang; Jianliang Zheng; Guanguang Feng


    Purpose: To clone the variable region gene of light chain of monoclonal antibody against human retinoblastoma and to analyze the characterization of its nucleotide sequence as well as amino acid sequence.Methods: Total RNA was extracted from 3C6 hybridoma cells secreting specific monoclonal antibody(McAb)against human retinoblastoma(RB), then transcripted reversely into cDNA with olig-dT primers.The variable region of the light chain (VL) gene fragments was amplified using polymeerase chain reaction(PCR) and further cloned into pGEM(R) -T Easy vector. Then, 3C6 VL cDNA was sequenced by Sanger's method.Homologous analysis was done by NCBI BLAST.Results: The complete nucleotide sequence of 3C6 VL cDNA consisted of 321 bp encoding 107 amino acid residues, containing four workframe regions(FRs)and three complementarity-determining regions (CDRs) as well as the typical structure of two cys residues. The sequence is most homological to a member of the Vk9 gene family, and its chain utilizes the Jkl gene segment.Conclusion: The light chain variable region gene of the McAb against human RB was amplified successfully , which belongs to the Vk9 gene family and utilizes Vk-Jk1 gene rearrangement. This study lays a good basis for constructing a recombinant antibody and for making a new targeted therapeutic agents against retinoblastoma.

  12. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors

    Energy Technology Data Exchange (ETDEWEB)

    Kubota-Koketsu, Ritsuko; Mizuta, Hiroyuki [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Oshita, Masatoshi; Ideno, Shoji [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Yunoki, Mikihiro [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Kuhara, Motoki [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano 396-0002 (Japan); Yamamoto, Naomasa [Department of Biochemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima 963-8611 (Japan); Okuno, Yoshinobu [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa 768-0061 (Japan); Ikuta, Kazuyoshi, E-mail: [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan)


    Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.

  13. An anti-human ICAM-1 antibody inhibits rhinovirus-induced exacerbations of lung inflammation.

    Directory of Open Access Journals (Sweden)

    Stephanie Traub

    Full Text Available Human rhinoviruses (HRV cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD. Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, ∼90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1 as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11 that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo.

  14. Production and characterisation of monoclonal antibodies against RAI3 and its expression in human breast cancer

    Directory of Open Access Journals (Sweden)

    Kiefer Hans


    Full Text Available Abstract Background RAI3 is an orphan G-protein coupled receptor (GPCR that has been associated with malignancy and may play a role in the proliferation of breast cancer cells. Although its exact function in normal and malignant cells remains unclear and evidence supporting its role in oncogenesis is controversial, its abundant expression on the surface of cancer cells would make it an interesting target for the development of antibody-based therapeutics. To investigate the link with cancer and provide more evidence for its role, we carried out a systematic analysis of RAI3 expression in a large set of human breast cancer specimens. Methods We expressed recombinant human RAI3 in bacteria and reconstituted the purified protein in liposomes to raise monoclonal antibodies using classical hybridoma techniques. The specific binding activity of the antibodies was confirmed by enzyme-linked immunosorbent assay (ELISA, western blot and immunocytochemistry. We carried out a systematic immunohistochemical analysis of RAI3 expression in human invasive breast carcinomas (n = 147 and normal breast tissues (n = 44 using a tissue microarray. In addition, a cDNA dot blot hybridisation assay was used to investigate a set of matched normal and cancerous breast tissue specimens (n = 50 as well as lymph node metastases (n = 3 for RAI3 mRNA expression. Results The anti-RAI3 monoclonal antibodies bound to recombinant human RAI3 protein with high specificity and affinity, as shown by ELISA, western blot and ICC. The cDNA dot blot and immunohistochemical experiments showed that both RAI3 mRNA and RAI3 protein were abundantly expressed in human breast carcinoma. However, there was no association between RAI3 protein expression and prognosis based on overall and recurrence-free survival. Conclusion We have generated a novel, highly-specific monoclonal antibody that detects RAI3 in formaldehyde-fixed paraffin-embedded tissue. This is the first study to report a systematic

  15. Detection of anti-liver cell membrane antibody using a human hepatocellular carcinoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Lobo-Yeo, A.; McSorley, C.; McFarlane, B.M.; Mieli-Vergani, G.; Mowat, A.P.; Vergani, D.


    A radioimmunometric technique for the detection of autoantibodies to liver membrane antigens has been developed using Alexander cells, a human hepatocellular carcinoma cell line. After incubation of Alexander cells with serum, antimembrane antibodies were detected by addition of /sup 125/I-labeled Protein A. Binding ratios in 15 children with uncontrolled autoimmune chronic active hepatitis and in seven children with primary sclerosing cholangitis were significantly higher than in 18 age-matched normal controls. Nine patients with inactive autoimmune chronic active hepatitis, 13 with alpha 1-antitrypsin deficiency and five with fulminant hepatic failure had ratios similar to controls. In nine patients with Wilson's disease, there was a modest but significant increase in binding ratio. In four children with autoimmune chronic active hepatitis, binding ratios fell during effective immunosuppressive therapy. Sera from patients with systemic lupus erythematosus or rheumatoid arthritis gave normal results, excluding that binding derives from Fc-mediated immune complex capture. A positive correlation was found between Alexander cell binding values and anti-liver-specific protein antibody titers, suggesting that the two assays detect antibodies against shared antigenic determinants. The Alexander cell assay is a simple, rapid and sensitive technique to detect antibody to liver cell membrane antigens.

  16. Radioimmunoassay of bovine, ovine and porcine luteinizing hormone with a monoclonal antibody and a human tracer

    Energy Technology Data Exchange (ETDEWEB)

    Fosberg, M.; Tagle, R.; Madej, A.; Molina, J.R.; Carlsson, M.-A.


    A radioimmunoassay for bovine (bLH), ovine (oLH) and porcine (pLH) luteinizing hormone was developed using a human [sup 125]ILH tracer from a commercial kit and a monoclonal antibody (518B7) specific for LH but with low species specificity. Standard curves demonstrated similar binding kinetics when bLH, oLH and pLH were incubated with tracer and antibody for 2 h at room temperature. A 30-min delay in the addition of the tracer gave sufficient sensitivity when analysing pLH. Separation of antibody-bound LH from free hormone was achieved by using second antibody-coated micro Sepharose beads. The assay was validated and the performance compared with that of an RIA currently in use for determination of bLH (coefficient of correlation: 0.99 and 0.98). Regardless of the standards used, intra-assay coefficients of variation were <10% for LH concentrations exceeding 1 [mu]g/L. The inter-assay coefficients of variation were <15%. The assay was used for clinical evaluation demonstrating the pre-ovulatory LH surge in two cyclic cows, LH pulsatility in an oophorectomized ewe and LH response to GnRH injection in a boar. (au) (7 refs.).

  17. Secretion of respiratory syncytial virus inhibitors and antibody in human milk throughout lactation. (United States)

    Toms, G L; Gardner, P S; Pullan, C R; Scott, M; Taylor, C


    Neutralising inhibitors to respiratory syncytial (RS) virus have been demonstrated in the whey of most samples of human milk tested. Although high titres were secreted in colostra of some mothers (1/10-1/2,560; median 1/40) inhibitor levels in milk collected after the first week of lactation were uniformly low (median 1/10). High neutralising titres correlated with high colostral levels of specific antiviral IgA but, unlike neutralising activity, IgA antiviral antibody persisted in the milk of only four of 18 mothers. Similarly, antiviral IgG and IgM antibodies were not generally detected after the first post-partum week. Differences in antibody secretion among mothers did not correlate with differences in total protein or total immunoglobulin secretion, and appeared to reflect maternal immune status. In one mother a marked rise in specific antiviral IgA and IgG secretions during the second and third months of lactation suggested a response to virus infection. The relevance of maternal immunity and colostral and milk antiviral antibody to protection of breast-fed babies from RS-virus bronchiolitis is discussed.

  18. Identification and characterization of human eosinophil cationic protein by an epitope-specific antibody. (United States)

    Boix, E; Carreras, E; Nikolovski, Z; Cuchillo, C M; Nogués, M V


    The eosinophil cationic protein (ECP) is a basic secretion protein involved in the immune response system. ECP levels in biological fluids are an indicator of eosinophil-specific activation and degranulation and are currently used for the clinical monitoring and diagnosis of inflammatory disorders. A polyclonal epitope-specific antibody has been obtained by immunizing rabbits with a conjugated synthetic peptide. A sequence corresponding to a large exposed loop in the human ECP three-dimensional structure (D115-Y122) was selected as a putative antigenic epitope. The antibody was purified on an affinity column using recombinant ECP (rECP) as antigen. The antibody (D112-P123 Ab) specifically recognizes rECP and its native glycosylated and nonglycosylated forms in plasma, granulocytes, and sputum. The antibody detects as little as 1 ng of rECP, can be used both in reducing and nonreducing conditions, and does not cross-react with the highly homologous eosinophil-derived neurotoxin or other proteins of the pancreatic ribonuclease superfamily.

  19. Construction of a Semisynthetic Human VH Single-Domain Antibody Library and Selection of Domain Antibodies against α-Crystalline of Mycobacterium tuberculosis. (United States)

    Hairul Bahara, Nur Hidayah; Chin, Siang Tean; Choong, Yee Siew; Lim, Theam Soon


    The use of human variable heavy (VH) domain antibodies has been on the rise due to their small scaffold size and simple folding mechanism. A highly diverse library is largely dependent on the diversity introduced within the complementarity-determining region (CDR) cassettes. Here we introduced diversity with the use of a single framework diversifying all three CDRs using tailored codons consisting of degenerate trinucleotides (NNK). The length of the degeneracy in the CDRs was also taken into consideration based on the most frequently occurring length of CDRs and the canonical confirmation for each antibody subfamily. The semisynthetic human VH domain genes were assembled in a single pot using a temperature cascading process. The affinity selection process with Mycobacterium tuberculosis (MTb) α-crystalline was done using a semiautomated process. Enrichment of target-specific clones was observed with successful identification of monoclonal VH domain antibodies for MTb α-crystalline. In short, the semisynthetic library generated was able to select monoclonal VH domain antibodies against full MTb α-crystalline protein with complete semisynthetic CDRs displayed on a single scaffold. The library has the potential to be applied for the isolation of antibodies against other pathogenic proteins.

  20. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer (United States)

    Willett, Christopher G; Boucher, Yves; di Tomaso, Emmanuelle; Duda, Dan G; Munn, Lance L; Tong, Ricky T; Chung, Daniel C; Sahani, Dushyant V; Kalva, Sanjeeva P; Kozin, Sergey V; Mino, Mari; Cohen, Kenneth S; Scadden, David T; Hartford, Alan C; Fischman, Alan J; Clark, Jeffrey W; Ryan, David P; Zhu, Andrew X; Blaszkowsky, Lawrence S; Chen, Helen X; Shellito, Paul C; Lauwers, Gregory Y; Jain, Rakesh K


    The effects of vascular endothelial growth factor (VEGF) blockade on the vascular biology of human tumors are not known. Here we show here that a single infusion of the VEGF-specific antibody bevacizumab decreases tumor perfusion, vascular volume, microvascular density, interstitial fluid pressure and the number of viable, circulating endothelial and progenitor cells, and increases the fraction of vessels with pericyte coverage in rectal carcinoma patients. These data indicate that VEGF blockade has a direct and rapid antivascular effect in human tumors. PMID:14745444

  1. Production and characterization of murine monoclonal anti-human DNase II antibodies, and their use for immunoaffinity purification of DNase II from human liver and urine. (United States)

    Nakajima, Tamiko; Yasuda, Toshihiro; Takeshita, Haruo; Mori, Shinjiro; Mogi, Kouichi; Kaneko, Yasushi; Nakazato, Emiko; Kishi, Koichiro


    Four murine monoclonal anti-human deoxyribonuclease II (DNase II) antibodies were obtained from BALB/c mice immunized with human DNase II purified from human liver. Both single radial enzyme diffusion (SRED) and DNA-cast polyacrylamide gel electrophoresis (DNA-cast PAGE) were very useful for obtaining the DNase II-specific antibodies. All of the antibodies showed specific inhibition of human DNase II enzyme activity and specific immunostaining of the 32-kDa enzyme band, which is one of the three non-identical subunits of human DNase II molecule separated by sodium dodecyl sulfate (SDS)-PAGE followed by blotting on a transfer membrane. A formyl-cellulofine resin conjugated with each antibody specifically adsorbed and efficiently desorbed the active DNase II enzyme. Insertion of the immunoaffinity step in our purification procedure made the purification of human DNase II easier, faster and more effective than the conventional procedure.

  2. Identification of a human monoclonal antibody to replace equine diphtheria antitoxin for treatment of diphtheria intoxication. (United States)

    Sevigny, Leila M; Booth, Brian J; Rowley, Kirk J; Leav, Brett A; Cheslock, Peter S; Garrity, Kerry A; Sloan, Susan E; Thomas, William; Babcock, Gregory J; Wang, Yang


    Diphtheria antitoxin (DAT) has been the cornerstone of the treatment of Corynebacterium diphtheriae infection for more than 100 years. Although the global incidence of diphtheria has declined steadily over the last quarter of the 20th century, the disease remains endemic in many parts of the world, and significant outbreaks still occur. DAT is an equine polyclonal antibody that is not commercially available in the United States and is in short supply globally. A safer, more readily available alternative to DAT would be desirable. In the current study, we obtained human monoclonal antibodies (hMAbs) directly from antibody-secreting cells in the circulation of immunized human volunteers. We isolated a panel of diverse hMAbs that recognized diphtheria toxoid, as well as a variety of recombinant protein fragments of diphtheria toxin. Forty-five unique hMAbs were tested for neutralization of diphtheria toxin in in vitro cytotoxicity assays with a 50% effective concentration of 0.65 ng/ml for the lead candidate hMAb, 315C4. In addition, 25 μg of 315C4 completely protected guinea pigs from intoxication in an in vivo lethality model, yielding an estimated relative potency of 64 IU/mg. In comparison, 1.6 IU of DAT was necessary for full protection from morbidity and mortality in this model. We further established that our lead candidate hMAb binds to the receptor-binding domain of diphtheria toxin and physically blocks the toxin from binding to the putative receptor, heparin-binding epidermal growth factor-like growth factor. The discovery of a specific and potent human neutralizing antibody against diphtheria toxin holds promise as a potential therapeutic.

  3. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses. (United States)

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E


    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  4. 15th International Conference on Human Antibodies and Hybridomas. 14-16 April 2010, Tiara Park Atlantico Hotel, Porto, Portugal. (United States)

    Kotlan, Beatrix


    Antibodies and antibody conjugates are currently one of the largest classes of new drug entities under development. These versatile molecules are being investigated for the treatment of many pathological conditions, such as cancer and infectious, inflammatory and autoimmune diseases. Antibodies can exert biological effects as naked antibodies by themselves, or can be used as delivery agents conjugated with various drugs (e.g., immunoconjugates) and as tools of multistep targeting. Site-specific delivery of therapeutic agents has been the ultimate goal of the pharmaceutical industry, as it has the potential to maximize drug efficiency while minimizing side effects. Antibodies have much potential for this objective. Thus, it is useful to summarize some of the main strategies currently being employed for the development of these diverse therapeutic molecules and to highlight the recent novelties in the field. These goals were the focus of the 15th International Conference on Human Antibodies and Hybridomas, held during 14-16 April 2010 in Porto, Portugal.

  5. Development of a sensitive and specific epitope-blocking ELISA for universal detection of antibodies to human enterovirus 71 strains.

    Directory of Open Access Journals (Sweden)

    Fang He

    Full Text Available BACKGROUND: Human Enterovirus 71 (EV71 is a common cause of hand, foot and mouth disease (HFMD in young children. It is often associated with severe neurological diseases and mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no efficient universal antibody test available to detect EV71 infections. METHODOLOGY/PRINCIPAL FINDING: In the present study, an epitope-blocking ELISA was developed to detect specific antibodies to human EV71 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (Mab 1C6 that specifically binds to capsid proteins in whole EV71 viruses without any cross reaction to any EV71 capsid protein expressed alone. The sensitivity and specificity of the epitope-blocking ELISA for EV71 was evaluated and compared to microneutralization using immunized animal sera to multiple virus genotypes of EV71 and coxsackieviruses. Further, 200 serum sample from human individuals who were potentially infected with EV71 viruses were tested in both the blocking ELISA and microneutralization. Results indicated that antibodies to EV71 were readily detected in immunized animals or human sera by the epitope blocking ELISA whereas specimens with antibodies to other enteroviruses yielded negative results. This assay is not only simpler to perform but also shows higher sensitivity and specificity as compared to microneutralization. CONCLUSION: The epitope-blocking ELISA based on a unique Mab 1C6 provided highly sensitive and 100% specific detection of antibodies to human EV71 viruses in human sera.

  6. Development of a PBPK model for monoclonal antibodies and simulation of human and mice PBPK of a radiolabelled monoclonal antibody. (United States)

    Heiskanen, Tomi; Heiskanen, Tomas; Kairemo, Kalevi


    Physiology based pharmacokinetic (PBPK) modeling and simulation is a useful method for prediction of biodistribution of both macromolecules and small molecules. It can enhance our understanding of the underlying mechanisms of biodistribution and hence may help in rational design of macromolecules used as diagnostic and therapeutic agents. In this review we discuss PBPK modeling and simulation of a radiolabelled Monoclonal Antibody ((111)In-DOTA-hAFP31 IgG) ("MAB") in mice without tumor and in a human with tumor. This study is part of Xemet Co.'s effort to develop a more accurate and reliable PBPK model and simulation platform, which is applicable both for small molecules and macromolecules. The simulated results were fitted to experimental time series data by varying parameters which were not fixed a priori. It was demonstrated that the PBPK model describes the main features of the pharmacokinetics of the studied systems. It was also shown that simulation can be used for evaluating the parameters of the system and scaling up the pharmacokinetics of MAB from mice to man. We identified several areas of improvement and further development needed to improve the accuracy of PBPK simulation for MAB and other macromolecules. It was concluded that the transvascular permeabilities are the most important parameters and more research is needed to enable prediction of permeabilities from molecular characteristics of macromolecules. It would also be necessary to understand better and describe with a more detailed model the microstructure of the tumor and to measure or predict the antigen concentration in tumor. Non-specific, non-saturable binding in other organs/tissues should be understood better and the kinetic constants of the binding should be measured experimentally. Although the metabolism and clearance were neglected in this study they need to be included in more detailed studies. Also the intracellular trafficking of macromolecules, which was not included in this study

  7. Humans Have Antibodies against a Plant Virus: Evidence from Tobacco Mosaic Virus (United States)

    Liu, Ruolan; Vaishnav, Radhika A.; Roberts, Andrew M.; Friedland, Robert P.


    Tobacco mosaic virus (TMV), a widespread plant pathogen, is found in tobacco (including cigarettes and smokeless tobacco) as well as in many other plants. Plant viruses do not replicate or cause infection in humans or other mammals. This study was done to determine whether exposure to tobacco products induces an immune response to TMV in humans. Using a sandwich ELISA assay, we detected serum anti-TMV antibodies (IgG, IgG1, IgG3, IgG4, IgA, and IgM) in all subjects enrolled in the study (20 healthy smokers, 20 smokeless-tobacco users, and 20 non-smokers). Smokers had a higher level of serum anti-TMV IgG antibodies than non-smokers, while the serum level of anti-TMV IgA from smokeless tobacco users was lower than smokers and non-smokers. Using bioinformatics, we also found that the human protein TOMM40L (an outer mitochondrial membrane 40 homolog – like translocase) contains a strong homology of six contiguous amino acids to the TMV coat protein, and TOMM40L peptide exhibited cross-reactivity with anti-TMV antibodies. People who smoke cigarettes or other tobacco products experience a lower risk of developing Parkinson’s disease, but the mechanism by which this occurs is unclear. Our results showing molecular mimicry between TMV and human TOMM40L raise the question as to whether TMV has a potential role in smokers against Parkinson’s disease development. The potential mechanisms of molecular mimicry between plant viruses and human disease should be further explored. PMID:23573274

  8. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. (United States)

    Planagumà, Jesús; Leypoldt, Frank; Mannara, Francesco; Gutiérrez-Cuesta, Javier; Martín-García, Elena; Aguilar, Esther; Titulaer, Maarten J; Petit-Pedrol, Mar; Jain, Ankit; Balice-Gordon, Rita; Lakadamyali, Melike; Graus, Francesc; Maldonado, Rafael; Dalmau, Josep


    Anti-N-methyl D-aspartate receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder that associates with prominent memory and behavioural deficits. Patients' antibodies react with the N-terminal domain of the GluN1 (previously known as NR1) subunit of NMDAR causing in cultured neurons a selective and reversible internalization of cell-surface receptors. These effects and the frequent response to immunotherapy have suggested an antibody-mediated pathogenesis, but to date there is no animal model showing that patients' antibodies cause memory and behavioural deficits. To develop such a model, C57BL6/J mice underwent placement of ventricular catheters connected to osmotic pumps that delivered a continuous infusion of patients' or control cerebrospinal fluid (flow rate 0.25 µl/h, 14 days). During and after the infusion period standardized tests were applied, including tasks to assess memory (novel object recognition in open field and V-maze paradigms), anhedonic behaviours (sucrose preference test), depressive-like behaviours (tail suspension, forced swimming tests), anxiety (black and white, elevated plus maze tests), aggressiveness (resident-intruder test), and locomotor activity (horizontal and vertical). Animals sacrificed at Days 5, 13, 18, 26 and 46 were examined for brain-bound antibodies and the antibody effects on total and synaptic NMDAR clusters and protein concentration using confocal microscopy and immunoblot analysis. These experiments showed that animals infused with patients' cerebrospinal fluid, but not control cerebrospinal fluid, developed progressive memory deficits, and anhedonic and depressive-like behaviours, without affecting other behavioural or locomotor tasks. Memory deficits gradually worsened until Day 18 (4 days after the infusion stopped) and all symptoms resolved over the next week. Accompanying brain tissue studies showed progressive increase of brain-bound human antibodies, predominantly in the hippocampus (maximal on Days

  9. Isolation and characterization of cytotoxic effector cells and antibody producing cells from human intestine. (United States)

    MacDermott, R P


    We have examined the ability of intestinal and peripheral blood mononuclear cells isolated from patients with inflammatory bowel disease to mediate killing against cell line targets in spontaneous, antibody-dependent, lectin-induced, and interferon-induced cell-mediated cytotoxicity assays, as well as responsiveness in the allogeneic mixed leukocyte reaction, and effector capabilities in cell-mediated lympholysis. IMC were poor mediators of spontaneous or antibody-dependent cellular cytotoxicity with cell line cells as targets (in comparison to normal PBMC, but were capable of killing antibody coated chicken red blood cells. Although IMC were capable of responding to allogeneic cell surface antigens in the mixed leukocyte reaction, they did not exhibit effector function in cell-mediated lympholysis. Mitogenic lectins induced cell-mediated cytotoxicity by isolated intestinal mononuclear cells from controls and patients. HFIF induces cytotoxicity by control but not inflammatory bowel disease intestinal cells. Pokeweed mitogen was the lectin which induced the greatest amount of killing against human cell line targets. We therefore speculate that exogenous agents, or endogenous factors released during viral infection, could play a role in inducing cell mediated cytotoxic damage to the intestine in inflammatory bowel disease patients. In addition, the functional differences between IMC and PBMC indicate that intestinal MNC may have unique cell capabilities which must be better understood prior to the delineation of immunopathologic events in solid organ tissues. We have also examined the secretion of IgA, IgM, and IgG by isolated human IMC, human bone marrow MNC from rib specimens, and PBMC from patients with CD, UC, SLE, or Henoch-Schoenlein purpura (HSP). Control IMC exhibited high spontaneous secretion of IgA, while intestinal MNC from UC and CD patients exhibited only modest increases in IgA secretion. PBMC from patients with CD, UC, SLE, or HSP exhibited markedly

  10. A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding.

    Directory of Open Access Journals (Sweden)

    Hadassah Sade

    Full Text Available We have adapted an in vitro model of the human blood-brain barrier, the immortalized human cerebral microvascular endothelial cells (hCMEC/D3, to quantitatively measure protein transcytosis. After validating the receptor-mediated transport using transferrin, the system was used to measure transcytosis rates of antibodies directed against potential brain shuttle receptors. While an antibody to the insulin-like growth factor 1 receptor (IGF1R was exclusively recycled to the apical compartment, the fate of antibodies to the transferrin receptor (TfR was determined by their relative affinities at extracellular and endosomal pH. An antibody with reduced affinity at pH5.5 showed significant transcytosis, while pH-independent antibodies of comparable affinities at pH 7.4 remained associated with intracellular vesicular compartments and were finally targeted for degradation.

  11. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, James R.R.; Zhang, Ruijun; Khurana, Surender; King, Lisa R.; Manischewitz, Jody; Golding, Hana; Dormitzer, Philip R.; Haynes, Barton F.; Walter, Emmanuel B.; Moody, M. Anthony; Kepler, Thomas B.; Liao, Hua-Xin; Harrison, Stephen C. (Harvard-Med); (Novartis); (US-FDA); (Duke)


    Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocket on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.

  12. Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack. (United States)

    Bhatnagar, Deepika; Kaur, Inderpreet; Kumar, Ashok


    An ultrasensitive cardiac troponin I antibody conjugated with graphene quantum dots (GQD) and polyamidoamine (PAMAM) nanohybrid modified gold electrode based sensor was developed for the rapid detection of heart attack (myocardial infarction) in human. Screen printed gold (Au) electrode was decorated with 4-aminothiophenol for amine functionalization of the Au surface. These amino groups were further coupled with carboxyl functionalities of GQD with EDC-NHS reaction. In order to enhance the sensitivity of the sensor, PAMAM dendrimer was successively embedded on GQD through carbodiimide coupling to provide ultra-high surface area for antibody immobilization. The activated cardiac troponin I (cTnI) monoclonal antibody was immobilized on PAMAM to form nanoprobe for sensing specific heart attack marker cTnI. Various concentrations of cardiac marker, cTnI were electrochemically measured using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in human blood serum. The modifications on sensor surface were characterized by FTIR and AFM techniques. The sensor is highly specific to cTnI and showed negligible response to non-specific antigens. The sensitivity of the sensor was 109.23μAcm(-2)μg(-1) and lower limit of detection of cTnI was found 20fgmL(-1).

  13. Production and characterization of antibodies against irradiated human erythrocytes membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Amancio, Francisco F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]|[Pernambuco Univ., Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia; Andrade Junior, Heitor F. [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Inst. de Medicina Tropical


    Gamma irradiation affects people in several situations, with few if any sensitive biological assay of its action. Nucleic acids and proteins are affected by radiation, but only the former was used in most dosimetric techniques. The irradiation of proteins promotes structural modifications attributed to free radicals from water radiolysis. Theoretically, antibodies induced by irradiated proteins could recognize these radical-related new epitopes, allowing their use as a probe. Human erythrocyte membrane proteins (HEMP), few and well defined molecules, are certainly exposed to radiation, being the ideal target. With this rationale, we study the production of antibodies in mice immunized with {sup 60} Co irradiated HEMPs. Menbranes from hypotonic lysis with differential centrifugation of A+ erythrocytes, were irradiated in a Gammacell 220 with 400, 800 and 1600 Gy, and used as immunogen for Balb/c mice, after SDS-PAGE. Irradiated HEMP induced antibodies recognize only irradiated human erthrocytes in an intact cell indirect immunofluorescence assay (ICIIFA). When used in Wester-blot against non-irradiated HEMPs, those sera recognize most proteins, suggesting a pool of abs directed both to native, as detected by Western Blot, or irradiated, as detected by ICIFA, HEMPs. Those data confirmed our assumptions, allowing the use of those abs in the search for a method of biological dosimetry. (author). 18 refs., 3 figs.

  14. Monoclonal antibodies to human colorectal tumor-associated antigens: improved elicitation and subclass restriction. (United States)

    Morgan, A C; Woodhouse, C S; Knost, J A; Abrams, P G; Clarke, G C; Arthur, L O; McIntyre, R; Ochs, J J; Foon, K A; Oldham, R K


    Monoclonal antibodies to tumor-associated antigens (TAA) of human colorectal cancer were elicited using immunosorbents of lectins combined with peripheral protein extracts of xenografted colon adenocarcinoma. This method of immunization was compared with whole cells from surgical specimens and to crude membranes from xenografted tumors. The immunosorbent immunogens were superior to the other immunogens in three ways: (1) the number of hybrids reactive with colon tumor cells or extracts, but not with lymphoid cells or extracts, (2) the number of stable hybrids after cloning, and (3) the number of hybridoma clones reactive with tissue sections of colon tumors, but not normal colonic mucosa. In addition, lectin immunosorbents elicited primarily IgG antibodies, especially IgG3, with almost 50% of the clones of interest reacting to seemingly less immunogenic glycoproteins. The improved elicitation of monoclonal antibodies to TAA by the use of lectin immunosorbents and peripheral protein extracts has considerable potential for generating reagents useful in diagnosis and therapy of human tumors.

  15. Cross-reactivity of anti-H pylori antibodies with membrane antigens of human erythrocytes

    Institute of Scientific and Technical Information of China (English)

    Feng-Hua Guo; Fan-Ling Meng; Jian-Zhong Zhang; Xiao-Mei Yan; Chun-Xiang Fan; Fei Zhao; Yuan Hu; Di Xiao; Xun Zeng; Mao-Jun Zhang; Li-Hua He


    AIM: To investigate whether anti-H pylori antibodies have cross-reaction with antigens of erythrocyte membrane.METHODS: Blood samples were collected from 14 volunteers (8 positive and 6 negative for H pylori detected by 13C-urea breath test) of the general population. Erythrocyte membrane proteins of the subjects were examined by Western blot using antiH pylori serum. The proteins related to the positive bands were identified by mass spectrum analysis.RESULTS: Anti-H pylori antibodies had cross-reaction with the proteins of about 50 kDa of erythrocyte membranes in all samples independent of H pylori infection. One protein in the positive band was identified as Chain S, the crystal structure of the cytoplasmic domain of human erythrocyte Band-3 protein.CONCLUSION: Anti-H pylori antibodies cross-react with some antigens of human erythrocyte membrane, which may provide a clue for the relationship between H pylori infection and vascular disorders.

  16. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment. (United States)

    Kirley, Terence L; Norman, Andrew B


    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region.

  17. Effect of variations in peptide sequence on anti-human milk fat globule membrane antibody reactions. (United States)

    Xing, P X; Reynolds, K; Pietersz, G A; McKenzie, I F


    Monoclonal anti-mucine antibodies BC1, BC2 and BC3 produced using human milk fat globule membrane react with a synthetic peptide p1-24 (PDTRPAPGSTAPPAHGVTSAPDTR) representing the repeating amino acid sequence of the mucin core protein. The minimum epitope recognized by these three monoclonal antibodies (mAb) in p1-24 was contained in the five amino acids APDTR. To analyse the variation of position of the epitope, various modifications of the APDTR sequence were made by synthesizing peptides and testing by direct binding and inhibition enzyme-linked immunosorbent assays. Firstly, peptides p13-32 and C-p13-32, in which the epitope APDTR was placed in the middle instead of the C-terminal as in p1-24, were examined. These peptides had a greater reaction with mAb BC1, BC2 and BC3 compared with the reaction with p1-24. Secondly, A-p1-24 and TSA-p1-24 were made wherein two APDTR epitopes were present--these peptides were shown to bind two IgG antibody molecules. Finally, the contribution of each amino acid in the APDTR epitope was studied using the pepscan polyethylene rods, making all 20 of the amino acid substitutions in each position for SAPDTR (the minimum epitope APDTR with an adjacent amino acid S). In the 120 peptides examined there were some 'permissible' substitutions in A, D and T but not in P or R for BC1 and BC2; there were more 'permissible' substitutions for BC3; different substitution patterns were found with each antibody and some substitutions gave an increased reaction compared with the native peptide SAPDTR. The studies are of value in analysing the reaction of antibodies with epitopes expressed in breast cancer and in determining the antigenicity of synthetic peptides.

  18. Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type 1 (United States)

    He, Xiao M.; Rueker, Florian; Casale, Elena; Carter, Daniel C.


    The three-dimensional structure of a human monoclonal antibody (Fab), which binds specifically to a major epitope of the transmembrane protein gp41 of the human immunodeficiency virus type 1, has been determined by crystallographic methods to a resolution of 2.7 A. It has been previously determined that this antibody recognizes the epitope SGKLICTTAVPWNAS, belongs to the subclass IgG1 (kappa), and exhibits antibody-dependent cellular cytotoxicity. The quaternary structure of the Fab is in an extended conformation with an elbow bend angle between the constant and variable domains of 175 deg. Structurally, four of the hypervariable loops can be classified according to previously recognized canonical structures. The third hypervariable loops of the heavy (H3) and light chain (L3) are structurally distinct. Hypervariable loop H3, residues 102H-109H, is unusually extended from the surface. The complementarity-determining region forms a hydrophobic binding pocket that is created primarily from hypervariable loops L3, H3, and H2.

  19. Detection of human κ-opioid antibody using microresonators with integrated optical readout. (United States)

    Timurdogan, Erman; Ozber, Natali; Nargul, Sezin; Yavuz, Serhat; Kilic, M Salih; Kavakli, I Halil; Urey, Hakan; Alaca, B Erdem


    Label-free detection of the interaction between hexahistidine-tagged human κ-opioid receptor membrane protein and anti-His antibody is demonstrated in liquid by an optical microelectromechanical system utilizing electromagnetically actuated microresonators. Shift in resonance frequency due to accretion of mass on the sensitive surface of microresonators is monitored via an integrated optical readout. A frequency resolution of 2Hz is obtained. Together with a sensitivity of 7 ppm/(ng/ml) this leads to a minimum detectable antibody concentration of 5.7 ng/ml for a 50-kHz device. The measurement principle is shown to impart immunity to environmental noise, facilitate operation in liquid media and bring about the prospect for further miniaturization of actuator and readout leading to a portable biochemical sensor. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Flow-Cytometric Isolation of Human Antibodies from a Nonimmune Saccharomyces cerevisiae Surface Display Library

    Energy Technology Data Exchange (ETDEWEB)

    Feldhaus, Michael (BATTELLE (PACIFIC NW LAB)); Siegel, Robert W.(BATTELLE (PACIFIC NW LAB)); Opresko, Lee (BATTELLE (PACIFIC NW LAB)); Coleman, James R.(BATTELLE (PACIFIC NW LAB)); Feldhaus, Jane M.(BATTELLE (PACIFIC NW LAB)); Yeung, Yik A.(Massachusetts Institute Of Tec); Cochran, Jennifer R.(Massachusetts Institute Of Tec); Heinzelman, Peter (Massachusetts Institute Of Tec); Colby, David (Massachusetts Institute Of Tec); Swers, Jeffrey (Massachusetts Institute Of Tec); Graff, Christilyn (Massachusetts Institute Of Tec); Wiley, H Steven (BATTELLE (PACIFIC NW LAB)); Wittrup, K D.(Massachusetts Institute Of Tec)


    A nonimmune library of 109 human antibody scFv fragments has been cloned and expressed on the surface of yeast, and nanomolar-affinity scFvs routinely obtained by magnetic bead screening and flow cytometric sorting. The yeast library can be amplified 1010-fold without measurable loss of clonal diversity, enabling effectively indefinite expansion of the library. The expression, stability, and antigen binding properties of more than 50 isolated scFv clones were assessed directly on the yeast cell surface by immunofluorescent labeling and flow cytometry, obviating separate subcloning, expression, and purification steps and thereby expediting the isolation of novel affinity reagents. The ability to use multiplex library screening demonstrates the utility of this approach for high throughput antibody isolation for proteomics applications.

  1. Protein crystallization with microseed matrix screening: application to human germline antibody Fabs

    Energy Technology Data Exchange (ETDEWEB)

    Obmolova, Galina, E-mail:; Malia, Thomas J.; Teplyakov, Alexey; Sweet, Raymond W.; Gilliland, Gary L., E-mail: [Janssen Research and Development LLC, 1400 McKean Road, Spring House, PA 19477 (United States)


    The power of microseed matrix screening is demonstrated in the crystallization of a panel of antibody Fab fragments. The crystallization of 16 human antibody Fab fragments constructed from all pairs of four different heavy chains and four different light chains was enabled by employing microseed matrix screening (MMS). In initial screening, diffraction-quality crystals were obtained for only three Fabs, while many Fabs produced hits that required optimization. Application of MMS, using the initial screens and/or refinement screens, resulted in diffraction-quality crystals of these Fabs. Five Fabs that failed to give hits in the initial screen were crystallized by cross-seeding MMS followed by MMS optimization. The crystallization protocols and strategies that resulted in structure determination of all 16 Fabs are presented. These results illustrate the power of MMS and provide a basis for developing future strategies for macromolecular crystallization.

  2. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. (United States)

    Misasi, John; Gilman, Morgan S A; Kanekiyo, Masaru; Gui, Miao; Cagigi, Alberto; Mulangu, Sabue; Corti, Davide; Ledgerwood, Julie E; Lanzavecchia, Antonio; Cunningham, James; Muyembe-Tamfun, Jean Jacques; Baxa, Ulrich; Graham, Barney S; Xiang, Ye; Sullivan, Nancy J; McLellan, Jason S


    Ebola virus causes hemorrhagic fever with a high case fatality rate for which there is no approved therapy. Two human monoclonal antibodies, mAb100 and mAb114, in combination, protect nonhuman primates against all signs of Ebola virus disease, including viremia. Here, we demonstrate that mAb100 recognizes the base of the Ebola virus glycoprotein (GP) trimer, occludes access to the cathepsin-cleavage loop, and prevents the proteolytic cleavage of GP that is required for virus entry. We show that mAb114 interacts with the glycan cap and inner chalice of GP, remains associated after proteolytic removal of the glycan cap, and inhibits binding of cleaved GP to its receptor. These results define the basis of neutralization for two protective antibodies and may facilitate development of therapies and vaccines.

  3. Stereospecific antibodies to methadone. I. Radioimmunoassay of d,l-methadone in human serum. (United States)

    Bartos, F; Olsen, G D; Leger, R N; Bartos, D


    Anti-d,l-methadone antibodies were produced in rabbits immunized with d,l-methadol-hemisuccinate thyroglobulin conjugate. Using the antiserum, a radioimmunoasay (RIA) for determination of d,l-methadone in human serum has been developed and is described. Concentration of d,l-methadone of 1.4 pmol in a native serum sample (volume 0.1 ml or less) could be measured directly by RIA. The antibodies crossreact 100% with d,l-methadone, 50% with d-methadone, 50% with l-methadone and 100% with alpha-d-methadol. No crossreactivity was found with alpha 1-methadol, morphine, meperidine, dextropropoxyphene, 2-ethyl-5-methyl-3,3-diphenyl-l-pyrroline and 2-ethylidene-l, 5-dimethyl-3,3-diphenylpyrrolidene. High sensitivity and small sample requirements make this method suitable for future monitoring of patients on methadone maintenance and for studies where other procedures have lack of sensitivity.

  4. Production of the Polyclonal Anti-human Metallothionein 2A Antibody with Recombinant Protein Technology

    Institute of Scientific and Technical Information of China (English)

    Faiz M.M.T.MARIKAR; Qi-Ming SUN; Zi-Chun HUA


    Metallothionein 2A (MT2A) is a small stress response protein that can be induced by exposure to toxic metals. It is highly expressed in breast cancer cells. In this study, the eDNA encoding the human MT2A protein was expressed as glutathione S-transferase (GST) fusion protein in Escherichia coli.Recombinant MT2A proteins were loaded onto 12% sodium dodecylsulfate-polyacrylamide gel and separated by electrophoresis, the recombinant protein was visualized by Coomassie blue staining and the 33 kDa recombinant GST-MT2A fusion protein band was cut out from the gel. The gel slice was minced and used to generate polyclonal antisera. Immunization of rabbit against MT2A protein allowed the production of high titer polyclonal antiserum. This new polyclonal antibody recognized recombinant MT2A protein in Western blot analysis. This low-cost antibody will be useful for detection in various immuno-assays.

  5. Purification of full-length human Pregnane and Xenobiotic Receptor: polyclonal antibody preparation for immunological characterization

    Institute of Scientific and Technical Information of China (English)

    Mallampati SARADHI; Biji KRISHNA; Gauranga MUKHOPADHYAY; Rakesh K TYAGI


    Pregnane and Xenobiotic Receptor (PXR; or Steroid and Xenobiotic Receptor, SXR), a new member of the nuclear receptor superfamily, is thought to modulate a network of genes that are involved in xenobiotic metabolism and elimination. To further explore the role of PXR in body's homeostatic mechanisms, we for the first time, report successful prokaryotic expression and purification of full-length PXR and preparation of polyclonal antibody against the whole protein. Thefull-length cDNA encoding a 434 amino acids protein was sub-cloned into prokaryotic expression vector, pET-30b and transformed into E. coli BL21 (DE3) cells for efficient over expression. The inclusion body fraction, containing the expressed recombinant protein, was purified first by solubilizing in sarcosine extraction buffer and then by affinity column chromatography using Ni-NTA His-Bind matrix. The efficacy of anti-PXR antibody was confirmed by immunocytology, Western blot analysis, EMSA and immunohistochemistry. The antibody obtained was capable of detecting human and mouse PXR with high specificity and sensitivity. Immunofluorescence staining of COS-1 cells transfected with human or mouse PXR showed a clear nuclear localization. Results from immunohistochemistry showed that level of PXR in liver sections is immunologically detectable in the nuclei. Similar to exogenously transfected PXR, Western blot analysis of cell extract from HepG2 and COLO320DM cells revealed a major protein band for endogenous PXR having the expected molecular weight of 50 kDa. Relevance of other immunodetectable bands with reference to PXR isoforms and current testimony are evaluated. Advantages of antibody raised against full-length PXR protein for functional characterization of receptor is discussed and its application for clinical purposes is envisaged.

  6. Reactivity of Human Preformed Natural Antibodies with Various Porcine Pancreatic Cells

    Institute of Scientific and Technical Information of China (English)

    张伟杰; 熊沛; 刘绍春


    The reactivity of human preformed natural antibodies (PNAbs) with various porcine pancreatic cells and its isotypes was investigated. Eighteen serum samples from patients with insulin-dependent diabetes mellitus (IDDM) and 20 serum samples from healthy human subjects were collected. The frozen sections of the pig pancreas were incubated with these sera, and subsequently incubated with FITC-conjugated goat antihuman IgG and IgM monoclonal antibodies. The reactivity of human PNAbs with various porcine pancreatic cells was determined by indirect immunofluorescence staining technique. The results showed that 55.6 % of IDDM patients and 55.0 % of healthy human individuals contained PNAbs against porcine endocrine cells. However, the percentage of strongly reacting sera in the patient group was significantly increased as compared with that in the control group. All used sera from IDDM patients and 95 % of sera from healthy controls could react to one or more of the various pancreatic cell types, including: endocrine cells, exocrine cells, vascular endothelial cells, ductal epithelial cells and macrophages. The isotypes of PNAbs contained both IgG and IgM. In view of strongly positive reactivity of PNAbs with various porcine pancreatic cells, pretransplantly cross-matching test and graft pretreatment may be necessary for survival of islet transplants.

  7. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo

    NARCIS (Netherlands)

    A.F. Labrijn; A.O. Buijsse; E.T.J. van den Bremer; A.Y.W. Verwilligen; W.K. Bleeker; S.J. Thorpe; J. Killestein; C.H. Polman; R.C. Aalberse; J. Schuurman; J.G.J. van de Winkel; P.W.H.I. Parren


    Two humanized IgG4 antibodies, natalizumab and gemtuzumab, are approved for human use, and several others, like TGN1412, are or have been in clinical development. Although IgG4 antibodies can dynamically exchange half-molecules(1), Fab-arm exchange with therapeutic antibodies has not been demonstrat

  8. A murine monoclonal anti-idiotypic antibody detects a common idiotope on human, mouse and rabbit antibodies to allergen Lol p IV. (United States)

    Zhou, E M; Dzuba-Fischer, J M; Rector, E S; Sehon, A H; Kisil, F T


    A syngeneic mouse monoclonal anti-idiotypic antibody (anti-Id), designated as B1/1, was generated against a monoclonal antibody (MoAb 91) specific for Ryegrass pollen allergen Lol p IV. This anti-Id recognized an idiotope (Id) that was also present on other monoclonal antibodies with the same specificity as MoAb 91. Observations that (i) the anti-Id inhibited the binding of MoAb 91 to Lol p IV and (ii) the Id-anti-Id interaction could be inhibited by Lol p IV indicated that the Id was located within or near the antigen combining site. These properties served to characterize B1/1 as an internal image anti-Id. Evidence that an immune response in different species to Lol p IV elicits the formation of antibodies which express a common Id was provided by the observations that (i) the Id-anti-Id interactions could be inhibited by mouse, human and rabbit antisera to Lol p IV and (ii) the binding of these antisera to Lol p IV could be inhibited by the anti-Id. Interestingly, the internal image anti-Id B1/1 also recognized an Id on a monoclonal antibody which was directed to an epitope of Lol p IV, different from that recognized by MoAb 91.

  9. The Efficacy of Humanized Antibody against the Sporothrix Antigen, gp70, in Promoting Phagocytosis and Reducing Disease Burden (United States)

    de Almeida, José R. F.; Santiago, Karla L.; Kaihami, Gilberto H.; Maranhão, Andrea Q.; de Macedo Brígido, Marcelo; de Almeida, Sandro R.


    Sporotrichosis is a subcutaneous mycosis distributed worldwide and is frequently reported in countries with tropical climates, as Latin America countries. We previously demonstrated that mice with sporotrichosis produce specific antibodies against a 70-kDa fungal protein, indicating that specific antibodies against this molecule may help to control the sporotrichosis. IgG1 monoclonal antibody was generated, and called mAbP6E7, in mice against a 70-kDa glycoprotein (gp70) of S. schenckii. The mAbP6E7 showed prophylactic and therapeutic activity against sporotrichosis. However, this antibody has a murine origin, and this can generate an immune response when administered to humans, precluding its use for a prolonged time. For its possible use in the treatment of human sporotrichosis, we humanized the mAbP6E7 by genetic engineering. Once expressed, the humanized antibodies had good stability and were able to bind to the 70-kDa cell wall antigens of Sporothrix schenckii and S. brasiliensis. The humanized P6E7 were able to opsonize S. schenckii yeasts, thus increasing the phagocytic index in human monocyte-derived macrophages. The treatment with humanized P6E7 decreased fungal burden in vivo. These data suggest that humanized P6E7 may have a therapeutic role in sporotrichosis.

  10. Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera.

    Directory of Open Access Journals (Sweden)

    Ruklanthi de Alwis


    Full Text Available Dengue viruses (DENV are mosquito-borne flaviviruses of global importance. DENV exist as four serotypes, DENV1-DENV4. Following a primary infection, individuals produce DENV-specific antibodies that bind only to the serotype of infection and other antibodies that cross-react with two or more serotypes. People exposed to a secondary DENV infection with another serotype are at greater risk of developing more severe forms of dengue disease. The increased risk of severe dengue in people experiencing repeat DENV infections appear to be due, at least in part, to the ability of pre-existing serotype cross-reactive antibodies to form virus-antibody complexes that can productively infect Fcγ receptor-bearing target cells. While the theory of antibody-dependent enhancement (ADE is supported by several human and small animal model studies, the specific viral antigens and epitopes recognized by enhancing human antibodies after natural infections have not been fully defined. We used antibody-depletion techniques to remove DENV-specific antibody sub-populations from primary DENV-immune human sera. The effects of removing specific antibody populations on ADE were tested both in vitro using K562 cells and in vivo using the AG129 mouse model. Removal of serotype cross-reactive antibodies ablated enhancement of heterotypic virus infection in vitro and antibody-enhanced mortality in vivo. Further depletion studies using recombinant viral antigens showed that although the removal of DENV E-specific antibodies using recombinant E (rE protein resulted in a partial reduction in DENV enhancement, there was a significant residual enhancement remaining. Competition ADE studies using prM-specific Fab fragments in human immune sera showed that both rE-specific and prM-specific antibodies in primary DENV-immune sera significantly contribute to enhancement of heterotypic DENV infection in vitro. Identification of the targets of DENV-enhancing antibodies should contribute to

  11. HAHA--nothing to laugh about. Measuring the immunogenicity (human anti-human antibody response) induced by humanized monoclonal antibodies applying ELISA and SPR technology. (United States)

    Nechansky, Andreas


    Immunogenicity induced by passively applied proteins is a serious issue because it is directly related to the patient's safety. The out-come of an immune reaction to a therapeutic protein can range from transient appearance of antibodies without any clinical significance to severe life threatening conditions. Within this article, enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) methodology to measure immunogenicity are compared and the pros and cons are discussed.

  12. A cocktail of humanized anti-pertussis toxin antibodies limits disease in murine and baboon models of whooping cough. (United States)

    Nguyen, Annalee W; Wagner, Ellen K; Laber, Joshua R; Goodfield, Laura L; Smallridge, William E; Harvill, Eric T; Papin, James F; Wolf, Roman F; Padlan, Eduardo A; Bristol, Andy; Kaleko, Michael; Maynard, Jennifer A


    Despite widespread vaccination, pertussis rates are rising in industrialized countries and remain high worldwide. With no specific therapeutics to treat disease, pertussis continues to cause considerable infant morbidity and mortality. The pertussis toxin is a major contributor to disease, responsible for local and systemic effects including leukocytosis and immunosuppression. We humanized two murine monoclonal antibodies that neutralize pertussis toxin and expressed them as human immunoglobulin G1 molecules with no loss of affinity or in vitro neutralization activity. When administered prophylactically to mice as a binary cocktail, antibody treatment completely mitigated the Bordetella pertussis-induced rise in white blood cell counts and decreased bacterial colonization. When administered therapeutically to baboons, antibody-treated, but not untreated control animals, experienced a blunted rise in white blood cell counts and accelerated bacterial clearance rates. These preliminary findings support further investigation into the use of these antibodies to treat human neonatal pertussis in conjunction with antibiotics and supportive care.

  13. Design and construction of a new human naïve single-chain fragment variable antibody library, IORISS1. (United States)

    Pasello, Michela; Zamboni, Silvia; Mallano, Alessandra; Flego, Michela; Picci, Piero; Cianfriglia, Maurizio; Scotlandi, Katia


    Human monoclonal antibodies are a powerful tool with increasingly successful exploitations and the single chain fragment variable format can be considered the building block for the implementation of more complex and effective antibody-based constructs. Phage display is one of the best and most efficient methods to isolate human antibodies selected from an efficient and variable phage display library. We report a method for the construction of a human naïve single-chain variable fragment library, termed IORISS1. Many different sets of oligonucleotide primers as well as optimized electroporation and ligation reactions were used to generate this library of 1.2×10(9) individual clones. The key difference is the diversity of variable gene templates, which was derived from only 15 non-immunized human donors. The method described here, was used to make a new human naïve single-chain fragment variable phage display library that represents a valuable source of diverse antibodies that can be used as research reagents or as a starting point for the development of therapeutics. Using biopanning, we determined the ability of IORISS1 to yield antibodies. The results we obtained suggest that, by using an optimized protocol, an efficient phage antibody library can be generated.

  14. Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Christian [Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway); Madshus, Inger Helene [Institute of Pathology, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway); Stang, Espen, E-mail: [Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway)


    The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: Black-Right-Pointing-Pointer Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. Black-Right-Pointing-Pointer Antibody combination causes internalization of EGFR by macropinocytosis. Black-Right-Pointing-Pointer Antibody-induced internalization of EGFR is independent of EGFR kinase activity. Black-Right-Pointing-Pointer Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.

  15. Orthobunyavirus Antibodies Among Humans in Selected Parts of the Rift Valley and Northeastern Kenya (United States)

    Odhiambo, Collins; Venter, Marietjie; Swanepoel, Robert; Sang, Rosemary


    Ngari, Bunyamwera, Ilesha, and Germiston viruses are among the mosquito-borne human pathogens in the Orthobunyavirus genus, family Bunyaviridae, associated with febrile illness. Although the four orthobunyaviruses have been isolated from mosquito and/or tick vectors sampled from different geographic regions in Kenya, little is known of human exposure in such areas. We conducted a serologic investigation to determine whether orthobunyaviruses commonly infect humans in Kenya. Orthobunyavirus-specific antibodies were detected by plaque reduction neutralization tests in 89 (25.8%) of 345 persons tested. Multivariable analysis revealed age and residence in northeastern Kenya as risk factors. Implementation of acute febrile illness surveillance in northeastern Kenya will help to detect such infections. PMID:25988444

  16. Identification of internalizing human single-chain antibodies targeting brain tumor sphere cells. (United States)

    Zhu, Xiaodong; Bidlingmaier, Scott; Hashizume, Rintaro; James, C David; Berger, Mitchel S; Liu, Bin


    Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain tumor for which there is no curative treatment to date. Resistance to conventional therapies and tumor recurrence pose major challenges to treatment and management of this disease, and therefore new therapeutic strategies need to be developed. Previous studies by other investigators have shown that a subpopulation of GBM cells can grow as neurosphere-like cells when cultured in restrictive medium and exhibits enhanced tumor-initiating ability and resistance to therapy. We report here the identification of internalizing human single-chain antibodies (scFv) targeting GBM tumor sphere cells. We selected a large naive phage antibody display library on the glycosylation-dependent CD133 epitope-positive subpopulation of GBM cells grown as tumor spheres and identified internalizing scFvs that target tumor sphere cells broadly, as well as scFvs that target the CD133-positive subpopulation. These scFvs were found to be efficiently internalized by GBM tumor sphere cells. One scFv GC4 inhibited self-renewal of GBM tumor sphere cells in vitro. We have further developed a full-length human IgG1 based on this scFv, and found that it potently inhibits proliferation of GBM tumor sphere cells and GBM cells grown in regular nonselective medium. Taken together, these results show that internalizing human scFvs targeting brain tumor sphere cells can be readily identified from a phage antibody display library, which could be useful for further development of novel therapies that target subpopulations of GBM cells to combat recurrence and resistance to treatment. (c)2010 AACR.

  17. Identification of internalizing human single chain antibodies targeting brain tumor sphere cells (United States)

    Zhu, Xiaodong; Bidlingmaier, Scott; Hashizume, Rintaro; James, C. David; Berger, Mitchel S.; Liu, Bin


    Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain tumor and there is no curative treatment to date. Resistance to conventional therapies and tumor recurrence pose major challenges to treatment and management of this disease, and therefore new therapeutic strategies need to be developed. Previous studies by other investigators have shown that a subpopulation of GBM cells can grow as neurosphere-like cells when cultured in restrictive media, and exhibit enhanced tumor initiating ability and resistance to therapy. We report here the identification of internalizing human single chain antibodies (scFvs) targeting GBM tumor sphere cells. We selected a large naive phage antibody display library on the glycosylation-dependent CD133 epitope-positive subpopulation of GBM cells grown as tumor spheres and identified internalizing scFvs that target tumor sphere cells broadly, as well as scFvs that target the CD133 positive subpopulation. These scFvs were found to be efficiently internalized by GBM tumor sphere cells. One scFv GC4 inhibited self-renewal of GBM tumor sphere cells in vitro. We have further developed a full-length human IgG1 based on this scFv and found that it potently inhibits proliferation of GBM tumor sphere cells and GBM cells grown in regular non-selective media. Taken together, these results show that internalizing human scFvs targeting brain tumor sphere cells can be readily identified from a phage antibody display library, which could be useful for further development of novel therapies that target subpopulations of GBM cells to combat recurrence and resistance to treatment. PMID:20587664

  18. Local and Systemic Antibody Responses in Humans with Helicobacter pylori Infection

    Directory of Open Access Journals (Sweden)

    Thomas G Blanchard


    Full Text Available Immunization can prevent or cure an otherwise chronic helicobacter infection in several animal models despite the chronic nature of natural helicobacter infections. Differences in the antigenic specificity of the antibodies may contribute to the protection observed in these experimental animals. The goal of the present study was to compare the local and systemic antibody responses of humans with chronic Helicobacter pylori infection with those of an individual with spontaneous resolution of infection to find an immunological correlate of protection. Spontaneous resolution of infection was accompanied by a change in immunoblot profiles. Whereas a broad range of H pylori antigens was recognized in chronically infected patients (including the patient who ultimately cleared the infection spontaneously, resolution of infection in the absence of therapeutic agents resulted in the recognition of only several immunodominant antigens. The most dominant antigen was approximately 66 kDa in molecular mass. Immunoblot analysis demonstrated that these antibodies were specific for the structural subunits of the urease enzyme. These studies suggest that the success of antihelicobacter immunization may be due to the ability of vaccination to induce an immune response against antigens that are normally not immunodominant during the course of infection.

  19. Standardization of the antibody-dependent respiratory burst assay with human neutrophils and Plasmodium falciparum malaria. (United States)

    Llewellyn, David; Miura, Kazutoyo; Fay, Michael P; Williams, Andrew R; Murungi, Linda M; Shi, Jianguo; Hodgson, Susanne H; Douglas, Alexander D; Osier, Faith H; Fairhurst, Rick M; Diakite, Mahamadou; Pleass, Richard J; Long, Carole A; Draper, Simon J


    The assessment of naturally-acquired and vaccine-induced immunity to blood-stage Plasmodium falciparum malaria is of long-standing interest. However, the field has suffered from a paucity of in vitro assays that reproducibly measure the anti-parasitic activity induced by antibodies in conjunction with immune cells. Here we optimize the antibody-dependent respiratory burst (ADRB) assay, which assesses the ability of antibodies to activate the release of reactive oxygen species from human neutrophils in response to P. falciparum blood-stage parasites. We focus particularly on assay parameters affecting serum preparation and concentration, and importantly assess reproducibility. Our standardized protocol involves testing each serum sample in singlicate with three independent neutrophil donors, and indexing responses against a standard positive control of pooled hyper-immune Kenyan sera. The protocol can be used to quickly screen large cohorts of samples from individuals enrolled in immuno-epidemiological studies or clinical vaccine trials, and requires only 6 μL of serum per sample. Using a cohort of 86 samples, we show that malaria-exposed individuals induce higher ADRB activity than malaria-naïve individuals. The development of the ADRB assay complements the use of cell-independent assays in blood-stage malaria, such as the assay of growth inhibitory activity, and provides an important standardized cell-based assay in the field.

  20. Detection of antibodies to bacterial cell wall peptidoglycan in human sera. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Heymer, B.; Schleifer, K.H.; Read, S.; Zabriskie, J.B.; Krause, R.M.


    A radioimmunoassay has been developed for the measurement of antibodies to peptidoglycan in human sera including patients with rheumatic feaver and juvenile rheumatoid arthritis. The assay is based on the percentage of binding of the hapten /sup 125/I-L-Ala-..gamma..-D-Glu-L-Lys-D-Ala-D-Ala, the major peptide determinant of peptidoglycan. Because of differences in the avidity of the antibodies in different sera, the amount of antibody was expressed as pentapeptide hapten-binding capacity (pentapeptide-HBC in ng/ml of serum). Fourteen out of 105 normal blood donors had a pentapeptide-HBC value greater than or equal to 75 ng/ml serum. Values in healthy children 5 to 18 years of age were less than or equal to 50 ng/ml. Sixty-eight percent of the individuals with rheumatic fever had values greater than or equal to 75 ng/ml, an indication that streptococcal infections can stimulate an immune response to peptidoglycan. Thirty-five percent of the patients with juvenile rheumatoid arthritis had values greater than or equal to 75 ng/ml. Such a finding points to a possible association between bacterial infections and juvenile rheumatoid arthritis.

  1. Evaluation of two human plasma pools as candidate international standard preparations for syphilitic antibodies. (United States)

    Rigsby, Peter; Ison, Catherine; Brierley, Matthew; Ballard, Ron; Hagedorn, Hans-Jochen; Lewis, David A; Notermans, Daan W; Riis, Jørn; Robertson, Peter; Seppälä, Ilkka J T; Rijpkema, Sjoerd


    A collaborative study was designed to asses two freeze-dried human plasma preparations containing anti-Treponema pallidum antibodies, 05/132 and 05/122, for their suitability as international reference reagents for syphilis serology. Both preparations are intended as replacements of the first international standard (IS) for syphilitic serum antibodies (HS). Samples were tested by eight laboratories using the T. pallidum passive particle agglutination assay (TPPA), the venereal disease research laboratory test (VDRL) and the rapid plasma reagin test (RPR). In addition a range of immunoassays was also used. The outcome of the collaborative study revealed that candidate standard 05/132 contains T. pallidum-specific IgG and IgM and is reactive in VDRL or RPR, and that 05/122 contains T. pallidum-specific IgG but is not reactive in either the VDRL or RPR test. Both 05/132 and 05/122 are reactive in the TPPA. On the basis of these results the Expert Committee on Biological Standardization of the World Health Organization designated 05/132 as the 1st IS for human syphilitic plasma IgG and IgM with a unitage of 3 IU per ampoule relative to HS and 05/122 as the 1st IS for human syphilitic plasma IgG with a unitage of 300 mIU per ampoule relative to 05/132.

  2. Inhibition of Entamoeba histolytica proteolytic activity by human salivary IgA antibodies. (United States)

    Guerrero-Manríquez, G G; Sánchez-Ibarra, F; Avila, E E


    Entamoeba histolytica is a protozoan parasite that causes amoebiasis in humans; as the infection occurs mainly in the intestinal epithelium, the secretory immune response of the host could have an influence on the outcome. Secretory IgA antibodies against E. histolytica have been detected in asymptomatic and symptomatic patients, but little is known about their protective role. E. histolytica cysteine proteases seem to be involved in the pathogenesis of amoebiasis; therefore, it is important to evaluate the human IgA response against these proteases and its effect on their enzymatic activity. When human saliva samples with and without antibodies against E. histolytica were tested by Western blot against one purified 70 kDa amoebic cysteine protease, 84% of anti-amoeba-positive samples recognized it. The secretory IgA purified from a pool of anti-protease-positive samples had a strong in vitro inhibitory effect on the E. histolytica proteolytic activity. These results suggest that this effect, if it occurs in vivo, could be an important protective factor against this parasite.

  3. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Arendrup, M;


    . This inhibition was found in infection of both lymphocytic cells and monocytoid cells. Viruses tested included six HIV-1 and five HIV-2 isolates propagated in different cells, as well as infectious plasma from AIDS patients. The antiviral effect of anti-Tn MAbs occurred by specific binding of the MAb to the virus......The cancer-related mucin-type carbohydrate neoantigen Tn was found on gp160 and gp120 of human immunodeficiency virus (HIV). Immunoglobulin G (IgG) and IgM monoclonal antibodies (MAbs) against Tn neutralized infection with cell-free virus and blocked fusion between HIV-infected and uninfected cells...

  4. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Arendrup, M


    The cancer-related mucin-type carbohydrate neoantigen Tn was found on gp160 and gp120 of human immunodeficiency virus (HIV). Immunoglobulin G (IgG) and IgM monoclonal antibodies (MAbs) against Tn neutralized infection with cell-free virus and blocked fusion between HIV-infected and uninfected cells......; this binding was inhibitable by pure Tn antigen, and indications were found that this inhibition occurred at a pre-entry step. Boosting the naturally occurring low-titer anti-Tn activity may be of prophylactic value, as suggested by the in vitro neutralization found in this study....

  5. A new sialyloligosaccharide from human milk: isolation and characterization using anti-oligosaccharide antibodies. (United States)

    Prieto, P A; Smith, D F


    A previously undescribed sialyloligosaccharide has been isolated from human milk using a specific anti-sialyloligosaccharide antibody. Structural studies of the radiolabeled oligosaccharide by enzyme degradation and binding by specific anti-oligosaccharide sera are consistent with the following structure: (sequence in text) The oligosaccharide is present only in milk from donors who secrete A, B, or H blood group substances; this is consistent with the requirement of at least one copy of the Se (Secretor) gene necessary for the synthesis of oligosaccharides with Fuc alpha 1-2Gal . . . linkages.

  6. A new sialyloligosaccharide from human milk: isolation and characterization using anti-oligosaccharide antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, P.A.; Smith, D.F.


    A previously undescribed sialyloligosaccharide has been isolated from human milk using a specific anti-sialyloligosaccharide antibody. Structural studies of the radiolabeled oligosaccharide by enzyme degradation and binding by specific anti-oligosaccharide sera are consistent with the following structure: (sequence in text) The oligosaccharide is present only in milk from donors who secrete A, B, or H blood group substances; this is consistent with the requirement of at least one copy of the Se (Secretor) gene necessary for the synthesis of oligosaccharides with Fuc alpha 1-2Gal . . . linkages.

  7. Matrix metalloproteinase sensing via porous silicon microcavity devices functionalized with human antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Marta; Gergely, Csilla [GES-UMR 5650, CNRS, Universite Montpellier 2, Pl. Eugene Bataillon 34095, Montpellier Cedex 5 (France); Taleb Bendiab, Chakib; Massif, Laurent; Cuisinier, Frederic [EA4203, Faculte d' Odontologie, Universite Montpellier 1, Montpellier Cedex 5 (France); Palestino, Gabriela [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Salvador Nava 6, 78000 San Luis Potosi (Mexico); Agarwal, Vivechana [CIICAP, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Mor. (Mexico)


    Porous silicon microcavity (PSiMc) structures were used as support material for specific sensing of matrix metalloproteinases (MMPs). For lower concentrations of MMP-8, the structures were tested with two types of functionalization methods. Silanization of the oxidized porous silicon structures, followed by glutaraldehyde chemistry was found to give very inconsistent results. The use of biotinilated bovine serum albumin linked to the naked PSiMc was found to be an alternative method to attach the anti MMP-8 human antibody, previously modified with streptavidin, which was further used to sense MMP-8 (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C


    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...

  9. Polyclonal antibody production and expression of CREG protein in human vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Yaling HAN; Haiwei LIU; Jian KANG; Xiaozeng WANG; Ye HU; Lianyou ZHAO; Shaohua LI


    Objectives The cellular repressor of E1A-activated genes (CREG), a novel gene, was recently found to play a role in inhibiting cell growth and promoting cell differentiation. The purpose of this study was to obtain antibody against CREG protein and to study the expression of CREG protein in human internal thoracic artery cells (HITASY) which express different patterns of differentiation markers after serum withdrawal. Methods The open reading frame of CREG gene sequence was amplified by PCR and cloned into the pGEX-4T-1 vector. Glutathione-S-transferase (GST)-CREG fusion protein was expressed in E. Coli BL21 and purified from inclusion bodies by Sephacryl S-200 chromatography. Rabbits were immunized with the purified GST-CREG protein. Western blot examined with immunohistochemistry staining and the protein expression level was analyzed by Western blot in HITASY cells after serum removal. Results It was confirmed by using endonuclease digesting and DNA sequencing that the PCR product of CREG was correctly inserted into the vector. The GST-CREG protein was purified with gel filtration chromatography. Polyclonal antibody against GST-CREG was obtained from rabbits. CREG protein immunohistochemistry staining displayed a perinuclear distribution in the cytoplasm of HITASY cells. Results from Western blot suggested that comparing with the untreated cells upregulation of CREG polyclonal antibody against CREG was comfirmed. Using this antibody, the changes of CREG protein expression was observed in the process of phenotypic modulation of HITASY cells. These results provide basic understanding on the relationship of CREG gene with the cell phenotypic conversion.

  10. High prevalence of antibodies to human herpesvirus 8 in relatives of patients with classic Kaposi's sarcoma from Sardinia. (United States)

    Angeloni, A; Heston, L; Uccini, S; Sirianni, M C; Cottoni, F; Masala, M V; Cerimele, D; Lin, S F; Sun, R; Rigsby, M; Faggioni, A; Miller, G


    A survey for antibodies to a recombinant small viral capsid antigen (sVCA) of human herpesvirus type 8 (HHV-8) was conducted in Sardinia, one of the world's highest incidence areas for classic Kaposi's sarcoma (KS). Prevalence of antibodies to HHV-8 sVCA was greatest in patients with KS (95%), followed by family members (39%) and a Sardinian control population age- and sex-matched to the relatives (11%). Within families, prevalence of antibodies was about equal among spouses, children, and siblings of KS patients, a finding that raises the possibilities of intrafamilial person-to-person or vertical transmission. Antibodies were detected 2-3 times more frequently in males than in females. The data show that prevalence of antibodies to HHV-8 sVCA correlates with the distribution of classic KS in a high- incidence area. Clustering of seroprevalence within some families suggests the presence of familial risk factors for active HHV-8 infection.

  11. Proteasome activator complex PA28 identified as an accessible target in prostate cancer by in vivo selection of human antibodies (United States)

    Sánchez-Martín, David; Martínez-Torrecuadrada, Jorge; Teesalu, Tambet; Sugahara, Kazuki N.; Alvarez-Cienfuegos, Ana; Ximénez-Embún, Pilar; Fernández-Periáñez, Rodrigo; Martín, M. Teresa; Molina-Privado, Irene; Ruppen-Cañás, Isabel; Blanco-Toribio, Ana; Cañamero, Marta; Cuesta, Ángel M.; Compte, Marta; Kremer, Leonor; Bellas, Carmen; Alonso-Camino, Vanesa; Guijarro-Muñoz, Irene; Sanz, Laura; Ruoslahti, Erkki; Alvarez-Vallina, Luis


    Antibody cancer therapies rely on systemically accessible targets and suitable antibodies that exert a functional activity or deliver a payload to the tumor site. Here, we present proof-of-principle of in vivo selection of human antibodies in tumor-bearing mice that identified a tumor-specific antibody able to deliver a payload and unveils the target antigen. By using an ex vivo enrichment process against freshly disaggregated tumors to purge the repertoire, in combination with in vivo biopanning at optimized phage circulation time, we have identified a human domain antibody capable of mediating selective localization of phage to human prostate cancer xenografts. Affinity chromatography followed by mass spectrometry analysis showed that the antibody recognizes the proteasome activator complex PA28. The specificity of soluble antibody was confirmed by demonstrating its binding to the active human PA28αβ complex. Whereas systemically administered control phage was confined in the lumen of blood vessels of both normal tissues and tumors, the selected phage spread from tumor vessels into the perivascular tumor parenchyma. In these areas, the selected phage partially colocalized with PA28 complex. Furthermore, we found that the expression of the α subunit of PA28 [proteasome activator complex subunit 1 (PSME1)] is elevated in primary and metastatic human prostate cancer and used anti-PSME1 antibodies to show that PSME1 is an accessible marker in mouse xenograft tumors. These results support the use of PA28 as a tumor marker and a potential target for therapeutic intervention in prostate cancer. PMID:23918357

  12. A First-in-Human Study To Assess the Safety and Pharmacokinetics of Monoclonal Antibodies against Human Cytomegalovirus in Healthy Volunteers. (United States)

    Dole, Kiran; Segal, Florencia Pereyra; Feire, Adam; Magnusson, Baldur; Rondon, Juan C; Vemula, Janardhana; Yu, Jing; Pang, Yinuo; Pertel, Peter


    Human cytomegalovirus (HCMV) can cause significant disease in immunocompromised patients and treatment options are limited by toxicities. CSJ148 is a combination of two anti-HCMV human monoclonal antibodies (LJP538 and LJP539) that bind to and inhibit the function of viral HCMV glycoprotein B (gB) and the pentameric complex, consisting of glycoproteins gH, gL, UL128, UL130, and UL131. Here, we evaluated the safety, tolerability, and pharmacokinetics of a single intravenous dose of LJP538 or LJP539 or their combination in healthy volunteers. Adverse events and laboratory abnormalities occurred sporadically with similar incidence between antibody and placebo groups and without any apparent relationship to dose. No subject who received antibody developed a hypersensitivity, infusion-related reaction or anti-drug antibodies. After intravenous administration, both LJP538 and LJP539 demonstrated typical human IgG1 pharmacokinetic properties, with slow clearances, limited volumes of distribution, and long terminal half-lives. The pharmacokinetic parameters were linear and dose proportional for both antibodies across the 50-fold range of doses evaluated in the study. There was no apparent impact on pharmacokinetics when the antibodies were administered alone or in combination. CSJ148 and the individual monoclonal antibodies were safe and well tolerated, with pharmacokinetics as expected for human immunoglobulin.

  13. Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice. (United States)

    Brightbill, Hans D; Jeet, Surinder; Lin, Zhonghua; Yan, Donghong; Zhou, Meijuan; Tan, Martha; Nguyen, Allen; Yeh, Sherry; Delarosa, Donnie; Leong, Steven R; Wong, Terence; Chen, Yvonne; Ultsch, Mark; Luis, Elizabeth; Ramani, Sree Ranjani; Jackman, Janet; Gonzalez, Lino; Dennis, Mark S; Chuntharapai, Anan; DeForge, Laura; Meng, Y Gloria; Xu, Min; Eigenbrot, Charles; Lee, Wyne P; Refino, Canio J; Balazs, Mercedesz; Wu, Lawren C


    IgE-mediated hypersensitivity is central to the pathogenesis of asthma and other allergic diseases. Although neutralization of serum IgE with IgE-specific antibodies is in general an efficacious treatment for allergic asthma, one limitation of this approach is its lack of effect on IgE production. Here, we have developed a strategy to disrupt IgE production by generating monoclonal antibodies that target a segment of membrane IgE on human IgE-switched B cells that is not present in serum IgE. This segment is known as the M1' domain, and using genetically modified mice that contain the human M1' domain inserted into the mouse IgE locus, we demonstrated that M1'-specific antibodies reduced serum IgE and IgE-producing plasma cells in vivo, without affecting other immunoglobulin isotypes. M1'-specific antibodies were effective when delivered prophylactically and therapeutically in mouse models of immunization, allergic asthma, and Nippostrongylus brasiliensis infection, likely by inducing apoptosis of IgE-producing B cells. In addition, we generated a humanized M1'-specific antibody that was active on primary human cells in vivo, as determined by its reduction of serum IgE levels and IgE plasma cell numbers in a human PBMC-SCID mouse model. Thus, targeting of human IgE-producing B cells with apoptosis-inducing M1'-specific antibodies may be a novel treatment for asthma and allergy.

  14. Protection of rabbits and immunodeficient mice against lethal poxvirus infections by human monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Lindsay Crickard

    Full Text Available Smallpox (variola virus is a bioweapon concern. Monkeypox is a growing zoonotic poxvirus threat. These problems have resulted in extensive efforts to develop potential therapeutics that can prevent or treat potentially lethal poxvirus infections in humans. Monoclonal antibodies (mAbs against smallpox are a conservative approach to this problem, as the licensed human smallpox vaccine (vaccinia virus, VACV primarily works on the basis of protective antibody responses against smallpox. Fully human mAbs (hmAbs against vaccinia H3 (H3L and B5 (B5R, targeting both the mature virion (MV and extracellular enveloped virion (EV forms, have been developed as potential therapeutics for use in humans. Post-exposure prophylaxis was assessed in both murine and rabbit animal models. Therapeutic efficacy of the mAbs was assessed in three good laboratory practices (GLP studies examining severe combined immunodeficiency mice (SCID given a lethal VACV infection. Pre-exposure combination hmAb therapy provided significantly better protection against disease and death than either single hmAb or vaccinia immune globulin (VIG. Post-exposure combination mAb therapy provided significant protection against disease and death, and appeared to fully cure the VACV infection in ≥50% of SCID mice. Therapeutic efficacy was then assessed in two rabbit studies examining post-exposure hmAb prophylaxis against rabbitpox (RPXV. In the first study, rabbits were infected with RPVX and then provided hmAbs at 48 hrs post-infection, or 1 hr and 72 hrs post-infection. Rabbits in both groups receiving hmAbs were 100% protected from death. In the second rabbitpox study, 100% of animal treated with combination hmAb therapy and 100% of animals treated with anti-B5 hmAb were protected. These findings suggest that combination hmAb treatment may be effective at controlling smallpox disease in immunocompetent or immunodeficient humans.

  15. Immunoproteomic analysis of human serological antibody responses to vaccination with whole-cell pertussis vaccine (WCV.

    Directory of Open Access Journals (Sweden)

    Yong-Zhang Zhu

    Full Text Available BACKGROUND: Pertussis (whooping cough caused by Bordetella pertussis (B.p, continues to be a serious public health threat. Vaccination is the most economical and effective strategy for preventing and controlling pertussis. However, few systematic investigations of actual human immune responses to pertussis vaccines have been performed. Therefore, we utilized a combination of two-dimensional electrophoresis (2-DE, immunoblotting, and mass spectrometry to reveal the entire antigenic proteome of whole-cell pertussis vaccine (WCV targeted by the human immune system as a first step toward evaluating the repertoire of human humoral immune responses against WCV. METHODOLOGY/PRINCIPAL FINDINGS: Immunoproteomic profiling of total membrane enriched proteins and extracellular proteins of Chinese WCV strain 58003 identified a total of 30 immunoreactive proteins. Seven are known pertussis antigens including Pertactin, Serum resistance protein, chaperonin GroEL and two OMP porins. Sixteen have been documented to be immunogenic in other pathogens but not in B.p, and the immunogenicity of the last seven proteins was found for the first time. Furthermore, by comparison of the human and murine immunoproteomes of B.p, with the exception of four human immunoreactive proteins that were also reactive with mouse immune sera, a unique group of antigens including more than 20 novel immunoreactive proteins that uniquely reacted with human immune serum was confirmed. CONCLUSIONS/SIGNIFICANCE: This study is the first time that the repertoire of human serum antibody responses against WCV was comprehensively investigated, and a small number of previously unidentified antigens of WCV were also found by means of the classic immunoproteomic strategy. Further research on these newly identified predominant antigens of B.p exclusively against humans will not only remarkably accelerate the development of diagnostic biomarkers and subunit vaccines but also provide detailed insight

  16. Human polyclonal antibodies produced in transchromosomal cattle prevent lethal Zika virus infection and testicular atrophy in mice. (United States)

    Stein, Derek R; Golden, Joseph W; Griffin, Bryan D; Warner, Bryce M; Ranadheera, Charlene; Scharikow, Leanne; Sloan, Angela; Frost, Kathy L; Kobasa, Darwyn; Booth, Stephanie A; Josleyn, Matthew; Ballantyne, John; Sullivan, Eddie; Jiao, Jin-An; Wu, Hua; Wang, Zhongde; Hooper, Jay W; Safronetz, David


    Zika virus (ZIKV) is rapidly spreading throughout the Americas and is associated with significant fetal complications, most notably microcephaly. Treatment with polyclonal antibodies for pregnant women at risk of ZIKV-related complications could be a safe alternative to vaccination. We found that large quantities of human polyclonal antibodies could be rapidly produced in transchromosomal bovines (TcB) and successfully used to protect mice from lethal infection. Additionally, antibody treatment eliminated ZIKV induced tissue damage in immunologically privileged sites such as the brain and testes and protected against testicular atrophy. These data indicate that rapid development and deployment of human polyclonal antibodies could be a viable countermeasure against ZIKV. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  17. Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies.

    Directory of Open Access Journals (Sweden)

    Amy E Gilbert

    Full Text Available Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10 to primary and metastatic melanoma cells compared to healthy volunteers (n = 10 (P<0.0001. Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21 (P<0.0001. Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800 compared to 2% of cultures from healthy controls (n = 600 produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer.

  18. Detection of acrolein-derived cyclic DNA adducts in human cells by monoclonal antibodies (United States)

    Pan, Jishen; Awoyemi, Bisola; Xuan, Zhuoli; Vohra, Priya; Wang, Hsiang-Tsui; Dyba, Marcin; Greenspan, Emily; Fu, Ying; Creswell, Karen; Zhang, Lihua; Berry, Deborah; Tang, Moon-Shong; Chung, Fung-Lung


    Acrolein (Acr) is a ubiquitous environmental pollutant found in cigarette smoke and automobile exhaust. It can also be produced endogenously by oxidation of polyunsaturated fatty acids. The Acr-derived 1,N2-propanodeoxyguanosine (Acr-dG) adducts in DNA are mutagenic lesions that are potentially involved in human cancers. In this study, monoclonal antibodies were raised against Acr-dG adducts and characterized using ELISA. They showed strong reactivity and specificity towards Acr-dG, weaker reactivity towards crotonaldehyde- and trans-4-hydroxy-2-nonenal-derived 1,N2-propanodeoxyguanosines, and weak or no reactivity towards 1,N6-ethenodeoxyadenosine and 8-oxo-deoxyguanosine. Using these novel antibodies, we developed assays to detect Acr-dG in vivo: First, a simple and quick FACS-based assay for detecting these adducts directly in cells; Second, a highly sensitive direct ELISA assay for measuring Acr-dG in DNA of cells and tissues using only one μg DNA without DNA digestion and sample enrichment; And third, a competitive ELISA for better quantitative measurement of Acr-dG levels in DNA samples. The assays were validated using Acr-treated HT29 cell DNA samples or calf thymus DNA and the results were confirmed by LC-MS/MS-MRM. An immunohistochemical assay was also developed to detect and visualize Acr-dG in HT29 cells as well as in human oral cells. These antibody-based methods provide useful tools for the studies of Acr-dG as a cancer biomarker and of the molecular mechanisms by which cells respond to Acr-dG as a ubiquitous DNA lesion. PMID:23126278

  19. Detection of acrolein-derived cyclic DNA adducts in human cells by monoclonal antibodies. (United States)

    Pan, Jishen; Awoyemi, Bisola; Xuan, Zhuoli; Vohra, Priya; Wang, Hsiang-Tsui; Dyba, Marcin; Greenspan, Emily; Fu, Ying; Creswell, Karen; Zhang, Lihua; Berry, Deborah; Tang, Moon-Shong; Chung, Fung-Lung


    Acrolein (Acr) is a ubiquitous environmental pollutant found in cigarette smoke and automobile exhaust. It can also be produced endogenously by oxidation of polyunsaturated fatty acids. The Acr-derived 1,N(2)-propanodeoxyguanosine (Acr-dG) adducts in DNA are mutagenic lesions that are potentially involved in human cancers. In this study, monoclonal antibodies were raised against Acr-dG adducts and characterized using ELISA. They showed strong reactivity and specificity toward Acr-dG, weaker reactivity toward crotonaldehyde- and trans-4-hydroxy-2-nonenal-derived 1,N(2)-propanodeoxyguanosines, and weak or no reactivity toward 1,N(6)-ethenodeoxyadenosine and 8-oxo-deoxyguanosine. Using these antibodies, we developed assays to detect Acr-dG in vivo: first, a simple and quick FACS-based assay for detecting these adducts directly in cells; second, a highly sensitive direct ELISA assay for measuring Acr-dG in cells and tissues using only 1 μg of DNA without DNA digestion and sample enrichment; and third, a competitive ELISA for better quantitative measurement of Acr-dG levels in DNA samples. The assays were validated using Acr-treated HT29 cell DNA samples or calf thymus DNA, and the results were confirmed by LC-MS/MS-MRM. An immunohistochemical assay was also developed to detect and visualize Acr-dG in HT29 cells as well as in human oral cells. These antibody-based methods provide useful tools for the studies of Acr-dG as a cancer biomarker and of the molecular mechanisms by which cells respond to Acr-dG as a ubiquitous DNA lesion.

  20. High prevalence of antibodies to human herpesvirus 8 in relatives of patients with classic Kaposi's sarcoma from Sardinia


    Angeloni, Antonio; Heston, Lee; Uccini, Stefania; Sirianni, Maria Caterina; Cottoni, Francesca Maria Giovanna; Masala, Maria Vittoria; Cerimele, Decio; Lin, Su-Fang; Sun, Ren; Rigsby, Michael; Faggioni, Alberto; Miller, George


    A survey for antibodies to a recombinant small viral capsid antigen (sVCA) of human herpesvirus type 8 (HHV‐8) was conducted in Sardinia, one of the world's highest incidence areas for classic Kaposi's sarcoma (KS). Prevalence of antibodies to HHV‐8 sVCA was greatest in patients with KS (95%), followed by family members (39%) and a Sardinian control population age‐ and sex‐matched to the relatives (11%). Within families, prevalence of antibodies was about equal among spouses, children, and si...

  1. Occurrence of West Nile Virus Antibodies in Wild Birds, Horses, and Humans in Poland (United States)

    Niczyporuk, Jowita Samanta; Samorek-Salamonowicz, Elżbieta; Lecollinet, Sylvie; Pancewicz, Sławomir Andrzej; Kozdruń, Wojciech; Czekaj, Hanna


    Serum samples of 474 wild birds, 378 horses, and 42 humans with meningitis and lymphocytic meningitis were collected between 2010 and 2014 from different areas of Poland. West Nile virus (WNV) antibodies were detected using competition enzyme linked immunosorbent assays: ELISA-1 ID Screen West Nile Competition, IDvet, ELISA-2 ID Screen West Nile IgM Capture, and ELISA-3 Ingezim West Nile Compac. The antibodies were found in 63 (13.29%) out of 474 wild bird serum samples and in one (0.26%) out of 378 horse serum samples. Fourteen (33.33%) out of 42 sera from patients were positive against WNV antigen and one serum was doubtful. Positive samples obtained in birds were next retested with virus microneutralisation test to confirm positive results and cross-reactions with other antigens of the Japanese encephalitis complex. We suspect that positive serological results in humans, birds, and horses indicate that WNV can be somehow closely related with the ecosystem in Poland. PMID:25866767

  2. Occurrence of West Nile Virus Antibodies in Wild Birds, Horses, and Humans in Poland

    Directory of Open Access Journals (Sweden)

    Jowita Samanta Niczyporuk


    Full Text Available Serum samples of 474 wild birds, 378 horses, and 42 humans with meningitis and lymphocytic meningitis were collected between 2010 and 2014 from different areas of Poland. West Nile virus (WNV antibodies were detected using competition enzyme linked immunosorbent assays: ELISA-1 ID Screen West Nile Competition, IDvet, ELISA-2 ID Screen West Nile IgM Capture, and ELISA-3 Ingezim West Nile Compac. The antibodies were found in 63 (13.29% out of 474 wild bird serum samples and in one (0.26% out of 378 horse serum samples. Fourteen (33.33% out of 42 sera from patients were positive against WNV antigen and one serum was doubtful. Positive samples obtained in birds were next retested with virus microneutralisation test to confirm positive results and cross-reactions with other antigens of the Japanese encephalitis complex. We suspect that positive serological results in humans, birds, and horses indicate that WNV can be somehow closely related with the ecosystem in Poland.

  3. Characterization of fertilization-blocking monoclonal antibody 1G12 with human sperm-immobilizing activity (United States)



    A mouse hybridoma (1G12) producing sperm-immobilizing MoAb to human sperm was established and characterized in order to study the antigens relevant to sperm immobilization by antibodies. MoAb 1G12 had strong sperm-immobilizing and agglutinating activities and also showed a fertilization-blocking activity on in vitro fertilization tests. The antibody absorption experiments showed that MoAb 1G12 reacted not only to ejaculated sperm but also human seminal plasma, suggesting that the corresponding antigen might be a sperm coating antigen. The MoAb also reacted with peripheral blood lymphocytes. In histochemical studies, the epithelia of corpus epididymis were most strongly stained. Ejaculated sperm were stained with a granular pattern for their entire surface by immunofluorescence. MoAb 1G12 recognized polymorphic glycoproteins of 15–25 kD in the ejaculated sperm extract in Western blot analysis. After deglycosilation of the sperm extract, only a single staining band of under 15 kD was detected by MoAb 1G12. This suggests that the antigen epitope recognized by MoAb 1G12 might be a peptide of the core portion of the glycoprotein. MoAb 1G12 might be a useful tool for studying the mechanism of egg–sperm interaction, and also be applied to identifying the corresponding antigen by using gene technology. PMID:9328135

  4. H9N2 avian influenza virus antibody titers in human population in fars province, Iran

    Directory of Open Access Journals (Sweden)

    MM Hadipour


    Full Text Available Among the avian influenza A virus subtypes, H5N1 and H9N2 viruses have the potential to cause an influenza pandemic because they are widely prevalent in avian species in Asia and have demonstrated the ability to infect humans. This study was carried out to determined the seroprevalence of H9N2 avian influenza virus in different human populations in Fars province, which is situated in the south of Iran. Antibodies against H9N2 avian influenza virus were measured using hemagglutination-inhibition (HI test in sera from 300 individuals in five different population in Fars province, including poultry-farm workers, slaughter-house workers, veterinarians, patients with clinical signs of respiratory disease, and clinically normal individuals, who were not or rarely in contact with poultry. Mean antibody titers of 7.3, 6.8, 6.1, 4.5, and 2.9 and seroprevalences of 87%, 76.2%, 72.5%, 35.6%, and 23% were determined in those groups, respectively. Higher prevalences were detected in poultry-farm workers, slaughter-house workers, and veterinarians, possibly due to their close and frequent contact with poultry.

  5. Differential Kinetics and Distribution of Antibodies in Serum and Nasal and Vaginal Secretions after Nasal and Oral Vaccination of Humans


    Rudin, Anna; Johansson, Eva-Liz; Bergquist, Charlotta; Holmgren, Jan


    Although nasal vaccination has emerged as an interesting alternative to systemic or oral vaccination, knowledge is scarce about the immune responses after such immunization in humans. In the present study, we have compared the kinetics and organ distribution of the antibody responses after nasal and oral vaccination. We immunized female volunteers nasally or orally with cholera toxin B subunit (CTB) and determined the specific antibody levels in serum and nasal and vaginal secretions, as well...

  6. Antibody response to recombinant human coagulation factor VIII in a new rat model of severe hemophilia A. (United States)

    Lövgren, K M; Søndergaard, H; Skov, S; Weldingh, K N; Tranholm, M; Wiinberg, B


    Neutralizing antibodies toward FVIII replacement therapy (inhibitors) are the most serious treatment-related complication in hemophilia A (HA). A rat model of severe HA (F8(-/-) ) has recently been developed, but an immunological characterization is needed to determine the value of using the model for research into inhibitor development. Characterize the antibody response towards recombinant human coagulation factor VIII (rhFVIII) in the HA rat, following a human prophylactic dosing regimen. Two identical studies were performed, which included a total of 17 homozygous HA rats (F8(-/-) , 0% FVIII activity), 12 heterozygous rats (F8(+/-) ), and 12 wild-type (F8(+/+) ) rats. All rats received intravenous injections of rhFVIII at 50 IU kg(-1) twice weekly for 4 weeks. Predosing blood samples were analyzed for binding and neutralizing anti-rhFVIII antibodies at weeks 1-7. In both studies, antibodies developed after 4-6 administrations of rhFVIII, and neutralizing antibodies reached levels similar to human patients (range 1-111 BU, median 6.0 BU) at the end of the study. There was no significant difference between the two studies or between genotypes in time to response or levels reached for binding and neutralizing antibodies. Interestingly, early spontaneous bleeds were associated with a faster antibody response. Following intravenous administration of human FVIII, according to a clinical prophylaxis regimen, a robust and reproducible antibody response is seen in this HA rat model, suggesting that the model is useful for intervention studies with the aim of suppressing, delaying, or preventing the inhibitor response. Also, bleeds seem to have an adjuvant effect on the immune response. © 2016 International Society on Thrombosis and Haemostasis.

  7. Enhanced radioimmunotherapeutic efficacy of a monoclonal antibody cocktail against SMMC—7721 human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)



    The improved tumoricidal effect of the radioantibody mixture (“cocktail”)has been reported recently for the treatment of colon tumor.In the present study,we demonstrated the enhanced radioimmunotherapeutic efficacy of a monoclonal antibody (MAb) cocktail against human hepatocellular carcinoma.Therapeutic efficacy was determined by measuring the change in tumor size over a period,determining the percentage of growth inhibition of each treatment at various times after radioantibody therapy.Radioimmunotherapy of SMMC-7721 human hepatoma xenografts in athymic unde mice with combination of 131Ilabeled Hepama-1 and 131 I-labeled 9403 mouse MAbs was more effective than using either Hepeam-1 or 9403 MAb alone The MAb cocktail could target a greater number of hepatoma cells and increase the magnitude of hepatoma cell uptake of radioantibodies.The in vitro results explain the enhanced effect of the MAb cocktail in in vivo model system.

  8. Seroprevalence of leptospiral Antibodies in Humans and Domestic Animals in Iran

    Directory of Open Access Journals (Sweden)

    Ehsanollah Sakhaee


    Full Text Available Background: Leptospirosis is an important re-emerging zoonotic disease in tropical and subtropical areas and acute febrile infection and a conveyable bacterial disease of animals and humans caused by pathogenic spirochetes of the genus Leptospira.Methods: Five hundred and ninety seven serum samples (159 cattle, 142 sheep, 147 goats and 149 humans were collected from center, southeast and northeast of Iran. MAT was performed mainly as described by Turner with some modification in Leptospira Research Laboratory.Results: Antibodies were detected at least against one serovar of Leptospira interrogans in 97 sera (17.24% among 597 samples at a dilution 1:100 or greater.Conclusion: The most prevalent serovar was icterohaemorrhagiae and the least prevalent was canicula.

  9. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, M; Nielsen, L K; Andersen, P S;


    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were used...

  10. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, M; Nielsen, L K; Andersen, P S


    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were us...

  11. Human Monoclonal antibodies - A dual advantaged weapon to tackle cancer and viruses

    Directory of Open Access Journals (Sweden)

    Kurosawa G


    Full Text Available Human monoclonal antibodies (mAbs are powerful tools as pharmaceutical agents to tackle cancer and infectious diseases. Antibodies (Abs are present in blood at the concentration of 10 mg/ml and play a vital role in humoral immunity. Many therapeutic Abs have been reported since early 1980s. Human mAb technology was not available at that time and only the hybridoma technology for making mouse mAbs had been well established. In order to avoid various potential problems associated with use of mouse proteins, two different technologies to make human/mouse chimeric Ab as well as humanized Ab were developed crossing the various hurdles for almost twenty years and mAb based drugs such as rituximab, anti-CD20 Ab, and trastuzumab, anti-HER2 Ab, have been approved by the US Food and Drug Administration (FDA for treatment of non-Hodgkin's lymphoma and breast cancer in 1997 and 1998, respectively. These drugs are well recognized and accepted by clinicians for treatment of patients. The clinical outcome of the treatment with mAb has strongly encouraged the researchers to develop much more refined mAbs. In addition to chimeric Ab and humanized Ab, now human mAbs can be produced by two technologies. The first is transgenic mice that produce human Abs and the second is human Ab libraries using phage-display system. Until now, several hundreds of mAbs against several tens of antigens (Ags have been developed and subjected to clinical examinations. While many Abs have been approved as therapeutic agents against hematological malignancies, the successful mAbs against solid tumors are still limited. However, many researchers have suggested that developing potential mAbs agents should be possible and incurable cancers may become curable within another decade. Though it is hard to say explicitly that this prediction is correct, a passion for this development should be worth supporting to lead to a successful outcome which will lead to patient benefits. Our institute

  12. Flow cytometry-based assay to evaluate human serum MUC1-Tn antibodies

    DEFF Research Database (Denmark)

    Van Elssen, Catharina H M J; Clausen, Henrik; Germeraad, Wilfred T V


    to detect antibodies binding to the underglycosylated MUC1 protein. This cellular system is complementary to the previously published methods to detect MUC1 serum antibodies, since the antibodies to the native protein are evaluated and therefore it can be effectively used for MUC1 antibody monitoring...

  13. Production of a human single-chain variable fragment antibody against esophageal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Ming-Yan Xu; Xiao-Hu Xu; Geng-Zhen Chen; Xiao-Ling Deng; Jonathan Li; Xiao-Jun Yu; Mei-Zhen Chen


    AIM: To construct a phage display library of human singlechain variable fragment (scFv) antibodies associated with esophageal cancer and to preliminarily screen a scFv antibody against esophageal cancer.METHODS: Total RNA extracted from metastatic lymph nodes of esophageal cancer patients was used to construct a scFv gene library. Rescued by M13K07 helper phage, the scFv phage display library was constructed. esophageal cancer cell line Eca 109 and normal human esophageal epithelial cell line (NHEEC) were used for panning and subtractive panning of the scFv phage display library to obtain positive phage clones. Soluble scFv was expressed in E.coli HB2151 which was transfected with the positive phage clone, then purified by affinity chromatography.Relative molecular mass of soluble scFv was estimated by Western blotting, its bioactivity was detected by cell ELISA assay. Sequence of scFv was determined using the method of dideoxynucleotide sequencing.RESULTS: The size of scFv gene library was approximately 9×106 clones. After four rounds of panning with Eca109 and three rounds of subtractive panning with NHEEC cells, 25 positive phage clones were obtained. Soluble scFv was found to have a molecular mass of 31 ku and was able to bind to Eca109 cells, but not to HeLa and NHEEC cells. Variable heavy (VH) gene from one of the positive clones was shown to be derived from the γ chain subgroup Ⅳ of immunoglobulin, and variable light (VL) gene from the κchain subgroup I of immunoglobulin.CONCLUSION: A human scFv phage display library can be constructed from the metastatic lymph nodes of esophageal cancer patients. A whole human scFv against esophageal cancer shows some bioactivity.

  14. Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics. (United States)

    Fei, Chen; Atterby, Christina; Edqvist, Per-Henrik; Pontén, Fredrik; Zhang, Wei Wei; Larsson, Erik; Ryan, Frank P


    There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to

  15. Human monoclonal antibody HCV1 effectively prevents and treats HCV infection in chimpanzees.

    Directory of Open Access Journals (Sweden)

    Trevor J Morin

    Full Text Available Hepatitis C virus (HCV infection is a leading cause of liver transplantation and there is an urgent need to develop therapies to reduce rates of HCV infection of transplanted livers. Approved therapeutics for HCV are poorly tolerated and are of limited efficacy in this patient population. Human monoclonal antibody HCV1 recognizes a highly-conserved linear epitope of the HCV E2 envelope glycoprotein (amino acids 412-423 and neutralizes a broad range of HCV genotypes. In a chimpanzee model, a single dose of 250 mg/kg HCV1 delivered 30 minutes prior to infusion with genotype 1a H77 HCV provided complete protection from HCV infection, whereas a dose of 50 mg/kg HCV1 did not protect. In addition, an acutely-infected chimpanzee given 250 mg/kg HCV1 42 days following exposure to virus had a rapid reduction in viral load to below the limit of detection before rebounding 14 days later. The emergent virus displayed an E2 mutation (N415K/D conferring resistance to HCV1 neutralization. Finally, three chronically HCV-infected chimpanzees were treated with a single dose of 40 mg/kg HCV1 and viral load was reduced to below the limit of detection for 21 days in one chimpanzee with rebounding virus displaying a resistance mutation (N417S. The other two chimpanzees had 0.5-1.0 log(10 reductions in viral load without evidence of viral resistance to HCV1. In vitro testing using HCV pseudovirus (HCVpp demonstrated that the sera from the poorly-responding chimpanzees inhibited the ability of HCV1 to neutralize HCVpp. Measurement of antibody responses in the chronically-infected chimpanzees implicated endogenous antibody to E2 and interference with HCV1 neutralization although other factors may also be responsible. These data suggest that human monoclonal antibody HCV1 may be an effective therapeutic for the prevention of graft infection in HCV-infected patients undergoing liver transplantation.

  16. The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria.

    Directory of Open Access Journals (Sweden)

    Linda Reiling

    Full Text Available BACKGROUND: Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4 is important for invasion of human erythrocytes and may therefore be a target of protective immunity. METHODS: IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG. Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined. RESULTS: Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism. CONCLUSIONS: Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.

  17. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals. (United States)

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J


    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  18. Isolation of high-affinity human IgE and IgG antibodies recognising Bet v 1 and Humicola lanuginosa lipase from combinatorial phage libraries

    DEFF Research Database (Denmark)

    Jakobsen, Charlotte G; Bodtger, Uffe; Kristensen, Peter


    Allergen-specific Fab fragments isolated from combinatorial IgE and IgG libraries are useful tools for studying allergen-antibody interactions. To characterise the interaction between different allergens and antibodies we have created recombinant human phage antibody libraries in the Fab format. ...

  19. VLPs displaying a single L2 epitope induce broadly cross-neutralizing antibodies against human papillomavirus.

    Directory of Open Access Journals (Sweden)

    Ebenezer Tumban

    Full Text Available BACKGROUND: Virus-like Particles (VLPs display can be used to increase the immunogenicity of heterologous antigens. Here, we report the use of a bacteriophage MS2-based VLP display platform to develop a monovalent vaccine targeting a broadly neutralizing epitope in the minor capsid protein human papillomavirus (HPV that provides broad protection from diverse HPV types in a mouse pseudovirus infection model. METHODOLOGY/PRINCIPAL FINDINGS: Peptides spanning a previously described cross-neutralizing epitope from HPV type 16 were genetically inserted at the N-terminus of MS2 bacteriophage coat protein. Three of the four recombinant L2-coat proteins assembled into VLPs. L2-VLPs elicited high-titer anti-L2 antibodies in mice, similar to recombinant VLPs that we had previously made in which the L2 peptide was displayed on a surface-exposed loop on VLPs of a related bacteriophage, PP7. Somewhat surprisingly, L2-MS2 VLPs elicited antibodies that were much more broadly cross-reactive with L2 peptides from diverse HPV isolates than L2-PP7 VLPs. Similarly, mice immunized with L2-MS2 VLPs were protected from genital and cutaneous infection by highly diverse HPV pseudovirus types. CONCLUSION/SIGNIFICANCE: We show that peptides can be displayed in a highly immunogenic fashion at the N-terminus of MS2 coat protein VLPs. A VLP-based vaccine targeting HPV L2 elicits broadly cross-reactive and cross-protective antibodies to heterologous HPV types. L2-VLPs could serve as the basis of a broadly protective second generation HPV vaccine.

  20. Induction of Murine Mucosal CCR5-Reactive Antibodies as an Anti-Human Immunodeficiency Virus Strategy (United States)

    Barassi, C.; Soprana, E.; Pastori, C.; Longhi, R.; Buratti, E.; Lillo, F.; Marenzi, C.; Lazzarin, A.; Siccardi, A. G.; Lopalco, L.


    The genital mucosa is the main site of initial human immunodeficiency virus type 1 (HIV-1) contact with its host. In spite of repeated sexual exposure, some individuals remain seronegative, and a small fraction of them produce immunoglobulin G (IgG) and IgA autoantibodies directed against CCR5, which is probably the cause of the CCR5-minus phenotype observed in the peripheral blood mononuclear cells of these subjects. These antibodies recognize the 89-to-102 extracellular loop of CCR5 in its native conformation. The aim of this study was to induce infection-preventing mucosal anti-CCR5 autoantibodies in individuals at high risk of HIV infection. Thus, we generated chimeric immunogens containing the relevant CCR5 peptide in the context of the capsid protein of Flock House virus, a presentation system in which it is possible to engineer conformationally constrained peptide in a highly immunogenic form. Administered in mice via the systemic or mucosal route, the immunogens elicited anti-CCR5 IgG and IgA (in sera and vaginal fluids). Analogous to exposed seronegative individuals, mice producing anti-CCR5 autoantibodies express significantly reduced levels of CCR5 on the surfaces of CD4+ cells from peripheral blood and vaginal washes. In vitro studies have shown that murine IgG and IgA (i) specifically bind human and mouse CD4+ lymphocytes and the CCR5-transfected U87 cell line, (ii) down-regulate CCR5 expression of CD4+ cells from both humans and untreated mice, (iii) inhibit Mip-1β chemotaxis of CD4+ CCR5+ lymphocytes, and (iv) neutralize HIV R5 strains. These data suggest that immune strategies aimed at generating anti-CCR5 antibodies at the level of the genital mucosa might be feasible and represent a strategy to induce mucosal HIV-protective immunity. PMID:15890924

  1. Plant production of anti-β-glucan antibodies for immunotherapy of fungal infections in humans. (United States)

    Capodicasa, Cristina; Chiani, Paola; Bromuro, Carla; De Bernardis, Flavia; Catellani, Marcello; Palma, Angelina S; Liu, Yan; Feizi, Ten; Cassone, Antonio; Benvenuto, Eugenio; Torosantucci, Antonella


    There is an increasing interest in the development of therapeutic antibodies (Ab) to improve the control of fungal pathogens, but none of these reagents is available for clinical use. We previously described a murine monoclonal antibody (mAb 2G8) targeting β-glucan, a cell wall polysaccharide common to most pathogenic fungi, which conferred significant protection against Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans in animal models. Transfer of this wide-spectrum, antifungal mAb into the clinical setting would allow the control of most frequent fungal infections in many different categories of patients. To this aim, two chimeric mouse-human Ab derivatives from mAb 2G8, in the format of complete IgG or scFv-Fc, were generated, transiently expressed in Nicotiana benthamiana plants and purified from leaves with high yields (approximately 50 mg Ab/kg of plant tissues). Both recombinant Abs fully retained the β-glucan-binding specificity and the antifungal activities of the cognate murine mAb against C. albicans. In fact, they recognized preferentially β1,3-linked glucan molecules present at the fungal cell surface and directly inhibited the growth of C. albicans and its adhesion to human epithelial cells in vitro. In addition, both the IgG and the scFv-Fc promoted C. albicans killing by isolated, human polymorphonuclear neutrophils in ex vivo assays and conferred significant antifungal protection in animal models of systemic or vulvovaginal C. albicans infection. These recombinant Abs represent valuable molecules for developing novel, plant-derived immunotherapeutics against candidiasis and, possibly, other fungal diseases.

  2. Critical epitopes in the nucleocapsid protein of SFTS virus recognized by a panel of SFTS patients derived human monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Li Yu

    Full Text Available BACKGROUND: SFTS virus (SFTSV is a newly discovered pathogen to cause severe fever with thrombocytopenia syndrome (SFTS in human. Successful control of SFTSV epidemic requires better understanding of the antigen target in humoral immune responses to the new bunyavirus infection. METHODOLOGY/PRINCIPAL FINDINGS: We have generated a combinatorial Fab antibody phage library from two SFTS patients recovered from SFTSV infection. To date, 94 unique human antibodies have been generated and characterized from over 1200 Fab antibody clones obtained by screening the library with SFTS purified virions. All those monoclonal antibodies (MAbs recognized the nucleocapsid (N protein of SFTSV while none of them were reactive to the viral glycoproteins Gn or Gc. Furthermore, over screening 1000 mouse monoclonal antibody clones derived from SFTSV virions immunization, 462 clones reacted with N protein, while only 16 clones were reactive to glycoprotein. Furthermore, epitope mapping of SFTSV N protein was performed through molecular simulation, site mutation and competitive ELISA, and we found that at least 4 distinct antigenic epitopes within N protein were recognized by those human and mouse MAbs, in particular mutation of Glu10 to Ala10 abolished or significantly reduced the binding activity of nearly most SFTS patients derived MAbs. CONCLUSIONS/SIGNIFICANCE: The large number of human recombinant MAbs derived from SFTS patients recognized the viral N protein indicated the important role of the N protein in humoral responses to SFTSV infection, and the critical epitopes we defined in this study provided molecular basis for detection and diagnosis of SFTSV infection.

  3. Human anti-rhinosporidial antibody does not cause metabolic inactivation or morphological damage in endospores of Rhinosporidium seeberi, in vitro

    Directory of Open Access Journals (Sweden)

    Arseculeratne S


    Full Text Available This report describes the use of the MTT-reduction and Evan′s blue-staining tests for the assessment of the viability and morphological integrity, respectively, of rhinosporidial endospores after exposure to sera from rhinosporidial patients with high titres of anti-rhinosporidial antibody. Sera from three patients, with nasal, ocular and disseminated rhinosporidiosis respectively were used, with human serum without anti-rhinosporidial antibody for comparison, with or without added fresh guinea pig serum as a source of complement. All four sera tested, with or without guinea-pig serum, had no effect on the morphological integrity or the viability of the endospores and it is suggested that anti-rhinosporidial antibody has no direct protective role against the endospores, the infective stage, in rhinosporidiosis. This finding is compatible with the occurrence of chronicity, recurrence and dissemination that are characteristic of rhinosporidiosis despite the presence of high titres of anti-rhinosporidial antibody in patients with these clinical characteristics. The possible occurrence of humoral mechanisms of immunity that involve anti-rhinosporidial antibody with cells such as leucocytes and NK cells, in vivo, cannot yet be discounted, although the presence of high titres of anti-rhinosporidial antibody in patients with chronic, recurrent and disseminated lesions might indicate that such antibody is non-protective in vivo.

  4. Strongyloides stercoralis excretory/secretory protein strongylastacin specifically recognized by IgE antibodies in infected human sera. (United States)

    Varatharajalu, Ravi; Parandaman, Vijayalakshmi; Ndao, Momar; Andersen, John F; Neva, Franklin A


    The infective, microscopic Strongyloides stercoralis larvae in contaminated soil can penetrate human skin with the help of excretory/secretory proteases. These proteases play a critical role in infection and transmigration of the parasite to the intestines. Strongylastacin is similar to astacin (from the digestive gland of the crayfish Astacus astacus), a multi-domain protein with a signal peptide, a pro-enzyme, a catalytic domain containing the zinc binding consensus astacin family signature sequence HEXXHXXGFXHEXXRXDR, and a second conserved zinc binding motif SIMHY at N- terminal region. An EGF-1 like domain and a CUB domain are located at the COOH- terminal. In this study, the excretory/secretory Strongylastacin gene from S. stercoralis infective larval stage was cloned and expressed as a 45 kDa in Escherichia coli. Immunoblot analysis showed the presence of natural IgG antibodies against strongylastacin in six infected and six non-endemic normal sera. These findings were confirmed in an ELISA of 32 S. stercoralis infected and 32 presumed normal human sera; all contained natural anti-strongylastacin IgG antibodies. By contrast, IgE antibodies specific to strongylastacin were present in sera from individuals infected with S. stercoralis but not in uninfected control sera. Moreover, recombinant strongylastacin did not cross-react with IgE antibodies either from patients infected with filaria or patients with tropical pulmonary eosinophilic (TPE) who had increased IgE antibodies. The present authors conclude that strongylastacin, an excretory/secretory antigen, elicits specific IgE antibodies in S. stercoralis infected humans. Non-specific IgG antibodies to strongylastacin are present in both infected and normal humans. Further investigation is needed to understand the role of the host protective response against strongylastacin.

  5. Monoclonal antibodies in human organ transplantation and auto-immune diseases. (United States)

    Wijdenes, J; Roy, C; Morel-Fourrier, B; Racadot, E


    The usefulness of monoclonal antibodies (mAbs) in the transplantation field has become evident over the last couple of years. Different mAbs have been used as a prophylactic treatment after transplantation, in a therapeutic way against acute organ rejection and new diagnostic tools to predict clinical rejection immerge. One can even hope that with humanised mAbs or human mAbs obtained by repertoire cloning the formation of human anti-mouse antibodies will be solved although on the one hand this appeared not to be a big problem and on the other hand anti-idiotypic antibodies can still be expected. However, the most puzzling question is how the mAbs modulates the immuno-response and this not only in organ rejection but also in auto-immune diseases. Only one out of many CD25 mAbs with seemingly similar epitope recognition can be used in therapeutical treatment of acute Graft versus Host Disease. The same mAb is not, however, very efficient in the prophylactic treatment of kidney transplantation without association of suboptimal doses of cyclosporin A. Another example is a CD4 mAb which is efficient in the treatment of polyarthritis with no side effects but which provokes transient but clear side effects when used in psoriasis or multiple sclerosis patients. A second CD4 mAb with high inhibitory activity in several bioassays compared to the first CD4 mAb has no beneficial effect at all on polyarthritis. Also the question why there is a percentage of "no response" patients among apparently identical "good response" patients remains unanswered. However it becomes clear from these experiences that: 1) mAbs recognizing a similar epitope and being of the same isotype will not automatically have the same effect in therapy. 2) side effects may be depending of the disease treated. 3) the activities of mAbs in bioassays and even animal models very often do not reflect the in vivo situation in human. 4) efficiency of the treatment with mAbs can be increased by a better

  6. Definition of glomerular antigens by monoclonal antibodies produced against a human glomerular membrane fraction. (United States)

    Neale, T J; Callus, M S; Donovan, L C; Baird, H


    Experimental animal models of glomerulonephritis (GN) produced by direct antibody binding to non-basement membrane glomerular capillary wall antigens do not to date have human parallels. To examine the potential for this form of humoral glomerular injury in man, we sought to define discrete human non-GBM glomerular antigenic targets using hybridoma technology. Mice were immunised intraperitoneally with 20-100 micrograms of a human glomerular membrane fraction (HGMF). Six fusions have yielded 12 stable reagents defined by positive glomerular indirect immunofluorescence (IF) and microELISA using HGMF as the screening antigen. Subclass analysis of ascitic McAbs indicated several IgG1, one IgG2b, and three IgM reagents. Distinctive IF patterns of reactivity with epithelial, endothelial or mesangial structures have been observed, with or without peritubular capillary, tubular basement membrane and vessel wall reactivity. Seven normal non-renal human organs and the kidneys of rat, rabbit and sheep have shown patterns characteristic of each individual McAb, restricted to human or with species cross reactivity. To partially characterise McAb-reactive antigens, detergent-solubilised renal cortex and collagenase-solubilised GBM (CS-GBM) extracts have been probed by immunoblot. A unique McAb 7-5Q, reactive with glomerular and tubular epithelial structures, binds major bands of approximately 107 KD and 93 KD in detergent solubilised cortex and a single band of similar size by immunoprecipitation (110 KD). 5-3A (a human-restricted linear-reacting McAb) binds bands of 20-200 KD (major band 58 KD) in CS-GBM. In conclusion, distinct species-restricted and more broadly disposed glomerular epitopes are definable in man by McAbs and are potential targets for humoral injury. Purification of these antigens will allow assay for circulating putative nephritogenic auto-antibody and potentially, McAbs may be useful in screening urine for evidence of occult structural renal disease.

  7. Serum or breast milk immunoglobulins mask the self-reactivity of human natural IgG antibodies. (United States)

    Djoumerska-Alexieva, Iglika; Manoylov, Iliyan; Dimitrov, Jordan D; Tchorbanov, Andrey


    B cells producing IgG antibodies specific to a variety of self- or foreign antigens are a normal constituent of the immune system of all healthy individuals. These naturally occurring IgG antibodies are found in the serum, external secretions, and pooled human immunoglobulin preparations. They bind with low affinity to antigens, which can also be targets for pathologic autoantibodies. An enhancement of naturally occurring IgG autoantibody activity was observed after treatment of human IgG molecules with protein-destabilizing agents. We have investigated the interactions of human immunoglobulins that were obtained from serum or from breast milk of healthy individuals or IVIg with human liver antigens. Proteins from an individual serum or milk were isolated by two methods, one of which included exposure to low pH and the other did not. Purified serum, mucosal IgM, IgA, and the fraction containing immunoglobulin G F(ab')2 fragments each inhibited the binding of a single donor or pooled IgG to human liver antigens. Our study presents findings regarding the role of the breast milk or serum antibodies in blocking the self-reactivity of IgG antibodies. It supports the suggestion that not IVIg only, but also the pooled human IgM and IgA might possess a potent beneficial immunomodulatory activity in autoimmune patients.

  8. Structure of the Ebola Virus Glycoprotein Bound to An Antibody From a Human Survivor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.E.; Fusco, M.L.; Hessell, A.J.; Oswald, W.B.; Burton, D.R.; Saphire, E.O.


    Ebola virus (EBOV) entry requires the surface glycoprotein (GP) to initiate attachment and fusion of viral and host membranes. Here we report the crystal structure of EBOV GP in its trimeric, pre-fusion conformation (GP1+GP2) bound to a neutralizing antibody, KZ52, derived from a human survivor of the 1995 Kikwit outbreak. Three GP1 viral attachment subunits assemble to form a chalice, cradled by the GP2 fusion subunits, while a novel glycan cap and projected mucin-like domain restrict access to the conserved receptor-binding site sequestered in the chalice bowl. The glycocalyx surrounding GP is likely central to immune evasion and may explain why survivors have insignificant neutralizing antibody titres. KZ52 recognizes a protein epitope at the chalice base where it clamps several regions of the pre-fusion GP2 to the amino terminus of GP1. This structure provides a template for unraveling the mechanism of EBOV GP-mediated fusion and for future immunotherapeutic development.

  9. High affinity human antibody fragments to dengue virus non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Nicole J Moreland

    Full Text Available BACKGROUND: The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3 are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5' triphosphatase domain which forms the remainder of the 618-aa long protein. METHODOLOGY/PRINCIPAL FINDINGS: In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind α3″ (residues 526 through 531 within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells. CONCLUSIONS/SIGNIFICANCE: Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo.

  10. Detection of human leukocyte antigen compatibility and antibodies in liver transplantation in China

    Institute of Scientific and Technical Information of China (English)

    Xue-Qin Meng; Xuan Zhang; Jun Fan; Lin Zhou; Bing Hao; Xiao-Ming Chen; Wei-Hang Ma; Shu-Sen Zheng


    BACKGROUND: The exact roles of human leukocyte antigen (HLA) compatibility, HLA antibodies and underlying diseases in acute rejection of liver transplants are not clear. Moreover, cytomegalovirus (CMV) infection, one of the most common infections after transplantation, is related to HLA genotype and the incidence of acute rejection. METHODS: Since there are controversial reports, we analyzed the impact of HLA matching, HLA antibodies and underlying diseases in 38 liver transplant recipients in China, and assessed the association of CMV infection and HLA compatibility. RESULTS: The frequency of no HLA compatibility was high in patients without antigenemia (P=0.019). All 17 patients with HLA-A matching developed antigenemia (P0.05). In patients with acute rejection, no differences were found in the incidence of acute rejection in transplants for hepatitis B, tumors, or combined hepatitis B and tumors (P>0.05).CONCLUSIONS: There are fewer acute rejections in transplants with more HLA compatibilities. Speciifc investigations of underlying diseases and HLA typing may be necessary in liver transplantation. The mechanisms of CMV infection and HLA matching should be further studied. HLA before transplantation should be examined for the prevention of acute rejection and CMV infection.

  11. Analysis of human chorionic gonadotropin-monoclonal antibody interaction in BIAcore

    Indian Academy of Sciences (India)

    Banerjee Ashish; Gundlupet Satyanarayana Murthy


    Kinetic studies of macromolecular ligand-ligate interaction have generated ample interest since the advent of plasmon resonance based instruments like BIAcore. Most of the studies reported in literature assume a simple 1 : 1 Langmuir binding and complete reversibility of the system. However we observed that in a high affinity antigen-antibody system [human chorionic gonadotropin-monoclonal antibody (hCG-mAb)] dissociation is insignificant and the sensogram data cannot be used to measure the equilibrium and kinetic parameters. At low concentrations of mAb the complete sensogram could be fitted to a single exponential. Interestingly we found that at higher mAb concentrations, the binding data did not conform to a simple bimolecular model. Instead, the data fitted a two-step model, which may be because of surface heterogeneity of affinity sites. In this paper, we report on the global fit of the sensograms. We have developed a method by which a single two-minute sensogram can be used in high affinity systems to measure the association rate constant of the reaction and the functional capacity of the ligand (hCG) immobilized on the chip. We provide a rational explanation for the discrepancies generally observed in most of the BIAcore sensograms.

  12. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. (United States)

    Scheid, Johannes F; Horwitz, Joshua A; Bar-On, Yotam; Kreider, Edward F; Lu, Ching-Lan; Lorenzi, Julio C C; Feldmann, Anna; Braunschweig, Malte; Nogueira, Lilian; Oliveira, Thiago; Shimeliovich, Irina; Patel, Roshni; Burke, Leah; Cohen, Yehuda Z; Hadrigan, Sonya; Settler, Allison; Witmer-Pack, Maggi; West, Anthony P; Juelg, Boris; Keler, Tibor; Hawthorne, Thomas; Zingman, Barry; Gulick, Roy M; Pfeifer, Nico; Learn, Gerald H; Seaman, Michael S; Bjorkman, Pamela J; Klein, Florian; Schlesinger, Sarah J; Walker, Bruce D; Hahn, Beatrice H; Nussenzweig, Michel C


    Interruption of combination antiretroviral therapy in HIV-1-infected individuals leads to rapid viral rebound. Here we report the results of a phase IIa open label clinical trial evaluating 3BNC117,a broad and potent neutralizing antibody against the CD4 binding site of the HIV-1 Env protein, during analytical treatment interruption in 13 HIV-1-infected individuals. Participants with 3BNC117-sensitive virus outgrowth cultures were enrolled. Results show that two or four 30 mg kg(-1) 3BNC117 infusions,separated by 3 or 2 weeks, respectively, are generally well tolerated.Infusions are associated with a delay in viral rebound of 5-9 weeks after two infusions, and up to 19 weeks after four infusions, or an average of 6.7 and 9.9 weeks, respectively, compared with 2.6 weeks for historical controls (P < 0.00001). Rebound viruses arise predominantly from a single provirus. In most individuals,emerging viruses show increased resistance, indicating escape.However, 30% of participants remained suppressed until antibody concentrations waned below 20 μg ml(-1), and the viruses emerging in all but one of these individuals showed no apparent resistance to 3BCN117, suggesting failure to escape over a period of 9-19 weeks.We conclude that the administration of 3BNC117 exerts strong selective pressure on HIV-1 emerging from latent reservoirs during analytical treatment interruption in humans.

  13. Differences in the composition of the human antibody repertoire by B cell subsets in the blood

    Directory of Open Access Journals (Sweden)

    Eva Szymanska eMroczek


    Full Text Available The vast initial diversity of the antibody repertoire is generated centrally by means of a complex series of V (D J gene rearrangement events, variation in the site of gene segment joining, and TdT catalyzed N- region addition. Although the diversity is great, close inspection has revealed distinct and unique characteristics in the antibody repertoires expressed by different B cell developmental subsets. In order to illustrate our approach to repertoire analysis, we present an in-depth comparison of V (D J gene usage, hydrophobicity, length, DH reading frame, and amino acid usage between heavy chain repertoires expressed by immature, transitional, mature, memory IgD+, memory IgD-, and plasmacytes isolated from the blood of a single individual. Our results support the view that in both human and mouse the H chain repertoires expressed by individual, developmental B cell subsets appear to differ in sequence content. Sequencing of unsorted B cells from the blood is thus likely to yield an incomplete or compressed view of what is actually happening in the immune response of the individual. Our findings support the view that studies designed to correlate repertoire expression with diseases of immune function will likely require deep sequencing of B cells sorted by subset.

  14. Constrained solution scattering modelling of human antibodies and complement proteins reveals novel biological insights. (United States)

    Perkins, Stephen J; Okemefuna, Azubuike I; Nan, Ruodan; Li, Keying; Bonner, Alexandra


    X-ray and neutron-scattering techniques characterize proteins in solution and complement high-resolution structural studies. They are useful when either a large protein cannot be crystallized, in which case scattering yields a solution structure, or a crystal structure has been determined and requires validation in solution. These solution structures are determined by the application of constrained modelling methods based on known subunit structures. First, an appropriate starting model is generated. Next, its conformation is randomized to generate thousands of models for trial-and-error fits. Comparison with the experimental data identifies a small family of best-fit models. Finally, their significance for biological function is assessed. We illustrate this in application to structure determinations for secretory immunoglobulin A, the most prevalent antibody in the human body and a first line of defence in mucosal immunity. We also discuss the applications to the large multi-domain proteins of the complement system, most notably its major regulator factor H, which is important in age-related macular degeneration and renal diseases. We discuss the importance of complementary data from analytical ultracentrifugation, and structural studies of protein-protein complexes. We conclude that constrained scattering modelling makes useful contributions to our understanding of antibody and complement structure and function.

  15. Oriented immobilized anti-LDL antibody carrying poly(hydroxyethyl methacrylate) cryogel for cholesterol removal from human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bereli, Nilay [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey); Sener, Guelsu [Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara (Turkey); Yavuz, Handan, E-mail: [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey); Denizli, Adil [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey)


    Low density lipoprotein (LDL) cholesterol is a major ingredient of the plaque that collects in the coronary arteries and causes coronary heart diseases. Among the methods used for the extracorporeal elimination of LDL from intravasal volume, immunoaffinity technique using anti-LDL antibody as a ligand offers superior selectivity and specificity. Proper orientation of the immobilized antibody is the main issue in immunoaffinity techniques. In this study, anti-human {beta}-lipoprotein antibody (anti-LDL antibody) molecules were immobilized and oriented through protein A onto poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel in order to remove LDL from hypercholesterolemic human plasma. PHEMA cryogel was prepared by free radical polymerization initiated with N,N,N',N'-tetramethylene diamine (TEMED). PHEMA cryogel with a swelling degree of 8.89 g H{sub 2}O/g and 67% macro-porosity was characterized by swelling studies, scanning electron microscope (SEM) and blood compatibility tests. All the clotting times were increased when compared with control plasma. The maximum immobilized anti-LDL antibody amount was 63.2 mg/g in the case of random antibody immobilization and 19.6 mg/g in the case of oriented antibody immobilization (protein A loading was 57.0 mg/g). Random and oriented anti-LDL antibody immobilized PHEMA cryogels adsorbed 111 and 129 mg LDL/g cryogel from hypercholesterolemic human plasma, respectively. Up to 80% of the adsorbed LDL was desorbed. The adsorption-desorption cycle was repeated 6 times using the same cryogel. There was no significant loss of LDL adsorption capacity. - Research highlights: {yields} LDL cholesterol is a risk factor in the development of coronary heart diseases. {yields} Antibodies against LDL are used for the selective extracorporeal removal of LDL. {yields} Protein A is used for the oriented immobilization of anti LDL onto PHEMA cryogel. {yields} PHEMA cryogels are biocompatible, exhibit a low pressure drop, lack diffusion

  16. Advances in alloimmune thrombocytopenia: perspectives on current concepts of human platelet antigens, antibody detection strategies, and genotyping. (United States)

    Hayashi, Tomoya; Hirayama, Fumiya


    Alloimmunisation to platelets leads to the production of antibodies against platelet antigens and consequently to thrombocytopenia. Numerous molecules located on the platelet surface are antigenic and induce immune-mediated platelet destruction with symptoms that can be serious. Human platelet antigens (HPA) cause thrombocytopenias, such as neonatal alloimmune thrombocytopenia, post-transfusion purpura, and platelet transfusion refractoriness. Thirty-four HPA are classified into 28 systems. Assays to identify HPA and anti-HPA antibodies are critically important for preventing and treating thrombocytopenia caused by anti-HPA antibodies. Significant progress in furthering our understanding of HPA has been made in the last decade: new HPA have been discovered, antibody-detection methods have improved, and new genotyping methods have been developed. We review these advances and discuss issues that remain to be resolved as well as future prospects for preventing and treating immune thrombocytopenia.

  17. Algae as protein factories: expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Franziska Hempel

    Full Text Available Microalgae are thought to offer great potential as expression system for various industrial, therapeutic and diagnostic recombinant proteins as they combine high growth rates with all benefits of eukaryotic expression systems. Moreover, microalgae exhibit a phototrophic lifestyle like land plants, hence protein expression is fuelled by photosynthesis, which is CO(2-neutral and involves only low production costs. So far, however, research on algal bioreactors for recombinant protein expression is very rare calling for further investigations in this highly promising field. In this study, we present data on the expression of a monoclonal human IgG antibody against the Hepatitis B surface protein and the respective antigen in the diatom Phaeodactylum tricornutum. Antibodies are fully-assembled and functional and accumulate to 8.7% of total soluble protein, which complies with 21 mg antibody per gram algal dry weight. The Hepatitis B surface protein is functional as well and is recognized by algae-produced and commercial antibodies.

  18. Novel monoclonal antibodies broadly reactive to human recombinant sapovirus-like particles. (United States)

    Kitamoto, Noritoshi; Oka, Tomoichiro; Katayama, Kazuhiko; Li, Tian-Cheng; Takeda, Naokazu; Kato, Yoji; Miyoshi, Tatsuya; Tanaka, Tomoyuki


    Sapovirus (SaV), a member of the family Caliciviridae, is an important cause of acute epidemic gastroenteritis in humans. Human SaV is genetically and antigenically diverse and can be classified into four genogroups (GI, GII, GIV, and GV) and 16 genotypes (7 GI [GI.1-7], 7 GII, [GII.1-7], 1 GIV and 1 GV), based on capsid sequence similarities. Monoclonal antibodies (MAbs) are powerful tools for examining viruses and proteins. PAI myeloma cells were fused with spleen cells from mice immunized with a single type of recombinant human SaV virus-like particles (VLPs) (GI.1, GI.5, GI.6, GII.3, GIV, or GV). Sixty-five hybrid clones producing MAbs were obtained. Twenty-four MAbs were characterized by ELISA, according to their cross-reactivity to each VLP (GI.1, GI.5, GI.6, GII.2, GII.3, GII.4, GII.7, GIV, and GV). The MAbs were classified by this method into: (i) MAbs broadly cross-reactive to all GI, GII, GIV and GV strains; (ii) those reactive in a genogroup-specific; and (iii) those reactive in a genotype-specific manner. Further analysis of three broadly cross-reactive MAbs with a competitive ELISA demonstrated that at least two different common epitopes are located on the capsid protein of human SaVs in the four genogroups. The MAbs generated and characterized in this study will be useful tools for further study of the antigenic and structural topography of the human SaV virion and for developing new diagnostic assays for human SaV. © 2012 The Societies and Wiley Publishing Asia Pty Ltd.

  19. Anti-Lipid IgG Antibodies Are Produced via Germinal Centers in a Murine Model Resembling Human Lupus (United States)

    Wong-Baeza, Carlos; Reséndiz-Mora, Albany; Donis-Maturano, Luis; Wong-Baeza, Isabel; Zárate-Neira, Luz; Yam-Puc, Juan Carlos; Calderón-Amador, Juana; Medina, Yolanda; Wong, Carlos; Baeza, Isabel; Flores-Romo, Leopoldo


    Anti-lipid IgG antibodies are produced in some mycobacterial infections and in certain autoimmune diseases [such as anti-phospholipid syndrome, systemic lupus erythematosus (SLE)]. However, few studies have addressed the B cell responses underlying the production of these immunoglobulins. Anti-lipid IgG antibodies are consistently found in a murine model resembling human lupus induced by chlorpromazine-stabilized non-bilayer phospholipid arrangements (NPA). NPA are transitory lipid associations found in the membranes of most cells; when NPA are stabilized they can become immunogenic and induce specific IgG antibodies, which appear to be involved in the development of the mouse model of lupus. Of note, anti-NPA antibodies are also detected in patients with SLE and leprosy. We used this model of lupus to investigate in vivo the cellular mechanisms that lead to the production of anti-lipid, class-switched IgG antibodies. In this murine lupus model, we found plasma cells (Gr1−, CD19−, CD138+) producing NPA-specific IgGs in the draining lymph nodes, the spleen, and the bone marrow. We also found a significant number of germinal center B cells (IgD−, CD19+, PNA+) specific for NPA in the draining lymph nodes and the spleen, and we identified in situ the presence of NPA in these germinal centers. By contrast, very few NPA-specific, extrafollicular reaction B cells (B220+, Blimp1+) were found. Moreover, when assessing the anti-NPA IgG antibodies produced during the experimental protocol, we found that the affinity of these antibodies progressively increased over time. Altogether, our data indicate that, in this murine model resembling human lupus, B cells produce anti-NPA IgG antibodies mainly via germinal centers. PMID:27746783

  20. Isolation of Osteosarcoma-Associated Human Antibodies from a Combinatorial Fab Phage Display Library

    Directory of Open Access Journals (Sweden)

    Carmela Dantas-Barbosa


    Full Text Available Osteosarcoma, a highly malignant disease, is the most common primary bone tumor and is frequently found in children and adolescents. In order to isolate antibodies against osteosarcoma antigens, a combinatorial osteosarcoma Fab library displayed on the surface of phages was used. After three rounds of selection on the surface of tumor cells, several osteosarcoma-reactive Fabs were detected. From these Fabs, five were better characterized, and despite having differences in their VH (heavy chain variable domain and Vκ (kappa chain variable domain regions, they all bound to a protein with the same molecular mass. Further analysis by cell ELISA and immunocytochemistry suggested that the Fabs recognize a membrane-associated tumor antigen expressed in higher amounts in neoplasic cells than in normal tissue. These results suggest that the human Fabs selected in this work are a valuable tool for the study of this neoplasia.

  1. A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. (United States)

    Griffin, J D; Linch, D; Sabbath, K; Larcom, P; Schlossman, S F


    Anti-MY9 is an IgG2b murine monoclonal antibody selected for reactivity with immature normal human myeloid cells. The MY9 antigen is expressed by blasts, promyelocytes and myelocytes in the bone marrow, and by monocytes in the peripheral blood. Erythrocytes, lymphocytes and platelets are MY9 negative. All myeloid colony-forming cells (CFU-GM), a fraction of erythroid burst-forming cells (BFU-E) and multipotent progenitors (CFU-GEMM) are MY9 positive. This antigen is further expressed by the leukemic cells of a majority of patients with AML and myeloid CML-BC. Leukemic stem cells (leukemic colony-forming cells, L-CFC) from most patients tested were also MY9 positive. In contrast, MY9 was not detected on lymphocytic leukemias. Anti-MY9 may be a valuable reagent for the purification of hematopoietic colony-forming cells and for the diagnosis of myeloid-lineage leukemias.

  2. Phage display-based strategies for cloning and optimization of monoclonal antibodies directed against human pathogens. (United States)

    Clementi, Nicola; Mancini, Nicasio; Solforosi, Laura; Castelli, Matteo; Clementi, Massimo; Burioni, Roberto


    In the last two decades, several phage display-selected monoclonal antibodies (mAbs) have been described in the literature and a few of them have managed to reach the clinics. Among these, the anti-respiratory syncytial virus (RSV) Palivizumab, a phage-display optimized mAb, is the only marketed mAb directed against microbial pathogens. Palivizumab is a clear example of the importance of choosing the most appropriate strategy when selecting or optimizing an anti-infectious mAb. From this perspective, the extreme versatility of phage-display technology makes it a useful tool when setting up different strategies for the selection of mAbs directed against human pathogens, especially when their possible clinical use is considered. In this paper, we review the principal phage display strategies used to select anti-infectious mAbs, with particular attention focused on those used against hypervariable pathogens, such as HCV and influenza viruses.

  3. Radioimmunodetection of human leukemia with anti-interleukin-2 receptor antibody in severe combined immunodeficiency mice

    Energy Technology Data Exchange (ETDEWEB)

    Hosono, Makoto; Takaori-Kondo, Akifumi; Zheng-Sheng, Yao; Kobayashi, Hisataka; Hosono, Masako N.; Sakahara, Harumi; Imada, Kazunori; Okuma, Minoru; Uchiyama, Takashi; Konishi, Junji


    Anti-Tac monoclonal antibody recognizes human interleukin-2 receptor, which is overexpressed in leukemic cells of most adult T-cell leukemia (ATL) patients. To examine the potency of anti-Tac for targeting of ATL, biodistributions of intravenously administered {sup 125}I- and {sup 111}In-labeled anti-Tac were examined in severe combined immunodeficiency (SCID) mice inoculated with ATL cells. Significant amounts of radiolabeled anti-Tac were found in the spleen and thymus. The trafficking of ATL cells in SCID mice was detected using {sup 111}In-oxine-labeled ATL cells. These results were coincident with the histologically confirmed infiltration of ATL cells. The radiolabeled anti-Tac seemed potent for targeting of ATL.

  4. Preparation of Monoclonal Antibodies and a Simple Myeloperoxidase-Immunosorbent Assay for Detecting Human Myeloperoxidase. (United States)

    Bian, Zhi-Ping; Li, Xiong-Zhi; Wu, Heng-Fang; Xu, Jin-Dan; Gu, Chun-Rong; Chen, Xiang-Jian; Yang, Di


    Myeloperoxidase (MPO), a leukocyte hemoprotein released from neutrophils, is thought to be a potential participant in plaque formation and plaque rupture. Therefore, MPO is regarded as an early marker predicting the risk for atherosclerosis, especially for coronary artery disease and acute coronary syndrome. We generated hybridoma clones 1E3 and 3E8 secreting monoclonal antibodies (mAbs) specific to human MPO. BALB/c mice were immunized with MPO protein purified from human neutrophils. Splenocytes from these mice were fused with the mouse myeloma cell line SP2/0. Based on isotyping of the mAbs, both clones 1E3 and 3E8 were referred to the IgG1 subclass. The specificities of 1E3 and 3E8 were assessed by enzyme-linked immunosorbent assay (ELISA), and only 3E8 was confirmed by western blot. We developed a simple MPO-immunosorbent assay (MPO-ISA) on microplate based on both the immune activity and peroxidase activity of MPO. The mAb secreted by clone 3E8 was chosen as coating antibody to capture the plasma MPO without interfering with the peroxidase activity of MPO. Then, tetramethylbenzidine substrate was added to the microwell directly, catalyzed by captured MPO, and a colored product was formed. The simple MPO-ISA test has a sensitivity of 3.68 ng/mL. The linear concentration of MPO-ISA for commercial MPO standard ranged to 250 ng/mL. The average recovery rate is 101.02%. The imprecision within-day was ISA can detect the plasma MPO from human and cavy, but not from mouse and rat. Compared with the commercial human MPO ELISA assay, the MPO-ISA can be used to detect the natural human MPO protein, but not recombinant MPO polypeptides. The generated mAbs and MPO-ISA test may be useful tools to assess risk for inflammation and cardiac events.

  5. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.; Lennon, V.A.


    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodies to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.

  6. Species-Specific Chromosome Engineering Greatly Improves Fully Human Polyclonal Antibody Production Profile in Cattle.

    Directory of Open Access Journals (Sweden)

    Hiroaki Matsushita

    Full Text Available Large-scale production of fully human IgG (hIgG or human polyclonal antibodies (hpAbs by transgenic animals could be useful for human therapy. However, production level of hpAbs in transgenic animals is generally very low, probably due to the fact that evolutionarily unique interspecies-incompatible genomic sequences between human and non-human host species may impede high production of fully hIgG in the non-human environment. To address this issue, we performed species-specific human artificial chromosome (HAC engineering and tested these engineered HAC in cattle. Our previous study has demonstrated that site-specific genomic chimerization of pre-B cell receptor/B cell receptor (pre-BCR/BCR components on HAC vectors significantly improves human IgG expression in cattle where the endogenous bovine immunoglobulin genes were knocked out. In this report, hIgG1 class switch regulatory elements were subjected to site-specific genomic chimerization on HAC vectors to further enhance hIgG expression and improve hIgG subclass distribution in cattle. These species-specific modifications in a chromosome scale resulted in much higher production levels of fully hIgG of up to 15 g/L in sera or plasma, the highest ever reported for a transgenic animal system. Transchromosomic (Tc cattle containing engineered HAC vectors generated hpAbs with high titers against human-origin antigens following immunization. This study clearly demonstrates that species-specific sequence differences in pre-BCR/BCR components and IgG1 class switch regulatory elements between human and bovine are indeed functionally distinct across the two species, and therefore, are responsible for low production of fully hIgG in our early versions of Tc cattle. The high production levels of fully hIgG with hIgG1 subclass dominancy in a large farm animal species achieved here is an important milestone towards broad therapeutic applications of hpAbs.

  7. Novel monoclonal antibody against beta 1 integrin enhances cisplatin efficacy in human lung adenocarcinoma cells. (United States)

    Kim, Min-Young; Cho, Woon-Dong; Hong, Kwon Pyo; Choi, Da Bin; Hong, Jeong Won; Kim, Soseul; Moon, Yoo Ri; Son, Seung-Myoung; Lee, Ok-Jun; Lee, Ho-Chang; Song, Hyung Geun


    The use of anti-beta 1 integrin monoclonal antibody in lung cancer treatment has proven beneficial. Here, we developed a novel monoclonal antibody (mAb), called P5, by immunizing mice with human peripheral blood mononuclear cells (PBMC). Its anti-tumor effect is now being tested, in a clinical phase III trial, in combinatorial treatments with various chemical drugs. To confirm that P5 indeed binds to beta 1 integrin, cell lysates were immunoprecipitated with commercial anti-beta 1 integrin mAb (TS2/16) and immunoblotted against P5 to reveal a 140 kDa molecular weight band, as expected. Immunoprecipitation with P5 followed by LC/MS protein sequence analysis further verified P5 antigen to be beta 1 integrin. Cisplatin treatment upregulated cell surface expression of beta 1 integrin in A549 cells, while causing inhibition of cell growth. When cells were co-treated with different concentrations of P5 mAb, the cisplatin-mediated inhibitory effect was enhanced in a dose-dependent manner. Our findings show that a combinatorial treatment of P5 mAb and cisplatin in A549 cells resulted in a 30% increase in apoptosis, compared to baseline, and significantly more when compared to either the cisplatin or P5 alone group. The entire peptide sequences in CDR from variable region of Ig heavy and light chain gene for P5 mAb are also disclosed. Together, these results provide evidence of the beneficial effect of P5 mAb in combinatorial treatment of human lung adenocarcinoma.

  8. Passive immunization against dental caries and periodontal disease: development of recombinant and human monoclonal antibodies. (United States)

    Abiko, Y


    and periodontal diseases are summarized, and the biotechnological approaches for developing recombinant and human-type antibodies are introduced. Furthermore, our own attempts to construct single-chain variable fragments (ScFv) and human-type antibodies capable of neutralizing virulence factors are discussed.

  9. Production and Characterization of Monoclonal Antibodies against Human Nuclear Protein FAM76B.

    Directory of Open Access Journals (Sweden)

    Xiaojing Zheng

    Full Text Available Human FAM76B (hFAM76B is a 39 kDa protein that contains homopolymeric histidine tracts, a targeting signal for nuclear speckles. FAM76B is highly conserved among different species, suggesting that it may play an important physiological role in normal cellular functions. However, a lack of appropriate tools has hampered study of this potentially important protein. To facilitate research into the biological function(s of FAM76B, murine monoclonal antibodies (MAbs against hFAM76B were generated by using purified, prokaryotically expressed hFAM76B protein. Six strains of MAbs specific for hFAM76B were obtained and characterized. The specificity of MAbs was validated by using FAM76B-/- HEK 293 cell line. Double immunofluorescence followed by laser confocal microscopy confirmed the nuclear speckle localization of hFAM76B, and the specific domains recognized by different MAbs were further elucidated by Western blot. Due to the high conservation of protein sequences between mouse and human FAM76B, MAbs against hFAM76B were shown to react with mouse FAM76B (mFAM76B specifically. Lastly, FAM76B was found to be expressed in the normal tissues of most human organs, though to different extents. The MAbs produced in this study should provide a useful tool for investigating the biological function(s of FAM76B.

  10. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits (United States)

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.


    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  11. Human monoclonal antibodies to West Nile virus identify epitopes on the prM protein. (United States)

    Calvert, Amanda E; Kalantarov, Gavreel F; Chang, Gwong-Jen J; Trakht, Ilya; Blair, Carol D; Roehrig, John T


    Hybridoma cell lines (2E8, 8G8 and 5G12) producing fully human monoclonal antibodies (hMAbs) specific for the pre-membrane (prM) protein of West Nile virus (WNV) were prepared using a human fusion partner cell line, MFP-2, and human peripheral blood lymphocytes from a blood donor diagnosed with WNV fever in 2004. Using site-directed mutagenesis of a WNV-like particle (VLP) we identified 4 amino acid residues in the prM protein unique to WNV and important in the binding of these hMAbs to the VLP. Residues V19 and L33 are important epitopes for the binding of all three hMAbs. Mutations at residue, T20 and T24 affected the binding of hMAbs, 8G8 and 5G12 only. These hMAbs did not significantly protect AG129 interferon-deficient mice or Swiss Webster outbred mice from WNV infection.

  12. Discrepancy Between Tumor Antigen Distribution and Radiolabeled Antibody Binding in a Nude Mouse Xenograft Model of Human Melanoma. (United States)

    Kim, Yong-Il; Paeng, Jin Chul; Cheon, Gi Jeong; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key


    Biodistribution of antibodies is vital to successful immunoscintigraphy/immunotherapy, and it is assumed to be similar to antigen distribution. We measured and compared the binding pattern of radiolabeled antibody to tissue antigen distribution in a nude mouse xenograft model of human melanoma. We transplanted 10(7) FEM-XII human melanoma cells into the right flank of five nude mice. For the control, we transplanted 5 × 10(6) LS174T human colon cancer cells into the left flank. Two weeks later, 10 μCi of (131)I-labeled melanoma-associated 96.5 monoclonal antibody (targeting p97 antigen) was intravenously injected. Three days later, we sacrificed the mice and evaluated 96.5 antibody binding and concentration in the tumors by ex vivo quantitative autoradiography (QAR). Two months later, we incubated adjacent tumor tissue slices in various concentrations of (125)I-labeled 96.5 MoAb and evaluated the distribution/concentration of p97 antigen by in vitro QAR. p97 antigen distribution was homogeneous in the tumors (total antigen concentration [Bmax] = 17.36-38.36 pmol/g). In contrast, radiolabeled 96.5 antibody binding was heterogenous between location within the tumor (estimated bound antigen concentration = 0.7-6.6 pmol/g). No quantifiable parameters were found to be related with radiolabeled antibody binding and tumor antigen distribution. Antibody-bound tumor antigen to total antigen ratios ranged between 2% and 38%. Heterogeneous features of target antibody binding were observed in contrast to relatively homogenous feature of tumor antigen. We did not identify any correlations between p97 antigen distribution and 96.5 antibody binding in melanoma tissue. Radiolabeled 96.5 antibody binding patterns within melanoma cannot be predicted based on p97 antigen distribution in the tumor, which needs to be further studied with several other methods and more subjects in the future.

  13. Two new monoclonal antibodies for biochemical and flow cytometric analyses of human interferon regulatory factor-3 activation, turnover, and depletion. (United States)

    Rustagi, Arjun; Doehle, Brian P; McElrath, M Juliana; Gale, Michael


    Interferon regulatory factor-3 (IRF-3) is a master transcription factor that drives the host intracellular innate immune response to virus infection. The importance of IRF-3 in innate immune responses is highlighted by the fact that pathogenic viruses have developed strategies for antagonism of IRF-3. Several tools exist for evaluation of viral regulation of IRF-3 activation and function, but high-quality monoclonal antibodies that mark the differential activation states of human IRF-3 are lacking. To study IRF-3 activation, turnover, and depletion in a high-throughput manner in the context of virus infection, we have developed two new monoclonal antibodies to human IRF-3. These antibodies detect IRF-3 in virus-infected cells in a wide variety of assays and provide a new tool to study virus-host interactions and innate immune signaling.

  14. Effects of a human VEGF antibody (Bevacizumab) on deprivation myopia and choroidal thickness in the chicken. (United States)

    Mathis, Ute; Ziemssen, Focke; Schaeffel, Frank


    Vascular endothelial growth factor (VEGF) is a dimeric glycoprotein which is responsible for neovascularization and fenestrations of the choriocapillaris. In neovascular maculopathies secondary to age-related degeneration (nAMD) or pathologic myopia (PM-CNV), its inhibition by humanized antibodies is currently the most successful therapy. The choroid has an important role in maintaining retinal health and its thickness declines with age and with myopia. Since choroidal thickness depends on its perfusion rate, one would expect that anti-VEGF agents can also change choroidal thickness. We have tested the hypothesis in the chicken model, using a humanized antibody, Bevacizumab, and also studied the distribution of VEGF-A in the chicken fundal layers by immunohistochemical techniques. Even though it was raised against human VEGF, Bevacizumab had several long lasting effects in the chicken eye (1) after a single unilateral intravitreal injection of 0.5 mg, it partially suppressed the development of deprivation myopia, similarly in both eyes, (2) it completely suppressed choroidal thickening that normally occurs when eyes recover from induced myopia over a time period of about 10 days, (3) it had little effect on the choroidal thickness in eyes that had normal visual experience, (4) VEGF-A was absent in sclera, but highly expressed in the walls of choroidal blood vessels and presumed nerve fiber bundles, as well as in retinal photoreceptors and cells of the inner and outer nuclear layer. One day after the injection of Bevacizumab, the immunoreactivity against VEGF-A had largely disappeared. In conclusion, Bevacizumab is similary effective in human and chicken tissue, has similar time constants (few days), has almost symmetrical effects on myopia in both eyes even after monocular application, and fully suppresses choroidal thickening that normally occurs during recovery from deprivation myopia. The mechanisms by which Bevacizumab acts on the choroidal thickness are

  15. Screening of Human Antibody Fab Fragment against HBsAg and the Construction of its dsFv Form

    Directory of Open Access Journals (Sweden)

    Leili Jia, Jiyun Yu, Hongbin Song, Xuelin Liu, Weina Ma, Yuanyong Xu, Chuanfu Zhang, Shicun Dong, Qiao Li


    Full Text Available The objective of this study was to pursue the techniques involving the screening of the human antibody Fab fragment against hepatitis B virus surface antigen (HBsAg and the construction of its disulfide-stabilized Fv fragment (dsFv. The phage antibody Fab fragments against HBsAg were screened from the human combinatorial immunoglobulin library. Sequence analysis revealed that its heavy chain gene was complete, but the light chain gene was lost. To improve the affinity of the antibody by chain shuffling, a human antibody light chain gene repertoire was generated by reverse transcriptase-polymerase chain reaction (RT-PCR from the human peripheral blood lymphocytes. A phage antibody sub-library was then constructed by inserting the light chain gene repertoire into the phagmid that contained the Fd gene. Five clones with appreciably higher absorbance than that of the original clone were obtained, which indicated that the affinity of the light chain-shuffled phage antibodies was improved. Then, the mutated genes of dsFv against HBsAg were constructed by using PCR-based point mutagenesis method. Purified VH and VL proteins were folded into a 25-kDa protein, designated as anti-HBsAg dsFv. ELISA and competition ELISA revealed that the dsFv maintained the specificity of the Fab by binding to HBsAg, even through with a lower binding activity. These results have facilitated the undertaking of further functional analyses of the constructed dsFv, and may therefore provide an improved technique for the production and application of dsFvs against HBsAg.

  16. Humanization of JAA-F11, a Highly Specific Anti-Thomsen-Friedenreich Pancarcinoma Antibody and In Vitro Efficacy Analysis

    Directory of Open Access Journals (Sweden)

    Swetha Tati


    Full Text Available JAA-F11 is a highly specific mouse monoclonal to the Thomsen-Friedenreich Antigen (TF-Ag which is an alpha-O-linked disaccharide antigen on the surface of ~80% of human carcinomas, including breast, lung, colon, bladder, ovarian, and prostate cancers, and is cryptic on normal cells. JAA-F11 has potential, when humanized, for cancer immunotherapy for multiple cancer types. Humanization of JAA-F11, was performed utilizing complementarity determining regions grafting on a homology framework. The objective herein is to test the specificity, affinity and biology efficacy of the humanized JAA-F11 (hJAA-F11. Using a 609 target glycan array, 2 hJAA-F11 constructs were shown to have excellent chemical specificity, binding only to TF-Ag alpha-linked structures and not to TF-Ag beta-linked structures. The relative affinity of these hJAA-F11 constructs for TF-Ag was improved over the mouse antibody, while T20 scoring predicted low clinical immunogenicity. The hJAA-F11 constructs produced antibody-dependent cellular cytotoxicity in breast and lung tumor lines shown to express TF-Ag by flow cytometry. Internalization of hJAA-F11 into cancer cells was also shown using a surface binding ELISA and confirmed by immunofluorescence microscopy. Both the naked hJAA-F11 and a maytansine-conjugated antibody (hJAA-F11-DM1 suppressed in vivo tumor progression in a human breast cancer xenograft model in SCID mice. Together, our results support the conclusion that the humanized antibody to the TF-Ag has potential as an adjunct therapy, either directly or as part of an antibody drug conjugate, to treat breast cancer, including triple negative breast cancer which currently has no targeted therapy, as well as lung cancer.

  17. A high-affinity human monoclonal IgM antibody reacting with multiple strains of Mycoplasma hominis

    DEFF Research Database (Denmark)

    Moller, SA; Birkelund, Svend; Borrebaeck, CA


    Human monoclonal antibodies were produced against Mycoplasma hominis by in vitro immunization of peripheral blood lymphocytes from a healthy seropositive donor using low amounts of antigen (5 ng/ml). The immune B lymphocytes were subsequently immortalized by Epstein-Barr virus transformation...

  18. Prevalence of Toxoplasma gondii antibodies in domestic donkeys (Equus asinus) in Durango, Mexico slaughtered for human consumption (United States)

    Background: Nothing is known about Toxoplasma gondii prevalence in donkeys in Mexico. Meat from donkey is consumed by humans in Mexico and also exported to other countries. We sought to determine the presence of antibodies against T. gondii in 239 domestic donkeys (Equus asinus) for slaughter in Dur...


    NARCIS (Netherlands)



    Aims-To investigate the correlation between antibodies to the transforming protein E7 of human papillomavirus (HPV) type 16 and clinicopathological indices in women with cervical squamous carcinoma. Methods-A synthetic peptide of the HPV type 16 E7 protein (amino acids 6 to 35) was used to screen se

  20. Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R


    , the eccrine sweat glands, capillary system, and the hair follicle outer root sheath, generally similar in pattern to that previously reported for full-thickness rat skin and human epidermis. The same areas also bound EGF-R1 but in addition the monoclonal antibody recognized a cone of melanin containing...

  1. Antibodies to human papillomavirus type 16 E7 related to clinicopathological data in patients with cervical carcinoma

    NARCIS (Netherlands)

    M.F.D. Baay (Marc); J.M. Duk; M.P.M. Burger; J. Walboomers; J. ter Schegget; K.H. Groenier; H.W. de Bruijn; E. Stolz (Ernst); P. Herbrink (Paul)


    textabstractAIMS--To investigate the correlation between antibodies to the transforming protein E7 of human papillomavirus (HPV) type 16 and clinicopathological indices in women with cervical squamous carcinoma. METHODS--A synthetic peptide of the HPV type 16 E7 protein (amino acid


    NARCIS (Netherlands)



    Aims-To investigate the correlation between antibodies to the transforming protein E7 of human papillomavirus (HPV) type 16 and clinicopathological indices in women with cervical squamous carcinoma. Methods-A synthetic peptide of the HPV type 16 E7 protein (amino acids 6 to 35) was used to screen se


    NARCIS (Netherlands)



    The Center for Devices and Radiological Health, in collaboration with the Department of Veterans Affairs Medical Center, Brooklyn, N.Y., conducted a multi-center, multi-institutional study of the seroprevalence of antibodies to the human immunodeficiency virus (HIV) among dialysis workers. Seven dia

  4. Antibodies to human papillomavirus type 16 E7 related to clinicopathological data in patients with cervical carcinoma

    NARCIS (Netherlands)

    M.F.D. Baay (Marc); J.M. Duk; M.P.M. Burger; J. Walboomers; J. ter Schegget; K.H. Groenier; H.W. de Bruijn; E. Stolz (Ernst); P. Herbrink (Paul)


    textabstractAIMS--To investigate the correlation between antibodies to the transforming protein E7 of human papillomavirus (HPV) type 16 and clinicopathological indices in women with cervical squamous carcinoma. METHODS--A synthetic peptide of the HPV type 16 E7 protein (amino acid

  5. Preparation and Characterization of a Polyclonal Antibody against Human Actin Filament-Associated Protein-120 kD. (United States)

    Chen, Yujian; Liu, Yong; Guo, Jiayu; Tang, Tao; Gao, Jian; Huang, Tao; Wang, Bin; Liu, Shaojun


    Actin filament-associated protein-120kD (AFAP-120) is an alternatively spliced isoform of actin filament-associated protein-110kD (AFAP-110) and contains an additional neuronal insert (NINS) fragment in addition to identical domains to the AFAP-110. Unlike AFAP-110 widely expressed in tissues, AFAP-120 is specifically expressed in the nervous system and plays a role in organizing dynamic actin structures during neuronal differentiation. However, anti-AFAP-120 antibody is still commercially unavailable, and this may hinder the function research for AFAP-120. In this study, we simultaneously used the ABCpred online server and the BepiPred 1.0 server to predict B-cell epitopes in the exclusive NINS sequence of human AFAP-120 protein, and found that a 16aa-peptide sequence was the consensus epitope predicted by both tools. This peptide was chemically synthesized and used as an immunogen to develop polyclonal antibody against AFAP-120 (anti-AFAP-120). The sensitivity and specificity of anti-AFAP-120 were analyzed with immunoblotting, immunoprecipitation, and immunofluorescence assays. Our results indicated that anti-AFAP-120 could react with over-expressed and endogenous human AFAP-120 protein under denatured condition, but not with human AFAP-110 protein. Moreover, native human AFAP-120 protein could also be recognized by the anti-AFAP-120 antibody. These results suggested that the prepared anit-AFAP-120 antibody would be a useful tool for studying the biochemical and biological functions of AFAP-120.

  6. Antibody responses to bacteriophage phi X-174 in human subjects exposed to the antarctic winter-over model of spaceflight (United States)

    Shearer, W. T.; Lugg, D. J.; Rosenblatt, H. M.; Nickolls, P. M.; Sharp, R. M.; Reuben, J. M.; Ochs, H. D.


    BACKGROUND: It has been proposed that exposure to long-term spaceflight conditions (stress, isolation, sleep disruption, containment, microbial contamination, and solar radiation) or to ground-based models of spaceflight will alter human immune responses, but specific antibody responses have not been fully evaluated. OBJECTIVE: We sought to determine whether exposure to the 8-month Antarctic winter-over model of spaceflight would alter human antibody responses. METHODS: During the 1999 Australian National Antarctic Research Expeditions, 11 adult study subjects at Casey, Antarctica, and 7 control subjects at Macquarie Island, sub-Antarctica, received primary and secondary immunizations with the T cell-dependent neoantigen bacteriophage phi X-174. Periodic plasma samples were analyzed for specific antibody function. RESULTS: All of the subjects from Casey, Antarctica, cleared bacteriophage phi X-174 normally by 1 week after primary immunization, and all had normal primary and secondary antibody responses, including immunologic memory amplification and switch from IgM to IgG antibody production. One subject showed a high normal pattern, and one subject had a low normal pattern. The control subjects from Macquarie Island also had normal immune responses to bacteriophage phi X-174. CONCLUSIONS: These data do not support the hypothesis that de novo specific antibody responses of subjects become defective during the conditions of the Antarctic winter-over. Because the Antarctic winter-over model of spaceflight lacks the important factors of microgravity and solar radiation, caution must be used in interpreting these data to anticipate normal antibody responses in long-term spaceflight.

  7. Generation and characterization of a human single-chain fragment variable (scFv antibody against cytosine deaminase from Yeast

    Directory of Open Access Journals (Sweden)

    Tombesi Marina


    Full Text Available Abstract Background The ability of cytosine deaminase (CD to convert the antifungal agent 5-fluorocytosine (5-FC into one of the most potent and largely used anticancer compound such as 5-fluorouracil (5-FU raised considerable interest in this enzyme to model gene or antibody – directed enzyme-prodrug therapy (GDEPT/ADEPT aiming to improve the therapeutic ratio (benefit versus toxic side-effects of cancer chemotherapy. The selection and characterization of a human monoclonal antibody in single chain fragment (scFv format represents a powerful reagent to allow in in vitro and in vivo detection of CD expression in GDEPT/ADEPT studies. Results An enzymatic active recombinant CD from yeast (yCD was expressed in E. coli system and used as antigen for biopanning approach of the large semi-synthetic ETH-2 antibody phage library. Several scFvs were isolated and specificity towards yCD was confirmed by Western blot and ELISA. Further, biochemical and functional investigations demonstrated that the binding of specific scFv with yCD did not interfere with the activity of the enzyme in converting 5-FC into 5-FU. Conclusion The construction of libraries of recombinant antibody fragments that are displayed on the surface of filamentous phage, and the selection of phage antibodies against target antigens, have become an important biotechnological tool in generating new monoclonal antibodies for research and clinical applications. The scFvH5 generated by this method is the first human antibody which is able to detect yCD in routinary laboratory techniques without interfering with its enzymatic function.

  8. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans. (United States)

    Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C; Warfield, Kelly L; Aman, M Javad; Holtsberg, Frederick W


    The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals.

  9. Specific antibodies and sensitive immunoassays for the human epidermal growth factor receptors (HER2, HER3, and HER4). (United States)

    Broughton, Marianne Nordlund; Westgaard, Arne; Paus, Elisabeth; Øijordsbakken, Miriam; Henanger, Karoline J; Naume, Bjørn; Bjøro, Trine


    The use of trastuzumab in patients with breast cancer that overexpresses human epidermal growth factor receptor 2 has significantly improved treatment outcomes. However, a substantial proportion of this patient group still experiences progression of the disease after receiving the drug. Evaluation of the changes in expression of the human epidermal growth factor receptors could be of interest. Monoclonal antibodies against the extracellular domain of the human growth factor receptors, 2, 3, and 4, have been raised, and specific and sensitive immunoassays have been established. Sera from healthy individuals (Nordic Reference Interval Project and Database) were analyzed in the human epidermal growth factor receptor 2 assay (N = 805) and the human epidermal growth factor receptor 3 and 4 assays (N = 114), and reference limits were calculated. In addition, sera from 208 individual patients with breast cancer were tested in all three assays. Finally, the human epidermal growth factor receptor 2 assay was compared with a chemiluminescent immunoassay for serum human epidermal growth factor receptor 2/neu. Reference values were as follows: human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, human epidermal growth factor receptor 4, human epidermal growth factor receptor 2 and human epidermal growth factor receptor 3 serum levels between the patients with tissue human epidermal growth factor receptor 2-positive and tissue human epidermal growth factor receptor 2-negative ( p = 0.0026, p = 0.000011) tumors, but not in the serum levels of human epidermal growth factor receptor 4 ( p = 0.054). There was good agreement between the in-house human epidermal growth factor receptor 2 assay and the chemiluminescent immunoassay. Our new specific antibodies for all the three human epidermal growth factor receptors may prove valuable in the development of novel anti-human epidermal growth factor receptor targeted therapies with

  10. Comparison of antibody responses to human papillomavirus vaccination as measured by three assays

    Directory of Open Access Journals (Sweden)

    Hilary Ann Robbins


    Full Text Available Background: Different assays, including the competitive Luminex immunoassay (cLIA, secreted alkaline phosphatase neutralization assay (SEAP-NA, and virus-like particle-based ELISA, are commonly used to measure antibody responses after human papillomavirus (HPV vaccination. Direct assay comparisons aid interpretation of immunogenicity data evaluated by different assays. Methods: We compared cLIA to SEAP-NA and ELISA among 51 HPV16/18-vaccinated women enrolled in the Costa Rica Vaccine Trial. We tested replicate serum samples collected at months 0, 1, and 12 by HPV16/18 cLIA, SEAP-NA, and ELISA. For a subset (N=10, we further tested month 24 and 36 samples. We calculated seroprevalence estimates and Spearman rank correlation coefficients comparing cLIA to SEAP-NA and ELISA.Results: After one vaccine dose, seroprevalence by SEAP-NA and ELISA was 100% (both HPV16 and HPV18, and by cLIA was 96% (95% CI 87%-100% for HPV16 and 71% (95% CI 56%-83% for HPV18. Seroprevalence was 100% by all assays after 3 doses. Correlation between assays was high after one vaccine dose (cLIA/SEAP-NA ρ=0.91 (HPV16 and ρ=0.86 (HPV18; cLIA/ELISA ρ=0.84 (HPV16 and ρ=0.74 (HPV18; all p<0.001 and remained high through month 36. Ratios of mean antibody levels to seropositivity cutoffs at month 36 were lower for cLIA than for SEAP-NA or ELISA, particularly for HPV18 (HPV18 ratio for cLIA 1.9, SEAP-NA 3.5, ELISA 3.4.Conclusion: Though correlation between cLIA and SEAP-NA/ELISA is high and stable after vaccination, the assays differ in scale and sensitivity, with notable differences after 1 vaccine dose and for HPV18. Our results demonstrate that comparisons of antibody responses to HPV vaccination measured by different assays are approximate, and must consider biological and technical differences between assays.

  11. High prevalence of antibodies against polyomavirus WU, polyomavirus KI, and human bocavirus in German blood donors

    Directory of Open Access Journals (Sweden)

    Opitz Andreas


    Full Text Available Abstract Background DNA of the polyomaviruses WU (WUPyV and KI (KIPyV and of human bocavirus (HBoV has been detected with varying frequency in respiratory tract samples of children. However, only little is known about the humoral immune response against these viruses. Our aim was to establish virus-specific serological assays and to determine the prevalence of immunoglobulin G (IgG against these three viruses in the general population. Methods The capsid proteins VP1 of WUPyV and KIPyV and VP2 of HBoV were cloned into baculovirus vectors and expressed in Sf9 insect cells. IgG antibodies against WUPyV VP1, KIPyV VP1, and HBoV VP2 were determined by immunofluorescence assays in 100 plasma samples of blood donors. Results The median age of the blood donors was 31 years (range 20 - 66 yrs, 52% were male. 89% of the samples were positive for WUPyV IgG (median age 31 yrs, 49.4% male, 67% were positive for KIPyV IgG (median age 32 yrs, 46.3% male, and 76% were positive for HBoV IgG (median age 32 yrs, 51.3% male. For WUPyV and HBoV, there were no significant differences of the seropositivity rates with respect to age groups or gender. For KIPyV, the seropositivity rate increased significantly from 59% in the age group 20 - 29 years to 100% in the age group > 50 years. Conclusions High prevalences of antibodies against WUPyV, KIPyV, and HBoV were found in plasma samples of healthy adults. The results indicate that primary infection with these viruses occurs during childhood or youth. For KIPyV, the seropositivity appears to increase further during adulthood.

  12. Prokaryotic expression and renaturation of engineering chimeric Fab antibody against human hepatoma

    Institute of Scientific and Technical Information of China (English)

    Jin-Liang Xing; Xiang-Min Yang; Xi-Ying Yao; Fei Song; Zhi-Nan Chen


    AIM: To express chimeric Fd (cFd) and chimeric light chain (cL) in E.coli respectively and refold them into chimeric Fab (cFab) antibody.METHODS: cFd and cL genes were respectively inserted into the prokaryotic expression vector pET32a to construct recombinant vectors pET32a/cFd and pET32a/cL. Then,the competent E. colicells were transformed by the recombinant vectors and induced by IPTG. Moreover, a large quantity of cFd and cL expression products were prepared and mixed with equal molar to refold into cFab by gradient dialysis. The refolded products were identified and analyzed by sodium SDS-PAGE, Western blotting,ELISA and HPLC.RESULTS: High efficient prokaryotic expressions of both cFd and cL in the form of non-fusion protein were obtained with the expression levels of 28.3% and 32.3% of total bacteria proteins, respectively. Their relative molecular masses were all 24 ku or so, and both of them mainly existed in the form of inclusion bodies. In addition, cFd and cL were successfully refolded into cFab by gradient dialysis, with about 59.45% of recovery when the starting total protein concentration was 100 μg/mL. The renatured cFab could specifically bind to related antigen with high affinity.CONCLUSION: The cFab antibody against human hepatoma was highly and efficiently expressed and refolded, which laid a solid foundation for studying its application in the treatment of hepatoma.


    Institute of Scientific and Technical Information of China (English)

    Zhu Zhenping; Yang Chunzheng; Tarunendu Ghose; Jaroslav Kralovec


    Objective: To analysis the uptake of free MTX and MTX conjugated to tumor specific monoclonal antibody by target and non-target cells. Methods: The folate antagonist methotrexate (MTX) was conjugated to two monoclonal antibodies (Mab) directed against human chronic lymphocytic leukemia (CLL), Dal B01 and Dal B02, by an active ester method. Both conjugates were more cytotoxic toward the target tumor cell line D10-1than to the non-target cell line MOLT-3, and Dal B02-MTX conjugate was more inhibitory to D10-1 cells than free MTX in a 6 h pulse exposure assay. Results: Drug uptake studies revealed that D10-1 cells took up much more Dal B01 and Dal B02-conjugated MTX than free MTX. The amounts of drug taken up by D10-1 cells incubated with Dal B01 and Dal B02-conjugated MTX were always 3 to 5-fold higher than that taken up by MOLT-3 cells, although the latter took up more drug when incubated with free MTX. Furthermore, tumor cells incubated with Dal B01 or Dal B02-conjugated MTX retained much larger amounts of drug for a prolonged period of time than those incubated with free MTX.Conclusion: The enhanced specific cytotoxicity of Dal B01 and Dal B02-MTX conjugates toward target tumor cells is therefore likely due to (Ⅰ) delivery of larger amounts of MTX to target cells when the drug is conjugated to Mab;(ii) longer retention of Mab-conjugated MTX by target cells; and (iii) slow, prolonged release of MTX from the surface-bound or endocytosed conjugates, rendering them into a sustained release dosage form.

  14. [Monoclonal antibodies of the ICO series against differentiation antigens of human lymphocytes]. (United States)

    Baryshnikov, A Iu


    The principal characteristics of monoclonal antibodies (MCA) ICO have been presented. The MCA ICO panel includes MCA against differentiating antigens of T- and B-lymphocytes, myelomonocytes, human leukemia-associated antigens. The following MCA have been described: MCA ICO-87 against common T-cell antigen CD7, ICO-33 and ICO-80 against common T-cell antigen CD5, MCA ICO-10 against Thy-1 antigen of early thymocytes, ICO-44 against CD1c antigen of cortical thymocytes, MCA ICO-90 against CD3 antigen of mature T-lymphocytes, MCA ICO-86 against CD4 antigen of T-helper/inductor cells, MCA ICO-31 against CD8 antigen of T-suppressor/cytotoxic cells, MCA ICO-1 against nonpolymorphic antigens of HLA II class, MCA ICO-12 against CD22 antigen of B-lymphocytes, MCA ICO-30 against mu-chain of human IgGM, MCA ICO-66 against CD37 antigen of B-lymphocytes, MCA ICO-88 against antigen of activated T- and B-cells, MCA ICO-35 against lymphoblasts, MCA ICO-88 against CD38 antigen of thymocytes and activated cells.

  15. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4. (United States)

    Griffiths, Katherine; Dolezal, Olan; Cao, Benjamin; Nilsson, Susan K; See, Heng B; Pfleger, Kevin D G; Roche, Michael; Gorry, Paul R; Pow, Andrew; Viduka, Katerina; Lim, Kevin; Lu, Bernadine G C; Chang, Denison H C; Murray-Rust, Thomas; Kvansakul, Marc; Perugini, Matthew A; Dogovski, Con; Doerflinger, Marcel; Zhang, Yuan; Parisi, Kathy; Casey, Joanne L; Nuttall, Stewart D; Foley, Michael


    CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.

  16. Direct injection of functional single-domain antibodies from E. coli into human cells.

    Directory of Open Access Journals (Sweden)

    Ana Blanco-Toribio

    Full Text Available Intracellular proteins have a great potential as targets for therapeutic antibodies (Abs but the plasma membrane prevents access to these antigens. Ab fragments and IgGs are selected and engineered in E. coli and this microorganism may be also an ideal vector for their intracellular delivery. In this work we demonstrate that single-domain Ab (sdAbs can be engineered to be injected into human cells by E. coli bacteria carrying molecular syringes assembled by a type III protein secretion system (T3SS. The injected sdAbs accumulate in the cytoplasm of HeLa cells at levels ca. 10⁵-10⁶ molecules per cell and their functionality is shown by the isolation of sdAb-antigen complexes. Injection of sdAbs does not require bacterial invasion or the transfer of genetic material. These results are proof-of-principle for the capacity of E. coli bacteria to directly deliver intracellular sdAbs (intrabodies into human cells for analytical and therapeutic purposes.

  17. LpMab-23: A Cancer-Specific Monoclonal Antibody Against Human Podoplanin. (United States)

    Yamada, Shinji; Ogasawara, Satoshi; Kaneko, Mika K; Kato, Yukinari


    Human podoplanin (hPDPN), the ligand of C-type lectin-like receptor-2, is involved in cancer metastasis. Until now, many monoclonal antibodies (mAbs) have been established against hPDPN. However, it is still difficult to develop a cancer-specific mAb (CasMab) against hPDPN because the protein sequence of hPDPN expressed in cancer cells is the same as that in normal cells. Herein, we report LpMab-23 of the mouse IgG1 subclass, a novel CasMab against hPDPN. In an immunohistochemical analysis, LpMab-23 reacted with tumor cells of human oral cancer, but did not react with normal cells such as lymphatic endothelial cells (LECs). In contrast, LpMab-17, another anti-hPDPN mAb, reacted with both tumor cells and LECs. Furthermore, flow cytometric analysis revealed that LpMab-23 reacted with hPDPN-expressing cancer cell lines (LN319, RERF-LC-AI/hPDPN, Y-MESO-14/hPDPN, and HSC3/hPDPN) but showed little reaction with normal cells (LECs and HEK-293T), although another anti-hPDPN mAb, LpMab-7, reacted with both hPDPN-expressing cancer cells and normal cells, indicating that LpMab-23 is a CasMab against hPDPN.

  18. Identification, using isoenzyme electrophoresis and monoclonal antibodies, of Leishmania isolated from humans and wild animals of Ecuador. (United States)

    Mimori, T; Grimaldi, G; Kreutzer, R D; Gomez, E A; McMahon-Pratt, D; Tesh, R B; Hashiguchi, Y


    Six strains of Leishmania isolated from wild mammals and humans on the Pacific Coast of Ecuador were identified by isoenzyme electrophoresis and by their reactivity patterns to a cross-panel of specific monoclonal antibodies using a radioimmune binding assay. Single isolates from Sciurus vulgaris, Potos flavus, and Tamandua tetradactyla were identified as Leishmania amazonensis. Three other strains, isolated from cutaneous lesions of humans, were identified as Leishmania panamensis.

  19. Generation of human hybridomas producing migration inhibitory factor (MIF) and of murine hybridomas secreting monoclonal antibodies to human MIF. (United States)

    Weiser, W Y; Remold, H G; David, J R


    Human T-cell hybridomas were established by hybridization of concanavalin A (Con A)-stimulated human peripheral blood T lymphocytes with cells from a 6-thioguanine-resistant, aminopterin-sensitive mutant line designated CEM-WH4, derived from the continuously growing human T cell line, CEM. High levels of MIF activity were demonstrated in the supernatants of two hybridoma lines, T-CEMA and T-CEMB but not of CEM-WH4 when stimulated with phorbol myristate acetate and phytohemagglutinin. In comparison, MIF derived from Con A-stimulated peripheral blood mononuclear cells showed 100 times less activity. Upon isoelectrofocusing, MIF activity of T-CEMB was found exclusively between pH 4.6 and 5.3 whereas MIF derived from T-CEMA showed heterogeneity with a major peak of MIF recovered at pH 4.6-5.3 and a minor peak at pH 2.4-3.3. These molecules, however, were all found to have an apparent MW of 68,000 and were resistant to trypsin. Most of these characteristics are in accordance with second day pH 3- and pH 5-MIF derived from peripheral blood mononuclear cells. When spleen cells from BALB/c mice immunized with T-CEMB-MIF were used to fuse with NS-1 mouse myeloma cells, nine hybridomas secreting antibodies to human MIF were obtained. Clone D112 which demonstrated the highest MIF-neutralizing activity was found to neutralize MIF derived from T-CEMA, peripheral blood mononuclear cells, and a T cell line, Mo.

  20. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen (United States)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.


    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  1. Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. (United States)

    Mascola, J R; Lewis, M G; Stiegler, G; Harris, D; VanCott, T C; Hayes, D; Louder, M K; Brown, C R; Sapan, C V; Frankel, S S; Lu, Y; Robb, M L; Katinger, H; Birx, D L


    The role of antibody in protection against human immunodeficiency virus (HIV-1) has been difficult to study in animal models because most primary HIV-1 strains do not infect nonhuman primates. Using a chimeric simian/human immunodeficiency virus (SHIV) based on the envelope of a primary isolate (HIV-89.6), we performed passive-transfer experiments in rhesus macaques to study the role of anti-envelope antibodies in protection. Based on prior in vitro data showing neutralization synergy by antibody combinations, we evaluated HIV immune globulin (HIVIG), and human monoclonal antibodies (MAbs) 2F5 and 2G12 given alone, compared with the double combination 2F5/2G12 and the triple combination HIVIG/2F5/2G12. Antibodies were administered 24 h prior to intravenous challenge with the pathogenic SHIV-89.6PD. Six control monkeys displayed high plasma viremia, rapid CD4(+)-cell decline, and clinical AIDS within 14 weeks. Of six animals given HIVIG/2F5/2G12, three were completely protected; the remaining three animals became SHIV infected but displayed reduced plasma viremia and near normal CD4(+)-cell counts. One of three monkeys given 2F5/2G12 exhibited only transient evidence of infection; the other two had marked reductions in viral load. All monkeys that received HIVIG, 2F5, or 2G12 alone became infected and developed high-level plasma viremia. However, compared to controls, monkeys that received HIVIG or MAb 2G12 displayed a less profound drop in CD4(+) T cells and a more benign clinical course. These data indicate a general correlation between in vitro neutralization and protection and suggest that a vaccine that elicits neutralizing antibody should have a protective effect against HIV-1 infection or disease.

  2. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. (United States)

    Fagerberg, Linn; Hallström, Björn M; Oksvold, Per; Kampf, Caroline; Djureinovic, Dijana; Odeberg, Jacob; Habuka, Masato; Tahmasebpoor, Simin; Danielsson, Angelika; Edlund, Karolina; Asplund, Anna; Sjöstedt, Evelina; Lundberg, Emma; Szigyarto, Cristina Al-Khalili; Skogs, Marie; Takanen, Jenny Ottosson; Berling, Holger; Tegel, Hanna; Mulder, Jan; Nilsson, Peter; Schwenk, Jochen M; Lindskog, Cecilia; Danielsson, Frida; Mardinoglu, Adil; Sivertsson, Asa; von Feilitzen, Kalle; Forsberg, Mattias; Zwahlen, Martin; Olsson, IngMarie; Navani, Sanjay; Huss, Mikael; Nielsen, Jens; Ponten, Fredrik; Uhlén, Mathias


    Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ∼80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.

  3. Antibody discovery: sourcing of monoclonal antibody variable domains. (United States)

    Strohl, William R


    Historically, antibody variable domains for therapeutic antibodies have been sourced primarily from the mouse IgG repertoire, and typically either chimerized or humanized. More recently, human antibodies from transgenic mice producing human IgG, phage display libraries, and directly from human B lymphocytes have been used more broadly as sources of antibody variable domains for therapeutic antibodies. Of the total 36 antibodies approved by major maket regulatory agencies, the variable domain sequences of 26 originate from the mouse. Of these, four are marketed as murine antibodies (of which one is a mouse-rat hybrid IgG antibody), six are mouse-human chimeric antibodies, and 16 are humanized. Ten marketed antibodies have originated from human antibody genes, three isolated from phage libraries of human antibody genes and seven from transgenic mice producing human antibodies. Five antibodies currently in clinical trials have been sourced from camelids, as well as two from non-human primates, one from rat, and one from rabbit. Additional sources of antibody variable domains that may soon find their way into the clinic are potential antibodies from sharks and chickens. Finally, the various methods for retrieval of antibodies from humans, mouse and other sources, including various display technologies and amplification directly from B cells, are described.

  4. Generation, affinity maturation, and characterization of a human anti-human NKG2D monoclonal antibody with dual antagonistic and agonistic activity. (United States)

    Kwong, Ka Yin; Baskar, Sivasubramanian; Zhang, Hua; Mackall, Crystal L; Rader, Christoph


    In humans, NKG2D is an activating receptor on natural killer (NK) cells and a costimulatory receptor on certain T cells and plays a central role in mediating immune responses in autoimmune diseases, infectious diseases, and cancer. Monoclonal antibodies that antagonize or agonize immune responses mediated by human NKG2D are considered to be of broad and potent therapeutic utility. Nonetheless, monoclonal antibodies to NKG2D that are suitable for clinical investigations have not been published yet. Here, we describe the generation, affinity maturation, and characterization of a fully human monoclonal antibody to human NKG2D. Using phage display technology based on a newly generated naïve human Fab library in phage display vector pC3C followed by a tandem chain shuffling process designed for minimal deviation from natural human antibody sequences, we selected a human Fab, designated KYK-2.0, with high specificity and affinity to human NKG2D. KYK-2.0 Fab blocked the binding of the natural human NKG2D ligands MICA, MICB, and ULBP2 as potently as a commercially available mouse anti-human NKG2D monoclonal antibody in immunoglobulin G (IgG) format. Conversion of KYK-2.0 Fab to IgG1 resulted in subnanomolar avidity for human NKG2D. KYK-2.0 IgG1 was found to selectively recognize defined subpopulations of human lymphocytes known to express NKG2D, that is, the majority of human CD8+, CD16+, and CD56+ cells as well as a small fraction of human CD4+ cells. In solution, KYK-2.0 IgG1 interfered with the cytolytic activity of ex vivo expanded human NK cells. By contrast, immobilized KYK-2.0 IgG1 was found to strongly induce human NK cell activation. The dual antagonistic and agonistic activity promises a wide range of therapeutic applications for KYK-2.0 IgG1 and its derivatives.

  5. Functional Transplant of a Dengue Virus Serotype 3 (DENV3)-Specific Human Monoclonal Antibody Epitope into DENV1 (United States)

    Messer, William B.; Yount, Boyd L.; Royal, Scott R.; de Alwis, Ruklanthi; Widman, Douglas G.; Smith, Scott A.; Crowe, James E.; Pfaff, Jennifer M.; Kahle, Kristen M.; Doranz, Benjamin J.; Ibarra, Kristie D.; Harris, Eva


    ABSTRACT The four dengue virus (DENV) serotypes, DENV1 through 4, are endemic throughout tropical and subtropical regions of the world. While first infection confers long-term protective immunity against viruses of the infecting serotype, a second infection with virus of a different serotype carries a greater risk of severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. Recent studies demonstrate that humans exposed to DENV infections develop neutralizing antibodies that bind to quaternary epitopes formed by the viral envelope (E) protein dimers or higher-order assemblies required for the formation of the icosahedral viral envelope. Here we show that the quaternary epitope target of the human DENV3-specific neutralizing monoclonal antibody (MAb) 5J7 can be partially transplanted into a DENV1 strain by changing the core residues of the epitope contained within a single monomeric E molecule. MAb 5J7 neutralized the recombinant DENV1/3 strain in cell culture and was protective in a mouse model of infection with the DENV1/3 strain. However, the 5J7 epitope was only partially recreated by transplantation of the core residues because MAb 5J7 bound and neutralized wild-type (WT) DENV3 better than the DENV1/3 recombinant. Our studies demonstrate that it is possible to transplant a large number of discontinuous residues between DENV serotypes and partially recreate a complex antibody epitope, while retaining virus viability. Further refinement of this approach may lead to new tools for measuring epitope-specific antibody responses and new vaccine platforms. IMPORTANCE Dengue virus is the most important mosquito-borne pathogen of humans worldwide, with approximately one-half the world's population living in regions where dengue is endemic. Dengue immunity following infection is robust and thought to be conferred by antibodies raised against the infecting virus. However, the specific viral components that these antibodies recognize and how they

  6. Affinity maturation of a broadly neutralizing human monoclonal antibody that prevents acute hepatitis C virus infection in mice. (United States)

    Keck, Zhen-Yong; Wang, Yong; Lau, Patrick; Lund, Garry; Rangarajan, Sneha; Fauvelle, Catherine; Liao, Grant C; Holtsberg, Frederick W; Warfield, Kelly L; Aman, M Javad; Pierce, Brian G; Fuerst, Thomas R; Bailey, Justin R; Baumert, Thomas F; Mariuzza, Roy A; Kneteman, Norman M; Foung, Steven K H


    Direct-acting antivirals (DAAs) have led to a high cure rate in treated patients with chronic hepatitis C virus (HCV) infection, but this still leaves a large number of treatment failures secondary to the emergence of resistance-associated variants (RAVs). To increase the barrier to resistance, a complementary strategy is to use neutralizing human monoclonal antibodies (HMAbs) to prevent acute infection. However, earlier efforts with the selected antibodies led to RAVs in animal and clinical studies. Therefore, we identified an HMAb that is less likely to elicit RAVs for affinity maturation to increase potency and, more important, breadth of protection. Selected matured antibodies show improved affinity and neutralization against a panel of diverse HCV isolates. Structural and modeling studies reveal that the affinity-matured HMAb mediates virus neutralization, in part, by inducing conformational change to the targeted epitope, and that the maturated light chain is responsible for the improved affinity and breadth of protection. A matured HMAb protected humanized mice when challenged with an infectious HCV human serum inoculum for a prolonged period. However, a single mouse experienced breakthrough infection after 63 days when the serum HMAb concentration dropped by several logs; sequence analysis revealed no viral escape mutation. The findings suggest that a single broadly neutralizing antibody can prevent acute HCV infection without inducing RAVs and may complement DAAs to reduce the emergence of RAVs. (Hepatology 2016;64:1922-1933). © 2016 by the American Association for the Study of Liver Diseases.

  7. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. (United States)

    Tiller, Thomas; Schuster, Ingrid; Deppe, Dorothée; Siegers, Katja; Strohner, Ralf; Herrmann, Tanja; Berenguer, Marion; Poujol, Dominique; Stehle, Jennifer; Stark, Yvonne; Heßling, Martin; Daubert, Daniela; Felderer, Karin; Kaden, Stefan; Kölln, Johanna; Enzelberger, Markus; Urlinger, Stefanie


    This report describes the design, generation and testing of Ylanthia, a fully synthetic human Fab antibody library with 1.3E+11 clones. Ylanthia comprises 36 fixed immunoglobulin (Ig) variable heavy (VH)/variable light (VL) chain pairs, which cover a broad range of canonical complementarity-determining region (CDR) structures. The variable Ig heavy and Ig light (VH/VL) chain pairs were selected for biophysical characteristics favorable to manufacturing and development. The selection process included multiple parameters, e.g., assessment of protein expression yield, thermal stability and aggregation propensity in fragment antigen binding (Fab) and IgG1 formats, and relative Fab display rate on phage. The framework regions are fixed and the diversified CDRs were designed based on a systematic analysis of a large set of rearranged human antibody sequences. Care was taken to minimize the occurrence of potential posttranslational modification sites within the CDRs. Phage selection was performed against various antigens and unique antibodies with excellent biophysical properties were isolated. Our results confirm that quality can be built into an antibody library by prudent selection of unmodified, fully human VH/VL pairs as scaffolds.

  8. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire. (United States)

    Briney, Bryan S; Willis, Jordan R; Hicar, Mark D; Thomas, James W; Crowe, James E


    Antibody heavy-chain recombination that results in the incorporation of multiple diversity (D) genes, although uncommon, contributes substantially to the diversity of the human antibody repertoire. Such recombination allows the generation of heavy chain complementarity determining region 3 (HCDR3) regions of extreme length and enables junctional regions that, because of the nucleotide bias of N-addition regions, are difficult to produce through normal V(D)J recombination. Although this non-classical recombination process has been observed infrequently, comprehensive analysis of the frequency and genetic characteristics of such events in the human peripheral blood antibody repertoire has not been possible because of the rarity of such recombinants and the limitations of traditional sequencing technologies. Here, through the use of high-throughput sequencing of the normal human peripheral blood antibody repertoire, we analysed the frequency and genetic characteristics of V(DD)J recombinants. We found that these recombinations were present in approximately 1 in 800 circulating B cells, and that the frequency was severely reduced in memory cell subsets. We also found that V(DD)J recombination can occur across the spectrum of diversity genes, indicating that virtually all recombination signal sequences that flank diversity genes are amenable to V(DD)J recombination. Finally, we observed a repertoire bias in the diversity gene repertoire at the upstream (5') position, and discovered that this bias was primarily attributable to the order of diversity genes in the genomic locus.

  9. Neutralization of biological activity and inhibition of receptor binding by antibodies against human thrombopoietin. (United States)

    Tahara, T; Kuwaki, T; Matsumoto, A; Morita, H; Watarai, H; Inagaki, Y; Ohashi, H; Ogami, K; Miyazaki, H; Kato, T


    Thrombopoietin (TPO) is a recently isolated cytokine that primarily regulates megakaryocytopoiesis and thrombopoiesis. We recently reported the development of a variety of antibodies (Abs) to synthetic peptides of human (h)TPO and to recombinant human TPO (rhTPO). In this study, we characterized the Abs and mapped immunologically distinct areas of the molecule. Among the five different antipeptide polyclonal Abs, only one, raised against synthetic peptide D8 to Q28, neutralized the TPO-dependent growth of FDCP-2 cells expressing human Mpl (FDCP-hMpl5 cells). One out of seven anti-rhTPO monoclonal Abs, designated as TN1, also showed neutralizing activity. TN1 was found to be specifically reactive with two proteolytic fragments, residues S1 to R117 and A60 to K122 of hTPO, indicating that the epitope(s) of TN1 is localized in residues A60 to R117 of the molecule. These two neutralizing Abs inhibited the binding of biotinylated rhTPO to FDCP-hMpl5 cells. On the other hand, the other Abs, which reacted with five polypeptides of S47 to D62, L108 to A126, N172 to A190, S262 to T284, and P306 to G332 of hTPO, did not show either the neutralizing activity or the ability to inhibit the binding of biotinylated rhTPO to the cell surface hMpl. These findings indicate that two regions, residues D8 to Q28 and A60 to R117 of hTPO, may contain the domains associated with its receptor, C-Mpl. These Abs characterized here are valuable for studying the structural analysis and the biological function of hTPO mediated by its receptor.

  10. Fc functional antibodies in humans with severe H7N9 and seasonal influenza (United States)

    Vanderven, Hillary A.; Liu, Lu; Ana-Sosa-Batiz, Fernanda; Nguyen, Thi H.O.; Wan, Yanmin; Hogarth, P. Mark; Tilmanis, Danielle; Parsons, Matthew S.; Hurt, Aeron C.; Davenport, Miles P.; Kotsimbos, Tom; Cheng, Allen C.; Kedzierska, Katherine; Zhang, Xiaoyan; Xu, Jianqing; Kent, Stephen J.


    BACKGROUND. Both seasonal and novel avian influenza viruses can result in severe infections requiring hospitalization. Anti-influenza antibodies (Abs) with Fc-mediated effector functions, such as Ab-dependent cellular cytotoxicity (ADCC), are of growing interest in control of influenza but have not previously been studied during severe human infections. As such, the objective of this study was to examine Fc-mediated Ab functions in humans hospitalized with influenza infection. METHODS. Serum Ab response was studied in subjects hospitalized with either pandemic H7N9 avian influenza virus in China (n = 18) or circulating seasonal influenza viruses in Melbourne, Australia (n = 16). Recombinant soluble Fc receptor dimer ELISAs, natural killer (NK) cell activation assays, and Ab-dependent killing assays with influenza-infected target cells were used to assess the Fc functionality of anti-influenza hemagglutinin (HA) Abs during severe human influenza infection. RESULTS. We found that the peak generation of Fc functional HA Abs preceded that of neutralizing Abs for both severe H7N9 and seasonal influenza infections. Subjects who succumbed to complications of H7N9 infection demonstrated reduced HA-specific Fc receptor–binding Abs (in magnitude and breadth) immediately prior to death compared with those who survived. Subjects who recovered from H7N9 and severe seasonal influenza infections demonstrated increased Fc receptor–binding Abs not only against the homologous infecting strain but against HAs from different influenza A subtypes. CONCLUSION. Collectively, survivors of severe influenza infection rapidly generate a functional Ab response capable of mediating ADCC against divergent influenza viruses. Broadly binding HA Abs with Fc-mediated functions may be a useful component of protective immunity to severe influenza infection. FUNDING. The National Health and Medical Research Council ([NHMRC] grants 1023294, 1041832, and 1071916), the Australian Department of Health


    Directory of Open Access Journals (Sweden)

    I. V. Losev


    Full Text Available There exists a real hazard of transferring zoonotic influenza A viruses, either swine, or avian, into human population. In such case, severity of such pandemics depends on the pathogen-specific immunity in the population. Virtual absence of such immunity in humans was declared in the literature. In this work, we assessed systemic, local, and T-cell immunity to potentially pandemic H3N2sw, H5N1, H5N2, H7N3, H7N9 and H2N2 influenza A viruses in a group of healthy adults of different age. Our results indicate that these subjects develop the following immune reactions: (i local (i.e., nasal IgA and cellular (CD4+ and CD8v memory T cells heterosubtypic immunity, in absence of detectable virus-specific serum antibodies to avian influenza A viruses; (ii Local immune responses (as nasal IgA to human A (H2N2 virus which circulated in 1957-1968 were detected both in subjects who could be primed at that time, but also in subjects born after 1968; (iii full-scale systemic and local immunity to potentially pandemic А (H3N2sw swine virus was found in the group. Conclusion. In order of proper epidemiological forecasts and planning appropriate preventive measures for potentially pandemic Influenza A viruses, a regular monitoring of collective immunity should be performed using different adaptive markers. In this respect, any conclusion based on molecular analysis only could lead to considerable mistakes, and should be accomplished by the mentioned immunological studies.

  12. Identification of Novel Macropinocytosing Human Antibodies by Phage Display and High-Content Analysis. (United States)

    Ha, K D; Bidlingmaier, S M; Su, Y; Lee, N-K; Liu, B


    Internalizing antibodies have great potential for the development of targeted therapeutics. Antibodies that internalize via the macropinocytosis pathway are particularly promising since macropinocytosis is capable of mediating rapid, bulk uptake and is selectively upregulated in many cancers. We hereby describe a method for identifying antibodies that internalize via macropinocytosis by screening phage-displayed single-chain antibody selection outputs with an automated fluorescent microscopy-based high-content analysis platform. Furthermore, this method can be similarly applied to other endocytic pathways if other fluorescent, pathway-specific, soluble markers are available. © 2017 Elsevier Inc. All rights reserved.

  13. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. (United States)

    Scapin, Giovanna; Yang, Xiaoyu; Prosise, Winifred W; McCoy, Mark; Reichert, Paul; Johnston, Jennifer M; Kashi, Ramesh S; Strickland, Corey


    Immunoglobulin G4 antibodies exhibit unusual properties with important biological consequences. We report the structure of the human full-length IgG4 S228P anti-PD1 antibody pembrolizumab, solved to 2.3-Å resolution. Pembrolizumab is a compact molecule, consistent with the presence of a short hinge region. The Fc domain is glycosylated at the CH2 domain on both chains, but one CH2 domain is rotated 120° with respect to the conformation observed in all reported structures to date, and its glycan chain faces the solvent. We speculate that this new conformation is driven by the shorter hinge. The structure suggests a role for the S228P mutation in preventing the IgG4 arm exchange. In addition, this unusual Fc conformation suggests possible structural diversity between IgG subclasses and shows that use of isolated antibody fragments could mask potentially important interactions, owing to molecular flexibility.

  14. Identification and purification of human erythroid progenitor cells by monoclonal antibody to the transferrin receptor (TU 67). (United States)

    Herrmann, F; Griffin, J D; Sabbath, K D; Oster, W; Wernet, P; Mertelsmann, R


    Anti-TU 67 is a murine monoclonal antibody that recognizes the transferrin receptor. With respect to hematopoietic cells TU 67 is expressed by human multipotent colony-forming cells (CFU-Mix), erythroid progenitor cells (BFU-E and CFU-E) and a fraction of granulocyte/monocyte colony forming cells, but is not expressed by mature hematopoietic cells including erythrocytes, platelets, lymphocytes, and peripheral blood myeloid cells. The TU 67-positive fraction of normal bone marrow, separated by fluorescence-activated cell sorting (FACS) or immune rosettes, contained 87% of the erythroid progenitor cells. Erythroid progenitor cells were enriched up to 50-fold by using a combination of monoclonal antibodies to deplete mature hematopoietic cells, followed by positive selection of BFU-E and CFU-E by TU 67 antibody.

  15. A murine monoclonal antibody that binds N-terminal extracellular segment of human protease-activated receptor-4. (United States)

    Sangawa, Takeshi; Nogi, Terukazu; Takagi, Junichi


    Abstract A monoclonal antibody that recognizes native G protein coupled receptors (GPCR) is generally difficult to obtain. Protease-activated receptor-4 (PAR4) is a GPCR that plays an important role in platelet activation as a low-affinity thrombin receptor. By immunizing peptide corresponding to the N-terminal segment of human PAR4, we obtained a monoclonal antibody that recognizes cell surface expressed PAR4. Epitope mapping using a series of artificial fusion proteins that carry PAR4-derived peptide revealed that the recognition motif is fully contained within the 6-residue portion adjacent to the thrombin cleavage site. The antibody blocked PAR4 peptide cleavage by thrombin, suggesting its utility in the functional study of PAR4 signaling.

  16. Development and validation of a point-of-care test for detecting hantavirus antibodies in human and rodent samples. (United States)

    Koishi, Andrea Cristine; Aoki, Mateus Nóbrega; Jorge, Taissa Ricciardi; Suzukawa, Andréia Akemi; Zanluca, Camila; Levis, Silvana; Duarte Dos Santos, Claudia Nunes


    Hantaviruses are etiologic agents of a zoonotic disease transmitted mainly from wild rodents to humans, causing Hemorrhagic Fever with Renal Syndrome in Eurasia and the Hantavirus Cardiopulmonary Syndrome in the Americas (HCPS), reaching a lethality rate of 40% in Brazil. Hantavirus diagnostic and seroprevalence are often based on the presence of IgM and IgG antibodies against the virus. Here we propose a rapid test assay able to identify hantavirus antibodies with sensibility and specificity similar to ELISA assays. We analyzed five groups of samples, including healthy human population and small mammals of endemic areas, suspected cases of HCPS, patients with non-related infections and a serum panel from a different geographical region. The test presented good rates of sensibility (87-100%) and specificity (97-100%) for all groups, being a promising tool suitable for both rodent and human hantavirus epidemiological surveys.

  17. Studies of nontarget-mediated distribution of human full-length IgG1 antibody and its FAb fragment in cardiovascular and metabolic-related tissues. (United States)

    Davidsson, Pia; Söderling, Ann-Sofi; Svensson, Lena; Ahnmark, Andrea; Flodin, Christine; Wanag, Ewa; Screpanti-Sundqvist, Valentina; Gennemark, Peter


    Tissue distribution and pharmacokinetics (PK) of full-length nontargeted antibody and its antigen-binding fragment (FAb) were evaluated for a range of tissues primarily of interest for cardiovascular and metabolic diseases. Mice were intravenously injected with a dose of 10 mg/kg of either human IgG1or its FAb fragment; perfused tissues were collected at a range of time points over 3 weeks for the human IgG1 antibody and 1 week for the human FAb antibody. Tissues were homogenized and antibody concentrations were measured by specific immunoassays on the Gyros system. Exposure in terms of maximum concentration (Cmax ) and area under the curve was assessed for all nine tissues. Tissue exposure of full-length antibody relative to plasma exposure was found to be between 1% and 10%, except for brain (0.2%). Relative concentrations of FAb antibody were the same, except for kidney tissue, where the antibody concentration was found to be ten times higher than in plasma. However, the absolute tissue uptake of full-length IgG was significantly higher than the absolute tissue uptake of the FAb antibody. This study provides a reference PK state for full-length whole and FAb antibodies in tissues related to cardiovascular and metabolic diseases that do not include antigen or antibody binding. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class A GPCR formyl-peptide receptor 1. (United States)

    Douthwaite, Julie A; Sridharan, Sudharsan; Huntington, Catherine; Hammersley, Jayne; Marwood, Rose; Hakulinen, Jonna K; Ek, Margareta; Sjögren, Tove; Rider, David; Privezentzev, Cyril; Seaman, Jonathan C; Cariuk, Peter; Knights, Vikki; Young, Joyce; Wilkinson, Trevor; Sleeman, Matthew; Finch, Donna K; Lowe, David C; Vaughan, Tristan J


    Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.

  19. Analysis of Positive Human Immunodeifciency Virus (1+2) Antibodies in Preliminar y Screening:A Report of 394 Cases

    Institute of Scientific and Technical Information of China (English)

    NI Fang; LIU Yan-yan; MA Cai-yun; WU Zhi-qi; XU Hua-guo; JIANG Li


    Objective:To comprehend the characteristics of patients with positive human immunodeifciency virus (HIV) (1+2) antibodies in the preliminary screening so as to provide basis for local HIV screening and prevention. Methods:Enzyme-linked immunosorbent assay (ELISA) was used to detect serum HIV (1 +2) antibodies in the preliminary screening, after which the positive serum was sent to acquired immune deficiency syndrome (AIDS) confirmatory laboratory to be confirmed with western blotting method. Clinical data of patients with positive HIV antibodies in the preliminary screening in the outpatients and inpatients from 2006 to 2013 were collected and analyzed. Results:A total of 394 patients with positive serum HIV antibodies were screened initially, in which 214 were confirmed positive HIV, 13 were not certain and another 167 were negative. Patients with positive serum HIV antibodies in the preliminary screening were increased from 9 cases in 2006 to 94 cases in 2013, in which those conifrmed with positive HIV increased from 5 to 49. Patients with positive serum HIV antibodies in the preliminary screening and those conifrmed increased annually. In addition, patients confirmed with positive serum HIV antibodies were mainly males and aged 20 ~ 49 years, distributing in Departments of Infections, Respiratory, Dermatology, Hematology and Emergency, whereas those confirmed with negative HIV were mainly females and aged >20 years, distributing in Departments of Hematology, Maternity and Emergency as well as Reproductive Center. Conclusion: HIV infection is in low level with characteristics of annually increasing infection rate, male-orientated and wide-spread distribution in variuos departments, etc., knowing which will help guide the clinical practices and carry out the local HIV screening and prevention by relevant departments.

  20. Antibody responses following incident anal and penile infection with human papillomavirus in teenage men who have sex with men. (United States)

    Zou, Huachun; Tabrizi, Sepehr N; Grulich, Andrew E; Hocking, Jane S; Garland, Suzanne M; Bradshaw, Catriona S; Cornall, Alyssa M; Fairley, Christopher K; Chen, Marcus Y


    Men who have sex with men (MSM) are at risk for human papillomavirus (HPV)-related anal cancer. Few data exist on antibody responses following incident anogenital infection with HPV in teenage MSM. A cohort of 200 MSM aged 16-20 years from Melbourne, Australia were assessed at baseline, 3, 6 and 12 months. At each visit anal and penile swabs were collected for HPV DNA and serum for HPV antibodies for genotypes 6, 11, 16 and 18 (Merck's Multiplex Assays using Luminex). The main outcome, seroconversion, was defined as the detection of HPV antibodies following a negative antibody result for the same HPV type at baseline. The seroincidence rates for HPV types 6, 11, 16 and 18 were: 19 (95% CI 12-26), 7 (3-12), 4 (1-8) and 6 (3-11) per 100 person-years, respectively. Men who experienced incident anal HPV infections from types 6/11 were significantly more likely to develop serum antibodies to the same HPV type(s) than those who experienced incident anal infections from types 16/18 [73 vs. 18%, odds ratio (OR) = 15, 95% CI: 2-118]. The median time between incident anal HPV infection and seroconversion for HPV 6, 11, 16 and 18 was: 91, 38, 161 and 182 days, respectively. Antibody responses against HPV types 6/11 were significantly more likely to occur following incident anal compared with incident penile infection with HPV types 6/11 (OR = 6, 95% CI: 2-21). The likelihood of antibody responses following anogenital HPV infections depends on the HPV type and site of infection.

  1. Molecular characterization of a human immunoglobulin G4 antibody specific for the major birch pollen allergen, Bet v 1. (United States)

    Flicker, S; Steinberger, P; Eibensteiner, P B; Lebecque, S; Kraft, D; Valenta, R


    Allergen-specific IgG4 antibodies induced by specific immunotherapy are thought to represent a protective immune response. Objective Our aim was the molecular characterization of a human IgG4 antibody (BAB5) specific for the major birch pollen allergen Bet v 1 that was derived from an immunotherapy-treated patient. The cDNA coding for BAB5 was obtained by reverse transcriptase-PCR from the BAB5-producing cell line, compared with the germ line sequences and was expressed as a soluble antibody fragment in Escherichia coli. The epitope specificity and cross-reactivity of BAB5 were investigated with recombinant and synthetic Bet v 1 fragments and Bet v 1 homologous allergens from pollen. The ability of BAB5 to block allergic patients IgE was determined by competition experiments and sandwich ELISA. BAB5 is an affinity-matured Bet v 1-specific IgG4 antibody that reacts exclusively with Bet v 1 but not with Bet v 1-related allergens. Unlike an earlier-described monoclonal IgG1-blocking antibody, BAB1, which had been isolated from the same patient, BAB5 did not block allergic patients' IgE reactivity to Bet v 1. Our study demonstrates that not all allergen-specific IgG antibodies inhibit IgE recognition of allergens and can contribute to the success of immunotherapy. The epitope specificity and affinity of IgG antibodies but not their isotype are decisive for their protective activity.

  2. Detection of auto-anti-idiotypic antibodies to Lol p I (rye I) IgE antibodies in human sera by the use of murine idiotypes: levels in atopic and non-atopic subjects and effects of immunotherapy. (United States)

    Hébert, J; Bernier, D; Mourad, W


    Anti-idiotypic antibodies (anti-Id Abs) are involved in the regulation of a number of immune responses including the IgE antibody production. In atopic patients, the increased synthesis of IgE antibodies could be related to a defective production of regulatory anti-Id Abs. In the present study, we first developed a sensitive assay for measuring the levels of anti-Id Abs directed against antibodies specific for Lol p I, the major allergenic determinant of Lolium perenne (rye grass). In this assay, we used previously described murine monoclonal anti-Lol p I antibodies that were shown to share epitopic specificities with human anti-Lol p I IgE and IgG antibodies, thus short-cutting the need for purification of F(ab')2 fragments of human IgG Abs and insuring optimal specificity and sensitivity. Levels of anti-Id Abs against two anti-Lol p I monoclonal antibodies (290A-167, 348A-6) were higher in normal volunteers than in untreated atopic patients. Specific immunotherapy increased the levels of anti-Id Abs to those of normal volunteers. These observations suggest a role for the Id-anti-Id network in the regulation of IgE antibody producti