WorldWideScience

Sample records for human alu sequence

  1. Origin and diversification of minisatellites derived from human Alu sequences.

    Science.gov (United States)

    Jurka, Jerzy; Gentles, Andrew J

    2006-01-01

    We analyze minisatellites derived from Alu fragments corresponding approximately to the first 44 bases of human Alu consensus sequences from different subfamilies. The origin of Alu-derived minisatellites appears to have been mediated by short flanking repeats, as first proposed by Haber and Louis [Haber, J.E., Louis, E.J., 1998. Minisatellite origins in yeast and humans. Genomics 48, 132-135.]. We also present evidence for base substitutions and deletions introduced to minisatellites by gene conversion with partially similar but unrelated flanking regions. Segments flanked by short direct repeats are relatively common in different regions of Alu and other repetitive sequences. Our analysis shows that they can be effectively used in comparative studies of the overall sequence context which may contribute to instability of DNA segments flanked by short direct repeats.

  2. AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome

    Directory of Open Access Journals (Sweden)

    Mei Lingling

    2011-11-01

    Full Text Available Abstract Background To complement next-generation sequencing technologies, there is a pressing need for efficient pre-sequencing capture methods with reduced costs and DNA requirement. The Alu family of short interspersed nucleotide elements is the most abundant type of transposable elements in the human genome and a recognized source of genome instability. With over one million Alu elements distributed throughout the genome, they are well positioned to facilitate genome-wide sequence amplification and capture of regions likely to harbor genetic variation hotspots of biological relevance. Results Here we report on the use of inter-Alu PCR with an enhanced range of amplicons in conjunction with next-generation sequencing to generate an Alu-anchored scan, or 'AluScan', of DNA sequences between Alu transposons, where Alu consensus sequence-based 'H-type' PCR primers that elongate outward from the head of an Alu element are combined with 'T-type' primers elongating from the poly-A containing tail to achieve huge amplicon range. To illustrate the method, glioma DNA was compared with white blood cell control DNA of the same patient by means of AluScan. The over 10 Mb sequences obtained, derived from more than 8,000 genes spread over all the chromosomes, revealed a highly reproducible capture of genomic sequences enriched in genic sequences and cancer candidate gene regions. Requiring only sub-micrograms of sample DNA, the power of AluScan as a discovery tool for genetic variations was demonstrated by the identification of 357 instances of loss of heterozygosity, 341 somatic indels, 274 somatic SNVs, and seven potential somatic SNV hotspots between control and glioma DNA. Conclusions AluScan, implemented with just a small number of H-type and T-type inter-Alu PCR primers, provides an effective capture of a diversity of genome-wide sequences for analysis. The method, by enabling an examination of gene-enriched regions containing exons, introns, and

  3. Alu Sequences in Undifferentiated Human Embryonic Stem Cells Display High Levels of A-to-I RNA Editing

    Science.gov (United States)

    Osenberg, Sivan; Paz Yaacov, Nurit; Safran, Michal; Moshkovitz, Sharon; Shtrichman, Ronit; Sherf, Ofra; Jacob-Hirsch, Jasmine; Keshet, Gilmor; Amariglio, Ninette; Itskovitz-Eldor, Joseph; Rechavi, Gideon

    2010-01-01

    Adenosine to Inosine (A-to-I) RNA editing is a site-specific modification of RNA transcripts, catalyzed by members of the ADAR (Adenosine Deaminase Acting on RNA) protein family. RNA editing occurs in human RNA in thousands of different sites. Some of the sites are located in protein-coding regions but the majority is found in non-coding regions, such as 3′UTRs, 5′UTRs and introns - mainly in Alu elements. While editing is found in all tissues, the highest levels of editing are found in the brain. It was shown that editing levels within protein-coding regions are increased during embryogenesis and after birth and that RNA editing is crucial for organism viability as well as for normal development. In this study we characterized the A-to-I RNA editing phenomenon during neuronal and spontaneous differentiation of human embryonic stem cells (hESCs). We identified high editing levels of Alu repetitive elements in hESCs and demonstrated a global decrease in editing levels of non-coding Alu sites when hESCs are differentiating, particularly into the neural lineage. Using RNA interference, we showed that the elevated editing levels of Alu elements in undifferentiated hESCs are highly dependent on ADAR1. DNA microarray analysis showed that ADAR1 knockdown has a global effect on gene expression in hESCs and leads to a significant increase in RNA expression levels of genes involved in differentiation and development processes, including neurogenesis. Taken together, we speculate that A-to-I editing of Alu sequences plays a role in the regulation of hESC early differentiation decisions. PMID:20574523

  4. Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing.

    Directory of Open Access Journals (Sweden)

    Sivan Osenberg

    Full Text Available Adenosine to Inosine (A-to-I RNA editing is a site-specific modification of RNA transcripts, catalyzed by members of the ADAR (Adenosine Deaminase Acting on RNA protein family. RNA editing occurs in human RNA in thousands of different sites. Some of the sites are located in protein-coding regions but the majority is found in non-coding regions, such as 3'UTRs, 5'UTRs and introns - mainly in Alu elements. While editing is found in all tissues, the highest levels of editing are found in the brain. It was shown that editing levels within protein-coding regions are increased during embryogenesis and after birth and that RNA editing is crucial for organism viability as well as for normal development. In this study we characterized the A-to-I RNA editing phenomenon during neuronal and spontaneous differentiation of human embryonic stem cells (hESCs. We identified high editing levels of Alu repetitive elements in hESCs and demonstrated a global decrease in editing levels of non-coding Alu sites when hESCs are differentiating, particularly into the neural lineage. Using RNA interference, we showed that the elevated editing levels of Alu elements in undifferentiated hESCs are highly dependent on ADAR1. DNA microarray analysis showed that ADAR1 knockdown has a global effect on gene expression in hESCs and leads to a significant increase in RNA expression levels of genes involved in differentiation and development processes, including neurogenesis. Taken together, we speculate that A-to-I editing of Alu sequences plays a role in the regulation of hESC early differentiation decisions.

  5. Alu repeats as markers for human population genetics

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.; Alegria-Hartman, M. [Lawrence Livermore National Lab., CA (United States); Bazan, H. [Louisiana State Univ., New Orleans, LA (United States). Medical Center] [and others

    1993-09-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 97.9% nucleotide identity with each other and an average of 98.9% nucleotide identity with the HS subfamily consensus sequence. HS Alu family members are thought to be derived from a single source ``master`` gene, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 in. and 3 in. unique flanking DNA sequences from each HS Alu that allows the locus to be assayed for the presence or absence of an Alu repeat. Individual HS Alu sequences were found to be either monomorphic or dimorphic for the presence or absence of each repeat. The monomorphic HS Alu family members inserted in the human genome after the human/great ape divergence (which is thought to have occurred 4--6 million years ago), but before the radiation of modem man. The dimorphic HS Alu sequences inserted in the human genome after the radiation of modem man (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project as well. HS Alu family member insertion dimorphism differs from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) because individuals share HS Alu family member insertions based upon identity by descent from a common ancestor as a result of a single event which occurred one time within the human population. The VNTR and RFLP polymorphisms may arise multiple times within a population and are identical by state only.

  6. The use of dimorphic Alu insertions in human DNA fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Novick, G.E.; Gonzalez, T.; Garrison, J.; Novick, C.C.; Herrera, R.J. [Florida International Univ., Miami, FL (United States). Dept. of Biological Sciences; Batzer, M.A. [Lawrence Livermore National Lab., CA (United States); Deininger, P.L. [Louisiana State Univ., New Orleans, LA (United States). Medical Center

    1992-12-04

    We have characterized certain Human Specific Alu Insertions as either dimorphic (TPA25, PV92, APO), sightly dimorphic (C2N4 and C4N4) or monomorphic (C3N1, C4N6, C4N2, C4N5, C4N8), based on studies of Caucasian, Asian, American Black and African Black populations. Our approach is based upon: (1) PCR amplification using primers directed to the sequences that flank the site of insertion of the different Alu elements studied; (2) gel electrophoresis and scoring according to the presence or absence of an Alu insertion in one or both homologous chromosomes; (3) allelic frequencies calculated and compared according to Hardy-Weinberg equilibrium. Our DNA fingerprinting procedure using PCR amplification of dimorphic Human Specific Alu insertions, is stable enough to be used not only as a tool for genetic mapping but also to characterize populations, study migrational patterns and track the inheritance of human genetic disorders.

  7. Large-scale analysis of structural, sequence and thermodynamic characteristics of A-to-I RNA editing sites in human Alu repeats

    Directory of Open Access Journals (Sweden)

    Eisenberg Eli

    2010-07-01

    Full Text Available Abstract Background Alu repeats in the human transcriptome undergo massive adenosine to inosine RNA editing. This process is selective, as editing efficiency varies greatly among different adenosines. Several studies have identified weak sequence motifs characterizing the editing sites, but these alone do not account for the large diversity observed. Results Here we build a dataset of 29,971 editing sites and use it to characterize editing preferences. We focus on structural aspects, studying the double-stranded RNA structure of the Alu repeats, and show the editing frequency of a given site to depend strongly on the micro-structure it resides in. Surprisingly, we find that interior loops, and especially the nucleotides at their edges, are more likely to be edited than helices. In addition, the sequence motifs characterizing editing sites vary with the micro-structure. Finally, we show that thermodynamic stability of the site is important for its editing. Conclusions Analysis of a large dataset of editing events reveals more information on sequence and structural motifs characterizing the A-to-I editing process

  8. Modeling the amplification dynamics of human Alu retrotransposons.

    Directory of Open Access Journals (Sweden)

    Dale J Hedges

    2005-09-01

    Full Text Available Retrotransposons have had a considerable impact on the overall architecture of the human genome. Currently, there are three lineages of retrotransposons (Alu, L1, and SVA that are believed to be actively replicating in humans. While estimates of their copy number, sequence diversity, and levels of insertion polymorphism can readily be obtained from existing genomic sequence data and population sampling, a detailed understanding of the temporal pattern of retrotransposon amplification remains elusive. Here we pose the question of whether, using genomic sequence and population frequency data from extant taxa, one can adequately reconstruct historical amplification patterns. To this end, we developed a computer simulation that incorporates several known aspects of primate Alu retrotransposon biology and accommodates sampling effects resulting from the methods by which mobile elements are typically discovered and characterized. By modeling a number of amplification scenarios and comparing simulation-generated expectations to empirical data gathered from existing Alu subfamilies, we were able to statistically reject a number of amplification scenarios for individual subfamilies, including that of a rapid expansion or explosion of Alu amplification at the time of human-chimpanzee divergence.

  9. Nuclear Receptor HNF4α Binding Sequences are Widespread in Alu Repeats

    Directory of Open Access Journals (Sweden)

    Bolotin Eugene

    2011-11-01

    Full Text Available Abstract Background Alu repeats, which account for ~10% of the human genome, were originally considered to be junk DNA. Recent studies, however, suggest that they may contain transcription factor binding sites and hence possibly play a role in regulating gene expression. Results Here, we show that binding sites for a highly conserved member of the nuclear receptor superfamily of ligand-dependent transcription factors, hepatocyte nuclear factor 4alpha (HNF4α, NR2A1, are highly prevalent in Alu repeats. We employ high throughput protein binding microarrays (PBMs to show that HNF4α binds > 66 unique sequences in Alu repeats that are present in ~1.2 million locations in the human genome. We use chromatin immunoprecipitation (ChIP to demonstrate that HNF4α binds Alu elements in the promoters of target genes (ABCC3, APOA4, APOM, ATPIF1, CANX, FEMT1A, GSTM4, IL32, IP6K2, PRLR, PRODH2, SOCS2, TTR and luciferase assays to show that at least some of those Alu elements can modulate HNF4α-mediated transactivation in vivo (APOM, PRODH2, TTR, APOA4. HNF4α-Alu elements are enriched in promoters of genes involved in RNA processing and a sizeable fraction are in regions of accessible chromatin. Comparative genomics analysis suggests that there may have been a gain in HNF4α binding sites in Alu elements during evolution and that non Alu repeats, such as Tiggers, also contain HNF4α sites. Conclusions Our findings suggest that HNF4α, in addition to regulating gene expression via high affinity binding sites, may also modulate transcription via low affinity sites in Alu repeats.

  10. Analysis of the features and source gene composition of the AluYg6 subfamily of human retrotransposons

    Directory of Open Access Journals (Sweden)

    Brookfield John FY

    2007-07-01

    Full Text Available Abstract Background Alu elements are a family of SINE retrotransposons in primates. They are classified into subfamilies according to specific diagnostic mutations from the general Alu consensus. It is now believed that there may be several retrotranspositionally-competent source genes within an Alu subfamily. To investigate the evolution of young Alu elements it is critical to have access to complete subfamilies, which, following the release of the final human genome assembly, can now be obtained using in silico methods. Results 380 elements belonging to the young AluYg6 subfamily were identified in the human genome, a number significantly exceeding prior expectations. An AluYg6 element was also identified in the chimpanzee genome, indicating that the subfamily is older than previously estimated, and appears to have undergone a period of dormancy before its expansion. The relative contributions of back mutation and gene conversion to variation at the six diagnostic positions are examined, and cases of complete forward gene conversion events are reported. Two small subfamilies derived from AluYg6 have been identified, named AluYg6a2 and AluYg5b3, which contain 40 and 27 members, respectively. These small subfamilies are used to illustrate the ambiguity regarding Alu subfamily definition, and to assess the contribution of secondary source genes to the AluYg6 subfamily. Conclusion The number of elements in the AluYg6 subfamily greatly exceeds prior expectations, indicating that the current knowledge of young Alu subfamilies is incomplete, and that prior analyses that have been carried out using these data may have generated inaccurate results. A definition of primary and secondary source genes has been provided, and it has been shown that several source genes have contributed to the proliferation of the AluYg6 subfamily. Access to the sequence data for the complete AluYg6 subfamily will be invaluable in future computational analyses investigating

  11. Impact of Alu repeats on the evolution of human p53 binding sites

    Directory of Open Access Journals (Sweden)

    Sirotin Michael V

    2011-01-01

    Full Text Available Abstract Background The p53 tumor suppressor protein is involved in a complicated regulatory network, mediating expression of ~1000 human genes. Recent studies have shown that many p53 in vivo binding sites (BSs reside in transposable repeats. The relationship between these BSs and functional p53 response elements (REs remains unknown, however. We sought to understand whether the p53 REs also reside in transposable elements and particularly in the most-abundant Alu repeats. Results We have analyzed ~160 functional p53 REs identified so far and found that 24 of them occur in repeats. More than half of these repeat-associated REs reside in Alu elements. In addition, using a position weight matrix approach, we found ~400,000 potential p53 BSs in Alu elements genome-wide. Importantly, these putative BSs are located in the same regions of Alu repeats as the functional p53 REs - namely, in the vicinity of Boxes A/A' and B of the internal RNA polymerase III promoter. Earlier nucleosome-mapping experiments showed that the Boxes A/A' and B have a different chromatin environment, which is critical for the binding of p53 to DNA. Here, we compare the Alu-residing p53 sites with the corresponding Alu consensus sequences and conclude that the p53 sites likely evolved through two different mechanisms - the sites overlapping with the Boxes A/A' were generated by CG → TG mutations; the other sites apparently pre-existed in the progenitors of several Alu subfamilies, such as AluJo and AluSq. The binding affinity of p53 to the Alu-residing sites generally correlates with the age of Alu subfamilies, so that the strongest sites are embedded in the 'relatively young' Alu repeats. Conclusions The primate-specific Alu repeats play an important role in shaping the p53 regulatory network in the context of chromatin. One of the selective factors responsible for the frequent occurrence of Alu repeats in introns may be related to the p53-mediated regulation of Alu

  12. Genome-wide analysis of the human Alu Yb-lineage

    Directory of Open Access Journals (Sweden)

    Carter Anthony B

    2004-03-01

    Full Text Available Abstract The Alu Yb-lineage is a 'young' primarily human-specific group of short interspersed element (SINE subfamilies that have integrated throughout the human genome. In this study, we have computationally screened the draft sequence of the human genome for Alu Yb-lineage subfamily members present on autosomal chromosomes. A total of 1,733 Yb Alu subfamily members have integrated into human autosomes. The average ages of Yb-lineage subfamilies, Yb7, Yb8 and Yb9, are estimated as 4.81, 2.39 and 2.32 million years, respectively. In order to determine the contribution of the Alu Yb-lineage to human genomic diversity, 1,202 loci were analysed using polymerase chain reaction (PCR-based assays, which amplify the genomic regions containing individual Yb-lineage subfamily members. Approximately 20 per cent of the Yb-lineage Alu elements are polymorphic for insertion presence/absence in the human genome. Fewer than 0.5 per cent of the Yb loci also demonstrate insertions at orthologous positions in non-human primate genomes. Genomic sequencing of these unusual loci demonstrates that each of the orthologous loci from non-human primate genomes contains older Y, Sg and Sx Alu family members that have been altered, through various mechanisms, into Yb8 sequences. These data suggest that Alu Yb-lineage subfamily members are largely restricted to the human genome. The high copy number, level of insertion polymorphism and estimated age indicate that members of the Alu Yb elements will be useful in a wide range of genetic analyses.

  13. Tracking Alu evolution in New World primates

    Directory of Open Access Journals (Sweden)

    Batzer Mark A

    2005-10-01

    Full Text Available Abstract Background Alu elements are Short INterspersed Elements (SINEs in primate genomes that have proven useful as markers for studying genome evolution, population biology and phylogenetics. Most of these applications, however, have been limited to humans and their nearest relatives, chimpanzees. In an effort to expand our understanding of Alu sequence evolution and to increase the applicability of these markers to non-human primate biology, we have analyzed available Alu sequences for loci specific to platyrrhine (New World primates. Results Branching patterns along an Alu sequence phylogeny indicate three major classes of platyrrhine-specific Alu sequences. Sequence comparisons further reveal at least three New World monkey-specific subfamilies; AluTa7, AluTa10, and AluTa15. Two of these subfamilies appear to be derived from a gene conversion event that has produced a recently active fusion of AluSc- and AluSp-type elements. This is a novel mode of origin for new Alu subfamilies. Conclusion The use of Alu elements as genetic markers in studies of genome evolution, phylogenetics, and population biology has been very productive when applied to humans. The characterization of these three new Alu subfamilies not only increases our understanding of Alu sequence evolution in primates, but also opens the door to the application of these genetic markers outside the hominid lineage.

  14. Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome.

    Science.gov (United States)

    Gu, Zhuoya; Jin, Ke; Crabbe, M James C; Zhang, Yang; Liu, Xiaolin; Huang, Yanyan; Hua, Mengyi; Nan, Peng; Zhang, Zhaolei; Zhong, Yang

    2016-04-01

    Transposable elements (TEs) have no longer been totally considered as "junk DNA" for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C (chromosome conformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r = 0.9, P elements like enhancers and promoters (Enhancer: hESC: r = 0.997, P = 2.3 × 10(-4); IMR90: r = 0.934, P = 2 × 10(-2); Promoter: hESC: r = 0.995, P = 3.8 × 10(-4); IMR90: r = 0.996, P = 3.2 × 10(-4)). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes.

  15. Structure and expression of the human Lysyl hydroxylase gene (PLOD): Introns 9 and 16 contain Alu sequences at the sites of recombination in Ehlers-Danlos syndrome type VI patients

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, J.; Hautala, T.; Kivirikko, K.I. [Univ. of Oulu (Finland)] [and others

    1994-12-01

    Lysyl hydroxylase (EC 1.14.11.4) catalyzes the formation of hydroxylysine in collagens by the hydroxylation of lysine residues in peptide linkages. This enzyme activity is known to be reduced in patients with the type VI variant of the Ehlers-Danlos syndrome, and the first mutations in the lysyl hydroxylase gene (PLOD) have recently been identified. We have now isolated genomic clones for human lysyl hydroxylase and determined the complete structure of the gene, which contains 19 exons and a 5{prime} flanking region with characteristics shared by housekeeping genes. The constitutive expression of the gene in different tissues further suggests that lysyl hydroxylase has an essential function. We have sequenced the introns of the gene in the region where many mutations and rearrangements analyzed to date are concentrated. Intron 9 and intron 16 show extensive homology resulting from the many Alu sequences found in these introns. Intron 9 contains five and intron 16 eight Alu sequences. The high homology and many short identical or complementary sequences in these introns generate many potential recombination sites with the gene. The delineation of the structure of the lysyl hydroxylase gene contributes significantly to our understanding of the rearrangements in the genome of Ehlers-Danlos type VI patients. 21 refs., 2 figs., 2 tabs.

  16. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3.

    Science.gov (United States)

    Gu, Shen; Yuan, Bo; Campbell, Ian M; Beck, Christine R; Carvalho, Claudia M B; Nagamani, Sandesh C S; Erez, Ayelet; Patel, Ankita; Bacino, Carlos A; Shaw, Chad A; Stankiewicz, Paweł; Cheung, Sau Wai; Bi, Weimin; Lupski, James R

    2015-07-15

    Alu repetitive elements are known to be major contributors to genome instability by generating Alu-mediated copy-number variants (CNVs). Most of the reported Alu-mediated CNVs are simple deletions and duplications, and the mechanism underlying Alu-Alu-mediated rearrangement has been attributed to non-allelic homologous recombination (NAHR). Chromosome 17 at the p13.3 genomic region lacks extensive low-copy repeat architecture; however, it is highly enriched for Alu repetitive elements, with a fraction of 30% of total sequence annotated in the human reference genome, compared with the 10% genome-wide and 18% on chromosome 17. We conducted mechanistic studies of the 17p13.3 CNVs by performing high-density oligonucleotide array comparative genomic hybridization, specifically interrogating the 17p13.3 region with ∼150 bp per probe density; CNV breakpoint junctions were mapped to nucleotide resolution by polymerase chain reaction and Sanger sequencing. Studied rearrangements include 5 interstitial deletions, 14 tandem duplications, 7 terminal deletions and 13 complex genomic rearrangements (CGRs). Within the 17p13.3 region, Alu-Alu-mediated rearrangements were identified in 80% of the interstitial deletions, 46% of the tandem duplications and 50% of the CGRs, indicating that this mechanism was a major contributor for formation of breakpoint junctions. Our studies suggest that Alu repetitive elements facilitate formation of non-recurrent CNVs, CGRs and other structural aberrations of chromosome 17 at p13.3. The common observation of Alu-mediated rearrangement in CGRs and breakpoint junction sequences analysis further demonstrates that this type of mechanism is unlikely attributed to NAHR, but rather may be due to a recombination-coupled DNA replicative repair process.

  17. Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

    Directory of Open Access Journals (Sweden)

    Zhuoya Gu

    2016-02-01

    Full Text Available ABSTRACT Transposable elements (TEs have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C (chromosome conformation capture have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r = 0.9, P < 2.2 × 1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016 and also have a significant positive correlation with some remote functional DNA elements like enhancers and promoters (Enhancer: hESC: r = 0.997, P = 2.3 × 10−4; IMR90: r = 0.934, P = 2 × 10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4. Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue

  18. Human nucleosomes: special role of CG dinucleotides and Alu-nucleosomes

    Directory of Open Access Journals (Sweden)

    Trifonov Edward N

    2011-05-01

    Full Text Available Abstract Background The periodical occurrence of dinucleotides with a period of 10.4 bases now is undeniably a hallmark of nucleosome positioning. Whereas many eukaryotic genomes contain visible and even strong signals for periodic distribution of dinucleotides, the human genome is rather featureless in this respect. The exact sequence features in the human genome that govern the nucleosome positioning remain largely unknown. Results When analyzing the human genome sequence with the positional autocorrelation method, we found that only the dinucleotide CG shows the 10.4 base periodicity, which is indicative of the presence of nucleosomes. There is a high occurrence of CG dinucleotides that are either 31 (10.4 × 3 or 62 (10.4 × 6 base pairs apart from one another - a sequence bias known to be characteristic of Alu-sequences. In a similar analysis with repetitive sequences removed, peaks of repeating CG motifs can be seen at positions 10, 21 and 31, the nearest integers of multiples of 10.4. Conclusions Although the CG dinucleotides are dominant, other elements of the standard nucleosome positioning pattern are present in the human genome as well. The positional autocorrelation analysis of the human genome demonstrates that the CG dinucleotide is, indeed, one visible element of the human nucleosome positioning pattern, which appears both in Alu sequences and in sequences without repeats. The dominant role that CG dinucleotides play in organizing human chromatin is to indicate the involvement of human nucleosomes in tuning the regulation of gene expression and chromatin structure, which is very likely due to cytosine-methylation/-demethylation in CG dinucleotides contained in the human nucleosomes. This is further confirmed by the positions of CG-periodical nucleosomes on Alu sequences. Alu repeats appear as monomers, dimers and trimers, harboring two to six nucleosomes in a run. Considering the exceptional role CG dinucleotides play in the

  19. The coding region of the human c-mos pseudogene contains Alu repeat insertions.

    Science.gov (United States)

    Zabarovsky, E R; Chumakov, I M; Prassolov, V S; Kisselev, L L

    1984-10-01

    We have determined the nucleotide sequence of an 841-bp fragment derived from a segment of the human genome previously cloned by Chumakov et al. [Gene 17 (1982) 19-26] and Zabarovsky et al. [Gene 23 (1983) 379-384] and containing regions homologous to the viral mos gene probe. This sequence displays homology with part of the coding region of the human and murine c-mos genes, contains several termination codons, and is interrupted by two Alu-family elements flanked by short direct repeats. Probably, the progenitor of the human c-mos gene was duplicated approximately at the time of mammalian divergence, was converted to a pseudogene, and acquired insertions of two Alu elements.

  20. Consistent levels of A-to-I RNA editing across individuals in coding sequences and non-conserved Alu repeats

    Directory of Open Access Journals (Sweden)

    Osenberg Sivan

    2010-10-01

    Full Text Available Abstract Background Adenosine to inosine (A-to-I RNA-editing is an essential post-transcriptional mechanism that occurs in numerous sites in the human transcriptome, mainly within Alu repeats. It has been shown to have consistent levels of editing across individuals in a few targets in the human brain and altered in several human pathologies. However, the variability across human individuals of editing levels in other tissues has not been studied so far. Results Here, we analyzed 32 skin samples, looking at A-to-I editing level in three genes within coding sequences and in the Alu repeats of six different genes. We observed highly consistent editing levels across different individuals as well as across tissues, not only in coding targets but, surprisingly, also in the non evolutionary conserved Alu repeats. Conclusions Our findings suggest that A-to-I RNA-editing of Alu elements is a tightly regulated process and, as such, might have been recruited in the course of primate evolution for post-transcriptional regulatory mechanisms.

  1. 精子发生中Alu序列的返座作用%Retrotransposons Role of Alu Sequences in Human Spermatogenesis

    Institute of Scientific and Technical Information of China (English)

    王黎熔; 李建民; 单玉喜

    2001-01-01

    目的: 克隆人类精原细胞和初级精母细胞特异表达的基因. 方法: 应用改良的mRNA表达图谱分析技术,对正常男性、唯支持细胞综合征和生精阻滞在初级精母细胞病人的睾丸进行mRNA表达图谱分析的差异显示,选择唯支持细胞综合征缺失的表达基因并克隆测序. 结果: 正常男性、唯支持细胞综合征和生精阻滞在初级精母细胞症病人的睾丸组织表达图谱存在显著的表达差异,目前已获得唯支持细胞综合征缺失的片段88个.在已分析的6个片段中,1个与人类的Alu序列家族(Alu family)98%同源. 结论: Alu序列在生精细胞中通过返座作用形成新Alu序列,使其不断扩散.

  2. A comparison of 100 human genes using an alu element-based instability model.

    Directory of Open Access Journals (Sweden)

    George W Cook

    Full Text Available The human retrotransposon with the highest copy number is the Alu element. The human genome contains over one million Alu elements that collectively account for over ten percent of our DNA. Full-length Alu elements are randomly distributed throughout the genome in both forward and reverse orientations. However, full-length widely spaced Alu pairs having two Alus in the same (direct orientation are statistically more prevalent than Alu pairs having two Alus in the opposite (inverted orientation. The cause of this phenomenon is unknown. It has been hypothesized that this imbalance is the consequence of anomalous inverted Alu pair interactions. One proposed mechanism suggests that inverted Alu pairs can ectopically interact, exposing both ends of each Alu element making up the pair to a potential double-strand break, or "hit". This hypothesized "two-hit" (two double-strand breaks potential per Alu element was used to develop a model for comparing the relative instabilities of human genes. The model incorporates both 1 the two-hit double-strand break potential of Alu elements and 2 the probability of exon-damaging deletions extending from these double-strand breaks. This model was used to compare the relative instabilities of 50 deletion-prone cancer genes and 50 randomly selected genes from the human genome. The output of the Alu element-based genomic instability model developed here is shown to coincide with the observed instability of deletion-prone cancer genes. The 50 cancer genes are collectively estimated to be 58% more unstable than the randomly chosen genes using this model. Seven of the deletion-prone cancer genes, ATM, BRCA1, FANCA, FANCD2, MSH2, NCOR1 and PBRM1, were among the most unstable 10% of the 100 genes analyzed. This algorithm may lay the foundation for comparing genetic risks posed by structural variations that are unique to specific individuals, families and people groups.

  3. Alu elements and DNA double-strand break repair

    OpenAIRE

    White, Travis B; Morales, Maria E.; Deininger, Prescott L.

    2015-01-01

    Alu elements represent one of the most common sources of homology and homeology in the human genome. Homeologous recombination between Alu elements represents a major form of genetic instability leading to deletions and duplications. Although these types of events have been studied extensively through genomic sequencing to assess the impact of Alu elements on disease mutations and genome evolution, the overall abundance of Alu elements in the genome often makes it difficult to assess the rele...

  4. Effects of Alu elements on global nucleosome positioning in the human genome

    Directory of Open Access Journals (Sweden)

    Yamashita Riu

    2010-05-01

    Full Text Available Abstract Background Understanding the genome sequence-specific positioning of nucleosomes is essential to understand various cellular processes, such as transcriptional regulation and replication. As a typical example, the 10-bp periodicity of AA/TT and GC dinucleotides has been reported in several species, but it is still unclear whether this feature can be observed in the whole genomes of all eukaryotes. Results With Fourier analysis, we found that this is not the case: 84-bp and 167-bp periodicities are prevalent in primates. The 167-bp periodicity is intriguing because it is almost equal to the sum of the lengths of a nucleosomal unit and its linker region. After masking Alu elements, these periodicities were greatly diminished. Next, using two independent large-scale sets of nucleosome mapping data, we analyzed the distribution of nucleosomes in the vicinity of Alu elements and showed that (1 there are one or two fixed slot(s for nucleosome positioning within the Alu element and (2 the positioning of neighboring nucleosomes seems to be in phase, more or less, with the presence of Alu elements. Furthermore, (3 these effects of Alu elements on nucleosome positioning are consistent with inactivation of promoter activity in Alu elements. Conclusions Our discoveries suggest that the principle governing nucleosome positioning differs greatly across species and that the Alu family is an important factor in primate genomes.

  5. The contribution of alu elements to mutagenic DNA double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Maria E Morales

    2015-03-01

    Full Text Available Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%, we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences. Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence

  6. Alu SINE analyses of 3,000-year-old human skeletal remains: a pilot study.

    Science.gov (United States)

    Kothe, Maximilian; Seidenberg, Verena; Hummel, Susanne; Piskurek, Oliver

    2016-01-01

    As Short Interspersed Elements (SINEs), human-specific Alu elements can be used for population genetic studies. Very recent inserts are polymorphic within and between human populations. In a sample of 30 elements originating from three different Alu subfamilies, we investigated whether they are preserved in prehistorical skeletal human remains from the Bronze Age Lichtenstein cave in Lower Saxony, Germany. In the present study, we examined a prehistoric triad of father, mother and daughter. For 26 of the 30 Alu loci investigated, definite results were obtained. We were able to demonstrate that presence/absence analyses of Alu elements can be conducted on individuals who lived 3,000 years ago. The preservation of the ancient DNA (aDNA) is good enough in two out of three ancient individuals to routinely allow the amplification of 500 bp fragments. The third individual revealed less well-preserved DNA, which results in allelic dropout or complete amplification failures. We here present an alternative molecular approach to deal with these degradation phenomena by using internal Alu subfamily specific primers producing short fragments of approximately 150 bp. Our data clearly show the possibility of presence/absence analyses of Alu elements in individuals from the Lichtenstein cave. Thus, we demonstrate that our method is reliably applicable for aDNA samples with good or moderate DNA preservation. This method will be very useful for further investigations with more Alu loci and larger datasets. Human population genetic studies and other large-scale investigations would provide insight into Alu SINE-based microevolutionary processes in humans during the last few thousand years and help us comprehend the evolutionary dynamics of our genome.

  7. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells.

    Science.gov (United States)

    Klawitter, Sabine; Fuchs, Nina V; Upton, Kyle R; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L; Faulkner, Geoffrey J; Schumann, Gerald G

    2016-01-08

    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs.

  8. Evolution of human alpha 1-acid glycoprotein genes and surrounding Alu repeats.

    Science.gov (United States)

    Merritt, C M; Easteal, S; Board, P G

    1990-04-01

    There is a mosaic pattern of variation between the two tandemly arranged human alpha 1-acid glycoprotein genes. Both the synonymous and the nonsynonymous sites of exons 3 and 4 are more divergent than the rest of the gene, suggesting that they have had a different evolutionary history. Comparisons of the two gene sequences with rat AGP indicate that exons 3 and 4 of AGP2 have been evolving without functional constraint since their divergence from AGP1. It is proposed that the conserved region of the gene has been homogenized recently by gene conversion with the homologous regions of AGP1. The Alu sequences surrounding the genes appear to have been involved in both the gene duplication and the gene conversion events.

  9. Transcripts from a novel human KRAB zinc finger gene contain spliced Alu and endogenous retroviral segments

    Energy Technology Data Exchange (ETDEWEB)

    Baban, S.; Freeman, J.D.; Mager, D.L. [Univ. of British Columbia, Vancouver, British Columbia (Canada)

    1996-05-01

    During the course of an investigation into the potential effects of endogenous retroviruses on adjacent gene expression, we isolated two cDNA clones containing a small sequence segment belonging to the human endogenous retrovirus family, HERV-H. Characterization of the clones revealed that they represent transcripts from a novel KRAB zinc finger gene termed ZNF177. The two cDNA clones differ at their 5{prime} termini and in the presence of a 559-bp internal exon. The clone containing this internal exon has six imperfect zinc finger motifs followed by seven perfect copies of the C{sub 2}H{sub 2} type but has a frame shift between the KRAB domain and the downstream zinc finger region. The smaller clone lacks the six imperfect motifs and has an intact ORF. The 5{prime} putative untranslated regions of both cDNAs contain an 86-bp HERV-H env segment and a segment of an Alu repeat, both in the antisense orientation, that have been incorporated by splicing. RT-PCR experiments show evidence of alternative splicing but the majority of transcripts appear to contain the Alu and env segments. Genomic PCR and hybridization experiments suggest that a partial HERV-H element is integrated within the ZNF177 locus, which Southern analysis has shown to be a single-copy gene. Northern and RT-PCR analyses suggest that ZNF177 is transcribed at a low level in a variety of cell types. 41 refs., 8 figs.

  10. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome.

    Science.gov (United States)

    Aktaş, Tuğçe; Avşar Ilık, İbrahim; Maticzka, Daniel; Bhardwaj, Vivek; Pessoa Rodrigues, Cecilia; Mittler, Gerhard; Manke, Thomas; Backofen, Rolf; Akhtar, Asifa

    2017-04-06

    Transposable elements are viewed as 'selfish genetic elements', yet they contribute to gene regulation and genome evolution in diverse ways. More than half of the human genome consists of transposable elements. Alu elements belong to the short interspersed nuclear element (SINE) family of repetitive elements, and with over 1 million insertions they make up more than 10% of the human genome. Despite their abundance and the potential evolutionary advantages they confer, Alu elements can be mutagenic to the host as they can act as splice acceptors, inhibit translation of mRNAs and cause genomic instability. Alu elements are the main targets of the RNA-editing enzyme ADAR and the formation of Alu exons is suppressed by the nuclear ribonucleoprotein HNRNPC, but the broad effect of massive secondary structures formed by inverted-repeat Alu elements on RNA processing in the nucleus remains unknown. Here we show that DHX9, an abundant nuclear RNA helicase, binds specifically to inverted-repeat Alu elements that are transcribed as parts of genes. Loss of DHX9 leads to an increase in the number of circular-RNA-producing genes and amount of circular RNAs, translational repression of reporters containing inverted-repeat Alu elements, and transcriptional rewiring (the creation of mostly nonsensical novel connections between exons) of susceptible loci. Biochemical purifications of DHX9 identify the interferon-inducible isoform of ADAR (p150), but not the constitutively expressed ADAR isoform (p110), as an RNA-independent interaction partner. Co-depletion of ADAR and DHX9 augments the double-stranded RNA accumulation defects, leading to increased circular RNA production, revealing a functional link between these two enzymes. Our work uncovers an evolutionarily conserved function of DHX9. We propose that it acts as a nuclear RNA resolvase that neutralizes the immediate threat posed by transposon insertions and allows these elements to evolve as tools for the post

  11. Alu repeats as markers for forensic DNA analyses

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.; Alegria-Hartman, M. [Lawrence Livermore National Lab., CA (United States); Kass, D.H. [Louisiana State Univ., New Orleans, LA (United States)] [and others

    1994-01-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 98.9% nucleotide identity with the HS subfamily consensus sequence, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 inch and 3 inch unique flanking DNA sequences from each HS Alu that allow the locus to be assayed for the presence or absence of the Alu repeat. The dimorphic HS Alu sequences probably inserted in the human genome after the radiation of modem humans (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project. HS Alu family member insertions differ from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) in that polymorphisms due to Alu insertions arise as a result of a unique event which has occurred only one time in the human population and spread through the population from that point. Therefore, individuals that share HS Alu repeats inherited these elements from a common ancestor. Most VNTR and RFLP polymorphisms may arise multiple times in parallel within a population.

  12. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor

    Science.gov (United States)

    Morales-Hernández, Antonio; González-Rico, Francisco J.; Román, Angel C.; Rico-Leo, Eva; Alvarez-Barrientos, Alberto; Sánchez, Laura; Macia, Ángela; Heras, Sara R.; García-Pérez, José L.; Merino, Jaime M.; Fernández-Salguero, Pedro M.

    2016-01-01

    Cell differentiation is a central process in development and in cancer growth and dissemination. OCT4 (POU5F1) and NANOG are essential for cell stemness and pluripotency; yet, the mechanisms that regulate their expression remain largely unknown. Repetitive elements account for almost half of the Human Genome; still, their role in gene regulation is poorly understood. Here, we show that the dioxin receptor (AHR) leads to differentiation of human carcinoma cells through the transcriptional upregulation of Alu retrotransposons, whose RNA transcripts can repress pluripotency genes. Despite the genome-wide presence of Alu elements, we provide evidences that those located at the NANOG and OCT4 promoters bind AHR, are transcribed by RNA polymerase-III and repress NANOG and OCT4 in differentiated cells. OCT4 and NANOG repression likely involves processing of Alu-derived transcripts through the miRNA machinery involving the Microprocessor and RISC. Consistently, stable AHR knockdown led to basal undifferentiation, impaired Alus transcription and blockade of OCT4 and NANOG repression. We suggest that transcripts produced from AHR-regulated Alu retrotransposons may control the expression of stemness genes OCT4 and NANOG during differentiation of carcinoma cells. The control of discrete Alu elements by specific transcription factors may have a dynamic role in genome regulation under physiological and diseased conditions. PMID:26883630

  13. The X chromosome Alu insertions as a tool for human population genetics: data from European and African human groups.

    Science.gov (United States)

    Athanasiadis, Georgios; Esteban, Esther; Via, Marc; Dugoujon, Jean-Michel; Moschonas, Nicholas; Chaabani, Hassen; Moral, Pedro

    2007-05-01

    Alu elements are the most abundant mobile elements in the human genome (approximately 1,100,000 copies). Polymorphic Alu elements have been proved to be useful in studies of human origins and relationships owing to two important advantages: identity by descent and absence of the Alu element known to be the ancestral state. Alu variation in the X chromosome has been described previously in human populations but, as far as we know, these elements have not been used in population relationship studies. Here, we describe the allele frequencies of 13 'young' Alu elements of the X chromosome (Ya5DP62, Ya5DP57, Yb8DP49, Ya5a2DP1, Yb8DP2, Ya5DP3, Ya5NBC37, Yd3JX437, Ya5DP77, Ya5NBC491, Yb8NBC578, Ya5DP4 and Ya5DP13) in six human populations from sub-Saharan Africa (the Ivory Coast), North Africa (Moroccan High Atlas, Siwa oasis in Egypt, Tunisia), Greece (Crete Island) and Spain (Basque Country). Eight out of 13 Alu elements have shown remarkably high gene diversity values in all groups (average heterozygosities: 0.342 in the Ivory Coast, 0.250 in North Africa, 0.209 in Europe). Genetic relationships agree with a geographical pattern of differentiation among populations, with some peculiar features observed in North Africans. Crete Island and the Basque Country show the lowest genetic distance (0.0163) meanwhile Tunisia, in spite of its geographical location, lies far from the other two North African samples. The results of our work demonstrate that X chromosome Alu elements comprise a reliable set of genetic markers useful to describe human population relationships for fine-scale geographical studies.

  14. In situ hybridization of bat chromosomes with human (TTAGGGn probe, after previous digestion with Alu I

    Directory of Open Access Journals (Sweden)

    Karina de Cassia Faria

    2002-01-01

    Full Text Available The purpose of this work was to verify the ability of the enzyme Alu I to cleave and/or remove satellite DNA sequences from heterochromatic regions in chromosomes of bats, by identifying the occurrence of modifications in the pattern of fluorescence in situ hybridization with telomeric DNA. The localization and fluorescence intensity of the telomeric DNA sites of the Alu-digested and undigested chromosomes of species Eumops glaucinus, Carollia perspicillata, and Platyrrhinus lineatus were analyzed. Telomeric sequences were detected at the termini of chromosomes of all three species, although, in C. perspicillata, the signals were very faint or absent in most chromosomes. This finding was interpreted as being due to a reduced number of copies of the telomeric repeat, resulting from extensive telomeric association and/or rearrangements undergone by the chromosomes of Carollia. Fluorescent signals were also observed in centromeric and pericentromeric regions in several two-arm chromosomes of E. glaucinus and C. perspicillata. In E. glaucinus and P. lineatus, some interstitial and terminal telomeric sites were observed to be in association with regions of constitutive heterochromatin and ribosomal DNA (NORs. After digestion, these telomeric sites showed a significant decrease in signal intensity, indicating that enzyme Alu I cleaves and/or removes part of the satellite DNA present in these regions. These results suggest that the telomeric sequence is a component of the heterochromatin, and that the C-band- positive regions of bat chromosomes have a different DNA composition.

  15. Rescuing Alu: recovery of new inserts shows LINE-1 preserves Alu activity through A-tail expansion.

    Directory of Open Access Journals (Sweden)

    Bradley J Wagstaff

    Full Text Available Alu elements are trans-mobilized by the autonomous non-LTR retroelement, LINE-1 (L1. Alu-induced insertion mutagenesis contributes to about 0.1% human genetic disease and is responsible for the majority of the documented instances of human retroelement insertion-induced disease. Here we introduce a SINE recovery method that provides a complementary approach for comprehensive analysis of the impact and biological mechanisms of Alu retrotransposition. Using this approach, we recovered 226 de novo tagged Alu inserts in HeLa cells. Our analysis reveals that in human cells marked Alu inserts driven by either exogenously supplied full length L1 or ORF2 protein are indistinguishable. Four percent of de novo Alu inserts were associated with genomic deletions and rearrangements and lacked the hallmarks of retrotransposition. In contrast to L1 inserts, 5' truncations of Alu inserts are rare, as most of the recovered inserts (96.5% are full length. De novo Alus show a random pattern of insertion across chromosomes, but further characterization revealed an Alu insertion bias exists favoring insertion near other SINEs, highly conserved elements, with almost 60% landing within genes. De novo Alu inserts show no evidence of RNA editing. Priming for reverse transcription rarely occurred within the first 20 bp (most 5' of the A-tail. The A-tails of recovered inserts show significant expansion, with many at least doubling in length. Sequence manipulation of the construct led to the demonstration that the A-tail expansion likely occurs during insertion due to slippage by the L1 ORF2 protein. We postulate that the A-tail expansion directly impacts Alu evolution by reintroducing new active source elements to counteract the natural loss of active Alus and minimizing Alu extinction.

  16. Genetic and epigenetic variations contributed by Alu retrotransposition

    Directory of Open Access Journals (Sweden)

    de Andrade Alexandre

    2011-12-01

    Full Text Available Abstract Background De novo retrotransposition of Alu elements has been recognized as a major driver for insertion polymorphisms in human populations. In this study, we exploited Alu-anchored bisulfite PCR libraries to identify evolutionarily recent Alu element insertions, and to investigate their genetic and epigenetic variation. Results A total of 327 putatively recent Alu insertions were identified, altogether represented by 1,762 sequence reads. Nearly all such de novo retrotransposition events (316/327 were novel. Forty-seven out of forty-nine randomly selected events, corresponding to nineteen genomic loci, were sequence-verified. Alu element insertions remained hemizygous in one or more individuals in sixteen of the nineteen genomic loci. The Alu elements were found to be enriched for young Alu families with characteristic sequence features, such as the presence of a longer poly(A tail. In addition, we documented the occurrence of a duplication of the AT-rich target site in their immediate flanking sequences, a hallmark of retrotransposition. Furthermore, we found the sequence motif (TT/AAAA that is recognized by the ORF2P protein encoded by LINE-1 in their 5'-flanking regions, consistent with the fact that Alu retrotransposition is facilitated by LINE-1 elements. While most of these Alu elements were heavily methylated, we identified an Alu localized 1.5 kb downstream of TOMM5 that exhibited a completely unmethylated left arm. Interestingly, we observed differential methylation of its immediate 5' and 3' flanking CpG dinucleotides, in concordance with the unmethylated and methylated statuses of its internal 5' and 3' sequences, respectively. Importantly, TOMM5's CpG island and the 3 Alu repeats and 1 MIR element localized upstream of this newly inserted Alu were also found to be unmethylated. Methylation analyses of two additional genomic loci revealed no methylation differences in CpG dinucleotides flanking the Alu insertion sites in

  17. Detection of Human Hepatocarcinoma Cell Line PLC/PRF/5 Genome Hepatitis b Virus DNA Integration with Alu-PCR%Alu-PCR检测人肝癌细胞株PLC/PRF/5基因组中乙型肝炎病毒DNA的整合

    Institute of Scientific and Technical Information of China (English)

    邱爽; 张会英

    2015-01-01

    目的 应用Alu-PCR方法检测人肝癌细胞株PLC/PRF/5 基因组中乙型肝炎病毒( HBV) DNA的整合. 方法 提取经培养扩增的人肝癌细胞株PLC/PRF/5基因组DNA,根据Alu-PCR方法经过3轮PCR反应扩增潜在的HBV DNA和人基因组DNA整合片段. 琼脂糖凝胶电泳观察PCR扩增产物片段,切取并纯化整合阳性的电泳条带,对纯化产物进行核酸测序,得到整合片段的核苷酸序列. 结果 经琼脂糖凝胶电泳检测,用Alu-PCR方法能够从PLC/PRF/5 细胞株中扩增得到4 条HBV DNA整合序列,经测序后与比对其中3条整合序列能够定位于人染色体03p21.31、05p15.33、12q13.12~q14.1. 结论 Alu-PCR可以准确测定肝细胞中HBV DNA的整合,为研究HBV DNA在肝细胞中的整合研究提供了一个简单、经济的方法.%Objective In this research with the method of Alu -PCR we investigate the integration of hepatitis B virus ( HBV) DNA in human hepatocarcinoma cell line (PLC/PRF/5) genome DNA.Methods We at first extracted the genome DNA from PLC/PRF/5 cells, and then the potential integration fragments of HBV DNA and human genome DNA were amplified with according to the Alu -PCR after three rounds PCR .The Alu-PCR amplification products were observated with agarose gel electrophoresis , then integration positive electrophoresis bandings were chipped and purified for nucleic acid sequencing .At last he bioinformatics information was acquired by blast online.Results Through agarose gel electrophoresis after Alu -PCR amplification, we got four potential integration bindings , among which we got three integration sequences of HBV DNA in human genome DNA .These integration sequences could be individually located in the human chromosome of 03p21.31, 05p15.33, 12q13 and 12-q14.1.Conclusion With Alu-PCR we can accurately measure the integration of HBV DNA in human genome DNA , and Alu-PCR can be a a convenience and economic method in the study of HBV DNA ′s integration in human genome

  18. Orangutan Alu quiescence reveals possible source element: support for ancient backseat drivers

    Directory of Open Access Journals (Sweden)

    Walker Jerilyn A

    2012-04-01

    Full Text Available Abstract Background Sequence analysis of the orangutan genome revealed that recent proliferative activity of Alu elements has been uncharacteristically quiescent in the Pongo (orangutan lineage, compared with all previously studied primate genomes. With relatively few young polymorphic insertions, the genomic landscape of the orangutan seemed like the ideal place to search for a driver, or source element, of Alu retrotransposition. Results Here we report the identification of a nearly pristine insertion possessing all the known putative hallmarks of a retrotranspositionally competent Alu element. It is located in an intronic sequence of the DGKB gene on chromosome 7 and is highly conserved in Hominidae (the great apes, but absent from Hylobatidae (gibbon and siamang. We provide evidence for the evolution of a lineage-specific subfamily of this shared Alu insertion in orangutans and possibly the lineage leading to humans. In the orangutan genome, this insertion contains three orangutan-specific diagnostic mutations which are characteristic of the youngest polymorphic Alu subfamily, AluYe5b5_Pongo. In the Homininae lineage (human, chimpanzee and gorilla, this insertion has acquired three different mutations which are also found in a single human-specific Alu insertion. Conclusions This seemingly stealth-like amplification, ongoing at a very low rate over millions of years of evolution, suggests that this shared insertion may represent an ancient backseat driver of Alu element expansion.

  19. Orangutan Alu quiescence reveals possible source element: support for ancient backseat drivers

    Science.gov (United States)

    2012-01-01

    Background Sequence analysis of the orangutan genome revealed that recent proliferative activity of Alu elements has been uncharacteristically quiescent in the Pongo (orangutan) lineage, compared with all previously studied primate genomes. With relatively few young polymorphic insertions, the genomic landscape of the orangutan seemed like the ideal place to search for a driver, or source element, of Alu retrotransposition. Results Here we report the identification of a nearly pristine insertion possessing all the known putative hallmarks of a retrotranspositionally competent Alu element. It is located in an intronic sequence of the DGKB gene on chromosome 7 and is highly conserved in Hominidae (the great apes), but absent from Hylobatidae (gibbon and siamang). We provide evidence for the evolution of a lineage-specific subfamily of this shared Alu insertion in orangutans and possibly the lineage leading to humans. In the orangutan genome, this insertion contains three orangutan-specific diagnostic mutations which are characteristic of the youngest polymorphic Alu subfamily, AluYe5b5_Pongo. In the Homininae lineage (human, chimpanzee and gorilla), this insertion has acquired three different mutations which are also found in a single human-specific Alu insertion. Conclusions This seemingly stealth-like amplification, ongoing at a very low rate over millions of years of evolution, suggests that this shared insertion may represent an ancient backseat driver of Alu element expansion. PMID:22541534

  20. Identification of RNA polymerase III-transcribed Alu loci by computational screening of RNA-Seq data.

    Science.gov (United States)

    Conti, Anastasia; Carnevali, Davide; Bollati, Valentina; Fustinoni, Silvia; Pellegrini, Matteo; Dieci, Giorgio

    2015-01-01

    Of the ∼ 1.3 million Alu elements in the human genome, only a tiny number are estimated to be active in transcription by RNA polymerase (Pol) III. Tracing the individual loci from which Alu transcripts originate is complicated by their highly repetitive nature. By exploiting RNA-Seq data sets and unique Alu DNA sequences, we devised a bioinformatic pipeline allowing us to identify Pol III-dependent transcripts of individual Alu elements. When applied to ENCODE transcriptomes of seven human cell lines, this search strategy identified ∼ 1300 Alu loci corresponding to detectable transcripts, with ∼ 120 of them expressed in at least three cell lines. In vitro transcription of selected Alus did not reflect their in vivo expression properties, and required the native 5'-flanking region in addition to internal promoter. We also identified a cluster of expressed AluYa5-derived transcription units, juxtaposed to snaR genes on chromosome 19, formed by a promoter-containing left monomer fused to an Alu-unrelated downstream moiety. Autonomous Pol III transcription was also revealed for Alus nested within Pol II-transcribed genes. The ability to investigate Alu transcriptomes at single-locus resolution will facilitate both the identification of novel biologically relevant Alu RNAs and the assessment of Alu expression alteration under pathological conditions.

  1. Identification of Alternative Variants and Insertion of the Novel Polymorphic AluYl17 in TSEN54 Gene during Primate Evolution

    Directory of Open Access Journals (Sweden)

    Ja-Rang Lee

    2016-01-01

    Full Text Available TSEN54 encodes a subunit of the tRNA-splicing endonuclease complex, which catalyzes the identification and cleavage of introns from precursor tRNAs. Previously, we identified an AluSx-derived alternative transcript in TSEN54 of cynomolgus monkey. Reverse transcription-polymerase chain reaction (RT-PCR amplification and TSEN54 sequence analysis of primate and human samples identified five novel alternative transcripts, including the AluSx exonized transcript. Additionally, we performed comparative expression analysis via RT-qPCR in various cynomolgus, rhesus monkey, and human tissues. RT-qPCR amplification revealed differential expression patterns. Furthermore, genomic PCR amplification and sequencing of primate and human DNA samples revealed that AluSx elements were integrated in human and all of the primate samples tested. Intriguingly, in langur genomic DNA, an additional AluY element was inserted into AluSx of intron eight of TSEN54. The new AluY element showed polymorphic insertion. Using standardized nomenclature for Alu repeats, the polymorphic AluY of the langur TSEN54 was designated as being of the AluYl17 subfamily. Our results suggest that integration of the AluSx element in TSEN54 contributed to diversity in transcripts and induced lineage- or species-specific evolutionary events such as alternative splicing and polymorphic insertion during primate evolution.

  2. Establishment of Sequence-Tagged Sites on 15q11-q13 by Alu-Vector PCR Cloning of Yac-Generated Fragments

    Directory of Open Access Journals (Sweden)

    W. S. Kim

    1996-01-01

    Full Text Available Angelman syndrome (AS is caused by the loss of function of undefined gene(s on human chromosome 15. The majority of subjects have deletions involving maternally-derived chromosome 15q II-q 13, and the shortest region of deletion overlap (SRO has been localized to the region between D15S10 and D15S113. In this study, yeast artificial chromosomes (YACs, 6G-D4, 9H-D2 and 37D-F9, mapping within the AS SRO, were isolated from the ICI Y AC library. Alu-vector PCR products were amplified from the YACs and from YACs A229A2 and A33FI 0 which had been obtained from the St. Louis Y AC library. The PCR products were cloned and sequenced, and three new sequence-tagged sites were generated within the AS SRO, facilitating the characterization of gene(s involved in the Angelman syndrome.

  3. Alu-directed transcriptional regulation of some novel miRNAs

    Directory of Open Access Journals (Sweden)

    Zhao Xi W

    2009-11-01

    Full Text Available Abstract Background Despite many studies on the biogenesis, molecular structure and biological functions of microRNAs, little is known about the transcriptional regulatory mechanisms controlling the spatiotemporal expression pattern of human miRNA gene loci. Several lines of experimental results have indicated that both polymerase II (Pol-II and polymerase III (Pol-III may be involved in transcribing miRNAs. Here, we assessed the genomic evidence for Alu-directed transcriptional regulation of some novel miRNA genes in humans. Our data demonstrate that the expression of these Alu-related miRNAs may be modulated by Pol-III. Results We present a comprehensive exploration of the Alu-directed transcriptional regulation of some new miRNAs. Using a new computational approach, a variety of Alu-related sequences from multiple sources were pooled and filtered to obtain a subset containing Alu elements and characterized miRNA genes for which there is clear evidence of full-length transcription (embedded in EST. We systematically demonstrated that 73 miRNAs including five known ones may be transcribed by Pol-III through Alu or MIR. Among the new miRNAs, 33 were determined by high-throughput Solexa sequencing. Real-time TaqMan PCR and Northern blotting verified that three newly identified miRNAs could be induced to co-express with their upstream Alu transcripts by heat shock or cycloheximide. Conclusion Through genomic analysis, Solexa sequencing and experimental validation, we have identified candidate sequences for Alu-related miRNAs, and have found that the transcription of these miRNAs could be governed by Pol-III. Thus, this study may elucidate the mechanisms by which the expression of a class of small RNAs may be regulated by their upstream repeat elements.

  4. Sequence-level mechanisms of human epigenome evolution.

    Science.gov (United States)

    Prendergast, James G D; Chambers, Emily V; Semple, Colin A M

    2014-06-24

    DNA methylation and chromatin states play key roles in development and disease. However, the extent of recent evolutionary divergence in the human epigenome and the influential factors that have shaped it are poorly understood. To determine the links between genome sequence and human epigenome evolution, we examined the divergence of DNA methylation and chromatin states following segmental duplication events in the human lineage. Chromatin and DNA methylation states were found to have been generally well conserved following a duplication event, with the evolution of the epigenome largely uncoupled from the total number of genetic changes in the surrounding DNA sequence. However, the epigenome at tissue-specific, distal regulatory regions was observed to be unusually prone to diverge following duplication, with particular sequence differences, altering known sequence motifs, found to be associated with divergence in patterns of DNA methylation and chromatin. Alu elements were found to have played a particularly prominent role in shaping human epigenome evolution, and we show that human-specific AluY insertion events are strongly linked to the evolution of the DNA methylation landscape and gene expression levels, including at key neurological genes in the human brain. Studying paralogous regions within the same sample enables the study of the links between genome and epigenome evolution while controlling for biological and technical variation. We show DNA methylation and chromatin divergence between duplicated regions are linked to the divergence of particular genetic motifs, with Alu elements having played a disproportionate role in the evolution of the epigenome in the human lineage.

  5. An AluI RFLP detected in the human prion protein (PrP) gene

    Energy Technology Data Exchange (ETDEWEB)

    Harris, M.S.; Devine-Gage, E. (New York State Institute for Basic Research in Developmental Disabilities, Staten Island (USA)); Robakis, N.K. (Mt. Sinai School of Medicine, New York, NY (USA))

    1990-01-25

    Probe pEA974 contains a 974 bp fragment present in Prp Clone XIV inserted into pBR322. A PvuII RFLP has been previously described. AluI identifies a two allele polymorphism of either a band at 965 bp, a band at 565 bp, or two bands at 965 bp and 565 bp. The allele frequency was studied in 14 European Caucasians. The PrP gene has been sublocalized to the p arm of chromosome 20. Mendelian pattern of inheritance was shown in an informative family.

  6. Alu elements and hominid phylogenetics

    Science.gov (United States)

    Salem, Abdel-Halim; Ray, David A.; Xing, Jinchuan; Callinan, Pauline A.; Myers, Jeremy S.; Hedges, Dale J.; Garber, Randall K.; Witherspoon, David J.; Jorde, Lynn B.; Batzer, Mark A.

    2003-01-01

    Alu elements have inserted in primate genomes throughout the evolution of the order. One particular Alu lineage (Ye) began amplifying relatively early in hominid evolution and continued propagating at a low level as many of its members are found in a variety of hominid genomes. This study represents the first conclusive application of short interspersed elements, which are considered nearly homoplasy-free, to elucidate the phylogeny of hominids. Phylogenetic analysis of Alu Ye5 elements and elements from several other subfamilies reveals high levels of support for monophyly of Hominidae, tribe Hominini and subtribe Hominina. Here we present the strongest evidence reported to date for a sister relationship between humans and chimpanzees while clearly distinguishing the chimpanzee and human lineages. PMID:14561894

  7. Higher Alu methylation levels in catch-up growth in twenty-year-old offsprings.

    Directory of Open Access Journals (Sweden)

    Kittipan Rerkasem

    Full Text Available Alu elements and long interspersed element-1 (LINE-1 or L1 are two major human intersperse repetitive sequences. Lower Alu methylation, but not LINE-1, has been observed in blood cells of people in old age, and in menopausal women having lower bone mass and osteoporosis. Nevertheless, Alu methylation levels also vary among young individuals. Here, we explored phenotypes at birth that are associated with Alu methylation levels in young people. In 2010, 249 twenty-years-old volunteers whose mothers had participated in a study association between birth weight (BW and nutrition during pregnancy in 1990, were invited to take part in our present study. In this study, the LINE-1 and Alu methylation levels and patterns were measured in peripheral mononuclear cells and correlated with various nutritional parameters during intrauterine and postnatal period of offspring. This included the amount of maternal intake during pregnancy, the mother's weight gain during pregnancy, birth weight, birth length, and the rate of weight gain in the first year of life. Catch-up growth (CUG was defined when weight during the first year was >0.67 of the standard score, according to WHO data. No association with LINE-1 methylation was identified. The mean level of Alu methylation in the CUG group was significantly higher than those non-CUG (39.61% and 33.66 % respectively, P < 0.0001. The positive correlation between the history of CUG in the first year and higher Alu methylation indicates the role of Alu methylation, not only in aging cells, but also in the human growth process. Moreover, here is the first study that demonstrated the association between a phenotype during the newborn period and intersperse repetitive sequences methylation during young adulthood.

  8. Alu element-containing RNAs maintain nucleolar structure and function.

    Science.gov (United States)

    Caudron-Herger, Maïwen; Pankert, Teresa; Seiler, Jeanette; Németh, Attila; Voit, Renate; Grummt, Ingrid; Rippe, Karsten

    2015-11-12

    Non-coding RNAs play a key role in organizing the nucleus into functional subcompartments. By combining fluorescence microscopy and RNA deep-sequencing-based analysis, we found that RNA polymerase II transcripts originating from intronic Alu elements (aluRNAs) were enriched in the nucleolus. Antisense-oligo-mediated depletion of aluRNAs or drug-induced inhibition of RNA polymerase II activity disrupted nucleolar structure and impaired RNA polymerase I-dependent transcription of rRNA genes. In contrast, overexpression of a prototypic aluRNA sequence increased both nucleolus size and levels of pre-rRNA, suggesting a functional link between aluRNA, nucleolus integrity and pre-rRNA synthesis. Furthermore, we show that aluRNAs interact with nucleolin and target ectopic genomic loci to the nucleolus. Our study suggests an aluRNA-based mechanism that links RNA polymerase I and II activities and modulates nucleolar structure and rRNA production.

  9. The association of Alu repeats with the generation of potential AU-rich elements (ARE at 3' untranslated regions.

    Directory of Open Access Journals (Sweden)

    Bhak Jonghwa

    2004-12-01

    Full Text Available Abstract Background A significant portion (about 8% in the human genome of mammalian mRNA sequences contains AU (Adenine and Uracil rich elements or AREs at their 3' untranslated regions (UTR. These mRNA sequences are usually stable. However, an increasing number of observations have been made of unstable species, possibly depending on certain elements such as Alu repeats. ARE motifs are repeats of the tetramer AUUU and a monomer A at the end of the repeats ((AUUUnA. The importance of AREs in biology is that they make certain mRNA unstable. Proto-oncogene, such as c-fos, c-myc, and c-jun in humans, are associated with AREs. Although it has been known that the increased number of ARE motifs caused the decrease of the half-life of mRNA containing ARE repeats, the exact mechanism is as of yet unknown. We analyzed the occurrences of AREs and Alu and propose a possible mechanism for how human mRNA could acquire and keep AREs at its 3' UTR originating from Alu repeats. Results Interspersed in the human genome, Alu repeats occupy 5% of the 3' UTR of mRNA sequences. Alu has poly-adenine (poly-A regions at its end, which lead to poly-thymine (poly-T regions at the end of its complementary Alu. It has been found that AREs are present at the poly-T regions. From the 3' UTR of the NCBI's reference mRNA sequence database, we found nearly 40% (38.5% of ARE (Class I were associated with Alu sequences (Table 1 within one mismatch allowance in ARE sequences. Other ARE classes had statistically significant associations as well. This is far from a random occurrence given their limited quantity. At each ARE class, random distribution was simulated 1,000 times, and it was shown that there is a special relationship between ARE patterns and the Alu repeats. Table 1 Defined ARE classes. (Symbol marks are used in this study instead of full sequences. Symbol ARE sequence Class I (AUUU5A AUUUAUUUAUUUAUUUAUUUA Class II (AUUU4A AUUUAUUUAUUUAUUUA Class III U(AUUU3AU

  10. DETECTION OF STRAND BREAKS OF DNA IN HUMAN EARLY CHORIONIC VILLUS CELLS INDUCED BY DIAGNOSTIC ULTRASOUND USING 32p-LABELED ALU HYBRIDIZATION

    Institute of Scientific and Technical Information of China (English)

    Wang Caifeng; Li Xu; Zhang Yunjing

    2006-01-01

    Objective To explore if strand breaks of DNA in human early chorionic villus cells in uterus were induced by diagnostic ultrasound and to evaluate the method used for detection of single-stranded breaks and doublestranded breaks in human DNA. Methods 60 normal pregnant women aged 20-30, who underwent artificial abortion during 6-8 weeks of gestation, were randomly divided into 2 experimental groups: All 30 cases were exposed to diagnostic ultrasound in uterus for 10 minutes, and 24 hours later chorionic villi were extracted; the other 30 cases were taken as the control group. Single-stranded DNA and double-stranded DNA in villus cells in all cases were isolated by the alkaline unwinding combined with hydroxylapatite chromatography, and were quantitatively detected using32 P-labeled Alu probe for dot-blotting hybridization. Results There was no significant difference in quantity and percentage in single-stranded DNA and double-stranded DNA between 2 groups (P>0.05). 32 P-Alu probe could only hybridize with human DNA, and could detect DNA isolated from as few as 2.5 × 103 chorionic villus cells and 0.45 ng DNA in human leukocytes. Conclusion The results suggested that there were no DNA strand damages in human chorionic villus cells when the uterus was exposed to diagnostic ultrasound for 10 minutes. The method, 32P-Alu probe for dot-blotting hybridization, was even more specific, sensitive and accurate than conventional approaches.

  11. Development of two highly sensitive forensic sex determination assays based on human DYZ1 and Alu repetitive DNA elements.

    Science.gov (United States)

    Fazi, Amanda; Gobeski, Brianne; Foran, David

    2014-11-01

    Sex determination is a critical component of forensic identification, the standard genetic method for which is detection of the single copy amelogenin gene that has differing homologues on the X and Y chromosomes. However, this assay may not be sensitive enough when DNA samples are minute or highly compromised, thus other strategies for sex determination are needed. In the current research, two ultrasensitive sexing assays, based on real-time PCR and pyrosequencing, were developed targeting the highly repetitive elements DYZ1 on the Y chromosome and Alu on the autosomes. The DYZ1/Alu strategy was compared to amelogenin for overall sensitivity based on high molecular weight and degraded DNA, followed by assaying the sex of 34 touch DNA samples and DNA from 30 hair shafts. The real-time DYZ1/Alu assay proved to be approximately 1500 times more sensitive than its amelogenin counterpart based on high molecular weight DNA, and even more sensitive when sexing degraded DNA. The pyrosequencing DYZ1/Alu assay correctly sexed 26 of the touch DNAs, compared to six using amelogenin. Hair shaft DNAs showed equally improved sexing results using the DYZ1/Alu assays. Overall, both DYZ1/Alu assays were far more sensitive and accurate than was the amelogenin assay, and thus show great utility for sexing poor quality and low quantity DNA evidence.

  12. Alu recombination-mediated structural deletions in the chimpanzee genome.

    Directory of Open Access Journals (Sweden)

    Kyudong Han

    2007-10-01

    Full Text Available With more than 1.2 million copies, Alu elements are one of the most important sources of structural variation in primate genomes. Here, we compare the chimpanzee and human genomes to determine the extent of Alu recombination-mediated deletion (ARMD in the chimpanzee genome since the divergence of the chimpanzee and human lineages ( approximately 6 million y ago. Combining computational data analysis and experimental verification, we have identified 663 chimpanzee lineage-specific deletions (involving a total of approximately 771 kb of genomic sequence attributable to this process. The ARMD events essentially counteract the genomic expansion caused by chimpanzee-specific Alu inserts. The RefSeq databases indicate that 13 exons in six genes, annotated as either demonstrably or putatively functional in the human genome, and 299 intronic regions have been deleted through ARMDs in the chimpanzee lineage. Therefore, our data suggest that this process may contribute to the genomic and phenotypic diversity between chimpanzees and humans. In addition, we found four independent ARMD events at orthologous loci in the gorilla or orangutan genomes. This suggests that human orthologs of loci at which ARMD events have already occurred in other nonhuman primate genomes may be "at-risk" motifs for future deletions, which may subsequently contribute to human lineage-specific genetic rearrangements and disorders.

  13. Alu Mobile Elements: From Junk DNA to Genomic Gems

    Directory of Open Access Journals (Sweden)

    Sami Dridi

    2012-01-01

    Full Text Available Alus, the short interspersed repeated sequences (SINEs, are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.

  14. Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells

    DEFF Research Database (Denmark)

    Rodriguez, Jairo; Vives, Laura; Jordà, Mireia

    2008-01-01

    . Demethylation of Alu elements occurs in aging and cancer processes and has been associated with gene reactivation and genomic instability. By targeting the unmethylated SmaI site within the Alu sequence as a surrogate marker, we have quantified and identified unmethylated Alu elements on the genomic scale...... the highest prevalence of the SmaI site (AluY: 42%; AluS: 18%, AluJ: 5%) but the lower rates of unmethylation (AluY: 1.65%; AluS: 3.1%, AluJ: 12%). Data are consistent with a stronger silencing pressure on the youngest repetitive elements, which are closer to genes. Further insights into the functional...

  15. Widespread Alu repeat-driven expansion of consensus DR2 retinoic acid response elements during primate evolution

    Directory of Open Access Journals (Sweden)

    Wang Tian-Tian

    2007-01-01

    Full Text Available Abstract Background Nuclear receptors are hormone-regulated transcription factors whose signaling controls numerous aspects of development and physiology. Many receptors recognize DNA hormone response elements formed by direct repeats of RGKTCA motifs separated by 1 to 5 bp (DR1-DR5. Although many known such response elements are conserved in the mouse and human genomes, it is unclear to which extent transcriptional regulation by nuclear receptors has evolved specifically in primates. Results We have mapped the positions of all consensus DR-type hormone response elements in the human genome, and found that DR2 motifs, recognized by retinoic acid receptors (RARs, are heavily overrepresented (108,582 elements. 90% of these are present in Alu repeats, which also contain lesser numbers of other consensus DRs, including 50% of consensus DR4 motifs. Few DR2s are in potentially mobile AluY elements and the vast majority are also present in chimp and macaque. 95.5% of Alu-DR2s are distributed throughout subclasses of AluS repeats, and arose largely through deamination of a methylated CpG dinucleotide in a non-consensus motif present in AluS sequences. We find that Alu-DR2 motifs are located adjacent to numerous known retinoic acid target genes, and show by chromatin immunoprecipitation assays in squamous carcinoma cells that several of these elements recruit RARs in vivo. These findings are supported by ChIP-on-chip data from retinoic acid-treated HL60 cells revealing RAR binding to several Alu-DR2 motifs. Conclusion These data provide strong support for the notion that Alu-mediated expansion of DR elements contributed to the evolution of gene regulation by RARs and other nuclear receptors in primates and humans.

  16. Repeat Sequences and Base Correlations in Human Y Chromosome Palindromes

    Institute of Scientific and Technical Information of China (English)

    Neng-zhi Jin; Zi-xian Liu; Yan-jiao Qi; Wen-yuan Qiu

    2009-01-01

    On the basis of information theory and statistical methods, we use mutual information, n-tuple entropy and conditional entropy, combined with biological characteristics, to analyze the long range correlation and short range correlation in human Y chromosome palindromes. The magnitude distribution of the long range correlation which can be reflected by the mutual information is P5>P5a>P5b (P5a and P5b are the sequences that replace solely Alu repeats and all interspersed repeats with random uncorrelated sequences in human Y chromosome palindrome 5, respectively); and the magnitude distribution of the short range correlation which can be reflected by the n-tuple entropy and the conditional entropy is P5>P5a>P5b>random uncorrelated sequence. In other words, when the Alu repeats and all interspersed repeats replace with random uncorrelated sequence, the long range and short range correlation decrease gradually. However, the random uncorrelated sequence has no correlation. This research indicates that more repeat sequences result in stronger correlation between bases in human Y chromosome. The analyses may be helpful to understand the special structures of human Y chromosome palindromes profoundly.

  17. Evolution of Alu elements toward enhancers.

    Science.gov (United States)

    Su, Ming; Han, Dali; Boyd-Kirkup, Jerome; Yu, Xiaoming; Han, Jing-Dong J

    2014-04-24

    The human genome contains approximately one million Alu repetitive elements comprising 10% of the genome, yet their functions are not well understood. Here, we show that Alu elements resemble enhancers. Alu elements are bound by two well-phased nucleosomes that contain histones bearing marks of active chromatin, and they show tissue-specific enrichment for the enhancer mark H3K4me1. A proportion of Alu elements were experimentally validated as bona fide active enhancers with an in vitro reporter assay. In addition, Hi-C data indicate that Alus show long-range interactions with gene promoters. We also find that Alus are generally more conserved when located in the proximal upstream region of genes. Their similarity to enhancers becomes more prominent with their age in the human genome, following a clear evolutionary continuum reminiscent of the evolutionary pattern of proto-genes. Therefore, we conclude that some Alu elements can function as enhancers and propose that many more may be proto-enhancers that serve as a repertoire for the de novo birth of enhancers.

  18. Quantification of unmethylated Alu (QUAlu): a tool to assess global hypomethylation in routine clinical samples.

    Science.gov (United States)

    Buj, Raquel; Mallona, Izaskun; Díez-Villanueva, Anna; Barrera, Víctor; Mauricio, Dídac; Puig-Domingo, Manel; Reverter, Jordi L; Matias-Guiu, Xavier; Azuara, Daniel; Ramírez, Jose L; Alonso, Sergio; Rosell, Rafael; Capellà, Gabriel; Perucho, Manuel; Robledo, Mercedes; Peinado, Miguel A; Jordà, Mireia

    2016-03-01

    Hypomethylation of DNA is a hallmark of cancer and its analysis as tumor biomarker has been proposed, but its determination in clinical settings is hampered by lack of standardized methodologies. Here, we present QUAlu (Quantification of Unmethylated Alu), a new technique to estimate the Percentage of UnMethylated Alu (PUMA) as a surrogate for global hypomethylation. QUAlu consists in the measurement by qPCR of Alu repeats after digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation. QUAlu performance has been evaluated for reproducibility, trueness and specificity, and validated by deep sequencing. As a proof of use, QUAlu has been applied to a broad variety of pathological examination specimens covering five cancer types. Major findings of the preliminary application of QUAlu to clinical samples include: (1) all normal tissues displayed similar PUMA; (2) tumors showed variable PUMA with the highest levels in lung and colon and the lowest in thyroid cancer; (3) stools from colon cancer patients presented higher PUMA than those from control individuals; (4) lung squamous cell carcinomas showed higher PUMA than lung adenocarcinomas, and an increasing hypomethylation trend associated with smoking habits. In conclusion, QUAlu is a simple and robust method to determine Alu hypomethylation in human biospecimens and may be easily implemented in research and clinical settings.

  19. LINE-1 ORF1 protein enhances Alu SINE retrotransposition.

    Science.gov (United States)

    Wallace, Nicholas; Wagstaff, Bradley J; Deininger, Prescott L; Roy-Engel, Astrid M

    2008-08-01

    Retroelements have contributed over one third of the human genome mass. The currently active LINE-1 (L1) codes for two proteins (ORF1p and ORF2p), both strictly required for retrotransposition. In contrast, the non-coding parasitic SINE (Alu) only appears to need the L1 ORF2p for its own amplification. This requirement was previously determined using a tissue culture assay system in human cells (HeLa). Because HeLa are likely to express functional L1 proteins, it is possible that low levels of endogenous ORF1p are necessary for the observed tagged Alu mobilization. By individually expressing ORF1 and ORF2 proteins from both human (L1RP and LRE3) and rodent (L1A102 and L1spa) L1 sources, we demonstrate that increasing amounts of ORF1 expressing vector enhances tagged Alu mobilization in HeLa cells. In addition, using chicken fibroblast cells as an alternate cell culture source, we confirmed that ORF1p is not strictly required for Alu mobilization in our assay. Supporting our observations in HeLa cells, we find that tagged Alu retrotransposition is improved by supplementation of ORF1p in the cultured chicken cells. We postulate that L1 ORF1p plays either a direct or indirect role in enhancing the interaction between the Alu RNA and the required factors needed for its retrotransposition.

  20. 粪便Alu序列的检测在胰腺癌诊断中的价值%Value of detection of fecal Alu repetitive sequences in the diagnosis of pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    任艳; 高军; 王小玮; 刘建强; 顾俊骏; 金晶; 龚燕芳; 李兆申

    2011-01-01

    目的 检测胰腺癌患者粪便Alu序列表达量,探讨其对胰腺癌的诊断价值.方法 收集41例胰腺癌、27例慢性胰腺炎及23例健康者的粪便样本,采用酚-氯仿方法抽提粪便中基因组DNA,应用实时定量PCR方法检测Alu重复序列的表达量.结果 胰腺癌、慢性胰腺炎、正常健康者粪便Alu重复序列表达量分别为(5.17±0.99)、(3.79 ±0.94)、(0.28±0.35) ng/g,三组间差异有统计学意义(P值均<0.05).通过接受者操作特征(ROC)曲线分析,胰腺癌的曲线下面积为74.8%,95%可信度为0.661~0.835,诊断胰腺癌的敏感性为75.6%,特异性为67.1%.结论 胰腺癌患者粪便Alu序列表达量显著增加,对胰腺癌的诊断可能有一定价值.%Objective To detect the Alu expression in the stool of patients with pancreatic cancer and investigate its value in the diagnosis of pancreatic cancer.Methods Stool samples were obtained from patients with pancreatic cancer (PC) ( n =41 ),chronic pancreatitis (CP) ( n =27 ) and healthy subjects ( n =23 ),the DNA was extracted from the stool and the expression of Alu repetitive sequences was subjected to quantitative analysis by the real-time PCR.Results The expressions of Alu repetitive sequences in PC,CP,and healthy subjects were (5.17 ± 0.99 ),( 3.79 ± 0.94),(0.28 ± 0.35 ) rig/g,and the difference among the three groups was statistically significant (P <0.05).The AUC of PC was 74.8% with the 95% CI 0.661 ~0.835,and the sensitivity,specificity was 75.6% and 67.1%,respectively.Conclusions Alu repetitive sequences are highly expressed in the stool of patients with pancreatic cancer,and it is of value in the diagnosis of pancreatic cancer.

  1. Alu Insertions and Genetic Diversity: A Preliminary Investigation by an Undergraduate Bioinformatics Class

    Science.gov (United States)

    Elwess, Nancy L.; Duprey, Stephen L.; Harney, Lindesay A.; Langman, Jessie E.; Marino, Tara C.; Martinez, Carolina; McKeon, Lauren L.; Moss, Chantel I. E.; Myrie, Sasha S.; Taylor, Luke Ryan

    2008-01-01

    "Alu"-insertion polymorphisms were used by an undergraduate Bioinformatics class to study how these insertion sites could be the basis for an investigation in human population genetics. Based on the students' investigation, both allele and genotype "Alu" frequencies were determined for African-American and Japanese populations as well as a…

  2. Isolation of chromosome-specific DNA sequences from an Alu polymerase chain reaction library to define the breakpoint in a patient with a constitutional translocation t(1;13) (q22;q12) and ganglioneuroblastoma.

    Science.gov (United States)

    Michalski, A J; Cotter, F E; Cowell, J K

    1992-08-01

    We describe the cytogenetic and molecular characterization of a t(1;13)(q22;q12) constitutional rearrangement occurring in a patient with a relatively benign form of neuroblastoma, called ganglioneuroblastoma. Somatic cell hybrids were generated between mouse 3T3 cells and a lymphoblastoid cell line from this patient, D.G. One isolated subclone, DGF27C11, contained the derivative chromosome, 1pter-q22::13q12-qter, but no other material from either chromosome 1 or 13. Using available DNA probes the 13 breakpoint was assigned proximal to all reported markers. In order to generate flanking markers to define this translocation further, an Alu polymerase chain reaction library was constructed from a somatic cell hybrid containing only the proximal, 13pter-13q14, region of chromosome 13. Seven unique sequences have been isolated from the library, three of which lie below and four of which lie above the 13q12 breakpoint. More precise mapping of the distal markers was achieved using a panel of somatic cell hybrids with overlapping deletions of chromosome 13. The paucity of probes in the 1q22 region has made a precise assignment of this breakpoint difficult, however it has been shown to lie distal to c-SKI and proximal to APOA2. This refined characterization of the breakpoint is a prerequisite for its cloning, which may yield genes important in the pathogenesis of ganglioneuroblastoma.

  3. Age-Associated ALU Element Instability in White Blood Cells Is Linked to Lower Survival in Elderly Adults: A Preliminary Cohort Study

    Science.gov (United States)

    Venturelli, Massimo; Gross, Cole; Tarperi, Cantor; Schena, Federico; Reggiani, Carlo; Naro, Fabio; Pedrinolla, Anna; Monaco, Lucia; Richardson, Russell S.; Donato, Anthony J.

    2017-01-01

    Background ALU element instability could contribute to gene function variance in aging, and may partly explain variation in human lifespan. Objective To assess the role of ALU element instability in human aging and the potential efficacy of ALU element content as a marker of biological aging and survival. Design Preliminary cohort study. Methods We measured two high frequency ALU element subfamilies, ALU-J and ALU-Sx, by a single qPCR assay and compared ALU-J/Sx content in white blood cell (WBCs) and skeletal muscle cell (SMCs) biopsies from twenty-three elderly adults with sixteen healthy sex-balanced young adults; all-cause survival rates of elderly adults predicted by ALU-J/Sx content in both tissues; and cardiovascular disease (CVD)- and cancer-specific survival rates of elderly adults predicted by ALU-J/Sx content in both tissues, as planned subgroup analyses. Results We found greater ALU-J/Sx content variance in WBCs from elderly adults than young adults (P < 0.001) with no difference in SMCs (P = 0.94). Elderly adults with low WBC ALU-J/Sx content had worse four-year all-cause and CVD-associated survival than those with high ALU-J/Sx content (both P = 0.03 and hazard ratios (HR) ≥ 3.40), while WBC ALU-J/Sx content had no influence on cancer-associated survival (P = 0.42 and HR = 0.74). SMC ALU-J/Sx content had no influence on all-cause, CVD- or cancer -associated survival (all P ≥ 0.26; HR ≤ 2.07). Conclusions These initial findings demonstrate that ALU element instability occurs with advanced age in WBCs, but not SMCs, and imparts greater risk of all-cause mortality that is likely driven by an increased risk for CVD and not cancer. PMID:28060910

  4. Age-Associated ALU Element Instability in White Blood Cells Is Linked to Lower Survival in Elderly Adults: A Preliminary Cohort Study.

    Science.gov (United States)

    Morgan, R Garrett; Venturelli, Massimo; Gross, Cole; Tarperi, Cantor; Schena, Federico; Reggiani, Carlo; Naro, Fabio; Pedrinolla, Anna; Monaco, Lucia; Richardson, Russell S; Donato, Anthony J

    2017-01-01

    ALU element instability could contribute to gene function variance in aging, and may partly explain variation in human lifespan. To assess the role of ALU element instability in human aging and the potential efficacy of ALU element content as a marker of biological aging and survival. Preliminary cohort study. We measured two high frequency ALU element subfamilies, ALU-J and ALU-Sx, by a single qPCR assay and compared ALU-J/Sx content in white blood cell (WBCs) and skeletal muscle cell (SMCs) biopsies from twenty-three elderly adults with sixteen healthy sex-balanced young adults; all-cause survival rates of elderly adults predicted by ALU-J/Sx content in both tissues; and cardiovascular disease (CVD)- and cancer-specific survival rates of elderly adults predicted by ALU-J/Sx content in both tissues, as planned subgroup analyses. We found greater ALU-J/Sx content variance in WBCs from elderly adults than young adults (P difference in SMCs (P = 0.94). Elderly adults with low WBC ALU-J/Sx content had worse four-year all-cause and CVD-associated survival than those with high ALU-J/Sx content (both P = 0.03 and hazard ratios (HR) ≥ 3.40), while WBC ALU-J/Sx content had no influence on cancer-associated survival (P = 0.42 and HR = 0.74). SMC ALU-J/Sx content had no influence on all-cause, CVD- or cancer -associated survival (all P ≥ 0.26; HR ≤ 2.07). These initial findings demonstrate that ALU element instability occurs with advanced age in WBCs, but not SMCs, and imparts greater risk of all-cause mortality that is likely driven by an increased risk for CVD and not cancer.

  5. [Determination and analysis of the primary structure of a genomic sequence adjacent to the 3'-end of the human tissue plasminogen activator gene].

    Science.gov (United States)

    Sarafanov, A G; Timofeeva, M Ia; Bannikov, V M; Zakhar'ev, V M; Mamaeva, O K; Tikhomirova, T I; Baev, A A

    1995-01-01

    Primary structure was determined for the recently cloned f1/BglII-fragment [19] containing 2102 b.p. of the human tissue plasminogen activator (tPA) gene 3' end and adjacent DNA region. Computer analysis has revealed an Alu-repeat 820 b.p. downstream the tPA gene; the sequence proved to have a considerable homology (86-88%) with the Alus from the 3'-untranslated regions (3'UTRs) of cytochrome P-450, lysozyme and p53 protein human mRNAs. The same homology was estimated for this Alu in reversed orientation and Alus from the 3'UTRs of some other human mRNAs. In contrast, the homology between this 3' end tPA gene flanking Alu-repeat and other Alus dispersed throughout the gene introns either direct or reversed, was less than 70%. The polyadenylation signal AATAAA downstream the Alu and two nearby signals CACAG and GTGTT resembling consensus sequences CACAG and YGTGTTYY, respectively, were also detected. The two latter motifs located close to the 3' ends in most mammalian genes are likely to regulate mature mRNA formation. The comparison of the sequenced spaser flank adjacent to the tPA gene with short homologous sequence from the same genomic region primary structure reported previously has revealed discrepancies (substitutions, deletions or insertions) in 21 nucleotide positions. The nucleotide sequence of E. coli uvrB gene fragment (980 b.p.) is also reported. This E. coli gene fragment was cloned accidentally within the f1/BglII-fragment being an artifact of the host-vector system used.

  6. Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer.

    Science.gov (United States)

    Park, So Yeon; Seo, An Na; Jung, Hae Yoen; Gwak, Jae Moon; Jung, Namhee; Cho, Nam-Yun; Kang, Gyeong Hoon

    2014-01-01

    The changes in DNA methylation status in cancer cells are characterized by hypermethylation of promoter CpG islands and diffuse genomic hypomethylation. Alu and long interspersed nucleotide element-1 (LINE-1) are non-coding genomic repetitive sequences and methylation of these elements can be used as a surrogate marker for genome-wide methylation status. This study was designed to evaluate the changes of Alu and LINE-1 hypomethylation during breast cancer progression from normal to pre-invasive lesions and invasive breast cancer (IBC), and their relationship with characteristics of IBC. We analyzed the methylation status of Alu and LINE-1 in 145 cases of breast samples including normal breast tissue, atypical ductal hyperplasia/flat epithelial atypia (ADH/FEA), ductal carcinoma in situ (DCIS) and IBC, and another set of 129 cases of IBC by pyrosequencing. Alu methylation showed no significant changes during multistep progression of breast cancer, although it tended to decrease during the transition from DCIS to IBC. In contrast, LINE-1 methylation significantly decreased from normal to ADH/FEA, while it was similar in ADH/FEA, DCIS and IBC. In IBC, Alu hypomethylation correlated with negative estrogen receptor (ER) status, and LINE-1 hypomethylation was associated with negative ER status, ERBB2 (HER2) amplification and p53 overexpression. Alu and LINE-1 methylation status was significantly different between breast cancer subtypes, and the HER2 enriched subtype had lowest methylation levels. In survival analyses, low Alu methylation status tended to be associated with poor disease-free survival of the patients. Our findings suggest that LINE-1 hypomethylation is an early event and Alu hypomethylation is probably a late event during breast cancer progression, and prominent hypomethylation of Alu and LINE-1 in HER2 enriched subtype may be related to chromosomal instability of this specific subtype.

  7. A genomewide screen for suppressors of Alu-mediated rearrangements reveals a role for PIF1.

    Directory of Open Access Journals (Sweden)

    Karen M Chisholm

    Full Text Available Alu-mediated rearrangement of tumor suppressor genes occurs frequently during carcinogenesis. In breast cancer, this mechanism contributes to loss of the wild-type BRCA1 allele in inherited disease and to loss of heterozygosity in sporadic cancer. To identify genes required for suppression of Alu-mediated recombination we performed a genomewide screen of a collection of 4672 yeast gene deletion mutants using a direct repeat recombination assay. The primary screen and subsequent analysis identified 12 candidate genes including TSA, ELG1, and RRM3, which are known to play a significant role in maintaining genomic stability. Genetic analysis of the corresponding human homologs was performed in sporadic breast tumors and in inherited BRCA1-associated carcinomas. Sequencing of these genes in high risk breast cancer families revealed a potential role for the helicase PIF1 in cancer predisposition. PIF1 variant L319P was identified in three breast cancer families; importantly, this variant, which is predicted to be functionally damaging, was not identified in a large series of controls nor has it been reported in either dbSNP or the 1000 Genomes Project. In Schizosaccharomyces pombe, Pfh1 is required to maintain both mitochondrial and nuclear genomic integrity. Functional studies in yeast of human PIF1 L319P revealed that this variant cannot complement the essential functions of Pfh1 in either the nucleus or mitochondria. Our results provide a global view of nonessential genes involved in suppressing Alu-mediated recombination and implicate variation in PIF1 in breast cancer predisposition.

  8. Isolation of Human Genomic Single Copy from the YAC Insert End Using Alu-vectorette PCR%用Alu Vectorette PCR方法从酵母人工染色体末端分离人基因组单拷贝片段

    Institute of Scientific and Technical Information of China (English)

    韩顺生; 余龙; 邓余; 赵寿元

    1995-01-01

    分离和克隆YAC插入片段的末端顺序是构建YAC重叠群的重要手段之一,我们采用Alu载体(Alu-vectorette)PCR方法成功地从含人淀粉样蛋白前体(APP)基因的法国人类多态研究中心(CEPH,Centre d'Etude du Polymorphisme Human)YAC克隆599G11的未端分离到一个0.58kb的单拷贝片段.测序后经核苷酸顺序检索分析,证明这是一个新的STS顺序.用这个片段作探针,在英国肿瘤研究基金会(ICRF)的YAC库中筛选到一个新的YAC克隆,证明这是莸得contig的有效而快捷的方法.

  9. An Alu-Based Phylogeny of Lemurs (Infraorder: Lemuriformes)

    Science.gov (United States)

    McLain, Adam T.; Meyer, Thomas J.; Faulk, Christopher; Herke, Scott W.; Oldenburg, J. Michael; Bourgeois, Matthew G.; Abshire, Camille F.

    2012-01-01

    Lemurs (infraorder: Lemuriformes) are a radiation of strepsirrhine primates endemic to the island of Madagascar. As of 2012, 101 lemur species, divided among five families, have been described. Genetic and morphological evidence indicates all species are descended from a common ancestor that arrived in Madagascar ∼55–60 million years ago (mya). Phylogenetic relationships in this species-rich infraorder have been the subject of debate. Here we use Alu elements, a family of primate-specific Short INterspersed Elements (SINEs), to construct a phylogeny of infraorder Lemuriformes. Alu elements are particularly useful SINEs for the purpose of phylogeny reconstruction because they are identical by descent and confounding events between loci are easily resolved by sequencing. The genome of the grey mouse lemur (Microcebus murinus) was computationally assayed for synapomorphic Alu elements. Those that were identified as Lemuriformes-specific were analyzed against other available primate genomes for orthologous sequence in which to design primers for PCR (polymerase chain reaction) verification. A primate phylogenetic panel of 24 species, including 22 lemur species from all five families, was examined for the presence/absence of 138 Alu elements via PCR to establish relationships among species. Of these, 111 were phylogenetically informative. A phylogenetic tree was generated based on the results of this analysis. We demonstrate strong support for the monophyly of Lemuriformes to the exclusion of other primates, with Daubentoniidae, the aye-aye, as the basal lineage within the infraorder. Our results also suggest Lepilemuridae as a sister lineage to Cheirogaleidae, and Indriidae as sister to Lemuridae. Among the Cheirogaleidae, we show strong support for Microcebus and Mirza as sister genera, with Cheirogaleus the sister lineage to both. Our results also support the monophyly of the Lemuridae. Within Lemuridae we place Lemur and Hapalemur together to the exclusion of

  10. An alu-based phylogeny of lemurs (infraorder: Lemuriformes.

    Directory of Open Access Journals (Sweden)

    Adam T McLain

    Full Text Available LEMURS (INFRAORDER: Lemuriformes are a radiation of strepsirrhine primates endemic to the island of Madagascar. As of 2012, 101 lemur species, divided among five families, have been described. Genetic and morphological evidence indicates all species are descended from a common ancestor that arrived in Madagascar ∼55-60 million years ago (mya. Phylogenetic relationships in this species-rich infraorder have been the subject of debate. Here we use Alu elements, a family of primate-specific Short INterspersed Elements (SINEs, to construct a phylogeny of infraorder Lemuriformes. Alu elements are particularly useful SINEs for the purpose of phylogeny reconstruction because they are identical by descent and confounding events between loci are easily resolved by sequencing. The genome of the grey mouse lemur (Microcebus murinus was computationally assayed for synapomorphic Alu elements. Those that were identified as Lemuriformes-specific were analyzed against other available primate genomes for orthologous sequence in which to design primers for PCR (polymerase chain reaction verification. A primate phylogenetic panel of 24 species, including 22 lemur species from all five families, was examined for the presence/absence of 138 Alu elements via PCR to establish relationships among species. Of these, 111 were phylogenetically informative. A phylogenetic tree was generated based on the results of this analysis. We demonstrate strong support for the monophyly of Lemuriformes to the exclusion of other primates, with Daubentoniidae, the aye-aye, as the basal lineage within the infraorder. Our results also suggest Lepilemuridae as a sister lineage to Cheirogaleidae, and Indriidae as sister to Lemuridae. Among the Cheirogaleidae, we show strong support for Microcebus and Mirza as sister genera, with Cheirogaleus the sister lineage to both. Our results also support the monophyly of the Lemuridae. Within Lemuridae we place Lemur and Hapalemur together to the

  11. Genetic variation of MHC Class I polymorphic Alu insertions (POALINs) in three sub-populations of the East Midlands, UK.

    Science.gov (United States)

    Mastana, Sarabjit S; Bhatti, Jasvinder S; Singh, Puneetpal; Wiles, Adam; Holland, Jonathan

    2017-09-01

    Alu elements are highly researched due to their useful nature as markers in the study of human population genetics. Recently discovered Major Histocompatibility Complex (MHC) polymorphic Alu insertions (POALINs) have not been examined extensively for genetic variation and their HLA associations. The aim of this study is to assess the genetic variation between three populations using five recently discovered POALINs. The study examined 190 healthy, unrelated subjects from three different populations in the East Midlands (UK) for the presence or absence of five Alu elements (AluHG, AluMICB, AluHJ, AluTF and AluHF) via the polymerase chain reaction followed by gel electrophoresis. Data were analysed for genetic variation and phylogenetic analyses. All Alus were polymorphic in study populations. Appreciable allele frequency variation was observed at a number of loci. The British population was significantly different from both the Punjabi Jat Sikh and Gujarati Patel populations, although showing a closer genetic relationship to the Punjabi Jat Sikh population than the Gujarati Patel population (Nei's DA = 0.0031 and 0.0064, respectively). MHC POALINs are useful markers in the investigation of genetic variation and the assessment of population relationships, and may have some bearing on disease associations due to their linkage disequilibrium with HLA loci; this warrants further studies.

  12. Characterization of Alu and recombination-associated motifs mediating a large homozygous SPG7 gene rearrangement causing hereditary spastic paraplegia.

    Science.gov (United States)

    López, Eva; Casasnovas, Carlos; Giménez, Javier; Matilla-Dueñas, Antoni; Sánchez, Ivelisse; Volpini, Víctor

    2015-04-01

    Spastic paraplegia type 7 (SPG7) is one of the most common forms of autosomal recessive hereditary spastic paraplegia (AR-HSP). Although over 77 different mutations have been identified in SPG7 patients, only 9 gross deletions have been reported with only a few of them being fully characterized. Here, we present a detailed description of a large homozygous intragenic SPG7 gene rearrangement involving a 5144-base pair (bp) genomic loss (c. 1450-446_1779 + 746 delinsAAAGTGCT) encompassing exons 11 to 13, identified in a Spanish AR-HSP family. Analysis of the deletion junction sequences revealed that the 5' breakpoint of this SPG7 gene deletion was located within highly homologous Alu sequences where the 3' breakpoint appears to be flanked by the core crossover hotspot instigator (chi)-like sequence (GCTGG). Furthermore, an 8-bp (AAAGTTGCT) conserved sequence at the breakpoint junction was identified, suggesting that the most likely mechanism for the occurrence of this rearrangement is by Alu microhomology and chi-like recombination-associated motif-mediated multiple exon deletion. Our results are consistent with non-allelic homologous recombination and non-homologous end joining in deletion mutagenesis for the generation of rearrangements. This study provides more evidence associating repeated elements as a genetic mechanism underlying neurodegenerative disorders, highlighting their importance in human diseases.

  13. Sequences more than 500 base pairs upstream of the human U3 small nuclear RNA gene stimulate the synthesis of U3 RNA in frog oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Suh, D.; Reddy, R. (Baylor Coll. of Medicine, Houston, TX (United States)); Wright, D. (Texas Medical Center, Houston (United States))

    1991-06-04

    Small nuclear RNA (snRNA) genes contain strong promoters capable of initiating transcription once every 4 s. Studies on the human U1 snRNA gene, carried out in other laboratories, showed that sequences within 400 bp of the 5' flanking region are sufficient for maximal levels of transcription both in vivo and in frog oocytes (reviewed in Dahlberg and Lund (1988)). The authors studied the expression of a human U3 snRNA gene by injecting 5' deletion mutants into frog oocytes. The results show that sequences more than 500 bp upstream of the U3 snRNA gene have a 2-3-fold stimulatory effect on the U3 snRNA synthesis. These results indicate that the human U3 snRNA gene is different from human U1 snRNA gene in containing regulatory elements more than 500 bp upstream. The U3 snRNA gene upstream sequences contain an AluI homologous sequence in the {minus}1,200 region; these AluI sequences were transcribed in vitro and in frog oocytes but were not detectable in Hela cells.

  14. A SINE in the genome of the cephalochordate amphioxus is an Alu element

    Science.gov (United States)

    Holland, Linda Z.

    2006-01-01

    Transposable elements of about 300 bp, termed “short interspersed nucleotide elements or SINEs are common in eukaryotes. However, Alu elements, SINEs containing restriction sites for the AluI enzyme, have been known only from primates. Here I report the first SINE found in the genome of the cephalochordate, amphioxus. It is an Alu element of 375 bp that does not share substantial identity with any genomic sequences in vertebrates. It was identified because it was located in the FoxD regulatory region in a cosmid derived from one individual, but absent from the two FoxD alleles of BACs from a second individual. However, searches of sequences of BACs and genomic traces from this second individual gave an estimate of 50-100 copies in the amphioxus genome. The finding of an Alu element in amphioxus raises the question of whether Alu elements in amphioxus and primates arose by convergent evolution or by inheritance from a common ancestor. Genome-wide analyses of transposable elements in amphioxus and other chordates such as tunicates, agnathans and cartilaginous fishes could well provide the answer. PMID:16733535

  15. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination

    DEFF Research Database (Denmark)

    Nazaryan-Petersen, Lusine; Bertelsen, Birgitte; Bak, Mads

    2016-01-01

    L1-endonuclease potential target sites in other breakpoints. In addition, we found four Alu elements flanking the 110-kb deletion and associated with an inversion. We suggest that chromatin looping mediated by homologous Alu elements may have brought distal DNA regions into close proximity...

  16. Gene structure of the human DDX3 and chromosome mapping of its related sequences.

    Science.gov (United States)

    Kim, Y S; Lee, S G; Park, S H; Song, K

    2001-10-31

    The human DDX3 gene (GenBank accession No. U50553) is the human homologue of the mouse Ddx3 gene and is a member of the gene family that contains DEAD motifs. Previously, we mapped the gene to the Xp11.3-11.23. In this report, we describe the structural organization of the human DDX3 gene. It consisted of 17 exons that span approximately 16 kb. An Alu element was present in the intron 13. Its organization was the same as that of the human DBY gene, a closely related sequence present on the Y chromosome. We also identified two processed pseudogenes (DDX3) with a sequence that is highly homologous to those of DDX3 cDNAs, but contain a translation termination codon within its open-reading frame. Pseudogenes are mapped on human chromosomes 4 and X, respectively. In this paper, we discuss the relationships between DDX3 and its related sequences that have been isolated.

  17. Evolutionarily conserved sequences on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Kelly A.; Sheehan, John B.; Stokowski, Renee P.; Chen, Xiyin; Hosseini, Roya; Cheng, Jan-Fang; Fodor, Stephen P.A.; Cox, David R.; Patil, Nila

    2001-09-01

    Comparison of human sequences with the DNA of other mammals is an excellent means of identifying functional elements in the human genome. Here we describe the utility of high-density oligonucleotide arrays as a rapid approach for comparing human sequences with the DNA of multiple species whose sequences are not presently available. High-density arrays representing approximately 22.5 Mb of nonrepetitive human chromosome 21 sequence were synthesized and then hybridized with mouse and dog DNA to identify sequences conserved between humans and mice (human-mouse elements) and between humans and dogs (human-dog elements). Our data show that sequence comparison of multiple species provides a powerful empiric method for identifying actively conserved elements in the human genome. A large fraction of these evolutionarily conserved elements are present in regions on chromosome 21 that do not encode known genes.

  18. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?

    Science.gov (United States)

    Kaur, Simranjeet; Pociot, Flemming

    2015-07-13

    Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value genes harboring Alus revealed significant enrichment for immune-mediated processes (p-value genes harboring inverted Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures by IRAlus within the 3'UTRs of T1D genes. We propose that IRAlus might be involved in regulating the expression levels of the host T1D genes.

  19. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?

    DEFF Research Database (Denmark)

    Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate...... genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value genes harboring Alus revealed significant enrichment for immune......-mediated processes (p-value genes harboring inverted Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures...

  20. Caractérisation de l'expression des éléments Alu et du phénomène d'édition de l'ARN chez l'humain et la souris

    OpenAIRE

    2012-01-01

    The Alu repeats comprise more than 10% of the human genome. They spread in the genome by retrotransposition. As a response to this invasion, organisms developed mechanisms to preserve the integrity of their genome, such as RNA editing. The most abundant type of editing in mammals is A-to-I editing where the ADAR proteins transform adenosine into inosine and targets mainly Alu elements in human. Editing of the Alu elements leads to their sequestration in the nucleus and mutates their internal ...

  1. APOBEC3G oligomerization is associated with the inhibition of both Alu and LINE-1 retrotransposition.

    Directory of Open Access Journals (Sweden)

    Takayoshi Koyama

    Full Text Available Alu and LINE-1 (L1, which constitute ~11% and ~17% of the human genome, respectively, are transposable non-LTR retroelements. They transpose not only in germ cells but also in somatic cells, occasionally causing cancer. We have previously demonstrated that antiretroviral restriction factors, human APOBEC3 (hA3 proteins (A-H, differentially inhibit L1 retrotransposition. In this present study, we found that hA3 members also restrict Alu retrotransposition at differential levels that correlate with those observed previously for L1 inhibition. Through deletion analyses based on the best-characterized hA3 member human APOBEC3G (hA3G, its N-terminal 30 amino acids were required for its inhibitory activity against Alu retrotransposition. The inhibitory effect of hA3G on Alu retrotransposition was associated with its oligomerization that was affected by the deletion of its N-terminal 30 amino acids. Through structural modeling, the amino acids 24 to 28 of hA3G were predicted to be located at the interface of the dimer. The mutation of these residues resulted in abrogated hA3G oligomerization, and consistently abolished the inhibitory activity of hA3G against Alu retrotransposition. Importantly, the anti-L1 activity of hA3G was also associated with hA3G oligomerization. These results suggest that the inhibitory activities of hA3G against Alu and L1 retrotransposition might involve a common mechanism.

  2. Kaitseliidu koolimõis Alu / Helju Koger

    Index Scriptorium Estoniae

    Koger, Helju, 1943-

    2003-01-01

    2002. a. sügisest on Alu mõisahoones Kaitseliidu kool. Mõisa ajaloost. 1875. a. valminud härrastemaja projekteeris Paul Friedrich Wilhelm Alisch. Mõisahoone restaureerimisest. 2000. a. restaureerimisprojekti autorid Anu Vaarpuu ja Urmas Sepp arhitektibüroost Hoerdel. 15 ill

  3. Identification of transcribed sequences in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, K.

    1992-12-01

    The workshop was held at the National Institutes of Mental Health, Bethesda, Maryland, on October 4 and 5, 1991. Twenty-four investigators attended from England, Germany and the United States. The topics discussed included: Genome sequence analysis using computer assisted detection of open reading frames, splice sites and hexamer patterns, direct exon identification using trapping of internal and 3' exons, and a recombination based system, cDNA library construction and screening, including the use of normalization and subtraction procedures, Alu and splice donor site PCR from hybrid cell lines, and microdissection clones as probes, use of labeled CDNAS as probes to screen lambda and cosmid libraries, and sequencing of random cDNAs.

  4. Behavioral Analysis of Different ALU Architectures

    Directory of Open Access Journals (Sweden)

    G.V.V.S.R.Krishna

    2012-06-01

    Full Text Available Digital design is an amazing and very broad field. The applications of digital design are present in our daily life, including Computers, calculators, video cameras etc. In fact, there will be always need for high speed and low power digital products which makes digital design a future growing business. Low power and high speed is challenging work in processor design. Implementing power optimization on all components of the processor is a choice. One of the most basicoperational units in theprocessor is an (Arithmetic logic unit ALU. ALU is a critical component of a microprocessor and is the core component of central processing unit. Furthermore, it is the heart of the instruction execution portion of every computer. It has the capability of performing a number of Arithmetic and logical operations such as addition, subtraction, complement, bit shifts and magnitude comparisons. Hence the speed, circuit delay, layout density, and power consumption trade-off is important for the portable digital system designers. This paper proposed to design and compare different parameters like low power, number of transistors and high speed of ALU’s .It compares the conventional CMOS ALU with Pseudo NMOS logic and MOS Logics. These different circuit parameters are compared with TANNER 13.1 using IBM SCN CMOS 65nm technology at room temperature. Results of comparison are shows that the Pseudo NMOS logic requires a lower number of transistors and performs well in terms of delay other than remaining architectures.

  5. Large-scale cloning of human chromosome 2-specific yeast artificial chromosomes (YACs) using an interspersed repetitive sequences (IRS)-PCR approach.

    Science.gov (United States)

    Liu, J; Stanton, V P; Fujiwara, T M; Wang, J X; Rezonzew, R; Crumley, M J; Morgan, K; Gros, P; Housman, D; Schurr, E

    1995-03-20

    We report here an efficient approach to the establishment of extended YAC contigs on human chromosome 2 by using an interspersed repetitive sequences (IRS)-PCR-based screening strategy for YAC DNA pools. Genomic DNA was extracted from 1152 YAC pools comprised of 55,296 YACs mostly derived from the CEPH Mark I library. Alu-element-mediated PCR was performed for each pool, and amplification products were spotted on hybridization membranes (IRS filters). IRS probes for the screening of the IRS filters were obtained by Alu-element-mediated PCR. Of 708 distinct probes obtained from chromosome 2-specific somatic cell hybrids, 85% were successfully used for library screening. Similarly, 80% of 80 YAC walking probes were successfully used for library screening. Each probe detected an average of 6.6 YACs, which is in good agreement with the 7- to 7.5-fold genome coverage provided by the library. In a preliminary analysis, we have identified 188 YAC groups that are the basis for building contigs for chromosome 2. The coverage of the telomeric half of chromosome 2q was considered to be good since 31 of 34 microsatellites and 22 of 23 expressed sequence tags that were chosen from chromosome region 2q13-q37 were contained in a chromosome 2 YAC sublibrary generated by our experiments. We have identified a minimum of 1610 distinct chromosome 2-specific YACs, which will be a valuable asset for the physical mapping of the second largest human chromosome.

  6. Holliday Junctions Are Associated with Transposable Element Sequences in the Human Genome.

    Science.gov (United States)

    Ladias, Paris; Markopoulos, Georgios; Lazaros, Leandros; Markoula, Sofia; Tzavaras, Theodore; Georgiou, Ioannis

    2016-02-13

    Holliday junctions (HJs) constitute important intermediate structures for many cell functions such as DNA recombination and DNA repair. They derive from a 10-nt degenerate sequence, with a 3-nt core motif. In this study, we explored the human genome whether the HJ degenerate sequence associates with transposable elements (TEs) and mainly with those of the active and inactive ALU, LINE, SVA and HERV families. We identified six different forms of the HJ sequence motif, and we located the genomic coordinates of sequences containing both HJs and TEs. From 2982 total HJs, a significant number of 1319 TE-associated HJs were found, with a median distribution of 1 per 2.4 Mb. The HJs with higher GC content were observed more frequently at the genome. A high percentage of HJs were associated with all main TE families, with specificity for particular active or inactive elements: DNA elements and the retroelements ALUs, LINEs and HERVs up to 41.94%, 72.72%, 42.94% and 84.5%, respectively. Phylogenetic analysis revealed that HJs occur in both active and inactive TEs. Furthermore, the TE-associated HJs were almost exclusively found within a distance less than 1 Mb from human genes, while only 23 were not associated with any genes. This is the first report associating human HJs, with mobile elements. Our data pinpoint that particular HJ forms show preference for specific active retrotransposon families of ALUs and LINEs, suggesting that retrotransposon-incorporated HJs may relocate or replicate in the genome through retrotransposition, contributing to recombination, genome plasticity and DNA repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An Alu-mediated large deletion of the FUT2 gene in individuals with the ABO-Bombay phenotype.

    Science.gov (United States)

    Koda, Y; Soejima, M; Johnson, P H; Smart, E; Kimura, H

    2000-01-01

    Recently, we have found an allelic deletion of the secretor alpha(1,2)fucosyltransferase (FUT2) gene in individuals with the classical Bombay phenotype of the ABO system. The FUT2 gene consists of two exons separated by an intron that spans approximately 7 kb. The first exon is noncoding, whereas exon 2 contains the complete coding sequence. Since the 5' breakpoint of the deletion has previously been mapped to the single intron of FUT2, we have cloned the junction region of the deletion in a Bombay individual by cassette-mediated polymerase chain reaction. In addition, the region from the 3' untranslated region of FUT2 to the 3' breakpoint sequence has been amplified from a control individual. DNA sequence analysis of this region indicates that the 5' breakpoint is within a free left Alu monomer (FLAM-C) sequence that lies 1.3 kb downstream of exon 1, and that the 3' breakpoint is within a complete Alu element (AluSx) that is positioned 1.5 kb downstream of exon 2. The size of the deletion is estimated to be about 10 kb. There is a 25-bp sequence identity between the reference DNA sequences surrounding the 5' and 3' breakpoints. This demonstrates that an Alu-mediated large gene deletion generated by unequal crossover is responsible for secretor alpha(1,2)fucosyltransferase deficiency in Indian Bombay individuals.

  8. Alu-mediated large deletion of the CDSN gene as a cause of peeling skin disease.

    Science.gov (United States)

    Wada, T; Matsuda, Y; Muraoka, M; Toma, T; Takehara, K; Fujimoto, M; Yachie, A

    2014-10-01

    Peeling skin disease (PSD) is an autosomal recessive skin disorder caused by mutations in CDSN and is characterized by superficial peeling of the upper epidermis. Corneodesmosin (CDSN) is a major component of corneodesmosomes that plays an important role in maintaining epidermis integrity. Herein, we report a patient with PSD caused by a novel homozygous large deletion in the 6p21.3 region encompassing the CDSN gene, which abrogates CDSN expression. Several genes including C6orf15, PSORS1C1, PSORS1C2, CCHCR1, and TCF19 were also deleted, however, the patient showed only clinical features typical of PSD. The deletion size was 59.1 kb. Analysis of the sequence surrounding the breakpoint showed that both telomeric and centromeric breakpoints existed within Alu-S sequences that were oriented in opposite directions. These results suggest an Alu-mediated recombination event as the mechanism underlying the deletion in our patient.

  9. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  10. Transposable element insertions have strongly affected human evolution.

    Science.gov (United States)

    Britten, Roy J

    2010-11-16

    Comparison of a full collection of the transposable element (TE) sequences of vertebrates with genome sequences shows that the human genome makes 655 perfect full-length matches. The cause is that the human genome contains many active TEs that have caused TE inserts in relatively recent times. These TE inserts in the human genome are several types of young Alus (AluYa5, AluYb8, AluYc1, etc.). Work in many laboratories has shown that such inserts have many effects including changes in gene expression, increases in recombination, and unequal crossover. The time of these very effective changes in the human lineage genome extends back about 4 million years according to these data and very likely much earlier. Rapid human lineage-specific evolution, including brain size is known to have also occurred in the last few million years. Alu insertions likely underlie rapid human lineage evolution. They are known to have many effects. Examples are listed in which TE sequences have influenced human-specific genes. The proposed model is that the many TE insertions created many potentially effective changes and those selected were responsible for a part of the striking human lineage evolution. The combination of the results of these events that were selected during human lineage evolution was apparently effective in producing a successful and rapidly evolving species.

  11. The potential role of Alu Y in the development of resistance to SN38 (Irinotecan) or oxaliplatin in colorectal cancer

    DEFF Research Database (Denmark)

    Lin, Xue; Stenvang, Jan; Rasmussen, Mads Heilskov;

    2015-01-01

    or oxaliplatin resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of 'DNA methylation entropy......' to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences...... by mobility of Alu elements and stresses the importance of personalized strategies, using a systematic and dynamic view, for effective cancer therapy....

  12. Sequence determinants of human microsatellite variability

    Directory of Open Access Journals (Sweden)

    Jakobsson Mattias

    2009-12-01

    Full Text Available Abstract Background Microsatellite loci are frequently used in genomic studies of DNA sequence repeats and in population studies of genetic variability. To investigate the effect of sequence properties of microsatellites on their level of variability we have analyzed genotypes at 627 microsatellite loci in 1,048 worldwide individuals from the HGDP-CEPH cell line panel together with the DNA sequences of these microsatellites in the human RefSeq database. Results Calibrating PCR fragment lengths in individual genotypes by using the RefSeq sequence enabled us to infer repeat number in the HGDP-CEPH dataset and to calculate the mean number of repeats (as opposed to the mean PCR fragment length, under the assumption that differences in PCR fragment length reflect differences in the numbers of repeats in the embedded repeat sequences. We find the mean and maximum numbers of repeats across individuals to be positively correlated with heterozygosity. The size and composition of the repeat unit of a microsatellite are also important factors in predicting heterozygosity, with tetra-nucleotide repeat units high in G/C content leading to higher heterozygosity. Finally, we find that microsatellites containing more separate sets of repeated motifs generally have higher heterozygosity. Conclusions These results suggest that sequence properties of microsatellites have a significant impact in determining the features of human microsatellite variability.

  13. Mapping and Sequencing the Human Genome

    Science.gov (United States)

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  14. Alu-Alu Recombination Underlying the First Large Genomic Deletion in GlcNAc-Phosphotransferase Alpha/Beta (GNPTAB) Gene in a MLII Alpha/Beta Patient

    DEFF Research Database (Denmark)

    Coutinho, F; da Silva Santos, L; Lacerda, L

    2012-01-01

    to the identification of a 21 bp repetitive motif in introns 18 and 19. Further analysis revealed that both the 5' and 3' breakpoints were located within highly homologous Alu elements (Alu-Sz in intron 18 and Alu-Sq2, in intron 19), suggesting that this deletion has probably resulted from Alu-Alu unequal homologous......), and a third in which exon 19 was substituted by a pseudoexon inclusion consisting of a 62 bp fragment from intron 18 (p.Arg1145Serfs*16). Interestingly, this 62 bp fragment corresponds to the Alu-Sz element integrated in intron 18.This represents the first description of a large deletion identified...

  15. The DNA sequence, annotation and analysis of human chromosome 3

    DEFF Research Database (Denmark)

    Muzny, Donna M; Scherer, Steven E; Kaul, Rajinder

    2006-01-01

    After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chr...

  16. Exome sequencing of a multigenerational human pedigree.

    Directory of Open Access Journals (Sweden)

    Dale J Hedges

    Full Text Available Over the next few years, the efficient use of next-generation sequencing (NGS in human genetics research will depend heavily upon the effective mechanisms for the selective enrichment of genomic regions of interest. Recently, comprehensive exome capture arrays have become available for targeting approximately 33 Mb or approximately 180,000 coding exons across the human genome. Selective genomic enrichment of the human exome offers an attractive option for new experimental designs aiming to quickly identify potential disease-associated genetic variants, especially in family-based studies. We have evaluated a 2.1 M feature human exome capture array on eight individuals from a three-generation family pedigree. We were able to cover up to 98% of the targeted bases at a long-read sequence read depth of > or = 3, 86% at a read depth of > or = 10, and over 50% of all targets were covered with > or = 20 reads. We identified up to 14,284 SNPs and small indels per individual exome, with up to 1,679 of these representing putative novel polymorphisms. Applying the conservative genotype calling approach HCDiff, the average rate of detection of a variant allele based on Illumina 1 M BeadChips genotypes was 95.2% at > or = 10x sequence. Further, we propose an advantageous genotype calling strategy for low covered targets that empirically determines cut-off thresholds at a given coverage depth based on existing genotype data. Application of this method was able to detect >99% of SNPs covered > or = 8x. Our results offer guidance for "real-world" applications in human genetics and provide further evidence that microarray-based exome capture is an efficient and reliable method to enrich for chromosomal regions of interest in next-generation sequencing experiments.

  17. Exome sequencing of a multigenerational human pedigree.

    Science.gov (United States)

    Hedges, Dale J; Hedges, Dale; Burges, Dan; Powell, Eric; Almonte, Cherylyn; Huang, Jia; Young, Stuart; Boese, Benjamin; Schmidt, Mike; Pericak-Vance, Margaret A; Martin, Eden; Zhang, Xinmin; Harkins, Timothy T; Züchner, Stephan

    2009-12-14

    Over the next few years, the efficient use of next-generation sequencing (NGS) in human genetics research will depend heavily upon the effective mechanisms for the selective enrichment of genomic regions of interest. Recently, comprehensive exome capture arrays have become available for targeting approximately 33 Mb or approximately 180,000 coding exons across the human genome. Selective genomic enrichment of the human exome offers an attractive option for new experimental designs aiming to quickly identify potential disease-associated genetic variants, especially in family-based studies. We have evaluated a 2.1 M feature human exome capture array on eight individuals from a three-generation family pedigree. We were able to cover up to 98% of the targeted bases at a long-read sequence read depth of > or = 3, 86% at a read depth of > or = 10, and over 50% of all targets were covered with > or = 20 reads. We identified up to 14,284 SNPs and small indels per individual exome, with up to 1,679 of these representing putative novel polymorphisms. Applying the conservative genotype calling approach HCDiff, the average rate of detection of a variant allele based on Illumina 1 M BeadChips genotypes was 95.2% at > or = 10x sequence. Further, we propose an advantageous genotype calling strategy for low covered targets that empirically determines cut-off thresholds at a given coverage depth based on existing genotype data. Application of this method was able to detect >99% of SNPs covered > or = 8x. Our results offer guidance for "real-world" applications in human genetics and provide further evidence that microarray-based exome capture is an efficient and reliable method to enrich for chromosomal regions of interest in next-generation sequencing experiments.

  18. Genetic variation among world populations: inferences from 100 Alu insertion polymorphisms.

    Science.gov (United States)

    Watkins, W Scott; Rogers, Alan R; Ostler, Christopher T; Wooding, Steve; Bamshad, Michael J; Brassington, Anna-Marie E; Carroll, Marion L; Nguyen, Son V; Walker, Jerilyn A; Prasad, B V Ravi; Reddy, P Govinda; Das, Pradipta K; Batzer, Mark A; Jorde, Lynn B

    2003-07-01

    We examine the distribution and structure of human genetic diversity for 710 individuals representing 31 populations from Africa, East Asia, Europe, and India using 100 Alu insertion polymorphisms from all 22 autosomes. Alu diversity is highest in Africans (0.349) and lowest in Europeans (0.297). Alu insertion frequency is lowest in Africans (0.463) and higher in Indians (0.544), E. Asians (0.557), and Europeans (0.559). Large genetic distances are observed among African populations and between African and non-African populations. The root of a neighbor-joining network is located closest to the African populations. These findings are consistent with an African origin of modern humans and with a bottleneck effect in the human populations that left Africa to colonize the rest of the world. Genetic distances among all pairs of populations show a significant product-moment correlation with geographic distances (r = 0.69, P distance estimates. These analyses also demonstrate that markers with higher F(ST) values have greater resolving power and produce more consistent genetic distance estimates.

  19. Polymorphic Alu insertions among Mayan populations.

    Science.gov (United States)

    Herrera, R J; Rojas, D P; Terreros, M C

    2007-01-01

    The Mayan homeland within Mesoamerica spans five countries: Belize, El Salvador, Guatemala, Honduras and Mexico. There are indications that the people we call the Maya migrated from the north to the highlands of Guatemala as early as 4000 B.C. Their existence was village-based and agricultural. The culture of these Preclassic Mayans owes much to the earlier Olmec civilization, which flourished in the southern portion of North America. In this study, four different Mayan groups were examined to assess their genetic variability. Ten polymorphic Alu insertion (PAI) loci were employed to ascertain the genetic affinities among these Mayan groups. North American, African, European and Asian populations were also examined as reference populations. Our results suggest that the Mayan groups examined in this study are not genetically homogeneous.

  20. [Mapping and human genome sequence program].

    Science.gov (United States)

    Weissenbach, J

    1997-03-01

    Until recently, human genome programs focused primarily on establishing maps that would provide signposts to researchers seeking to identify genes responsible for inherited diseases, as well as a basis for genome sequencing studies. Preestablished gene mapping goals have been reached. The over 7,000 microsatellite markers identified to date provide a map of sufficient density to allow localization of the gene of a monogenic disease with a precision of 1 to 2 million base pairs. The physical map, based on systematically arranged overlapping sets of artificial yeast chromosomes (YACs), has also made considerable headway during the last few years. The most recently published map covers more than 90% of the genome. However, currently available physical maps cannot be used for sequencing studies because multiple rearrangements occur in YACs. The recently developed sets of radioinduced hybrids are extremely useful for incorporating genes into existing maps. A network of American and European laboratories has successfully used these radioinduced hybrids to map 15,000 gene tags from large-scale cDNA library sequencing programs. There are increasingly pressing reasons for initiating large scale human genome sequencing studies.

  1. Retrieval of human DNA from rodent-human genomic libraries by a recombination process.

    Science.gov (United States)

    Neve, R L; Bruns, G A; Dryja, T P; Kurnit, D M

    1983-09-01

    Human Alu repeat ("BLUR") sequences have been cloned into the mini-plasmid vector piVX. The resulting piBLUR clones have been used to rescue selectively, by recombination, bacteriophage carrying human DNA sequences from genomic libraries constructed using DNA from rodent-human somatic cell hybrids. piBLUR clones are able to retrieve human clones from such libraries because at least one Alu family repeat is present on most 15 to 20 kb fragments of human DNA and because of the relative species-specificity of the sequences comprising the Alu family. The rapid, selective plaque purification achieved results in the construction of a collection of recombinant phage carrying diverse human DNA inserts from a specific subset of the human karyotype. Subfragments of two recombinants rescued from a mouse-human somatic cell hybrid containing human chromosomes X, 10, 13, and 22 were mapped to human chromosomes X and 13, respectively, demonstrating the utility of this protocol for the isolation of human chromosome-specific DNA sequences from appropriate somatic cell hybrids.

  2. SINE Retrotransposition: Evaluation of Alu Activity and Recovery of De Novo Inserts.

    Science.gov (United States)

    Ade, Catherine; Roy-Engel, Astrid M

    2016-01-01

    Mobile element activity is of great interest due to its impact on genomes. However, the types of mobile elements that inhabit any given genome are remarkably varied. Among the different varieties of mobile elements, the Short Interspersed Elements (SINEs) populate many genomes, including many mammalian species. Although SINEs are parasites of Long Interspersed Elements (LINEs), SINEs have been highly successful in both the primate and rodent genomes. When comparing copy numbers in mammals, SINEs have been vastly more successful than other nonautonomous elements, such as the retropseudogenes and SVA. Interestingly, in the human genome the copy number of Alu (a primate SINE) outnumbers LINE-1 (L1) copies 2 to 1. Estimates suggest that the retrotransposition rate for Alu is tenfold higher than LINE-1 with about 1 insert in every twenty births. Furthermore, Alu-induced mutagenesis is responsible for the majority of the documented instances of human retroelement insertion-induced disease. However, little is known on what contributes to these observed differences between SINEs and LINEs. The development of an assay to monitor SINE retrotransposition in culture has become an important tool for the elucidation of some of these differences. In this chapter, we present details of the SINE retrotransposition assay and the recovery of de novo inserts. We also focus on the nuances that are unique to the SINE assay.

  3. Sequence determinants in human polyadenylation site selection

    Directory of Open Access Journals (Sweden)

    Gautheret Daniel

    2003-02-01

    Full Text Available Abstract Background Differential polyadenylation is a widespread mechanism in higher eukaryotes producing mRNAs with different 3' ends in different contexts. This involves several alternative polyadenylation sites in the 3' UTR, each with its specific strength. Here, we analyze the vicinity of human polyadenylation signals in search of patterns that would help discriminate strong and weak polyadenylation sites, or true sites from randomly occurring signals. Results We used human genomic sequences to retrieve the region downstream of polyadenylation signals, usually absent from cDNA or mRNA databases. Analyzing 4956 EST-validated polyadenylation sites and their -300/+300 nt flanking regions, we clearly visualized the upstream (USE and downstream (DSE sequence elements, both characterized by U-rich (not GU-rich segments. The presence of a USE and a DSE is the main feature distinguishing true polyadenylation sites from randomly occurring A(A/UUAAA hexamers. While USEs are indifferently associated with strong and weak poly(A sites, DSEs are more conspicuous near strong poly(A sites. We then used the region encompassing the hexamer and DSE as a training set for poly(A site identification by the ERPIN program and achieved a prediction specificity of 69 to 85% for a sensitivity of 56%. Conclusion The availability of complete genomes and large EST sequence databases now permit large-scale observation of polyadenylation sites. Both U-rich sequences flanking both sides of poly(A signals contribute to the definition of "true" sites. However, the downstream U-rich sequences may also play an enhancing role. Based on this information, poly(A site prediction accuracy was moderately but consistently improved compared to the best previously available algorithm.

  4. DESIGN OF 16-BIT LOW POWER ALU - DBGPU

    Directory of Open Access Journals (Sweden)

    Dhanabal R

    2013-06-01

    Full Text Available Arithmetic and Logic Unit (ALU is one of the common and the most crucial components of an embedded system. Power consumption is a major design issue in the case of embedded systems. Usually ALU’s consists of a number of functional units for different arithmetic and logic operations which are realised using combinational circuits. Each of the functional unit performs a specific arithmetic or logic operation. In this paper the main concern is given for reducing the power of the adder and multiplier modules which are important functional units of ALU thereby reducing the overall power consumption without compromising the speed of the processor. The ALU circuit ensures the execution of either arithmetic or logic operation only at a time so that only one set of circuits is active at a time thus ensuring low power consumption. The entire ALU circuit isrealised using Verilog HDL and power analysis is obtained through same.

  5. Sequence variability of a human pseudogene.

    Science.gov (United States)

    Martínez-Arias, R; Calafell, F; Mateu, E; Comas, D; Andrés, A; Bertranpetit, J

    2001-06-01

    We have obtained haplotypes from the autosomal glucocerebrosidase pseudogene (psGBA) for 100 human chromosomes from worldwide populations, as well as for four chimpanzee and four gorilla chromosomes. In humans, in a 5420-nucleotide stretch analyzed, variation comprises 17 substitutions, a 3-bp deletion, and a length polymorphism at a polyadenine tract. The substitution rate on the pseudogene (1.23 +/- 0.22 x 10(-9) per nucleotide and year) is within the range of previous estimates considering phylogenetic estimations. Recombination within the pseudogene was recognized, although the low variability of this locus prevented an accurate measure of recombination rates. At least 13% of the psGBA sequence could be attributed to gene conversion from the contiguous GBA gene, whereas the reciprocal event has been shown to lead to Gaucher disease. Human psGBA sequences showed a recent coalescence time (approximately 200,000 yr ago), and the most ancestral haplotype was found only in Africans; both observations are compatible with the replacement hypothesis of human origins. In a deeper timeframe, phylogenetic analysis showed that the duplication event that created psGBA could be dated at approximately 27 million years ago, in agreement with previous estimates.

  6. Elastic sequence correlation for human action analysis.

    Science.gov (United States)

    Wang, Li; Cheng, Li; Wang, Liang

    2011-06-01

    This paper addresses the problem of automatically analyzing and understanding human actions from video footage. An "action correlation" framework, elastic sequence correlation (ESC), is proposed to identify action subsequences from a database of (possibly long) video sequences that are similar to a given query video action clip. In particular, we show that two well-known algorithms, namely approximate pattern matching in computer and information sciences and dynamic time warping (DTW) method in signal processing, are special cases of our ESC framework. The proposed framework is applied to two important real-world applications: action pattern retrieval, as well as action segmentation and recognition, where, on average, its run time speed (in matlab) is about 3.3 frames per second. In addition, comparing with the state-of-the-art algorithms on a number of challenging data sets, our approach is demonstrated to perform competitively.

  7. The characterization of twenty sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Kimberly Pelak

    2010-09-01

    Full Text Available We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

  8. Extracellular superoxide dismutase (SOD3): Tissue-specific expression, genomic characterization, and computer-assisted sequence analysis of the human EC SOD gene

    Energy Technology Data Exchange (ETDEWEB)

    Folz, R.J.; Crapo, J.D. [Duke Univ. Medical Center, Durham, NC (United States)

    1994-07-01

    The authors have isolated and characterized over 10,000 bp of the human EC SOD gene (SOD3 or EC 1.15.1.1) and its 5{prime}- and 3{prime}-flanking regions. Human genomic Southern blot analysis supports the existence of a single gene, without evidence for pseudogenes. The human EC SOD gene spans approximately 5900 bp. The gene can be divided into 3 exons and 2 introns. The 720-bp coding region is uninterrupted and located within exon 3. The 560 bp 5{prime} to the transcription start site were sequenced. No obvious TATA box was identified. A variety of conserved cis elements were identified by database searching. Exon 3 is surrounded by an Alu-J repetitive element in reverse orientation at the 5{prime} and by an Alu-Sx repetitive element in the 3{prime}-flanking DNA. The relative levels of EC SOD tissue-specific expression were determined by RNA gel blot analysis. Adult heart, placenta, pancreas, and lung had the most expression, followed by kidney, skeletal muscle, and liver. Little EC SOD message was found in the brain. A second unique mRNA, approximately 4.2 kb in length, was highly expressed in skeletal muscle. When tissue enzyme activity is compared to relative mRNA levels, there is a marked disparity in the brain, pancreas, and lung, suggesting that these tissues have enhanced affinity for circulating EC SOD or translate the EC SOD message more efficiently than other tissues. These results indicate that the EC SOD gene contains unique transcriptional regulatory elements and that its expression may be regulated at the post-transcriptional or post-translational level. The characterization of the human EC SOD gene should now allow the development of further insights into its biology and provide the basis for studies of its role in human heritable disorders. 68 refs., 5 figs., 1 tab.

  9. Association of AluYb8 insertion/deletion polymorphism in the MUTYH gene with mtDNA maintain in the type 2 diabetes mellitus patients.

    Science.gov (United States)

    Guo, Wenwen; Zheng, Bixia; Guo, Dong; Cai, Zhenming; Wang, Yaping

    2015-07-05

    A common AluYb8-element insertion/deletion polymorphism of the MUTYH gene (AluYb8MUTYH) is a novel genetic risk factor for type 2 diabetes mellitus (T2DM). In the present study, mtDNA sequencing analysis indicated that the mtDNA sequence heteroplasmy was not associated with AluYb8MUTYH polymorphism. To better understand the genetic risk for T2DM, we investigated the association of this polymorphism with mtDNA content, mtDNA breakage and mtDNA transcription in the leukocytes of T2DM patients. The mtDNA content and unbroken mtDNA were significantly increased in the mutant patients than in the wild-type patients (P <0.05, respectively). However, no association between mtDNA transcription and AluYb8MUTYH variant was observed. The results suggested that the AluYb8MUTYH variant was associated with an altered mtDNA maintain in T2DM patients. The high level of mtDNA content observed in the mutant patients may have resulted from inefficient base excision repair of mitochondrial MUTYH and a compensatory mechanism that is triggered by elevated oxidative stress.

  10. Large-scale cloning of human chromosome 2-specific yeast artificial chromosomes (YACs) using an interspersed repetitive sequences (IRS)-PCR approach

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Rezonzew, R. [McGill Centre for the Study of Host Resistance, Montreal, Quebec (Canada)]|[McGill Univ., Montreal, Quebec (Canada); Stanton, V.P. Jr. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-03-20

    We report here an efficient approach to the establishment of extended YAC contigs on human chromosome 2 by using an interspersed repetitive sequences (IRS)-PCR-based screening strategy for YAC DNA pools. Genomic DNA was extracted from 1152 YAC pools comprised of 55,296 YACs mostly derived from the CEPH Mark I library. Alu-element-mediated PCR was performed for each pool, and amplification products were spotted on hybridization membranes (IRS filters). IRS probes for the screening of the IRS filters were obtained by Alu-element-mediated PCR. Of 708 distinct probes obtained from chromosome 2-specific somatic cell hybrids, 85% were successfully used for library screening. Similarly, 80% of 80 YAC walking probes were successfully used for library screening. Each probe detected an average of 6.6 YACs, which is in good agreement with the 7- to 7.5-fold genome coverage provided by the library. In a preliminary analysis, we have identified 188 YAC groups that are the basis for building contigs for chromosome 2. The coverage of the telomeric half of chromosome 2q was considered to be good since 31 of 34 microsatellites and 22 of 23 expressed sequence tags that were chosen from chromosome region 2q13-q37 were contained in a chromosome 2 YAC sublibrary generated by our experiments. We have identified a minimum of 1610 distinct chromosome 2-specific YACs, which will be a valuable asset for the physical mapping of the second largest human chromosome. 81 refs., 8 figs., 3 tabs.

  11. End Sequencing and Finger Printing of Human & Mouse BAC Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, C

    2005-09-27

    This project provided for continued end sequencing of existing and new BAC libraries constructed to support human sequencing as well as to initiate BAC end sequencing from the mouse BAC libraries constructed to support mouse sequencing. The clones, the sequences, and the fingerprints are now an available resource for the community at large. Research and development of new metaodologies for BAC end sequencing have reduced costs and increase throughput.

  12. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  13. ALU Using Area Optimized Vedic Multiplier

    Directory of Open Access Journals (Sweden)

    Anshul Khare

    2014-07-01

    Full Text Available —The load on general processor is increasing. For Fast Operations it is an extreme importance in Arithmetic Unit. The performance of Arithmetic Unit depends greatly on it multipliers. So, researchers are continuous searching for new approaches and hardware to implement arithmetic operation in huge efficient way in the terms of speed and area. Vedic Mathematics is the old system of mathematics which has a different technique of calculations based on total 16 Sutras. Proposed work has discussion of the quality of Urdhva Triyakbhyam Vedic approach for multiplication which uses different way than actual process of multiplication itself. It allows parallel generation of elements of products also eliminates undesired multiplication steps with zeros and mapped to higher level of bit using Karatsuba technique with processors, the compatibility to various data types. It is been observed that lot of delay is required by the conventional adders which are needed to have the partial products so in the work it is further optimized the Vedic multiplier type Urdhva Triyakbhyam by replacing the traditional adder with Carry save Adder to have more Delay Optimization. The proposed work shows improvement of speed as compare with the traditional designs. After the proposal discussion of the Vedic multiplier in the paper, It is been used for the implementation of Arithmetic unit using proposed efficient Vedic Multiplier it is not only useful for the improve efficiency the arithmetic module of ALU but also it is useful in the area of digital signal processing. The RTL entry of proposed Arithmetic unit done in VHDL it is synthesized and simulated with Xilinx ISE EDA tool. At the last the proposed Arithmetic Unit is validated on a FPGA device Vertex-IV.

  14. Characterization of the relationship between APOBEC3B deletion and ACE Alu insertion.

    Directory of Open Access Journals (Sweden)

    Kang Wang

    Full Text Available The insertion/deletion (I/D polymorphism of the angiotensin converting enzyme (ACE, commonly associated with many diseases, is believed to have affected human adaptation to environmental changes during the out-of-Africa expansion. APOBEC3B (A3B, a member of the cytidine deaminase family APOBEC3s, also exhibits a variable gene insertion/deletion polymorphism across world populations. Using data available from published reports, we examined the global geographic distribution of ACE and A3B genotypes. In tracking the modern human dispersal routes of these two genes, we found that the variation trends of the two I/D polymorphisms were directly correlated. We observed that the frequencies of ACE insertion and A3B deletion rose in parallel along the expansion route. To investigate the presence of a correlation between the two polymorphisms and the effect of their interaction on human health, we analyzed 1199 unrelated Chinese adults to determine their genotypes and other important clinical characteristics. We discovered a significant difference between the ACE genotype/allele distribution in the A3B DD and A3B II/ID groups (P = 0.045 and 0.015, respectively, indicating that the ACE Alu I allele frequency in the former group was higher than in the latter group. No specific clinical phenotype could be associated with the interaction between the ACE and A3B I/D polymorphisms. A3B has been identified as a powerful inhibitor of Alu retrotransposition, and primate A3 genes have undergone strong positive selection (and expansion for restricting the mobility of endogenous retrotransposons during evolution. Based on these findings, we suggest that the ACE Alu insertion was enabled (facilitated by the A3B deletion and that functional loss of A3B provided an opportunity for enhanced human adaptability and survival in response to the environmental and climate challenges arising during the migration from Africa.

  15. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    DEFF Research Database (Denmark)

    de Souza, S J; Camargo, A A; Briones, M R;

    2000-01-01

    by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48......Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central...... coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1, 181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes...

  16. Initial sequencing and analysis of the human genome.

    Science.gov (United States)

    Lander, E S; Linton, L M; Birren, B; Nusbaum, C; Zody, M C; Baldwin, J; Devon, K; Dewar, K; Doyle, M; FitzHugh, W; Funke, R; Gage, D; Harris, K; Heaford, A; Howland, J; Kann, L; Lehoczky, J; LeVine, R; McEwan, P; McKernan, K; Meldrim, J; Mesirov, J P; Miranda, C; Morris, W; Naylor, J; Raymond, C; Rosetti, M; Santos, R; Sheridan, A; Sougnez, C; Stange-Thomann, Y; Stojanovic, N; Subramanian, A; Wyman, D; Rogers, J; Sulston, J; Ainscough, R; Beck, S; Bentley, D; Burton, J; Clee, C; Carter, N; Coulson, A; Deadman, R; Deloukas, P; Dunham, A; Dunham, I; Durbin, R; French, L; Grafham, D; Gregory, S; Hubbard, T; Humphray, S; Hunt, A; Jones, M; Lloyd, C; McMurray, A; Matthews, L; Mercer, S; Milne, S; Mullikin, J C; Mungall, A; Plumb, R; Ross, M; Shownkeen, R; Sims, S; Waterston, R H; Wilson, R K; Hillier, L W; McPherson, J D; Marra, M A; Mardis, E R; Fulton, L A; Chinwalla, A T; Pepin, K H; Gish, W R; Chissoe, S L; Wendl, M C; Delehaunty, K D; Miner, T L; Delehaunty, A; Kramer, J B; Cook, L L; Fulton, R S; Johnson, D L; Minx, P J; Clifton, S W; Hawkins, T; Branscomb, E; Predki, P; Richardson, P; Wenning, S; Slezak, T; Doggett, N; Cheng, J F; Olsen, A; Lucas, S; Elkin, C; Uberbacher, E; Frazier, M; Gibbs, R A; Muzny, D M; Scherer, S E; Bouck, J B; Sodergren, E J; Worley, K C; Rives, C M; Gorrell, J H; Metzker, M L; Naylor, S L; Kucherlapati, R S; Nelson, D L; Weinstock, G M; Sakaki, Y; Fujiyama, A; Hattori, M; Yada, T; Toyoda, A; Itoh, T; Kawagoe, C; Watanabe, H; Totoki, Y; Taylor, T; Weissenbach, J; Heilig, R; Saurin, W; Artiguenave, F; Brottier, P; Bruls, T; Pelletier, E; Robert, C; Wincker, P; Smith, D R; Doucette-Stamm, L; Rubenfield, M; Weinstock, K; Lee, H M; Dubois, J; Rosenthal, A; Platzer, M; Nyakatura, G; Taudien, S; Rump, A; Yang, H; Yu, J; Wang, J; Huang, G; Gu, J; Hood, L; Rowen, L; Madan, A; Qin, S; Davis, R W; Federspiel, N A; Abola, A P; Proctor, M J; Myers, R M; Schmutz, J; Dickson, M; Grimwood, J; Cox, D R; Olson, M V; Kaul, R; Raymond, C; Shimizu, N; Kawasaki, K; Minoshima, S; Evans, G A; Athanasiou, M; Schultz, R; Roe, B A; Chen, F; Pan, H; Ramser, J; Lehrach, H; Reinhardt, R; McCombie, W R; de la Bastide, M; Dedhia, N; Blöcker, H; Hornischer, K; Nordsiek, G; Agarwala, R; Aravind, L; Bailey, J A; Bateman, A; Batzoglou, S; Birney, E; Bork, P; Brown, D G; Burge, C B; Cerutti, L; Chen, H C; Church, D; Clamp, M; Copley, R R; Doerks, T; Eddy, S R; Eichler, E E; Furey, T S; Galagan, J; Gilbert, J G; Harmon, C; Hayashizaki, Y; Haussler, D; Hermjakob, H; Hokamp, K; Jang, W; Johnson, L S; Jones, T A; Kasif, S; Kaspryzk, A; Kennedy, S; Kent, W J; Kitts, P; Koonin, E V; Korf, I; Kulp, D; Lancet, D; Lowe, T M; McLysaght, A; Mikkelsen, T; Moran, J V; Mulder, N; Pollara, V J; Ponting, C P; Schuler, G; Schultz, J; Slater, G; Smit, A F; Stupka, E; Szustakowki, J; Thierry-Mieg, D; Thierry-Mieg, J; Wagner, L; Wallis, J; Wheeler, R; Williams, A; Wolf, Y I; Wolfe, K H; Yang, S P; Yeh, R F; Collins, F; Guyer, M S; Peterson, J; Felsenfeld, A; Wetterstrand, K A; Patrinos, A; Morgan, M J; de Jong, P; Catanese, J J; Osoegawa, K; Shizuya, H; Choi, S; Chen, Y J; Szustakowki, J

    2001-02-15

    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

  17. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia.

    Science.gov (United States)

    Pal, Arnab; Srivastava, Tapasya; Sharma, Manish K; Mehndiratta, Mohit; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2010-11-01

    Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O₂ for 6 weeks and compared with cells cultured in 21% O₂ for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells.

  18. HMGA1a recognition candidate DNA sequences in humans.

    Directory of Open Access Journals (Sweden)

    Takayuki Manabe

    Full Text Available High mobility group protein A1a (HMGA1a acts as an architectural transcription factor and influences a diverse array of normal biological processes. It binds AT-rich sequences, and previous reports have demonstrated HMGA1a binding to the authentic promoters of various genes. However, the precise sequences that HMGA1a binds to remain to be clarified. Therefore, in this study, we searched for the sequences with the highest affinity for human HMGA1a using an existing SELEX method, and then compared the identified sequences with known human promoter sequences. Based on our results, we propose the sequences "-(G/A-G-(A/T-(A/T-A-T-T-T-" as HMGA1a-binding candidate sequences. Furthermore, these candidate sequences bound native human HMGA1a from SK-N-SH cells. When candidate sequences were analyzed by performing FASTAs against all known human promoter sequences, 500-900 sequences were hit by each one. Some of the extracted genes have already been proven or suggested as HMGA1a-binding promoters. The candidate sequences presented here represent important information for research into the various roles of HMGA1a, including cell differentiation, death, growth, proliferation, and the pathogenesis of cancer.

  19. Genetic change in the polynesian population of Easter Island: evidence from Alu insertion polymorphisms.

    Science.gov (United States)

    González-Pérez, E; Esteban, E; Via, M; García-Moro, C; Hernández, M; Moral, P

    2006-11-01

    The origin of Pacific islanders is still an open issue in human population genetics. To address this topic we analyzed a set of 18 Alu insertion polymorphisms in a total of 176 chromosomes from native Easter Island inhabitants (Rapanui). Available genealogical records allowed us to subdivide the total island sample into two groups, representative of the native population living in the island around 1900, and another formed by individuals with some ancestors of non-Rapanui origin. Significant genetic differentiation was found between these groups, allowing us to make some biodemographic and historical inferences about the origin and evolution of this geographically isolated island population. Our data are consistent with equivalent and recent contributions from Amerindian and European migrants to the 1900s Rapanui population, with an accelerated increase in the European gene flow during the 20(th) century, especially since the 1960s. Comparative analysis of our results with other available Alu variation data on neighbouring populations supports the "Voyaging Corridor" model of Polynesian human settlement, which indicates that pre-Polynesians are mainly derived from Southeast Asian and Wallacean populations rather than from Taiwan or the Philippines. This study underlines the importance of sampling and taking into account historical information in genetic studies to unravel the recent evolution of human populations.

  20. Sequencing and analysis of an Irish human genome.

    LENUS (Irish Health Repository)

    Tong, Pin

    2010-01-01

    Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence.

  1. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J;

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host-...

  2. Identification of transcribed sequences in the human genome. Final report, September 15, 1991--September 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, K.

    1992-12-01

    The workshop was held at the National Institutes of Mental Health, Bethesda, Maryland, on October 4 and 5, 1991. Twenty-four investigators attended from England, Germany and the United States. The topics discussed included: Genome sequence analysis using computer assisted detection of open reading frames, splice sites and hexamer patterns, direct exon identification using trapping of internal and 3` exons, and a recombination based system, cDNA library construction and screening, including the use of normalization and subtraction procedures, Alu and splice donor site PCR from hybrid cell lines, and microdissection clones as probes, use of labeled CDNAS as probes to screen lambda and cosmid libraries, and sequencing of random cDNAs.

  3. [The effects of SV40 PolyA sequence and its AATAAA signal on upstream GFP gene expression and transcription termination].

    Science.gov (United States)

    Li, Shu-Ping; Feng, Jing-Jing; Wang, Hong-Gang; Wang, Xiu-Fang; Lv, Zhan-Jun

    2012-01-01

    SV40 PolyA (Simian virus 40 PolyA, also called PolyA) sequence is DNA sequence (240 bp) that possesses the activity of transcription termination and can add PolyA tail to mRNA. PolyA contains AATAAA hexanucleotide polyadenylation signal. Fourteen copies of Alu in sense orientation (Alu14) were inserted downstream of GFP in pEGFP-C1 to construct pAlu14 plasmid, and then HeLa cells were transiently transfected with pAlu14. Northern blot and fluorescence microscope were used to observe GFP RNA and protein expressions. Our results found that Alu tandem sequence inhibited remarkably GFP gene expression, but produced higher-molecular-mass GFP fusion RNA. PolyA and its sequence that was deleted AATAAA signal in sense or antisense orientation were inserted between GFP and Alu tandem sequence in pAlu14. The results showed that all the inserted PolyA sequences partly eliminated the inhibition induced by Alu14. PolyA sequences without AATAAA signal in sense or antisense orientation still induced transcription termination. Antisense PolyA (PolyAas) was divided into four fragments that all are 60 bp long and the middle two fragments were named 2F2R and 3F3R. 2F2R or 3F3R was inserted upstream of Alu tandem sequence in pAlu14. The molecular mass of GFP fusion RNA increased when the copy number of 2F2R increased. 2F2R can support transcription elongation when 2F2R is located upstream of other 2F2R. Nevertheless, 2F2R located upstream of Alu tandem sequence can induce transcription termination. Inserting one copy or 64 copies of 3F3R in upstream of Alu tandem sequence caused the production of lower-molecular-mass GFP RNA.

  4. Marketingový mix firmy ALU KOLA CB

    OpenAIRE

    URBAN, Karel

    2011-01-01

    This bachelor thesis is focused on a marketing mix practical application in my own company ALU KOLA CB. My company sells alloy wheels and tyres for personal cars. In a literary review are introduced and explained terms marketing, marketing mix and its parts - product, price, place and promotion. In a practical part of this thesis are these terms applied on my company. The end of this part contains results and improvement suggestions.

  5. Marketingový mix firmy ALU KOLA CB

    OpenAIRE

    Urban, Karel

    2011-01-01

    This bachelor thesis is focused on a marketing mix practical application in my own company ALU KOLA CB. My company sells alloy wheels and tyres for personal cars. In a literary review are introduced and explained terms marketing, marketing mix and its parts - product, price, place and promotion. In a practical part of this thesis are these terms applied on my company. The end of this part contains results and improvement suggestions.

  6. An Alu-Based Phylogeny of Lemurs (Infraorder: Lemuriformes)

    OpenAIRE

    2012-01-01

    LEMURS (INFRAORDER: Lemuriformes) are a radiation of strepsirrhine primates endemic to the island of Madagascar. As of 2012, 101 lemur species, divided among five families, have been described. Genetic and morphological evidence indicates all species are descended from a common ancestor that arrived in Madagascar ∼55-60 million years ago (mya). Phylogenetic relationships in this species-rich infraorder have been the subject of debate. Here we use Alu elements, a family of primate-specific Sho...

  7. Building the sequence map of the human pan-genome

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Zheng, Hancheng

    2010-01-01

    Here we integrate the de novo assembly of an Asian and an African genome with the NCBI reference human genome, as a step toward constructing the human pan-genome. We identified approximately 5 Mb of novel sequences not present in the reference genome in each of these assemblies. Most novel...... analysis of predicted genes indicated that the novel sequences contain potentially functional coding regions. We estimate that a complete human pan-genome would contain approximately 19-40 Mb of novel sequence not present in the extant reference genome. The extensive amount of novel sequence contributing...... to the genetic variation of the pan-genome indicates the importance of using complete genome sequencing and de novo assembly....

  8. Targeted sequencing of the human X chromosome exome.

    Science.gov (United States)

    Mondal, Kajari; Shetty, Amol Carl; Patel, Viren; Cutler, David J; Zwick, Michael E

    2011-10-01

    We used a RainDance Technologies (RDT) expanded content library to enrich the human X chromosome exome (2.5 Mb) from 26 male samples followed by Illumina sequencing. Our multiplex primer library covered 98.05% of the human X chromosome exome in a single tube with 11,845 different PCR amplicons. Illumina sequencing of 24 male samples showed coverage for 97% of the targeted sequences. Sequence from 2 HapMap samples confirmed missing data rates of 2-3% at sites successfully typed by the HapMap project, with an accuracy of at least ~99.5% as compared to reported HapMap genotypes. Our demonstration that a RDT expanded content library can efficiently enrich and enable the routine sequencing of the human X chromosome exome suggests a wide variety of potential research and clinical applications for this platform.

  9. Inhibition of LINE-1 and Alu retrotransposition by exosomes encapsidating APOBEC3G and APOBEC3F.

    Science.gov (United States)

    Khatua, Atanu K; Taylor, Harry E; Hildreth, James E K; Popik, Waldemar

    2010-04-25

    Human cytidine deaminases, including APOBEC3G (A3G) and A3F, are part of a cellular defense system against retroviruses and retroelements including non-LTR retrotransposons LINE-1 (L1) and Alu. Expression of cellular A3 proteins is sufficient for inhibition of L1 and Alu retrotransposition, but the effect of A3 proteins transferred in exosomes on retroelement mobilization is unknown. Here, we demonstrate for the first time that exosomes secreted by CD4(+)H9 T cells and mature monocyte-derived dendritic cells encapsidate A3G and A3F and inhibit L1 and Alu retrotransposition. A3G is the major contributor to the inhibitory activity of exosomes, however, the contribution of A3F in H9 exosomes cannot be excluded. Additionally, we show that exosomes encapsidate mRNAs coding for A3 proteins. A3G mRNA, and less so A3F, was enriched in exosomes secreted by H9 cells. Exosomal A3G mRNA was functional in vitro. Whether exosomes inhibit retrotransposons in vivo requires further investigation.

  10. Sequence and expression analysis of gaps in human chromosome 20

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Seemann, Stefan; Mang, Yuan;

    2012-01-01

    The finished human genome-assemblies comprise several hundred un-sequenced euchromatic gaps, which may be rich in long polypurine/polypyrimidine stretches. Human chromosome 20 (chr 20) currently has three unfinished gaps remaining on its q-arm. All three gaps are within gene-dense regions and....../or overlap disease-associated loci, including the DLGAP4 locus. In this study, we sequenced ~99% of all three unfinished gaps on human chr 20, determined their complete genomic sizes and assessed epigenetic profiles using a combination of Sanger sequencing, mate pair paired-end high-throughput sequencing...... and chromatin, methylation and expression analyses. We found histone 3 trimethylated at Lysine 27 to be distributed across all three gaps in immortalized B-lymphocytes. In one gap, five novel CpG islands were predominantly hypermethylated in genomic DNA from peripheral blood lymphocytes and human cerebellum...

  11. Design, Analysis, Implementation and Synthesis of 16 bit Reversible ALU by using Xilinx 12.2

    Directory of Open Access Journals (Sweden)

    S.Anusha

    2014-04-01

    Full Text Available In the modern world, Arithmetic Logic Unit (ALU is one of the most crucial components of any system and is used in many appliances like calculators, cell phones, and computers and so on. An arithmetic logic unit is a multi-functional circuit that conditionally performs one of several possible functions on two operands A and B depending on control inputs. This paper proposes the design of programmable reversible logic gate structures, targeted for the ALU implementation and their use in the realization of an efficient reversible ALU. Reversible or information-lossless circuits have applications in digital signal processing, communication, computer graphics and cryptography. This ALU consists of thirteen operations, 5 arithmetic, 4 logical operations and 4 shifting operations. All the modules are being designed using the basic reversible gates. Using reversible logic gates instead of traditional logic AND/OR gates, a reversible ALU whose function is the same as traditional ALU is constructed. Comparing with the number of input bits and the discarded bits of the traditional ALU, the reversible ALU significantly reduce the use and loss of information bits. The proposed reversible 16-bit ALU reduces the information bits use and loss by reusing the logic information bits logically and realizes the goal of lowering power consumption of logic circuits. Programmable reversible logic gates are realized in Verilog by using XILINX 12.2. Key words:

  12. Mutation of miRNA target sequences during human evolution

    DEFF Research Database (Denmark)

    Gardner, Paul P; Vinther, Jeppe

    2008-01-01

    It has long-been hypothesized that changes in non-protein-coding genes and the regulatory sequences controlling expression could undergo positive selection. Here we identify 402 putative microRNA (miRNA) target sequences that have been mutated specifically in the human lineage and show that genes...... containing such deletions are more highly expressed than their mouse orthologs. Our findings indicate that some miRNA target mutations are fixed by positive selection and might have been involved in the evolution of human-specific traits.......It has long-been hypothesized that changes in non-protein-coding genes and the regulatory sequences controlling expression could undergo positive selection. Here we identify 402 putative microRNA (miRNA) target sequences that have been mutated specifically in the human lineage and show that genes...

  13. Deep sequencing extends the diversity of human papillomaviruses in human skin.

    OpenAIRE

    Bzhalava, Davit; Mühr, Laila Sara Arroyo; Lagheden, Camilla; Ekström, Johanna; Forslund, Ola; Dillner, Joakim; Hultin, Emilie

    2014-01-01

    Most viruses in human skin are known to be human papillomaviruses (HPVs). Previous sequencing of skin samples has identified 273 different cutaneous HPV types, including 47 previously unknown types. In the present study, we wished to extend prior studies using deeper sequencing. This deeper sequencing without prior PCR of a pool of 142 whole genome amplified skin lesions identified 23 known HPV types, 3 novel putative HPV types and 4 non-HPV viruses. The complete sequence was obtained for one...

  14. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn

    2010-01-01

    , from faecal samples of 124 European individuals. The gene set, ,150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes......To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...

  15. The finished DNA sequence of human chromosome 12.

    Science.gov (United States)

    Scherer, Steven E; Muzny, Donna M; Buhay, Christian J; Chen, Rui; Cree, Andrew; Ding, Yan; Dugan-Rocha, Shannon; Gill, Rachel; Gunaratne, Preethi; Harris, R Alan; Hawes, Alicia C; Hernandez, Judith; Hodgson, Anne V; Hume, Jennifer; Jackson, Andrew; Khan, Ziad Mohid; Kovar-Smith, Christie; Lewis, Lora R; Lozado, Ryan J; Metzker, Michael L; Milosavljevic, Aleksandar; Miner, George R; Montgomery, Kate T; Morgan, Margaret B; Nazareth, Lynne V; Scott, Graham; Sodergren, Erica; Song, Xing-Zhi; Steffen, David; Lovering, Ruth C; Wheeler, David A; Worley, Kim C; Yuan, Yi; Zhang, Zhengdong; Adams, Charles Q; Ansari-Lari, M Ali; Ayele, Mulu; Brown, Mary J; Chen, Guan; Chen, Zhijian; Clerc-Blankenburg, Kerstin P; Davis, Clay; Delgado, Oliver; Dinh, Huyen H; Draper, Heather; Gonzalez-Garay, Manuel L; Havlak, Paul; Jackson, Laronda R; Jacob, Leni S; Kelly, Susan H; Li, Li; Li, Zhangwan; Liu, Jing; Liu, Wen; Lu, Jing; Maheshwari, Manjula; Nguyen, Bao-Viet; Okwuonu, Geoffrey O; Pasternak, Shiran; Perez, Lesette M; Plopper, Farah J H; Santibanez, Jireh; Shen, Hua; Tabor, Paul E; Verduzco, Daniel; Waldron, Lenee; Wang, Qiaoyan; Williams, Gabrielle A; Zhang, Jingkun; Zhou, Jianling; Allen, Carlana C; Amin, Anita G; Anyalebechi, Vivian; Bailey, Michael; Barbaria, Joseph A; Bimage, Kesha E; Bryant, Nathaniel P; Burch, Paula E; Burkett, Carrie E; Burrell, Kevin L; Calderon, Eliana; Cardenas, Veronica; Carter, Kelvin; Casias, Kristal; Cavazos, Iracema; Cavazos, Sandra R; Ceasar, Heather; Chacko, Joseph; Chan, Sheryl N; Chavez, Dean; Christopoulos, Constantine; Chu, Joseph; Cockrell, Raynard; Cox, Caroline D; Dang, Michelle; Dathorne, Stephanie R; David, Robert; Davis, Candi Mon'Et; Davy-Carroll, Latarsha; Deshazo, Denise R; Donlin, Jeremy E; D'Souza, Lisa; Eaves, Kristy A; Egan, Amy; Emery-Cohen, Alexandra J; Escotto, Michael; Flagg, Nicole; Forbes, Lisa D; Gabisi, Abdul M; Garza, Melissa; Hamilton, Cerissa; Henderson, Nicholas; Hernandez, Omar; Hines, Sandra; Hogues, Marilyn E; Huang, Mei; Idlebird, DeVincent G; Johnson, Rudy; Jolivet, Angela; Jones, Sally; Kagan, Ryan; King, Laquisha M; Leal, Belita; Lebow, Heather; Lee, Sandra; LeVan, Jaclyn M; Lewis, Lakeshia C; London, Pamela; Lorensuhewa, Lorna M; Loulseged, Hermela; Lovett, Demetria A; Lucier, Alice; Lucier, Raymond L; Ma, Jie; Madu, Renita C; Mapua, Patricia; Martindale, Ashley D; Martinez, Evangelina; Massey, Elizabeth; Mawhiney, Samantha; Meador, Michael G; Mendez, Sylvia; Mercado, Christian; Mercado, Iracema C; Merritt, Christina E; Miner, Zachary L; Minja, Emmanuel; Mitchell, Teresa; Mohabbat, Farida; Mohabbat, Khatera; Montgomery, Baize; Moore, Niki; Morris, Sidney; Munidasa, Mala; Ngo, Robin N; Nguyen, Ngoc B; Nickerson, Elizabeth; Nwaokelemeh, Ogechi O; Nwokenkwo, Stanley; Obregon, Melissa; Oguh, Maryann; Oragunye, Njideka; Oviedo, Rodolfo J; Parish, Bridgette J; Parker, David N; Parrish, Julia; Parks, Kenya L; Paul, Heidie A; Payton, Brett A; Perez, Agapito; Perrin, William; Pickens, Adam; Primus, Eltrick L; Pu, Ling-Ling; Puazo, Maria; Quiles, Miyo M; Quiroz, Juana B; Rabata, Dina; Reeves, Kacy; Ruiz, San Juana; Shao, Hongmei; Sisson, Ida; Sonaike, Titilola; Sorelle, Richard P; Sutton, Angelica E; Svatek, Amanda F; Svetz, Leah Anne; Tamerisa, Kavitha S; Taylor, Tineace R; Teague, Brian; Thomas, Nicole; Thorn, Rachel D; Trejos, Zulma Y; Trevino, Brenda K; Ukegbu, Ogechi N; Urban, Jeremy B; Vasquez, Lydia I; Vera, Virginia A; Villasana, Donna M; Wang, Ling; Ward-Moore, Stephanie; Warren, James T; Wei, Xuehong; White, Flower; Williamson, Angela L; Wleczyk, Regina; Wooden, Hailey S; Wooden, Steven H; Yen, Jennifer; Yoon, Lillienne; Yoon, Vivienne; Zorrilla, Sara E; Nelson, David; Kucherlapati, Raju; Weinstock, George; Gibbs, Richard A

    2006-03-16

    Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.

  16. Strategies for sequencing human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.R.

    1996-06-01

    This project funded for four years (02.92 to 01.96) was a renewal of a project funded for 2.5 years (07.89 to 01.92). This report covers the period 07.89 to 07.94. The original project was entitled {open_quotes}Correlation of physical and genetic maps of Human Chromosome 16{close_quotes}. The aim over this period was to construct a cytogenetic-based physical map of chromosome 16, to enable integration of its physical and genetic maps. This was achieved by collaboration and isolation of new markers until each bin on the physical map contained a polymorphic marker on the linkage map. A further aim was to integrate all mapping data for this chromosome and to achieve contig closure over band q24.

  17. Characterization of minisatellites in Arabidopsis thaliana with sequence similarity to the human minisatellite core sequence.

    Science.gov (United States)

    Tourmente, S; Deragon, J M; Lafleuriel, J; Tutois, S; Pélissier, T; Cuvillier, C; Espagnol, M C; Picard, G

    1994-08-25

    A strategy based on random PCR amplification was used to isolate new repetitive elements of Arabidopsis thaliana. One of the random PCR product analyzed by this approach contained a tandem repetitive minisatellite sequence composed of 33 bp repeated units. The genomic locus corresponding to this PCR product was isolated by screening a lambda genomic library. New related loci were also isolated from the genomic library by screening with a 14 mer oligonucleotide representing a region conserved among the different repeated units. Alignment of the consensus sequence for each minisatellite locus allowed the definition of an Arabidopsis thaliana core sequence that shows strong sequence similarities with the human core sequence and with the generalized recombination signal Chi of Escherichia coli. The minisatellites were tested for their ability to detect polymorphism, and their chromosomal position was established.

  18. Ancient Human Genome Sequence of an Extinct Palaeo-Eskimo

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Li, Yingrui; Lindgreen, Stinus;

    2010-01-01

    We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome, an...... for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit....

  19. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn;

    2010-01-01

    To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...... gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively....

  20. Triplex-forming oligonucleotide target sequences in the human genome

    OpenAIRE

    Goñi, J Ramon; de la Cruz, Xavier; Orozco, Modesto

    2004-01-01

    The existence of sequences in the human genome which can be a target for triplex formation, and accordingly are candidates for anti-gene therapies, has been studied by using bioinformatics tools. It was found that the population of triplex-forming oligonucleotide target sequences (TTS) is much more abundant than that expected from simple random models. The population of TTS is large in all the genome, without major differences between chromosomes. A wide analysis along annotated regions of th...

  1. Tandem repeats and G-rich sequences are enriched at human CNV breakpoints.

    Directory of Open Access Journals (Sweden)

    Promita Bose

    Full Text Available Chromosome breakage in germline and somatic genomes gives rise to copy number variation (CNV responsible for genomic disorders and tumorigenesis. DNA sequence is known to play an important role in breakage at chromosome fragile sites; however, the sequences susceptible to double-strand breaks (DSBs underlying CNV formation are largely unknown. Here we analyze 140 germline CNV breakpoints from 116 individuals to identify DNA sequences enriched at breakpoint loci compared to 2800 simulated control regions. We find that, overall, CNV breakpoints are enriched in tandem repeats and sequences predicted to form G-quadruplexes. G-rich repeats are overrepresented at terminal deletion breakpoints, which may be important for the addition of a new telomere. Interstitial deletions and duplication breakpoints are enriched in Alu repeats that in some cases mediate non-allelic homologous recombination (NAHR between the two sides of the rearrangement. CNV breakpoints are enriched in certain classes of repeats that may play a role in DNA secondary structure, DSB susceptibility and/or DNA replication errors.

  2. Chromosomal inversions between human and chimpanzee lineages caused by retrotransposons.

    Directory of Open Access Journals (Sweden)

    Jungnam Lee

    Full Text Available The long interspersed element-1 (LINE-1 or L1 and Alu elements are the most abundant mobile elements comprising 21% and 11% of the human genome, respectively. Since the divergence of human and chimpanzee lineages, these elements have vigorously created chromosomal rearrangements causing genomic difference between humans and chimpanzees by either increasing or decreasing the size of genome. Here, we report an exotic mechanism, retrotransposon recombination-mediated inversion (RRMI, that usually does not alter the amount of genomic material present. Through the comparison of the human and chimpanzee draft genome sequences, we identified 252 inversions whose respective inversion junctions can clearly be characterized. Our results suggest that L1 and Alu elements cause chromosomal inversions by either forming a secondary structure or providing a fragile site for double-strand breaks. The detailed analysis of the inversion breakpoints showed that L1 and Alu elements are responsible for at least 44% of the 252 inversion loci between human and chimpanzee lineages, including 49 RRMI loci. Among them, three RRMI loci inverted exonic regions in known genes, which implicates this mechanism in generating the genomic and phenotypic differences between human and chimpanzee lineages. This study is the first comprehensive analysis of mobile element bases inversion breakpoints between human and chimpanzee lineages, and highlights their role in primate genome evolution.

  3. The unstable CCTG repeat responsible for myotonic dystrophy type 2 originates from an AluSx element insertion into an early primate genome.

    Directory of Open Access Journals (Sweden)

    Tatsuaki Kurosaki

    Full Text Available Myotonic dystrophy type 2 (DM2 is a subtype of the myotonic dystrophies, caused by expansion of a tetranucleotide CCTG repeat in intron 1 of the zinc finger protein 9 (ZNF9 gene. The expansions are extremely unstable and variable, ranging from 75-11,000 CCTG repeats. This unprecedented repeat size and somatic heterogeneity make molecular diagnosis of DM2 difficult, and yield variable clinical phenotypes. To better understand the mutational origin and instability of the ZNF9 CCTG repeat, we analyzed the repeat configuration and flanking regions in 26 primate species. The 3'-end of an AluSx element, flanked by target site duplications (5'-ACTRCCAR-3'or 5'-ACTRCCARTTA-3', followed the CCTG repeat, suggesting that the repeat was originally derived from the Alu element insertion. In addition, our results revealed lineage-specific repetitive motifs: pyrimidine (CT-rich repeat motifs in New World monkeys, dinucleotide (TG repeat motifs in Old World monkeys and gibbons, and dinucleotide (TG and tetranucleotide (TCTG and/or CCTG repeat motifs in great apes and humans. Moreover, these di- and tetra-nucleotide repeat motifs arose from the poly (A tail of the AluSx element, and evolved into unstable CCTG repeats during primate evolution. Alu elements are known to be the source of microsatellite repeats responsible for two other repeat expansion disorders: Friedreich ataxia and spinocerebellar ataxia type 10. Taken together, these findings raise questions as to the mechanism(s by which Alu-mediated repeats developed into the large, extremely unstable expansions common to these three disorders.

  4. Combining two technologies for full genome sequencing of human.

    Science.gov (United States)

    Skryabin, K G; Prokhortchouk, E B; Mazur, A M; Boulygina, E S; Tsygankova, S V; Nedoluzhko, A V; Rastorguev, S M; Matveev, V B; Chekanov, N N; D A, Goranskaya; Teslyuk, A B; Gruzdeva, N M; Velikhov, V E; Zaridze, D G; Kovalchuk, M V

    2009-10-01

    At present, the new technologies of DNA sequencing are rapidly developing allowing quick and efficient characterisation of organisms at the level of the genome structure. In this study, the whole genome sequencing of a human (Russian man) was performed using two technologies currently present on the market - Sequencing by Oligonucleotide Ligation and Detection (SOLiD™) (Applied Biosystems) and sequencing technologies of molecular clusters using fluorescently labeled precursors (Illumina). The total number of generated data resulted in 108.3 billion base pairs (60.2 billion from Illumina technology and 48.1 billion from SOLiD technology). Statistics performed on reads generated by GAII and SOLiD showed that they covered 75% and 96% of the genome respectively. Short polymorphic regions were detected with comparable accuracy however, the absolute amount of them revealed by SOLiD was several times less than by GAII. Optimal algorithm for using the latest methods of sequencing was established for the analysis of individual human genomes. The study is the first Russian effort towards whole human genome sequencing.

  5. Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics.

    Science.gov (United States)

    Deutsch, Eric W; Sun, Zhi; Campbell, David S; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S; Moritz, Robert L

    2016-11-04

    The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances-a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ∼20,000 primary isoforms plus contaminants to a very large database that includes almost all nonredundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the

  6. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J; Han, C; Gordon, L A; Terry, A; Prabhakar, S; She, X; Xie, G; Hellsten, U; Chan, Y M; Altherr, M; Couronne, O; Aerts, A; Bajorek, E; Black, S; Blumer, H; Branscomb, E; Brown, N; Bruno, W J; Buckingham, J; Callen, D F; Campbell, C S; Campbell, M L; Campbell, E W; Caoile, C; Challacombe, J F; Chasteen, L A; Chertkov, O; Chi, H C; Christensen, M; Clark, L M; Cohn, J D; Denys, M; Detter, J C; Dickson, M; Dimitrijevic-Bussod, M; Escobar, J; Fawcett, J J; Flowers, D; Fotopulos, D; Glavina, T; Gomez, M; Gonzales, E; Goodstein, D; Goodwin, L A; Grady, D L; Grigoriev, I; Groza, M; Hammon, N; Hawkins, T; Haydu, L; Hildebrand, C E; Huang, W; Israni, S; Jett, J; Jewett, P B; Kadner, K; Kimball, H; Kobayashi, A; Krawczyk, M; Leyba, T; Longmire, J L; Lopez, F; Lou, Y; Lowry, S; Ludeman, T; Manohar, C F; Mark, G A; McMurray, K L; Meincke, L J; Morgan, J; Moyzis, R K; Mundt, M O; Munk, A C; Nandkeshwar, R D; Pitluck, S; Pollard, M; Predki, P; Parson-Quintana, B; Ramirez, L; Rash, S; Retterer, J; Ricke, D O; Robinson, D; Rodriguez, A; Salamov, A; Saunders, E H; Scott, D; Shough, T; Stallings, R L; Stalvey, M; Sutherland, R D; Tapia, R; Tesmer, J G; Thayer, N; Thompson, L S; Tice, H; Torney, D C; Tran-Gyamfi, M; Tsai, M; Ulanovsky, L E; Ustaszewska, A; Vo, N; White, P S; Williams, A L; Wills, P L; Wu, J; Wu, K; Yang, J; DeJong, P; Bruce, D; Doggett, N A; Deaven, L; Schmutz, J; Grimwood, J; Richardson, P; Rokhsar, D S; Eichler, E E; Gilna, P; Lucas, S M; Myers, R M; Rubin, E M; Pennacchio, L A

    2005-04-06

    Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes, and 3 RNA pseudogenes. These genes include metallothionein, cadherin, and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. While the segmental duplications of chromosome 16 are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events likely to have had an impact on the evolution of primates and human disease susceptibility.

  7. Morquio A syndrome: Cloning, sequence, and structure of the human N-acetylgalactosamine 6-sulfatase (GALNS) gene

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.P.; Guo, Xiao-Hui; Apostolou, S. [Adelaide Children`s Hospital, North Adelaide (Australia)] [and others

    1994-08-01

    Deficiency of the lysosomal enzyme, N-acetylgalactosamine 6-sulfatase (GALNS;EC 3.1.6.4), results in the storage of the glycosaminoglycans, keratan sulfate and chrondroitin 6-sulfate, which leads to the lysosomal storage disorder Morquio A syndrome. Four overlapping genomic clones derived from a chromosome 16-specific gridded cosmid library containing the entire GALNS gene were isolated. The structure of the gene and the sequence of the exon/intron boundaries and the 5{prime} promoter region were determined. The GALNS gene is split into 14 exons spanning approximately 40 kb. The potential promoter for GALNS lacks a TATA box but contains GC box consensus sequences, consistent with its role as a housekeeping gene. The GALNS gene contains an Alu repeat in intron 5 and a VNTR-like sequence in intron 6. 12 refs., 3 figs., 1 tab.

  8. Templated sequence insertion polymorphisms in the human genome

    Science.gov (United States)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  9. Silhouette extraction from human gait images sequence using cosegmentation

    Science.gov (United States)

    Chen, Jinyan; Zhang, Yi

    2012-11-01

    Gait based human identification is very useful for automatic person recognize through visual surveillance and has attracted more and more researchers. A key step in gait based human identification is to extract human silhouette from images sequence. Current silhouette extraction methods are mainly based on simple color subtraction. These methods have a very poor performance when the color of some body parts is similar to the background. In this paper a cosegmentation based human silhouette extraction method is proposed. Cosegmentation is typically defined as the task of jointly segmenting "something similar" in a given set of images. We can divide the human gait images sequence into several step cycles and every step cycle consist of 10-15 frames. The frames in human gait images sequence have following similarity: every frame is similar to the next or previous frame; every frame is similar to the corresponding frame in the next or previous step cycle; every pixel can find similar pixel in other frames. The progress of cosegmentation based human silhouette extraction can be described as follows: Initially only points which have high contrast to background are used as foreground kernel points, the points in the background are used as background kernel points, then points similar to foreground points will be added to foreground points set and the points similar to background points will be added to background points set. The definition of the similarity consider the context of the point. Experimental result shows that our method has a better performance comparing to traditional human silhouette extraction methods. Keywords: Human gait

  10. Human sapovirus classification based on complete capsid nucleotide sequences.

    Science.gov (United States)

    Oka, Tomoichiro; Mori, Kohji; Iritani, Nobuhiro; Harada, Seiya; Ueki, You; Iizuka, Setsuko; Mise, Keiji; Murakami, Kosuke; Wakita, Takaji; Katayama, Kazuhiko

    2012-02-01

    The genetically diverse sapoviruses (SaVs) are a significant cause of acute human gastroenteritis. Human SaV surveillance is becoming more critical, and a better understanding of the diversity and distribution of the viral genotypes is needed. In this study, we analyzed 106 complete human SaV capsid nucleotide sequences to provide a better understanding of their diversity. Based on those results, we propose a novel standardized classification scheme that meets the requirements of the International Calicivirus Scientific Committee. We believe the classification scheme and strains described here will be of value for the molecular characterization and classification of newly detected SaV genotypes and for comparing data worldwide.

  11. Design of an Efficient ALU Using Low-Power Dual Mode Logic

    Directory of Open Access Journals (Sweden)

    K. Vinay Kumar

    2014-05-01

    Full Text Available The dual mode logic is an efficient model, which is starts working in between the static and dynamic mode of operations. Since both of the static and dynamic modes having some disadvantages like speed and power dissipations. In this paper we are going to implement a faster and efficient ALU using the DML mode of logic. A performance valuation of designed DML ALU is done with respect to the ordinary normal ALU. And we are implementing this on CADENCE Platform in 180 nm technology. And for a variation of length and width ratio’s (W/L how the design will work is going to be done. Key words -

  12. Alu polymorphic insertions reveal genetic structure of north Indian populations.

    Science.gov (United States)

    Tripathi, Manorama; Tripathi, Piyush; Chauhan, Ugam Kumari; Herrera, Rene J; Agrawal, Suraksha

    2008-10-01

    The Indian subcontinent is characterized by the ancestral and cultural diversity of its people. Genetic input from several unique source populations and from the unique social architecture provided by the caste system has shaped the current genetic landscape of India. In the present study 200 individuals each from three upper-caste and four middle-caste Hindu groups and from two Muslim populations in North India were examined for 10 polymorphic Alu insertions (PAIs). The investigated PAIs exhibit high levels of polymorphism and average heterozygosity. Limited interpopulation variance and genetic flow in the present study suggest admixture. The results of this study demonstrate that, contrary to common belief, the caste system has not provided an impermeable barrier to genetic exchange among Indian groups.

  13. Contribution of Large Genomic Rearrangements in Italian Lynch Syndrome Patients: Characterization of a Novel Alu-Mediated Deletion

    Directory of Open Access Journals (Sweden)

    Francesca Duraturo

    2013-01-01

    Full Text Available Lynch syndrome is associated with germ-line mutations in the DNA mismatch repair (MMR genes, mainly MLH1 and MSH2. Most of the mutations reported in these genes to date are point mutations, small deletions, and insertions. Large genomic rearrangements in the MMR genes predisposing to Lynch syndrome also occur, but the frequency varies depending on the population studied on average from 5 to 20%. The aim of this study was to examine the contribution of large rearrangements in the MLH1 and MSH2 genes in a well-characterised series of 63 unrelated Southern Italian Lynch syndrome patients who were negative for pathogenic point mutations in the MLH1, MSH2, and MSH6 genes. We identified a large novel deletion in the MSH2 gene, including exon 6 in one of the patients analysed (1.6% frequency. This deletion was confirmed and localised by long-range PCR. The breakpoints of this rearrangement were characterised by sequencing. Further analysis of the breakpoints revealed that this rearrangement was a product of Alu-mediated recombination. Our findings identified a novel Alu-mediated rearrangement within MSH2 gene and showed that large deletions or duplications in MLH1 and MSH2 genes are low-frequency mutational events in Southern Italian patients with an inherited predisposition to colon cancer.

  14. High nucleosome occupancy is encoded at human regulatory sequences.

    Directory of Open Access Journals (Sweden)

    Desiree Tillo

    Full Text Available Active eukaryotic regulatory sites are characterized by open chromatin, and yeast promoters and transcription factor binding sites (TFBSs typically have low intrinsic nucleosome occupancy. Here, we show that in contrast to yeast, DNA at human promoters, enhancers, and TFBSs generally encodes high intrinsic nucleosome occupancy. In most cases we examined, these elements also have high experimentally measured nucleosome occupancy in vivo. These regions typically have high G+C content, which correlates positively with intrinsic nucleosome occupancy, and are depleted for nucleosome-excluding poly-A sequences. We propose that high nucleosome preference is directly encoded at regulatory sequences in the human genome to restrict access to regulatory information that will ultimately be utilized in only a subset of differentiated cells.

  15. The DNA Sequence And Comparative Analysis Of Human Chromosome5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, Steve; Gordon, Laurie A.; Scott, Duncan; Xie,Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black,Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan,Yee Man; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner,Kristen; Kimball, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou,Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar,Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Retterer, James; Rodriguez, Alex; Rogers,Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang,Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, SusanM.; Myers, Richard M.; Rubin, Edward M.

    2004-08-01

    Chromosome 5 is one of the largest human chromosomes and contains numerous intrachromosomal duplications, yet it has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding conservation with non-mammalian vertebrates, suggesting that they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-coding genes including the protocadherin and interleukin gene families. We also completely sequenced versions of the large chromosome-5-specific internal duplications. These duplications are very recent evolutionary events and probably have a mechanistic role in human physiological variation, as deletions in these regions are the cause of debilitating disorders including spinal muscular atrophy.

  16. Human identification from forensic materials by amplification of a human-specific sequence in the myoglobin gene.

    OpenAIRE

    Ono T; Miyaishi S; Yamamoto Y; Yoshitome K; Ishikawa T.; Ishizu H

    2001-01-01

    We developed a method for human identification of forensic biological materials by PCR-based detection of a human-specific sequence in exon 3 of the myoglobin gene. This human-specific DNA sequence was deduced from differences in the amino acid sequences of myoglobins between humans and other animal species. The new method enabled amplification of the target DNA fragment from 30 samples of human DNA, and the amplified sequences were identical with that already reported. Using this method, we ...

  17. Characterization of the human ESC transcriptome by hybrid sequencing.

    Science.gov (United States)

    Au, Kin Fai; Sebastiano, Vittorio; Afshar, Pegah Tootoonchi; Durruthy, Jens Durruthy; Lee, Lawrence; Williams, Brian A; van Bakel, Harm; Schadt, Eric E; Reijo-Pera, Renee A; Underwood, Jason G; Wong, Wing Hung

    2013-12-10

    Although transcriptional and posttranscriptional events are detected in RNA-Seq data from second-generation sequencing, full-length mRNA isoforms are not captured. On the other hand, third-generation sequencing, which yields much longer reads, has current limitations of lower raw accuracy and throughput. Here, we combine second-generation sequencing and third-generation sequencing with a custom-designed method for isoform identification and quantification to generate a high-confidence isoform dataset for human embryonic stem cells (hESCs). We report 8,084 RefSeq-annotated isoforms detected as full-length and an additional 5,459 isoforms predicted through statistical inference. Over one-third of these are novel isoforms, including 273 RNAs from gene loci that have not previously been identified. Further characterization of the novel loci indicates that a subset is expressed in pluripotent cells but not in diverse fetal and adult tissues; moreover, their reduced expression perturbs the network of pluripotency-associated genes. Results suggest that gene identification, even in well-characterized human cell lines and tissues, is likely far from complete.

  18. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    Science.gov (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  19. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-08-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  20. Marker-Based Human Motion Capture in Multiview Sequences

    Directory of Open Access Journals (Sweden)

    Canton-Ferrer Cristian

    2010-01-01

    Full Text Available This paper presents a low-cost real-time alternative to available commercial human motion capture systems. First, a set of distinguishable markers are placed on several human body landmarks, and the scene is captured by a number of calibrated and synchronized cameras. In order to establish a physical relation among markers, a human body model is defined. Markers are detected on all camera views and delivered as the input of an annealed particle filter scheme where every particle encodes an instance of the pose of the body model to be estimated. Likelihood between particles and input data is performed through the robust generalized symmetric epipolar distance and kinematic constrains are enforced in the propagation step towards avoiding impossible poses. Tests over the HumanEva annotated data set yield quantitative results showing the effectiveness of the proposed algorithm. Results over sequences involving fast and complex motions are also presented.

  1. Complete genome sequence of human astrovirus genotype 6

    Directory of Open Access Journals (Sweden)

    Vernet Guy

    2010-02-01

    Full Text Available Abstract Background Human astroviruses (HAstVs are one of the important causes of acute gastroenteritis in children. Currently, eight HAstV genotypes have been identified and all but two (HAstV-6 and HAstV-7 have been fully sequenced. We here sequenced and analyzed the complete genome of a HAstV-6 strain (192-BJ07, which was identified in Beijing, China. Results The genome of 192-BJ07 consists of 6745 nucleotides. The 192-BJ07 strain displays a 77.2-78.0% nucleotide sequence identity with other HAstV genotypes and exhibits amino acid sequence identities of 86.5-87.4%, 94.2-95.1%, and 65.5-74.8% in the ORF1a, ORF1b, and ORF2 regions, respectively. Homological analysis of ORF2 shows that 192-BJ07 is 96.3% identical to the documented HAstV-6 strain. Further, phylogenetic analysis indicates that different genomic regions are likely undergoing different evolutionary and selective pressures. No recombination event was observed in HAstV-6 in this study. Conclusion The completely sequenced and characterized genome of HAstV-6 (192-BJ07 provides further insight into the genetics of astroviruses and aids in the surveillance and control of HAstV gastroenteritis.

  2. The potential role of Alu Y in the development of resistance to SN38 (Irinotecan) or oxaliplatin in colorectal cancer

    DEFF Research Database (Denmark)

    Lin, Xue; Stenvang, Jan; Rasmussen, Mads Heilskov

    2015-01-01

    toxicity induced by carcinogens or drugs can reactivate Alus by altering DNA methylation. Whether or not reactivation of Alus occurs in SN38 and oxaliplatin resistance remains unknown. Results: We applied reduced representation bisulfite sequencing (RRBS) to investigate the DNA methylome in SN38...... or oxaliplatin resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of 'DNA methylation entropy......' to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences...

  3. Identification of region-specific yeast artificial chromosomes using pools of Alu element-mediated polymerase chain reaction probes labeled via linear amplification

    Energy Technology Data Exchange (ETDEWEB)

    Cole, C.G.; Bobrow, M.; Bentley, D.R.; Dunham, I. (United Medical and Dental Schools of Guy' s and St. Thomas Hospitals, London Bridge, London, England (United Kingdom)); Patel, K.; Shipley, J.; Sheer, D. (Imperial Cancer Research Fund, London (United Kingdom))

    1992-12-01

    The ability to identify large numbers of yeast artificial chromosomes (YACS) specific to any given genomic region rapidly and efficiently enhances both the construction of clone maps and the isolation of region-specific landmarks (e.g., polymorphic markers). The authors describe a method of preparing region-specific single-stranded hybridization probes from Alu element-mediated polymerase chain reaction (Alu-PCR) products of somatic cell hybrids for YAC library screening. Pools of up to 50 cloned Alu-PCR products from an irradiation-reduced hybrid containing 22q11.2-q13.1 were labeled to high specific activity by linear amplification using a single vector primer. The resulting single-stranded probes were extensively competed to remove repetitive sequences, while retaining the full complexity of the probe. Extensive coverage of the region by YACs using multiple probe pools was demonstrated as many YACs were detected more than once. In situ analysis using chosen YACs confirmed that the clones were specific for the region. Thus, this pooled probe approach constitutes a rapid method to identify large numbers of YACs relevant to a large chromosomal region. 29 refs., 4 figs.

  4. Identification of region-specific yeast artificial chromosomes using pools of Alu element-mediated polymerase chain reaction probes labeled via linear amplification.

    Science.gov (United States)

    Cole, C G; Patel, K; Shipley, J; Sheer, D; Bobrow, M; Bentley, D R; Dunham, I

    1992-12-01

    The ability to identify large numbers of yeast artificial chromosomes (YACs) specific to any given genomic region rapidly and efficiently enhances both the construction of clone maps and the isolation of region-specific landmarks (e.g., polymorphic markers). We describe a method of preparing region-specific single-stranded hybridization probes from Alu element-mediated polymerase chain reaction (Alu-PCR) products of somatic cell hybrids for YAC library screening. Pools of up to 50 cloned Alu-PCR products from an irradiation-reduced hybrid containing 22q11.2-q13.1 were labeled to high specific activity by linear amplification using a single vector primer. The resulting single-stranded probes were extensively competed to remove repetitive sequences, while retaining the full complexity of the probe. Extensive coverage of the region by YACs using multiple probe pools was demonstrated as many YACs were detected more than once. In situ analysis using chosen YACs confirmed that the clones were specific for the region. Thus, this pooled probe approach constitutes a rapid method to identify large numbers of YACs relevant to a large chromosomal region.

  5. Comparative Analysis of ALU Implementation with RCA and Sklansky Adders In ASIC Design Flow

    Directory of Open Access Journals (Sweden)

    Abdul Rehman Buzdar

    2016-07-01

    Full Text Available An Arithmetic Logic Unit (ALU is the heart of every central processing unit (CPU which performs basic operations like addition, subtraction, multiplication, division and bitwise logic operations on binary numbers. This paper deals with implementation of a basic ALU unit using two different types of adder circuits, a ripple carry adder and a sklansky type adder. The ALU is designed using application specific integrated circuit (ASIC platform where VHDL hardware description language and standard cells are used. The target process technology is 130nm CMOS from the foundry ST Microelectronics. The Cadence EDA tools are used for the ASIC implementation. A comparative analysis is provided for the two ALU circuits designed in terms of area, power and timing requirements.

  6. HEXIM1蛋白与Alu SINE RNA相互作用的研究%Study of the interaction between HEXIM1 protein and Alu SINE RNA

    Institute of Scientific and Technical Information of China (English)

    田平平; 吴传芳; 欧阳劲; 秦岭

    2014-01-01

    为了探讨Alu SINE RNA和HEXIM1蛋白之间是否存在相互作用.本实验构建了带有FLAG标签的HEXIM1真核表达载体,转染人胚肾293(HEK293)细胞,做anti FLAG 的RNA免疫共沉淀(RIP)后运用免疫印记和逆转录PCR (reverse transcription PCR,RT PCR)等方法检测.证明了Alu SINE RNA和HEXIM1蛋白之间存在相互作用,表明AluSINE RNA和HEXIM1蛋白共同影响基因转录调控,以及细胞在应对外界刺激时能及时在基因水平做出有效反应的可能.

  7. The diploid genome sequence of an individual human.

    Directory of Open Access Journals (Sweden)

    Samuel Levy

    2007-09-01

    Full Text Available Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel included 3,213,401 single nucleotide polymorphisms (SNPs, 53,823 block substitutions (2-206 bp, 292,102 heterozygous insertion/deletion events (indels(1-571 bp, 559,473 homozygous indels (1-82,711 bp, 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

  8. Standardized metadata for human pathogen/vector genomic sequences.

    Directory of Open Access Journals (Sweden)

    Vivien G Dugan

    Full Text Available High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs, the Bioinformatics Resource Centers (BRCs for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID, part of the National Institutes of Health (NIH, informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI. The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will

  9. MIR retrotransposon sequences provide insulators to the human genome.

    Science.gov (United States)

    Wang, Jianrong; Vicente-García, Cristina; Seruggia, Davide; Moltó, Eduardo; Fernandez-Miñán, Ana; Neto, Ana; Lee, Elbert; Gómez-Skarmeta, José Luis; Montoliu, Lluís; Lunyak, Victoria V; Jordan, I King

    2015-08-11

    Insulators are regulatory elements that help to organize eukaryotic chromatin via enhancer-blocking and chromatin barrier activity. Although there are several examples of transposable element (TE)-derived insulators, the contribution of TEs to human insulators has not been systematically explored. Mammalian-wide interspersed repeats (MIRs) are a conserved family of TEs that have substantial regulatory capacity and share sequence characteristics with tRNA-related insulators. We sought to evaluate whether MIRs can serve as insulators in the human genome. We applied a bioinformatic screen using genome sequence and functional genomic data from CD4(+) T cells to identify a set of 1,178 predicted MIR insulators genome-wide. These predicted MIR insulators were computationally tested to serve as chromatin barriers and regulators of gene expression in CD4(+) T cells. The activity of predicted MIR insulators was experimentally validated using in vitro and in vivo enhancer-blocking assays. MIR insulators are enriched around genes of the T-cell receptor pathway and reside at T-cell-specific boundaries of repressive and active chromatin. A total of 58% of the MIR insulators predicted here show evidence of T-cell-specific chromatin barrier and gene regulatory activity. MIR insulators appear to be CCCTC-binding factor (CTCF) independent and show a distinct local chromatin environment with marked peaks for RNA Pol III and a number of histone modifications, suggesting that MIR insulators recruit transcriptional complexes and chromatin modifying enzymes in situ to help establish chromatin and regulatory domains in the human genome. The provisioning of insulators by MIRs across the human genome suggests a specific mechanism by which TE sequences can be used to modulate gene regulatory networks.

  10. Transcriptome sequencing from diverse human populations reveals differentiated regulatory architecture.

    Directory of Open Access Journals (Sweden)

    Alicia R Martin

    2014-08-01

    Full Text Available Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of transcriptome differences across diverse human populations has not been systematically analyzed. To better understand the spectrum of gene expression variation, alternative splicing, and the population genetics of regulatory variation in humans, we have sequenced the genomes, exomes, and transcriptomes of EBV transformed lymphoblastoid cell lines derived from 45 individuals in the Human Genome Diversity Panel (HGDP. The populations sampled span the geographic breadth of human migration history and include Namibian San, Mbuti Pygmies of the Democratic Republic of Congo, Algerian Mozabites, Pathan of Pakistan, Cambodians of East Asia, Yakut of Siberia, and Mayans of Mexico. We discover that approximately 25.0% of the variation in gene expression found amongst individuals can be attributed to population differences. However, we find few genes that are systematically differentially expressed among populations. Of this population-specific variation, 75.5% is due to expression rather than splicing variability, and we find few genes with strong evidence for differential splicing across populations. Allelic expression analyses indicate that previously mapped common regulatory variants identified in eight populations from the International Haplotype Map Phase 3 project have similar effects in our seven sampled HGDP populations, suggesting that the cellular effects of common variants are shared across diverse populations. Together, these results provide a resource for studies analyzing functional differences across populations by estimating the degree of shared gene expression, alternative splicing, and

  11. Transcriptome sequencing from diverse human populations reveals differentiated regulatory architecture.

    Directory of Open Access Journals (Sweden)

    Alicia R Martin

    2014-08-01

    Full Text Available Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of transcriptome differences across diverse human populations has not been systematically analyzed. To better understand the spectrum of gene expression variation, alternative splicing, and the population genetics of regulatory variation in humans, we have sequenced the genomes, exomes, and transcriptomes of EBV transformed lymphoblastoid cell lines derived from 45 individuals in the Human Genome Diversity Panel (HGDP. The populations sampled span the geographic breadth of human migration history and include Namibian San, Mbuti Pygmies of the Democratic Republic of Congo, Algerian Mozabites, Pathan of Pakistan, Cambodians of East Asia, Yakut of Siberia, and Mayans of Mexico. We discover that approximately 25.0% of the variation in gene expression found amongst individuals can be attributed to population differences. However, we find few genes that are systematically differentially expressed among populations. Of this population-specific variation, 75.5% is due to expression rather than splicing variability, and we find few genes with strong evidence for differential splicing across populations. Allelic expression analyses indicate that previously mapped common regulatory variants identified in eight populations from the International Haplotype Map Phase 3 project have similar effects in our seven sampled HGDP populations, suggesting that the cellular effects of common variants are shared across diverse populations. Together, these results provide a resource for studies analyzing functional differences across populations by estimating the degree of shared gene expression, alternative splicing, and

  12. Accident Sequence Evaluation Program: Human reliability analysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs.

  13. Intronic mutations outside of Alu-repeat-rich domains of the LDL receptor gene are a cause of familial hypercholesterolemia.

    Science.gov (United States)

    Amsellem, Sabine; Briffaut, Dorothée; Carrié, Alain; Rabès, Jean Pierre; Girardet, Jean Philippe; Fredenrich, Alexandre; Moulin, Philippe; Krempf, Michel; Reznik, Yves; Vialettes, Bernard; de Gennes, Jean Luc; Brukert, Eric; Benlian, Pascale

    2002-12-01

    Familial hypercholesterolemia (FH), a frequent monogenic condition complicated by premature cardiovascular disease, is characterized by high allelic heterogeneity at the low-density lipoprotein receptor ( LDLR) locus. Despite more than a decade of genetic testing, knowledge about intronic disease-causing mutations has remained limited because of lack of available genomic sequences. Based on the finding from bioinformatic analysis that Alu repeats represent 85% of LDLR intronic sequences outside exon-intron junctions, we designed a strategy to improve the exploration of genomic regions in the vicinity of exons in 110 FH subjects from an admixed population. In the first group of 42 patients of negative mutation carriers, as previously established by former screening strategies (denaturing gradient gel electrophoresis, DNA sequencing with former primers overlapping splice-sites, Southern Blotting), about half ( n=22) were found to be carriers of at least one heterozygous mutation. Among a second group of 68 newly recruited patients, 27% of mutation carriers ( n=37) had a splicing regulatory mutation. Overall, out of the 54 mutations identified, 13 were intronic, and 18 were novel, out of which nearly half were intronic. Two novel intronic mutations (IVS8-10G-->A within the polypyrimidine tract and IVS7+10G-->A downstream of donor site) might create potential aberrant splice sites according to neural-network computed estimation, contrary to 31 common single nucleotide variations also identified at exon-intron junctions. This new strategy of detecting the most likely disease-causing LDLR mutations outside of Alu-rich genomic regions reveals that intronic mutations may have a greater impact than previously reported on the molecular basis of FH.

  14. Learning to Predict Sequences of Human Visual Fixations.

    Science.gov (United States)

    Jiang, Ming; Boix, Xavier; Roig, Gemma; Xu, Juan; Van Gool, Luc; Zhao, Qi

    2016-06-01

    Most state-of-the-art visual attention models estimate the probability distribution of fixating the eyes in a location of the image, the so-called saliency maps. Yet, these models do not predict the temporal sequence of eye fixations, which may be valuable for better predicting the human eye fixations, as well as for understanding the role of the different cues during visual exploration. In this paper, we present a method for predicting the sequence of human eye fixations, which is learned from the recorded human eye-tracking data. We use least-squares policy iteration (LSPI) to learn a visual exploration policy that mimics the recorded eye-fixation examples. The model uses a different set of parameters for the different stages of visual exploration that capture the importance of the cues during the scanpath. In a series of experiments, we demonstrate the effectiveness of using LSPI for combining multiple cues at different stages of the scanpath. The learned parameters suggest that the low-level and high-level cues (semantics) are similarly important at the first eye fixation of the scanpath, and the contribution of high-level cues keeps increasing during the visual exploration. Results show that our approach obtains the state-of-the-art performances on two challenging data sets: 1) OSIE data set and 2) MIT data set.

  15. Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features.

    Science.gov (United States)

    Cho, N-Y; Kim, B-H; Choi, M; Yoo, E J; Moon, K C; Cho, Y-M; Kim, D; Kang, G H

    2007-02-01

    Promoter CpG island hypermethylation is an important carcinogenic event in prostate adenocarcinoma. Regardless of tissue type, human cancers have in common both focal CpG island hypermethylation and global genomic hypomethylation. The present study evaluated CpG island loci hypermethylation and LINE-1 and Alu repeat hypomethylation in prostate adenocarcinoma, analysed the relationship between them, and correlated these findings with clinicopathological features. We examined 179 cases of prostate adenocarcinoma and 30 cases of benign prostate hypertrophy for the methylation status of 22 CpG island loci and the methylation levels of LINE-1 and Alu repeats using methylation-specific polymerase chain reaction and combined bisulphite restriction analysis, respectively. The following 16 CpG island loci were found to display cancer-related hypermethylation: RASSF1A, GSTP1, RARB, TNFRSF10C, APC, BCL2, MDR1, ASC, TIG1, RBP1, COX2, THBS1, TNFRSF10D, CD44, p16, and RUNX3. Except for the last four CpG island loci, hypermethylation of each of the remaining 12 CpG island loci displayed a close association with one or more of the prognostic parameters (ie preoperative serum prostate specific antigen level, Gleason score sum, and clinical stage). Prostate adenocarcinoma with hypermethylation of each of ASC, COX2, RARB, TNFRSF10C, MDR1, TIG1, RBP1, NEUROG1, RASSF1A, and GSTP1 showed a significantly lower methylation level of Alu or LINE-1 than prostate adenocarcinoma without hypermethylation. In addition, hypomethylation of Alu or LINE-1 was closely associated with one or more of the above prognostic parameters. These data suggest that in tumour progression a close relationship exists between CpG island hypermethylation and the hypomethylation of repetitive elements, and that CpG island hypermethylation and DNA hypomethylation contribute to cancer progression.

  16. Alu insertion polymorphisms in the Balkans and the origins of the Aromuns.

    Science.gov (United States)

    Comas, D; Schmid, H; Braeuer, S; Flaiz, C; Busquets, A; Calafell, F; Bertranpetit, J; Scheil, H-G; Huckenbeck, W; Efremovska, L; Schmidt, H

    2004-03-01

    We have analysed 11 human-specific Alu insertion polymorphisms in the Balkans to elucidate the origins of the Aromuns, a linguistic isolate inhabiting scattered areas in the Balkan Peninsula. Four Aromun samples (two from the Republic of Macedonia, one from Albania, and one from Romania) and five neighbouring populations (Macedonians, Albanians, Romanians, Greeks, and Turks) were analysed by means of genetic distances, principal components and analyses of the molecular variance (AMOVA). Three hypotheses were tested: Aromuns are Romanophonic Greeks; the result of a Romanian southward migration; or local descendants of the Thracians. The analyses show that the Aromuns do not constitute a homogeneous group separated from the rest of the Balkan populations. Grouping by language or geography does not explain the genetic differences observed in the region, suggesting a lack of genetic structure in the area. Aromuns do not seem to be particularly related to Greeks, Romanians, or to other Romance speakers. The Aromuns might have their origin to the south of the Danube river, with extensive gene flow with the neighbouring populations. The present results suggest a common ancestry of all Balkan populations, including Aromuns, with a lack of correlation between genetic differentiation and language or ethnicity, stressing that no major migration barriers have existed in the making of the complex Balkan human puzzle.

  17. Microbial community profiling of human saliva using shotgun metagenomic sequencing.

    Directory of Open Access Journals (Sweden)

    Nur A Hasan

    Full Text Available Human saliva is clinically informative of both oral and general health. Since next generation shotgun sequencing (NGS is now widely used to identify and quantify bacteria, we investigated the bacterial flora of saliva microbiomes of two healthy volunteers and five datasets from the Human Microbiome Project, along with a control dataset containing short NGS reads from bacterial species representative of the bacterial flora of human saliva. GENIUS, a system designed to identify and quantify bacterial species using unassembled short NGS reads was used to identify the bacterial species comprising the microbiomes of the saliva samples and datasets. Results, achieved within minutes and at greater than 90% accuracy, showed more than 175 bacterial species comprised the bacterial flora of human saliva, including bacteria known to be commensal human flora but also Haemophilus influenzae, Neisseria meningitidis, Streptococcus pneumoniae, and Gamma proteobacteria. Basic Local Alignment Search Tool (BLASTn analysis in parallel, reported ca. five times more species than those actually comprising the in silico sample. Both GENIUS and BLAST analyses of saliva samples identified major genera comprising the bacterial flora of saliva, but GENIUS provided a more precise description of species composition, identifying to strain in most cases and delivered results at least 10,000 times faster. Therefore, GENIUS offers a facile and accurate system for identification and quantification of bacterial species and/or strains in metagenomic samples.

  18. The DNA sequence of the human X chromosome

    OpenAIRE

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L; Jennifer L Ashurst; Fulton, Robert S.

    2005-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a...

  19. Medical Sequencing at the extremes of Human Body Mass

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Kavaslar, Nihan; Schackwitz, Wendy; Ustaszewski,Anna; Martin, Joes; Hebert, Sybil; Doelle, Heather; Ersoy, Baran; Kryukov, Gregory; Schmidt, Steffen; Yosef, Nir; Ruppin, Eytan; Sharan,Roded; Vaisse, Christian; Sunyaev, Shamil; Dent, Robert; Cohen, Jonathan; McPherson, Ruth; Pennacchio, Len A.

    2006-09-01

    Body weight is a quantitative trait with significantheritability in humans. To identify potential genetic contributors tothis phenotype, we resequenced the coding exons and splice junctions of58 genes in 379 obese and 378 lean individuals. Our 96Mb survey included21 genes associated with monogenic forms of obesity in humans or mice, aswell as 37 genes that function in body weight-related pathways. We foundthat the monogenic obesity-associated gene group was enriched for rarenonsynonymous variants unique to the obese (n=46) versus lean (n=26)populations. Computational analysis further predicted a significantlygreater fraction of deleterious variants within the obese cohort.Consistent with the complex inheritance of body weight, we did notobserve obvious familial segregation in the majority of the 28 availablekindreds. Taken together, these data suggest that multiple rare alleleswith variable penetrance contribute to obesity in the population andprovide a deep medical sequencing based approach to detectthem.

  20. The DNA sequence of the human X chromosome.

    Science.gov (United States)

    Ross, Mark T; Grafham, Darren V; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R; Burrows, Christine; Bird, Christine P; Frankish, Adam; Lovell, Frances L; Howe, Kevin L; Ashurst, Jennifer L; Fulton, Robert S; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C; Hurles, Matthew E; Andrews, T Daniel; Scott, Carol E; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P; Hunt, Sarah E; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Ainscough, Rachael; Ambrose, Kerrie D; Ansari-Lari, M Ali; Aradhya, Swaroop; Ashwell, Robert I S; Babbage, Anne K; Bagguley, Claire L; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E; Barlow, Karen F; Barrett, Ian P; Bates, Karen N; Beare, David M; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M; Brown, Andrew J; Brown, Mary J; Bonnin, David; Bruford, Elspeth A; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y; Clarke, Graham; Clee, Chris M; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G; Conquer, Jen S; Corby, Nicole; Connor, Richard E; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; Deshazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A; Hawes, Alicia; Heath, Paul D; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J; Huckle, Elizabeth J; Hume, Jennifer; Hunt, Paul J; Hunt, Adrienne R; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J; Joseph, Shirin S; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M; Loulseged, Hermela; Loveland, Jane E; Lovell, Jamieson D; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O'Dell, Christopher N; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V; Pearson, Danita M; Pelan, Sarah E; Perez, Lesette; Porter, Keith M; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A; Schlessinger, David; Schueler, Mary G; Sehra, Harminder K; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M; Shownkeen, Ratna; Skuce, Carl D; Smith, Michelle L; Sotheran, Elizabeth C; Steingruber, Helen E; Steward, Charles A; Storey, Roy; Swann, R Mark; Swarbreck, David; Tabor, Paul E; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C; d'Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L; Whiteley, Mathew N; Wilkinson, Jane E; Willey, David L; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L; Wray, Paul W; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J; Hillier, Ladeana W; Willard, Huntington F; Wilson, Richard K; Waterston, Robert H; Rice, Catherine M; Vaudin, Mark; Coulson, Alan; Nelson, David L; Weinstock, George; Sulston, John E; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A; Beck, Stephan; Rogers, Jane; Bentley, David R

    2005-03-17

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.

  1. Gated Clock Implementation of Arithmetic Logic Unit (ALU

    Directory of Open Access Journals (Sweden)

    Dr. Neelam R. Prakash

    2013-05-01

    Full Text Available Low power design has emerged as one of the challenging area in today’s ASIC (Application specific integrated circuit design. With continuous decrease in transistor size, power density is increasing and there is an urgent need for reduction in total power consumption. Clock gating is one most effective technique for low power synchronous circuit design. Clock gating technique in low power design is used to reduce the dynamic power consumption. Clock signal in a synchronous circuit is used for synchronization only and hence does not carry any important information. Since clock is applied to each block of a synchronous circuit, and clock switches for every cycle, clock power is the major part of dynamic power consumption in synchronous circuits. Clock gating is a well known technique to reduce clock power. In clock gating clock to an idle block is disabled. Thus significant amount of power consumption is reduced by employing clock gating. In this paper an ALU design is proposed employing Gated clock for its operation. Design simulation has been performed on Xilinx ISE design suite, and power calculation is done by Xilinx Xpower analyzer. Results show that approximately 17% of total clock power consumption is reduced by gated clock implementation.

  2. New polymorphic variants of human blood clotting factor IX

    Energy Technology Data Exchange (ETDEWEB)

    Surin, V.L.; Luk`yanenko, A.V.; Tagiev, A.F.; Smirnova, O.V. [Hematological Research Center, Moscow (Russian Federation); Plutalov, O.V.; Berlin, Yu.A. [Shemyakin Institute of Bioorganic Chemistry, Moscow (Russian Federation)

    1995-04-01

    The polymorphism of Alu-repeats, which are located in the introns of the human factor IX gene (copies 1-3), was studied. To identify polymorphic variants, direct sequencing of PCR products that contained appropriate repeats was used. In each case, 20 unrelated X chromosomes were studied. A polymorphic Dra I site was found near the 3{prime}-end of Alu copy 3 within the region of the polyA tract. A PCR-based testing system with internal control of restriction hydrolysis was suggested. Testing 81 unrelated X chromosomes revealed that the frequency of the polymorphic Dra I site is 0.23. Taq I polymorphism, which was revealed in Alu copy 4 of factor IX gene in our previous work, was found to be closely linked to Dra I polymorphism. Studies in linkage between different types of polymorphisms of the factor IX gene revealed the presence of a rare polymorphism in intron a that was located within the same minisatellite region as the known polymorphic insertion 50 bp/Dde I. However, the size of the insertion in our case was 26 bp. Only one polymorphic variant was found among over 150 unrelated X chromosomes derived from humans from Moscow and its vicinity. 10 refs., 4 figs., 1 tab.

  3. Human body motion capture from multi-image video sequences

    Science.gov (United States)

    D'Apuzzo, Nicola

    2003-01-01

    In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points

  4. Using Small RNA Deep Sequencing Data to Detect Human Viruses.

    Science.gov (United States)

    Wang, Fang; Sun, Yu; Ruan, Jishou; Chen, Rui; Chen, Xin; Chen, Chengjie; Kreuze, Jan F; Fei, ZhangJun; Zhu, Xiao; Gao, Shan

    2016-01-01

    Small RNA sequencing (sRNA-seq) can be used to detect viruses in infected hosts without the necessity to have any prior knowledge or specialized sample preparation. The sRNA-seq method was initially used for viral detection and identification in plants and then in invertebrates and fungi. However, it is still controversial to use sRNA-seq in the detection of mammalian or human viruses. In this study, we used 931 sRNA-seq runs of data from the NCBI SRA database to detect and identify viruses in human cells or tissues, particularly from some clinical samples. Six viruses including HPV-18, HBV, HCV, HIV-1, SMRV, and EBV were detected from 36 runs of data. Four viruses were consistent with the annotations from the previous studies. HIV-1 was found in clinical samples without the HIV-positive reports, and SMRV was found in Diffuse Large B-Cell Lymphoma cells for the first time. In conclusion, these results suggest the sRNA-seq can be used to detect viruses in mammals and humans.

  5. Human identification by lice: A Next Generation Sequencing challenge.

    Science.gov (United States)

    Pilli, Elena; Agostino, Alessandro; Vergani, Debora; Salata, Elena; Ciuna, Ignazio; Berti, Andrea; Caramelli, David; Lambiase, Simonetta

    2016-09-01

    Rapid and progressive advances in molecular biology techniques and the advent of Next Generation Sequencing (NGS) have opened new possibilities for analyses also in the identification of entomological matrixes. Insects and other arthropods are widespread in nature and those found at a crime scene can provide a useful contribution to forensic investigations. Entomological evidence is used by experts to define the postmortem interval (PMI), which is essentially based on morphological recognition of the insect and an estimation of its insect life cycle stage. However, molecular genotyping methods can also provide an important support for forensic entomological investigations when the identification of species or human genetic material is required. This case study concerns a collection of insects found in the house of a woman who died from unknown causes. Initially the insects were identified morphologically as belonging to the Pediculidae family, and then, human DNA was extracted and analyzed from their gastrointestinal tract. The application of the latest generation forensic DNA assays, such as the Quantifiler(®) Trio DNA Quantification Kit and the HID-Ion AmpliSeq™ Identity Panel (Applied Biosystems(®)), individuated the presence of human DNA in the samples and determined the genetic profile.

  6. Using Small RNA Deep Sequencing Data to Detect Human Viruses

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2016-01-01

    Full Text Available Small RNA sequencing (sRNA-seq can be used to detect viruses in infected hosts without the necessity to have any prior knowledge or specialized sample preparation. The sRNA-seq method was initially used for viral detection and identification in plants and then in invertebrates and fungi. However, it is still controversial to use sRNA-seq in the detection of mammalian or human viruses. In this study, we used 931 sRNA-seq runs of data from the NCBI SRA database to detect and identify viruses in human cells or tissues, particularly from some clinical samples. Six viruses including HPV-18, HBV, HCV, HIV-1, SMRV, and EBV were detected from 36 runs of data. Four viruses were consistent with the annotations from the previous studies. HIV-1 was found in clinical samples without the HIV-positive reports, and SMRV was found in Diffuse Large B-Cell Lymphoma cells for the first time. In conclusion, these results suggest the sRNA-seq can be used to detect viruses in mammals and humans.

  7. Humans cannot consciously generate random numbers sequences: Polemic study.

    Science.gov (United States)

    Figurska, Małgorzata; Stańczyk, Maciej; Kulesza, Kamil

    2008-01-01

    It is widely believed, that randomness exists in Nature. In fact such an assumption underlies many scientific theories and is embedded in the foundations of quantum mechanics. Assuming that this hypothesis is valid one can use natural phenomena, like radioactive decay, to generate random numbers. Today, computers are capable of generating the so-called pseudorandom numbers. Such series of numbers are only seemingly random (bias in the randomness quality can be observed). Question whether people can produce random numbers, has been investigated by many scientists in the recent years. The paper "Humans can consciously generate random numbers sequences..." published recently in Medical Hypotheses made claims that were in many ways contrary to state of art; it also stated far-reaching hypotheses. So, we decided to repeat the experiments reported, with special care being taken of proper laboratory procedures. Here, we present the results and discuss possible implications in computer and other sciences.

  8. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite

    Science.gov (United States)

    2011-01-01

    Background Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease. Results Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system. Conclusions This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions. PMID:21439036

  9. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    Science.gov (United States)

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement.

  10. A high-resolution radiation hybrid map of the human genome draft sequence.

    Science.gov (United States)

    Olivier, M; Aggarwal, A; Allen, J; Almendras, A A; Bajorek, E S; Beasley, E M; Brady, S D; Bushard, J M; Bustos, V I; Chu, A; Chung, T R; De Witte, A; Denys, M E; Dominguez, R; Fang, N Y; Foster, B D; Freudenberg, R W; Hadley, D; Hamilton, L R; Jeffrey, T J; Kelly, L; Lazzeroni, L; Levy, M R; Lewis, S C; Liu, X; Lopez, F J; Louie, B; Marquis, J P; Martinez, R A; Matsuura, M K; Misherghi, N S; Norton, J A; Olshen, A; Perkins, S M; Perou, A J; Piercy, C; Piercy, M; Qin, F; Reif, T; Sheppard, K; Shokoohi, V; Smick, G A; Sun, W L; Stewart, E A; Fernando, J; Tejeda; Tran, N M; Trejo, T; Vo, N T; Yan, S C; Zierten, D L; Zhao, S; Sachidanandam, R; Trask, B J; Myers, R M; Cox, D R

    2001-02-16

    We have constructed a physical map of the human genome by using a panel of 90 whole-genome radiation hybrids (the TNG panel) in conjunction with 40,322 sequence-tagged sites (STSs) derived from random genomic sequences as well as expressed sequences. Of 36,678 STSs on the TNG radiation hybrid map, only 3604 (9.8%) were absent from the unassembled draft sequence of the human genome. Of 20,030 STSs ordered on the TNG map as well as the assembled human genome draft sequence and the Celera assembled human genome sequence, 36% of the STSs had a discrepant order between the working draft sequence and the Celera sequence. The TNG map order was identical to one of the two sequence orders in 60% of these discrepant cases.

  11. Complete Genome Sequence of Human Respiratory Syncytial Virus from Lanzhou, China

    OpenAIRE

    Zhu, Chuanfeng; Fu, Shengfang; Zhou, Xv; Yu, Li

    2017-01-01

    ABSTRACT A complete genome of human respiratory syncytial virus was sequenced and analyzed. Phylogenetic analysis showed that the full-length human respiratory syncytial virus (HRSV) genome sequence belongs to gene type NA1. We sequenced the genome in order to create the full-length cDNA infectious clone and develop vaccines against HRSV.

  12. Association between Alu insertion polymorphisms and HLA class T alleles in Chinese Lisu and Nu ethnic populations%中国傈僳族和怒族群体人类白细胞抗原Ⅰ类基因区Alu插入多态性研究

    Institute of Scientific and Technical Information of China (English)

    董兆梅; 姚宇峰; 史磊; 陶玉芬; 林克勤; 黄小琴; 杨昭庆; 褚嘉祐; 史荔

    2012-01-01

    Objective To investigate the frequencies of HLA-Alu repeat polymorphisms (AluMICB,AluTF,AluHJ,AluHG and AluHF) in Chinese Lisu and Nu ethnic populations.Methods The frequencies of HLA-Alu repeat polymorphisms in above populations were determined with polymerase chain reaction (PCR).The associations between HLA-Alu repeat polymorphisms and HLA-A,HLA-B and HLA-C alleles were also analyzed.Phylogenetic trees were constructed with genetic distance calculated from the frequencies of HLA-Alu repeat polymorphisms.Results Frequencies of AluTF * 2 and AluHF * 2 were different between the two populations (P<0.05),while those of other three insertions were similar.The strength of association between HLA-Alus and HLA alleles were different (P<0.05) in the two populations.Although AluMICB * 2 were associated with HLA-B* 56:01 in both populations,the association was stronger in Lisu population (74.0%) but moderate in Nu population (30.7%).HLA-Alus were associated with particular HLA subtypes,e.g.,AluHG * 2 with certain HLA-A * 02 subtypes.By phylogenetic analysis,Lisu and Nu were clustered together with southern Chinese and Thai populations.Conclusion The distribution of HLA-Alus and the strength of associations between HLA-Alus and HLA class I alleles have varied between the two populations.Study of this association may facilitate identification of origins,evolution,progenitor haplotypes and recombination within the HLA class I region.%目的 研究中国两个隔离群体(傈僳族和怒族)人类白细胞抗原(human leukocyte antigen,HLA)Ⅰ类基因区域内5个HLA-Alu插入多态性(AluMICB、AluTF、AluHJ、AluHG和AluHF)的分布特征.方法 应用聚合酶链反应技术对中国两个隔离群体傈僳族(107人)和怒族(104人)进行HLA-Alu多态性分型.结合HLA基因分型数据,分析这两个群体中HLA-Alu插入与HLA-A、HLA-B和HLA-C基因的关系.根据HLA-Alu频率计算各群体间遗传距离,构建系统进化树.结果 AluTF和AluHF插入

  13. Cloning and sequencing of human lambda immunoglobulin genes by the polymerase chain reaction.

    Science.gov (United States)

    Songsivilai, S; Bye, J M; Marks, J D; Hughes-Jones, N C

    1990-12-01

    Universal oligonucleotide primers, designed for amplifying and sequencing genes encoding the rearranged human lambda immunoglobulin variable region, were validated by amplification of the lambda light chain genes from four human heterohybridoma cell lines and in the generation of a cDNA library of human V lambda sequences from Epstein-Barr virus-transformed human peripheral blood lymphocytes. This technique allows rapid cloning and sequencing of human immunoglobulin genes, and has potential applications in the rescue of unstable human antibody-producing cell lines and in the production of human monoclonal antibodies.

  14. Sequencing and annotated analysis of an Estonian human genome.

    Science.gov (United States)

    Lilleoja, Rutt; Sarapik, Aili; Reimann, Ene; Reemann, Paula; Jaakma, Ülle; Vasar, Eero; Kõks, Sulev

    2012-02-01

    In present study we describe the sequencing and annotated analysis of the individual genome of Estonian. Using SOLID technology we generated 2,449,441,916 of 50-bp reads. The Bioscope version 1.3 was used for mapping and pairing of reads to the NCBI human genome reference (build 36, hg18). Bioscope enables also the annotation of the results of variant (tertiary) analysis. The average mapping of reads was 75.5% with total coverage of 107.72 Gb. resulting in mean fold coverage of 34.6. We found 3,482,975 SNPs out of which 352,492 were novel. 21,222 SNPs were in coding region: 10,649 were synonymous SNPs, 10,360 were nonsynonymous missense SNPs, 155 were nonsynonymous nonsense SNPs and 58 were nonsynonymous frameshifts. We identified 219 CNVs with total base pair coverage of 37,326,300 bp and 87,451 large insertion/deletion polymorphisms covering 10,152,256 bp of the genome. In addition, we found 285,864 small size insertion/deletion polymorphisms out of which 133,969 were novel. Finally, we identified 53 inversions, 19 overlapped genes and 2 overlapped exons. Interestingly, we found the region in chromosome 6 to be enriched with the coding SNPs and CNVs. This study confirms previous findings, that our genomes are more complex and variable as thought before. Therefore, sequencing of the personal genomes followed by annotation would improve the analysis of heritability of phenotypes and our understandings on the functions of genome.

  15. Characterization of the past and current duplication activities in the human 22q11.2 region

    Directory of Open Access Journals (Sweden)

    Morrow Bernice

    2011-01-01

    Full Text Available Abstract Background Segmental duplications (SDs on 22q11.2 (LCR22, serve as substrates for meiotic non-allelic homologous recombination (NAHR events resulting in several clinically significant genomic disorders. Results To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young Alu SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young AluYs at their breakpoints. Conclusions Our study indicates that AluYs are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and Alu elements.

  16. Characterization of the past and current duplication activities in the human 22q11.2 region

    Science.gov (United States)

    2011-01-01

    Background Segmental duplications (SDs) on 22q11.2 (LCR22), serve as substrates for meiotic non-allelic homologous recombination (NAHR) events resulting in several clinically significant genomic disorders. Results To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young Alu SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs) exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb) are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young AluYs at their breakpoints. Conclusions Our study indicates that AluYs are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and Alu elements. PMID:21269513

  17. Comparison of whole genome sequences from human and non-human Escherichia coli O26 strains

    Directory of Open Access Journals (Sweden)

    Keri N Norman

    2015-03-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC O26 is the second leading E. coli serogroup responsible for human illness outbreaks behind E. coli O157:H7. Recent outbreaks have been linked to emerging pathogenic O26:H11 strains harboring stx2 only. Cattle have been recognized as an important reservoir of O26 strains harboring stx1; however the reservoir of these emerging stx2 strains is unknown. The objective of this study was to identify nucleotide polymorphisms in human and cattle-derived strains in order to compare differences in polymorphism derived genotypes and virulence gene profiles between the two host species. Whole genome sequencing was performed on 182 epidemiologically unrelated O26 strains, including 109 human-derived strains and 73 non-human-derived strains. A panel of 289 O26 strains (241 STEC and 48 non-STEC was subsequently genotyped using a set of 283 polymorphisms identified by whole genome sequencing, resulting in 64 unique genotypes. Phylogenetic analyses identified seven clusters within the O26 strains. The seven clusters did not distinguish between isolates originating from humans or cattle; however, clusters did correspond with particular virulence gene profiles. Human and non-human-derived strains harboring stx1 clustered separately from strains harboring stx2, strains harboring eae, and non-STEC strains. Strains harboring stx2 were more closely related to non-STEC strains and strains harboring eae than to strains harboring stx1. The finding of human and cattle-derived strains with the same polymorphism derived genotypes and similar virulence gene profiles, provides evidence that similar strains are found in cattle and humans and transmission between the two species may occur.

  18. Identification and complete sequencing of novel human transcripts through the use of mouse orthologs and testis cDNA sequences

    DEFF Research Database (Denmark)

    Ferreira, Elisa N; Pires, Lilian C; Parmigiani, Raphael B;

    2004-01-01

    The correct identification of all human genes, and their derived transcripts, has not yet been achieved, and it remains one of the major aims of the worldwide genomics community. Computational programs suggest the existence of 30,000 to 40,000 human genes. However, definitive gene identification...... can only be achieved by experimental approaches. We used two distinct methodologies, one based on the alignment of mouse orthologous sequences to the human genome, and another based on the construction of a high-quality human testis cDNA library, in an attempt to identify new human transcripts within...

  19. Sequence features responsible for intron retention in human

    Directory of Open Access Journals (Sweden)

    Sakabe Noboru

    2007-02-01

    Full Text Available Abstract Background One of the least common types of alternative splicing is the complete retention of an intron in a mature transcript. Intron retention (IR is believed to be the result of intron, rather than exon, definition associated with failure of the recognition of weak splice sites flanking short introns. Although studies on individual retained introns have been published, few systematic surveys of large amounts of data have been conducted on the mechanisms that lead to IR. Results TTo understand how sequence features are associated with or control IR, and to produce a generalized model that could reveal previously unknown signals that regulate this type of alternative splicing, we partitioned intron retention events observed in human cDNAs into two groups based on the relative abundance of both isoforms and compared relevant features. We found that a higher frequency of IR in human is associated with individual introns that have weaker splice sites, genes with shorter intron lengths, higher expression levels and lower density of both a set of exon splicing silencers (ESSs and the intronic splicing enhancer GGG. Both groups of retained introns presented events conserved in mouse, in which the retained introns were also short and presented weaker splice sites. Conclusion Although our results confirmed that weaker splice sites are associated with IR, they showed that this feature alone cannot explain a non-negligible fraction of events. Our analysis suggests that cis-regulatory elements are likely to play a crucial role in regulating IR and also reveals previously unknown features that seem to influence its occurrence. These results highlight the importance of considering the interplay among these features in the regulation of the relative frequency of IR.

  20. The pivotal roles of TIA proteins in 5' splice-site selection of alu exons and across evolution.

    Directory of Open Access Journals (Sweden)

    Nurit Gal-Mark

    2009-11-01

    Full Text Available More than 5% of alternatively spliced internal exons in the human genome are derived from Alu elements in a process termed exonization. Alus are comprised of two homologous arms separated by an internal polypyrimidine tract (PPT. In most exonizations, splice sites are selected from within the same arm. We hypothesized that the internal PPT may prevent selection of a splice site further downstream. Here, we demonstrate that this PPT enhanced the selection of an upstream 5' splice site (5'ss, even in the presence of a stronger 5'ss downstream. Deletion of this PPT shifted selection to the stronger downstream 5'ss. This enhancing effect depended on the strength of the downstream 5'ss, on the efficiency of base-pairing to U1 snRNA, and on the length of the PPT. This effect of the PPT was mediated by the binding of TIA proteins and was dependent on the distance between the PPT and the upstream 5'ss. A wide-scale evolutionary analysis of introns across 22 eukaryotes revealed an enrichment in PPTs within approximately 20 nt downstream of the 5'ss. For most metazoans, the strength of the 5'ss inversely correlated with the presence of a downstream PPT, indicative of the functional role of the PPT. Finally, we found that the proteins that mediate this effect, TIA and U1C, and in particular their functional domains, are highly conserved across evolution. Overall, these findings expand our understanding of the role of TIA1/TIAR proteins in enhancing recognition of exons, in general, and Alu exons, in particular.

  1. The pivotal roles of TIA proteins in 5' splice-site selection of alu exons and across evolution.

    Directory of Open Access Journals (Sweden)

    Nurit Gal-Mark

    2009-11-01

    Full Text Available More than 5% of alternatively spliced internal exons in the human genome are derived from Alu elements in a process termed exonization. Alus are comprised of two homologous arms separated by an internal polypyrimidine tract (PPT. In most exonizations, splice sites are selected from within the same arm. We hypothesized that the internal PPT may prevent selection of a splice site further downstream. Here, we demonstrate that this PPT enhanced the selection of an upstream 5' splice site (5'ss, even in the presence of a stronger 5'ss downstream. Deletion of this PPT shifted selection to the stronger downstream 5'ss. This enhancing effect depended on the strength of the downstream 5'ss, on the efficiency of base-pairing to U1 snRNA, and on the length of the PPT. This effect of the PPT was mediated by the binding of TIA proteins and was dependent on the distance between the PPT and the upstream 5'ss. A wide-scale evolutionary analysis of introns across 22 eukaryotes revealed an enrichment in PPTs within approximately 20 nt downstream of the 5'ss. For most metazoans, the strength of the 5'ss inversely correlated with the presence of a downstream PPT, indicative of the functional role of the PPT. Finally, we found that the proteins that mediate this effect, TIA and U1C, and in particular their functional domains, are highly conserved across evolution. Overall, these findings expand our understanding of the role of TIA1/TIAR proteins in enhancing recognition of exons, in general, and Alu exons, in particular.

  2. The DNA sequence and biology of human chromosome 19.

    Science.gov (United States)

    Grimwood, Jane; Gordon, Laurie A; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Isaac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E; Pennacchio, Len A; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S; Myers, Richard M; Rubin, Edward M; Lucas, Susan M

    2004-04-01

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  3. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  4. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, Jane; Gordon, Laurie A.; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A.; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M.; Glavina, Tijana; Gomez, Maria; Gonzales, Eldelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Issac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P.; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S.; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E.; Pennacchio, Len A.; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S.; Myers, Richard M.; Rubin, Edward M.; Lucas, Susan M.

    2003-09-15

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G1C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9 percent of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25 percent of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, a nd segments of coding and non-coding conservation with the distant fish species Takifugu.

  5. Statistical analysis of simple repeats in the human genome

    Science.gov (United States)

    Piazza, F.; Liò, P.

    2005-03-01

    The human genome contains repetitive DNA at different level of sequence length, number and dispersion. Highly repetitive DNA is particularly rich in homo- and di-nucleotide repeats, while middle repetitive DNA is rich of families of interspersed, mobile elements hundreds of base pairs (bp) long, among which belong the Alu families. A link between homo- and di-polymeric tracts and mobile elements has been recently highlighted. In particular, the mobility of Alu repeats, which form 10% of the human genome, has been correlated with the length of poly(A) tracts located at one end of the Alu. These tracts have a rigid and non-bendable structure and have an inhibitory effect on nucleosomes, which normally compact the DNA. We performed a statistical analysis of the genome-wide distribution of lengths and inter-tract separations of poly(X) and poly(XY) tracts in the human genome. Our study shows that in humans the length distributions of these sequences reflect the dynamics of their expansion and DNA replication. By means of general tools from linguistics, we show that the latter play the role of highly-significant content-bearing terms in the DNA text. Furthermore, we find that such tracts are positioned in a non-random fashion, with an apparent periodicity of 150 bases. This allows us to extend the link between repetitive, highly mobile elements such as Alus and low-complexity words in human DNA. More precisely, we show that Alus are sources of poly(X) tracts, which in turn affect in a subtle way the combination and diversification of gene expression and the fixation of multigene families.

  6. Anchored pseudo-de novo assembly of human genomes identifies extensive sequence variation from unmapped sequence reads.

    Science.gov (United States)

    Faber-Hammond, Joshua J; Brown, Kim H

    2016-07-01

    The human genome reference (HGR) completion marked the genomics era beginning, yet despite its utility universal application is limited by the small number of individuals used in its development. This is highlighted by the presence of high-quality sequence reads failing to map within the HGR. Sequences failing to map generally represent 2-5 % of total reads, which may harbor regions that would enhance our understanding of population variation, evolution, and disease. Alternatively, complete de novo assemblies can be created, but these effectively ignore the groundwork of the HGR. In an effort to find a middle ground, we developed a bioinformatic pipeline that maps paired-end reads to the HGR as separate single reads, exports unmappable reads, de novo assembles these reads per individual and then combines assemblies into a secondary reference assembly used for comparative analysis. Using 45 diverse 1000 Genomes Project individuals, we identified 351,361 contigs covering 195.5 Mb of sequence unincorporated in GRCh38. 30,879 contigs are represented in multiple individuals with ~40 % showing high sequence complexity. Genomic coordinates were generated for 99.9 %, with 52.5 % exhibiting high-quality mapping scores. Comparative genomic analyses with archaic humans and primates revealed significant sequence alignments and comparisons with model organism RefSeq gene datasets identified novel human genes. If incorporated, these sequences will expand the HGR, but more importantly our data highlight that with this method low coverage (~10-20×) next-generation sequencing can still be used to identify novel unmapped sequences to explore biological functions contributing to human phenotypic variation, disease and functionality for personal genomic medicine.

  7. SSTL Based Low Power Thermal Efficient WLAN Specific 32bit ALU Design on 28nm FPGA

    DEFF Research Database (Denmark)

    Kalia, Kartik; Pandey, Bishwajeet; Das, Teerath

    2016-01-01

    with consideration of airflow toward hit sink and different frequency on which ALU operate in network processor or any WLAN devices. We have done total power analysis of WLAN operating on different frequencies. We have considered a set of frequencies, which are based on IEEE 802.11 standards. First we did...

  8. SSTL Based Low Power Thermal Efficient WLAN Specific 32bit ALU Design on 28nm FPGA

    DEFF Research Database (Denmark)

    Kalia, Kartik; Pandey, Bishwajeet; Das, Teerath

    2016-01-01

    In this paper we have designed a Thermal energy efficient 32Bit ALU for network processor, the main objective of this design is to provide better thermal efficiency with respect to existing designs. For that purpose we have used six different members of SSTL I/Os standards on 28nm technology alon...

  9. Underwater video footage, March 2014, Faga'alu Bay, Tutuila Island, American Samoa

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Underwater video imagery was collected in March 2014 in the nearshore waters of Faga'alu Bay on the Island of Tutuila, American Samoa, as part of the U.S. Geological...

  10. Underwater video footage, March 2014, Faga'alu Bay, Tutuila Island, American Samoa

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Underwater video imagery was collected in March 2014 in the nearshore waters of Faga'alu Bay on the Island of Tutuila, American Samoa, as part of the U.S. Geological...

  11. Mapping a mathematical expression onto a Montium ALU using GNU Bison

    NARCIS (Netherlands)

    Rosien, M.A.J.; Smit, G.J.M.

    2004-01-01

    The Montium processing tile [1], [4] contains a number of complex ALUs which can perform many different operations in many different ways. In the Chameleon tool flow [2], it is necessary to automatically determine whether a certain mathematical expression can be mapped onto an ALU and to automatical

  12. The monitoring and control of task sequences in human and non-human primates

    Directory of Open Access Journals (Sweden)

    Theresa M Desrochers

    2016-01-01

    Full Text Available Our ability to plan and execute a series of tasks leading to a desired goal requires remarkable coordination between sensory, motor, and decision-related systems. Prefrontal cortex is thought to play a central role in this coordination, especially when actions must be assembled extemporaneously and cannot be programmed as a rote series of movements. A central component of this flexible behavior is the moment-by-moment allocation of working memory and attention. The ubiquity of sequence planning in our everyday lives belies the neural complexity that supports this capacity, and little is known about how frontal cortical regions orchestrate the monitoring and control of sequential behaviors. For example, it remains unclear if and how sensory cortical areas, which provide essential driving inputs for behavior, are modulated by the frontal cortex during these tasks. Here we review what is known about moment-to-moment monitoring as it relates to visually guided, rule-driven behaviors that change over time. We highlight recent human work that shows how the rostrolateral prefrontal cortex (RLPFC participates in monitoring during task sequences. Neurophysiological data from monkeys suggests that monitoring may be accomplished by neurons that respond to items within the sequence and may in turn influence the tuning properties of neurons in posterior sensory areas. Understanding the interplay between proceduralized or habitual acts and supervised control of sequences is key to our understanding of sequential task execution. A crucial bridge will be the use of experimental protocols that allow for the examination of the functional homology between monkeys and humans. We illustrate how task sequences may be parceled into components and examined experimentally, thereby opening future avenues of investigation into the neural basis of sequential monitoring and control.

  13. The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome

    DEFF Research Database (Denmark)

    Camargo, A A; Samaia, H P; Dias-Neto, E

    2001-01-01

    Open reading frame expressed sequences tags (ORESTES) differ from conventional ESTs by providing sequence data from the central protein coding portion of transcripts. We generated a total of 696,745 ORESTES sequences from 24 human tissues and used a subset of the data that correspond to a set of ...

  14. Computational Comparison of Human Genomic Sequence Assemblies for a Region of Chromosome 4

    OpenAIRE

    Semple, Colin; Stewart W. Morris; Porteous, David J.; Evans, Kathryn L.

    2002-01-01

    Much of the available human genomic sequence data exist in a fragmentary draft state following the completion of the initial high-volume sequencing performed by the International Human Genome Sequencing Consortium (IHGSC) and Celera Genomics (CG). We compared six draft genome assemblies over a region of chromosome 4p (D4S394–D4S403), two consecutive releases by the IHGSC at University of California, Santa Cruz (UCSC), two consecutive releases from the National Centre for Biotechnology Informa...

  15. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  16. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  17. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  18. Sill emplacement and corresponding ground deformation processes at the Alu-Dalafilla volcanic centre in the Danakil Depression, Ethiopia

    Science.gov (United States)

    Magee, Craig; Bastow, Ian; Hetherington, Rachel; van Wyk de Vries, Ben; Jackson, Christopher

    2016-04-01

    A consensus has emerged from a variety of disciplines over the past 15 years that Quaternary magmatism in Ethiopia is almost entirely dominated by dike intrusion. Focused dike intrusion within 60 km long, 20 km wide, rift zones is considered to mark the present day locus of extension in Ethiopia, and represent the proto-ridge axis location of an incipient ocean spreading centre. However, it has been suggested on the strength of Moho depths and Quaternary eruptive volumes in northernmost Ethiopia, that the final transition from continental rifting to incipient oceanic spreading may instead be characterised by an abrupt, rheologically driven, late-phase of crustal thinning. Development of a sedimentary basin and mantle decompression melting occurring in the Danakil Depression, driven by this late-phase crustal thinning, should result in a markedly different style of magmatism in the upper crust: i.e. field observations, high-resolution seismic reflection studies, and experimental modelling suggest that interconnected networks of sill intrusions dominate in sedimentary basins. Here, we present the first evidence from the Danakil Depression that links surficial structures, observed at the Alu-Dalafilla volcanic centre, to the ongoing emplacement of an underlying sill. In particular, we use satellite imagery to examine a dome-shaped fold, associated fracture patterns, and surrounding lava flows, which we suggest likely formed in response to roof uplift above and extrusion from a saucer-shaped sill; i.e. a sub-horizontal inner sill encircled by an inward-dipping, transgressive inclined rim. InSAR observations by Pagli et al. (2012) of ground uplift and deflation occurring during the eruption of basaltic lava at Alu-Dalafilla in 2008 capture what we believe to be the first real-time evidence for intrusion-induced forced folding dynamics above a saucer-shaped sill. InSAR data further suggest that intrusion occurred at a depth of ~1 km, likely placing the sill within an

  19. Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available With a draft genome-sequence assembly for the chimpanzee available, it is now possible to perform genome-wide analyses to identify, at a submicroscopic level, structural rearrangements that have occurred between chimpanzees and humans. The goal of this study was to investigate chromosomal regions that are inverted between the chimpanzee and human genomes. Using the net alignments for the builds of the human and chimpanzee genome assemblies, we identified a total of 1,576 putative regions of inverted orientation, covering more than 154 mega-bases of DNA. The DNA segments are distributed throughout the genome and range from 23 base pairs to 62 mega-bases in length. For the 66 inversions more than 25 kilobases (kb in length, 75% were flanked on one or both sides by (often unrelated segmental duplications. Using PCR and fluorescence in situ hybridization we experimentally validated 23 of 27 (85% semi-randomly chosen regions; the largest novel inversion confirmed was 4.3 mega-bases at human Chromosome 7p14. Gorilla was used as an out-group to assign ancestral status to the variants. All experimentally validated inversion regions were then assayed against a panel of human samples and three of the 23 (13% regions were found to be polymorphic in the human genome. These polymorphic inversions include 730 kb (at 7p22, 13 kb (at 7q11, and 1 kb (at 16q24 fragments with a 5%, 30%, and 48% minor allele frequency, respectively. Our results suggest that inversions are an important source of variation in primate genome evolution. The finding of at least three novel inversion polymorphisms in humans indicates this type of structural variation may be a more common feature of our genome than previously realized.

  20. Isolation and sequence analysis of a cDNA clone encoding the fifth complement component

    DEFF Research Database (Denmark)

    Lundwall, Åke B; Wetsel, Rick A; Kristensen, Torsten;

    1985-01-01

    DNA clone of 1.85 kilobase pairs was isolated. Hybridization of the mixed-sequence probe to the complementary strand of the plasmid insert and sequence analysis by the dideoxy method predicted the expected protein sequence of C5a (positions 1-12), amino-terminal to the anticipated priming site. The sequence......, subcloned into M13 mp8, and sequenced at random by the dideoxy technique, thereby generating a contiguous sequence of 1703 base pairs. This clone contained coding sequence for the C-terminal 262 amino acid residues of the beta-chain, the entire C5a fragment, and the N-terminal 98 residues of the alpha......'-chain. The 3' end of the clone had a polyadenylated tail preceded by a polyadenylation recognition site, a 3'-untranslated region, and base pairs homologous to the human Alu concensus sequence. Comparison of the derived partial human C5 protein sequence with that previously determined for murine C3 and human...

  1. CLONING AND SEQUENCING OF MATURED FRAGMENT OF HUMAN NEVER GROWTH FACTOR GENE

    Institute of Scientific and Technical Information of China (English)

    马巍; 吴玲; 王德利; 刘淼; 任惠民; 杨广笑; 王全颖

    2003-01-01

    Objective Molecular cloning and sequencing of the human matured fragment of human nerve growth factor(NGF) gene. Methods Extracting the human genomic DNA from the white blood cells as templates, the gene of NGF was cloned by using PCR and T-vector cloning method. Screening the positive clones and identified by the restriction enzymes, and then the cloned amplified fragment was sequenced and analyzed. Results DNA sequence comparison the cloned gene of NGF with the GenBank (V01511) sequence demonstrated that both of sequences were identical, 354bp length. Conclusion Cloning the NGF gene from the human genomic DNA has paved the way for further study on gene therapy of nerve system injury.

  2. Sequence to Medical Phenotypes: A Framework for Interpretation of Human Whole Genome DNA Sequence Data.

    Directory of Open Access Journals (Sweden)

    Frederick E Dewey

    2015-10-01

    Full Text Available High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework.

  3. Human identification from forensic materials by amplification of a human-specific sequence in the myoglobin gene.

    Directory of Open Access Journals (Sweden)

    Ono T

    2001-06-01

    Full Text Available We developed a method for human identification of forensic biological materials by PCR-based detection of a human-specific sequence in exon 3 of the myoglobin gene. This human-specific DNA sequence was deduced from differences in the amino acid sequences of myoglobins between humans and other animal species. The new method enabled amplification of the target DNA fragment from 30 samples of human DNA, and the amplified sequences were identical with that already reported. Using this method, we were able to distinguish human samples from those of 21 kinds of animals: the crab-eating monkey, horse, cow, sheep, goat, pig, wild boar, dog, raccoon dog, cat, rabbit, guinea pig, hamster, rat, mouse, whale, chicken, pigeon, turtle, frog, and tuna. However, we were unable to distinguish between human and gorilla samples. This method enabled us to detect the target sequence from 25 pg of human DNA, and the target DNA fragment from blood stored at 37 degrees C for 6 months, and from bloodstains heated at 150 degrees C for 4 h or stored at room temperature for 26 years. Herein we also report a practical application of the method for human identification of a bone fragment.

  4. 血清游离DNA甲基化检测对胶质瘤的意义%Detection of serum Alu element hypomethylation for the diagnosis and prognosis of glioma

    Institute of Scientific and Technical Information of China (English)

    龚铭杰; 陈建; 戚菁; 施金龙; 夏亮; 施炜

    2013-01-01

    Objective To investige the roles of measuring hypomethylation of serum Alu elements (Alu) in glima.Methods Tumor tissues and matched serum specimens from 65 glioma patients and serum samples from 30 healthy controls were examined for Alu hypomethylation by bisulfite sequencing.Results The median serum Alu methylation level was 47.30% in patients [interquartile range (IQR),(35.40 ± 54.25) %] and 57.90% in the controls [IQR,(55.25 ± 61.45) %].The median Alu methylation level in tumor samples was 40.30% [IQR,(36.80 ± 54.20) %],which showed the correlation of Alu hypomethylation between tumor and serum samples (r =0.882) in the study group.The methylation level was higher in the low-grade glioma group than in the high-grade group in tumor and serum samples.A correlation between high methylation level and longer survival time was detected in tumor and serum samples.Receiver operating characteristic (ROC) curve analysis revealed that the area-under-the-curve (AUC) for diagnosis was 0.861 (95% confidence interval:0.789 ± 0.933),suggesting that Alu hypomethylation in serum may be of diagnostic value.Conclusion Our results indicate that the detection of Alu hypomethylation in serum may be clinically useful for the diagnosis and prognosis of glioma.%目的 探讨血清游离DNA甲基化水平检测对胶质瘤的意义.方法 采用亚硫酸氢盐测序(BSP)法检测65例胶质瘤患者血清、组织和30例正常血清Alu甲基化水平并进行分析.结果 患者血清中Alu平均甲基化水平为47.30%[(35.40±54.25)%],正常血清是57.90%[(55.25±61.45)%,P<0.01];肿瘤组织Alu平均甲基化水平为40.30%[(36.80±54.20)%],与血清中一致(r=0.882);另外,高级别组的甲基化水平都低于低级别组(P<0.01);Alu甲基化水平越高预示更高的生存率(P<0.01);受试者工作特征(ROC)曲线下面积(AUC)为0.861(0.789 ~ 0.933,P<0.01).结论 血清游离DNA中Alu低甲基化的检测有助于胶质瘤的诊断及预后判断.

  5. Characterization of human chromosomal DNA sequences which replicate autonomously in Saccharomyces cerevisiae.

    Science.gov (United States)

    Montiel, J F; Norbury, C J; Tuite, M F; Dobson, M J; Mills, J S; Kingsman, A J; Kingsman, S M

    1984-01-01

    We have characterised two restriction fragments, isolated from a "shotgun" collection of human DNA, which function as autonomously replicating sequences (ARSs) in Saccharomyces cerevisiae. Functional domains of these fragments have been defined by subcloning and exonuclease (BAL 31) deletion analysis. Both fragments contain two spatially distinct domains. One is essential for high frequency transformation and is termed the Replication Sequence (RS) domain, the other, termed the Replication Enhancer (RE) domain, has no inherent replication competence but is essential for ensuring maximum function of the RS domain. The nucleotide sequence of these domains reveals several conserved sequences one of which is strikingly similar to the yeast ARS consensus sequence. PMID:6320114

  6. Genome sequence of the human pathogen Vibrio cholerae Amazonia.

    NARCIS (Netherlands)

    Thompson, C.C.; Marin, M.A.; Dias, G.M.; Dutilh, B.E.; Edwards, R.A.; Iida, T.; Thompson, F.L.; Vicente, A.C.

    2011-01-01

    Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis rev

  7. Genome sequence of the human pathogen Vibrio cholerae Amazonia.

    NARCIS (Netherlands)

    Thompson, C.C.; Marin, M.A.; Dias, G.M.; Dutilh, B.E.; Edwards, R.A.; Iida, T.; Thompson, F.L.; Vicente, A.C.

    2011-01-01

    Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis

  8. Genome Sequences of 11 Human Vaginal Actinobacteria Strains

    Science.gov (United States)

    Deitzler, Grace E.; Ruiz, Maria J.; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The composition of the vaginal microbiota is an important health determinant. Several members of the phylum Actinobacteria have been implicated in bacterial vaginosis, a condition associated with many negative health outcomes. Here, we present 11 strains of vaginal Actinobacteria (now available through BEI Resources) along with draft genome sequences. PMID:27688328

  9. Draft genome sequence of the first human isolate of the ruminant pathogen Mycoplasma capricolum subsp. capricolum

    DEFF Research Database (Denmark)

    Seersholm, Frederik Valeur; Fischer, Anne; Heller, Martin

    2015-01-01

    Mycoplasma capricolum subsp. capricolum is a well-known pathogen of small ruminants. A recent human case of septicemia involving this agent raised the question of its potential pathogenicity to humans. We present the first draft genome sequence of a human Mycoplasma capricolum subsp. capricolum...

  10. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences

    Science.gov (United States)

    Balaj, Leonora; Lessard, Ryan; Dai, Lixin; Cho, Yoon-Jae; Pomeroy, Scott L.; Breakefield, Xandra O.; Skog, Johan

    2011-01-01

    Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. Here, we show that tumour microvesicles also carry DNA, which reflects the genetic status of the tumour, including amplification of the oncogene c-Myc. We also find amplified c-Myc in serum microvesicles from tumour-bearing mice. Further, we find remarkably high levels of retrotransposon RNA transcripts, especially for some human endogenous retroviruses, such as LINE-1 and Alu retrotransposon elements, in tumour microvesicles and these transposable elements could be transferred to normal cells. These findings expand the nucleic acid content of tumour microvesicles to include: elevated levels of specific coding and non-coding RNA and DNA, mutated and amplified oncogene sequences and transposable elements. Thus, tumour microvesicles contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer. PMID:21285958

  11. Identifikasi Keragaman Genetik Gen Reseptor Hormon Pertumbuhan (GHR|Alu I) pada Sapi Bali

    OpenAIRE

    Zulkharnaim; Jakaria; R. R. Noor

    2010-01-01

    Growth hormone receptor (GHR) is one factor affecting animal growth. GHR is required by growth hormone (GH) to carry out its effects on target tissues. The objective of the study was to estimate genetic diversity of the GHR|AluI gene in bali, limousin, simmental and pesisir cattle. Genotyping was performed on 248 animals, including 162 bali, 21 limousin, 17 simmental and 48 pesisir. Single nucleotide polymorphisms (SNP) had been found in exon 10, coding for the cytoplasmic domain of GHR, whic...

  12. Nonlinear Synchronization for Automatic Learning of 3D Pose Variability in Human Motion Sequences

    Directory of Open Access Journals (Sweden)

    Mozerov M

    2010-01-01

    Full Text Available A dense matching algorithm that solves the problem of synchronizing prerecorded human motion sequences, which show different speeds and accelerations, is proposed. The approach is based on minimization of MRF energy and solves the problem by using Dynamic Programming. Additionally, an optimal sequence is automatically selected from the input dataset to be a time-scale pattern for all other sequences. The paper utilizes an action specific model which automatically learns the variability of 3D human postures observed in a set of training sequences. The model is trained using the public CMU motion capture dataset for the walking action, and a mean walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and motion direction are also computed at each time step. The synchronized motion sequences are used to learn a model of human motion for action recognition and full-body tracking purposes.

  13. Methylation Level of Alu Elements is Closely Associated with Metastasis Ability of Breast Cancer Cell Lines MCF7 and MDA-MB-435S%Alu序列甲基化水平与两种乳腺癌细胞系转移能力高度相关

    Institute of Scientific and Technical Information of China (English)

    吕京澴; 徐酩; 谭建新; 王宗丹; 韩晓; 孙玉洁

    2009-01-01

    目的 探讨Alu序列甲基化与乳腺癌转移潜能的关系.方法 用亚硫酸氢盐修饰联合限制性内切酶分析法(combined bisulfite restriction analysis,COBRA)、亚硫酸氢盐修饰结合直接测序法(bisulfite sequencing,BSP)检测两株转移能力不同的乳腺癌细胞系MCF7和MDA-MB-435S中Alu甲基化状态,每个样品挑取10个克隆测序.结果 MCF7和MDA-MB-435S中Alu甲基化水平均明显低于报道的正常人体细胞Alu甲基化水平,但MCF7中Alu的甲基化水平明显高于MDA-MB-435S.同时,Alu甲基化位点在基因组中分布不均匀.结论 乳腺癌的转移潜能可能与Alu序列的去甲基化以及去甲基化位点的分布相关,值得进一步探讨.%Objective To determine the relationship between methylation level of Alu elements and breast cancer metastasis.Method COBRA and BSP were employed to detect the methylation level of Alu elements in two breast cancer cell lines (MCF7 and MDA-MB-435S) with significant different metastasis potential. For BSP analysis, ten clones of each sample were analyzed.Result The methylation level of Alu in MDA-MB-435S cells was lower than that in MCF7 cells, although the Alu methylation levels in both MCF7 and MDA-MB-435S cells were lower than those in normal tissue cells reported previously. Moreover, the methylated Alu sequences were non-uniform distributed in the genome.Conclusion Demethylation of Alu elements may be involved in breast cancer metastasis. The correlation between methylation status of Alu and breast cancer metastasis deserves further investigation.

  14. Effect of alcohol consumption on peripheral blood Alu methylation in Korean men.

    Science.gov (United States)

    Kim, Dong-Sun; Kim, Young Hun; Lee, Won Kee; Na, Yeon Kyung; Hong, Hae Sook

    2016-01-01

    Alcohol use disorders (AUD) are defined as alcohol abuse and alcohol dependence, which create a substantial public health problem worldwide. To date, no therapeutic can effectively solve these problems. They are complex diseases characterized by both genetic and environmental factors. DNA methylation can act as a downstream effector of environmental signals and account for multi-factorial nature of the disease. Global DNA methylation of peripheral blood cells has recently been proposed as a potential biomarker for disease risk. Alu elements host one-quarter of CpG dinucelotides in the genome to function as proxies for global DNA methylation. In this study, we evaluated the Alu methylation in the peripheral blood DNA of healthy volunteers and AUD patients using the pyrosequencing technology. The Alu methylation level is significantly higher in AUD compared to healthy controls (23.4 ± 1.6 versus 22.1 ± 1.0, t = 7.83, p methylation and alcohol use disorders identification test score (r = 0.250, p methylation might play a complex role in the etiology and pathogenesis of AUD. Further studies are required to elucidate the mechanisms underlying this relationship.

  15. Design and implementation of low power clock gated 64-bit ALU on ultra scale FPGA

    Science.gov (United States)

    Gupta, Ashutosh; Murgai, Shruti; Gulati, Anmol; Kumar, Pradeep

    2016-03-01

    64-bit energy efficient Arithmetic and Logic Unit using negative latch based clock gating technique is designed in this paper. The 64-bit ALU is designed using multiplexer based full adder cell. We have designed a 64-bit ALU with a gated clock. We have used negative latch based circuit for generating gated clock. This gated clock is used to control the multiplexer based 64-bit ALU. The circuit has been synthesized on kintex FPGA through Xilinx ISE Design Suite 14.7 using 28 nm technology in Verilog HDL. The circuit has been simulated on Modelsim 10.3c. The design is verified using System Verilog on QuestaSim in UVM environment. We have achieved 74.07%, 92. 93% and 95.53% reduction in total clock power, 89.73%, 91.35% and 92.85% reduction in I/Os power, 67.14%, 62.84% and 74.34% reduction in dynamic power and 25.47%, 29.05% and 46.13% reduction in total supply power at 20 MHz, 200 MHz and 2 GHz frequency respectively. The power has been calculated using XPower Analyzer tool of Xilinx ISE Design Suite 14.3.

  16. GrabCut-based human segmentation in video sequences.

    Science.gov (United States)

    Hernández-Vela, Antonio; Reyes, Miguel; Ponce, Víctor; Escalera, Sergio

    2012-11-09

    In this paper, we present a fully-automatic Spatio-Temporal GrabCut human segmentation methodology that combines tracking and segmentation. GrabCut initialization is performed by a HOG-based subject detection, face detection, and skin color model. Spatial information is included by Mean Shift clustering whereas temporal coherence is considered by the historical of Gaussian Mixture Models. Moreover, full face and pose recovery is obtained by combining human segmentation with Active Appearance Models and Conditional Random Fields. Results over public datasets and in a new Human Limb dataset show a robust segmentation and recovery of both face and pose using the presented methodology.

  17. GrabCut-Based Human Segmentation in Video Sequences

    Directory of Open Access Journals (Sweden)

    Sergio Escalera

    2012-11-01

    Full Text Available In this paper, we present a fully-automatic Spatio-Temporal GrabCut human segmentation methodology that combines tracking and segmentation. GrabCut initialization is performed by a HOG-based subject detection, face detection, and skin color model. Spatial information is included by Mean Shift clustering whereas temporal coherence is considered by the historical of Gaussian Mixture Models. Moreover, full face and pose recovery is obtained by combining human segmentation with Active Appearance Models and Conditional Random Fields. Results over public datasets and in a new Human Limb dataset show a robust segmentation and recovery of both face and pose using the presented methodology.

  18. Leveraging human genomic information to identify nonhuman primate sequences for expression array development

    Directory of Open Access Journals (Sweden)

    Boyle Nicholas F

    2005-11-01

    Full Text Available Abstract Background Nonhuman primates (NHPs are essential for biomedical research due to their similarities to humans. The utility of NHPs will be greatly increased by the application of genomics-based approaches such as gene expression profiling. Sequence information from the 3' end of genes is the key resource needed to create oligonucleotide expression arrays. Results We have developed the algorithms and procedures necessary to quickly acquire sequence information from the 3' end of nonhuman primate orthologs of human genes. To accomplish this, we identified terminal exons of over 15,000 human genes by aligning mRNA sequences with genomic sequence. We found the mean length of complete last exons to be approximately 1,400 bp, significantly longer than previous estimates. We designed primers to amplify genomic DNA, which included at least 300 bp of the terminal exon. We cloned and sequenced the PCR products representing over 5,500 Macaca mulatta (rhesus monkey orthologs of human genes. This sequence information has been used to select probes for rhesus gene expression profiling. We have also tested 10 sets of primers with genomic DNA from Macaca fascicularis (Cynomolgus monkey, Papio hamadryas (Baboon, and Chlorocebus aethiops (African green monkey, vervet. The results indicate that the primers developed for this study will be useful for acquiring sequence from the 3' end of genes for other nonhuman primate species. Conclusion This study demonstrates that human genomic DNA sequence can be leveraged to obtain sequence from the 3' end of NHP orthologs and that this sequence can then be used to generate NHP oligonucleotide microarrays. Affymetrix and Agilent used sequences obtained with this approach in the design of their rhesus macaque oligonucleotide microarrays.

  19. De novo assembly of human genomes with massively parallel short read sequencing

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Zhu, Hongmei; Ruan, Jue

    2010-01-01

    genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities...... for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way....

  20. Cynomolgus monkey testicular cDNAs for discovery of novel human genes in the human genome sequence

    Directory of Open Access Journals (Sweden)

    Terao Keiji

    2002-12-01

    Full Text Available Abstract Background In order to contribute to the establishment of a complete map of transcribed regions of the human genome, we constructed a testicular cDNA library for the cynomolgus monkey, and attempted to find novel transcripts for identification of their human homologues. Result The full-insert sequences of 512 cDNA clones were determined. Ultimately we found 302 non-redundant cDNAs carrying open reading frames of 300 bp-length or longer. Among them, 89 cDNAs were found not to be annotated previously in the Ensembl human database. After searching against the Ensembl mouse database, we also found 69 putative coding sequences have no homologous cDNAs in the annotated human and mouse genome sequences in Ensembl. We subsequently designed a DNA microarray including 396 non-redundant cDNAs (with and without open reading frames to examine the expression of the full-sequenced genes. With the testicular probe and a mixture of probes of 10 other tissues, 316 of 332 effective spots showed intense hybridized signals and 75 cDNAs were shown to be expressed very highly in the cynomolgus monkey testis, but not ubiquitously. Conclusions In this report, we determined 302 full-insert sequences of cynomolgus monkey cDNAs with enough length of open reading frames to discover novel transcripts as human homologues. Among 302 cDNA sequences, human homologues of 89 cDNAs have not been predicted in the annotated human genome sequence in the Ensembl. Additionally, we identified 75 dominantly expressed genes in testis among the full-sequenced clones by using a DNA microarray. Our cDNA clones and analytical results will be valuable resources for future functional genomic studies.

  1. Hierarchical multifractal representation of symbolic sequences and application to human chromosomes

    Science.gov (United States)

    Provata, A.; Katsaloulis, P.

    2010-02-01

    The two-dimensional density correlation matrix is constructed for symbolic sequences using contiguous segments of arbitrary size. The multifractal spectrum obtained from this matrix motif is shown to characterize the correlations in the symbolic sequences. This method is applied to entire human chromosomes, shuffled human chromosomes, reconstructed human genomic sequences and to artificial random sequences. It is shown that all human chromosomes have common characteristics in their multifractal spectrum and deviate substantially from random and uncorrelated sequences of the same size. Small deviations are observed between the longer and the shorter chromosomes, especially for the higher (in absolute values) statistical moments. The correlations are crucial for the form of the multifractal spectrum; surrogate shuffled chromosomes present randomlike spectrum, distinctly different from the actual chromosomes. Analytical approaches based on hierarchical superposition of tensor products show that retaining pair correlations in the sequences leads to a closer representation of the genomic multifractal spectra, especially in the region of negative exponents, due to the underrepresentation of various functional units (such as the cytosine-guanine CG combination and its complementary GC complex). Retaining higher-order correlations in the construction of the tensor products is a way to approach closer the structure of the multifractal spectra of the actual genomic sequences. This hierarchical approach is generic and is applicable to other correlated symbolic sequences.

  2. Comparison of sequencing platforms for single nucleotide variant calls in a human sample.

    Science.gov (United States)

    Ratan, Aakrosh; Miller, Webb; Guillory, Joseph; Stinson, Jeremy; Seshagiri, Somasekar; Schuster, Stephan C

    2013-01-01

    Next-generation sequencings platforms coupled with advanced bioinformatic tools enable re-sequencing of the human genome at high-speed and large cost savings. We compare sequencing platforms from Roche/454(GS FLX), Illumina/HiSeq (HiSeq 2000), and Life Technologies/SOLiD (SOLiD 3 ECC) for their ability to identify single nucleotide substitutions in whole genome sequences from the same human sample. We report on significant GC-related bias observed in the data sequenced on Illumina and SOLiD platforms. The differences in the variant calls were investigated with regards to coverage, and sequencing error. Some of the variants called by only one or two of the platforms were experimentally tested using mass spectrometry; a method that is independent of DNA sequencing. We establish several causes why variants remained unreported, specific to each platform. We report the indel called using the three sequencing technologies and from the obtained results we conclude that sequencing human genomes with more than a single platform and multiple libraries is beneficial when high level of accuracy is required.

  3. Next-generation sequencing of human mitochondrial reference genomes uncovers high heteroplasmy frequency.

    Directory of Open Access Journals (Sweden)

    Maria Ximena Sosa

    Full Text Available We describe methods for rapid sequencing of the entire human mitochondrial genome (mtgenome, which involve long-range PCR for specific amplification of the mtgenome, pyrosequencing, quantitative mapping of sequence reads to identify sequence variants and heteroplasmy, as well as de novo sequence assembly. These methods have been used to study 40 publicly available HapMap samples of European (CEU and African (YRI ancestry to demonstrate a sequencing error rate <5.63×10(-4, nucleotide diversity of 1.6×10(-3 for CEU and 3.7×10(-3 for YRI, patterns of sequence variation consistent with earlier studies, but a higher rate of heteroplasmy varying between 10% and 50%. These results demonstrate that next-generation sequencing technologies allow interrogation of the mitochondrial genome in greater depth than previously possible which may be of value in biology and medicine.

  4. The Role and Challenges of Exome Sequencing in Studies of Human Diseases

    Directory of Open Access Journals (Sweden)

    Zuoheng eWang

    2013-08-01

    Full Text Available Recent advances in next-generation sequencing (NGS technologies have transformed the genetics study of human diseases; this is an era of unprecedented productivity. Exome sequencing, the targeted sequencing of the protein-coding portion of the human genome, has been shown to be a powerful and cost-effective method for detection of disease variants underlying Mendelian disorders. Increasing effort has been made in the interest of the identification of rare variants associated with complex traits in sequencing studies. Here we provided an overview of the application fields for exome sequencing in human diseases. We describe a general framework of computation and bioinformatics for handling sequencing data. We then demonstrate data quality and agreement between exome sequencing and exome microarray (chip genotypes using data collected on the same set of subjects in a genetic study of panic disorder. Our results show that, in sequencing data, the data quality was generally higher for variants within the exonic target regions, compared to that outside the target regions, due to the target enrichment. We also compared genotype concordance for variant calls obtained by exome sequencing vs. exome genotyping microarrays. The overall consistency rate was > 99.83% and the heterozygous consistency rate was > 97.55%. The two platforms share a large amount of agreement over low frequency variants in the exonic regions, while exome sequencing provides much more information on variants not included on exome genotyping microarrays. The results demonstrate that exome sequencing data are of high quality and can be used to investigate the role of rare coding variants in human diseases.

  5. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Finocchiaro, G.; Taroni, F.; Martin, A.L.; Colombo, I.; Tarelli, G.T.; DiDonato, S. (Istituto Nazionale Neurologico C. Besta, Milan (Italy)); Rocchi, M. (Istituto G. Gaslini, Genoa (Italy))

    1991-01-15

    The authors have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH{sub 2}-terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH{sub 2}-terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hanster somatic cell hybrids.

  6. A hybrid approach for de novo human genome sequence assembly and phasing.

    Science.gov (United States)

    Mostovoy, Yulia; Levy-Sakin, Michal; Lam, Jessica; Lam, Ernest T; Hastie, Alex R; Marks, Patrick; Lee, Joyce; Chu, Catherine; Lin, Chin; Džakula, Željko; Cao, Han; Schlebusch, Stephen A; Giorda, Kristina; Schnall-Levin, Michael; Wall, Jeffrey D; Kwok, Pui-Yan

    2016-07-01

    Despite tremendous progress in genome sequencing, the basic goal of producing a phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. In this study, we describe an approach to performing de novo genome assembly and experimental phasing by integrating the data from Illumina short-read sequencing, 10X Genomics linked-read sequencing, and BioNano Genomics genome mapping to yield a high-quality, phased, de novo assembled human genome.

  7. Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.

    Directory of Open Access Journals (Sweden)

    Zhi Xu

    Full Text Available Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7% in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.

  8. Mono-allelic retrotransposon insertion addresses epigenetic transcriptional repression in human genome

    Directory of Open Access Journals (Sweden)

    Byun Hyang-Min

    2012-02-01

    Full Text Available Abstract Background Retrotransposons have been extensively studied in plants and animals and have been shown to have an impact on human genome dynamics and evolution. Their ability to move within genomes gives retrotransposons to affect genome instability. Methods we examined the polymorphic inserted AluYa5, evolutionary young Alu, in the progesterone receptor gene to determine the effects of Alu insertion on molecular environment. We used mono-allelic inserted cell lines which carry both Alu-present and Alu-absent alleles. To determine the epigenetic change and gene expression, we performed restriction enzyme digestion, Pyrosequencing, and Chromatin Immunoprecipitation. Results We observed that the polymorphic insertion of evolutionally young Alu causes increasing levels of DNA methylation in the surrounding genomic area and generates inactive histone tail modifications. Consequently the Alu insertion deleteriously inactivates the neighboring gene expression. Conclusion The mono-allelic Alu insertion cell line clearly showed that polymorphic inserted repetitive elements cause the inactivation of neighboring gene expression, bringing aberrant epigenetic changes.

  9. Topological Pressure and Coding Sequence Density Estimation in the Human Genome

    CERN Document Server

    Koslicki, David

    2011-01-01

    Inspired by concepts from ergodic theory, we give new insight into coding sequence (CDS) density estimation for the human genome. Our approach is based on the introduction and study of topological pressure: a numerical quantity assigned to any finite sequence based on an appropriate notion of `weighted information content'. For human DNA sequences, each codon is assigned a suitable weight, and using a window size of approximately 60,000bp, we obtain a very strong positive correlation between CDS density and topological pressure. The weights are selected by an optimization procedure, and can be interpreted as quantitative data on the relative importance of different codons for the density estimation of coding sequences. This gives new insight into codon usage bias which is an important subject where long standing questions remain open. Inspired again by ergodic theory, we use the weightings on the codons to define a probability measure on finite sequences. We demonstrate that this measure is effective in disti...

  10. Detection of head-to-tail DNA sequences of human bocavirus in clinical samples.

    Directory of Open Access Journals (Sweden)

    Jessica Lüsebrink

    Full Text Available Parvoviruses are single stranded DNA viruses that replicate in a so called "rolling-hairpin" mechanism, a variant of the rolling circle replication known for bacteriophages like φX174. The replication intermediates of parvoviruses thus are concatemers of head-to-head or tail-to-tail structure. Surprisingly, in case of the novel human bocavirus, neither head-to-head nor tail-to-tail DNA sequences were detected in clinical isolates; in contrast head-to-tail DNA sequences were identified by PCR and sequencing. Thereby, the head-to-tail sequences were linked by a novel sequence of 54 bp of which 20 bp also occur as conserved structures of the palindromic ends of parvovirus MVC which in turn is a close relative to human bocavirus.

  11. Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome

    Energy Technology Data Exchange (ETDEWEB)

    Prambhakar, Shyam; Noonan, James P.; Paabo, Svante; Rubin, EdwardM.

    2006-07-06

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detect"cryptic" functional elements, which are too weakly conserved amongmammals to distinguish from nonfunctional DNA. To address this problem,we explored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  12. The "most wanted" taxa from the human microbiome for whole genome sequencing.

    Directory of Open Access Journals (Sweden)

    Anthony A Fodor

    Full Text Available The goal of the Human Microbiome Project (HMP is to generate a comprehensive catalog of human-associated microorganisms including reference genomes representing the most common species. Toward this goal, the HMP has characterized the microbial communities at 18 body habitats in a cohort of over 200 healthy volunteers using 16S rRNA gene (16S sequencing and has generated nearly 1,000 reference genomes from human-associated microorganisms. To determine how well current reference genome collections capture the diversity observed among the healthy microbiome and to guide isolation and future sequencing of microbiome members, we compared the HMP's 16S data sets to several reference 16S collections to create a 'most wanted' list of taxa for sequencing. Our analysis revealed that the diversity of commonly occurring taxa within the HMP cohort microbiome is relatively modest, few novel taxa are represented by these OTUs and many common taxa among HMP volunteers recur across different populations of healthy humans. Taken together, these results suggest that it should be possible to perform whole-genome sequencing on a large fraction of the human microbiome, including the 'most wanted', and that these sequences should serve to support microbiome studies across multiple cohorts. Also, in stark contrast to other taxa, the 'most wanted' organisms are poorly represented among culture collections suggesting that novel culture- and single-cell-based methods will be required to isolate these organisms for sequencing.

  13. Nucleotide sequence of cloned cDNA for human pancreatic kallikrein.

    Science.gov (United States)

    Fukushima, D; Kitamura, N; Nakanishi, S

    1985-12-31

    Cloned cDNA sequences for human pancreatic kallikrein have been isolated and determined by molecular cloning and sequence analysis. The identity between human pancreatic and urinary kallikreins is indicated by the complete coincidence between the amino acid sequence deduced from the cloned cDNA sequence and that reported partially for urinary kallikrein. The active enzyme form of the human pancreatic kallikrein consists of 238 amino acids and is preceded by a signal peptide and a profragment of 24 amino acids. A sequence comparison of this with other mammalian kallikreins indicates that key amino acid residues required for both serine protease activity and kallikrein-like cleavage specificity are retained in the human sequence, and residues corresponding to some external loops of the kallikrein diverge from other kallikreins. Analyses by RNA blot hybridization, primer extension, and S1 nuclease mapping indicate that the pancreatic kallikrein mRNA is also expressed in the kidney and sublingual gland, suggesting the active synthesis of urinary kallikrein in these tissues. Furthermore, the tissue-specific regulation of the expression of the members of the human kallikrein gene family has been discussed.

  14. Cross-kingdom sequence similarities between human micro-RNAs and plant viruses.

    Science.gov (United States)

    Rebolledo-Mendez, Jovan D; Vaishnav, Radhika A; Cooper, Nigel G; Friedland, Robert P

    2013-09-01

    Micro-RNAs regulate the expression of cellular and tissue phenotypes at a post-transcriptional level through a complex process involving complementary interactions between micro-RNAs and messenger-RNAs. Similar nucleotide interactions have been shown to occur as cross-kingdom events; for example, between plant viruses and plant micro-RNAs and also between animal viruses and animal micro-RNAs. In this study, this view is expanded to look for cross-kingdom similarities between plant virus and human micro-RNA sequences. A method to identify significant nucleotoide sequence similarities between plant viruses and hsa micro-RNAs was created. Initial analyses demonstrate that plant viruses contain nucleotide sequences which exactly match the seed sequences of human micro-RNAs in both parallel and anti-parallel directions. For example, the bean common mosaic virus strain NL4 from Colombia contains sequences that match exactly the seed sequence for micro-RNA of the hsa-mir-1226 in the parallel direction, which suggests a cross-kingdom conservation. Similarly, the rice yellow stunt viral cRNA contains a sequence that is an exact match in the anti-parallel direction to the seed sequence of hsa-micro-RNA let-7b. The functional implications of these results need to be explored. The finding of these cross-kingdom sequence similarities is a useful starting point in support of bench level investigations.

  15. Sequence characterization of a human embryonic craniofacial cDNA library

    Energy Technology Data Exchange (ETDEWEB)

    Padanilam, B.J.; Barsel, S.; Solursh, M. [and others

    1994-09-01

    Broad-based sequencing approaches for the characterization of human cDNA libraries have proven successful in identifying large numbers of novel genes of specific tissue or developmental stages. To pursue our interests in human craniofacial development, stages. To pursue our interests in human craniofacial development, we have made use of both subtracted and unsubtracted cDNA libraries constructed from embryonic craniofacial tissue obtained from pooled samples at 42-54 days gestation. Single-pass sequencing was carried out using an ABI automated sequencer and T3 or T7 primers. Sequences were characterized using BLAST and GRAIL, and the identified homologous sequences grouped according to gene class and family. Four genes have been mapped using repeat sequence elements identified in the clones. Using primers developed from sequence data, other genes are being mapped using a panel of somatic cell hybrids. To date, a total of 786 sequences have been returned with 35% identifying no homologies, and 35% with strong homologies to previously identified genes. A number of genes previously identified to play a role in human embryonic development have been returned from the sequence comparisons providing evidence that the library is representative of this tissue and stage of development. Previous characterization of the library has also identified a number of novel embryonically expressed human homeobox genes. Genes felt to be of special relevance based on their homology to characterized genes known to play a role in development or that are members of novel classes but with high scores on GRAIL searches are being characterized using whole mount in situ hybridization with mouse embryos. Characterization of the library with respect to chromosomal mapping, gene types and make-up, and embryonic expression patterns will be presented.

  16. Modulation of LINE-1 and Alu/SVA Retrotransposition by Aicardi-Goutières Syndrome-Related SAMHD1

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    2013-09-01

    Full Text Available Long interspersed elements 1 (LINE-1 occupy at least 17% of the human genome and are its only active autonomous retrotransposons. However, the host factors that regulate LINE-1 retrotransposition are not fully understood. Here, we demonstrate that the Aicardi-Goutières syndrome gene product SAMHD1, recently revealed to be an inhibitor of HIV/simian immunodeficiency virus (SIV infectivity and neutralized by the viral Vpx protein, is also a potent regulator of LINE-1 and LINE-1-mediated Alu/SVA retrotransposition. We also found that mutant SAMHD1s of Aicardi-Goutières syndrome patients are defective in LINE-1 inhibition. Several domains of SAMHD1 are critical for LINE-1 regulation. SAMHD1 inhibits LINE-1 retrotransposition in dividing cells. An enzymatic active site mutant SAMHD1 maintained substantial anti-LINE-1 activity. SAMHD1 inhibits ORF2p-mediated LINE-1 reverse transcription in isolated LINE-1 ribonucleoproteins by reducing ORF2p level. Thus, SAMHD1 may be a cellular regulator of LINE-1 activity that is conserved in mammals.

  17. Assignment of casein kinase 2 alpha sequences to two different human chromosomes

    DEFF Research Database (Denmark)

    Boldyreff, B; Klett, C; Göttert, E

    1992-01-01

    Human casein kinase 2 alpha gene (CK-2-alpha) sequences have been localized within the human genome by in situ hybridization and somatic cell hybrid analysis using a CK-2 alpha cDNA as a probe. By in situ hybridization, the CK-2 alpha cDNA could be assigned to two different loci, one on 11p15.1-ter...

  18. Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations

    DEFF Research Database (Denmark)

    Zhang, Guojie; Pei, Zhang; Krawczak, Michael;

    2010-01-01

    Triangulation of the human, chimpanzee, and Neanderthal genome sequences with respect to 44,348 disease-causing or disease-associated missense mutations and 1,712 putative regulatory mutations listed in the Human Gene Mutation Database was employed to identify genetic variants that are apparently...

  19. Complete genome sequence of Streptococcus salivarius PS4, a strain isolated from human milk.

    Science.gov (United States)

    Martín, Virginia; Maldonado-Barragán, Antonio; Jiménez, Esther; Ruas-Madiedo, Patricia; Fernández, Leónides; Rodríguez, Juan M

    2012-08-01

    Streptococcus salivarius is a commensal species commonly found in the human oropharyngeal tract. Some strains of this species have been developed for use as oral probiotics, while others have been associated with a variety of opportunistic human infections. Here, we report the complete sequence of strain PS4, which was isolated from breast milk of a healthy woman.

  20. Draft Genome Sequence of Ochroconis constricta UM 578, Isolated from Human Skin Scraping.

    Science.gov (United States)

    Chan, Chai Ling; Yew, Su Mei; Na, Shiang Ling; Tan, Yung-Chie; Lee, Kok Wei; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2014-04-17

    Ochroconis constricta is a soilborne dematiaceous fungus that has never been reported to be associated with human infection. Here we report the first draft genome sequence of strain UM 578, isolated from human skin scraping. The genomic information revealed will contribute to a better understanding of this species.

  1. Detection of novel sequences related to african Swine Fever virus in human serum and sewage.

    Science.gov (United States)

    Loh, Joy; Zhao, Guoyan; Presti, Rachel M; Holtz, Lori R; Finkbeiner, Stacy R; Droit, Lindsay; Villasana, Zoilmar; Todd, Collin; Pipas, James M; Calgua, Byron; Girones, Rosina; Wang, David; Virgin, Herbert W

    2009-12-01

    The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the asfarvirus family but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among asfarviruses than previously thought and raises the possibility that human infection by asfarviruses may occur.

  2. Sequencing of 50 human exomes reveals adaptation to high altitude

    DEFF Research Database (Denmark)

    Yi, Xin; Liang, Yu; Huerta-Sanchez, Emilia

    2010-01-01

    represent strong candidates for altitude adaptation, were identified. The strongest signal of natural selection came from endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1), a transcription factor involved in response to hypoxia. One single-nucleotide polymorphism (SNP) at EPAS1 shows a 78% frequency...... difference between Tibetan and Han samples, representing the fastest allele frequency change observed at any human gene to date. This SNP's association with erythrocyte abundance supports the role of EPAS1 in adaptation to hypoxia. Thus, a population genomic survey has revealed a functionally important locus...

  3. Microlunatus cavernae sp. nov., a novel actinobacterium isolated from Alu ancient cave, Yunnan, South-West China.

    Science.gov (United States)

    Cheng, Juan; Chen, Wei; Huo-Zhang, Bing; Nimaichand, Salam; Zhou, En-Min; Lu, Xin-Hua; Klenk, Hans-Peter; Li, Wen-Jun

    2013-07-01

    A Gram-positive, coccoid, non-endospore-forming actinobacterium, designated YIM C01117(T), was isolated from a soil sample collected from Alu ancient cave, Yunnan province, south-west China. Based on the 16S rRNA gene sequence analysis, strain YIM C01117(T) was shown to belong to the genus Microlunatus, with highest sequence similarity of 97.4 % to Microlunatus soli DSM 21800(T). The whole genomic DNA relatedness as shown by the DNA-DNA hybridization study between YIM C01117(T) and M. soli DSM 21800(T) had a low value (47 ± 2 %). Strain YIM C01117(T) was determined to contain LL-diaminopimelic acid with Gly, Glu and Ala amino acids (A3γ' type) in the cell wall. Whole-cell hydrolysates were found to contain glucose, galactose, mannose and ribose. The major polar lipids were determined to be phosphatidylglycerol and diphosphatidylglycerol. The predominant menaquinone system present is MK-9(H4), while the major fatty acids were identified to be anteiso-C15:0 (24.1 %), iso-C16:0 (22.3 %) and iso-C15:0 (11.4 %). The G+C content of the genomic DNA was determined to be 65.9 mol%. The chemotaxonomic and genotypic data support the affiliation of the strain YIM C01117(T) to the genus Microlunatus. The results of physiological and biochemical tests allow strain YIM C01117(T) to be differentiated phenotypically from recognized Microlunatus species. Strain YIM C01117(T) is therefore considered to represent a novel species of the genus Microlunatus, for which the name Microlunatus cavernae sp. nov. is proposed. The type strain is YIM C01117(T) (= DSM 26248(T) = JCM 18536(T)).

  4. Do Alu repeats drive the evolution of the primate transcriptome?

    OpenAIRE

    Urrutia, Araxi O.; Ocaña, Leandro Balladares; Hurst, Laurence D

    2008-01-01

    Background Of all repetitive elements in the human genome, Alus are unusual in being enriched near to genes that are expressed across a broad range of tissues. This has led to the proposal that Alus might be modifying the expression breadth of neighboring genes, possibly by providing CpG islands, modifying transcription factor binding, or altering chromatin structure. Here we consider whether Alus have increased expression breadth of genes in their vicinity. Results Contrary to the modificati...

  5. Human Immunodeficiency Virus Reverse Transcriptase and Protease Sequence Database: an expanded data model integrating natural language text and sequence analysis programs.

    Science.gov (United States)

    Kantor, R; Machekano, R; Gonzales, M J; Dupnik, K; Schapiro, J M; Shafer, R W

    2001-01-01

    The HIV Reverse Transcriptase and Protease Sequence Database is an on-line relational database that catalogs evolutionary and drug-related sequence variation in the human immunodeficiency virus (HIV) reverse transcriptase (RT) and protease enzymes, the molecular targets of anti-HIV therapy (http://hivdb.stanford.edu). The database contains a compilation of nearly all published HIV RT and protease sequences, including submissions from International Collaboration databases and sequences published in journal articles. Sequences are linked to data about the source of the sequence sample and the antiretroviral drug treatment history of the individual from whom the isolate was obtained. During the past year 3500 sequences have been added and the data model has been expanded to include drug susceptibility data on sequenced isolates. Database content has also been integrated with didactic text and the output of two sequence analysis programs.

  6. Human melody singing by bullfinches (Pyrrhula pyrrula) gives hints about a cognitive note sequence processing.

    Science.gov (United States)

    Nicolai, Jürgen; Gundacker, Christina; Teeselink, Katharina; Güttinger, Hans Rudolf

    2014-01-01

    We studied human melody perception and production in a songbird in the light of current concepts from the cognitive neuroscience of music. Bullfinches are the species best known for learning melodies from human teachers. The study is based on the historical data of 15 bullfinches, raised by 3 different human tutors and studied later by Jürgen Nicolai (JN) in the period 1967-1975. These hand-raised bullfinches learned human folk melodies (sequences of 20-50 notes) accurately. The tutoring was interactive and variable, starting before fledging and JN continued it later throughout the birds' lives. All 15 bullfinches learned to sing alternately melody modules with JN (alternate singing). We focus on the aspects of note sequencing and timing studying song variability when singing the learned melody alone and the accuracy of listening-singing interactions during alternatively singing with JN by analyzing song recordings of 5 different males. The following results were obtained as follows: (1) Sequencing: The note sequence variability when singing alone suggests that the bullfinches retrieve the note sequence from the memory as different sets of note groups (=modules), as chunks (sensu Miller in Psychol Rev 63:81-87, 1956). (2) Auditory-motor interactions, the coupling of listening and singing the human melody: Alternate singing provides insights into the bird's brain melody processing from listening to the actually whistled part of the human melody by JN to the bird's own accurately singing the consecutive parts. We document how variable and correctly bullfinches and JN alternated in their singing the note sequences. Alternate singing demonstrates that melody-singing bullfinches did not only follow attentively the just whistled note contribution of the human by auditory feedback, but also could synchronously anticipate singing the consecutive part of the learned melody. These data suggest that both listening and singing may depend on a single learned human melody

  7. Triangulation of the human, chimpanzee and Neanderthal genome sequences identifies potentially compensated mutations

    OpenAIRE

    Zhang, Guojie; Zhang,Pei; Krawczak, Michael; Ball, Edward V.; Mort, Matthew; Kehrer-Sawatzki, Hildegard; Cooper, David N.

    2010-01-01

    Abstract Triangulation of the human, chimpanzee and Neanderthal genome sequences with respect to 44,348 disease-causing or disease-associated missense mutations and 1,712 putative regulatory mutations listed in the Human Gene Mutation Database was employed to identify genetic variants that are apparently pathogenic in humans but which may represent a `compensated? wild-type state in at least one of the other two species. Of 122 such `potentially compensated mutations? (PCMs) identi...

  8. CaPSID: A bioinformatics platform for computational pathogen sequence identification in human genomes and transcriptomes

    Directory of Open Access Journals (Sweden)

    Borozan Ivan

    2012-08-01

    Full Text Available Abstract Background It is now well established that nearly 20% of human cancers are caused by infectious agents, and the list of human oncogenic pathogens will grow in the future for a variety of cancer types. Whole tumor transcriptome and genome sequencing by next-generation sequencing technologies presents an unparalleled opportunity for pathogen detection and discovery in human tissues but requires development of new genome-wide bioinformatics tools. Results Here we present CaPSID (Computational Pathogen Sequence IDentification, a comprehensive bioinformatics platform for identifying, querying and visualizing both exogenous and endogenous pathogen nucleotide sequences in tumor genomes and transcriptomes. CaPSID includes a scalable, high performance database for data storage and a web application that integrates the genome browser JBrowse. CaPSID also provides useful metrics for sequence analysis of pre-aligned BAM files, such as gene and genome coverage, and is optimized to run efficiently on multiprocessor computers with low memory usage. Conclusions To demonstrate the usefulness and efficiency of CaPSID, we carried out a comprehensive analysis of both a simulated dataset and transcriptome samples from ovarian cancer. CaPSID correctly identified all of the human and pathogen sequences in the simulated dataset, while in the ovarian dataset CaPSID’s predictions were successfully validated in vitro.

  9. Direct sequencing of human gut virome fractions obtained by flow cytometry

    Directory of Open Access Journals (Sweden)

    Mária eDžunková

    2015-09-01

    Full Text Available The sequence assembly of the human gut virome encounters several difficulties. A high proportion of human and bacterial matches is detected in purified viral samples. Viral DNA extraction results in a low DNA concentration, which does not reach the minimal limit required for sequencing library preparation. Therefore, the viromes are usually enriched by whole genome amplification, which is, however, prone to the development of chimeras and amplification bias. In addition, as there is a very wide diversity of gut viral species, very extensive sequencing efforts must be made for the assembling of whole viral genomes. We present an approach to improve human gut virome assembly by employing a more precise preparation of a viral sample before sequencing. Particles present in a virome previously filtered through 0.2 µm pores were further divided into groups in accordance with their size and DNA content by fluorescence activated cell sorting (FACS. One selected viral fraction was sequenced excluding the whole genome amplification step, so that unbiased sequences with high reliability were obtained.The DNA extracted from the 314 viral particles of the selected fraction was assembled into 34 contigs longer than 1,000 bp. This represents an increase to the number of assembled long contigs per sequenced Gb in comparison with other studies where non-fractioned viromes are sequenced. Seven of these contigs contained open reading frames (ORFs with explicit matches to proteins related to bacteriophages. The remaining contigs also possessed uncharacterized ORFs with bacteriophage-related domains. When the particles that are present in the filtered viromes are sorted into smaller groups by FACS, large pieces of viral genomes can be recovered easily. This approach has several advantages over the conventional sequencing of non-fractioned viromes: non-viral contamination is reduced and the sequencing efforts required for viral assembly are minimised.

  10. Resolving the complexity of the human genome using single-molecule sequencing.

    Science.gov (United States)

    Chaisson, Mark J P; Huddleston, John; Dennis, Megan Y; Sudmant, Peter H; Malig, Maika; Hormozdiari, Fereydoun; Antonacci, Francesca; Surti, Urvashi; Sandstrom, Richard; Boitano, Matthew; Landolin, Jane M; Stamatoyannopoulos, John A; Hunkapiller, Michael W; Korlach, Jonas; Eichler, Evan E

    2015-01-29

    The human genome is arguably the most complete mammalian reference assembly, yet more than 160 euchromatic gaps remain and aspects of its structural variation remain poorly understood ten years after its completion. To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing. We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome--78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology.

  11. A fast divide-and-conquer algorithm for indexing human genome sequences

    CERN Document Server

    Loh, Woong-Kee; Lee, Wookey

    2010-01-01

    Since the release of human genome sequences, one of the most important research issues is about indexing the genome sequences, and the suffix tree is most widely adopted for that purpose. The traditional suffix tree construction algorithms have severe performance degradation due to the memory bottleneck problem. The recent disk-based algorithms also have limited performance improvement due to random disk accesses. Moreover, they do not fully utilize the recent CPUs with multiple cores. In this paper, we propose a fast algorithm based on 'divide-and-conquer' strategy for indexing the human genome sequences. Our algorithm almost eliminates random disk accesses by accessing the disk in the unit of contiguous chunks. In addition, our algorithm fully utilizes the multi-core CPUs by dividing the genome sequences into multiple partitions and then assigning each partition to a different core for parallel processing. Experimental results show that our algorithm outperforms the previous fastest DIGEST algorithm by up t...

  12. Combined sequencing of mRNA and DNA from human embryonic stem cells.

    Science.gov (United States)

    Mertes, Florian; Kuhl, Heiner; Wruck, Wasco; Lehrach, Hans; Adjaye, James

    2016-06-01

    Combined transcriptome and whole genome sequencing of the same ultra-low input sample down to single cells is a rapidly evolving approach for the analysis of rare cells. Besides stem cells, rare cells originating from tissues like tumor or biopsies, circulating tumor cells and cells from early embryonic development are under investigation. Herein we describe a universal method applicable for the analysis of minute amounts of sample material (150 to 200 cells) derived from sub-colony structures from human embryonic stem cells. The protocol comprises the combined isolation and separate amplification of poly(A) mRNA and whole genome DNA followed by next generation sequencing. Here we present a detailed description of the method developed and an overview of the results obtained for RNA and whole genome sequencing of human embryonic stem cells, sequencing data is available in the Gene Expression Omnibus (GEO) database under accession number GSE69471.

  13. Characteristics of transposable element exonization within human and mouse.

    Directory of Open Access Journals (Sweden)

    Noa Sela

    Full Text Available Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.

  14. Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice

    DEFF Research Database (Denmark)

    Fromont-Racine, M; Bucchini, D; Madsen, O;

    1990-01-01

    Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific tra...... of the transgene was observed in cell types other than beta-islet cells.......Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific......, and -168 allowed correct initiation of the transcripts and cell specificity of expression, while quantitative expression gradually decreased. Deletion to -58 completely abolished the expression of the gene. The amount of human product that in mice harboring the longest fragment contributes up to 50...

  15. Molecular cloning, nucleotide sequence, and expression of the gene encoding human eosinophil differentiation factor (interleukin 5)

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, H.D.; Tucker, W.Q.J.; Hort, Y.; Martinson, M.E.; Mayo, G.; Clutterbuck, E.J.; Sanderson, C.J.; Young, I.G.

    1987-10-01

    The human eosinophil differentiation factor (EDF) gene was cloned from a genomic library in lambda phage EMBL3A by using a murine EDF cDNA clone as a probe. The DNA sequence of a 3.2-kilobase BamHI fragment spanning the gene was determined. The gene contains three introns. The predicted amino acid sequence of 134 amino acids is identical with that recently reported for human interleukin 5 but shows no significant homology with other known hemopoietic growth regulators. The amino acid sequence shows strong homology (approx. 70% identity) with that of murine EDF. Recombinant human EDF, expressed from the human EDF gene after transfection into monkey COS cells, stimulated the production of eosinophils and eosinophil colonies from normal human bone marrow but had no effect on the production of neutrophils or mononuclear cells (monocytes and lymphoid cells). The apparent specificity of human EDF for the eosinophil lineage in myeloid hemopoiesis contrasts with the properties of human interleukin 3 and granulocyte/macrophage and granulocyte colony-stimulating factors but is directly analogous to the biological properties of murine EDF. Human EDF therefore represents a distinct hemopoietic growth factor that could play a central role in the regulation of eosinophilia.

  16. Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives

    Directory of Open Access Journals (Sweden)

    Vincenza Precone

    2015-01-01

    Full Text Available Next-generation sequencing (NGS technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology’s flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics.

  17. Human genome: proto-oncogenes and proretroviruses.

    Science.gov (United States)

    Kisselev, L L; Chumakov, I M; Zabarovsky, E R; Prassolov, V S; Mett, V L; Berditchevsky, F B; Tret'yakov, L D

    1985-01-01

    A brief review of the studies undertaken at the Laboratory for Molecular Bases of Oncogenesis (Institute of Molecular Biology, Moscow) till middle of 1984 is presented. The human genome contains multiple dispersed nucleotide sequences related to the proto-oncogene mos and to proretroviral sequences in tight juxtaposition to each other. From sequencing appropriate cloned fragments of human DNA in phage and plasmid vectors it follows that one of these regions, NV-1, is a pseudogene of proto-mos with partial duplications and two Alu elements intervening its coding sequence, and the other, CL-1, seems to be also a mos-related gene with a deletion of the internal part of the structural gene. CL-1 is flanked by a proretroviral-like sequence including tRNAiMet binding site and U5 (part of the long terminal repeat). The proretroviral-like sequences are transcribed in 21-35S poly(A)+RNA abundant in normal and malignant human cells. Two hypotheses are proposed: endogenous retroviruses take part in amplification of at least some proto-oncogenes; proto-oncogenes are inactivated via insertion of movable genetic elements and conversion into pseudogenes. Potential oncogenicity of a normal human genome undergoes two controversial influences: it increases due to proto-oncogene amplification and decreases due to inactivation of some of them.

  18. RNA聚合酶Ⅱ转录的ALU序列对HEK293细胞凋亡的影响%Effect of RNA PolⅡ Driven ALU Transcripts on Apoptosis of HEK293 Cells

    Institute of Scientific and Technical Information of China (English)

    李璇; 唐开福; 高建; 杨梅; 胡文艳; 田绿; 彭湃澜; 王峰; 高昌益; 任红

    2011-01-01

    目的 探讨RNA聚合酶Ⅱ转录的ALU序列对人胚肾293(HEK293)细胞凋亡的影响以及干扰素(IFN)在此机制中的作用.方法 取对数生长期的HEK293细胞,分为6组,ALU-293组(瞬时转染重组质粒pcDNA3.1-ALU)、peDNA3.1-293组[瞬时转染空质粒peDNA3.1(-),作为阴性对照],Poly Ⅰ:C-293组[瞬时转染dsRNA的多聚肌苷胞苷酸(Poly Ⅰ:C),作为阳性对照]、IFNβ-293组(加入1.65×104U IFNβ,作为阳性对照)、空白对照组(未经处理的HEK293细胞)和HBs-293组(瞬时转染重组质粒pcDNA3.1-HBs),转染后48 h,采用MTT法检测细胞的增殖活性;Cellular DNA Fragmentation ELISA和DNA Ladder 法检测细胞的凋亡情况;Real-time PCR检测细胞中IFNβ基因mRNA的水平.结果 瞬时转染重组质粒pcDNA3.1-ALU能够抑制HEK293细胞增殖,并促使其凋亡,且细胞中IFNβ mRNA的水平显著上调.结论 RNA聚合酶Ⅱ转录的ALU序列能够通过激活干扰素系统来诱导细胞凋亡.%Objective To investigate the effect of RNA Pol Ⅱ driven ALU transcripts on the apoptosis of human embryonic kidney 293 (HEK293) cells as well as the role of IFN in this mechanism.Methods The HEK293 cells at logarithmic growth phase were divided into six groups.The cells in ALU-293, pcDNA3.1-293, Poly Ⅰ: C-293 and HBs-293 groups were transiently transfected with recombinant plasmid pcDNA3.1-ALU, empty vector pcDNA3.1 (-) (negative control ), Poly Ⅰ: C ( positive control ), recombinant plasmid pcDNA3.1-HBs respectively, while those in IFNβ-293 group was added with 1.65 × 104 U IFNβ (positive control ).However, the cells in blank control group were untreated.The cells in various groups 48 h after transfection were determined for proliferative activity by MTT method, for apoptosis by Cellular DNA Fragmentation ELISA and DNA ladder, and for IFNβ mRNA level by real-time PCR.Results Transient transfection with recombinant plasmid pcDNA3.1-ALU inhibited the proliferation and promoted the apoptosis of HEK293

  19. A novel tandem repeat sequence located on human chromosome 4p: isolation and characterization.

    Science.gov (United States)

    Kogi, M; Fukushige, S; Lefevre, C; Hadano, S; Ikeda, J E

    1997-06-01

    In an effort to analyze the genomic region of the distal half of human chromosome 4p, to where Huntington disease and other diseases have been mapped, we have isolated the cosmid clone (CRS447) that was likely to contain a region with specific repeat sequences. Clone CRS447 was subjected to detailed analysis, including chromosome mapping, restriction mapping, and DNA sequencing. Chromosome mapping by both a human-CHO hybrid cell panel and FISH revealed that CRS447 was predominantly located in the 4p15.1-15.3 region. CRS447 was shown to consist of tandem repeats of 4.7-kb units present on chromosome 4p. A single EcoRI unit was subcloned (pRS447), and the complete sequence was determined as 4752 nucleotides. When pRS447 was used as a probe, the number of copies of this repeat per haploid genome was estimated to be 50-70. Sequence analysis revealed that it contained two internal CA repeats and one putative ORF. Database search established that this sequence was unreported. However, two homologous STS markers were found in the database. We concluded that CRS447/pRS447 is a novel tandem repeat sequence that is mainly specific to human chromosome 4p.

  20. Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure

    DEFF Research Database (Denmark)

    Torarinsson, Elfar; Sawera, Milena; Havgaard, Jakob Hull

    2006-01-01

    been investigated. Owing to the limitations in computational methods, comparative genomics has been lacking the ability to compare such nonconserved sequence regions for conserved structural RNA elements. We have investigated the presence of structural RNA elements by conducting a local structural...... alignment, using FOLDALIGN, on a subset of these 100,000 corresponding regions and estimate that 1800 contain common RNA structures. Comparing our results with the recent mapping of transcribed fragments (transfrags) in human, we find that high-scoring candidates are twice as likely to be found in regions...... expressed non-coding RNA sequences not alignable in primary sequence....

  1. Songbirds and humans apply different strategies in a sound sequence discrimination task

    Directory of Open Access Journals (Sweden)

    Yoshimasa eSeki

    2013-07-01

    Full Text Available The abilities of animals and humans to extract rules from sound sequences have previously been compared using observation of spontaneous responses and conditioning techniques. However, the results were inconsistently interpreted across studies possibly due to methodological and/or species differences. Therefore, we examined the strategies for discrimination of sound sequences in Bengalese finches and humans using the same protocol. Birds were trained on a GO/NOGO task to discriminate between two categories of sound stimulus generated based on an AAB or ABB rule. The sound elements used were taken from a variety of male (M and female (F calls, such that the sequences could be represented as MMF and MFF. In test sessions, FFM and FMM sequences, which were never presented in the training sessions but conformed to the rule, were presented as probe stimuli. The results suggested two discriminative strategies were being applied: 1 memorizing sound patterns of either GO or NOGO stimuli and generating the appropriate responses for only those sounds; and 2 using the repeated element as a cue. There was no evidence that the birds successfully extracted the abstract rule (i.e. AAB and ABB; MMF-GO subjects did not produce a GO response for FFM and vice versa. Next we examined whether those strategies were also applicable for human participants on the same task. The results and questionnaires revealed that participants extracted the abstract rule, and most of them employed it to discriminate the sequences. This strategy was never observed in bird subjects, although some participants used strategies similar to the birds when responding to the probe stimuli. Our results showed that the human participants applied the abstract rule in the task even without instruction but Bengalese finches did not, thereby reconfirming that humans have to extract abstract rules from sound sequences that is distinct from non-human animals.

  2. Selection and fine mapping of chromosome-specific cDNAs: application to human chromosome 1.

    Science.gov (United States)

    Mancini, M; Sala, C; Rivella, S; Toniolo, D

    1996-12-01

    We have developed a methodology for identification and fine mapping of chromosome-specific transcripts. Combining digestion of DNA with different restriction enzymes, ligation to "bubble" linkers, and PCR amplification from Alu and "bubble" primers, we have synthesized human chromosome 1-specific sequences from DNA of a somatic cell hybrid, A9Neol. After hybridization to human fetal brain cDNA, we could efficiently capture chromosome 1-specific cDNAs. The cDNAs were sequenced and used as probes in hybridizations to high-density filters containing the arrayed CEPH Mega-YAC library and to the arrayed cDNA library from infant brain made by B. Soares, which has been extensively sequenced. By this approach we have been able to select chromosome 1-specific cDNAs, to map them to chromosome 1 YAC contigs, and to identify and map corresponding longer cDNAs and ESTs.

  3. Repetitive elements may comprise over two-thirds of the human genome.

    Directory of Open Access Journals (Sweden)

    A P Jason de Koning

    2011-12-01

    Full Text Available Transposable elements (TEs are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo "clouds". We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%-69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM, to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (∼25 bp. Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed "element-specific" P-clouds (ESPs to identify novel Alu and MIR SINE elements, and using it we identified ∼100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed.

  4. One common structural feature of "words" in protein sequences and human texts.

    Science.gov (United States)

    Zemková, M; Trifonov, E N; Zahradník, D

    2014-01-01

    Frequently discussed analogy between genetic and human texts is explored by comparison of alternation of polar and non-polar amino-acid residues in proteins and alternation of consonants and vowels in human texts. In human languages, the usage of possible combinations of consonants and vowels is influenced by pronounceability of the combinations. Similarly, oligopeptide composition of proteins is influenced by requirements of protein folding and stability. One special type of structure often present in proteins is amphipathic α-helices in which polar and non-polar amino acids alternate with the period 3.5 residues, not unlike alternation of consonants and vowels. In this study, we evaluated the contribution made by amphipathic alternations to the protein sequence texts (20-24%). Their proportion is lower than respective values for alternating words in human texts (57-89%). The proteomes (full sets of proteins for selected organisms) were transformed into ranked sequences of n-grams (words of length n), including periodical amphipathic structures. Similarly, human texts were transformed into sequences of alternating consonants and vowels. Analysis of the vocabularies shows that in both types of texts (human languages and proteins) the alternating words are dominant or highly preferred, thus, strengthening the analogy between these two types of texts. The contribution of amphipathic words in the upper parts of the ranked lists for 10 analyzed proteomes varies between 58 and 74%. In human texts respective values range between 90 and 100%.

  5. Nutritional elements and alu- minium accumulation in Xerocomus badius mushrooms

    Directory of Open Access Journals (Sweden)

    Mirosław Mleczek

    2013-12-01

    Full Text Available Introduction. This paper constitutes a supplementary study of the research conducted to assess accumulation efficiency of selected trace elements by Xerocomus badius fruiting bodies picked in some regions of Poland in selected years. Material  and methods. Atomic absorption/emission spectrometry techniques (FAAS and AES were applied to determine in the fruiting bodies of this mushroom species the total contents of Ca, K, Mg and Na, as well as Al as a metal capable of entering into easy interactions with nutritional elements and inhibiting their proper action in the human organism. Results. The highest concentrations of Al, K and Mg were determined in mushroom fruiting bodies collected in the Lower Silesia Voivodeship, amounting to 28.08 ±5.81 mg·kg-1d.w., 2.39 ±0.21 g·kg-1d.w. and 372.31 ±90.55 mg·kg-1d.w., respectively. On the other  hand, the highest concentrations of Ca (78.08 ±24.64 mg·kg-1 d.w. were recorded in mushrooms from the Łódź Voivodeship, while the highest concentrations of Na (77.03 ±20.46 mg·kg-1d.w. – in those from the Pomeranian Voivodeship were observed. In general, BCF > 1 was found only for K accumulation. Conclusion. Concentrationsof nutritional elements determined in this study revealed that the consumption of X. badius fruiting bodies supplied only small quantities of these constituents in comparison with the amounts consumed in other products. The detected Al concentrations showed that fruiting bodies of this mushroom species consumed in Poland during the past 20 years could not lead to health problems caused by the presence of this metal.

  6. Partial primary structure of human pregnancy zone protein: extensive sequence homology with human alpha 2-macroglobulin

    DEFF Research Database (Denmark)

    Sottrup-Jensen, Lars; Folkersen, J; Kristensen, Torsten

    1984-01-01

    the results of complete or partial sequence determination of a random selection of 38 tryptic peptides covering 685 residues of the subunit of PZP, that PZP and alpha 2M indeed are extensively homologous. In the stretches of PZP sequenced so far, the degree of identically placed residues in the two proteins...

  7. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in lambda gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated lambda hARG6 and lambda hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying lambda hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes.

  8. Production of Recombinant Vector Containing the Coding Sequence of Human Hepcidin

    Directory of Open Access Journals (Sweden)

    Keyhanvar, N.

    2013-01-01

    Full Text Available Background and objective: Hepcidin is a cystein-rich antimicrobial peptide,which is secreted by the liver. It fights against wide spectrum of bacteria, virusesand fungi and it is a major regulator of iron homeostasis. Today, scientists havemade many efforts on the production of hepcidin. Baculovirus expression systemis one of the best eukaryotic expression systems for production of recombinanthepcidin and production of the recombinant vector is one of the most importantsteps in this expression system.Material & Methods: First, the total RNA was separated from HepG2 cell lineas a source of hepcidin expression. Then, after synthesis of total cDNA, humanhepcidin sequence was amplified, using specific primers by PCR method. Next,hepcidin sequence was cloned into pTZ57R/T vector. After digestion ofrecombinant vector using ECoRI and BamHI restriction enzymes, recombinantpFastBac HT B vector containing human hepcidin cDNA was produced.Results: Coding sequence of human hepcidin is correctly cloned into pTZ57R/Tvector and sub cloning into pFastBac HT B vector is performed successfully. Thepresence of a clear band near 274 bp resulted from PCR amplification andrestriction enzyme are the confirmation of the cloning of human hepcidin.Conclusion: According to our knowledge, the present study is the first work thatfocuses on recombinant vector containing coding sequence of human prohepcidin.This recombinant vector can be used for human hepcidin production.Keywords: Vector; Hepcidin; Iron

  9. A comprehensive assay for targeted multiplex amplification of human DNA sequences.

    Science.gov (United States)

    Krishnakumar, Sujatha; Zheng, Jianbiao; Wilhelmy, Julie; Faham, Malek; Mindrinos, Michael; Davis, Ronald

    2008-07-01

    We developed a robust and reproducible methodology to amplify human sequences in parallel for use in downstream multiplexed sequence analyses. We call the methodology SMART (Spacer Multiplex Amplification Reaction), and it is based, in part, on padlock probe technology. As a proof of principle, we used SMART technology to simultaneously amplify 485 human exons ranging from 100 to 500 bp from human genomic DNA. In multiple repetitions, >90% of the targets were successfully amplified with a high degree of uniformity, with 70% of targets falling within a 10-fold range and all products falling within a 100-fold range of each other in abundance. We used long padlock probes (LPPs) >300 bases in length for the assay, and the increased length of these probes allowed for the capture of human sequences up to 500 bp in length, which is optimal for capturing most human exons. To engineer the LPPs, we developed a method that generates ssDNA molecules with precise ends, using an appropriately designed dsDNA template. The template has appropriate restriction sites engineered into it that can be digested to generate nucleotide overhangs that are suitable for lambda exonuclease digestion, producing a single-stranded probe from dsDNA. The SMART technology is flexible and can be easily adapted to multiplex tens of thousands of target sequences in a single reaction.

  10. Distribution of trinucleotide microsatellites in different categories of mammalian genomic sequence: Implications for human genetic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, R.L. (Univ. of Pittsburgh, PA (United States))

    1994-05-01

    The distribution of all trinucleotide microsatellite sequences in the GenBank database was surveyed to provide insight into human genetic disease syndromes that result from expansion of microsatellites. The microsatellite motif (CAG)[sub n] is one of the most abundant microsatellite motifs in human GenBank DNA sequences and is the most abundant microsatellite found in exons. This fact may explain why (CAG)[sub n] repeats are thus far the predominant microsatellites expanded in human genetic diseases. Surprisingly, (CAG)[sub n] microsatellites are excluded from intronic regions in a strand-specific fashion, possibly because of similarity to the 3[prime] consensus splice site, CAGG. A comparison of the positions of microsatellites in human vs rodent homologous sequences indicates that some arrays are not extensively conserved for long periods of time, even when they form parts of protein coding sequences. The general lack of conservation of trinucleotide repeat loci in diverse mammals indicates that animal models for some human microsatellite expansion syndromes may be difficult to find. 20 refs., 5 tabs.

  11. Expression of the human glucokinase gene: important roles of the 5' flanking and intron 1 sequences.

    Directory of Open Access Journals (Sweden)

    Yi Wang

    Full Text Available BACKGROUND: Glucokinase plays important tissue-specific roles in human physiology, where it acts as a sensor of blood glucose levels in the pancreas, and a few other cells of the gut and brain, and as the rate-limiting step in glucose metabolism in the liver. Liver-specific expression is driven by one of the two tissue-specific promoters, and has an absolute requirement for insulin. The sequences that mediate regulation by insulin are incompletely understood. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the liver-specific expression of the human glucokinase gene we compared the structures of this gene from diverse mammals. Much of the sequence located between the 5' pancreatic beta-cell-specific and downstream liver-specific promoters of the glucokinase genes is composed of repetitive DNA elements that were inserted in parallel on different mammalian lineages. The transcriptional activity of the liver-specific promoter 5' flanking sequences were tested with and without downstream intronic sequences in two human liver cells lines, HepG2 and L-02. While glucokinase liver-specific 5' flanking sequences support expression in liver cell lines, a sequence located about 2000 bases 3' to the liver-specific mRNA start site represses gene expression. Enhanced reporter gene expression was observed in both cell lines when cells were treated with fetal calf serum, but only in the L-02 cells was expression enhanced by insulin. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the normal liver L-02 cell line may be a better model to understand the regulation of the liver-specific expression of the human glucokinase gene. Our results also suggest that sequences downstream of the liver-specific mRNA start site have important roles in the regulation of liver-specific glucokinase gene expression.

  12. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences

    Directory of Open Access Journals (Sweden)

    Shade Larry L

    2006-06-01

    Full Text Available Abstract Background Approximately 11 Mb of finished high quality genomic sequences were sampled from cattle, dog and human to estimate genomic divergences and their regional variation among these lineages. Results Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci (each >50 kb of genomic sequence were constructed using the human and dog genome assemblies as references. Genomic divergences and substitution rates were examined for each clone and for various sequence classes under different functional constraints. Analysis of these alignments revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site for pairwise comparisons among cattle, dog and human; however substitution rates vary across genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9 change/site/year was derived from ancestral repetitive sequences, whereas the substitution rate in coding sequences (1.1 × 10(-9 change/site/year was approximately half of the overall rate (1.9–2.0 × 10(-9 change/site/year. Relative rate tests also indicated that cattle have a significantly faster rate of substitution as compared to dog and that this difference is about 6%. Conclusion This analysis provides a large-scale and unbiased assessment of genomic divergences and regional variation of substitution rates among cattle, dog and human. It is expected that these data will serve as a baseline for future mammalian molecular evolution studies.

  13. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples

    Directory of Open Access Journals (Sweden)

    Maley Carlo C

    2008-10-01

    Full Text Available Abstract Background Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. Results We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12 genomes. Virtually all possible (> 98% 12 bp oligomers appear in vertebrate genomes while 98% to D. melanogaster (12–17 bp, C. elegans (11–17 bp, A. thaliana (11–17 bp, S. cerevisiae (10–16 bp and E. coli (9–15 bp. Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Conclusion Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden structure that had not been previously recognized. This information may be used to detect

  14. Multilocus sequence types of Finnish bovine Campylobacter jejuni isolates and their attribution to human infections

    Directory of Open Access Journals (Sweden)

    Corander Jukka

    2010-07-01

    Full Text Available Abstract Background Campylobacter jejuni is the most common bacterial cause of human gastroenteritis worldwide. Due to the sporadic nature of infection, sources often remain unknown. Multilocus sequence typing (MLST has been successfully applied to population genetics of Campylobacter jejuni and mathematical modelling can be applied to the sequence data. Here, we analysed the population structure of a total of 250 Finnish C. jejuni isolates from bovines, poultry meat and humans collected in 2003 using a combination of Bayesian clustering (BAPS software and phylogenetic analysis. Results In the first phase we analysed sequence types (STs of 102 Finnish bovine C. jejuni isolates by MLST and found a high diversity totalling 50 STs of which nearly half were novel. In the second phase we included MLST data from domestic human isolates as well as poultry C. jejuni isolates from the same time period. Between the human and bovine isolates we found an overlap of 72.2%, while 69% of the human isolates were overlapping with the chicken isolates. In the BAPS analysis 44.3% of the human isolates were found in bovine-associated BAPS clusters and 45.4% of the human isolates were found in the poultry-associated BAPS cluster. BAPS reflected the phylogeny of our data very well. Conclusions These findings suggest that bovines and poultry were equally important as reservoirs for human C. jejuni infections in Finland in 2003. Our results differ from those obtained in other countries where poultry has been identified as the most important source for human infections. The low prevalence of C. jejuni in poultry flocks in Finland could explain the lower attribution of human infection to poultry. Of the human isolates 10.3% were found in clusters not associated with any host which warrants further investigation, with particular focus on waterborne transmission routes and companion animals.

  15. The sequence and analysis of duplication-rich human chromosome 16.

    Science.gov (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Chan, Yee Man; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C; Bruno, William J; Buckingham, Judith M; Callen, David F; Campbell, Connie S; Campbell, Mary L; Campbell, Evelyn W; Caoile, Chenier; Challacombe, Jean F; Chasteen, Leslie A; Chertkov, Olga; Chi, Han C; Christensen, Mari; Clark, Lynn M; Cohn, Judith D; Denys, Mirian; Detter, John C; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A; Grady, Deborah L; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip B; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Manohar, Chitra F; Mark, Graham A; McMurray, Kimberly L; Meincke, Linda J; Morgan, Jenna; Moyzis, Robert K; Mundt, Mark O; Munk, A Christine; Nandkeshwar, Richard D; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O; Robinson, Donna L; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H; Scott, Duncan; Shough, Timothy; Stallings, Raymond L; Stalvey, Malinda; Sutherland, Robert D; Tapia, Roxanne; Tesmer, Judith G; Thayer, Nina; Thompson, Linda S; Tice, Hope; Torney, David C; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E; Ustaszewska, Anna; Vo, Nu; White, P Scott; Williams, Albert L; Wills, Patricia L; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; Dejong, Pieter; Bruce, David; Doggett, Norman A; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; Rokhsar, Daniel S; Eichler, Evan E; Gilna, Paul; Lucas, Susan M; Myers, Richard M; Rubin, Edward M; Pennacchio, Len A

    2004-12-23

    Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,670 aligned transcripts, 19 transfer RNA genes, 341 pseudogenes and three RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukaemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. Whereas the segmental duplications of chromosome 16 are enriched in the relatively gene-poor pericentromere of the p arm, some are involved in recent gene duplication and conversion events that are likely to have had an impact on the evolution of primates and human disease susceptibility.

  16. Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes.

    Science.gov (United States)

    Weingarten-Gabbay, Shira; Elias-Kirma, Shani; Nir, Ronit; Gritsenko, Alexey A; Stern-Ginossar, Noam; Yakhini, Zohar; Weinberger, Adina; Segal, Eran

    2016-01-15

    To investigate gene specificity at the level of translation in both the human genome and viruses, we devised a high-throughput bicistronic assay to quantify cap-independent translation. We uncovered thousands of novel cap-independent translation sequences, and we provide insights on the landscape of translational regulation in both humans and viruses. We find extensive translational elements in the 3' untranslated region of human transcripts and the polyprotein region of uncapped RNA viruses. Through the characterization of regulatory elements underlying cap-independent translation activity, we identify potential mechanisms of secondary structure, short sequence motif, and base pairing with the 18S ribosomal RNA (rRNA). Furthermore, we systematically map the 18S rRNA regions for which reverse complementarity enhances translation. Thus, we make available insights into the mechanisms of translational control in humans and viruses.

  17. Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome

    Directory of Open Access Journals (Sweden)

    Bradley D. Gelfand

    2015-06-01

    Full Text Available Excess iron induces tissue damage and is implicated in age-related macular degeneration (AMD. Iron toxicity is widely attributed to hydroxyl radical formation through Fenton’s reaction. We report that excess iron, but not other Fenton catalytic metals, induces activation of the NLRP3 inflammasome, a pathway also implicated in AMD. Additionally, iron-induced degeneration of the retinal pigmented epithelium (RPE is suppressed in mice lacking inflammasome components caspase-1/11 or Nlrp3 or by inhibition of caspase-1. Iron overload increases abundance of RNAs transcribed from short interspersed nuclear elements (SINEs: Alu RNAs and the rodent equivalent B1 and B2 RNAs, which are inflammasome agonists. Targeting Alu or B2 RNA prevents iron-induced inflammasome activation and RPE degeneration. Iron-induced SINE RNA accumulation is due to suppression of DICER1 via sequestration of the co-factor poly(C-binding protein 2 (PCBP2. These findings reveal an unexpected mechanism of iron toxicity, with implications for AMD and neurodegenerative diseases associated with excess iron.

  18. Identifikasi Keragaman Genetik Gen Reseptor Hormon Pertumbuhan (GHR|Alu I pada Sapi Bali

    Directory of Open Access Journals (Sweden)

    Zulkharnaim

    2010-08-01

    Full Text Available Growth hormone receptor (GHR is one factor affecting animal growth. GHR is required by growth hormone (GH to carry out its effects on target tissues. The objective of the study was to estimate genetic diversity of the GHR|AluI gene in bali, limousin, simmental and pesisir cattle. Genotyping was performed on 248 animals, including 162 bali, 21 limousin, 17 simmental and 48 pesisir. Single nucleotide polymorphisms (SNP had been found in exon 10, coding for the cytoplasmic domain of GHR, which was located at position 81 bp (A/G induced amino acid substitutions Ser/Gly. Genotype frequencies of bali cattle AA (0.988, GG (0.006 and AG (0.006 were evidenced for the GHR AluI monomorphism, but mostly different from limousin GG (0.667, AA (0.238 and AG (0.095, simmental AG (0.529, GG (0.471 and AA (0.000, pesisir AA (0.604, GG (0.375 and AG (0.021 were the evidence of polymorphism. Homozigosity (monomorphism in bali cattle might be affected by adaptability in extreme environmental conditions such as poor nutrition and improper management practices. It also could be affected by natural selection and phenotype plasticity phenomena.

  19. Evidence for integration of retroviral vectors in a novel human repeat sequence

    Energy Technology Data Exchange (ETDEWEB)

    Kurdi-Haidar, B.; Friedmann, T. [USCD School of Medicine, La Jolla, CA (United States)

    1994-09-01

    Retroviruses have become attractive vehicles for the introduction of foreign genes into mammalian cells not only for gene therapy but also to serve as anchor points for long-range mapping purposes. The information relating to retroviral integration in mammalian cells is derived mostly from studies of rodent genomes. The absence of information regarding integration sites of murine-based retroviral vectors in human cells has prompted us to investigate the characteristics of integration sites in the human genome. We have constructed a Moloney murine leukemia virus-based retroviral vector that carries the pUC8 origin of replication and the chloramphenicol resistance gene to allow the rescue of the flanking genomic sequences in plasmid form. We have infected human primary fibroblasts and myoblasts with this retroviral vector and isolated independently transduced clones. Genomic DNA was obtained from independent clones and the genomic fragment carrying the provirus-host sequence boundary was isolated after digestion of the genomic DNA, circularization, and transformation by electroporation of E. coli C cells to chloramphenicol resistance. Restriction map and nucleotide sequence analysis of the rescued plasmids showed that a number of the clones shared the same integration site within the human genome. We have used the nucleotide sequence information about the human DNA adjacent to the 3{prime}LTR to design a PCR-based assay diagnostic for this common integration site. Analysis revealed the presence of the same integration site in four out of twelve human primary fibroblast clones infected with this specific retroviral vector, and in one out of twelve human primary myoblast clones infected with a second retroviral vector. Further analysis revealed the common integration site to be a previously unreported primate repeat present in monkey and human genomes and absent from rodent, bovine and avian genomes.

  20. A human cellular sequence implicated in trk oncogene activation is DNA damage inducible

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishai, R.; Scharf, R.; Sharon, R.; Kapten, I. (Technion-Israel Institute of Technology, Haifa (Israel))

    1990-08-01

    Xeroderma pigmentosum cells, which are deficient in the repair of UV light-induced DNA damage, have been used to clone DNA-damage-inducible transcripts in human cells. The cDNA clone designated pC-5 hybridizes on RNA gel blots to a 1-kilobase transcript, which is moderately abundant in nontreated cells and whose synthesis is enhanced in human cells following UV irradiation or treatment with several other DNA-damaging agents. UV-enhanced transcription of C-5 RNA is transient and occurs at lower fluences and to a greater extent in DNA-repair-deficient than in DNA-repair-proficient cells. Southern blot analysis indicates that the C-5 gene belongs to a multigene family. A cDNA clone containing the complete coding sequence of C-5 was isolated. Sequence analysis revealed that it is homologous to a human cellular sequence encoding the amino-terminal activating sequence of the trk-2h chimeric oncogene. The presence of DNA-damage-responsive sequences at the 5' end of a chimeric oncogene could result in enhanced expression of the oncogene in response to carcinogens.

  1. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    KAUST Repository

    Dalgleish, Raymond

    2010-04-15

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  2. Cloning and Sequence Analysis of Light Variable Region Gene of Anti-human Retinoblastoma Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Zhong; Yongping Li; Shuqi Huang; Bo Ning; Chunyan Zhang; Jianliang Zheng; Guanguang Feng

    2002-01-01

    Purpose: To clone the variable region gene of light chain of monoclonal antibody against human retinoblastoma and to analyze the characterization of its nucleotide sequence as well as amino acid sequence.Methods: Total RNA was extracted from 3C6 hybridoma cells secreting specific monoclonal antibody(McAb)against human retinoblastoma(RB), then transcripted reversely into cDNA with olig-dT primers.The variable region of the light chain (VL) gene fragments was amplified using polymeerase chain reaction(PCR) and further cloned into pGEM(R) -T Easy vector. Then, 3C6 VL cDNA was sequenced by Sanger's method.Homologous analysis was done by NCBI BLAST.Results: The complete nucleotide sequence of 3C6 VL cDNA consisted of 321 bp encoding 107 amino acid residues, containing four workframe regions(FRs)and three complementarity-determining regions (CDRs) as well as the typical structure of two cys residues. The sequence is most homological to a member of the Vk9 gene family, and its chain utilizes the Jkl gene segment.Conclusion: The light chain variable region gene of the McAb against human RB was amplified successfully , which belongs to the Vk9 gene family and utilizes Vk-Jk1 gene rearrangement. This study lays a good basis for constructing a recombinant antibody and for making a new targeted therapeutic agents against retinoblastoma.

  3. Next-generation sequencing analysis for detecting human papillomavirus in oral verrucous carcinoma.

    Science.gov (United States)

    Samman, Manar; Wood, Henry; Conway, Caroline; Berri, Stefano; Pentenero, Monica; Gandolfo, Sergio; Cassenti, Adele; Cassoni, Paola; Al Ajlan, Abdulaziz; Barrett, A William; Chengot, Preetha; MacLennan, Kenneth; High, Alec S; Rabbitts, Pamela

    2014-07-01

    The etiology of oral verrucous carcinoma is unknown, and human papillomavirus 'involvement' remains contentious. The uncertainty can be attributed to varied detection procedures and difficulties in defining 'gold-standard' histologic criteria for diagnosing 'verrucous' lesions. Their paucity also hampers investigation. We aimed to analyze oral verrucous lesions for human papillomavirus (HPV) subtype genomes. We used next-generation sequencing for the detection of papillomavirus sequences, identifying subtypes and computing viral loads. We identified a total of 78 oral verrucous cases (62 carcinomas and 16 hyperplasias). DNA was extracted from all and sequenced at a coverage between 2.5% and 13%. An HPV-16 sequence was detected in 1 carcinoma and 1 hyperplasia, and an HPV-2 sequence was detected in 1 carcinoma out of the 78 cases, with viral loads of 2.24, 8.16, and 0.33 viral genomes per cell, respectively. Our results indicate no conclusive human papillomavirus involvement in oral verrucous carcinoma or hyperplasia. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Cloning, Sequencing, and the Expression of the Elusive Sarcomeric TPM4α Isoform in Humans

    Directory of Open Access Journals (Sweden)

    Dipak K. Dube

    2016-01-01

    Full Text Available In mammals, tropomyosin is encoded by four known TPM genes (TPM1, TPM2, TPM3, and TPM4 each of which can generate a number of TPM isoforms via alternative splicing and/or using alternate promoters. In humans, the sarcomeric isoform(s of each of the TPM genes, except for the TPM4, have been known for a long time. Recently, on the basis of computational analyses of the human genome sequence, the predicted sequence of TPM4α has been posted in GenBank. We designed primer-pairs for RT-PCR and showed the expression of the transcripts of TPM4α and a novel isoform TPM4δ in human heart and skeletal muscle. qRT-PCR shows that the relative expression of TPM4α and TPM4δ is higher in human cardiac muscle. Western blot analyses using CH1 monoclonal antibodies show the absence of the expression of TPM4δ protein (~28 kDa in human heart muscle. 2D western blot analyses with the same antibody show the expression of at least nine distinct tropomyosin molecules with a mass ~32 kD and above in adult heart. By Mass spectrometry, we determined the amino acid sequences of the extracted proteins from these spots. Spot “G” reveals the putative expression of TPM4α along with TPM1α protein in human adult heart.

  5. Cloning, Sequencing, and the Expression of the Elusive Sarcomeric TPM4α Isoform in Humans

    Science.gov (United States)

    Abbott, Lynn; Alshiekh-Nasany, Ruham; Mitschow, Charles

    2016-01-01

    In mammals, tropomyosin is encoded by four known TPM genes (TPM1, TPM2, TPM3, and TPM4) each of which can generate a number of TPM isoforms via alternative splicing and/or using alternate promoters. In humans, the sarcomeric isoform(s) of each of the TPM genes, except for the TPM4, have been known for a long time. Recently, on the basis of computational analyses of the human genome sequence, the predicted sequence of TPM4α has been posted in GenBank. We designed primer-pairs for RT-PCR and showed the expression of the transcripts of TPM4α and a novel isoform TPM4δ in human heart and skeletal muscle. qRT-PCR shows that the relative expression of TPM4α and TPM4δ is higher in human cardiac muscle. Western blot analyses using CH1 monoclonal antibodies show the absence of the expression of TPM4δ protein (~28 kDa) in human heart muscle. 2D western blot analyses with the same antibody show the expression of at least nine distinct tropomyosin molecules with a mass ~32 kD and above in adult heart. By Mass spectrometry, we determined the amino acid sequences of the extracted proteins from these spots. Spot “G” reveals the putative expression of TPM4α along with TPM1α protein in human adult heart. PMID:27703814

  6. Human Immunodeficiency Virus type 1 in seronegative infants born to HIV-1-infected mothers

    Directory of Open Access Journals (Sweden)

    G Reyes-Terán

    2006-06-01

    Full Text Available Abstract Background Some individuals repeatedly exposed to Human Immunodeficiency Virus do not seroconvert and are resistant to HIV infection. Here, in a pediatric cohort of HIV seronegative infants born of HIV-infected mothers, we have studied eight non-breastfed children in whom viral DNA was detected in their PBMC. Our objective was to assess whether silent infection in these children can be explained by the presence of integrated viral DNA. Methods The presence of viral DNA was corroborated by nested PCR with primers for gag and the nef/LTR regions of HIV-1. Integration of HIV DNA into the host genome was assessed by an Alu-LTR PCR. Amplicons were sequenced and phylogenetic analyzes were done. Results HIV-1 DNA was detected in the earliest available PBMC sample from all eight infants, and two of them tested positive for HIV DNA at 2 years of age. Nested PCR resulted in the amplification of gag, nef/LTR and Alu-LTR fragments, which demostrated that HIV-1 DNA was integrated in the host cell genome. Each individual has a characteristic sequence pattern and is different from the LTR sequence of HXB2 prototype virus and other Mexican isolates. Conclusion HIV-1 DNA was observed in PBMC from HIV exposed seronegative children in this pediatric cohort.

  7. Variation in the sequence and modification state of the human insulin gene flanking regions.

    Science.gov (United States)

    Ullrich, A; Dull, T J; Gray, A; Philips, J A; Peter, S

    1982-04-10

    The nucleotide sequence of a highly repetitive sequence region upstream from the human insulin gene is reported. The length of this region varies between alleles in the population, and appears to be stably transmitted to the next generation in a Mendelian fashion. There is no significant correlation between the length of this sequence and two types of diabetes mellitus. We observe variation in the cleavability of a BglI recognition site downstream from the human insulin gene, which is probably due to variable nucleotide modification. This presumed modification state appears not to be inherited, and varies between tissues within an individual and between individuals for a given tissue. Both alleles in a given tissue DNA sample are modified to the same extent.

  8. Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti†

    Science.gov (United States)

    Cornillot, Emmanuel; Hadj-Kaddour, Kamel; Dassouli, Amina; Noel, Benjamin; Ranwez, Vincent; Vacherie, Benoît; Augagneur, Yoann; Brès, Virginie; Duclos, Aurelie; Randazzo, Sylvie; Carcy, Bernard; Debierre-Grockiego, Françoise; Delbecq, Stéphane; Moubri-Ménage, Karina; Shams-Eldin, Hosam; Usmani-Brown, Sahar; Bringaud, Frédéric; Wincker, Patrick; Vivarès, Christian P.; Schwarz, Ralph T.; Schetters, Theo P.; Krause, Peter J.; Gorenflot, André; Berry, Vincent; Barbe, Valérie; Ben Mamoun, Choukri

    2012-01-01

    We have sequenced the genome of the emerging human pathogen Babesia microti and compared it with that of other protozoa. B. microti has the smallest nuclear genome among all Apicomplexan parasites sequenced to date with three chromosomes encoding ∼3500 polypeptides, several of which are species specific. Genome-wide phylogenetic analyses indicate that B. microti is significantly distant from all species of Babesidae and Theileridae and defines a new clade in the phylum Apicomplexa. Furthermore, unlike all other Apicomplexa, its mitochondrial genome is circular. Genome-scale reconstruction of functional networks revealed that B. microti has the minimal metabolic requirement for intraerythrocytic protozoan parasitism. B. microti multigene families differ from those of other protozoa in both the copy number and organization. Two lateral transfer events with significant metabolic implications occurred during the evolution of this parasite. The genomic sequencing of B. microti identified several targets suitable for the development of diagnostic assays and novel therapies for human babesiosis. PMID:22833609

  9. Draft Genome Sequences of Historical Listeria monocytogenes from Human Listeriosis, 1933

    Science.gov (United States)

    We report here the draft genome sequences of two Listeria monocytogenes strains from some of the earliest reported cases of human listeriosis in North America. The strains were isolated in 1933 from patients in Massachusetts and Connecticut, USA, and belong to the widely disseminated hypervirulent c...

  10. Draft Genome Sequences of Two Historical Listeria monocytogenes Strains from Human Listeriosis Cases in 1933

    Science.gov (United States)

    Lee, Sangmi; Ward, Todd J.; Orwig, Nathane; Altermann, Eric; Jima, Dereje; Parsons, Cameron; Kathariou, Sophia

    2016-01-01

    We report here the draft genome sequences of two Listeria monocytogenes strains from some of the earliest reported cases of human listeriosis in North America. The strains were isolated in 1933 from patients in Massachusetts and Connecticut, USA, and belong to the widely disseminated hypervirulent clonal complex 1 (CC1) and CC2. PMID:27932656

  11. Draft Genome Sequence of the Animal and Human Pathogen Malassezia pachydermatis Strain CBS 1879

    NARCIS (Netherlands)

    Triana, Sergio; González, Andrés; Ohm, Robin A|info:eu-repo/dai/nl/304837628; Wosten, Han|info:eu-repo/dai/nl/120693186; de Cock, Hans|info:eu-repo/dai/nl/087737116; Restrepo, Silvia; Celis, Adriana

    2015-01-01

    Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity of the only non-lipid-dependent Malasezzia

  12. Draft Genome Sequence of the Animal and Human Pathogen Malassezia pachydermatis Strain CBS 1879.

    Science.gov (United States)

    Triana, Sergio; González, Andrés; Ohm, Robin A; Wösten, Han A B; de Cock, Hans; Restrepo, Silvia; Celis, Adriana

    2015-10-15

    Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity of the only non-lipid-dependent Malasezzia species. Copyright © 2015 Triana et al.

  13. Spatiotemporal Localization and Categorization of Human Actions in Unsegmented Image Sequences

    NARCIS (Netherlands)

    Oikonomopoulos, Antonios; Patras, Ioannis; Pantic, Maja

    2011-01-01

    In this paper we address the problem of localization and recognition of human activities in unsegmented image sequences. The main contribution of the proposed method is the use of an implicit representation of the spatiotemporal shape of the activity which relies on the spatiotemporal localization o

  14. Draft Genome Sequence of Veillonella parvula HSIVP1, Isolated from the Human Small Intestine

    NARCIS (Netherlands)

    Bogert, B. van den; Boekhorst, J.; Smid, E.J.; Zoetendal, E.G.; Kleerebezem, M.

    2013-01-01

    Veillonella species are frequently encountered commensals in the human small intestine. Here, we report the draft genome sequence of the first cultured representative from this ecosystem, Veillonella parvula strain HSIVP1. The genome is predicted to encode all the necessary enzymes required for the

  15. Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA

    DEFF Research Database (Denmark)

    Cowell, G M; Kønigshøfer, E; Danielsen, E M

    1988-01-01

    The complete primary structure (967 amino acids) of an intestinal human aminopeptidase N (EC 3.4.11.2) was deduced from the sequence of a cDNA clone. Aminopeptidase N is anchored to the microvillar membrane via an uncleaved signal for membrane insertion. A domain constituting amino acid 250...

  16. Complete Genome Sequences of Four Different Bordetella sp. Isolates Causing Human Respiratory Infections

    Science.gov (United States)

    Peng, Yanhui; Loparev, Vladimir; Batra, Dhwani; Bowden, Katherine E.; Cassiday, Pamela K.; Davis, Jamie K.; Johnson, Taccara; Juieng, Phalasy; Miner, Christine E.; Rowe, Lori; Sheth, Mili; Tondella, M. Lucia; Williams, Margaret M.

    2016-01-01

    Species of the genus Bordetella associate with various animal hosts, frequently causing respiratory disease. Bordetella pertussis is the primary agent of whooping cough and other Bordetella species can cause similar cough illness. Here, we report four complete genome sequences from isolates of different Bordetella species recovered from human respiratory infections.

  17. Single-Cell Sequencing of Human Pancreatic Islets-New Kids on the Block.

    Science.gov (United States)

    Prasad, Rashmi B; Groop, Leif

    2016-10-11

    RNA sequencing of human pancreatic islets has provided important insights into the islet transcriptome but little information on the specific cells. In this issue, Segerstolpe et al. (2016) and Xin et al. (2016b) report on the transcriptome of single pancreatic cells from non-diabetic and type 2 diabetic donors. Copyright © 2016. Published by Elsevier Inc.

  18. Countering Gattaca: Efficient and Secure Testing of Fully-Sequenced Human Genomes

    CERN Document Server

    Baldi, Pierre; De Cristofaro, Emiliano; Gasti, Paolo; Tsudik, Gene

    2011-01-01

    Recent advances in DNA sequencing technologies have put ubiquitous availability of fully sequenced human genomes within reach. It is no longer hard to imagine the day when everyone will have the means to obtain and store one's own DNA sequence. Widespread and affordable availability of fully sequenced genomes immediately opens up important opportunities in a number of health-related fields. In particular, common genomic applications and tests performed in vitro today will soon be conducted computationally, using digitized genomes. New applications will be developed as genome-enabled medicine becomes increasingly preventive and personalized. However, this progress also prompts significant privacy challenges associated with potential loss, theft, or misuse of genomic data. In this paper, we begin to address genomic privacy by focusing on three important applications: Paternity Tests, Personalized Medicine, and Genetic Compatibility Tests. After carefully analyzing these applications and their privacy requiremen...

  19. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Ploug, M;

    1990-01-01

    -PA. The purified protein shows a single 55-60 kDa band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. It is a heavily glycosylated protein, the deglycosylated polypeptide chain comprising only 35 kDa. The glycosylated protein contains N-acetyl-D-glucosamine and sialic acid......, but no N-acetyl-D-galactosamine. Glycosylation is responsible for substantial heterogeneity in the receptor on phorbol ester-stimulated U937 cells, and also for molecular weight variations among various cell lines. The amino acid composition and the NH2-terminal amino acid sequence are reported....... The protein has a high content of cysteine residues. The NH2-terminal sequence is not closely related to any known sequence. The identification of the purified and sequenced protein with the human u-PA receptor is based on the following findings: 1) the ability of the purified protein to bind u-PA and its...

  20. SEQUENCE VARIABILITY OF HUMAN CYTOMEGALOVIRUS UL144 OPEN READING FRAME IN LOW-PASSAGE CLINICAL ISOLATES

    Institute of Scientific and Technical Information of China (English)

    Rong He; Yao-hua Ji; Qiang Ruan; Chang Xia; Lan-qing Liu; Sheng-min Lü; Ying Lu; Ying Qi; Yan-ping Ma; Qing Liu

    2004-01-01

    Objective To explore the relationship between human cytomegalovirus (HCMV) UL144 sequence variability and clinical disease.Methods HCMV UL144 open reading frame (ORF) was amplified by PCR assay in 72 lowpassage isolates [65 congenitally infective children and 7 healthy children who were HCMV-DNA positive by quantitative PCR (qPCR)]. All positive PCR products were analyzed by heteroduplex mobility assay and single-stranded conformation polymorphism (HMA-SSCP) and 32 of them were sequenced.Resuits Fifty-five patient isolates and five healthy children isolates were HCMV-UL144 positive by PCR. Sequencing and HMA-SSCP analysis showed that significant strain-specific variability was present in the UL144 ORF. Phylogenetic analysis indicated that the nucleotide sequences could be separated into 3 major genotypes. Comparing between UL144 sequences and the corresponding symptoms showed that genotype 2 did not exist in megacolon isolates. And genotype 1 and 3 were the major types among microcephaly and jaundice isolates respectively.Conclusions HCMV-UL144 existed in most of low passage isolates and sequences were hypervariable. The UL144ORF and its predicted product with the high level of sequence variability in different kinds of isolates suggest that UL144ORF might play a role in HCMV infectivity and subsequent diseases.

  1. Genomic and Functional Characteristics of Human Cytomegalovirus Revealed by Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Steven Sijmons

    2014-03-01

    Full Text Available The complete genome of human cytomegalovirus (HCMV was elucidated almost 25 years ago using a traditional cloning and Sanger sequencing approach. Analysis of the genetic content of additional laboratory and clinical isolates has lead to a better, albeit still incomplete, definition of the coding potential and diversity of wild-type HCMV strains. The introduction of a new generation of massively parallel sequencing technologies, collectively called next-generation sequencing, has profoundly increased the throughput and resolution of the genomics field. These increased possibilities are already leading to a better understanding of the circulating diversity of HCMV clinical isolates. The higher resolution of next-generation sequencing provides new opportunities in the study of intrahost viral population structures. Furthermore, deep sequencing enables novel diagnostic applications for sensitive drug resistance mutation detection. RNA-seq applications have changed the picture of the HCMV transcriptome, which resulted in proof of a vast amount of splicing events and alternative transcripts. This review discusses the application of next-generation sequencing technologies, which has provided a clearer picture of the intricate nature of the HCMV genome. The continuing development and application of novel sequencing technologies will further augment our understanding of this ubiquitous, but elusive, herpesvirus.

  2. Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice

    DEFF Research Database (Denmark)

    Fromont-Racine, M; Bucchini, D; Madsen, O

    1990-01-01

    Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific......, and -168 allowed correct initiation of the transcripts and cell specificity of expression, while quantitative expression gradually decreased. Deletion to -58 completely abolished the expression of the gene. The amount of human product that in mice harboring the longest fragment contributes up to 50...... of the transgene was observed in cell types other than beta-islet cells....

  3. International distribution and age estimation of the Portuguese BRCA2 c.156_157insAlu founder mutation

    NARCIS (Netherlands)

    Peixoto, Ana; Santos, Catarina; Pinheiro, Manuela; Pinto, Pedro; Soares, Maria Jose; Rocha, Patricia; Gusmao, Leonor; Amorim, Antonio; van der Hout, Annemarie; Gerdes, Anne-Marie; Thomassen, Mads; Kruse, Torben A.; Cruger, Dorthe; Sunde, Lone; Bignon, Yves-Jean; Uhrhammer, Nancy; Cornil, Lucie; Rouleau, Etienne; Lidereau, Rosette; Yannoukakos, Drakoulis; Pertesi, Maroulio; Narod, Steven; Royer, Robert; Costa, Mauricio M.; Lazaro, Conxi; Feliubadalo, Lidia; Grana, Begona; Blanco, Ignacio; de la Hoya, Miguel; Caldes, Trinidad; Maillet, Philippe; Benais-Pont, Gaelle; Pardo, Bruno; Laitman, Yael; Friedman, Eitan; Velasco, Eladio A.; Duran, Mercedes; Miramar, Maria-Dolores; Rodriguez Valle, Ana; Calvo, Maria-Teresa; Vega, Ana; Blanco, Ana; Diez, Orland; Gutierrez-Enriquez, Sara; Balmana, Judith; Ramon y Cajal, Teresa; Alonso, Carmen; Baiget, Montserrat; Foulkes, William; Tischkowitz, Marc; Kyle, Rachel; Sabbaghian, Nelly; Ashton-Prolla, Patricia; Ewald, Ingrid P.; Rajkumar, Thangarajan; Mota-Vieira, Luisa; Giannini, Giuseppe; Gulino, Alberto; Achatz, Maria I.; Carraro, Dirce M.; de Paillerets, Brigitte Bressac; Remenieras, Audrey; Benson, Cindy; Casadei, Silvia; King, Mary-Claire; Teugels, Erik; Teixeira, Manuel R.

    2011-01-01

    The c.156_157insAlu BRCA2 mutation has so far only been reported in hereditary breast/ovarian cancer (HBOC) families of Portuguese origin. Since this mutation is not detectable using the commonly used screening methodologies and must be specifically sought, we screened for this rearrangement in a to

  4. International distribution and age estimation of the Portuguese BRCA2 c.156_157insAlu founder mutation

    DEFF Research Database (Denmark)

    Peixoto, Ana; Santos, Catarina; Pinheiro, Manuela;

    2011-01-01

    The c.156_157insAlu BRCA2 mutation has so far only been reported in hereditary breast/ovarian cancer (HBOC) families of Portuguese origin. Since this mutation is not detectable using the commonly used screening methodologies and must be specifically sought, we screened for this rearrangement in a...

  5. A functional test of Neandertal and modern human mitochondrial targeting sequences

    Energy Technology Data Exchange (ETDEWEB)

    Gralle, Matthias, E-mail: gralle@bioqmed.ufrj.br [Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, 21941-590 Rio de Janeiro (Brazil); Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig (Germany); Schaefer, Ingo; Seibel, Peter [Department of Molecular Cell Therapy, Leipzig University, Deutscher Platz 5, 04103 Leipzig (Germany); Paeaebo, Svante [Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig (Germany)

    2010-11-26

    Research highlights: {yields} Two mutations in mitochondrial targeting peptides occurred during human evolution, possibly after Neandertals split off from modern human lineage. {yields} The ancestral and modern human versions of these two targeting peptides were tested functionally for their effects on localization and cleavage rate. {yields} In spite of recent evolution, and to the contrary of other mutations in targeting peptides, these mutations had no visible effects. -- Abstract: Targeting of nuclear-encoded proteins to different organelles, such as mitochondria, is a process that can result in the redeployment of proteins to new intracellular destinations during evolution. With the sequencing of the Neandertal genome, it has become possible to identify amino acid substitutions that occurred on the modern human lineage since its separation from the Neandertal lineage. Here we analyze the function of two substitutions in mitochondrial targeting sequences that occurred and rose to high frequency recently during recent human evolution. The ancestral and modern versions of the two targeting sequences do not differ in the efficiency with which they direct a protein to the mitochondria, an observation compatible with the neutral theory of molecular evolution.

  6. Ancient, highly polymorphic human major histocompatibility complex DQA1 intron sequence

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, M.D.; Quinn, D.L.; Lebo, R.V. [Univ. of California, San Francisco, CA (United States); Simons, M.J. [GeneType Pty. Ltd., Fitzroy, Victoria (Australia)

    1994-10-01

    A 438 basepair intron 1 sequence adjacent to exon 2 in the human major histocompatibility complex DQA1 gene defined 16 allelic variants in 69 individuals from wide ethnic backgrounds. In contrast, the most variable coding region spanned by the 247 basepair exon 2 defined 11 allelic variants. Our phylogenetic human intron 1 tree derived by the Bootstrap algorithm reflects the same relative allelic relationships as the reported DQA1 exon 2 have cosegregated since divergence of the human races. Comparison of human alleles to a Rhesus monkey DQA1 first intron sequence found only 10 nucleotide substitutions unique to Rhesus, with the other 428 positions (98%) found in at least one human allele. This high degree of homology reflects the evolutionary stability of intron sequences since these two species diverged over 20 million years ago. Because more intron 1 alleles exist than exon 2 alleles, these polymorphic introns can be used to improve tissue typing for transplantation, paternity testing, and forensics and to derive more complete phylogenetic trees. These results suggest that introns represent a previously underutilized polymorphic resource. 42 refs., 3 figs., 1 tab.

  7. The zebrafish reference genome sequence and its relationship to the human genome.

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  8. The zebrafish reference genome sequence and its relationship to the human genome

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  9. A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples.

    Science.gov (United States)

    Dollive, Serena; Peterfreund, Gregory L; Sherrill-Mix, Scott; Bittinger, Kyle; Sinha, Rohini; Hoffmann, Christian; Nabel, Christopher S; Hill, David A; Artis, David; Bachman, Michael A; Custers-Allen, Rebecca; Grunberg, Stephanie; Wu, Gary D; Lewis, James D; Bushman, Frederic D

    2012-07-03

    Eukaryotic microorganisms are important but understudied components of the human microbiome. Here we present a pipeline for analysis of deep sequencing data on single cell eukaryotes. We designed a new 18S rRNA gene-specific PCR primer set and compared a published rRNA gene internal transcribed spacer (ITS) gene primer set. Amplicons were tested against 24 specimens from defined eukaryotes and eight well-characterized human stool samples. A software pipeline https://sourceforge.net/projects/brocc/ was developed for taxonomic attribution, validated against simulated data, and tested on pyrosequence data. This study provides a well-characterized tool kit for sequence-based enumeration of eukaryotic organisms in human microbiome samples.

  10. Alu insertion polymorphisms and an assessment of the genetic contribution of Central Asia to Anatolia with respect to the Balkans.

    Science.gov (United States)

    Berkman, Ceren Caner; Dinc, Havva; Sekeryapan, Ceran; Togan, Inci

    2008-05-01

    In the evolutionary history of modern humans, Anatolia acted as a bridge between the Caucasus, the Near East, and Europe. Because of its geographical location, Anatolia was subject to migrations from multiple different regions throughout time. The last, well-known migration was the movement of Turkic speaking, nomadic groups from Central Asia. They invaded Anatolia and then the language of the region was gradually replaced by the Turkic language. In the present study, insertion frequencies of 10 Alu loci (A25 = 0.07, APO = 0.96, TPA25 = 0.44, ACE = 0.37, B65 = 0.57, PV92 = 0.18, FXIIIB = 0.52, D1 = 0.40, HS4.32 = 0.66, and HS4.69 = 0.30) have been determined in the Anatolian population. Together with the data compiled from other databases, the similarity of the Anatolian population to that of the Balkans and Central Asia has been visualized by multidimensional scaling method. Analysis suggested that, genetically, Anatolia is more closely related with the Balkan populations than to the Central Asian populations. Central Asian contribution to Anatolia with respect to the Balkans was quantified with an admixture analysis. Furthermore, the association between the Central Asian contribution and the language replacement episode was examined by comparative analysis of the Central Asian contribution to Anatolia, Azerbaijan (another Turkic speaking country) and their neighbors. In the present study, the Central Asian contribution to Anatolia was estimated as 13%. This was the lowest value among the populations analyzed. This observation may be explained by Anatolia having the lowest migrant/resident ratio at the time of migrations.

  11. Human secreted carbonic anhydrase: cDNA cloning, nucleotide sequence, and hybridization histochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Aldred, P.; Fu, Ping; Barrett, G.; Penschow, J.D.; Wright, R.D.; Coghlan, J.P.; Fernley, R.T. (The Howard Florey Institute of Experimental Physiology and Medicine, Parkville, Victoria (Australia))

    1991-01-01

    Complementary DNA clones coding for the human secreted carbonic anhydrase isozyme (CAVI) have been isolated and their nucleotide sequences determined. These clones identify a 1.45-kb mRNA that is present in high levels in parotid submandibular salivary glands but absent in other tissues such as the sublingual gland, kidney, liver, and prostate gland. Hybridization histochemistry of human salivary glands shows mRNA for CA VI located in the acinar cells of these glands. The cDNA clones encode a protein of 308 amino acids that includes a 17 amino acid leader sequence typical of secreted proteins. The mature protein has 291 amino acids compared to 259 or 260 for the cytoplasmic isozymes, with most of the extra amino acids present as a carboxyl terminal extension. In comparison, sheep CA VI has a 45 amino acid extension. Overall the human CA VI protein has a sequence identity of 35 {percent} with human CA II, while residues involved in the active site of the enzymes have been conserved. The human and sheep secreted carbonic anhydrases have a sequence identity of 72 {percent}. This includes the two cysteine residues that are known to be involved in an intramolecular disulfide bond in the sheep CA VI. The enzyme is known to be glycosylated and three potential N-glycosylation sites (Asn-X-Thr/Ser) have been identified. Two of these are known to be glycosylated in sheep CA VI. Southern analysis of human DNA indicates that there is only one gene coding for CA VI.

  12. NGS catalog: A database of next generation sequencing studies in humans.

    Science.gov (United States)

    Xia, Junfeng; Wang, Qingguo; Jia, Peilin; Wang, Bing; Pao, William; Zhao, Zhongming

    2012-06-01

    Next generation sequencing (NGS) technologies have been rapidly applied in biomedical and biological research since its advent only a few years ago, and they are expected to advance at an unprecedented pace in the following years. To provide the research community with a comprehensive NGS resource, we have developed the database Next Generation Sequencing Catalog (NGS Catalog, http://bioinfo.mc.vanderbilt.edu/NGS/index.html), a continually updated database that collects, curates and manages available human NGS data obtained from published literature. NGS Catalog deposits publication information of NGS studies and their mutation characteristics (SNVs, small insertions/deletions, copy number variations, and structural variants), as well as mutated genes and gene fusions detected by NGS. Other functions include user data upload, NGS general analysis pipelines, and NGS software. NGS Catalog is particularly useful for investigators who are new to NGS but would like to take advantage of these powerful technologies for their own research. Finally, based on the data deposited in NGS Catalog, we summarized features and findings from whole exome sequencing, whole genome sequencing, and transcriptome sequencing studies for human diseases or traits.

  13. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome.

    Science.gov (United States)

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-10-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Terrestrial Sediment and Nutrient Fluxes to the Faga'alu Reefs in American Samoa

    Science.gov (United States)

    Messina, A. T.

    2013-12-01

    Land-based sources of pollution including increased sediment and nutrient fluxes to coastal waters have been identified and linked to degraded coral health in reef ecosystems adjacent to impacted streams such as Faga'alu in American Samoa. Monthly monitoring since 2002 has shown that Faga'alu stream has the highest turbidity of monitored streams on Tutuila, where degraded water quality is linked to lower reef health and fish biomass. To guide local and federal managers in mitigating land-based sources of pollution from agricultural, mining, urban, and residential areas, fluxes of sediment and nutrients were measured upstream and downstream of disturbed areas to identify and quantify significant pollution sources and guide mitigation efforts. Sediment flux from disturbed areas, mainly an open-pit aggregate quarry, contributed over 75% of the sediment loading to the bay. Faga'alu stream is characterized by flashy response to rainfall events and the total observed sediment yield was contributed by a small number of large storm events. Event-total sediment yield was more closely correlated with event-total discharge than event-total precipitation. It is hypothesized that the intensity of rainfall controls sediment yield for small events where sheetwash erosion from the quarry is more important. For larger events where easily available sediment is washed away in the first part of the storm it is hypothesized that increased sediment yield is due to streambank erosion and gullying from both disturbed and undisturbed areas. Based on sediment yield measurements and modeled sediment loading to the bay, recommendations for mitigation of land-based sources of pollution are focused on sediment mitigation at the quarry and runoff from the large impervious areas associated with the hospital. Measurements of sediment accumulation on the coral reef itself show sedimentation is controlled by sediment loading from the watershed and sediment scouring by increased wave and wind

  15. Association of the Alu insertion polymorphism in the progesterone receptor gene with breast cancer in a Mexican population

    Science.gov (United States)

    Figuera, Luis E.; Flores-Ramos, Liliana Gómez; Puebla-Pérez, Ana María; Zúñiga-González, Guillermo Moisés

    2015-01-01

    Introduction The progesterone receptor (PR) gene plays an important role in reproduction-related events. Data on polymorphisms in the PR gene have revealed associations with cancer, particularly for the Alu insertion polymorphism, which has been suggested to affect progesterone receptor function and contribute to tumor promotion in the mammary gland. Material and methods We examined the role of the Alu insertion polymorphism in the PR gene by comparing the genotypes of 209 healthy Mexican women with those of 481 Mexican women with breast cancer (BC). Results The genotype frequencies observed in the controls and BC patients were 0% and 4% for T2/T2 (Alu insertion), 16% and 21% for T1/T2, and 84% and 75% for T1/T1 (Alu deletion), respectively. The obtained odds ratio (OR) was 1.7, with a 95% confidence interval (95% CI) of 1.1–2.6, p = 0.009, for the T1/T2–T2/T2 genotypes. The association was also evident when the distributions of the T1/T2–T2/T2 genotypes in patients in the following categories were compared: obesity grade II (OR = 1.81, 95% CI: 1.03–3.18, p = 0.039) and the chemotherapy response (OR = 1.91, 95% CI: 1.27–3.067, p = 0.002). Conclusions The T1/T2–T2/T2 genotypes of the Alu insertion polymorphism in the PR gene are associated with BC susceptibility in the analyzed Mexican population. PMID:26170848

  16. Application of next generation sequencing to human gene fusion detection: computational tools, features and perspectives.

    Science.gov (United States)

    Wang, Qingguo; Xia, Junfeng; Jia, Peilin; Pao, William; Zhao, Zhongming

    2013-07-01

    Gene fusions are important genomic events in human cancer because their fusion gene products can drive the development of cancer and thus are potential prognostic tools or therapeutic targets in anti-cancer treatment. Major advancements have been made in computational approaches for fusion gene discovery over the past 3 years due to improvements and widespread applications of high-throughput next generation sequencing (NGS) technologies. To identify fusions from NGS data, existing methods typically leverage the strengths of both sequencing technologies and computational strategies. In this article, we review the NGS and computational features of existing methods for fusion gene detection and suggest directions for future development.

  17. Optimization of Substitution Matrix for Sequence Alignment of Major Capsid Proteins of Human Herpes Simplex Virus

    Directory of Open Access Journals (Sweden)

    Vipan Kumar Sohpal

    2011-12-01

    Full Text Available Protein sequence alignment has become an informative tool in modern molecular biology research. A number of substitution matrices have been readily available for sequence alignments, but it is challenging task to compute optimal matrices for alignment accuracy. Here, we used the parameter optimization procedure to select the optimal Q of substitution matrices for major viral capsid protein of human herpes simplex virus. Results predict that Blosum matrix is most accurate on alignment benchmarks, and Blosum 60 provides the optimal Q in all substitution matrices. PAM 200 matrices results slightly below than Blosum 60, while VTML matrices are intermediate of PAM and VT matrices under dynamic programming.

  18. Comparative analysis of protein coding sequences from human, mouse and the domesticated pig

    DEFF Research Database (Denmark)

    Jørgensen, Frank Grønlund; Hobolth, Asger; Hornshøj, Henrik

    2005-01-01

    rubrices in order to investigate 1) the relationships between three major lineages of mammals: rodents, artiodactys and primates, and 2) the rate of evolution and the occurrence of positive Darwinian selection using codon based models of sequence evolution. Results: We provide evidence......Background: The availability of abundant sequence data from key model organisms has made large scale studies of mulecular evolution an exciting possibility. Here we use full length cDNA alignments comprising more than 700,000 nucleotides from human, mouse, pig and the Japanese pufferfish Fugu...

  19. Comparative analysis of protein coding sequences from human, mouse, and the domesticated pig  

    DEFF Research Database (Denmark)

    Jørgensen, Frank Grønlund; Hobolth, Asger; Hornshøj, H.

    2005-01-01

    rubrices in order to investigate 1) the relationships between three major lineages of mammals: rodents, artiodactyls and primates, and 2) the rate of evolution and the occurrence of positive Darwinian selection using codon based models of sequence evolution. Results We provide evidence......Background The availability of abundant sequence data from key model organisms has made large scale studies of molecular evolution an exciting possibility. Here we use full length cDNA alignments comprising more than 700,000 nucleotides from human, mouse, pig and the Japanese pufferfish Fugu...

  20. Sequence variation between 462 human individuals fine-tunes functional sites of RNA processing

    Science.gov (United States)

    Ferreira, Pedro G.; Oti, Martin; Barann, Matthias; Wieland, Thomas; Ezquina, Suzana; Friedländer, Marc R.; Rivas, Manuel A.; Esteve-Codina, Anna; Estivill, Xavier; Guigó, Roderic; Dermitzakis, Emmanouil; Antonarakis, Stylianos; Meitinger, Thomas; Strom, Tim M.; Palotie, Aarno; François Deleuze, Jean; Sudbrak, Ralf; Lerach, Hans; Gut, Ivo; Syvänen, Ann-Christine; Gyllensten, Ulf; Schreiber, Stefan; Rosenstiel, Philip; Brunner, Han; Veltman, Joris; Hoen, Peter A. C. T.; Jan van Ommen, Gert; Carracedo, Angel; Brazma, Alvis; Flicek, Paul; Cambon-Thomsen, Anne; Mangion, Jonathan; Bentley, David; Hamosh, Ada; Rosenstiel, Philip; Strom, Tim M.; Lappalainen, Tuuli; Guigó, Roderic; Sammeth, Michael

    2016-09-01

    Recent advances in the cost-efficiency of sequencing technologies enabled the combined DNA- and RNA-sequencing of human individuals at the population-scale, making genome-wide investigations of the inter-individual genetic impact on gene expression viable. Employing mRNA-sequencing data from the Geuvadis Project and genome sequencing data from the 1000 Genomes Project we show that the computational analysis of DNA sequences around splice sites and poly-A signals is able to explain several observations in the phenotype data. In contrast to widespread assessments of statistically significant associations between DNA polymorphisms and quantitative traits, we developed a computational tool to pinpoint the molecular mechanisms by which genetic markers drive variation in RNA-processing, cataloguing and classifying alleles that change the affinity of core RNA elements to their recognizing factors. The in silico models we employ further suggest RNA editing can moonlight as a splicing-modulator, albeit less frequently than genomic sequence diversity. Beyond existing annotations, we demonstrate that the ultra-high resolution of RNA-Seq combined from 462 individuals also provides evidence for thousands of bona fide novel elements of RNA processing—alternative splice sites, introns, and cleavage sites—which are often rare and lowly expressed but in other characteristics similar to their annotated counterparts.

  1. Recombinant human MDM2 oncoprotein shows sequence composition selectivity for binding to both RNA and DNA.

    Science.gov (United States)

    Challen, Christine; Anderson, John J; Chrzanowska-Lightowlers, Zofia M A; Lightowlers, Robert N; Lunec, John

    2012-03-01

    MDM2 is a 90 kDa nucleo-phosphoprotein that binds p53 and other proteins contributing to its oncogenic properties. Its structure includes an amino proximal p53 binding site, a central acidic domain and a carboxy region which incorporates Zinc and Ring Finger domains suggestive of nucleic acid binding or transcription factor function. It has previously been reported that a bacculovirus expressed MDM2 protein binds RNA in a sequence-specific manner through the Ring Finger domain, however, its ability to bind DNA has yet to be examined. We report here that a bacterially expressed human MDM2 protein binds both DNA as well as the previously defined RNA consensus sequence. DNA binding appears selective and involves the carboxy-terminal domain of the molecule. RNA binding is inhibited by an MDM2 specific antibody, which recognises an epitope within the carboxy region of the protein. Selection cloning and sequence analysis of MDM2 DNA binding sequences, unlike RNA binding sequences, revealed no obvious DNA binding consensus sequence, but preferential binding to oligopurine:pyrimidine-rich stretches. Our results suggest that the observed preferential DNA binding may occur through the Zinc Finger or in a charge-charge interaction through the Ring Finger, thereby implying potentially different mechanisms for DNA and RNA MDM2 binding.

  2. Sequence variation between 462 human individuals fine-tunes functional sites of RNA processing

    Science.gov (United States)

    Ferreira, Pedro G.; Oti, Martin; Barann, Matthias; Wieland, Thomas; Ezquina, Suzana; Friedländer, Marc R.; Rivas, Manuel A.; Esteve-Codina, Anna; Estivill, Xavier; Guigó, Roderic; Dermitzakis, Emmanouil; Antonarakis, Stylianos; Meitinger, Thomas; Strom, Tim M; Palotie, Aarno; François Deleuze, Jean; Sudbrak, Ralf; Lerach, Hans; Gut, Ivo; Syvänen, Ann-Christine; Gyllensten, Ulf; Schreiber, Stefan; Rosenstiel, Philip; Brunner, Han; Veltman, Joris; Hoen, Peter A.C.T; Jan van Ommen, Gert; Carracedo, Angel; Brazma, Alvis; Flicek, Paul; Cambon-Thomsen, Anne; Mangion, Jonathan; Bentley, David; Hamosh, Ada; Rosenstiel, Philip; Strom, Tim M; Lappalainen, Tuuli; Guigó, Roderic; Sammeth, Michael

    2016-01-01

    Recent advances in the cost-efficiency of sequencing technologies enabled the combined DNA- and RNA-sequencing of human individuals at the population-scale, making genome-wide investigations of the inter-individual genetic impact on gene expression viable. Employing mRNA-sequencing data from the Geuvadis Project and genome sequencing data from the 1000 Genomes Project we show that the computational analysis of DNA sequences around splice sites and poly-A signals is able to explain several observations in the phenotype data. In contrast to widespread assessments of statistically significant associations between DNA polymorphisms and quantitative traits, we developed a computational tool to pinpoint the molecular mechanisms by which genetic markers drive variation in RNA-processing, cataloguing and classifying alleles that change the affinity of core RNA elements to their recognizing factors. The in silico models we employ further suggest RNA editing can moonlight as a splicing-modulator, albeit less frequently than genomic sequence diversity. Beyond existing annotations, we demonstrate that the ultra-high resolution of RNA-Seq combined from 462 individuals also provides evidence for thousands of bona fide novel elements of RNA processing—alternative splice sites, introns, and cleavage sites—which are often rare and lowly expressed but in other characteristics similar to their annotated counterparts. PMID:27617755

  3. A Bayesian framework for human body pose tracking from depth image sequences.

    Science.gov (United States)

    Zhu, Youding; Fujimura, Kikuo

    2010-01-01

    This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach.

  4. Partial primary structure of human pregnancy zone protein: extensive sequence homology with human alpha 2-macroglobulin

    DEFF Research Database (Denmark)

    Sottrup-Jensen, Lars; Folkersen, J; Kristensen, Torsten;

    1984-01-01

    Human pregnancy zone protein (PZP) is a major pregnancy-associated protein. Its quaternary structure (two covalently bound 180-kDa subunits, which are further non-covalently assembled into a tetramer of 720 kDa) is similar to that of human alpha 2-macroglobulin (alpha 2M). Here we show, from the ...

  5. Heteroplasmy in the mitochondrial genomes of human lice and ticks revealed by high throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Haoyu Xiong

    Full Text Available The typical mitochondrial (mt genomes of bilateral animals consist of 37 genes on a single circular chromosome. The mt genomes of the human body louse, Pediculus humanus, and the human head louse, Pediculus capitis, however, are extensively fragmented and contain 20 minichromosomes, with one to three genes on each minichromosome. Heteroplasmy, i.e. nucleotide polymorphisms in the mt genome within individuals, has been shown to be significantly higher in the mt cox1 gene of human lice than in humans and other animals that have the typical mt genomes. To understand whether the extent of heteroplasmy in human lice is associated with mt genome fragmentation, we sequenced the entire coding regions of all of the mt minichromosomes of six human body lice and six human head lice from Ethiopia, China and France with an Illumina HiSeq platform. For comparison, we also sequenced the entire coding regions of the mt genomes of seven species of ticks, which have the typical mitochondrial genome organization of bilateral animals. We found that the level of heteroplasmy varies significantly both among the human lice and among the ticks. The human lice from Ethiopia have significantly higher level of heteroplasmy than those from China and France (Pt<0.05. The tick, Amblyomma cajennense, has significantly higher level of heteroplasmy than other ticks (Pt<0.05. Our results indicate that heteroplasmy level can be substantially variable within a species and among closely related species, and does not appear to be determined by single factors such as genome fragmentation.

  6. Synthetic long read sequencing reveals the composition and intraspecies diversity of the human microbiome

    Science.gov (United States)

    Kuleshov, Volodymyr; Jiang, Chao; Zhou, Wenyu; Jahanbani, Fereshteh; Batzoglou, Serafim; Snyder, Michael

    2016-01-01

    Identifying bacterial strains in metagenome and microbiome samples using computational analyses of short-read sequence remains a difficult problem. Here, we present an analysis of a human gut microbiome using on Tru-seq synthetic long reads combined with new computational tools for metagenomic long-read assembly, variant-calling and haplotyping (Nanoscope and Lens). Our analysis identifies 178 bacterial species of which 51 were not found using short sequence reads alone. We recover bacterial contigs that comprise multiple operons, including 22 contigs of >1Mbp. Extensive intraspecies variation among microbial strains in the form of haplotypes that span up to hundreds of Kbp can be observed using our approach. Our method incorporates synthetic long-read sequencing technology with standard shotgun approaches to move towards rapid, precise and comprehensive analyses of metagenome and microbiome samples. PMID:26655498

  7. Can human autonomic classical conditioning occur without contingency awareness? The critical importance of the trial sequence.

    Science.gov (United States)

    Singh, Kulwinder; Dawson, Michael E; Schell, Anne M; Courtney, Christopher G; Payne, Andrew F H

    2013-04-01

    Most evidence suggests that awareness of the CS-US contingency is necessary for human autonomic conditioning. However, Schultz and Helmstetter (2010) reported unaware skin conductance conditioning using difficult-to-discriminate visual CSs. We sought to replicate these findings with procedures nearly identical to Schultz and Helmstetter among 66 participants. Results replicated the findings of significantly greater autonomic responding to CS+ than CS-; however, participants also demonstrated greater expectancy of shock to CS+ than CS- despite being classified as unaware. The differential expectancy and conditioning occurred only on trials that followed a CS+/CS- alternating sequence. On non-alternating trials, there was significantly higher expectancy and skin conductance responding to CS- compared to CS+. These results indicate that what initially appeared to be unaware differential conditioning was likely due to differential expectancy arising from a predictable trial sequence. These results underscore the critical importance of controlling for trial sequence effects in the study of learning.

  8. The impact of cooling rates on the microstructure of Al-U alloys

    Energy Technology Data Exchange (ETDEWEB)

    Munitz, A.; Zenou, V.Y.; Cotler, C. [Nuclear Research Center-Negev, Beer-Sheva (Israel); Talyanker, M. [Ben-Gurion Univ. of the Negev, Beer-Sheva (Israel). Dept. of Materials Engineering

    1997-04-01

    The impact of cooling rates on the microstructure of Al-U alloys was studied by optical, scanning electron, and transmission electron microscopy. A variety of solidification techniques were employed to obtain cooling rates ranging between 3 {times} 10{sup {minus}2} and 10{sup 6} K/s. High-purity uranium (99.9 pct) and high-purity aluminum (99.99 pct), or commercially pure type Al-1050 aluminum alloys were used to prepare Al-U alloys with U concentration ranging between 3 and 22 wt pct. The U concentration at which a coupled eutectic growth was observed depends on the cooling rates imposed during solidification and ranged from 13.8 wt pct for the slower cooling rates to more than 22 wt pct for the fastest cooling rates. The eutectic morphology and its distribution depends on the type of aluminum used in preparing the alloys and on the cooling rates during solidification. The eutectic in alloys prepared from pure aluminum was evenly distributed, while for those prepared from Al-1050, the eutectic was unevenly distributed, with eutectic colonies of up to 3 mm in diameter. Two lamellar eutectic structures were observed in alloys prepared from pure aluminum containing more than 18 wt pct U, which solidified by cooling rates of about 10 K/s. One structure consisted of the stable eutectic between UAl{sub 4} and Al lamella. The other structure consisted of a metastable eutectic between UAl{sub 3} and Al lamella. At least three different eutectic morphologies were observed in alloys prepared from Al-1050.

  9. Partial protoporphyrinogen oxidase (PPOX gene deletions, due to different Alu-mediated mechanisms, identified by MLPA analysis in patients with variegate porphyria

    Directory of Open Access Journals (Sweden)

    Barbaro Michela

    2013-01-01

    Full Text Available Abstract Variegate porphyria (VP is an autosomal dominantly inherited hepatic porphyria. The genetic defect in the PPOX gene leads to a partial defect of protoporphyrinogen oxidase, the penultimate enzyme of heme biosynthesis. Affected individuals can develop cutaneous symptoms in sun-exposed areas of the skin and/or neuropsychiatric acute attacks. The identification of the genetic defect in VP families is of crucial importance to detect the carrier status which allows counseling to prevent potentially life threatening neurovisceral attacks, usually triggered by factors such as certain drugs, alcohol or fasting. In a total of 31 Swedish VP families sequence analysis had identified a genetic defect in 26. In the remaining five families an extended genetic investigation was necessary. After the development of a synthetic probe set, MLPA analysis to screen for single exon deletions/duplications was performed. We describe here, for the first time, two partial deletions within the PPOX gene detected by MLPA analysis. One deletion affects exon 5 and 6 (c.339-197_616+320del1099 and has been identified in four families, most probably after a founder effect. The other extends from exon 5 to exon 9 (c.339-350_987+229del2609 and was found in one family. We show that both deletions are mediated by Alu repeats. Our findings emphasize the usefulness of MLPA analysis as a complement to PPOX gene sequencing analysis for comprehensive genetic diagnostics in patients with VP.

  10. Timing of human protein evolution as revealed by massively parallel capture of Neandertal nuclear DNA sequences

    Science.gov (United States)

    Burbano, Hernán A.; Hodges, Emily; Green, Richard E.; Briggs, Adrian W.; Krause, Johannes; Meyer, Matthias; Good, Jeffrey M.; Maricic, Tomislav; Johnson, Philipp L.F.; Xuan, Zhenyu; Rooks, Michelle; Bhattacharjee, Arindam; Brizuela, Leonardo; Albert, Frank W.; de la Rasilla, Marco; Fortea, Javier; Rosas, Antonio; Lachmann, Michael; Hannon, Gregory J.; Pääbo, Svante

    2010-01-01

    Whole genome shotgun sequencing is now possible for extinct organisms, as well as the targeted capture of specific regions. However, targeted resequencing of megabase sized parts of nuclear genomes has yet to be demonstrated for ancient DNA. Here we show that hybridization capture on microarrays can be used to generate large scale targeted data from Neandertal DNA even in the presence of ~99.8% microbial DNA. It is thus now possible to generate high quality data from large regions of the nuclear genome from Neandertals and other extinct organisms. Using this approach we have sequenced ~14,000 protein coding positions that have been inferred to have changed on the human lineage since the last common ancestor shared with chimpanzees. We identify 88 amino acid substitutions that have become fixed in all humans since the divergence from the Neandertals. PMID:20448179

  11. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    KAUST Repository

    Otto, Thomas D.

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching.

  12. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts.

    Science.gov (United States)

    Otto, Thomas D; Rayner, Julian C; Böhme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, François; Thomas, Alan W; Prugnolle, Franck; Conway, David J; Newbold, Chris; Berriman, Matthew

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host-parasite interface may have mediated host switching.

  13. New complete genome sequences of human rhinoviruses shed light on their phylogeny and genomic features

    Directory of Open Access Journals (Sweden)

    Zdobnov Evgeny M

    2007-07-01

    Full Text Available Abstract Background Human rhinoviruses (HRV, the most frequent cause of respiratory infections, include 99 different serotypes segregating into two species, A and B. Rhinoviruses share extensive genomic sequence similarity with enteroviruses and both are part of the picornavirus family. Nevertheless they differ significantly at the phenotypic level. The lack of HRV full-length genome sequences and the absence of analysis comparing picornaviruses at the whole genome level limit our knowledge of the genomic features supporting these differences. Results Here we report complete genome sequences of 12 HRV-A and HRV-B serotypes, more than doubling the current number of available HRV sequences. The whole-genome maximum-likelihood phylogenetic analysis suggests that HRV-B and human enteroviruses (HEV diverged from the last common ancestor after their separation from HRV-A. On the other hand, compared to HEV, HRV-B are more related to HRV-A in the capsid and 3B-C regions. We also identified the presence of a 2C cis-acting replication element (cre in HRV-B that is not present in HRV-A, and that had been previously characterized only in HEV. In contrast to HEV viruses, HRV-A and HRV-B share also markedly lower GC content along the whole genome length. Conclusion Our findings provide basis to speculate about both the biological similarities and the differences (e.g. tissue tropism, temperature adaptation or acid lability of these three groups of viruses.

  14. Yeast prions and human prion-like proteins: sequence features and prediction methods.

    Science.gov (United States)

    Cascarina, Sean M; Ross, Eric D

    2014-06-01

    Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis. This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms.

  15. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease.

    Science.gov (United States)

    Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J; Tyler, Scott R; Tisoncik-Go, Jennifer; Brawand, David; Law, G Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J; Kelly, Sara M; Chang, Jean; Thomas, Matthew J; Johnson, Jeremy; Berlin, Aaron M; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M; Tumpey, Terrence M; Siepel, Adam; Wisely, Samantha M; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F; Palermo, Robert E; Katze, Michael G

    2014-12-01

    The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.

  16. Sequence-based Methods in Human Microbial Ecology: A The 2nd HumanGenome Comes of Age

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Li; Rubin, Edward M.; Bristow, James

    2005-06-01

    Ecologists studying microbial life in the environment have recognized the enormous complexity of microbial diversity for more than a decade (Whitman et al. 1998). The development of a variety of culture-independent methods, many of them coupled with high-throughput DNA sequencing, has allowed this diversity to be explored in ever greater detail (Handelsman 2004; Harris et al. 2004; Hugenholtz et al. 1998; Moreira and Lopez-Garcia 2002; Rappe and Giovannoni 2003). Despite the widespread application of these new techniques to the characterization of uncultivated microbes and microbial communities in the environment, their application to human health and disease has lagged behind. Because these techniques now allow not only cataloging of microbial diversity, but also insight into microbial functions, it is time for clinical microbiologists to apply these tools to the microbial communities that abound on and within us, in what has been aptly called ''the second Human Genome Project'' (Relman and Falkow 2001). In this review we will discuss the sequence-based methods for microbial analysis that are currently available and their application to identify novel human pathogens, improve diagnosis and treatment of known infectious diseases, and finally to advance understanding of our relationship with microbial communities that normally reside in and on the human body.

  17. Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans

    OpenAIRE

    2004-01-01

    It has been shown in animal studies that exposure to brief pulses of bright light can phase shift the circadian pacemaker, and that the resetting action of light is most efficient during the first minutes of light exposure. In humans, multiple consecutive days of exposure to brief bright light pulses have been shown to phase shift the circadian pacemaker. The aim of the present study was to determine if a single sequence of brief bright light pulses administered during the early biological ni...

  18. Improving High-Throughput Sequencing Approaches for Reconstructing the Evolutionary Dynamics of Upper Paleolithic Human Groups

    DEFF Research Database (Denmark)

    Seguin-Orlando, Andaine

    been mainly driven by the development of High-Throughput DNA Sequencing (HTS) technologies but also by the implementation of novel molecular tools tailored to the manipulation of ultra short and damaged DNA molecules. Our ability to retrieve traces of genetic material has tremendously improved, pushing...... work on admixture events between Neanderthals and anatomically modern humans and but also suggested that the latter were organized in small family units whose members avoided inbreeding....

  19. DNA sequence comparative analysis of the 3pter-p26 region of human genome

    Institute of Scientific and Technical Information of China (English)

    LUO; Chunqing; LI; Yan; ZHANG; Xiaowei; ZHANG; Yilin; ZHAN

    2005-01-01

    Most proterminal regions of human chromosomes are GC-rich and gene-rich. Chromosome 3p is an exception. Its proterminal region is GC-poor, and likely to lose heterozygosity, thus causing a number of fatal diseases. Except one gap left in the telomeric position, the proterminal region of human chromosome 3p has been completely sequenced. The detailed sequence analysis showed: (i) the GC content of this region was 38.5%, being the lowest among all the human proterminal regions; (ii) this region contained 20 known genes and 22 predicted genes, with an average gene size of 97.5 kb. The previously mapped gene Cntn3 was not found in this region, but instead located in the 74 Mb position of human chromosome 3p; (iii) the interspersed repeats of this region were more active than the average level of the whole human genome, especially (TA)n, the content of which was twice the genome average; (iv) this region had a conserved synteny extending from 104.1 Mb to 112.4 Mb on the mouse chromosome 6, which was 8% larger in size, not in accordance with the whole genome comparison, probably because the 3pter-p26 region was more likely to lose neocleitides and its mouse synteny had more active interspersed repeats.

  20. Molecular detection and sequence analysis of human caliciviruses from acute gastroenteritis outbreaks in Hungary.

    Science.gov (United States)

    Farkas, T; Berke, T; Reuter, G; Szûcs, G; Matson, D O; Jiang, X

    2002-08-01

    Three viral gastroenteritis (VGE) outbreaks that occurred in 1998-1999, in Hungary were investigated for the presence of human caliciviruses (HuCVs). HuCVs in stool specimens were detected by reverse transcription-polymerase chain reaction (RT-PCR) using primer pair 289/290, which was designed based on the RNA-dependent RNA polymerase (RdRp) sequence. RT-PCR results were confirmed by sequencing showing that all three outbreak strains belonged to genogroup II of "Norwalk-like viruses" (NLVs). Two strains had high sequence identity with strains in known genetic clusters (Hawaii and Lordsdale clusters). The third strain (MOH) had distinct RdRp sequence, sharing 77/86% (nt/aa) identity with Snow Mountain virus (SMV), the closest genogroup II virus. To characterize MOH further, we cloned, sequenced, and expressed in baculovirus its capsid gene. It had 75/79% (nt/aa) identity with SMV, but 97/98% (nt/aa) identity with NLV/Hillingdon/90/UK, a recently identified genetic cluster of HuCVs. The recombinant MOH (rMOH) capsid protein self-assembled into virus-like particles (VLPs), which is antigenically distinct from other recombinant HuCV capsid antigens available in our laboratory. Further study of this VLP will have important applications in antigenic characterization and diagnosis of HuCVs.

  1. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Copy-number variations (CNV, loss of heterozygosity (LOH, and uniparental disomy (UPD are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS, is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs. In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  2. Performance Characteristics and Validation of Next-Generation Sequencing for Human Leucocyte Antigen Typing.

    Science.gov (United States)

    Weimer, Eric T; Montgomery, Maureen; Petraroia, Rosanne; Crawford, John; Schmitz, John L

    2016-09-01

    High-resolution human leukocyte antigen (HLA) matching reduces graft-versus-host disease and improves overall patient survival after hematopoietic stem cell transplant. Sanger sequencing has been the gold standard for HLA typing since 1996. However, given the increasing number of new HLA alleles identified and the complexity of the HLA genes, clinical HLA typing by Sanger sequencing requires several rounds of additional testing to provide allele-level resolution. Although next-generation sequencing (NGS) is routinely used in molecular genetics, few clinical HLA laboratories use the technology. The performance characteristics of NGS HLA typing using TruSight HLA were determined using Sanger sequencing as the reference method. In total, 211 samples were analyzed with an overall accuracy of 99.8% (2954/2961) and 46 samples were analyzed for precision with 100% (368/368) reproducibility. Most discordant alleles were because of technical error rather than assay performance. More important, the ambiguity rate was 3.5% (103/2961). Seventy-four percentage of the ambiguities were within the DRB1 and DRB4 loci. HLA typing by NGS saves approximately $6000 per run when compared to Sanger sequencing. Thus, TruSight HLA assay enables high-throughput HLA typing with an accuracy, precision, ambiguity rate, and cost savings that should facilitate adoption of NGS technology in clinical HLA laboratories.

  3. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    Science.gov (United States)

    Wang, Yu; Li, Wei; Xia, Yingying; Wang, Chongzhi; Tang, Y Tom; Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2014-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  4. Rare and common regulatory variation in population-scale sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Stephen B Montgomery

    2011-07-01

    Full Text Available Population-scale genome sequencing allows the characterization of functional effects of a broad spectrum of genetic variants underlying human phenotypic variation. Here, we investigate the influence of rare and common genetic variants on gene expression patterns, using variants identified from sequencing data from the 1000 genomes project in an African and European population sample and gene expression data from lymphoblastoid cell lines. We detect comparable numbers of expression quantitative trait loci (eQTLs when compared to genotypes obtained from HapMap 3, but as many as 80% of the top expression quantitative trait variants (eQTVs discovered from 1000 genomes data are novel. The properties of the newly discovered variants suggest that mapping common causal regulatory variants is challenging even with full resequencing data; however, we observe significant enrichment of regulatory effects in splice-site and nonsense variants. Using RNA sequencing data, we show that 46.2% of nonsynonymous variants are differentially expressed in at least one individual in our sample, creating widespread potential for interactions between functional protein-coding and regulatory variants. We also use allele-specific expression to identify putative rare causal regulatory variants. Furthermore, we demonstrate that outlier expression values can be due to rare variant effects, and we approximate the number of such effects harboured in an individual by effect size. Our results demonstrate that integration of genomic and RNA sequencing analyses allows for the joint assessment of genome sequence and genome function.

  5. Extensive sequencing of seven human genomes to characterize benchmark reference materials.

    Science.gov (United States)

    Zook, Justin M; Catoe, David; McDaniel, Jennifer; Vang, Lindsay; Spies, Noah; Sidow, Arend; Weng, Ziming; Liu, Yuling; Mason, Christopher E; Alexander, Noah; Henaff, Elizabeth; McIntyre, Alexa B R; Chandramohan, Dhruva; Chen, Feng; Jaeger, Erich; Moshrefi, Ali; Pham, Khoa; Stedman, William; Liang, Tiffany; Saghbini, Michael; Dzakula, Zeljko; Hastie, Alex; Cao, Han; Deikus, Gintaras; Schadt, Eric; Sebra, Robert; Bashir, Ali; Truty, Rebecca M; Chang, Christopher C; Gulbahce, Natali; Zhao, Keyan; Ghosh, Srinka; Hyland, Fiona; Fu, Yutao; Chaisson, Mark; Xiao, Chunlin; Trow, Jonathan; Sherry, Stephen T; Zaranek, Alexander W; Ball, Madeleine; Bobe, Jason; Estep, Preston; Church, George M; Marks, Patrick; Kyriazopoulou-Panagiotopoulou, Sofia; Zheng, Grace X Y; Schnall-Levin, Michael; Ordonez, Heather S; Mudivarti, Patrice A; Giorda, Kristina; Sheng, Ying; Rypdal, Karoline Bjarnesdatter; Salit, Marc

    2016-06-07

    The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly.

  6. Measuring the diversity of the human microbiota with targeted next-generation sequencing.

    Science.gov (United States)

    Finotello, Francesca; Mastrorilli, Eleonora; Di Camillo, Barbara

    2016-12-26

    The human microbiota is a complex ecological community of commensal, symbiotic and pathogenic microorganisms harboured by the human body. Next-generation sequencing (NGS) technologies, in particular targeted amplicon sequencing of the 16S ribosomal RNA gene (16S-seq), are enabling the identification and quantification of human-resident microorganisms at unprecedented resolution, providing novel insights into the role of the microbiota in health and disease. Once microbial abundances are quantified through NGS data analysis, diversity indices provide valuable mathematical tools to describe the ecological complexity of a single sample or to detect species differences between samples. However, diversity is not a determined physical quantity for which a consensus definition and unit of measure have been established, and several diversity indices are currently available. Furthermore, they were originally developed for macroecology and their robustness to the possible bias introduced by sequencing has not been characterized so far. To assist the reader with the selection and interpretation of diversity measures, we review a panel of broadly used indices, describing their mathematical formulations, purposes and properties, and characterize their behaviour and criticalities in dependence of the data features using simulated data as ground truth. In addition, we make available an R package, DiversitySeq, which implements in a unified framework the full panel of diversity indices and a simulator of 16S-seq data, and thus represents a valuable resource for the analysis of diversity from NGS count data and for the benchmarking of computational methods for 16S-seq.

  7. Next-generation sequencing technologies: breaking the sound barrier of human genetics.

    Science.gov (United States)

    Bahassi, El Mustapha; Stambrook, Peter J

    2014-09-01

    Demand for new technologies that deliver fast, inexpensive and accurate genome information has never been greater. This challenge has catalysed the rapid development of advances in next-generation sequencing (NGS). The generation of large volumes of sequence data and the speed of data acquisition are the primary advantages over previous, more standard methods. In 2013, the Food and Drug Administration granted marketing authorisation for the first high-throughput NG sequencer, Illumina's MiSeqDx, which allowed the development and use of a large number of new genome-based tests. Here, we present a review of template preparation, nucleic acid sequencing and imaging, genome assembly and alignment approaches as well as recent advances in current and near-term commercially available NGS instruments. We also outline the broad range of applications for NGS technologies and provide guidelines for platform selection to best address biological questions of interest. DNA sequencing has revolutionised biological and medical research, and is poised to have a similar impact on the practice of medicine. This tool is but one of an increasing arsenal of developing tools that enhance our capabilities to identify, quantify and functionally characterise the components of biological networks that keep us healthy or make us sick. Despite advances in other 'omic' technologies, DNA sequencing and analysis, in many respects, have played the leading role to date. The new technologies provide a bridge between genotype and phenotype, both in man and model organisms, and have revolutionised how risk of developing a complex human disease may be assessed. The generation of large DNA sequence data sets is producing a wealth of medically relevant information on a large number of individuals and populations that will potentially form the basis of truly individualised medical care in the future.

  8. Validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification: a revision based on the New Human Genome Reference Sequence (GRCh37).

    Science.gov (United States)

    Ramos, Amanda; Santos, Cristina; Barbena, Elena; Mateiu, Ligia; Alvarez, Luis; Nogués, Ramon; Aluja, Maria Pilar

    2011-03-01

    A new human genome reference sequence--GRCh37--was recently generated and made available by the Genome Reference Consortium. Since the prior disposable human reference sequence--hg18--was previously used for the mitochondrial DNA primer BLAST validation, a revision of those previously published primer pairs is required. Thus, the aim of this Short Communication is to perform an in silico BLAST test of the published disposable nine primer pairs using the new human reference sequence and to report the pertinent modifications. The new analysis showed that one of the tested primer pairs requires a revision. Therefore, a new validated primer pair, which specifically amplifies the mitochondrial region located between positions 6520 and 9184, is presented.

  9. Alignment of the amino terminal amino acid sequence of human cytochrome c oxidase subunits I and II with the sequence of their putative mRNAs.

    OpenAIRE

    CHOMYN, A.; Hunkapiller, M W; Attardi, G

    1981-01-01

    Thirteen of the first fifteen amino acids from the NH2-terminus of the primary sequence of human cytochrome c oxidase subunit I and eleven of the first twelve amino acids of subunit II have been identified by microsequencing procedures. These sequences have been compared with the recently determined 5'-end proximal sequences of the HeLa cell mitochondrial mRNAs and unambiguously aligned with two of them. This alignment has allowed the identification of the putative mRNA for subunit I, and has...

  10. p21WAF1/CIP1 gene DNA sequencing and its expression in human osteosarcoma

    Institute of Scientific and Technical Information of China (English)

    廖威明; 张春林; 李佛保; 曾炳芳; 曾益新

    2004-01-01

    Background Mutation and expression change of p21WAF1/CIP1 may play a role in the growth of osteosarcoma. This study was to investigate the expression of the p21WAF1/CIP1 gene in human osteosarcoma, p21WAF1/CIP1 gene DNA sequence change and their relationships with the phenotype and clinical prognosis.Methods p21WAF1/CIP1 gene in 10 normal people and the tumours of 45 osteosarcoma patients were examined using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) with silver staining. The PCR product with an abnormal strand was sequenced directly. The p21WAF1/CIP1 gene mRNA and P21 protein of 45 cases of osteosarcoma were investigated by using in situ hybridization and immunohistochemistry, respectively. Results The occurrence of P21 protein in osteosarcoma was 17.78% (8/45), and p21WAF1/CIP1 mRNA expression in osteosarcoma was 42.22% (19/45). The p21WAF1/CIP1 gene DNA sequencing of amplified production showed that in p21WAF1/CIP1 gene exon 3 of 36 cases of human osteosarcoma, there were 17 cases (47.22%) with C→T at position 609; 10 normal blood samples' DNA sequence analysis yielded 8 cases (80.00%) with C→T at the same position. Conclusions Along with the increase of malignancy, the expression of p21WAF1/CIP1mRNA and P21 protein in osteosarcoma tends to decrease. It is uncommon for the p21WAF1/CIP1 gene mutation to occur in human osteosarcoma. As a result, the possible existence of tumour subtypes of p21WAF1/CIP1 gene mutation should be investigated. Our research leads to the location of p21WAF1/CIP1 gene polymorphism of Chinese osteosarcoma patients, which can provide a basis for further research.

  11. HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events.

    Directory of Open Access Journals (Sweden)

    Stéphane Buhler

    Full Text Available Molecular differences between HLA alleles vary up to 57 nucleotides within the peptide binding coding region of human Major Histocompatibility Complex (MHC genes, but it is still unclear whether this variation results from a stochastic process or from selective constraints related to functional differences among HLA molecules. Although HLA alleles are generally treated as equidistant molecular units in population genetic studies, DNA sequence diversity among populations is also crucial to interpret the observed HLA polymorphism. In this study, we used a large dataset of 2,062 DNA sequences defined for the different HLA alleles to analyze nucleotide diversity of seven HLA genes in 23,500 individuals of about 200 populations spread worldwide. We first analyzed the HLA molecular structure and diversity of these populations in relation to geographic variation and we further investigated possible departures from selective neutrality through Tajima's tests and mismatch distributions. All results were compared to those obtained by classical approaches applied to HLA allele frequencies.Our study shows that the global patterns of HLA nucleotide diversity among populations are significantly correlated to geography, although in some specific cases the molecular information reveals unexpected genetic relationships. At all loci except HLA-DPB1, populations have accumulated a high proportion of very divergent alleles, suggesting an advantage of heterozygotes expressing molecularly distant HLA molecules (asymmetric overdominant selection model. However, both different intensities of selection and unequal levels of gene conversion may explain the heterogeneous mismatch distributions observed among the loci. Also, distinctive patterns of sequence divergence observed at the HLA-DPB1 locus suggest current neutrality but old selective pressures on this gene. We conclude that HLA DNA sequences advantageously complement HLA allele frequencies as a source of data used

  12. Application of Sequence-based Methods in Human MicrobialEcology

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Li; Rubin, Edward M.; Bristow, James

    2005-08-29

    Ecologists studying microbial life in the environment have recognized the enormous complexity of microbial diversity for many years, and the development of a variety of culture-independent methods, many of them coupled with high-throughput DNA sequencing, has allowed this diversity to be explored in ever greater detail. Despite the widespread application of these new techniques to the characterization of uncultivated microbes and microbial communities in the environment, their application to human health and disease has lagged behind. Because DNA based-techniques for defining uncultured microbes allow not only cataloging of microbial diversity, but also insight into microbial functions, investigators are beginning to apply these tools to the microbial communities that abound on and within us, in what has aptly been called the second Human Genome Project. In this review we discuss the sequence-based methods for microbial analysis that are currently available and their application to identify novel human pathogens, improve diagnosis of known infectious diseases, and to advance understanding of our relationship with microbial communities that normally reside in and on the human body.

  13. Intrachromosomal recombination between highly diverged DNA sequences is enabled in human cells deficient in Bloom helicase.

    Science.gov (United States)

    Wang, Yibin; Li, Shen; Smith, Krissy; Waldman, Barbara Criscuolo; Waldman, Alan S

    2016-05-01

    Mutation of Bloom helicase (BLM) causes Bloom syndrome (BS), a rare human genetic disorder associated with genome instability, elevation of sister chromatid exchanges, and predisposition to cancer. Deficiency in BLM homologs in Drosophila and yeast brings about significantly increased rates of recombination between imperfectly matched sequences ("homeologous recombination," or HeR). To assess whether BLM deficiency provokes an increase in HeR in human cells, we transfected an HeR substrate into a BLM-null cell line derived from a BS patient. The substrate contained a thymidine kinase (tk)-neo fusion gene disrupted by the recognition site for endonuclease I-SceI, as well as a functional tk gene to serve as a potential recombination partner for the tk-neo gene. The two tk sequences on the substrate displayed 19% divergence. A double-strand break was introduced by expression of I-SceI and repair events were recovered by selection for G418-resistant clones. Among 181 events recovered, 30 were accomplished via HeR with the balance accomplished by nonhomologous end-joining. The frequency of HeR events in the BS cells was elevated significantly compared to that seen in normal human fibroblasts or in BS cells complemented for BLM expression. We conclude that BLM deficiency enables HeR in human cells.

  14. Sequence and annotation of the apicoplast genome of the human pathogen Babesia microti.

    Directory of Open Access Journals (Sweden)

    Aprajita Garg

    Full Text Available The apicomplexan intraerythrocytic parasite Babesia microti is an emerging human pathogen and the primary cause of human babesiosis, a malaria-like illness endemic in the United States. The pathogen is transmitted to humans by the tick vector, Ixodes scapularis, and by transfusion of blood from asymptomatic B. microti-infected donors. Whereas the nuclear and mitochondrial genomes of this parasite have been sequenced, assembled and annotated, its apicoplast genome remained incomplete, mainly due to its low representation and high A+T content. Here we report the complete sequence and annotation of the apicoplast genome of the B. microti R1 isolate. The genome consists of a 28.7 kb circular molecule encoding primarily functions important for maintenance of the apicoplast DNA, transcription, translation and maturation of organellar proteins. Genome analysis and annotation revealed a unique gene structure and organization of the B. microti apicoplast genome and suggest that all metabolic and non-housekeeping functions in this organelle are nuclear-encoded. B. microti apicoplast functions are significantly different from those of the host, suggesting that they might be useful as targets for development of potent and safe therapies for the treatment of human babesiosis.

  15. Variable structure multiple model for articulated human motion tracking from monocular video sequences

    Institute of Scientific and Technical Information of China (English)

    HAN Hong; TONG MingLei; CHEN ZhiChao; FAN YouJian

    2012-01-01

    A new model-based human body tracking framework with learning-based theory is introduced inthis paper.We propose a variable structure multiple model (VSMM) framework to address challenging problems such as uncertainty of motion styles,imprecise detection of feature points,and ambiguity of joint locations.Key human joint points are detected automatically and the undetected points are estimated with Kalman filters.Multiple motion models are learned from motion capture data using a ridge regression method.The model set that covers the total motion set is designed on the basis of topological and compatibility relationships,while the VSMM algorithm is used to estimate quaternion vectors of joint rotation.Experiments using real image sequences and simulation videos demonstrate the high efficiency of our proposed human tracking framework.

  16. Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo.

    Science.gov (United States)

    Maurano, Matthew T; Haugen, Eric; Sandstrom, Richard; Vierstra, Jeff; Shafer, Anthony; Kaul, Rajinder; Stamatoyannopoulos, John A

    2015-12-01

    The function of human regulatory regions depends exquisitely on their local genomic environment and on cellular context, complicating experimental analysis of common disease- and trait-associated variants that localize within regulatory DNA. We use allelically resolved genomic DNase I footprinting data encompassing 166 individuals and 114 cell types to identify >60,000 common variants that directly influence transcription factor occupancy and regulatory DNA accessibility in vivo. The unprecedented scale of these data enables systematic analysis of the impact of sequence variation on transcription factor occupancy in vivo. We leverage this analysis to develop accurate models of variation affecting the recognition sites for diverse transcription factors and apply these models to discriminate nearly 500,000 common regulatory variants likely to affect transcription factor occupancy across the human genome. The approach and results provide a new foundation for the analysis and interpretation of noncoding variation in complete human genomes and for systems-level investigation of disease-associated variants.

  17. Large-scale oscillation of structure-related DNA sequence features in human chromosome 21

    Science.gov (United States)

    Li, Wentian; Miramontes, Pedro

    2006-08-01

    Human chromosome 21 is the only chromosome in the human genome that exhibits oscillation of the (G+C) content of a cycle length of hundreds kilobases (kb) ( 500kb near the right telomere). We aim at establishing the existence of a similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi- and tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10- or 11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting or unwinding, stiffness, and a putative tendency for nucleosome formation.

  18. Single-Neuron Sequencing Analysis of L1 Retrotransposition and Somatic Mutation in the Human Brain

    Science.gov (United States)

    Evrony, Gilad D.; Cai, Xuyu; Lee, Eunjung; Hills, L. Benjamin; Elhosary, P. Christina; Lehmann, Hillel S.; Parker, J.J.; Atabay, Kutay D.; Gilmore, Edward C.; Poduri, Annapurna; Park, Peter J.; Walsh, Christopher A.

    2013-01-01

    Summary A major unanswered question in neuroscience is whether there exists genomic variability between individual neurons of the brain, contributing to functional diversity or to an unexplained burden of neurological disease. To address this question, we developed a method to amplify genomes of single neurons from human brains. Since recent reports suggest frequent LINE-1 (L1) retrotransposition in human brains, we performed genome-wide L1 insertion profiling of 300 single neurons from cerebral cortex and caudate nucleus of 3 normal individuals, recovering >80% of germline insertions from single neurons. While we find somatic L1 insertions, we estimate hemimegalencephaly. Single-neuron sequencing allows systematic assessment of genomic diversity in the human brain. PMID:23101622

  19. microPIR: an integrated database of microRNA target sites within human promoter sequences.

    Directory of Open Access Journals (Sweden)

    Jittima Piriyapongsa

    Full Text Available BACKGROUND: microRNAs are generally understood to regulate gene expression through binding to target sequences within 3'-UTRs of mRNAs. Therefore, computational prediction of target sites is usually restricted to these gene regions. Recent experimental studies though have suggested that microRNAs may alternatively modulate gene expression by interacting with promoters. A database of potential microRNA target sites in promoters would stimulate research in this field leading to more understanding of complex microRNA regulatory mechanism. METHODOLOGY: We developed a database hosting predicted microRNA target sites located within human promoter sequences and their associated genomic features, called microPIR (microRNA-Promoter Interaction Resource. microRNA seed sequences were used to identify perfect complementary matching sequences in the human promoters and the potential target sites were predicted using the RNAhybrid program. >15 million target sites were identified which are located within 5000 bp upstream of all human genes, on both sense and antisense strands. The experimentally confirmed argonaute (AGO binding sites and EST expression data including the sequence conservation across vertebrate species of each predicted target are presented for researchers to appraise the quality of predicted target sites. The microPIR database integrates various annotated genomic sequence databases, e.g. repetitive elements, transcription factor binding sites, CpG islands, and SNPs, offering users the facility to extensively explore relationships among target sites and other genomic features. Furthermore, functional information of target genes including gene ontologies, KEGG pathways, and OMIM associations are provided. The built-in genome browser of microPIR provides a comprehensive view of multidimensional genomic data. Finally, microPIR incorporates a PCR primer design module to facilitate experimental validation. CONCLUSIONS: The proposed micro

  20. Multilocus sequence typing supports the hypothesis that Ochrobactrum anthropi displays a human-associated subpopulation

    Directory of Open Access Journals (Sweden)

    Marchandin Hélène

    2009-12-01

    Full Text Available Abstract Background Ochrobactrum anthropi is a versatile bacterial species with strains living in very diverse habitats. It is increasingly recognized as opportunistic pathogen in hospitalized patients. The population biology of the species particularly with regard to the characteristics of the human isolates is being investigated. To address this issue, we proposed a polyphasic approach consisting in Multi-Locus Sequence Typing (MLST, multi-locus phylogeny, genomic-based fingerprinting by pulsed-field gel electrophoresis (PFGE and antibiotyping. Results We tested a population of 70 O. anthropi clinical (n = 43 and environmental (n = 24 isolates as well as the type strain O. anthropi ATCC49188T and 2 strains of Ochrobactrum lupini and Ochrobactrum cytisi isolated from plant nodules. A Multi-Locus Sequence Typing (MLST scheme for O. anthropi is proposed here for the first time. It was based on 7 genes (3490 nucleotides evolving mostly by neutral mutations. The MLST approach suggested an epidemic population structure. A major clonal complex corresponded to a human-associated lineage since it exclusively contained clinical isolates. Genomic fingerprinting separated isolates displaying the same sequence type but it did not detect a population structure that could be related to the origin of the strains. None of the molecular method allowed the definition of particular lineages associated to the host-bacteria relationship (carriage, colonisation or infection. Antibiotyping was the least discriminative method. Conclusion The results reveal a human-associated subpopulation in our collection of strains. The emergence of this clonal complex was probably not driven by the antibiotic selective pressure. Therefore, we hypothesise that the versatile species O. anthropi could be considered as a human-specialized opportunistic pathogen.

  1. Evolutionary history of Helicobacter pylori sequences reflect past human migrations in Southeast Asia.

    Directory of Open Access Journals (Sweden)

    Sebastien Breurec

    Full Text Available The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia.

  2. A global survey of CRM1-dependent nuclear export sequences in the human deubiquitinase family.

    Science.gov (United States)

    García-Santisteban, Iraia; Bañuelos, Sonia; Rodríguez, Jose A

    2012-01-01

    The mechanisms that regulate the nucleocytoplasmic localization of human deubiquitinases remain largely unknown. The nuclear export receptor CRM1 binds to specific amino acid motifs termed NESs (nuclear export sequences). By using in silico prediction and experimental validation of candidate sequences, we identified 32 active NESs and 78 inactive NES-like motifs in human deubiquitinases. These results allowed us to evaluate the performance of three programs widely used for NES prediction, and to add novel information to the recently redefined NES consensus. The novel NESs identified in the present study reveal a subset of 22 deubiquitinases bearing motifs that might mediate their binding to CRM1. We tested the effect of the CRM1 inhibitor LMB (leptomycin B) on the localization of YFP (yellow fluorescent protein)- or GFP (green fluorescent protein)-tagged versions of six NES-bearing deubiquitinases [USP (ubiquitin-specific peptidase) 1, USP3, USP7, USP21, CYLD (cylindromatosis) and OTUD7B (OTU-domain-containing 7B)]. YFP-USP21 and, to a lesser extent, GFP-OTUD7B relocated from the cytoplasm to the nucleus in the presence of LMB, revealing their nucleocytoplasmic shuttling capability. Two sequence motifs in USP21 had been identified during our survey as active NESs in the export assay. Using site-directed mutagenesis, we show that one of these motifs mediates USP21 nuclear export, whereas the second motif is not functional in the context of full-length USP21.

  3. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences.

    LENUS (Irish Health Repository)

    Ivanov, Ivaylo P

    2011-05-01

    In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5\\' cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized--both for increased coding capacity and potentially also for novel regulatory mechanisms--remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5\\' untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data.

  4. Alkylation of a human telomere sequence by heterotrimeric chlorambucil PI polyamide conjugates.

    Science.gov (United States)

    Kashiwazaki, Gengo; Bando, Toshikazu; Shinohara, Ken-ichi; Minoshima, Masafumi; Kumamoto, Hana; Nishijima, Shigeki; Sugiyama, Hiroshi

    2010-04-15

    We designed and synthesized human telomere alkylating N-methylpyrrole-N-methylimidazole (PI) polyamide conjugates (1-6). The C-type conjugates 1-3 possessed a chlorambucil moiety at the C terminus, whereas the N-type conjugates 4-6 had one of these moieties at the N terminus. The DNA alkylating activity of these conjugates was evaluated by high-resolution denaturing polyacrylamide gel electrophoresis using a 220bp DNA fragment containing the human telomere repeat sequence 5'-(GGGTTA)(4)-3'/5'-(TAACCC)(4)-3'. C-type conjugates are designed to alkylate the G-rich-strand-containing 5'-GGGTTA-3' and N-type conjugates were designed to alkylate the complementary C-rich strand-containing 5'-TAACCC-3' sequence. The difference between conjugates 1-3 and 4-6 lies in the linker region between the polyamide moiety and chlorambucil. Conjugates 1 and 4 efficiently alkylated the 5'-GGTTAGGGTTA-3' and 5'-CCCTAACCCTAA-3' sequences, respectively, by recognizing 11bp in the presence of distamycin A (Dist), in a heterotrimeric manner: one long alkylating polyamide conjugate (1-6) and two short partners (Dist). Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Human BMP sequences can confer normal dorsal-ventral patterning in the Drosophila embryo.

    Science.gov (United States)

    Padgett, R W; Wozney, J M; Gelbart, W M

    1993-04-01

    The type beta transforming growth factor family is composed of a series of processed, secreted growth factors, several of which have been implicated in important regulatory roles in cell determination, inductive interactions, and tissue differentiation. Among these factors, the sequence of the DPP protein from Drosophila is most similar to two of the vertebrate bone morphogenetic proteins, BMP2 and BMP4. Here we report that the human BMP4 ligand sequences can function in lieu of DPP in Drosophila embryos. We introduced the ligand region from human BMP4 into a genomic fragment of the dpp gene in place of the Drosophila ligand sequences and recovered transgenic flies by P-element transformation. We find that this chimeric dpp-BMP4 transgene can completely rescue the embryonic dorsal-ventral patterning defect of null dpp mutant genotypes. We infer that the chimeric DPP-BMP4 protein can be processed properly and, by analogy with the action of other family members, can activate the endogenous DPP receptor to carry out the events necessary for dorsal-ventral patterning. Our evidence suggests that the DPP-BMP4 signal transduction pathway has been functionally conserved for at least 600 million years.

  6. Characterizing ncRNAs in human pathogenic protists using high-throughput sequencing technology

    Directory of Open Access Journals (Sweden)

    Lesley Joan Collins

    2011-12-01

    Full Text Available ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, snoRNAs and long ncRNAs on a genomic scale making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases.

  7. Partial Sequence Analysis of the Genome of Human Herpesvirus 7 YY5 Isolated from Saliva Samples

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To isolate and identify Nanjing local strains of Human Herpesvirus 7 (HH-V-7), and to analyze their partia l genome characteristic. Methods The saliva specimens were collected from 2 healthy adults and 5 children with kidney disease. After treatment with antibiotics and filtering. they were inoculated on to the phytohemagglutin stimulated umbilical cord blood mononuclear cells ( CBMCs). When the infected cells presented the typical ballooning and polykaryotic cytopathic effects (CPE), we identified them by transvnission electron microscopy and polymerase chain reaction.PCR product was also sequenced. Results Four strains were isolated from the seven saliva specimens. The 186-base-pair fragment of the isolated strain YY5 PCR products was sequenced, which encoded part of the HHV-7 U10 gene. The DNA sequence revealed an identity of 57. 5% and 36.0%, respectively with HHV-6 and human cytomegalovirus ( HCMV). At the amino acid level, the similarity of 51.6% was found between HHV-7 and HHV-6, and that of 25.8% between HHV-7and HCMV. Conclusion The isolated viruses were HHV-7, and 186 bp fragments revealed an identity with HHV-7 RK and Jl of 100%.

  8. Rarity of DNA sequence alterations in the promoter region of the human androgen receptor gene

    Directory of Open Access Journals (Sweden)

    D.F. Cabral

    2004-12-01

    Full Text Available The human androgen receptor (AR gene promoter lies in a GC-rich region containing two principal sites of transcription initiation and a putative Sp1 protein-binding site, without typical "TATA" and "CAAT" boxes. It has been suggested that mutations within the 5'untranslated region (5'UTR may contribute to the development of prostate cancer by changing the rates of gene transcription and/or translation. In order to investigate this question, the aim of the present study was to search for the presence of mutations or polymorphisms at the AR-5'UTR in 92 prostate cancer patients, where histological diagnosis of adenocarcinoma was established in specimens obtained from transurethral resection or after prostatectomy. The AR-5'UTR was amplified by PCR from genomic DNA samples of the patients and of 100 healthy male blood donors, included as controls. Conformation-sensitive gel electrophoresis was used for DNA sequence alteration screening. Only one band shift was detected in one individual from the blood donor group. Sequencing revealed a new single nucleotide deletion (T in the most conserved portion of the promoter region at position +36 downstream from the transcription initiation site I. Although the effect of this specific mutation remains unknown, its rarity reveals the high degree of sequence conservation of the human androgen promoter region. Moreover, the absence of detectable variation within the critical 5'UTR in prostate cancer patients indicates a low probability of its involvement in prostate cancer etiology.

  9. A noncontrast-enhanced pulse sequence optimized to visualize human peripheral vessels

    Energy Technology Data Exchange (ETDEWEB)

    Gjesdal, Kjell-Inge [Sunnmoere MR-Klinikk, Aalesund (Norway); Storaas, Tryggve [Ullevaal University Hospital, Section for Diagnostic Physics, Department of Radiology, Oslo (Norway); Geitung, Jonn-Terje [Haraldsplass University Hospital, Department of Radiology, Bergen (Norway)

    2009-01-15

    The purpose of this paper is to present a pulse sequence optimized to visualize human peripheral vessels. The optimized MR technique is a 3D multi-shot balanced non-SSFP gradient echo pulse sequence with fat suppression. Several imaging parameters were adjusted to find the best compromise between the contrast of vascular structures and muscle, fat, and bone. Most of the optimization was performed in the knee and calf regions using multi-channel SENSE coils. To verify potential clinical use, images of both healthy volunteers and volunteers with varicose veins were produced. The balanced non-SSFP sequence can produce high-spatial-resolution images of the human peripheral vessels without the need for an intravenous contrast agent. Both arteries and veins are displayed along with other body fluids. Due to the high spatial resolution of the axial plane source or reconstructed images, the need for procedures to separate arteries from veins is limited. We demonstrate that high signals from synovial joint fluid and cystic structures can be suppressed by applying an inversion prepulse but at the expense of reduced image signal-to-noise and overall image quality. (orig.)

  10. Sequence polymorphism of human mitochondrial DNA control region in Chinese Dongxiang unrelated individuals

    Institute of Scientific and Technical Information of China (English)

    LIU Xin-she; CHEN Teng; LI Sheng-bin

    2004-01-01

    Objective: To investigate the mitochondrial DNA sequence polymorphism in Chinese Dongxiang ethnic group and to provide basic data used in ethnic origin investigation and forensic purpose. Methods: Genomic DNA was extracted from the whole blood of 100 unrelated individuals of Chinese Dongxiang ethnic group by standard Chelex-100 method.The sequence polymorphism was determined by PCR amplification and direct sequencing. Results: Eighty-two polymorphic sites were identified in mtDNA D-loop region 16 091 - 16 418 np, and 88 haplotypes were found. The genetic diversity was calculated to be 0.996 9, and the genetic identity was 0.013 2. Conclusion: There are some particular polymorphic sites in Chinese Dongxiang ethnic group, and these sites provide an important basis to investigate the origin of Dongxiang and the relationship between Dongxiang and other ethnic groups. The result also suggested that sequence polymorphism from 16 091 -16 418 np in human mitochondrial DNA control region can be an useful tool for forensic identity.

  11. Frequency of Epstein-Barr virus DNA sequences in human gliomas

    Directory of Open Access Journals (Sweden)

    Renata Fragelli Fonseca

    Full Text Available CONTEXT AND OBJECTIVE: The Epstein-Barr virus (EBV is the most common cause of infectious mononucleosis and is also associated with several human tumors, including Burkitt's lymphoma, Hodgkin's lymphoma, some cases of gastric carcinoma and nasopharyngeal carcinoma, among other neoplasms. The aim of this study was to screen 75 primary gliomas for the presence of specific EBV DNA sequences by means of the polymerase chain reaction (PCR, with confirmation by direct sequencing. DESIGN AND SETTING: Prevalence study on EBV molecular genetics at a molecular pathology laboratory in a university hospital and at an applied genetics laboratory in a national institution. METHODS: A total of 75 primary glioma biopsies and 6 others from other tumors from the central nervous system were obtained. The tissues were immediately frozen for subsequent DNA extraction by means of traditional methods using proteinase K digestion and extraction with a phenol-chloroform-isoamyl alcohol mixture. DNA was precipitated with ethanol, resuspended in buffer and stored. The PCRs were carried out using primers for amplification of the EBV BamM region. Positive and negative controls were added to each reaction. The PCR products were used for direct sequencing for confirmation. RESULTS: The viral sequences were positive in 11/75 (14.7% of our samples. CONCLUSION: The prevalence of EBV DNA was 11/75 (14.7% in our glioma collection. Further molecular and epidemiological studies are needed to establish the possible role played by EBV in the tumorigenesis of gliomas.

  12. Sequence Diversity of VP4 and VP7 Genes of Human Rotavirus Strains in Saudi Arabia.

    Science.gov (United States)

    Abdel-Moneim, Ahmed S; Al-Malky, Mater I R; Alsulaimani, Adnan A A; Abuelsaad, Abdelaziz S A; Mohamed, Imad; Ismail, Ayman K

    2015-12-01

    Group A rotavirus is responsible for inducing severe diarrhea in young children worldwide. Rotavirus vaccines are used to control the disease in many countries. In the current study, the sequences of human rotavirus G and P types in Saudi Arabia are reported and compared to different relevant published sequences. In addition, the VP4 and VP7 genes of the G1P[8] strains are compared to different antigenic epitopes of the rotavirus vaccines. Stool samples were collected from children under 2 years suffering from severe diarrhea. Screening of the rotavirus-positive samples was performed with rapid antigen detection kit. RNA was amplified from rotavirus-positive samples by reverse transcriptase polymerase chain reaction assay for both VP4 and VP7 genes. Direct sequencing of the VP4 and VP7 genes was conducted and the obtained sequences were compared to each other and to the rotavirus vaccines. Both G1P[8] G1P[4] genotypes were detected. Phylogenetic analysis revealed that the detected strains belong to G1 lineage 1 and 2, P[8] lineage 3, and to P[4] lineage 5. Multiple amino acid substitutions were detected between the Saudi RVA strains and the commonly used vaccines. The current findings emphasize the importance of the continuous surveillance of the circulating rotavirus strains, which is crucial for monitoring virus evolution and helping in predicting the protection level afforded by rotavirus vaccines.

  13. Massive parallel IGHV gene sequencing reveals a germinal center pathway in origins of human multiple myeloma.

    Science.gov (United States)

    Cowan, Graeme; Weston-Bell, Nicola J; Bryant, Dean; Seckinger, Anja; Hose, Dirk; Zojer, Niklas; Sahota, Surinder S

    2015-05-30

    Human multiple myeloma (MM) is characterized by accumulation of malignant terminally differentiated plasma cells (PCs) in the bone marrow (BM), raising the question when during maturation neoplastic transformation begins. Immunoglobulin IGHV genes carry imprints of clonal tumor history, delineating somatic hypermutation (SHM) events that generally occur in the germinal center (GC). Here, we examine MM-derived IGHV genes using massive parallel deep sequencing, comparing them with profiles in normal BM PCs. In 4/4 presentation IgG MM, monoclonal tumor-derived IGHV sequences revealed significant evidence for intraclonal variation (ICV) in mutation patterns. IGHV sequences of 2/2 normal PC IgG populations revealed dominant oligoclonal expansions, each expansion also displaying mutational ICV. Clonal expansions in MM and in normal BM PCs reveal common IGHV features. In such MM, the data fit a model of tumor origins in which neoplastic transformation is initiated in a GC B-cell committed to terminal differentiation but still targeted by on-going SHM. Strikingly, the data parallel IGHV clonal sequences in some monoclonal gammopathy of undetermined significance (MGUS) known to display on-going SHM imprints. Since MGUS generally precedes MM, these data suggest origins of MGUS and MM with IGHV gene mutational ICV from the same GC B-cell, arising via a distinctive pathway.

  14. Design and Implementation of Submicron Level 10T Full Adder in ALU Using Cell Based and SOC Technology

    Directory of Open Access Journals (Sweden)

    K.Swathi

    2014-09-01

    Full Text Available As technology scales into the nanometer regime leakage current, active power, delay and area are becoming important metric for the analysis and design of complex circuits. The main concern in mobile and battery based systems are leakage current and power dissipation. A transistor resizing approach for 10 transistor single bit full adder cells is used to determine optimal sleep transistor size which reduces power dissipation and leakage current. A submicron level 10-transistor single bit full adder cell is considered to achieve low leakage current, reduced power dissipation and high speed. In this paper initially 10T full adder cell is designed with submicron technique and later this is employed to design an ALU adder unit. The modified ALU is simulated and synthesized successfully on cadence 180nm technology.

  15. Single-cell RNA sequencing: revealing human pre-implantation development, pluripotency and germline development.

    Science.gov (United States)

    Petropoulos, S; Panula, S P; Schell, J P; Lanner, F

    2016-09-01

    Early human development is a dynamic, heterogeneous, complex and multidimensional process. During the first week, the single-cell zygote undergoes eight to nine rounds of cell division generating the multicellular blastocyst, which consists of hundreds of cells forming spatially organized embryonic and extra-embryonic tissues. At the level of transcription, degradation of maternal RNA commences at around the two-cell stage, coinciding with embryonic genome activation. Although numerous efforts have recently focused on delineating this process in humans, many questions still remain as thorough investigation has been limited by ethical issues, scarce availability of human embryos and the presence of minute amounts of DNA and RNA. In vitro cultures of embryonic stem cells provide some insight into early human development, but such studies have been confounded by analysis on a population level failing to appreciate cellular heterogeneity. Recent technical developments in single-cell RNA sequencing have provided a novel and powerful tool to explore the early human embryo in a systematic manner. In this review, we will discuss the advantages and disadvantages of the techniques utilized to specifically investigate human development and consider how the technology has yielded new insights into pre-implantation development, embryonic stem cells and the establishment of the germ line.

  16. Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome.

    Science.gov (United States)

    Kuleshov, Volodymyr; Jiang, Chao; Zhou, Wenyu; Jahanbani, Fereshteh; Batzoglou, Serafim; Snyder, Michael

    2016-01-01

    Identifying bacterial strains in metagenome and microbiome samples using computational analyses of short-read sequences remains a difficult problem. Here, we present an analysis of a human gut microbiome using TruSeq synthetic long reads combined with computational tools for metagenomic long-read assembly, variant calling and haplotyping (Nanoscope and Lens). Our analysis identifies 178 bacterial species, of which 51 were not found using shotgun reads alone. We recover bacterial contigs that comprise multiple operons, including 22 contigs of >1 Mbp. Furthermore, we observe extensive intraspecies variation within microbial strains in the form of haplotypes that span up to hundreds of Kbp. Incorporation of synthetic long-read sequencing technology with standard short-read approaches enables more precise and comprehensive analyses of metagenomic samples.

  17. Detection of Human Papillomavirus Type 2 Related Sequence in Oral Papilloma

    Science.gov (United States)

    Yamaguchi, Taihei; Shindoh, Masanobu; Amemiya, Akira; Inoue, Nobuo; Kawamura, Masaaki; Sakaoka, Hiroshi; Inoue, Masakazu; Fujinaga, Kei

    1998-01-01

    Oral papilloma is a benign tumourous lesion. Part of this lesion is associated with human papillomavirus (HPV) infection. We analysed the genetical and histopathological evidence for HPV type 2 infection in three oral papillomas. Southern blot hybridization showed HPV 2a sequence in one lesion. Cells of the positive specimen appeared to contain high copy numbers of the viral DNA in an episomal state. In situ staining demonstrated virus capsid antigen in koilocytotic cells and surrounding cells in the hyperplastic epithelial layer. Two other specimens contained no HPV sequences by labeled probe of full length linear HPVs 2a, 6b, 11, 16, 18, 31 and 33 DNA under low stringency hybridization conditions. These results showed the possibility that HPV 2 plays a role in oral papilloma. PMID:9699941

  18. De Novo Sequencing and Resurrection of a Human Astrovirus-Neutralizing Antibody.

    Science.gov (United States)

    Bogdanoff, Walter A; Morgenstern, David; Bern, Marshall; Ueberheide, Beatrix M; Sanchez-Fauquier, Alicia; DuBois, Rebecca M

    2016-05-13

    Monoclonal antibody (mAb) therapeutics targeting cancer, autoimmune diseases, inflammatory diseases, and infectious diseases are growing exponentially. Although numerous panels of mAbs targeting infectious disease agents have been developed, their progression into clinically useful mAbs is often hindered by the lack of sequence information and/or loss of hybridoma cells that produce them. Here we combine the power of crystallography and mass spectrometry to determine the amino acid sequence and glycosylation modification of the Fab fragment of a potent human astrovirus-neutralizing mAb. We used this information to engineer a recombinant antibody single-chain variable fragment that has the same specificity as the parent monoclonal antibody to bind to the astrovirus capsid protein. This antibody can now potentially be developed as a therapeutic and diagnostic agent.

  19. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution.

    Science.gov (United States)

    Palmenberg, Ann C; Spiro, David; Kuzmickas, Ryan; Wang, Shiliang; Djikeng, Appolinaire; Rathe, Jennifer A; Fraser-Liggett, Claire M; Liggett, Stephen B

    2009-04-03

    Infection by human rhinovirus (HRV) is a major cause of upper and lower respiratory tract disease worldwide and displays considerable phenotypic variation. We examined diversity by completing the genome sequences for all known serotypes (n = 99). Superimposition of capsid crystal structure and optimal-energy RNA configurations established alignments and phylogeny. These revealed conserved motifs; clade-specific diversity, including a potential newly identified species (HRV-D); mutations in field isolates; and recombination. In analogy with poliovirus, a hypervariable 5' untranslated region tract may affect virulence. A configuration consistent with nonscanning internal ribosome entry was found in all HRVs and may account for rapid translation. The data density from complete sequences of the reference HRVs provided high resolution for this degree of modeling and serves as a platform for full genome-based epidemiologic studies and antiviral or vaccine development.

  20. HMG-box sequences from microbats homologous to the human SOX30 HMG-box.

    Science.gov (United States)

    Bullejos, M; Díaz de la Guardia, R; Barragán, M J; Sánchez, A

    2000-01-01

    SOX genes are a family of genes that encode for proteins which are characterised by the presence of a HMG-domain related to that of the mammalian sex-determining gene (SRY). By definition, the DNA binding domain of SOX genes is at least 50% identical to the 79 amino acid HMG domain of the SRY gene. We report here two HMG-box sequences from two microbat species (R. ferrumequinum and P. Pipistrellus) which were PCR amplified using a primer pair specific to the mouse Sry HMG-box. The high percentage of identity of this sequences with the human and mouse SOX30 HMG-box suggests that they are the SOX30 HMG-box for these two bat species.

  1. Human case of bacteremia caused by Streptococcus canis sequence type 9 harboring the scm gene.

    Science.gov (United States)

    Taniyama, Daisuke; Abe, Yoshihiko; Sakai, Tetsuya; Kikuchi, Takahide; Takahashi, Takashi

    2017-01-01

    Streptococcus canis (Sc) is a zoonotic pathogen that is transferred mainly from companion animals to humans. One of the major virulence factors in Sc is the M-like protein encoded by the scm gene, which is involved in anti-phagocytic activities, as well as the recruitment of plasminogen to the bacterial surface in cooperation with enolase, and the consequent enhancement of bacterial transmigration and survival. This is the first reported human case of uncomplicated bacteremia following a dog bite, caused by Streptococcus canis harboring the scm gene. The similarity of the 16S rRNA from the infecting species to that of the Sc type strain, as well as the amplification of the species-specific cfg gene, encoding a co-hemolysin, was used to confirm the species identity. Furthermore, the isolate was confirmed as sequence type 9. The partial scm gene sequence harbored by the isolate was closely related to those of other two Sc strains. While this isolate did not possess the erm(A), erm(B), or mef(A), macrolide/lincosamide resistance genes, it was not susceptible to azithromycin: its susceptibility was intermediate. Even though human Sc bacteremia is rare, clinicians should be aware of this microorganism, as well as Pasteurella sp., Prevotella sp., and Capnocytophaga sp., when examining and treating patients with fever who maintain close contact with companion animals.

  2. Impacts of Neanderthal-Introgressed Sequences on the Landscape of Human Gene Expression.

    Science.gov (United States)

    McCoy, Rajiv C; Wakefield, Jon; Akey, Joshua M

    2017-02-23

    Regulatory variation influencing gene expression is a key contributor to phenotypic diversity, both within and between species. Unfortunately, RNA degrades too rapidly to be recovered from fossil remains, limiting functional genomic insights about our extinct hominin relatives. Many Neanderthal sequences survive in modern humans due to ancient hybridization, providing an opportunity to assess their contributions to transcriptional variation and to test hypotheses about regulatory evolution. We developed a flexible Bayesian statistical approach to quantify allele-specific expression (ASE) in complex RNA-seq datasets. We identified widespread expression differences between Neanderthal and modern human alleles, indicating pervasive cis-regulatory impacts of introgression. Brain regions and testes exhibited significant downregulation of Neanderthal alleles relative to other tissues, consistent with natural selection influencing the tissue-specific regulatory landscape. Our study demonstrates that Neanderthal-inherited sequences are not silent remnants of ancient interbreeding but have measurable impacts on gene expression that contribute to variation in modern human phenotypes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Human infants' preference for left-to-right oriented increasing numerical sequences.

    Directory of Open Access Journals (Sweden)

    Maria Dolores de Hevia

    Full Text Available While associations between number and space, in the form of a spatially oriented numerical representation, have been extensively reported in human adults, the origins of this phenomenon are still poorly understood. The commonly accepted view is that this number-space association is a product of human invention, with accounts proposing that culture, symbolic knowledge, and mathematics education are at the roots of this phenomenon. Here we show that preverbal infants aged 7 months, who lack symbolic knowledge and mathematics education, show a preference for increasing magnitude displayed in a left-to-right spatial orientation. Infants habituated to left-to-right oriented increasing or decreasing numerical sequences showed an overall higher looking time to new left-to-right oriented increasing numerical sequences at test (Experiment 1. This pattern did not hold when infants were presented with the same ordinal numerical information displayed from right to left (Experiment 2. The different pattern of results was congruent with the presence of a malleable, context-dependent baseline preference for increasing, left-to-right oriented, numerosities (Experiment 3. These findings are suggestive of an early predisposition in humans to link numerical order with a left-to-right spatial orientation, which precedes the acquisition of symbolic abilities, mathematics education, and the acquisition of reading and writing skills.

  4. Information on a Major New Initiative: Mapping and Sequencing the Human Genome (1986 DOE Memorandum)

    Science.gov (United States)

    DeLisi, Charles (Associate Director, Health and Environmental Research, DOE Office of Energy Research)

    1986-05-06

    In the history of the Human Genome Program, Dr. Charles DeLisi and Dr. Alvin Trivelpiece of the Department of Energy (DOE) were instrumental in moving the seeds of the program forward. This May 1986 memo from DeLisi to Trivelpiece, Director of DOE's Office of Energy Research, documents this fact. Following the March 1986 Santa Fe workshop on the subject of mapping and sequencing the human genome, DeLisi's memo outlines workshop conclusions, explains the relevance of this project to DOE and the importance of the Department's laboratories and capabilities, notes the critical experience of DOE in managing projects of this scale and potential magnitude, and recognizes the fact that the project will impact biomedical science in ways which could not be fully anticipated at the time. Subsequently, program guidance was further sought from the DOE Health Effects Research Advisory Committee (HERAC) and the April 1987 HERAC report recommended that DOE and the nation commit to a large, multidisciplinary, scientific and technological undertaking to map and sequence the human genome.

  5. Deep sequencing reveals low incidence of endogenous LINE-1 retrotransposition in human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hubert Arokium

    Full Text Available Long interspersed element-1 (LINE-1 or L1 retrotransposition induces insertional mutations that can result in diseases. It was recently shown that the copy number of L1 and other retroelements is stable in induced pluripotent stem cells (iPSCs. However, by using an engineered reporter construct over-expressing L1, another study suggests that reprogramming activates L1 mobility in iPSCs. Given the potential of human iPSCs in therapeutic applications, it is important to clarify whether these cells harbor somatic insertions resulting from endogenous L1 retrotransposition. Here, we verified L1 expression during and after reprogramming as well as potential somatic insertions driven by the most active human endogenous L1 subfamily (L1Hs. Our results indicate that L1 over-expression is initiated during the reprogramming process and is subsequently sustained in isolated clones. To detect potential somatic insertions in iPSCs caused by L1Hs retotransposition, we used a novel sequencing strategy. As opposed to conventional sequencing direction, we sequenced from the 3' end of L1Hs to the genomic DNA, thus enabling the direct detection of the polyA tail signature of retrotransposition for verification of true insertions. Deep coverage sequencing thus allowed us to detect seven potential somatic insertions with low read counts from two iPSC clones. Negative PCR amplification in parental cells, presence of a polyA tail and absence from seven L1 germline insertion databases highly suggested true somatic insertions in iPSCs. Furthermore, these insertions could not be detected in iPSCs by PCR, likely due to low abundance. We conclude that L1Hs retrotransposes at low levels in iPSCs and therefore warrants careful analyses for genotoxic effects.

  6. Stem-loop structures of the repetitive DNA sequences located at human centromeres

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.; Garcia, A.E.; Ratliff, R.; Moyzis, R.K. [Los Alamos National Lab., NM (United States); Catasti, P.; Hong, Lin; Yau, P. [California Univ., Davis, CA (United States). Dept. of Biological Chemistry; Bradbury, E.M. [Los Alamos National Lab., NM (United States)]|[California Univ., Davis, CA (United States). Dept. of Biological Chemistry

    1993-09-01

    The presence of the highly conserved repetitive DNA sequences in the human centromeres argues for a special role of these sequences in their biological functions - most likely achieved by the formation of unusual structures. This prompted us to carry out quantitative one- and two-dimensional nuclear magnetic resonance (lD/2D NMR) spectroscopy to determine the structural properties of the human centromeric repeats, d(AATGG){sub n.d}(CCATT){sub n}. The studies on centromeric DNAs reveal that the complementary sequence, d(AATGG){sub n.d}(CCATT){sub n}, adopts the usual Watson-Crick B-DNA duplex and the pyrimidine-rich d(CCATT){sub n} strand is essentially a random coil. However, the purine-rich d(AATGG){sub n} strand is shown to adopt unusual stem-loop structures for repeat lengths, n=2,3,4, and 6. In addition to normal Watson-Crick A{center_dot}T pairs, the stem-loop structures are stabilized by mismatch A{center_dot}G and G{center_dot}G pairs in the stem and G-G-A stacking in the loop. Stem-loop structures of d(AATGG)n are independently verified by gel electrophoresis and nuclease digestion studies. Thermal melting studies show that the DNA repeats, d(AATGG){sub n}, are as stable as the corresponding Watson-Crick duplex d(AATGG){sub n.d}(CCATT){sub n}. Therefore, the sequence d(AATGG){sub n} can, indeed, nucleate a stem-loop structure at little free-energy cost and if, during mitosis, they are located on the chromosome surface they can provide specific recognition sites for kinetochore function.

  7. Decoding sequence learning from single-trial intracranial EEG in humans.

    Directory of Open Access Journals (Sweden)

    Marzia De Lucia

    Full Text Available We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep or a later consolidated phase (day 2, after sleep, whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence. Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.

  8. Multilocus sequence typing analysis of human and animal Clostridium difficile isolates of various toxigenic types.

    Science.gov (United States)

    Lemee, Ludovic; Dhalluin, Anne; Pestel-Caron, Martine; Lemeland, Jean-François; Pons, Jean-Louis

    2004-06-01

    A multilocus sequence typing (MLST) scheme was developed to study the genetic relationships and population structure of 72 Clostridium difficile isolates from various hosts, geographic sources, PCR ribotypes, and toxigenic types (determined by PCR targeting tcdA and tcdB genes). MLST was performed by DNA sequence analysis of seven housekeeping genes (aroE, ddl, dutA, tpi, recA, gmk, and sodA). The number of alleles ranged from five (dutA and ddl) to eleven (recA). Allelic profiles allowed the definition of 34 different sequence types (STs). These STs lacked correlation with geographic source but were well correlated to toxigenic type. The dendrogram generated from a matrix of pairwise genetic distances showed that animal isolates did not constitute a distinct lineage from human isolates and that there was no hypervirulent lineage within the population of toxigenic human isolates (isolates recovered from pseudomembranous colitis and antibiotic-associated diarrhea did not cluster in distinct lineages). However, A(-) B(+) variant isolates shared the same ST that appeared as a divergent lineage in the population studied, indicating a single evolutionary origin. The population structure was further examined by analysis of allelic polymorphism. The dendrogram generated from composite sequence-based analysis revealed a homogeneous population associated with three divergent lineages, one of which was restricted to A(-) B(+) variant isolates. C. difficile exhibited a clonal population structure, as revealed by the estimation of linkage disequilibrium (Ia) between loci. The analysis of alleles within clonal complexes estimated that point mutation generated new alleles at a frequency eightfold higher than recombinational exchange, and the congruence of the dendrograms generated from separate housekeeping loci confirmed the mutational evolution of this species.

  9. Deep sequencing reveals low incidence of endogenous LINE-1 retrotransposition in human induced pluripotent stem cells.

    Science.gov (United States)

    Arokium, Hubert; Kamata, Masakazu; Kim, Sanggu; Kim, Namshin; Liang, Min; Presson, Angela P; Chen, Irvin S

    2014-01-01

    Long interspersed element-1 (LINE-1 or L1) retrotransposition induces insertional mutations that can result in diseases. It was recently shown that the copy number of L1 and other retroelements is stable in induced pluripotent stem cells (iPSCs). However, by using an engineered reporter construct over-expressing L1, another study suggests that reprogramming activates L1 mobility in iPSCs. Given the potential of human iPSCs in therapeutic applications, it is important to clarify whether these cells harbor somatic insertions resulting from endogenous L1 retrotransposition. Here, we verified L1 expression during and after reprogramming as well as potential somatic insertions driven by the most active human endogenous L1 subfamily (L1Hs). Our results indicate that L1 over-expression is initiated during the reprogramming process and is subsequently sustained in isolated clones. To detect potential somatic insertions in iPSCs caused by L1Hs retotransposition, we used a novel sequencing strategy. As opposed to conventional sequencing direction, we sequenced from the 3' end of L1Hs to the genomic DNA, thus enabling the direct detection of the polyA tail signature of retrotransposition for verification of true insertions. Deep coverage sequencing thus allowed us to detect seven potential somatic insertions with low read counts from two iPSC clones. Negative PCR amplification in parental cells, presence of a polyA tail and absence from seven L1 germline insertion databases highly suggested true somatic insertions in iPSCs. Furthermore, these insertions could not be detected in iPSCs by PCR, likely due to low abundance. We conclude that L1Hs retrotransposes at low levels in iPSCs and therefore warrants careful analyses for genotoxic effects.

  10. International distribution and age estimation of the Portuguese BRCA2 c.156_157insAlu founder mutation.

    Science.gov (United States)

    Peixoto, Ana; Santos, Catarina; Pinheiro, Manuela; Pinto, Pedro; Soares, Maria José; Rocha, Patrícia; Gusmão, Leonor; Amorim, António; van der Hout, Annemarie; Gerdes, Anne-Marie; Thomassen, Mads; Kruse, Torben A; Cruger, Dorthe; Sunde, Lone; Bignon, Yves-Jean; Uhrhammer, Nancy; Cornil, Lucie; Rouleau, Etienne; Lidereau, Rosette; Yannoukakos, Drakoulis; Pertesi, Maroulio; Narod, Steven; Royer, Robert; Costa, Maurício M; Lazaro, Conxi; Feliubadaló, Lidia; Graña, Begoña; Blanco, Ignacio; de la Hoya, Miguel; Caldés, Trinidad; Maillet, Philippe; Benais-Pont, Gaelle; Pardo, Bruno; Laitman, Yael; Friedman, Eitan; Velasco, Eladio A; Durán, Mercedes; Miramar, Maria-Dolores; Valle, Ana Rodriguez; Calvo, María-Teresa; Vega, Ana; Blanco, Ana; Diez, Orland; Gutiérrez-Enríquez, Sara; Balmaña, Judith; Ramon y Cajal, Teresa; Alonso, Carmen; Baiget, Montserrat; Foulkes, William; Tischkowitz, Marc; Kyle, Rachel; Sabbaghian, Nelly; Ashton-Prolla, Patricia; Ewald, Ingrid P; Rajkumar, Thangarajan; Mota-Vieira, Luisa; Giannini, Giuseppe; Gulino, Alberto; Achatz, Maria I; Carraro, Dirce M; de Paillerets, Brigitte Bressac; Remenieras, Audrey; Benson, Cindy; Casadei, Silvia; King, Mary-Claire; Teugels, Erik; Teixeira, Manuel R

    2011-06-01

    The c.156_157insAlu BRCA2 mutation has so far only been reported in hereditary breast/ovarian cancer (HBOC) families of Portuguese origin. Since this mutation is not detectable using the commonly used screening methodologies and must be specifically sought, we screened for this rearrangement in a total of 5,443 suspected HBOC families from several countries. Whereas the c.156_157insAlu BRCA2 mutation was detected in 11 of 149 suspected HBOC families from Portugal, representing 37.9% of all deleterious mutations, in other countries it was detected only in one proband living in France and in four individuals requesting predictive testing living in France and in the USA, all being Portuguese immigrants. After performing an extensive haplotype study in carrier families, we estimate that this founder mutation occurred 558 ± 215 years ago. We further demonstrate significant quantitative differences regarding the production of the BRCA2 full length RNA and the transcript lacking exon 3 in c.156_157insAlu BRCA2 mutation carriers and in controls. The cumulative incidence of breast cancer in carriers did not differ from that of other BRCA2 and BRCA1 pathogenic mutations. We recommend that all suspected HBOC families from Portugal or with Portuguese ancestry are specifically tested for this rearrangement.

  11. International distribution and age estimation of the Portuguese BRCA2 c.156_157insAlu founder mutation

    DEFF Research Database (Denmark)

    Peixoto, Ana; Santos, Catarina; Pinheiro, Manuela;

    2011-01-01

    The c.156_157insAlu BRCA2 mutation has so far only been reported in hereditary breast/ovarian cancer (HBOC) families of Portuguese origin. Since this mutation is not detectable using the commonly used screening methodologies and must be specifically sought, we screened for this rearrangement...... in a total of 5,443 suspected HBOC families from several countries. Whereas the c.156_157insAlu BRCA2 mutation was detected in 11 of 149 suspected HBOC families from Portugal, representing 37.9% of all deleterious mutations, in other countries it was detected only in one proband living in France and in four...... regarding the production of the BRCA2 full length RNA and the transcript lacking exon 3 in c.156_157insAlu BRCA2 mutation carriers and in controls. The cumulative incidence of breast cancer in carriers did not differ from that of other BRCA2 and BRCA1 pathogenic mutations. We recommend that all suspected...

  12. Genome sequencing of idiopathic pulmonary fibrosis in conjunction with a medical school human anatomy course.

    Science.gov (United States)

    Kumar, Akash; Dougherty, Max; Findlay, Gregory M; Geisheker, Madeleine; Klein, Jason; Lazar, John; Machkovech, Heather; Resnick, Jesse; Resnick, Rebecca; Salter, Alexander I; Talebi-Liasi, Faezeh; Arakawa, Christopher; Baudin, Jacob; Bogaard, Andrew; Salesky, Rebecca; Zhou, Qian; Smith, Kelly; Clark, John I; Shendure, Jay; Horwitz, Marshall S

    2014-01-01

    Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF). Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP), as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP), rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD) adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education.

  13. Genetic variation of human papillomavirus type 16 in individual clinical specimens revealed by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Iwao Kukimoto

    Full Text Available Viral genetic diversity within infected cells or tissues, called viral quasispecies, has been mostly studied for RNA viruses, but has also been described among DNA viruses, including human papillomavirus type 16 (HPV16 present in cervical precancerous lesions. However, the extent of HPV genetic variation in cervical specimens, and its involvement in HPV-induced carcinogenesis, remains unclear. Here, we employ deep sequencing to comprehensively analyze genetic variation in the HPV16 genome isolated from individual clinical specimens. Through overlapping full-circle PCR, approximately 8-kb DNA fragments covering the whole HPV16 genome were amplified from HPV16-positive cervical exfoliated cells collected from patients with either low-grade squamous intraepithelial lesion (LSIL or invasive cervical cancer (ICC. Deep sequencing of the amplified HPV16 DNA enabled de novo assembly of the full-length HPV16 genome sequence for each of 7 specimens (5 LSIL and 2 ICC samples. Subsequent alignment of read sequences to the assembled HPV16 sequence revealed that 2 LSILs and 1 ICC contained nucleotide variations within E6, E1 and the non-coding region between E5 and L2 with mutation frequencies of 0.60% to 5.42%. In transient replication assays, a novel E1 mutant found in ICC, E1 Q381E, showed reduced ability to support HPV16 origin-dependent replication. In addition, partially deleted E2 genes were detected in 1 LSIL sample in a mixed state with the intact E2 gene. Thus, the methods used in this study provide a fundamental framework for investigating the influence of HPV somatic genetic variation on cervical carcinogenesis.

  14. A sequence-ready map for human chromosome 12q15-21.

    Science.gov (United States)

    Lee, S G; Cho, K A; Choi, Y H; Montgomery, K; Lee, E; Miller, A; Kucherlapati, R; Song, K

    2000-01-01

    Construction of sequence-ready clone map is an essential step toward sequencing the human genome. We chose a region that is frequently amplified in liposarcoma between D12S350 and D12S106 in chromosome 12q15-21 to build a PAC/BAC clone contig map. This region was spanned by 4 YACs and contained 30 STS on the YAC and radiation hybrid (RH) framework maps, providing an average STS spacing of 160 kb if each YAC is approximately 1.2 Mb in size. To convert a STS-based YAC map to a STS-based contig map of bacterial clones, 22 non-polymorphic STS markers were used as probes to screen the high density gridded arrays of PAC and BAC clones by filter hybridizations, followed by assembly of clones into contigs by marker content. Contigs have been extended and joined by direct end sequencing of appropriate clones, generating new STSs and rescreening the library as necessary. Using these approaches, we have constructed 5 contigs covering the region with the largest single contig being 1.4 Mb and a final size estimation of 3.6 Mb. The map is comprised of 17 YACs, 187 PACs, 160 BACs, and 17 cosmids; onto this, 6 polymorphic, 97 non-polymorphic, 24 ESTs, and 4 gene-based markers are now placed in a unique order, providing an average resolution of approximately 28 kb. Of a total of 131 markers, 97 were developed in the present study. The sequence-ready map should provide a framework to generate complete DNA sequence and ultimately gene map of this segment of chromosome 12.

  15. Genome sequencing of idiopathic pulmonary fibrosis in conjunction with a medical school human anatomy course.

    Directory of Open Access Journals (Sweden)

    Akash Kumar

    Full Text Available Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF. Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP, as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP, rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education.

  16. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase.

    Science.gov (United States)

    Cheng, Tsung-Lin; Liao, Ching-Chun; Tsai, Wen-Hui; Lin, Chin-Chih; Yeh, Chin-Wei; Teng, Chiao-Fang; Chang, Wen-Tsan

    2009-08-01

    Citrate synthase (CS), the first and rate-limiting enzyme of the tricarboxylic acid (TCA) cycle, plays a decisive role in regulating energy generation of mitochondrial respiration. Most mitochondrial proteins are synthesized in the cytoplasm as preproteins with an amino (N)-terminal mitochondrial targeting sequence (MTS) that directs mitochondria-specific sorting of the preprotein. However, the MTS and targeting mechanism of the human CS protein are not fully characterized. The human CS gene is a single nuclear gene which transcribes into two mRNA variants, isoform a (CSa) and b (CSb), by alternative splicing of exon 2. CSa encodes 466 amino acids, including a putative N-terminal MTS, while CSb expresses 400 residues with a shorter N terminus, lacking the MTS. Our results indicated that CSa is localized in the mitochondria and the N-terminal 27 amino acids, including a well-conserved RXY downward arrow (S/A) motif (the RHAS sequence), can efficiently target the enhanced green fluorescent protein (EGFP) into the mitochondria. Furthermore, site-directed mutagenesis analysis of the conserved basic amino acids and serine/threonine residues revealed that the R9 residue is essential but all serine/threonine residues are dispensable in the mitochondrial targeting function. Moreover, RNA interference (RNAi)-mediated gene silencing of the preprotein import receptors, including TOM20, TOM22, and TOM70, showed that all three preprotein import receptors are required for transporting CSa into the mitochondria. In conclusion, we have experimentally identified the mitochondrial targeting sequence of human CSa and elucidated its targeting mechanism. These results provide an important basis for the study of mitochondrial dysfunction due to aberrant CSa trafficking.

  17. Investigation of Human Cancers for Retrovirus by Low-Stringency Target Enrichment and High-Throughput Sequencing

    DEFF Research Database (Denmark)

    Vinner, Lasse; Mourier, Tobias; Friis-Nielsen, Jens;

    2015-01-01

    Although nearly one fifth of all human cancers have an infectious aetiology, the causes for the majority of cancers remain unexplained. Despite the enormous data output from high-throughput shotgun sequencing, viral DNA in a clinical sample typically constitutes a proportion of host DNA that is too......-stringency in-solution hybridization method enables detection of discovery of hitherto unknown viral sequences by high-throughput sequencing. The sensitivity was sufficient to detect retroviral...

  18. A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates.

    Science.gov (United States)

    Everts-van der Wind, Annelie; Kata, Srinivas R; Band, Mark R; Rebeiz, Mark; Larkin, Denis M; Everts, Robin E; Green, Cheryl A; Liu, Lei; Natarajan, Shreedhar; Goldammer, Tom; Lee, Jun Heon; McKay, Stephanie; Womack, James E; Lewin, Harris A

    2004-07-01

    A second-generation 5000 rad radiation hybrid (RH) map of the cattle genome was constructed primarily using cattle ESTs that were targeted to gaps in the existing cattle-human comparative map, as well as to sparsely populated map intervals. A total of 870 targeted markers were added, bringing the number of markers mapped on the RH(5000) panel to 1913. Of these, 1463 have significant BLASTN hits (E genes) were identified between the cattle and human genomes, of which 31 are newly discovered and 34 were extended singletons on the first-generation map. The new map represents an improvement of 20% genome-wide comparative coverage compared with the first-generation map. Analysis of gene content within human genome regions where there are gaps in the comparative map revealed gaps with both significantly greater and significantly lower gene content. The new, more detailed cattle-human comparative map provides an improved resource for the analysis of mammalian chromosome evolution, the identification of candidate genes for economically important traits, and for proper alignment of sequence contigs on cattle chromosomes. Copyright 2004 Cold Spring Harbor Laboratory Press ISSN

  19. Discovering multiple transcripts of human hepatocytes using massively parallel signature sequencing (MPSS

    Directory of Open Access Journals (Sweden)

    Li Yi-Xue

    2007-07-01

    Full Text Available Abstract Background The liver is the largest human internal organ – it is composed of multiple cell types and plays a vital role in fulfilling the body's metabolic needs and maintaining homeostasis. Of these cell types the hepatocytes, which account for three-quarters of the liver's volume, perform its main functions. To discover the molecular basis of hepatocyte function, we employed Massively Parallel Signature Sequencing (MPSS to determine the transcriptomic profile of adult human hepatocytes obtained by laser capture microdissection (LCM. Results 10,279 UniGene clusters, representing 7,475 known genes, were detected in human hepatocytes. In addition, 1,819 unique MPSS signatures matching the antisense strand of 1,605 non-redundant UniGene clusters (such as APOC1, APOC2, APOB and APOH were highly expressed in hepatocytes. Conclusion Apart from a large number of protein-coding genes, some of the antisense transcripts expressed in hepatocytes could play important roles in transcriptional interference via a cis-/trans-regulation mechanism. Our result provided a comprehensively transcriptomic atlas of human hepatocytes using MPSS technique, which could be served as an available resource for an in-depth understanding of human liver biology and diseases.

  20. Mapping and sequencing the human genome: Science, ethics, and public policy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.

    1993-03-31

    Development of Mapping and Sequencing the Human Genome: Science, Ethics, and Public Policy followed the standard process of curriculum development at the Biological Sciences Curriculum Study (BSCS), the process is described. The production of this module was a collaborative effort between BSCS and the American Medical Association (AMA). Appendix A contains a copy of the module. Copies of reports sent to the Department of Energy (DOE) during the development process are contained in Appendix B; all reports should be on file at DOE. Appendix B also contains copies of status reports submitted to the BSCS Board of Directors.

  1. Discovery of MRSA active antibiotics using primary sequence from the human microbiome.

    Science.gov (United States)

    Chu, John; Vila-Farres, Xavier; Inoyama, Daigo; Ternei, Melinda; Cohen, Louis J; Gordon, Emma A; Reddy, Boojala Vijay B; Charlop-Powers, Zachary; Zebroski, Henry A; Gallardo-Macias, Ricardo; Jaskowski, Mark; Satish, Shruthi; Park, Steven; Perlin, David S; Freundlich, Joel S; Brady, Sean F

    2016-12-01

    Here we present a natural product discovery approach, whereby structures are bioinformatically predicted from primary sequence and produced by chemical synthesis (synthetic-bioinformatic natural products, syn-BNPs), circumventing the need for bacterial culture and gene expression. When we applied the approach to nonribosomal peptide synthetase gene clusters from human-associated bacteria, we identified the humimycins. These antibiotics inhibit lipid II flippase and potentiate β-lactam activity against methicillin-resistant Staphylococcus aureus in mice, potentially providing a new treatment regimen.

  2. Genomic sequences of human infection of avian-origin influenza A(H7N9) virus in Zhejiang province

    Institute of Scientific and Technical Information of China (English)

    陈寅

    2013-01-01

    Objective To analyze the etiology and genomic sequences of human infection of avian-origin influenza A (H7N9) virus from Zhejiang province.Methods Viral RNA was extracted from patients of suspected H7N9

  3. Genome Sequence of "Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1, a Third Thermoplasmatales-Related Methanogenic Archaeon from Human Feces.

    Science.gov (United States)

    Borrel, Guillaume; Harris, Hugh M B; Parisot, Nicolas; Gaci, Nadia; Tottey, William; Mihajlovski, Agnès; Deane, Jennifer; Gribaldo, Simonetta; Bardot, Olivier; Peyretaillade, Eric; Peyret, Pierre; O'Toole, Paul W; Brugère, Jean-François

    2013-07-11

    "Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1 is a methanogenic archaeon found in the human gut and is a representative of the novel order of methanogens related to Thermoplasmatales. Its complete genome sequence is presented here.

  4. Complete Genome Sequences of Two Methicillin-Sensitive Staphylococcus aureus Isolates Representing a Population Subset Highly Prevalent in Human Colonization

    Science.gov (United States)

    Weber, Robert E.; Layer, Franziska; Fuchs, Stephan; Bender, Jennifer K.; Fiedler, Stefan; Werner, Guido

    2016-01-01

    Here, we report the high-quality draft genome sequences of two methicillin-susceptible Staphylococcus aureus isolates, 08-02119 and 08-02300. Belonging to sequence type 582 (ST582) and ST7, both isolates are representatives of clonal lineages often associated with asymptomatic colonization of humans. PMID:27469954

  5. Comparison of different pulse sequences for in vivo determination of T1 relaxation times in the human brain

    DEFF Research Database (Denmark)

    Kjaer, L; Henriksen, O

    1988-01-01

    ). T1 measurements were performed on the human brain using a whole body MR scanner operating at 1.5 tesla. Three different pulse sequences were compared including two 6-points inversion recovery (IR) sequences with TR = 2.0 s and 4.0, respectively, and a 12-points partial saturation inversion recovery...

  6. Analysis of human mitochondrial DNA sequences from fecally polluted environmental waters as a tool to study population diversity

    Directory of Open Access Journals (Sweden)

    Vikram Kapoor

    2017-05-01

    Full Text Available Mitochondrial signature sequences have frequently been used to study human population diversity around the world. Traditionally, this requires obtaining samples directly from individuals which is cumbersome, time consuming and limited to the number of individuals that participated in these types of surveys. Here, we used environmental DNA extracts to determine the presence and sequence variability of human mitochondrial sequences as a means to study the diversity of populations inhabiting in areas nearby a tropical watershed impacted with human fecal pollution. We used high-throughput sequencing (Illumina and barcoding to obtain thousands of sequences from the mitochondrial hypervariable region 2 (HVR2 and determined the different haplotypes present in 10 different water samples. Sequence analyses indicated a total of 19 distinct variants with frequency greater than 5%. The HVR2 sequences were associated with haplogroups of West Eurasian (57.6%, Sub-Saharan African (23.9%, and American Indian (11% ancestry. This was in relative accordance with population census data from the watershed sites. The results from this study demonstrates the potential value of mitochondrial sequence data retrieved from fecally impacted environmental waters to study the population diversity of local municipalities. This environmental DNA approach may also have other public health implications such as tracking background levels of human mitochondrial genes associated with diseases. It may be possible to expand this approach to other animal species inhabiting or using natural water systems.

  7. The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags

    DEFF Research Database (Denmark)

    Brentani, Helena; Caballero, Otávia L; Camargo, Anamaria A

    2003-01-01

    Whereas genome sequencing defines the genetic potential of an organism, transcript sequencing defines the utilization of this potential and links the genome with most areas of biology. To exploit the information within the human genome in the fight against cancer, we have deposited some two milli...

  8. Complete Genome Sequence of Streptococcus salivarius HSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract.

    Science.gov (United States)

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-02-04

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides. Copyright © 2016 Mignolet et al.

  9. Complete genome sequence of Streptococcus salivarius HSISS4, a human commensal bacterium highly prevalent in the digestive tract

    OpenAIRE

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides.

  10. Complete Genome Sequence ofStreptococcus salivariusHSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract

    OpenAIRE

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides.

  11. Evolution of homologous sequences on the human X and Y chromosomes, outside of the meiotic pairing segment.

    OpenAIRE

    Bickmore, W A; Cooke, H J

    1987-01-01

    A sequence isolated from the long arm of the human Y chromosome detects a highly homologous locus on the X. This homology extends over at least 50 kb of DNA and is postulated to be the result of a transposition event between the X and Y chromosomes during recent human evolution, since homologous sequences are shown to be present on the X chromosome alone in the chimpanzee and gorilla.

  12. Inferring action structure and causal relationships in continuous sequences of human action.

    Science.gov (United States)

    Buchsbaum, Daphna; Griffiths, Thomas L; Plunkett, Dillon; Gopnik, Alison; Baldwin, Dare

    2015-02-01

    In the real world, causal variables do not come pre-identified or occur in isolation, but instead are embedded within a continuous temporal stream of events. A challenge faced by both human learners and machine learning algorithms is identifying subsequences that correspond to the appropriate variables for causal inference. A specific instance of this problem is action segmentation: dividing a sequence of observed behavior into meaningful actions, and determining which of those actions lead to effects in the world. Here we present a Bayesian analysis of how statistical and causal cues to segmentation should optimally be combined, as well as four experiments investigating human action segmentation and causal inference. We find that both people and our model are sensitive to statistical regularities and causal structure in continuous action, and are able to combine these sources of information in order to correctly infer both causal relationships and segmentation boundaries.

  13. The complete genome sequence and analysis of the human pathogen Campylobacter lari

    DEFF Research Database (Denmark)

    Miller, WG; Wang, G; Binnewies, Tim Terence

    2008-01-01

    Campylobacter lari is a member of the epsilon subdivision of the Proteobacteria and is part of the thermotolerant Campylobacter group, a clade that includes the human pathogen C. jejuni. Here we present the complete genome sequence of the human clinical isolate, C. lari RM2100. The genome of strain...... RM2100 is approximately 1.53 Mb and includes the 46 kb megaplasmid pCL2100. Also present within the strain RM2100 genome is a 36 kb putative prophage, termed CLIE1, which is similar to CJIE4, a putative prophage present within the C. jejuni RM1221 genome. Nearly all (90%) of the gene content...... in strain RM2100 is similar to genes present in the genomes of other characterized thermotolerant campylobacters. However, several genes involved in amino acid biosynthesis and energy metabolism, identified previously in other Campylobacter genomes, are absent from the C. lari RM2100 genome. Therefore, C...

  14. Skin Sensitive Difference of Human Body Sections under Clothing --Comparative Judging of Body Sections' Cold Sensitivity Sequence

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WANG Yun-yi; WU Hai-yan

    2005-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design. By a new psychological & physical researching method, the subjective psychological perception of human body sections affected by the same cold stimulus are studied, and with Thurstone comparative judgement the main human body sections' cold sensitivity sequences are obtained. Furthermore the physiological causes for skin sensitive difference of human body sections under clothing are suggested.

  15. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines

    Science.gov (United States)

    Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado

    2013-01-01

    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the ‘normal’ small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the

  16. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines.

    Science.gov (United States)

    Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado

    2013-12-01

    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the 'normal' small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the

  17. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene

    Energy Technology Data Exchange (ETDEWEB)

    Kouzarides, T.; Bankier, A.T.; Satchwell, S.C.; Weston, K.; Tomlinson, P.; Barrell, B.G.

    1987-01-01

    DNA sequence analysis has revealed that the gene coding for the human cytomegalovirus (HCMV) DNA polymerase is present within the long unique region of the virus genome. Identification is based on extensive amino acid homology between the predicted HCMV open reading frame HFLF2 and the DNA polymerase of herpes simplex virus type 1. The authors present here a 5280 base-pair DNA sequence containing the HCMV pol gene, along with the analysis of transcripts encoded within this region. Since HCMV pol also shows homology to the predicted Epstein-Barr virus pol, they were able to analyze the extent of homology between the DNA polymerases of three distantly related herpes viruses, HCMV, Epstein-Barr virus, and herpes simplex virus. The comparison shows that these DNA polymerases exhibit considerable amino acid homology and highlights a number of highly conserved regions; two such regions show homology to sequences within the adenovirus type 2 DNA polymerase. The HCMV pol gene is flanked by open reading frames with homology to those of other herpes viruses; upstream, there is a reading frame homologous to the glycoprotein B gene of herpes simplex virus type I and Epstein-Barr virus, and downstream there is a reading frame homologous to BFLF2 of Epstein-Barr virus.

  18. Human retroviruses and AIDS 1996. A compilation and analysis of nucleic acid and amino acid sequences

    Energy Technology Data Exchange (ETDEWEB)

    Myers, G.; Foley, B.; Korber, B. [eds.] [Los Alamos National Lab., NM (United States). Theoretical Div.; Mellors, J.W. [ed.] [Univ. of Pittsburgh, PA (United States); Jeang, K.T. [ed.] [National Institutes of Health, Bethesda, MD (United States). Molecular Virology Section; Wain-Hobson, S. [Pasteur Inst., Paris (France)] [ed.

    1997-04-01

    This compendium and the accompanying floppy diskettes are the result of an effort to compile and rapidly publish all relevant molecular data concerning the human immunodeficiency viruses (HIV) and related retroviruses. The scope of the compendium and database is best summarized by the five parts that it comprises: (1) Nuclear Acid Alignments and Sequences; (2) Amino Acid Alignments; (3) Analysis; (4) Related Sequences; and (5) Database Communications. Information within all the parts is updated throughout the year on the Web site, http://hiv-web.lanl.gov. While this publication could take the form of a review or sequence monograph, it is not so conceived. Instead, the literature from which the database is derived has simply been summarized and some elementary computational analyses have been performed upon the data. Interpretation and commentary have been avoided insofar as possible so that the reader can form his or her own judgments concerning the complex information. In addition to the general descriptions of the parts of the compendium, the user should read the individual introductions for each part.

  19. Transcriptome sequencing demonstrates that human papillomavirus is not active in cutaneous squamous cell carcinoma.

    Science.gov (United States)

    Arron, Sarah T; Ruby, J Graham; Dybbro, Eric; Ganem, Don; Derisi, Joseph L

    2011-08-01

    β-Human papillomavirus (β-HPV) DNA is present in some cutaneous squamous cell carcinomas (cuSCCs), but no mechanism of carcinogenesis has been determined. We used ultra-high-throughput sequencing of the cancer transcriptome to assess whether papillomavirus transcripts are present in these cancers. In all, 67 cuSCC samples were assayed for β-HPV DNA by PCR, and viral loads were measured with type-specific quantitative PCR. A total of 31 SCCs were selected for whole transcriptome sequencing. Transcriptome libraries were prepared in parallel from the HPV18-positive HeLa cervical cancer cell line and HPV16-positive primary cervical and periungual SCCs. Of the tumors, 30% (20/67) were positive for β-HPV DNA, but there was no difference in β-HPV viral load between tumor and normal tissue (P=0.310). Immunosuppression and age were significantly associated with higher viral load (P=0.016 for immunosuppression; P=0.0004 for age). Transcriptome sequencing failed to identify papillomavirus expression in any of the skin tumors. In contrast, HPV16 and HPV18 mRNA transcripts were readily identified in primary cervical and periungual cancers and HeLa cells. These data demonstrate that papillomavirus mRNA expression is not a factor in the maintenance of cuSCCs.

  20. Spatiotemporal localization and categorization of human actions in unsegmented image sequences.

    Science.gov (United States)

    Oikonomopoulos, Antonios; Patras, Ioannis; Pantic, Maja

    2011-04-01

    In this paper we address the problem of localization and recognition of human activities in unsegmented image sequences. The main contribution of the proposed method is the use of an implicit representation of the spatiotemporal shape of the activity which relies on the spatiotemporal localization of characteristic ensembles of feature descriptors. Evidence for the spatiotemporal localization of the activity is accumulated in a probabilistic spatiotemporal voting scheme. The local nature of the proposed voting framework allows us to deal with multiple activities taking place in the same scene, as well as with activities in the presence of clutter and occlusion. We use boosting in order to select characteristic ensembles per class. This leads to a set of class specific codebooks where each codeword is an ensemble of features. During training, we store the spatial positions of the codeword ensembles with respect to a set of reference points, as well as their temporal positions with respect to the start and end of the action instance. During testing, each activated codeword ensemble casts votes concerning the spatiotemporal position and extend of the action, using the information that was stored during training. Mean Shift mode estimation in the voting space provides the most probable hypotheses concerning the localization of the subjects at each frame, as well as the extend of the activities depicted in the image sequences. We present classification and localization results for a number of publicly available datasets, and for a number of sequences where there is a significant amount of clutter and occlusion.

  1. Expression mediated by three partial sequences of the human tyrosine hydroxylase promoter in vivo

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Rolland

    2016-01-01

    Full Text Available The use of viral vectors to transfect postmitotic neurons has provided an important research tool, and it offers promise for treatment of neurologic disease. The utility of vectors is enhanced by the use of selective promoters that permit control of the cellular site of expression. One potential clinical application is in the neurorestorative treatment of Parkinson's disease by the induction of new axon growth. However, many of the genes with an ability to restore axons have oncogenic potential. Therefore, clinical safety would be enhanced by restriction of expression to neurons affected by the disease, particularly dopamine neurons. To achieve this goal we have evaluated in vivo three partial sequences of the promoter for human tyrosine hydroxylase, the rate limiting enzyme in catecholamine synthesis. All sequences induced expression in dopamine neurons. None of them induced expression in glia or in nondopaminergic neurons in striatum or cortex. We conclude that these sequences have potential use for targeting dopamine neurons in research and clinical applications.

  2. Conserved sequence motifs in the small subunit of human general transcription factor TFIIE.

    Science.gov (United States)

    Sumimoto, H; Ohkuma, Y; Sinn, E; Kato, H; Shimasaki, S; Horikoshi, M; Roeder, R G

    1991-12-05

    A general initiation factor, TFIIE, is essential for transcription initiation by RNA polymerase II in conjunction with other general factors. TFIIE is a heterotetramer containing two subunits of relative molecular mass 57,000 (TFIIE-alpha) and two of 34,000 (TFIIE-beta). TFIIE-beta is required in conjunction with TFIIE-alpha for transcription initiation. Here we report the cloning and expression of a complementary DNA encoding a functional human TFIIE-beta. Recombinant TFIIE-beta could replace the natural TFIIE-beta for transcription in conjunction with TFIIE-alpha. Amino-acid sequence comparisons reveal regions with sequence similarities to: subregion 3 of bacterial sigma factors; a region of RAP30 (the small subunit of TFIIF) with sequence similarity to a sigma-factor subregion implicated in binding to RNA polymerase; and a portion of the basic region-helix-loop-helix motif found in several enhancer-binding proteins. These potential homologies have implications for the role of TFIIE in preinitiation complex assembly and function.

  3. Questioning the "melting pot": analysis of Alu inserts in three population samples from Uruguay.

    Science.gov (United States)

    Hidalgo, Pedro C; Mut, Patricia; Ackermann, Elizabeth; Figueiro, Gonzalo; Sans, Monica

    2014-01-01

    The way that immigrants integrate into recipient societies has been discussed for decades, mainly from the perspective of the social sciences. Uruguay, as other American countries, received diffferent waves of European immigrants, although the details of the process of assimilation, when it did occur, are unclear. In this study we used genetic markers to understand the process experienced by the Basques, one of the major migration waves that populated Uruguay, and their relation to other immigrants, as well as to Native American and African descendants. For this purpose, we analyzed the allele frequencies of 10 ALU loci (A25, ACE, APOA1, B65, D1, F13B, PV92, TPA25, HS2.43, and HS4.65) in three samples from Uruguay (two of Basque descendants, one of non-Basque descendants) from two locations: Montevideo and Trinidad. No departure from Hardy-Weinberg expectations was observed, with the exceptions of the APOA1 and D1 loci in the non-Basque descendants' samples. Our data show that the major genetic contribution in the three samples comes from Europe (78-88%), with minor African (10-15%) and Native American (0-10%) contributions. Genetic distances reveal that Basque descendants from Trinidad cluster with Europeans, whereas both Montevideo samples cluster together and are separate from other populations, showing two diffferent types of integration, related to the general characteristics of each regional population.

  4. 不同ALU实现方法的功耗研究%The Research on Power Dissipation of Different ALU Implementation Schemes

    Institute of Scientific and Technical Information of China (English)

    孙军凯; 蒋安平

    2011-01-01

    Low power is a challenging work in micro - processor design. Implementing power optimization on all components of the processor is a choice. One of the most basic components in micro -processor is the Arithmetic and Logic Unit (ALU). The architecture of ALU has several implications on power consumption, delay and area. There are three common ALU architectures: complex architecture, adder independent architecture and chain architecture. To find out which ALU architecture provides the best power efficiency, an 8 - bit ALU of the three different architectures is designed. Compared with other architectures,the power savings of complex architecture are 19. 38% and 33. 87% .%低功耗是微处理器设计中一项具有挑战性的工作.对每一个组成单元进行功耗优化是进行低功耗微处理器设计必不可少的一种方法.算术逻辑单元(Arithmetic and Logic Unit,ALU)是微处理器中最基本的组成单元之一.ALU的结构与功耗、延迟和面积有着复杂的联系.常用的ALU结构有三种:复合结构、加法器独立结构和链武结构.基于这三种结构,实现了一个8比特ALU,通过对这个8 - bit ALU进行功耗分析来研究ALU的结构对功耗的影响.研究结果表明:复合结构ALU具有最小的功耗,与其它两种结构的ALU相比,能分别节省19.38%和33.87%的功耗.

  5. Pathogen-specific deep sequence-coupled biopanning: A method for surveying human antibody responses

    Science.gov (United States)

    Pascale, Juan M.; Moreno, Brechla; Chackerian, Bryce; Peabody, David S.

    2017-01-01

    Identifying the targets of antibody responses during infection is important for designing vaccines, developing diagnostic and prognostic tools, and understanding pathogenesis. We developed a novel deep sequence-coupled biopanning approach capable of identifying the protein epitopes of antibodies present in human polyclonal serum. Here, we report the adaptation of this approach for the identification of pathogen-specific epitopes recognized by antibodies elicited during acute infection. As a proof-of-principle, we applied this approach to assessing antibodies to Dengue virus (DENV). Using a panel of sera from patients with acute secondary DENV infection, we panned a DENV antigen fragment library displayed on the surface of bacteriophage MS2 virus-like particles and characterized the population of affinity-selected peptide epitopes by deep sequence analysis. Although there was considerable variation in the responses of individuals, we found several epitopes within the Envelope glycoprotein and Non-Structural Protein 1 that were commonly enriched. This report establishes a novel approach for characterizing pathogen-specific antibody responses in human sera, and has future utility in identifying novel diagnostic and vaccine targets. PMID:28152075

  6. Dragon polya spotter: Predictor of poly(A) motifs within human genomic DNA sequences

    KAUST Repository

    Kalkatawi, Manal Matoq Saeed

    2011-11-15

    Motivation: Recognition of poly(A) signals in mRNA is relatively straightforward due to the presence of easily recognizable polyadenylic acid tail. However, the task of identifying poly(A) motifs in the primary genomic DNA sequence that correspond to poly(A) signals in mRNA is a far more challenging problem. Recognition of poly(A) signals is important for better gene annotation and understanding of the gene regulation mechanisms. In this work, we present one such poly(A) motif prediction method based on properties of human genomic DNA sequence surrounding a poly(A) motif. These properties include thermodynamic, physico-chemical and statistical characteristics. For predictions, we developed Artificial Neural Network and Random Forest models. These models are trained to recognize 12 most common poly(A) motifs in human DNA. Our predictors are available as a free web-based tool accessible at http://cbrc.kaust.edu.sa/dps. Compared with other reported predictors, our models achieve higher sensitivity and specificity and furthermore provide a consistent level of accuracy for 12 poly(A) motif variants. The Author(s) 2011. Published by Oxford University Press. All rights reserved.

  7. An unexpected sequence of events: mismatch detection in the human hippocampus.

    Directory of Open Access Journals (Sweden)

    Dharshan Kumaran

    2006-11-01

    Full Text Available The ability to identify and react to novelty within the environment is fundamental to survival. Computational models emphasize the potential role of the hippocampus in novelty detection, its unique anatomical circuitry making it ideally suited to act as a comparator between past and present experience. The hippocampus, therefore, is viewed to detect associative mismatches between what is expected based on retrieval of past experience and current sensory input. However, direct evidence that the human hippocampus performs such operations is lacking. We explored brain responses to novel sequences of objects using functional magnetic resonance imaging (fMRI, while subjects performed an incidental target detection task. Our results demonstrate that hippocampal activation was maximal when prior predictions concerning which object would appear next in a sequence were violated by sensory reality. In so doing, we establish the biological reality of associative match-mismatch computations within the human hippocampus, a process widely held to play a cardinal role in novelty detection. Our results also suggest that the hippocampus may generate predictions about how future events will unfold, and critically detect when these expectancies are violated, even when task demands do not require it. The present study also offers broader insights into the nature of essential computations carried out by the hippocampus, which may also underpin its unique contribution to episodic memory.

  8. Re-inspection of small RNA sequence datasets reveals several novel human miRNA genes.

    Directory of Open Access Journals (Sweden)

    Thomas Birkballe Hansen

    Full Text Available BACKGROUND: miRNAs are key players in gene expression regulation. To fully understand the complex nature of cellular differentiation or initiation and progression of disease, it is important to assess the expression patterns of as many miRNAs as possible. Thereby, identifying novel miRNAs is an essential prerequisite to make possible a comprehensive and coherent understanding of cellular biology. METHODOLOGY/PRINCIPAL FINDINGS: Based on two extensive, but previously published, small RNA sequence datasets from human embryonic stem cells and human embroid bodies, respectively [1], we identified 112 novel miRNA-like structures and were able to validate miRNA processing in 12 out of 17 investigated cases. Several miRNA candidates were furthermore substantiated by including additional available small RNA datasets, thereby demonstrating the power of combining datasets to identify miRNAs that otherwise may be assigned as experimental noise. CONCLUSIONS/SIGNIFICANCE: Our analysis highlights that existing datasets are not yet exhaustedly studied and continuous re-analysis of the available data is important to uncover all features of small RNA sequencing.

  9. The Role of the Y-Chromosome in the Establishment of Murine Hybrid Dysgenesis and in the Analysis of the Nucleotide Sequence Organization, Genetic Transmission and Evolution of Repeated Sequences.

    Science.gov (United States)

    Nallaseth, Ferez Soli

    The Y-chromosome presents a unique cytogenetic framework for the evolution of nucleotide sequences. Alignment of nine Y-chromosomal fragments in their increasing Y-specific/non Y-specific (male/female) sequence divergence ratios was directly and inversely related to their interspersion on these two respective genomic fractions. Sequence analysis confirmed a direct relationship between divergence ratios and the Alu, LINE-1, Satellite and their derivative oligonucleotide contents. Thus their relocation on the Y-chromosome is followed by sequence divergence rather than the well documented concerted evolution of these non-coding progenitor repeated sequences. Five of the nine Y-chromosomal fragments are non-pseudoautosomal and transcribed into heterogeneous PolyA^+ RNA and thus can be retrotransposed. Evolutionary and computer analysis identified homologous oligonucleotide tracts in several human loci suggesting common and random mechanistic origins. Dysgenic genomes represent the accelerated evolution driving sequence divergence (McClintock, 1984). Sex reversal and sterility characterizing dysgenesis occurs in C57BL/6JY ^{rm Pos} but not in 129/SvY^{rm Pos} derivative strains. High frequency, random, multi-locus deletion products of the feral Y^{ rm Pos}-chromosome are generated in the germlines of F1(C57BL/6J X 129/SvY^{ rm Pos})(male) and C57BL/6JY ^{rm Pos}(male) but not in 129/SvY^{rm Pos}(male). Equal, 10^{-1}, 10^ {-2}, and 0 copies (relative to males) of Y^{rm Pos}-specific deletion products respectively characterize C57BL/6JY ^{rm Pos} (HC), (LC), (T) and (F) females. The testes determining loci of inactive Y^{rm Pos}-chromosomes in C57BL/6JY^{rm Pos} HC females are the preferentially deleted/rearranged Y ^{rm Pos}-sequences. Disruption of regulation of plasma testosterone and hepatic MUP-A mRNA levels, TRD of a 4.7 Kbp EcoR1 fragment suggest disruption of autosomal/X-chromosomal sequences. These data and the highly repeated progenitor (Alu, GATA, LINE-1

  10. Global genomic diversity of human papillomavirus 6 based on 724 isolates and 190 complete genome sequences.

    Science.gov (United States)

    Jelen, Mateja M; Chen, Zigui; Kocjan, Boštjan J; Burt, Felicity J; Chan, Paul K S; Chouhy, Diego; Combrinck, Catharina E; Coutlée, François; Estrade, Christine; Ferenczy, Alex; Fiander, Alison; Franco, Eduardo L; Garland, Suzanne M; Giri, Adriana A; González, Joaquín Víctor; Gröning, Arndt; Heidrich, Kerstin; Hibbitts, Sam; Hošnjak, Lea; Luk, Tommy N M; Marinic, Karina; Matsukura, Toshihiko; Neumann, Anna; Oštrbenk, Anja; Picconi, Maria Alejandra; Richardson, Harriet; Sagadin, Martin; Sahli, Roland; Seedat, Riaz Y; Seme, Katja; Severini, Alberto; Sinchi, Jessica L; Smahelova, Jana; Tabrizi, Sepehr N; Tachezy, Ruth; Tohme, Sarah; Uloza, Virgilijus; Vitkauskiene, Astra; Wong, Yong Wee; Zidovec Lepej, Snježana; Burk, Robert D; Poljak, Mario

    2014-07-01

    Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution. This study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages

  11. Enhanced adherence of methicillin-resistant Staphylococcus pseudintermedius sequence type 71 to canine and human corneocytes.

    Science.gov (United States)

    Latronico, Francesca; Moodley, Arshnee; Nielsen, Søren Saxmose; Guardabassi, Luca

    2014-06-24

    The recent worldwide spread of methicillin-resistant Staphylococcus pseudintermedius (MRSP) in dogs is a reason for concern due to the typical multidrug resistance patterns displayed by some MRSP lineages such as sequence type (ST) 71. The objective of this study was to compare the in vitro adherence properties between MRSP and methicillin-susceptible (MSSP) strains. Four MRSP, including a human and a canine strain belonging to ST71 and two canine non-ST71 strains, and three genetically unrelated MSSP were tested on corneocytes collected from five dogs and six humans. All strains were fully characterized with respect to genetic background and cell wall-anchored protein (CWAP) gene content. Seventy-seven strain-corneocyte combinations were tested using both exponential- and stationary-phase cultures. Negative binomial regression analysis of counts of bacterial cells adhering to corneocytes revealed that adherence was significantly influenced by host and strain genotype regardless of bacterial growth phase. The two MRSP ST71 strains showed greater adherence than MRSP non-ST71 (p pseudintermedius adherence to canine corneocytes was significantly higher compared to human corneocytes (p < 0.0001), but the MRSP ST71 strain of human origin adhered equally well to canine and human corneocytes, suggesting that MRSP ST71 may be able to adapt to human skin. The genetic basis of the enhanced in vitro adherence of ST71 needs to be elucidated as this phenotypic trait may be associated to the epidemiological success and zoonotic potential of this epidemic MRSP clone.

  12. Intergenic DNA sequences from the human X chromosome reveal high rates of global gene flow

    Directory of Open Access Journals (Sweden)

    Wall Jeffrey D

    2008-11-01

    Full Text Available Abstract Background Despite intensive efforts devoted to collecting human polymorphism data, little is known about the role of gene flow in the ancestry of human populations. This is partly because most analyses have applied one of two simple models of population structure, the island model or the splitting model, which make unrealistic biological assumptions. Results Here, we analyze 98-kb of DNA sequence from 20 independently evolving intergenic regions on the X chromosome in a sample of 90 humans from six globally diverse populations. We employ an isolation-with-migration (IM model, which assumes that populations split and subsequently exchange migrants, to independently estimate effective population sizes and migration rates. While the maximum effective size of modern humans is estimated at ~10,000, individual populations vary substantially in size, with African populations tending to be larger (2,300–9,000 than non-African populations (300–3,300. We estimate mean rates of bidirectional gene flow at 4.8 × 10-4/generation. Bidirectional migration rates are ~5-fold higher among non-African populations (1.5 × 10-3 than among African populations (2.7 × 10-4. Interestingly, because effective sizes and migration rates are inversely related in African and non-African populations, population migration rates are similar within Africa and Eurasia (e.g., global mean Nm = 2.4. Conclusion We conclude that gene flow has played an important role in structuring global human populations and that migration rates should be incorporated as critical parameters in models of human demography.

  13. Analysis of the Repertoire Features of TCR Beta Chain CDR3 in Human by High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Xianliang Hou

    2016-07-01

    Full Text Available Background/Aims: To ward off a wide variety of pathogens, the human adaptive immune system harbors a vast array of T-cell receptors, collectively referred to as the TCR repertoire. Assessment of the repertoire features of TCR is vital for us to deeper understand of immune behaviour and immune response. Methods: In this study, we used a combination of multiplex-PCR, Illumina sequencing and IMGT (ImMunoGeneTics/HighV-QUEST for a standardized analysis of the repertoire features of TCR beta chain in the blood of healthy individuals, including the repertoire features of public TCR complementarity-determining regions (CDR3 sequences, highly expanded clones, long TCR CDR3 sequences. Results: We found that public CDR3 sequences and high-frequency sequences had the same characteristics, both of them had fewer nucleotide additions and shorter CDR3 length, which were closer to the germline sequence. Moreover, our studies provided evidence that public amino acid sequences are produced by multiple nucleotide sequences. Notably, there was skewed VDJ segment usage in long CDR3 sequences, the expression levels of 10 TRβV segments, 7 TRβJ segments and 2 TRβD segments were significantly different in the long CDR3 sequences compared to the short CDR3 sequences. Moreover, we identified that extensive N additions and increase of D gene usage contributing to TCR CDR3 length, and observed there was distinct usage frequency of amino acids in long CDR3 sequences compared to the short CDR3 sequences. Conclusions: Some repertoire features could be observed in the public sequences, highly abundance clones, and long TCR CDR3 sequences, which might be helpful for further study of immune behavior and immune response.

  14. Fragmentation of contaminant and endogenous DNA in ancient samples determined by shotgun sequencing; prospects for human palaeogenomics.

    Directory of Open Access Journals (Sweden)

    Marc García-Garcerà

    Full Text Available BACKGROUND: Despite the successful retrieval of genomes from past remains, the prospects for human palaeogenomics remain unclear because of the difficulty of distinguishing contaminant from endogenous DNA sequences. Previous sequence data generated on high-throughput sequencing platforms indicate that fragmentation of ancient DNA sequences is a characteristic trait primarily arising due to depurination processes that create abasic sites leading to DNA breaks. METHODOLOGY/PRINCIPALS FINDINGS: To investigate whether this pattern is present in ancient remains from a temperate environment, we have 454-FLX pyrosequenced different samples dated between 5,500 and 49,000 years ago: a bone from an extinct goat (Myotragus balearicus that was treated with a depurinating agent (bleach, an Iberian lynx bone not subjected to any treatment, a human Neolithic sample from Barcelona (Spain, and a Neandertal sample from the El Sidrón site (Asturias, Spain. The efficiency of retrieval of endogenous sequences is below 1% in all cases. We have used the non-human samples to identify human sequences (0.35 and 1.4%, respectively, that we positively know are contaminants. CONCLUSIONS: We observed that bleach treatment appears to create a depurination-associated fragmentation pattern in resulting contaminant sequences that is indistinguishable from previously described endogenous sequences. Furthermore, the nucleotide composition pattern observed in 5' and 3' ends of contaminant sequences is much more complex than the flat pattern previously described in some Neandertal contaminants. Although much research on samples with known contaminant histories is needed, our results suggest that endogenous and contaminant sequences cannot be distinguished by the fragmentation pattern alone.

  15. Comprehensive microRNA profiling in B-cells of human centenarians by massively parallel sequencing

    Directory of Open Access Journals (Sweden)

    Gombar Saurabh

    2012-07-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small, non-coding RNAs that regulate gene expression and play a critical role in development, homeostasis, and disease. Despite their demonstrated roles in age-associated pathologies, little is known about the role of miRNAs in human aging and longevity. Results We employed massively parallel sequencing technology to identify miRNAs expressed in B-cells from Ashkenazi Jewish centenarians, i.e., those living to a hundred and a human model of exceptional longevity, and younger controls without a family history of longevity. With data from 26.7 million reads comprising 9.4 × 108 bp from 3 centenarian and 3 control individuals, we discovered a total of 276 known miRNAs and 8 unknown miRNAs ranging several orders of magnitude in expression levels, a typical characteristics of saturated miRNA-sequencing. A total of 22 miRNAs were found to be significantly upregulated, with only 2 miRNAs downregulated, in centenarians as compared to controls. Gene Ontology analysis of the predicted and validated targets of the 24 differentially expressed miRNAs indicated enrichment of functional pathways involved in cell metabolism, cell cycle, cell signaling, and cell differentiation. A cross sectional expression analysis of the differentially expressed miRNAs in B-cells from Ashkenazi Jewish individuals between the 50th and 100th years of age indicated that expression levels of miR-363* declined significantly with age. Centenarians, however, maintained the youthful expression level. This result suggests that miR-363* may be a candidate longevity-associated miRNA. Conclusion Our comprehensive miRNA data provide a resource for further studies to identify genetic pathways associated with aging and longevity in humans.

  16. Triplet repeat sequences in human DNA can be detected by hybridization to a synthetic (5'-CGG-3')17 oligodeoxyribonucleotide

    DEFF Research Database (Denmark)

    Behn-Krappa, A; Mollenhauer, J; Doerfler, W

    1993-01-01

    The seemingly autonomous amplification of naturally occurring triplet repeat sequences in the human genome has been implicated in the causation of human genetic disease, such as the fragile X (Martin-Bell) syndrome, myotonic dystrophy (Curshmann-Steinert), spinal and bulbar muscular atrophy...

  17. Investigating Salmonella Eko from Various Sources in Nigeria by Whole Genome Sequencing to Identify the Source of Human Infections.

    Directory of Open Access Journals (Sweden)

    Pimlapas Leekitcharoenphon

    Full Text Available Twenty-six Salmonella enterica serovar Eko isolated from various sources in Nigeria were investigated by whole genome sequencing to identify the source of human infections. Diversity among the isolates was observed and camel and cattle were identified as the primary reservoirs and the most likely source of the human infections.

  18. Poly(A) motif prediction using spectral latent features from human DNA sequences

    KAUST Repository

    Xie, Bo

    2013-06-21

    Motivation: Polyadenylation is the addition of a poly(A) tail to an RNA molecule. Identifying DNA sequence motifs that signal the addition of poly(A) tails is essential to improved genome annotation and better understanding of the regulatory mechanisms and stability of mRNA.Existing poly(A) motif predictors demonstrate that information extracted from the surrounding nucleotide sequences of candidate poly(A) motifs can differentiate true motifs from the false ones to a great extent. A variety of sophisticated features has been explored, including sequential, structural, statistical, thermodynamic and evolutionary properties. However, most of these methods involve extensive manual feature engineering, which can be time-consuming and can require in-depth domain knowledge.Results: We propose a novel machine-learning method for poly(A) motif prediction by marrying generative learning (hidden Markov models) and discriminative learning (support vector machines). Generative learning provides a rich palette on which the uncertainty and diversity of sequence information can be handled, while discriminative learning allows the performance of the classification task to be directly optimized. Here, we used hidden Markov models for fitting the DNA sequence dynamics, and developed an efficient spectral algorithm for extracting latent variable information from these models. These spectral latent features were then fed into support vector machines to fine-tune the classification performance.We evaluated our proposed method on a comprehensive human poly(A) dataset that consists of 14 740 samples from 12 of the most abundant variants of human poly(A) motifs. Compared with one of the previous state-of-the-art methods in the literature (the random forest model with expert-crafted features), our method reduces the average error rate, false-negative rate and false-positive rate by 26, 15 and 35%, respectively. Meanwhile, our method makes ?30% fewer error predictions relative to the other

  19. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control.

    Science.gov (United States)

    Bartha, István; Carlson, Jonathan M; Brumme, Chanson J; McLaren, Paul J; Brumme, Zabrina L; John, Mina; Haas, David W; Martinez-Picado, Javier; Dalmau, Judith; López-Galíndez, Cecilio; Casado, Concepción; Rauch, Andri; Günthard, Huldrych F; Bernasconi, Enos; Vernazza, Pietro; Klimkait, Thomas; Yerly, Sabine; O'Brien, Stephen J; Listgarten, Jennifer; Pfeifer, Nico; Lippert, Christoph; Fusi, Nicolo; Kutalik, Zoltán; Allen, Todd M; Müller, Viktor; Harrigan, P Richard; Heckerman, David; Telenti, Amalio; Fellay, Jacques

    2013-10-29

    HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (pgenome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host-pathogen interaction. DOI:http://dx.doi.org/10.7554/eLife.01123.001.

  20. Human PTCHD3 nulls: rare copy number and sequence variants suggest a non-essential gene

    Directory of Open Access Journals (Sweden)

    Lionel Anath C

    2011-03-01

    Full Text Available Abstract Background Copy number variations (CNVs can contribute to variable degrees of fitness and/or disease predisposition. Recent studies show that at least 1% of any given genome is copy number variable when compared to the human reference sequence assembly. Homozygous deletions (or CNV nulls that are found in the normal population are of particular interest because they may serve to define non-essential genes in human biology. Results In a genomic screen investigating CNV in Autism Spectrum Disorders (ASDs we detected a heterozygous deletion on chromosome 10p12.1, spanning the Patched-domain containing 3 (PTCHD3 gene, at a frequency of ~1.4% (6/427. This finding seemed interesting, given recent discoveries on the role of another Patched-domain containing gene (PTCHD1 in ASD. Screening of another 177 ASD probands yielded two additional heterozygous deletions bringing the frequency to 1.3% (8/604. The deletion was found at a frequency of ~0.73% (27/3,695 in combined control population from North America and Northern Europe predominately of European ancestry. Screening of the human genome diversity panel (HGDP-CEPH covering worldwide populations yielded deletions in 7/1,043 unrelated individuals and those detected were confined to individuals of European/Mediterranean/Middle Eastern ancestry. Breakpoint mapping yielded an identical 102,624 bp deletion in all cases and controls tested, suggesting a common ancestral event. Interestingly, this CNV occurs at a break of synteny between humans and mouse. Considering all data, however, no significant association of these rare PTCHD3 deletions with ASD was observed. Notwithstanding, our RNA expression studies detected PTCHD3 in several tissues, and a novel shorter isoform for PTCHD3 was characterized. Expression in transfected COS-7 cells showed PTCHD3 isoforms colocalize with calnexin in the endoplasmic reticulum. The presence of a patched (Ptc domain suggested a role for PTCHD3 in various biological

  1. Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes

    Energy Technology Data Exchange (ETDEWEB)

    Arino, J.; Woon, Chee Wai; Brautigan, D.L.; Miller, T.B. Jr.; Johnson, G.L. (Univ. of Massachusetts Medical School, Worcester (USA))

    1988-06-01

    Two cDNA clones were isolated from a human liver library that encode two phosphatase 2A catalytic subunits. The two cDNAs differed in eight amino acids (97% identity) with three nonconservative substitutions. All of the amino acid substitutions were clustered in the amino-terminal domain of the protein. Amino acid sequence of one human liver clone (HL-14) was identical to the rabbit skeletal muscle phosphatase 2A cDNA (with 97% nucleotide identity). The second human liver clone (HL-1) is encoded by a separate gene, and RNA gel blot analysis indicates that both mRNAs are expressed similarly in several human clonal cell lines. Sequence comparison with phosphatase 1 and 2A indicates highly divergent amino acid sequences at the amino and carboxyl termini of the proteins and identifies six highly conserved regions between the two proteins that are predicted to be important for phosphatase enzymatic activity.

  2. Large-scale identification of sequence variants impacting human transcription factor occupancy in vivo

    Science.gov (United States)

    Maurano, Matthew T.; Haugen, Eric; Sandstrom, Richard; Vierstra, Jeff; Shafer, Anthony; Kaul, Rajinder; Stamatoyannopoulos, John A.

    2015-01-01

    The function of human regulatory regions depends exquisitely on their local genomic environment and cellular context, complicating experimental analysis of the expanding pool of common disease- and trait-associated variants that localize within regulatory DNA. We leverage allelically resolved genomic DNaseI footprinting data encompassing 166 individuals and 114 cell types to identify >60,000 common variants that directly impact transcription factor occupancy and regulatory DNA accessibility in vivo. The unprecedented scale of these data enable systematic analysis of the impact of sequence variation on transcription factor occupancy in vivo. We leverage this analysis to develop accurate models of variation affecting the recognition sites for diverse transcription factors, and apply these models to discriminate nearly 500,000 common regulatory variants likely to affect transcription factor occupancy across the human genome. The approach and results provide a novel foundation for analysis and interpretation of noncoding variation in complete human genomes, and for systems-level investigation of disease-associated variants. PMID:26502339

  3. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human

    Science.gov (United States)

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-01-01

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation. PMID:28212312

  4. Open chromatin encoded in DNA sequence is the signature of 'master' replication origins in human cells.

    Science.gov (United States)

    Audit, Benjamin; Zaghloul, Lamia; Vaillant, Cédric; Chevereau, Guillaume; d'Aubenton-Carafa, Yves; Thermes, Claude; Arneodo, Alain

    2009-10-01

    For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions approximately 300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as 'master' replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these 'master' origins are likely to play a key role in genome dynamics during evolution and in pathological situations.

  5. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.

    Science.gov (United States)

    Murray, Vincent; Chen, Jon K; Tanaka, Mark M

    2016-07-01

    The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.

  6. Human mitochondrial DNA complete amplification and sequencing: a new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification.

    Science.gov (United States)

    Ramos, Amanda; Santos, Cristina; Alvarez, Luis; Nogués, Ramon; Aluja, Maria Pilar

    2009-05-01

    To date, there are no published primers to amplify the entire mitochondrial DNA (mtDNA) that completely prevent the amplification of nuclear DNA (nDNA) sequences of mitochondrial origin. The main goal of this work was to design, validate and describe a set of primers, to specifically amplify and sequence the complete human mtDNA, allowing the correct interpretation of mtDNA heteroplasmy in healthy and pathological samples. Validation was performed using two different approaches: (i) Basic Local Alignment Search Tool and (ii) amplification using isolated nDNA obtained from sperm cells by differential lyses. During the validation process, two mtDNA regions, with high similarity with nDNA, represent the major problematic areas for primer design. One of these could represent a non-published nuclear DNA sequence of mitochondrial origin. For two of the initially designed fragments, the amplification results reveal PCR artifacts that can be attributed to the poor quality of the DNA. After the validation, nine overlapping primer pairs to perform mtDNA amplification and 22 additional internal primers for mtDNA sequencing were obtained. These primers could be a useful tool in future projects that deal with mtDNA complete sequencing and heteroplasmy detection, since they represent a set of primers that have been tested for the non-amplification of nDNA.

  7. A New Implementation of a 16-Bit Self-Timed ALU for Asynchronous Microprocessors%适用于异步微处理器的1 6位自定时ALU

    Institute of Scientific and Technical Information of China (English)

    管超; 葛元庆; 吴瑞; 周润德

    2001-01-01

    针对嵌入式微处理器设计中提出的高性能,低功耗的要求,提出了一种面向异步微处理器的由动态电压级联逻辑电路(DCVS)构成的16位自定时ALU.在综合考虑面积、速度、功耗及指令的统计分布情况下,该ALU具有优异的性能.