WorldWideScience

Sample records for human alpha-synuclein exhibit

  1. ALPHA-SYNUCLEIN STRUCTURE, AGGREGATION AND MODULATORS

    Directory of Open Access Journals (Sweden)

    Pinakin K. Makwana

    2016-06-01

    Full Text Available Alpha-synuclein is an intrinsically unstructured protein, involved in various neurodegenerative disorders. In vitro/in vivo experiments, as well as genetic mutation studies establish a direct link between alphasynuclein and synucleinopathies. Due to its natively unfolded state, alpha synuclein can adopt numerous conformations upon interaction with its partners and cellular factors, offering explanation for its diverse interactions. Aggregated form of alpha-synuclein has been observed in the brain of patients with synucleinopathies, a hallmark of neurodegeneration, and cell death has been attributed to aggregation induced toxicity. The process of aggregation involves nucleation, followed by intermediate oligomeric states, and finally the fibrillar amyloids. Of the various conformations/species that alpha-synuclein assumes before it transforms into mature amyloid fibrils, the oligomeric species is the most toxic. Thus, an effective way to limit disease progression is by modifying/slowing down protein aggregation/deposition in the brain. Various small natural products, synthetic chemicals, peptides and antibodies specific to alpha-synuclein have been designed/identified to reduce its rate of aggregation. Unfortunately, not even a handful of the molecules have cleared the clinical trials. Even today, medications available for Parkinson’s patients are mostly the drugs that adjust for loss of dopamine in the brain, and hence do not stop the progression of the disease or cure the symptoms. Thus, more molecular level studies are warranted to fully elucidate the process of alpha-synuclein aggregation, which in turn could help in identifying novel therapeutics and preventives. The present review summarizes the insights gained into the structure, in vitro aggregation and inhibitors/modulators of alpha-synuclein aggregation, that can be used to design better and effective inhibitors against the diseases.

  2. Alpha-synuclein levels in blood plasma decline with healthy aging.

    Directory of Open Access Journals (Sweden)

    Niklas K U Koehler

    Full Text Available There is unequivocal evidence that alpha-synuclein plays a pivotal pathophysiological role in neurodegenerative diseases, and in particular in synucleinopathies. These disorders present with a variable extent of cognitive impairment and alpha-synuclein is being explored as a biomarker in CSF, blood serum and plasma. Considering key events of aging that include proteostasis, alpha-synuclein may not only be useful as a marker for differential diagnosis but also for aging per se. To explore this hypothesis, we developed a highly specific ELISA to measure alpha-synuclein. In healthy males plasma alpha-synuclein levels correlated strongly with age, revealing much lower concentrations in older (avg. 58.1 years compared to younger (avg. 27.6 years individuals. This difference between the age groups was enhanced after acidification of the plasmas (p<0.0001, possibly reflecting a decrease of alpha-synuclein-antibody complexes or chaperone activity in older individuals. Our results support the concept that alpha-synuclein homeostasis may be impaired early on, possibly due to disturbance of the proteostasis network, a key component of healthy aging. Thus, alpha-synuclein may be a novel biomarker of aging, a factor that should be considered when analyzing its presence in biological specimens.

  3. Alpha-synuclein levels in blood plasma decline with healthy aging.

    Science.gov (United States)

    Koehler, Niklas K U; Stransky, Elke; Meyer, Mirjam; Gaertner, Susanne; Shing, Mona; Schnaidt, Martina; Celej, Maria S; Jovin, Thomas M; Leyhe, Thomas; Laske, Christoph; Batra, Anil; Buchkremer, Gerhard; Fallgatter, Andreas J; Wernet, Dorothee; Richartz-Salzburger, Elke

    2015-01-01

    There is unequivocal evidence that alpha-synuclein plays a pivotal pathophysiological role in neurodegenerative diseases, and in particular in synucleinopathies. These disorders present with a variable extent of cognitive impairment and alpha-synuclein is being explored as a biomarker in CSF, blood serum and plasma. Considering key events of aging that include proteostasis, alpha-synuclein may not only be useful as a marker for differential diagnosis but also for aging per se. To explore this hypothesis, we developed a highly specific ELISA to measure alpha-synuclein. In healthy males plasma alpha-synuclein levels correlated strongly with age, revealing much lower concentrations in older (avg. 58.1 years) compared to younger (avg. 27.6 years) individuals. This difference between the age groups was enhanced after acidification of the plasmas (phealthy aging. Thus, alpha-synuclein may be a novel biomarker of aging, a factor that should be considered when analyzing its presence in biological specimens.

  4. 17-AAG induces cytoplasmic alpha-synuclein aggregate clearance by induction of autophagy.

    Science.gov (United States)

    Riedel, Michael; Goldbaum, Olaf; Schwarz, Lisa; Schmitt, Sebastian; Richter-Landsberg, Christiane

    2010-01-18

    The accumulation and aggregation of alpha-synuclein in nerve cells and glia are characteristic features of a number of neurodegenerative diseases termed synucleinopathies. alpha-Synuclein is a highly soluble protein which in a nucleation dependent process is capable of self-aggregation. The causes underlying aggregate formation are not yet understood, impairment of the proteolytic degradation systems might be involved. In the present study the possible aggregate clearing effects of the geldanamycin analogue 17-AAG (17-(Allylamino)-17-demethoxygeldanamycin) was investigated. Towards this, an oligodendroglial cell line (OLN-93 cells), stably expressing human alpha-synuclein (A53T mutation) was used. In these cells small punctate aggregates, not staining with thioflavine S, representing prefibrillary aggregates, occur characteristically. Our data demonstrate that 17-AAG attenuated the formation of alpha-synuclein aggregates by stimulating macroautophagy. By blocking the lysosomal compartment with NH(4)Cl the aggregate clearing effects of 17-AAG were abolished and alpha-synuclein deposits were enlarged. Analysis of LC3-II immunoreactivity, which is an indicator of autophagosome formation, further revealed that 17-AAG led to the recruitment of LC3-II and to the formation of LC3 positive puncta. This effect was also observed in cultured oligodendrocytes derived from the brains of newborn rats. Inhibition of macroautophagy by 3-methyladenine prevented 17-AAG induced occurrence of LC3 positive puncta as well as the removal of alpha-synuclein aggregates in OLN-A53T cells. Our data demonstrate for the first time that 17-AAG not only causes the upregulation of heat shock proteins, but also is an effective inducer of the autophagic pathway by which alpha-synuclein can be removed. Hence geldanamycin derivatives may provide a means to modulate autophagy in neural cells, thereby ameliorating pathogenic aggregate formation and protecting the cells during disease and aging.

  5. Alpha-synuclein in cutaneous small nerve fibers

    Directory of Open Access Journals (Sweden)

    Siepmann T

    2016-10-01

    Full Text Available Timo Siepmann,1 Ben Min-Woo Illigens,2 Kristian Barlinn1 1Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; 2Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Abstract: Despite progression in the development of pharmacological therapy, treatment of alpha synucleinopathies, such as Parkinson’s disease (PD and some atypical parkinsonism syndromes, is still challenging. To date, our knowledge of the mechanisms whereby the pathological form of alpha-synuclein causes structural and functional damage to the nervous system is limited and, consequently, there is a lack of specific diagnostic tools to evaluate pathology in these patients and differentiate PD from other neurodegenerative proteinopathies. Recent studies indicated that alpha-synuclein deposition in cutaneous small nerve fibers assessed by skin biopsies might be a valid disease marker of PD and facilitate early differentiation of PD from atypical parkinsonism syndromes. This observation is relevant since early diagnosis may enable timely treatment and improve quality of life. However, challenges include the necessity of standardizing immunohistochemical analysis techniques and the identification of potential distinct patterns of intraneural alpha-synuclein deposition among synucleinopathies. In this perspective, we explore the scientific and clinical opportunities arising from alpha-synuclein assessment using skin biopsies. These include elucidation of the peripheral nervous system pathology of PD and other synucleinopathies, identification of novel targets to study response to neuroprotective treatment, and improvement of clinical management. Furthermore, we discuss future challenges in exploring the diagnostic value of skin biopsy assessment for alpha-synuclein deposition and implementing the technique in clinical practice. Keywords: Parkinson’s disease, diagnosis, skin

  6. Alpha-synuclein suppression by targeted small interfering RNA in the primate substantia nigra.

    Directory of Open Access Journals (Sweden)

    Alison L McCormack

    Full Text Available The protein alpha-synuclein is involved in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Its toxic potential appears to be enhanced by increased protein expression, providing a compelling rationale for therapeutic strategies aimed at reducing neuronal alpha-synuclein burden. Here, feasibility and safety of alpha-synuclein suppression were evaluated by treating monkeys with small interfering RNA (siRNA directed against alpha-synuclein. The siRNA molecule was chemically modified to prevent degradation by exo- and endonucleases and directly infused into the left substantia nigra. Results compared levels of alpha-synuclein mRNA and protein in the infused (left vs. untreated (right hemisphere and revealed a significant 40-50% suppression of alpha-synuclein expression. These findings could not be attributable to non-specific effects of siRNA infusion since treatment of a separate set of animals with luciferase-targeting siRNA produced no changes in alpha-synuclein. Infusion with alpha-synuclein siRNA, while lowering alpha-synuclein expression, had no overt adverse consequences. In particular, it did not cause tissue inflammation and did not change (i the number and phenotype of nigral dopaminergic neurons, and (ii the concentrations of striatal dopamine and its metabolites. The data represent the first evidence of successful anti-alpha-synuclein intervention in the primate substantia nigra and support further development of RNA interference-based therapeutics.

  7. The L444P Gba1 mutation enhances alpha-synuclein induced loss of nigral dopaminergic neurons in mice

    Science.gov (United States)

    Migdalska-Richards, Anna; Wegrzynowicz, Michal; Rusconi, Raffaella; Deangeli, Giulio; Di Monte, Donato A; Spillantini, Maria G; Schapira, Anthony H V

    2017-01-01

    Abstract Mutations in glucocerebrosidase 1 (GBA1) represent the most prevalent risk factor for Parkinson’s disease. The molecular mechanisms underlying the link between GBA1 mutations and Parkinson’s disease are incompletely understood. We analysed two aged (24-month-old) Gba1 mouse models, one carrying a knock-out mutation and the other a L444P knock-in mutation. A significant reduction of glucocerebrosidase activity was associated with increased total alpha-synuclein accumulation in both these models. Gba1 mutations alone did not alter the number of nigral dopaminergic neurons nor striatal dopamine levels. We then investigated the effect of overexpression of human alpha-synuclein in the substantia nigra of aged (18 to 21-month-old) L444P Gba1 mice. Following intraparenchymal injections of human alpha-synuclein carrying viral vectors, pathological accumulation of phosphorylated alpha-synuclein occurred within the transduced neurons. Stereological counts of nigral dopaminergic neurons revealed a significantly greater cell loss in Gba1-mutant than wild-type mice. These results indicate that Gba1 deficiency enhances neuronal vulnerability to neurodegenerative processes triggered by increased alpha-synuclein expression. PMID:28969384

  8. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines.

    Science.gov (United States)

    Baptista, Melisa J; O'Farrell, Casey; Daya, Sneha; Ahmad, Rili; Miller, David W; Hardy, John; Farrer, Matthew J; Cookson, Mark R

    2003-05-01

    Abnormal accumulation of alpha-synuclein in Lewy bodies is a neuropathological hallmark of both sporadic and familial Parkinson's disease (PD). Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic cell death occurs remains unknown. We investigated transcriptional changes in neuroblastoma cell lines transfected with either normal or mutant (A30P or A53T) alpha-synuclein using microarrays, with confirmation of selected genes by quantitative RT-PCR. Gene products whose expression was found to be significantly altered included members of diverse functional groups such as stress response, transcription regulators, apoptosis-inducing molecules, transcription factors and membrane-bound proteins. We also found evidence of altered expression of dihydropteridine reductase, which indirectly regulates the synthesis of dopamine. Because of the importance of dopamine in PD, we investigated the expression of all the known genes in dopamine synthesis. We found co-ordinated downregulation of mRNA for GTP cyclohydrolase, sepiapterin reductase (SR), tyrosine hydroxylase (TH) and aromatic acid decarboxylase by wild-type but not mutant alpha-synuclein. These were confirmed at the protein level for SR and TH. Reduced expression of the orphan nuclear receptor Nurr1 was also noted, suggesting that the co-ordinate regulation of dopamine synthesis is regulated through this transcription factor.

  9. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging.

    Directory of Open Access Journals (Sweden)

    Tjakko J van Ham

    2008-03-01

    Full Text Available Inclusions in the brain containing alpha-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a C. elegans model that makes it possible to monitor, in living animals, the formation of alpha-synuclein inclusions. In worms of old age, inclusions contain aggregated alpha- synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in alpha-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between alpha-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other alpha-synuclein related disorders.

  10. Alpha-synuclein gene deletion decreases brain palmitate uptake and alters the palmitate metabolism in the absence of alpha-synuclein palmitate binding

    DEFF Research Database (Denmark)

    Golovko, Mikhail Y; Færgeman, Nils J.; Cole, Nelson B

    2005-01-01

    Alpha-synuclein is an abundant protein in the central nervous system that is associated with a number of neurodegenerative disorders, including Parkinson's disease. Its physiological function is poorly understood, although recently it was proposed to function as a fatty acid binding protein. To b......, alpha-synuclein has effects on 16:0 uptake and metabolism similar to those of an FABP, but unlike FABP, it does not directly bind 16:0; hence, the mechanism underlying these effects is different from that of a classical FABP....

  11. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sebastian R Schreglmann

    Full Text Available Adult neurogenesis mirrors the brain´s endogenous capacity to generate new neurons throughout life. In the subventricular zone/ olfactory bulb system adult neurogenesis is linked to physiological olfactory function and has been shown to be impaired in murine models of neuronal alpha-Synuclein overexpression. We analyzed the degree and temporo-spatial dynamics of adult olfactory bulb neurogenesis in transgenic mice expressing human wild-type alpha-Synuclein (WTS under the murine Thy1 (mThy1 promoter, a model known to have a particularly high tg expression associated with impaired olfaction.Survival of newly generated neurons (NeuN-positive in the olfactory bulb was unchanged in mThy1 transgenic animals. Due to decreased dopaminergic differentiation a reduction in new dopaminergic neurons within the olfactory bulb glomerular layer was present. This is in contrast to our previously published data on transgenic animals that express WTS under the control of the human platelet-derived growth factor β (PDGF promoter, that display a widespread decrease in survival of newly generated neurons in regions of adult neurogenesis, resulting in a much more pronounced neurogenesis deficit. Temporal and quantitative expression analysis using immunofluorescence co-localization analysis and Western blots revealed that in comparison to PDGF transgenic animals, in mThy1 transgenic animals WTS is expressed from later stages of neuronal maturation only but at significantly higher levels both in the olfactory bulb and cortex.The dissociation between higher absolute expression levels of alpha-Synuclein but less severe impact on adult olfactory neurogenesis in mThy1 transgenic mice highlights the importance of temporal expression characteristics of alpha-Synuclein on the maturation of newborn neurons.

  12. Alpha-Synuclein Toxicity in the Early Secretory Pathway: How it Drives Neurodegeneration in Parkinsons Disease

    Directory of Open Access Journals (Sweden)

    Ting eWang

    2015-11-01

    Full Text Available Alpha-synuclein is a predominant player in the pathogenesis of Parkinson’s Disease. However, despite extensive study for two decades, its physiological and pathological mechanisms remain poorly understood. Alpha-synuclein forms a perplexing web of interactions with lipids, trafficking machinery, and other regulatory factors. One emerging consensus is that synaptic vesicles are likely the functional site for alpha-synuclein, where it appears to facilitate vesicle docking and fusion. On the other hand, the disfunctions of alpha-synuclein are more dispersed and numerous; when mutated or over-expressed, alpha-synuclein affects several membrane trafficking and stress pathways, including exocytosis, ER-to-Golgi transport, ER stress, Golgi homeostasis, endocytosis, autophagy, oxidative stress and others. Here we examine recent developments in alpha-synuclein’s toxicity in the early secretory pathway placed in the context of emerging themes from other affected pathways to help illuminate its underlying pathogenic mechanisms in neurodegeneration.

  13. Bimolecular Fluorescence Complementation of Alpha-synuclein Demonstrates its Oligomerization with Dopaminergic Phenotype in Mice

    Directory of Open Access Journals (Sweden)

    Waijiao Cai

    2018-03-01

    Full Text Available Alpha-synuclein (αSyn is encoded by the first causal gene identified in Parkinson's disease (PD and is the main component of Lewy bodies, a pathological hallmark of PD. aSyn-based animal models have contributed to our understanding of PD pathophysiology and to the development of therapeutics. Overexpression of human wildtype αSyn by viral vectors in rodents recapitulates the loss of dopaminergic neurons from the substantia nigra, another defining pathological feature of the disease. The development of a rat model exhibiting bimolecular fluorescence complementation (BiFC of αSyn by recombinant adeno-associated virus facilitates detection of the toxic αSyn oligomers species. We report here neurochemical, neuropathological and behavioral characterization of BiFC of αSyn in mice. Overexpression and oligomerization of αSyn through BiFC is detected by conjugated fluorescence. Reduced striatal dopamine and loss of nigral dopaminergic neurons are accompanied neuroinflammation and abnormal motor activities. Our mouse model may provide a valuable tool to study the role of αSyn in PD and to explore therapeutic approaches. Keywords: Parkinson's disease, Alpha-synuclein, Mouse model, Oligomers, Neuroinflammation

  14. Inducible alpha-synuclein overexpression affects human Neural Stem Cells behavior

    OpenAIRE

    Conti, Luciano; Zasso, Jacopo; Cutarelli, Alessandro; Ahmed, Mastad

    2018-01-01

    Converging evidence suggest that levels of alpha-Synuclein (aSyn) expression play a critical role in Parkinson's disease (PD). Several mutations of the SNCA gene, encoding for aSyn have been associated to either the familial or the sporadic forms of PD. Nonetheless, the mechanism underlying wild type aSyn-mediated neurotoxicity in neuronal cells as well as its specific driving role in PD pathogenesis has yet to be fully clarified. In this view, the development of proper in vitro cellular syst...

  15. Analysis of alpha-synuclein in malignant melanoma - development of a SRM quantification assay.

    Directory of Open Access Journals (Sweden)

    Charlotte Welinder

    Full Text Available Globally, malignant melanoma shows a steady increase in the incidence among cancer diseases. Malignant melanoma represents a cancer type where currently no biomarker or diagnostics is available to identify disease stage, progression of disease or personalized medicine treatment. The aim of this study was to assess the tissue expression of alpha-synuclein, a protein implicated in several disease processes, in metastatic tissues from malignant melanoma patients. A targeted Selected Reaction Monitoring (SRM assay was developed and utilized together with stable isotope labeling for the relative quantification of two target peptides of alpha-synuclein. Analysis of alpha-synuclein protein was then performed in ten metastatic tissue samples from the Lund Melanoma Biobank. The calibration curve using peak area ratio (heavy/light versus concentration ratios showed linear regression over three orders of magnitude, for both of the selected target peptide sequences. In support of the measurements of specific protein expression levels, we also observed significant correlation between the protein and mRNA levels of alpha-synuclein in these tissues. Investigating levels of tissue alpha-synuclein may add novel aspect to biomarker development in melanoma, help to understand disease mechanisms and ultimately contribute to discriminate melanoma patients with different prognosis.

  16. Significant Changes in Plasma Alpha-Synuclein and Beta-Synuclein Levels in Male Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Wilaiwan Sriwimol

    2018-01-01

    Full Text Available Alpha-synuclein (α-synuclein and beta-synuclein (β-synuclein are presynaptic proteins playing important roles in neuronal plasticity and synaptic vesicle regulation. To evaluate the association of these two proteins and autism spectrum disorder (ASD, we investigated the plasma α-synuclein and β-synuclein levels in 39 male children with ASD (2 subgroups: 25 autism and 14 pervasive developmental disorder-not otherwise specified (PDD-NOS comparing with 29 sex- and age-matched controls by using enzyme-linked immunosorbent assay (ELISA. We first determined the levels of these two proteins in the ASD subgroups and found that there were no significant differences in both plasma α-synuclein and β-synuclein levels in the autism and PDD-NOS groups. Thus, we could combine the 2 subgroups into one ASD group. Interestingly, the mean plasma α-synuclein level was significantly lower (P<0.001 in the ASD children (10.82±6.46 ng/mL than in the controls (29.47±18.62 ng/mL, while the mean plasma β-synuclein level in the ASD children (1344.19±160.26 ng/mL was significantly higher (P<0.05 than in the controls (1219.16±177.10 ng/mL. This is the first study examining the associations between α-synuclein and β-synuclein and male ASD patients. We found that alterations in the plasma α-synuclein and β-synuclein levels might be implicated in the association between synaptic abnormalities and ASD pathogenesis.

  17. Clearing Extracellular Alpha-Synuclein from Cerebrospinal Fluid: A New Therapeutic Strategy in Parkinson’s Disease

    Science.gov (United States)

    Padilla-Zambrano, Huber S.; Tomás-Zapico, Cristina; García, Benjamin Fernández

    2018-01-01

    This concept article aims to show the rationale of targeting extracellular α-Synuclein (α-Syn) from cerebrospinal fluid (CSF) as a new strategy to remove this protein from the brain in Parkinson’s disease (PD). Misfolding and intracellular aggregation of α-synuclein into Lewy bodies are thought to be crucial in the pathogenesis of PD. Recent research has shown that small amounts of monomeric and oligomeric α-synuclein are released from neuronal cells by exocytosis and that this extracellular alpha-synuclein contributes to neurodegeneration, progressive spreading of alpha-synuclein pathology, and neuroinflammation. In PD, extracellular oligomeric-α-synuclein moves in constant equilibrium between the interstitial fluid (ISF) and the CSF. Thus, we expect that continuous depletion of oligomeric-α-synuclein in the CSF will produce a steady clearance of the protein in the ISF, preventing transmission and deposition in the brain. PMID:29570693

  18. Mice with deleted multimerin 1 and alpha-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1.

    Science.gov (United States)

    Reheman, Adili; Tasneem, Subia; Ni, Heyu; Hayward, Catherine P M

    2010-05-01

    Multimerin 1 is a stored platelet and endothelial cell adhesive protein that shows significant conservation. In vitro, multimerin 1 supports platelet adhesion and it also binds to collagen and enhances von Willebrand factor-dependent platelet adhesion to collagen. As selective, multimerin 1 deficient mice have not been generated, we investigated multimerin 1 effects on platelet adhesion using a subpopulation of C57BL/6J mice with tandem deletion of the genes for multimerin 1 and alpha-synuclein, a protein that inhibits alpha-granule release in vitro. We postulated that multimerin 1/alpha-synuclein deficient mice might show impaired platelet adhesive function from multimerin 1 deficiency and increased alpha-granule release from alpha-synuclein deficiency. Platelet function was assessed by intravital microscopy, after ferric chloride injury, using untreated and human multimerin 1-transfused multimerin 1/alpha-synuclein deficient mice, and by in vitro assays of adhesion, aggregation and thrombin-induced P-selectin release. Multimerin 1/alpha-synuclein deficient mice showed impaired platelet adhesion and their defective thrombus formation at sites of vessel injury improved with multimerin 1 transfusion. Although multimerin 1/alpha-synuclein deficient platelets showed increased P-selectin release at low thrombin concentrations, they also showed impaired adhesion to collagen, and attenuated aggregation with thrombin, that improved with added multimerin 1. Our data suggest that multimerin 1 supports platelet adhesive functions and thrombus formation, which will be important to verify by generating and testing selective multimerin 1 deficient mice. Copyright (c) 2010. Published by Elsevier Ltd.

  19. Differential expression of alpha-synuclein in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Katsutoshi Taguchi

    Full Text Available α-Synuclein is the major pathological component of synucleinopathies including Parkinson's disease and dementia with Lewy bodies. Recent studies have demonstrated that α-synuclein also plays important roles in the release of synaptic vesicles and synaptic membrane recycling in healthy neurons. However, the precise relationship between the pathogenicity and physiological functions of α-synuclein remains to be elucidated. To address this issue, we investigated the subcellular localization of α-synuclein in normal and pathological conditions using primary mouse hippocampal neuronal cultures. While some neurons expressed high levels of α-synuclein in presynaptic boutons and cell bodies, other neurons either did not or only very weakly expressed the protein. These α-synuclein-negative cells were identified as inhibitory neurons by immunostaining with specific antibodies against glutamic acid decarboxylase (GAD, parvalbumin, and somatostatin. In contrast, α-synuclein-positive synapses were colocalized with the excitatory synapse marker vesicular glutamate transporter-1. This expression profile of α-synuclein was conserved in the hippocampus in vivo. In addition, we found that while presynaptic α-synuclein colocalizes with synapsin, a marker of presynaptic vesicles, it is not essential for activity-dependent membrane recycling induced by high potassium treatment. Exogenous supply of preformed fibrils generated by recombinant α-synuclein was shown to promote the formation of Lewy body (LB -like intracellular aggregates involving endogenous α-synuclein. GAD-positive neurons did not form LB-like aggregates following treatment with preformed fibrils, however, exogenous expression of human α-synuclein allowed intracellular aggregate formation in these cells. These results suggest the presence of a different mechanism for regulation of the expression of α-synuclein between excitatory and inhibitory neurons. Furthermore, α-synuclein expression

  20. Brain region-dependent differential expression of alpha-synuclein.

    Science.gov (United States)

    Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tsujimura, Atsushi; Tanaka, Masaki

    2016-04-15

    α-Synuclein, the major constituent of Lewy bodies (LBs), is normally expressed in presynapses and is involved in synaptic function. Abnormal intracellular aggregation of α-synuclein is observed as LBs and Lewy neurites in neurodegenerative disorders, such as Parkinson's disease (PD) or dementia with Lewy bodies. Accumulated evidence suggests that abundant intracellular expression of α-synuclein is one of the risk factors for pathological aggregation. Recently, we reported differential expression patterns of α-synuclein between excitatory and inhibitory hippocampal neurons. Here we further investigated the precise expression profile in the adult mouse brain with special reference to vulnerable regions along the progression of idiopathic PD. The results show that α-synuclein was highly expressed in the neuronal cell bodies of some early PD-affected brain regions, such as the olfactory bulb, dorsal motor nucleus of the vagus, and substantia nigra pars compacta. Synaptic expression of α-synuclein was mostly accompanied by expression of vesicular glutamate transporter-1, an excitatory presynaptic marker. In contrast, expression of α-synuclein in the GABAergic inhibitory synapses was different among brain regions. α-Synuclein was clearly expressed in inhibitory synapses in the external plexiform layer of the olfactory bulb, globus pallidus, and substantia nigra pars reticulata, but not in the cerebral cortex, subthalamic nucleus, or thalamus. These results suggest that some neurons in early PD-affected human brain regions express high levels of perikaryal α-synuclein, as happens in the mouse brain. Additionally, synaptic profiles expressing α-synuclein are different in various brain regions. © 2015 Wiley Periodicals, Inc.

  1. Inducible alpha-synuclein expression affects human Neural Stem Cell behavior.

    Science.gov (United States)

    Zasso, Jacopo; Mastad, Ahmed; Cutarelli, Alessandro; Conti, Luciano

    2018-04-19

    Converging evidence suggest that levels of alpha-Synuclein (aSyn) expression play a critical role in Parkinson's disease (PD). Several mutations of the SNCA gene, encoding for aSyn have been associated to either the familial or the sporadic forms of PD. Nonetheless, the mechanism underlying wild type aSyn-mediated neurotoxicity in neuronal cells as well as its specific driving role in PD pathogenesis has yet to be fully clarified. In this view, the development of proper in vitro cellular systems is a crucial step. Here we present a novel human Tet-on hNSC cell line, in which aSyn timing and level of expression can be tightly experimentally tuned. Induction of aSyn in self-renewing hNSCs leads to progressive formation of aSyn aggregates and impairs their proliferation and cell survival. Furthermore, aSyn induction during the neuronal differentiation process results in reduced neuronal differentiation and increased number astrocytes and undifferentiated cells in culture. Finally, acute aSyn induction in hNSC-derived dopaminergic neuronal cultures results in cell toxicity. This novel conditional in vitro cell model system may be a valuable tool for dissecting of aSyn pathogenic effects in hNSCs and neurons and in developing new potential therapeutic strategies.

  2. Interaction between viologen-phosphorus dendrimers and {alpha}-synuclein

    Energy Technology Data Exchange (ETDEWEB)

    Milowska, Katarzyna, E-mail: milowska@biol.uni.lodz.pl [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz (Poland); Grochowina, Justyna [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz (Poland); Katir, Nadia [Laboratoire de Chimie de Coordination CNRS, 205 route de Narbonne, 31077 Toulouse (France); El Kadib, Abdelkrim [Institute of Nanomaterials and Nanotechnology (INANOTECH)-MAScIR (Moroccan Foundation for Advanced Science, Innovation and Research), ENSET, Avenue de I' Armee Royale, Madinat El Irfane, 10100 Rabat (Morocco); Majoral, Jean-Pierre [Laboratoire de Chimie de Coordination CNRS, 205 route de Narbonne, 31077 Toulouse (France); Bryszewska, Maria; Gabryelak, Teresa [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz (Poland)

    2013-02-15

    In this study the interaction between viologen-phosphorus dendrimers and {alpha}-synuclein (ASN) was examined. Polycationic viologen-phosphorus dendrimers (two positive charges per viologen unit) are novel compounds with relatively unknown properties. The influence of these viologen dendrimers on ASN was tested using fluorimetric and circular dichroism methods. ASN contains four tyrosine residues; therefore, the influence of dendrimers on protein molecular conformation by measuring the changes in the ASN fluorescence in the presence of dendrimers was evaluated. The interaction of dendrimers with free L-tyrosine was also monitored. Results show that viologen-phosphorus dendrimers interact with ASN; they quenched the fluorescence of ASN as well as free tyrosine by dynamic and static ways. However, the quenching was not accompanied by modifications in the ASN secondary structure. - Highlights: Black-Right-Pointing-Pointer Interaction between viologen-phosphorus dendrimers and {alpha}-synuclein (ASN) was investigated. Black-Right-Pointing-Pointer Viologen-phosphorus dendrimers can quench the fluorescence of tyrosine in ASN. Black-Right-Pointing-Pointer Dendrimers caused red-shift in maximum of fluorescence. Black-Right-Pointing-Pointer Viologen-phosphorus dendrimers did not change the secondary structure of ASN.

  3. Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson's disease

    NARCIS (Netherlands)

    Doppler, Kathrin; Jentschke, Hanna-Maria; Schulmeyer, Lena; Vadasz, David; Janzen, Annette; Luster, Markus; Höffken, Helmut; Mayer, Geert; Brumberg, Joachim; Booij, Jan; Musacchio, Thomas; Klebe, Stephan; Sittig-Wiegand, Elisabeth; Volkmann, Jens; Sommer, Claudia; Oertel, Wolfgang H.

    2017-01-01

    Phosphorylated alpha-synuclein (p-alpha-syn) deposits, one of the neuropathological hallmarks of Parkinson's disease (PD), have recently been detected in dermal nerve fibres in PD patients with good specificity and sensitivity. Here, we studied whether p-alpha-syn may serve as a biomarker in

  4. Curcumin inhibits aggregation of alpha-synuclein.

    Science.gov (United States)

    Pandey, Neeraj; Strider, Jeffrey; Nolan, William C; Yan, Sherry X; Galvin, James E

    2008-04-01

    Aggregation of amyloid-beta protein (Abeta) is a key pathogenic event in Alzheimer's disease (AD). Curcumin, a constituent of the Indian spice Turmeric is structurally similar to Congo Red and has been demonstrated to bind Abeta amyloid and prevent further oligomerization of Abeta monomers onto growing amyloid beta-sheets. Reasoning that oligomerization kinetics and mechanism of amyloid formation are similar in Parkinson's disease (PD) and AD, we investigated the effect of curcumin on alpha-synuclein (AS) protein aggregation. In vitro model of AS aggregation was developed by treatment of purified AS protein (wild-type) with 1 mM Fe3+ (Fenton reaction). It was observed that the addition of curcumin inhibited aggregation in a dose-dependent manner and increased AS solubility. The aggregation-inhibiting effect of curcumin was next investigated in cell culture utilizing catecholaminergic SH-SY5Y cell line. A model system was developed in which the red fluorescent protein (DsRed2) was fused with A53T mutant of AS and its aggregation examined under different concentrations of curcumin. To estimate aggregation in an unbiased manner, a protocol was developed in which the images were captured automatically through a high-throughput cell-based screening microscope. The obtained images were processed automatically for aggregates within a defined dimension of 1-6 microm. Greater than 32% decrease in mutant alpha-synuclein aggregation was observed within 48 h subsequent to curcumin addition. Our data suggest that curcumin inhibits AS oligomerization into higher molecular weight aggregates and therefore should be further explored as a potential therapeutic compound for PD and related disorders.

  5. Towards a Non-Human Primate Model of Alpha-Synucleinopathy for Development of Therapeutics for Parkinson's Disease: Optimization of AAV1/2 Delivery Parameters to Drive Sustained Expression of Alpha Synuclein and Dopaminergic Degeneration in Macaque.

    Directory of Open Access Journals (Sweden)

    James B Koprich

    Full Text Available Recent failures in clinical trials for disease modification in Parkinson's disease have highlighted the need for a non-human primate model of the synucleinopathy underpinning dopaminergic neuron degeneration. The present study was defined to begin the development of such a model in cynomolgus macaque. We have validated surgical and vector parameters to define a means to provide a robust over-expression of alpha-synuclein which is associated with Lewy-like pathology and robust degeneration of the nigrostriatal pathway. Thus, an AAV1/2 vector incorporating strong transcription and transduction regulatory elements was used to deliver the gene for the human A53T mutation of alpha-synuclein. When injected into 4 sites within each substantia nigra (7 μl per site, 1.7 x 1012 gp/ml, this vector provided expression lasting at least 4 months, and a 50% loss of nigral dopaminergic neurons and a 60% reduction in striatal dopamine. Further studies will be required to develop this methodology into a validated model of value as a drug development platform.

  6. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Géraldine H Petit

    Full Text Available Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  7. Molecular cloning, characterization and developmental expression of porcine β-synuclein

    DEFF Research Database (Denmark)

    Larsen, Knud; Frandsen, Pernille Munk; Madsen, Lone Bruhn

    2010-01-01

    The synuclein family includes three known proteins: alpha-synuclein, beta-synuclein and gamma-synuclein. beta-Synuclein inhibits the aggregation of alpha-synuclein, a protein involved in Parkinson's disease. We have cloned and characterized the cDNA sequence for porcine beta-synuclein (SNCB) from...

  8. Changes in interfacial properties of alpha-synuclein preceding its aggregation

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Ostatná, Veronika; Masařík, Michal; Bertoncini, C.W.; Jovin, T.

    2008-01-01

    Roč. 133, - (2008), s. 76-84 ISSN 0003-2654 R&D Projects: GA AV ČR(CZ) KAN400310651; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : alpha-synuclein * Parkinson's disease Subject RIV: BO - Biophysics Impact factor: 3.761, year: 2008

  9. Polychlorinated biphenyls alter expression of alpha-synuclein, synaptophysin and parkin in the rat brain

    DEFF Research Database (Denmark)

    Malkiewicz, Katarzyna; Mohammed, Roma; Folkesson, Ronnie

    2006-01-01

    Polychlorinated Biphenyls (PCBs)-induced changes in synaptic transmission are one of the effects of their neurotoxicity but the mechanism remains unknown. We assessed the in vivo effects of the PCBs mixture, Aroclor 1254 on the expression of neuronal proteins that are involved in the synaptic...... function and/or are associated with neurodegeneration. Wistar rats were treated orally with repeated doses of Aroclor 1254 and the levels of soluble alpha-synuclein, parkin, synaptophysin and amyloid precursor protein (APP) in the brain were determined by Western blotting. The results showed that Aroclor...... did not cause changes in the expression and processing of APP but at a dose 100 microg/g/day repeated for 6 days caused a decrease in the expression of alpha-synuclein in the cerebellum, cortex, hippocampus and hypothalamus of the animals sacrificed 2 days after treatment. The decrease in alpha...

  10. Explorations of the application of cyanine dyes for quantitative alpha-synuclein detection

    NARCIS (Netherlands)

    Volkova, Kateryna D; Kovalska, V B; Segers-Nolten, G M J; Veldhuis, G.; Subramaniam, V; Yarmoluk, S M

    We examined the practical aspects of using fluorescent mono (T-284) and trimethinecyanine (SH-516) dyes for detecting and quantifying fibrillar alpha-synuclein (ASN). We studied the interaction of cyanine dyes with fibrillar proteins using fluorescence spectroscopy and atomic force microscopy. The

  11. Modification of C Terminus Provides New Insights into the Mechanism of alpha-Synuclein Aggregation

    Czech Academy of Sciences Publication Activity Database

    Afitska, Kseniia; Fučíková, A.; Shvadchak, Volodymyr V.; Yushchenko, Dmytro A.

    2017-01-01

    Roč. 113, č. 10 (2017), s. 2182-2191 ISSN 0006-3495 Institutional support: RVO:61388963 Keywords : alpha-synuclein * aggregation * kinetics Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.656, year: 2016

  12. Validation of a commercially available enzyme-linked immunoabsorbent assay for the quantification of human α-Synuclein in cerebrospinal fluid.

    Science.gov (United States)

    Kruse, Niels; Mollenhauer, Brit

    2015-11-01

    The quantification of α-Synuclein in cerebrospinal fluid (CSF) as a biomarker has gained tremendous interest in the last years. Several commercially available immunoassays are emerging. We here describe the full validation of one commercially available ELISA assay for the quantification of α-Synuclein in human CSF (Covance alpha-Synuclein ELISA kit). The study was conducted within the BIOMARKAPD project in the European initiative Joint Program for Neurodegenerative Diseases (JPND). We investigated the effect of several pre-analytical and analytical confounders: i.e. (1) need for centrifugation of freshly drawn CSF, (2) sample stability, (3) delay of freezing, (4) volume of storage aliquots, (5) freeze/thaw cycles, (6) thawing conditions, (7) dilution linearity, (8) parallelism, (9) spike recovery, and (10) precision. None of these confounders influenced the levels of α-Synuclein in CSF significantly. We found a very high intra-assay precision. The inter-assay precision was lower than expected due to different performances of kit lots used. Overall the validated immunoassay is useful for the quantification of α-Synuclein in human CSF. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Scarlet eGallegos

    2015-03-01

    Full Text Available Alpha-synuclein is a presynaptic protein expressed throughout the central nervous system, and it is the main component of Lewy bodies, one of the histopathological features of Parkinson’s disease (PD which is a progressive and irreversible neurodegenerative disorder. The conformational flexibility of α-synuclein allows it to adopt different conformations, i.e. bound to membranes or form aggregates, the oligomers are believed to be the more toxic species. In this review, we will focus on two major features of α-synuclein, transmission and toxicity that could help to understand the pathological characteristics of PD. One important feature of α-synuclein is its ability to be transmitted from neuron to neuron using mechanisms such as endocytosis, plasma membrane penetration or through exosomes, thus propagating the Lewy body pathology to different brain regions thereby contributing to the progressiveness of PD. The second feature of α-synuclein is that it confers cytotoxicity to recipient cells, principally when it is in an oligomeric state. This form causes mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress, proteasome impairment, disruption of plasma membrane and pore formation, and lead to apoptosis pathway activation and consequent cell death. The complexity of α-synuclein oligomerization and formation of toxic species could be a major factor for the irreversibility of PD and could also explain the lack of successful therapies to halt the disease.

  14. Impaired baroreflex function in mice overexpressing alpha-synuclein

    Directory of Open Access Journals (Sweden)

    Sheila eFleming

    2013-07-01

    Full Text Available Cardiovascular autonomic dysfunction, such as orthostatic hypotension consequent to baroreflex failure and cardiac sympathetic denervation, is frequently observed in the synucleinopathy Parkinson’s disease (PD. In the present study, the baroreceptor reflex was assessed in mice overexpressing human wildtype alpha-synuclein (Thy1-aSyn, a genetic mouse model of synucleinopathy. The beat-to-beat change in heart rate, computed from R-R interval, in relation to blood pressure was measured in anesthetized and conscious mice equipped with arterial blood pressure telemetry transducers during transient bouts of hypertension and hypotension. Compared to wildtype, tachycardia following nitroprusside-induced hypotension was significantly reduced in Thy1-aSyn mice. Thy1-aSyn mice also showed an abnormal cardiovascular response (i.e., diminished tachycardia to muscarinic blockade with atropine. We conclude that Thy1-aSyn mice have impaired basal and dynamic range of sympathetic and parasympathetic-mediated changes in heart rate and will be a useful model for long-term study of cardiovascular autonomic dysfunction associated with PD.

  15. Alpha-Synuclein: From Early Synaptic Dysfunction to Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Veronica Ghiglieri

    2018-05-01

    Full Text Available Over the last two decades, many experimental and clinical studies have provided solid evidence that alpha-synuclein (α-syn, a small, natively unfolded protein, is closely related to Parkinson’s disease (PD pathology. To provide an overview on the different roles of this protein, here we propose a synopsis of seminal and recent studies that explored the many aspects of α-syn. Ranging from the physiological functions to its neurodegenerative potential, the relationship with the possible pathogenesis of PD will be discussed. Close attention will be paid on early cellular and molecular alterations associated with the presence of α-syn aggregates.

  16. Antibodies against alpha-synuclein reduce oligomerization in living cells.

    Directory of Open Access Journals (Sweden)

    Thomas Näsström

    Full Text Available Recent research implicates soluble aggregated forms of α-synuclein as neurotoxic species with a central role in the pathogenesis of Parkinson's disease and related disorders. The pathway by which α-synuclein aggregates is believed to follow a step-wise pattern, in which dimers and smaller oligomers are initially formed. Here, we used H4 neuroglioma cells expressing α-synuclein fused to hemi:GFP constructs to study the effects of α-synuclein monoclonal antibodies on the early stages of aggregation, as quantified by Bimolecular Fluorescence Complementation assay. Widefield and confocal microscopy revealed that cells treated for 48 h with monoclonal antibodies internalized antibodies to various degrees. C-terminal and oligomer-selective α-synuclein antibodies reduced the extent of α-synuclein dimerization/oligomerization, as indicated by decreased GFP fluorescence signal. Furthermore, ELISA measurements on lysates and conditioned media from antibody treated cells displayed lower α-synuclein levels compared to untreated cells, suggesting increased protein turnover. Taken together, our results propose that extracellular administration of monoclonal antibodies can modify or inhibit early steps in the aggregation process of α-synuclein, thus providing further support for passive immunization against diseases with α-synuclein pathology.

  17. Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy.

    Directory of Open Access Journals (Sweden)

    Ammar Al-Chalabi

    Full Text Available BACKGROUND: Multiple system atrophy (MSA is a progressive neurodegenerative disorder characterized by parkinsonism, cerebellar ataxia and autonomic dysfunction. Pathogenic mechanisms remain obscure but the neuropathological hallmark is the presence of alpha-synuclein-immunoreactive glial cytoplasmic inclusions. Genetic variants of the alpha-synuclein gene, SNCA, are thus strong candidates for genetic association with MSA. One follow-up to a genome-wide association of Parkinson's disease has identified association of a SNP in SNCA with MSA. METHODOLOGY/FINDINGS: We evaluated 32 SNPs in the SNCA gene in a European population of 239 cases and 617 controls recruited as part of the Neuroprotection and Natural History in Parkinson Plus Syndromes (NNIPPS study. We used 161 independently collected samples for replication. Two SNCA SNPs showed association with MSA: rs3822086 (P = 0.0044, and rs3775444 (P = 0.012, although only the first survived correction for multiple testing. In the MSA-C subgroup the association strengthened despite more than halving the number of cases: rs3822086 P = 0.0024, OR 2.153, (95% CI 1.3-3.6; rs3775444 P = 0.0017, OR 4.386 (95% CI 1.6-11.7. A 7-SNP haplotype incorporating three SNPs either side of rs3822086 strengthened the association with MSA-C further (best haplotype, P = 8.7 x 10(-4. The association with rs3822086 was replicated in the independent samples (P = 0.035. CONCLUSIONS/SIGNIFICANCE: We report a genetic association between MSA and alpha-synuclein which has replicated in independent samples. The strongest association is with the cerebellar subtype of MSA. TRIAL REGISTRATION: ClinicalTrials.gov NCT00211224.

  18. Sensitive electrochemical detection of native and aggregated alpha-synuclein protein involved in Parkinson's disease

    Czech Academy of Sciences Publication Activity Database

    Masařík, Michal; Stobiecka, A.; Kizek, René; Jelen, František; Pechan, Zdeněk; Hoyer, W.; Jovin, T.; Subramaniam, V.; Paleček, Emil

    2004-01-01

    Roč. 16, 13-14 (2004), s. 1172-1181 ISSN 1040-0397 R&D Projects: GA ČR GA204/03/0566 Institutional research plan: CEZ:AV0Z5004920 Keywords : electrochemistry of proteins * alpha-synuclein aggregation * adsorptive transfer stripping Subject RIV: BO - Biophysics Impact factor: 2.038, year: 2004

  19. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo.

    Directory of Open Access Journals (Sweden)

    Elodie Angot

    Full Text Available Several people with Parkinson's disease have been treated with intrastriatal grafts of fetal dopaminergic neurons. Following autopsy, 10-22 years after surgery, some of the grafted neurons contained Lewy bodies similar to those observed in the host brain. Numerous studies have attempted to explain these findings in cell and animal models. In cell culture, α-synuclein has been found to transfer from one cell to another, via mechanisms that include exosomal transport and endocytosis, and in certain cases seed aggregation in the recipient cell. In animal models, transfer of α-synuclein from host brain cells to grafted neurons has been shown, but the reported frequency of the event has been relatively low and little is known about the underlying mechanisms as well as the fate of the transferred α-synuclein. We now demonstrate frequent transfer of α-synuclein from a rat brain engineered to overexpress human α-synuclein to grafted dopaminergic neurons. Further, we show that this model can be used to explore mechanisms underlying cell-to-cell transfer of α-synuclein. Thus, we present evidence both for the involvement of endocytosis in α-synuclein uptake in vivo, and for seeding of aggregation of endogenous α-synuclein in the recipient neuron by the transferred α-synuclein. Finally, we show that, at least in a subset of the studied cells, the transmitted α-synuclein is sensitive to proteinase K. Our new model system could be used to test compounds that inhibit cell-to-cell transfer of α-synuclein and therefore might retard progression of Parkinson neuropathology.

  20. Human α4β2 nicotinic acetylcholine receptor as a novel target of oligomeric α-synuclein.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    Full Text Available Cigarette smoking is associated with a decreased incidence of Parkinson disease (PD through unknown mechanisms. Interestingly, a decrease in the numbers of α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs in PD patients suggests an α4β2-nAChR-mediated cholinergic deficit in PD. Although oligomeric forms of α-synuclein have been recognized to be toxic and involved in the pathogenesis of PD, their direct effects on nAChR-mediated cholinergic signaling remains undefined. Here, we report for the first time that oligomeric α-synuclein selectively inhibits human α4β2-nAChR-mediated currents in a dose-dependent, non-competitive and use-independent manner. We show that pre-loading cells with guanyl-5'-yl thiophosphate fails to prevent this inhibition, suggesting that the α-synuclein-induced inhibition of α4β2-nAChR function is not mediated by nAChR internalization. By using a pharmacological approach and cultures expressing transfected human nAChRs, we have shown a clear effect of oligomeric α-synuclein on α4β2-nAChRs, but not on α4β4- or α7-nAChRs, suggesting nAChR subunit selectivity of oligomeric α-synuclein-induced inhibition. In addition, by combining the size exclusion chromatography and atomic force microscopy (AFM analyses, we find that only large (>4 nm oligomeric α-synuclein aggregates (but not monomeric, small oligomeric or fibrillar α-synuclein aggregates exhibit the inhibitory effect on human α4β2-nAChRs. Collectively, we have provided direct evidence that α4β2-nAChR is a sensitive target to mediate oligomeric α-synuclein-induced modulation of cholinergic signaling, and our data imply that therapeutic strategies targeted toward α4β2-nAChRs may have potential for developing new treatments for PD.

  1. Mechanisms of alpha-Synuclein Aggregation and Toxicity

    Science.gov (United States)

    2006-09-01

    Alegre, J., Gomez-Esteban, J.C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares , B., Llorens, V., Tortosa, E.G...192 (2005) 244–250 245chromosome 17. The tau isoforms prevalent in the sarkosyl- insoluble fraction, and the physical characteristics of the tau...Similarities between a-synuclein, tau, and b-amyloid. Tau and a-synuclein share many physical and biochemical properties (Dickson, 1999; Lee et al., 2004

  2. Evidence of native α-synuclein conformers in the human brain.

    Science.gov (United States)

    Gould, Neal; Mor, Danielle E; Lightfoot, Richard; Malkus, Kristen; Giasson, Benoit; Ischiropoulos, Harry

    2014-03-14

    α-Synuclein aggregation is central to the pathogenesis of several brain disorders. However, the native conformations and functions of this protein in the human brain are not precisely known. The native state of α-synuclein was probed by gel filtration coupled with native gradient gel separation, an array of antibodies with non-overlapping epitopes, and mass spectrometry. The existence of metastable conformers and stable monomer was revealed in the human brain.

  3. Alpha synuclein in Parkinson's disease

    DEFF Research Database (Denmark)

    Kragh, Christine Lund; Romero-Ramos, Marina; Halliday, Glenda M

    2014-01-01

    The perception of Parkinson’s disease (PD) as a disease centered on dopaminergic striatonigral neurodegeneration has changed fundamentally since 1997 when the first mutation in the SNCA gene (PARK1) encoding a-synuclein was discovered (Polymeropoulos et al. 1997). This discovery formed the basis...

  4. A Swedish family with de novo alpha-synuclein A53T mutation: evidence for early cortical dysfunction

    DEFF Research Database (Denmark)

    Puschmann, Andreas; Ross, Owen A; Vilariño-Güell, Carles

    2009-01-01

    A de novo alpha-synuclein A53T (p.Ala53 Th; c.209G > A) mutation has been identified in a Swedish family with autosomal dominant Parkinson's disease (PD). Two affected individuals had early-onset (before 31 and 40 years), severe levodopa-responsive PD with prominent dysphasia, dysarthria, and cog......A de novo alpha-synuclein A53T (p.Ala53 Th; c.209G > A) mutation has been identified in a Swedish family with autosomal dominant Parkinson's disease (PD). Two affected individuals had early-onset (before 31 and 40 years), severe levodopa-responsive PD with prominent dysphasia, dysarthria......) and the Greek-American Family H kindreds. One unaffected family member carried the mutation haplotype without the c.209A mutation, strongly suggesting its de novo occurrence within this family. Furthermore, a novel mutation c.488G > A (p.Arg163His; R163H) in the presenilin-2 (PSEN2) gene was detected...

  5. Dose-dependent striatal changes in dopaminergic terminals and alpha-synuclein reactivity in a porcine model of progressive Parkinson’s disease

    DEFF Research Database (Denmark)

    Nielsen, Mette Slot; Glud, Andreas Nørgaard; Møller, Arne

    2011-01-01

    to discover effective compounds halting PD progression have so far failed in clinical trials, perhaps because current animal models do not imitate the neuropathological progression of PD well enough. We recently established a progressive large animal PD model in Göttingen minipigs based on chronic infusion......Parkinson disease (PD) is a common neurodegenerative disorder, resulting from a progressive dopaminergic neuron loss in the substantia nigra (SN). Alpha-synuclein positive neuronal inclusion bodies and progressive loss of dopaminergic striatal terminals is also well described in PD. Attempts...... the SN were paraffin embedded and immunohistochemically stained for tyrosine hydroxylase (TH) and alpha-synuclein. Stereological examination of the SN showed progressive nigral neuron loss with increased MPTP dosages. Occasional neuronal staining confined to the cytoplasm and cell membrane was observed...

  6. Accumulation of phosphorylated alpha-synuclein (p129S) and retinal pathology in a mouse model of Parkinson's disease

    Science.gov (United States)

    Aims: Parkinson's disease (PD) is a neurodegenerative disorder characterized by accumulation of misfolded alpha-synuclein within the CNS. Although non-motor clinical phenotypes of PD such as visual dysfunction have become increasingly apparent, retinal pathology associated with PD is not well under...

  7. The Anticholinesterase Phenserine and Its Enantiomer Posiphen as 5′Untranslated-Region-Directed Translation Blockers of the Parkinson’s Alpha Synuclein Expression

    Directory of Open Access Journals (Sweden)

    Sohan Mikkilineni

    2012-01-01

    Full Text Available There is compelling support for limiting expression of alpha-synuclein (α-syn in the brains of Parkinson’s disease (PD patients. An increase of SNCA gene copy number can genetically cause familial PD where increased dose of this pathogenic protein correlates with severity of symptoms (triplication of the SNCA gene causes dementia in PD patients. Gene promoter polymorphisms were shown to increase α-synuclein expression as a risk for PD. Cholinesterase inhibitors can clinically slow cognitive decline in the later stages of PD etiology similar to their widespread use in Alzheimer’s disease (AD. Pertinent to this, we identified that the well-tolerated anticholinesterase, phenserine, blocked neural SNCA mRNA translation and tested for targeting via its 5′untranslated region (5′UTR in a manner similar to its action to limit the expression of the AD-specific amyloid precursor protein (APP. Posiphen, its better-tolerated (+ enantiomer (devoid of anticholinesterase action, repressed neural α-synuclein translation. Primary metabolic analogs of posiphen were, likewise, characterized using primary fetal neurons grown ex vivo from the brains of Parkinson’s transgenic mice expressing the human SNCA gene.

  8. Acyl-CoA synthetase activity links wild-type but not mutant a-Synuclein to brain arachidonate metabolism

    DEFF Research Database (Denmark)

    Golovko, Mikhail; Rosenberger, Thad; Færgeman, Nils J.

    2006-01-01

    Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that the loss of alpha-synuclein had on brain arachidonic acid (20:4n-6) metabolism in vivo using Snca-/- mice. We measured [1-(14)C]20:4n-6 incorporation and turnover kinetics in brain phospholipids using......, our data demonstrate that alpha-synuclein has a major role in brain 20:4n-6 metabolism through its modulation of endoplasmic reticulum-localized acyl-CoA synthetase activity, although mutant forms of alpha-synuclein fail to restore this activity....

  9. Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation

    DEFF Research Database (Denmark)

    Betzer, Cristine; Lassen, Louise Berkhoudt; Olsen, Anders

    2018-01-01

    Aggregation of α-synuclein is a hallmark of Parkinson's disease and dementia with Lewy bodies. We here investigate the relationship between cytosolic Ca2+and α-synuclein aggregation. Analyses of cell lines and primary culture models of α-synuclein cytopathology reveal an early phase with reduced ...

  10. Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Eric J Benner

    2008-01-01

    Full Text Available The neuropathology of Parkinson's disease (PD includes loss of dopaminergic neurons in the substantia nigra, nitrated alpha-synuclein (N-alpha-Syn enriched intraneuronal inclusions or Lewy bodies and neuroinflammation. While the contribution of innate microglial inflammatory activities to disease are known, evidence for how adaptive immune mechanisms may affect the course of PD remains obscure. We reasoned that PD-associated oxidative protein modifications create novel antigenic epitopes capable of peripheral adaptive T cell responses that could affect nigrostriatal degeneration.Nitrotyrosine (NT-modified alpha-Syn was detected readily in cervical lymph nodes (CLN from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP intoxicated mice. Antigen-presenting cells within the CLN showed increased surface expression of major histocompatibility complex class II, initiating the molecular machinery necessary for efficient antigen presentation. MPTP-treated mice produced antibodies to native and nitrated alpha-Syn. Mice immunized with the NT-modified C-terminal tail fragment of alpha-Syn, but not native protein, generated robust T cell proliferative and pro-inflammatory secretory responses specific only for the modified antigen. T cells generated against the nitrated epitope do not respond to the unmodified protein. Mice deficient in T and B lymphocytes were resistant to MPTP-induced neurodegeneration. Transfer of T cells from mice immunized with N-alpha-Syn led to a robust neuroinflammatory response with accelerated dopaminergic cell loss.These data show that NT modifications within alpha-Syn, can bypass or break immunological tolerance and activate peripheral leukocytes in draining lymphoid tissue. A novel mechanism for disease is made in that NT modifications in alpha-Syn induce adaptive immune responses that exacerbate PD pathobiology. These results have implications for both the pathogenesis and treatment of this disabling neurodegenerative disease.

  11. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Marco Emanuele

    2016-05-01

    Full Text Available Alpha-synuclein (αSyn interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs.

  12. SMG1 identified as a regulator of Parkinson's disease-associated alpha-synuclein through siRNA screening.

    Directory of Open Access Journals (Sweden)

    Adrienne Henderson-Smith

    Full Text Available Synucleinopathies are a broad class of neurodegenerative disorders characterized by the presence of intracellular protein aggregates containing α-synuclein protein. The aggregated α-synuclein protein is hyperphosphorylated on serine 129 (S129 compared to the unaggregated form of the protein. While the precise functional consequences of S129 hyperphosphorylation are still being clarified, numerous in vitro and in vivo studies suggest that S129 phosphorylation is an early event in α-synuclein dysfunction and aggregation. Identifying the kinases and phosphatases that regulate this critical phosphorylation event may ultimately prove beneficial by allowing pharmacological mitigation of synuclein dysfunction and toxicity in Parkinson's disease and other synucleinopathies. We report here the development of a high-content, fluorescence-based assay to quantitate levels of total and S129 phosphorylated α-synuclein protein. We have applied this assay to conduct high-throughput loss-of-function screens with siRNA libraries targeting 711 known and predicted human kinases and 206 phosphatases. Specifically, knockdown of the phosphatidylinositol 3-kinase related kinase SMG1 resulted in significant increases in the expression of pS129 phosphorylated α-synuclein (p-syn. Moreover, SMG1 protein levels were significantly reduced in brain regions with high p-syn levels in both dementia with Lewy bodies (DLB and Parkinson's disease with dementia (PDD. These findings suggest that SMG1 may play an important role in increased α-synuclein pathology during the course of PDD, DLB, and possibly other synucleinopathies.

  13. Structural and functional characterization of two alpha-synuclein strains

    Science.gov (United States)

    Bousset, Luc; Pieri, Laura; Ruiz-Arlandis, Gemma; Gath, Julia; Jensen, Poul Henning; Habenstein, Birgit; Madiona, Karine; Olieric, Vincent; Böckmann, Anja; Meier, Beat H.; Melki, Ronald

    2013-10-01

    α-synuclein aggregation is implicated in a variety of diseases including Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. The association of protein aggregates made of a single protein with a variety of clinical phenotypes has been explained for prion diseases by the existence of different strains that propagate through the infection pathway. Here we structurally and functionally characterize two polymorphs of α-synuclein. We present evidence that the two forms indeed fulfil the molecular criteria to be identified as two strains of α-synuclein. Specifically, we show that the two strains have different structures, levels of toxicity, and in vitro and in vivo seeding and propagation properties. Such strain differences may account for differences in disease progression in different individuals/cell types and/or types of synucleinopathies.

  14. Brain propagation of transduced α-synuclein involves non-fibrillar protein species and is enhanced in α-synuclein null mice.

    Science.gov (United States)

    Helwig, Michael; Klinkenberg, Michael; Rusconi, Raffaella; Musgrove, Ruth E; Majbour, Nour K; El-Agnaf, Omar M A; Ulusoy, Ayse; Di Monte, Donato A

    2016-03-01

    Aggregation and neuron-to-neuron transmission are attributes of α-synuclein relevant to its pathogenetic role in human synucleinopathies such as Parkinson's disease. Intraparenchymal injections of fibrillar α-synuclein trigger widespread propagation of amyloidogenic protein species via mechanisms that require expression of endogenous α-synuclein and, possibly, its structural corruption by misfolded conformers acting as pathological seeds. Here we describe another paradigm of long-distance brain diffusion of α-synuclein that involves inter-neuronal transfer of monomeric and/or oligomeric species and is independent of recruitment of the endogenous protein. Targeted expression of human α-synuclein was induced in the mouse medulla oblongata through an injection of viral vectors into the vagus nerve. Enhanced levels of intra-neuronal α-synuclein were sufficient to initiate its caudo-rostral diffusion that likely involved at least one synaptic transfer and progressively reached specific brain regions such as the locus coeruleus, dorsal raphae and amygdala in the pons, midbrain and forebrain. Transfer of human α-synuclein was compared in two separate lines of α-synuclein-deficient mice versus their respective wild-type controls and, interestingly, lack of endogenous α-synuclein expression did not counteract diffusion but actually resulted in a more pronounced and advanced propagation of exogenous α-synuclein. Self-interaction of adjacent molecules of human α-synuclein was detected in both wild-type and mutant mice. In the former, interaction of human α-synuclein with mouse α-synuclein was also observed and might have contributed to differences in protein transmission. In wild-type and α-synuclein-deficient mice, accumulation of human α-synuclein within recipient axons in the pons, midbrain and forebrain caused morphological evidence of neuritic pathology. Tissue sections from the medulla oblongata and pons were stained with different antibodies recognizing

  15. Alpha-synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids

    DEFF Research Database (Denmark)

    Golovko, Mikhail Y; Rosenberger, Thad A; Feddersen, Søren

    2007-01-01

    Previously, we demonstrated that ablation of alpha-synuclein (Snca) reduces arachidonate (20:4n-6) turnover in brain phospholipids through modulation of an endoplasmic reticulum-localized acyl-CoA synthetase (Acsl). The effect of Snca ablation on docosahexaenoic acid (22:6n-3) metabolism is unknown...... and turnover in ethanolamine glycerophospholipid, phosphatidylserine, and phosphatidylinositol pools. Increased 22:6n-3-CoA mass was not the result of altered Acsl activity, which was unaffected by the absence of Snca. While Snca bound 22:6n-3, Kd = 1.0 +/- 0.5 micromol/L, it did not bind 22:6n-3-Co...

  16. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors.

    Science.gov (United States)

    Hall, Hélène; Jewett, Michael; Landeck, Natalie; Nilsson, Nathalie; Schagerlöf, Ulrika; Leanza, Giampiero; Kirik, Deniz

    2013-01-01

    Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.

  17. An Efficient Procedure for Removal and Inactivation of Alpha-Synuclein Assemblies from Laboratory Materials.

    Science.gov (United States)

    Bousset, Luc; Brundin, Patrik; Böckmann, Anja; Meier, Beat; Melki, Ronald

    2016-01-01

    Preformed α-synuclein fibrils seed the aggregation of soluble α-synuclein in cultured cells and in vivo. This, and other findings, has kindled the idea that α-synuclein fibrils possess prion-like properties. As α-synuclein fibrils should not be considered as innocuous, there is a need for decontamination and inactivation procedures for laboratory benches and non-disposable laboratory material. We assessed the effectiveness of different procedures designed to disassemble α-synuclein fibrils and reduce their infectivity. We examined different commercially available detergents to remove α-synuclein assemblies adsorbed on materials that are not disposable and that are most found in laboratories (e.g. plastic, glass, aluminum or stainless steel surfaces). We show that methods designed to decrease PrP prion infectivity neither effectively remove α-synuclein assemblies adsorbed to different materials commonly used in the laboratory nor disassemble the fibrillar form of the protein with efficiency. In contrast, both commercial detergents and SDS detached α-synuclein assemblies from contaminated surfaces and disassembled the fibrils. We describe three cleaning procedures that effectively remove and disassemble α-synuclein seeds. The methods rely on the use of detergents that are compatible with most non-disposable tools in a laboratory. The procedures are easy to implement and significantly decrease any potential risks associated to handling α-synuclein assemblies.

  18. Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis.

    Directory of Open Access Journals (Sweden)

    David Freeman

    Full Text Available α-synuclein dysregulation is a critical aspect of Parkinson's disease pathology. Recent studies have observed that α-synuclein aggregates are cytotoxic to cells in culture and that this toxicity can be spread between cells. However, the molecular mechanisms governing this cytotoxicity and spread are poorly characterized. Recent studies of viruses and bacteria, which achieve their cytoplasmic entry by rupturing intracellular vesicles, have utilized the redistribution of galectin proteins as a tool to measure vesicle rupture by these organisms. Using this approach, we demonstrate that α-synuclein aggregates can induce the rupture of lysosomes following their endocytosis in neuronal cell lines. This rupture can be induced by the addition of α-synuclein aggregates directly into cells as well as by cell-to-cell transfer of α-synuclein. We also observe that lysosomal rupture by α-synuclein induces a cathepsin B dependent increase in reactive oxygen species (ROS in target cells. Finally, we observe that α-synuclein aggregates can induce inflammasome activation in THP-1 cells. Lysosomal rupture is known to induce mitochondrial dysfunction and inflammation, both of which are well established aspects of Parkinson's disease, thus connecting these aspects of Parkinson's disease to the propagation of α-synuclein pathology in cells.

  19. Αlpha-Synuclein as a Mediator in the Interplay between Aging and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Wojciech Bobela

    2015-10-01

    Full Text Available Accumulation and misfolding of the alpha-synuclein protein are core mechanisms in the pathogenesis of Parkinson’s disease. While the normal function of alpha-synuclein is mainly related to the control of vesicular neurotransmission, its pathogenic effects are linked to various cellular functions, which include mitochondrial activity, as well as proteasome and autophagic degradation of proteins. Remarkably, these functions are also affected when the renewal of macromolecules and organelles becomes impaired during the normal aging process. As aging is considered a major risk factor for Parkinson’s disease, it is critical to explore its molecular and cellular implications in the context of the alpha-synuclein pathology. Here, we discuss similarities and differences between normal brain aging and Parkinson’s disease, with a particular emphasis on the nigral dopaminergic neurons, which appear to be selectively vulnerable to the combined effects of alpha-synuclein and aging.

  20. Parkinson's disease: acid-glucocerebrosidase activity and alpha-synuclein clearance.

    Science.gov (United States)

    Blanz, Judith; Saftig, Paul

    2016-10-01

    The role of mutations in the gene GBA1 encoding the lysosomal hydrolase β-glucocerebrosidase for the development of synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies, was only very recently uncovered. The knowledge obtained from the study of carriers or patients suffering from Gaucher disease (a common lysosomal storage disorder because of GBA1 mutations) is of particular importance for understanding the role of the enzyme and its catabolic pathway in the development of synucleinopathies. Decreased activity of β-glucocerebrosidase leads to lysosomal dysfunction and the accumulation of its substrate glucosylceramide and related lipid derivatives. Glucosylceramide is suggested to stabilize toxic oligomeric forms of α-synuclein that negatively influence the activity of β-glucocerebrosidase and to partially block export of newly synthesized β-glucocerebrosidase from the endoplasmic reticulum to late endocytic compartments, amplifying the pathological effects of α-synuclein and ultimately resulting in neuronal cell death. This pathogenic molecular feedback loop and most likely other factors (such as impaired endoplasmic reticulum-associated degradation, activation of the unfolded protein response and dysregulation of calcium homeostasis induced by misfolded GC mutants) are involved in shifting the cellular homeostasis from monomeric α-synuclein towards oligomeric neurotoxic and aggregated forms, which contribute to Parkinson's disease progression. From a therapeutic point of view, strategies aiming to increase either the expression, stability or delivery of the β-glucocerebrosidase to lysosomes are likely to decrease the α-synuclein burden and may be useful for an in depth evaluation at the organismal level. Lysosomes are critical for protein and lipid homeostasis. Recent research revealed that dysfunction of this organelle contributes to the development of neurodegenerative diseases such as Parkinson's disease (PD). Mutations in the

  1. Synucleins: are they two-edged swords?

    Science.gov (United States)

    Surguchov, Andrei

    2013-02-01

    The synuclein family consists of three distinct highly homologous genes, α-synuclein, β-synuclein, and γ-synuclein, which have so far been found only in vertebrates. Proteins encoded by these genes are characterized by an acidic C-terminal region and five or six imperfect repeat motifs (KTKEGV) distributed throughout the highly conserved N-terminal region. Numerous data demonstrate that synucleins are implicated in two groups of the most devastating human disorders, i.e., neurodegenerative diseases (NDDs) and cancer. Mutations in the α-synuclein gene are associated with familial forms of Parkinson's disease (PD), and accumulation of α-synuclein inclusions is a hallmark of this disorder. In breast cancer, increased expression of γ-synuclein correlates with disease progression. Conversely, some results indicate that the members of the synuclein family may have a protective effect. How might these small proteins combine such controversial properties? We present evidence that synuclein's features are basically regulated by two mechanisms, i.e., posttranslational modifications (PTMs) and the level of their expression. We also discuss a new, emerging area of investigation of synucleins, namely, their role in the cell-to-cell propagation of pathology. Copyright © 2012 Wiley Periodicals, Inc.

  2. In vivo silencing of alpha-synuclein using naked siRNA

    OpenAIRE

    Charisse Klaus; Toudjarska Ivanka; Kent Caroline; Hinkle Kelly; Ogholikhan Sina; He Zhen; Braithwaite Adam; Lincoln Sarah; Zehr Cynthia; Hope Andrew; Bumcrot David; Melrose Heather; Lewis Jada; Braich Ravi; Pandey Rajendra K

    2008-01-01

    Abstract Background Overexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a...

  3. α-Synuclein aggregation, seeding and inhibition by scyllo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Tarek [Biological Sciences, Sunnybrook Research Institute (Canada); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON (Canada); McLaurin, JoAnne, E-mail: jmclaurin@sri.utoronto.ca [Biological Sciences, Sunnybrook Research Institute (Canada); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON (Canada)

    2016-01-15

    Recent literature demonstrates the accelerated aggregation of α-synuclein, a protein implicated in the pathogenesis of Parkinson's disease (PD), by the presence of preformed fibrillar conformers in vitro. Furthermore, these preformed fibrillar seeds are suggested to accelerate pathological induction in vivo when injected into the brains of mice. Variation in the results of in vivo studies is proposed to be caused by α-synuclein conformational variants. To investigate the impact of amino acid sequence on seeding efficiency, human and mouse α-synuclein seeds, which vary at 7 amino acid residues, were generated and cross-seeding kinetics studied. Using transmission electron microscopy (TEM), we confirmed that mouse α-synuclein aggregated more rapidly than human α-synuclein. Subsequently, we determined that seeding of human and mouse α-synuclein was more rapid in the presence of seeds generated from the same species. In addition, an established amyloid inhibitor, scyllo-inositol, was examined for potential inhibitory effects on α-synuclein aggregation. TEM analysis of protein:inhibitor assays demonstrated that scyllo-inositol inhibits the aggregation of α-synuclein, suggesting the therapeutic potential of the small molecule in PD. - Highlights: • Mouse α-syn fibrillizes in a significantly shorter timeframe than human α-syn. • Seeding of monomers is more efficient when seeds originate from the same species. • scyllo-Inositol has anti-aggregation effects on mouse and human α-syn.

  4. Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases.

    Science.gov (United States)

    Desplats, Paula; Spencer, Brian; Coffee, Elizabeth; Patel, Pruthul; Michael, Sarah; Patrick, Christina; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer

    2011-03-18

    DNA methylation is a major epigenetic modification that regulates gene expression. Dnmt1, the maintenance DNA methylation enzyme, is abundantly expressed in the adult brain and is mainly located in the nuclear compartment, where it has access to chromatin. Hypomethylation of CpG islands at intron 1 of the SNCA gene has recently been reported to result in overexpression of α-synuclein in Parkinson disease (PD) and related disorders. We therefore investigated the mechanisms underlying altered DNA methylation in PD and dementia with Lewy bodies (DLB). We present evidence of reduction of nuclear Dnmt1 levels in human postmortem brain samples from PD and DLB patients as well as in the brains of α-synuclein transgenic mice models. Furthermore, sequestration of Dnmt1 in the cytoplasm results in global DNA hypomethylation in human and mouse brains, involving CpG islands upstream of SNCA, SEPW1, and PRKAR2A genes. We report that association of Dnmt1 and α-synuclein might mediate aberrant subcellular localization of Dnmt1. Nuclear Dnmt1 levels were partially rescued by overexpression of Dnmt1 in neuronal cell cultures and in α-synuclein transgenic mice brains. Our results underscore a novel mechanism for epigenetic dysregulation in Lewy body diseases, which might underlie the decrease in DNA methylation reported for PD and DLB.

  5. Mitochondrial Dysfunction: The Road to Alpha-Synuclein Oligomerization in PD

    Directory of Open Access Journals (Sweden)

    A. R. Esteves

    2011-01-01

    Full Text Available While the etiology of Parkinson's disease remains largely elusive, there is accumulating evidence suggesting that mitochondrial dysfunction occurs prior to the onset of symptoms in Parkinson's disease. Mitochondria are remarkably primed to play a vital role in neuronal cell survival since they are key regulators of energy metabolism (as ATP producers, of intracellular calcium homeostasis, of NAD+/NADH ratio, and of endogenous reactive oxygen species production and programmed cell death. In this paper, we focus on mitochondrial dysfunction-mediated alpha-synuclein aggregation. We highlight some of the findings that provide proof of evidence for a mitochondrial metabolism control in Parkinson's disease, namely, mitochondrial regulation of microtubule-dependent cellular traffic and autophagic lysosomal pathway. The knowledge that microtubule alterations may lead to autophagic deficiency and may compromise the cellular degradation mechanisms that culminate in the progressive accumulation of aberrant protein aggregates shields new insights to the way we address Parkinson's disease. In line with this knowledge, an innovative window for new therapeutic strategies aimed to restore microtubule network may be unlocked.

  6. Propagated but Topologically Distributed Forebrain Neurons Expressing Alpha-Synuclein in Aged Macaques.

    Directory of Open Access Journals (Sweden)

    Katsuo Kimura

    Full Text Available In neurodegenerative disorders, such as Parkinson's disease (PD, alpha-synuclein (α-syn accumulates to induce cell death and/or form a cytoplasmic inclusion called Lewy body (LB. This α-syn-related pathology is termed synucleinopathy. It remains unclear how α-syn accumulation expands during the progress of synucleinopathy in the human brain. In our study, we investigated the patterns of distribution and propagation of forebrain neurons expressing α-syn in aged macaques. It was found that the occurrence of α-syn-positive neurons proceeded topologically based on the midbrain dopamine pathways arising from the substantia nigra and the ventral tegmental area where they were primarily observed. In the nigrostriatal or mesolimbic dopamine pathway, the age-dependent increase in α-syn-positive neurons was evident in the striatum or the nucleus accumbens, respectively. Concerning the nigrostriatal pathway, a mediolateral or rostrocaudal gradient was seen in the substantia nigra or the striatum, respectively, and a compensatory increase in dopamine transporter occurred in the striatum regardless of the decreased dopamine level. In the mesocortical dopamine pathway, α-syn-positive neurons appeared in the prefrontal and then motor areas of the frontal lobe. Given that neither LB formation nor clinical phenotype manifestation was detected in any of the monkeys examined in the present study, aged macaques may be useful as a potential presymptomatic model for PD and LB-related neuropsychiatric disorders.

  7. KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species.

    Science.gov (United States)

    Pampalakis, Georgios; Sykioti, Vasia-Samantha; Ximerakis, Methodios; Stefanakou-Kalakou, Ioanna; Melki, Ronald; Vekrellis, Kostas; Sotiropoulou, Georgia

    2017-02-28

    KLK6 is a serine protease highly expressed in the nervous system. In synucleinopathies, including Parkinson disease, the levels of KLK6 inversely correlate with α-synuclein in CSF. Recently, we suggested that recombinant KLK6 mediates the degradation of extracellular α-synuclein directly and via a proteolytic cascade that involves unidentified metalloproteinase(s). Here, we show that recombinant and naturally secreted KLK6 can readily cleave α-synuclein fibrils that have the potential for cell-to-cell propagation in "a prion-like mechanism". Importantly, KLK6-deficient primary cortical neurons have increased ability for α-synuclein fibril uptake. We also demonstrate that KLK6 activates proMMP2, which in turn can cleave α-synuclein. The repertoire of proteases activated by KLK6 in a neuronal environment was analyzed by degradomic profiling, which also identified ADAMTS19 and showed that KLK6 has a limited number of substrates indicating specific biological functions such as the regulation of α-synuclein turnover. We generated adenoviral vectors for KLK6 delivery and demonstrated that the levels of extracellular α-synuclein can be reduced by neuronally secreted KLK6. Our findings open the possibility to exploit KLK6 as a novel therapeutic target for Parkinson disease and other synucleinopathies.

  8. Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain.

    Science.gov (United States)

    Yang, Weili; Wang, Guohao; Wang, Chuan-En; Guo, Xiangyu; Yin, Peng; Gao, Jinquan; Tu, Zhuchi; Wang, Zhengbo; Wu, Jing; Hu, Xintian; Li, Shihua; Li, Xiao-Jiang

    2015-05-27

    Parkinson's disease (PD) is an age-dependent neurodegenerative disease that often occurs in those over age 60. Although rodents and small animals have been used widely to model PD and investigate its pathology, their short life span makes it difficult to assess the aging-related pathology that is likely to occur in PD patient brains. Here, we used brain tissues from rhesus monkeys at 2-3, 7-8, and >15 years of age to examine the expression of Parkin, PINK1, and α-synuclein, which are known to cause PD via loss- or gain-of-function mechanisms. We found that α-synuclein is increased in the older monkey brains, whereas Parkin and PINK1 are decreased or remain unchanged. Because of the gain of toxicity of α-synuclein, we performed stereotaxic injection of lentiviral vectors expressing mutant α-synuclein (A53T) into the substantia nigra of monkeys and found that aging also increases the accumulation of A53T in neurites and its associated neuropathology. A53T also causes more extensive reactive astrocytes and axonal degeneration in monkey brain than in mouse brain. Using monkey brain tissues, we found that A53T interacts with neurofascin, an adhesion molecule involved in axon subcellular targeting and neurite outgrowth. Aged monkey brain tissues show an increased interaction of neurofascin with A53T. Overexpression of A53T causes neuritic toxicity in cultured neuronal cells, which can be attenuated by transfected neurofascin. These findings from nonhuman primate brains reveal age-dependent pathological and molecular changes that could contribute to the age-dependent neuropathology in PD. Copyright © 2015 the authors 0270-6474/15/358345-14$15.00/0.

  9. An alpha-synuclein MRM assay with diagnostic potential for Parkinson's disease and monitoring disease progression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li [Department of Pathology, University of Washington, Seattle WA USA; Stewart, Tessandra [Department of Pathology, University of Washington, Seattle WA USA; Shi, Min [Department of Pathology, University of Washington, Seattle WA USA; Pottiez, Gwenael [Department of Pathology, University of Washington, Seattle WA USA; Dator, Romel [Department of Pathology, University of Washington, Seattle WA USA; Wu, Rui [Department of Pathology, University of Washington, Seattle WA USA; Department of Pathology, No. 3 Hospital of Beijing University, Beijing China; Aro, Patrick [Department of Pathology, University of Washington, Seattle WA USA; Schuster, Robert J. [Department of Pathology, University of Washington, Seattle WA USA; Ginghina, Carmen [Department of Pathology, University of Washington, Seattle WA USA; Pan, Catherine [Department of Pathology, University of Washington, Seattle WA USA; Gao, Yuqian [Pacific Northwest National Laboratory, Richland WA USA; Qian, Weijun [Pacific Northwest National Laboratory, Richland WA USA; Zabetian, Cyrus P. [Parkinson' s Disease Research and Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle WA USA; Department of Neurology, University of Washington School of Medicine, Seattle WA USA; Hu, Shu-Ching [Department of Neurology, University of Washington School of Medicine, Seattle WA USA; Quinn, Joseph F. [Department of Neurology, Oregon Health and Science University, Portland OR USA; Zhang, Jing [Department of Pathology, University of Washington, Seattle WA USA; Department of Pathology, Peking University Health Science Centre and Third Hospital, Beijing 100083 China

    2017-04-19

    Aim: The alpha-synuclein (α-syn) level in human cerebrospinal fluid (CSF), as measured by immunoassays, is promising as a Parkinson’s disease (PD) biomarker. However, the levels of total α-syn are inconsistent among studies with large cohorts and different measurement platforms. Total α-syn level also does not correlate with disease severity or progression. Here, we developed a highly sensitive Multiple Reaction Monitoring (MRM) method to measure absolute CSF α-syn peptide concentrations without prior enrichment or fractionation, aiming to discover new candidate biomarkers. Results: Six peptides covering 73% of protein sequence were reliably identified, and two were consistently quantified in cross-sectional and longitudinal cohorts. Absolute concentration of α-syn in human CSF was determined to be 2.1ng/mL. A unique α-syn peptide, TVEGAGSIAAATGFVK (81-96), displayed excellent correlation with previous immunoassay results in two independent PD cohorts (p < 0.001), correlated with disease severity, and its changes significantly tracked the disease progression longitudinally. Conclusions: An MRM assay to quantify human CSF α-syn was developed and optimized. Sixty clinical samples from cross-sectional and longitudinal PD cohorts were analyzed with this approach. Although further larger-scale validation is needed, the results suggest that α-syn peptide could serve as a promising biomarker in PD diagnosis and progression.

  10. A Focus on the Beneficial Effects of Alpha Synuclein and a Re-Appraisal of Synucleinopathies.

    Science.gov (United States)

    Ryskalin, Larisa; Busceti, Carla L; Limanaqi, Fiona; Biagioni, Francesca; Gambardella, Stefano; Fornai, Francesco

    2018-01-01

    Alpha synuclein (α-syn) belongs to a class of proteins which are commonly considered to play a detrimental role in neuronal survival. This assumption is based on the occurrence of a severe neuronal degeneration in patients carrying a multiplication of the α-syn gene (SNCA) and in a variety of experimental models, where overexpression of α-syn leads to cell death and neurological impairment. In these conditions, a higher amount of normally structured α-syn produces a damage, which is even worse compared with that produced by α-syn owning an abnormal structure (as occurring following point gene mutations). In line with this, knocking out the expression of α-syn is reported to protect from specific neurotoxins such as 1-methyl, 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP). In the present review we briefly discuss these well-known detrimental effects but we focus on findings showing that, in specific conditions α-syn is beneficial for cell survival. This occurs during methamphetamine intoxication which is counteracted by endogenous α-syn. Similarly, the dysfunction of the chaperone cysteine-string protein- alpha leads to cell pathology which is counteracted by over-expressing α-syn. In line with this, an increased expression of α-syn protects against oxidative damage produced by dopamine. Remarkably, when the lack of α-syn is combined with a depletion of β- and γ- synucleins, alterations in brain structure and function occur. This review tries to balance the evidence showing a beneficial effect with the bulk of data reporting a detrimental effect of endogenous α-syn. The specific role of α-syn as a chaperone protein is discussed to explain such a dual effect. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson's disease. An integrated strategy for management.

    Science.gov (United States)

    Phillipson, Oliver T

    2017-11-01

    The motor deficits which characterise the sporadic form of Parkinson's disease arise from age-related loss of a subset of dopamine neurons in the substantia nigra. Although motor symptoms respond to dopamine replacement therapies, the underlying disease process remains. This review details some features of the progressive molecular pathology and proposes deployment of a combination of nutrients: R-lipoic acid, acetyl-l-carnitine, ubiquinol, melatonin (or receptor agonists) and vitamin D3, with the collective potential to slow progression of these features. The main nutrient targets include impaired mitochondria and the associated oxidative/nitrosative stress, calcium stress and impaired gene transcription induced by pathogenic forms of alpha- synuclein. Benefits may be achieved via nutrient influence on epigenetic signaling pathways governing transcription factors for mitochondrial biogenesis, antioxidant defences and the autophagy-lysosomal pathway, via regulation of the metabolic energy sensor AMP activated protein kinase (AMPK) and the mammalian target of rapamycin mTOR. Nutrients also benefit expression of the transcription factor for neuronal survival (NR4A2), trophic factors GDNF and BDNF, and age-related calcium signals. In addition a number of non-motor related dysfunctions in circadian control, clock genes and associated metabolic, endocrine and sleep-wake activity are briefly addressed, as are late-stage complications in respect of cognitive decline and osteoporosis. Analysis of the network of nutrient effects reveals how beneficial synergies may counter the accumulation and promote clearance of pathogenic alpha-synuclein. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Alpha-synuclein oligomers - neurotoxic molecules in Parkinson’s disease and other Lewy body disorders

    Directory of Open Access Journals (Sweden)

    Martin Ingelsson

    2016-09-01

    Full Text Available Adverse intra- and extracellular effects of toxic α-synuclein are believed to be central to the pathogenesis in Parkinson’s disease and other disorders with Lewy body pathology in the nervous system. One of the physiological roles of α-synuclein relates to the regulation of neurotransmitter release at the presynapse, although it is still unclear whether this mechanism depends on the action of monomers or smaller oligomers. As for the pathogenicity, accumulating evidence suggest that prefibrillar species, rather than the deposits per se, are responsible for the toxicity in affected cells. In particular, larger oligomers or protofibrils of α-synuclein have been shown to impair protein degradation as well as the function of several organelles, such as the mitochondria and the endoplasmic reticulum. Accumulating evidence further suggest that oligomers/protofibrils may have a toxic effect on the synapse, which may lead to disrupted electrophysiological properties. In addition, recent data indicate that oligomeric α-synuclein species can spread between cells, either as free-floating proteins or via extracellular vesicles, and thereby act as seeds to propagate disease between interconnected brain regions. Taken together, several lines of evidence suggest that α-synuclein have neurotoxic properties and therefore should be an appropriate molecular target for therapeutic intervention in Parkinson’s disease and other disorders with Lewy pathology. In this context, immunotherapy with monoclonal antibodies against α-synuclein oligomers/protofibrils should be a particularly attractive treatment option.

  13. NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation

    NARCIS (Netherlands)

    Fernández, Claudio O.; Hoyer, Wolfgang; Zweckstetter, Markus; Jares-Erijman, Elizabeth A.; Subramaniam, Vinod; Griesinger, Christian; Jovin, Thomas M.

    2004-01-01

    The aggregation of α-synuclein is characteristic of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. The 140-aa protein is natively unstructured; thus, ligands binding to the monomeric form are of therapeutic interest. Biogenic polyamines promote the aggregation of α-synuclein

  14. Alpha-synuclein mutations impair axonal regeneration in models of Parkinson´s disease

    Directory of Open Access Journals (Sweden)

    Lars eTönges

    2014-09-01

    Full Text Available The dopaminergic (DAergic nigrostriatal tract has an intrinsic regenerative capacity which can be impaired in Parkinson’s disease (PD. Alpha-synuclein (aSyn is a major pathogenic component in PD but its impact on DAergic axonal regeneration is largely unknown. In this study, we expressed pathogenic variants of human aSyn by means of recombinant adeno-associated viral vectors in experimental paradigms of DAergic regeneration. In a scratch lesion model in vitro, both aSyn(A30P and aSyn(A53T significantly reduced DAergic neurite regeneration and induced loss of TH-immunopositive cells while aSyn(WT showed only minor cellular neurotoxic effects. The striatal density of TH-immunopositive axons in the striatal 6-OHDA lesion mouse model was attenuated only by aSyn(A30P. However, striatal expression levels of the regeneration marker GAP-43 in TH-immunopositive fibers were reduced by both aSyn(A30P and aSyn(A53T, but not by aSyn(WT which was associated with an activation of the ROCK signaling pathway. Nigral DAergic cell loss was only mildly enhanced by additional overexpression of aSyn variants. Our findings indicate that mutations of aSyn have a strong impact on the regenerative capacity of DAergic neurons, which may contribute to their pathogenic effects.

  15. Multiple system atrophy: genetic risks and alpha-synuclein mutations [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Heather T Whittaker

    2017-11-01

    Full Text Available Multiple system atrophy (MSA is one of the few neurodegenerative disorders where we have a significant understanding of the clinical and pathological manifestations but where the aetiology remains almost completely unknown. Research to overcome this hurdle is gaining momentum through international research collaboration and a series of genetic and molecular discoveries in the last few years, which have advanced our knowledge of this rare synucleinopathy. In MSA, the discovery of α-synuclein pathology and glial cytoplasmic inclusions remain the most significant findings. Families with certain types of α-synuclein mutations develop diseases that mimic MSA, and the spectrum of clinical and pathological features in these families suggests a spectrum of severity, from late-onset Parkinson’s disease to MSA. Nonetheless, controversies persist, such as the role of common α-synuclein variants in MSA and whether this disorder shares a common mechanism of spreading pathology with other protein misfolding neurodegenerative diseases. Here, we review these issues, specifically focusing on α-synuclein mutations.

  16. Neuropathology in mice expressing mouse alpha-synuclein.

    Directory of Open Access Journals (Sweden)

    Claus Rieker

    Full Text Available α-Synuclein (αSN in human is tightly linked both neuropathologically and genetically to Parkinson's disease (PD and related disorders. Disease-causing properties in vivo of the wildtype mouse ortholog (mαSN, which carries a threonine at position 53 like the A53T human mutant version that is genetically linked to PD, were never reported. To this end we generated mouse lines that express mαSN in central neurons at levels reaching up to six-fold compared to endogenous mαSN. Unlike transgenic mice expressing human wildtype or mutant forms of αSN, these mαSN transgenic mice showed pronounced ubiquitin immunopathology in spinal cord and brainstem. Isoelectric separation of mαSN species revealed multiple isoforms including two Ser129-phosphorylated species in the most severely affected brain regions. Neuronal Ser129-phosphorylated αSN occurred in granular and small fibrillar aggregates and pathological staining patterns in neurites occasionally revealed a striking ladder of small alternating segments staining either for Ser129-phosphorylated αSN or ubiquitin but not both. Axonal degeneration in long white matter tracts of the spinal cord, with breakdown of myelin sheaths and degeneration of neuromuscular junctions with loss of integrity of the presynaptic neurofilament network in mαSN transgenic mice, was similar to what we have reported for mice expressing human αSN wildtype or mutant forms. In hippocampal neurons, the mαSN protein accumulated and was phosphorylated but these neurons showed no ubiquitin immunopathology. In contrast to the early-onset motor abnormalities and muscle weakness observed in mice expressing human αSN, mαSN transgenic mice displayed only end-stage phenotypic alterations that manifested alongside with neuropathology. Altogether these findings show that increased levels of wildtype mαSN does not induce early-onset behavior changes, but drives end-stage pathophysiological changes in murine neurons that are

  17. The critical role of Nramp1 in degrading α-synuclein oligomers in microglia under iron overload condition.

    Science.gov (United States)

    Wu, Kuo-Chen; Liou, Horng-Huei; Kao, Yu-Han; Lee, Chih-Yu; Lin, Chun-Jung

    2017-08-01

    Oligomeric α-synuclein is a key mediator in the pathogenesis of Parkinson's disease (PD) and is mainly cleared by autophagy-lysosomal pathway, whose dysfunction results in the accumulation and cell-to-cell transmission of α-synuclein. In this study, concomitant with the accumulation of iron and oligomeric α-synuclein, higher expression of a lysosomal iron transporter, natural resistance-associated macrophage protein-1 (Nramp1), was observed in microglia in post-mortem striatum of sporadic PD patients. Using Nramp1-deficient macrophage (RAW264.7) and microglial (BV-2) cells as in-vitro models, iron exposure significantly reduced the degradation rate of the administered human α-synuclein oligomers, which can be restored by the expression of the wild-type, but not mutant (D543N), Nramp1. Likewise, under iron overload condition, mice with functional Nramp1 (DBA/2 and C57BL/6 congenic mice carrying functional Nramp1) had a better ability to degrade infused human α-synuclein oligomers than mice with nonfunctional Nramp1 (C57BL/6) in the brain and microglia. The interplay between iron and Nramp1 exhibited parallel effects on the clearance of α-synuclein and the activity of lysosomal cathepsin D in vitro and in vivo. Collectively, these findings suggest that the function of Nramp1 contributes to microglial degradation of oligomeric α-synuclein under iron overload condition and may be implicated in the pathogenesis of PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Ambroxol effects in glucocerebrosidase and α‐synuclein transgenic mice

    Science.gov (United States)

    Migdalska‐Richards, Anna; Daly, Liam; Bezard, Erwan

    2016-01-01

    Objective Gaucher disease is caused by mutations in the glucocerebrosidase 1 gene that result in deficiency of the lysosomal enzyme glucocerebrosidase. Both homozygous and heterozygous glucocerebrosidase 1 mutations confer an increased risk for developing Parkinson disease. Current estimates indicate that 10 to 25% of Parkinson patients carry glucocerebrosidase 1 mutations. Ambroxol is a small molecule chaperone that has been shown to increase glucocerebrosidase activity in vitro. This study investigated the effect of ambroxol treatment on glucocerebrosidase activity and on α‐synuclein and phosphorylated α‐synuclein protein levels in mice. Methods Mice were treated with ambroxol for 12 days. After the treatment, glucocerebrosidase activity was measured in the mouse brain lysates. The brain lysates were also analyzed for α‐synuclein and phosphorylated α‐synuclein protein levels. Results Ambroxol treatment resulted in increased brain glucocerebrosidase activity in (1) wild‐type mice, (2) transgenic mice expressing the heterozygous L444P mutation in the murine glucocerebrosidase 1 gene, and (3) transgenic mice overexpressing human α‐synuclein. Furthermore, in the mice overexpressing human α‐synuclein, ambroxol treatment decreased both α‐synuclein and phosphorylated α‐synuclein protein levels. Interpretation Our work supports the proposition that ambroxol should be further investigated as a potential novel disease‐modifying therapy for treatment of Parkinson disease and neuronopathic Gaucher disease to increase glucocerebrosidase activity and decrease α‐synuclein and phosphorylated α‐synuclein protein levels. Ann Neurol 2016;80:766–775 PMID:27859541

  19. Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Vanesa Sanchez-Guajardo

    Full Text Available Post-mortem analysis of brains from Parkinson's disease (PD patients strongly supports microglia activation and adaptive immunity as factors contributing to disease progression. Such responses may be triggered by alpha-synuclein (alpha-syn, which is known to be the main constituent of the aggregated proteins found in Lewy bodies in the brains of PD patients. To investigate this we used a recombinant viral vector to express human alpha-syn in rat midbrain at levels that induced neuronal pathology either in the absence or the presence of dopaminergic cell death, thereby mimicking early or late stages of the disease. Microglia activation was assessed by stereological quantification of Mac1+ cells, as well as the expression patterns of CD68 and MCH II. In our study, when alpha-syn induced neuronal pathology but not cell death, a fast transient increase in microglia cell numbers resulted in the long-term induction of MHC II+ microglia, denoting antigen-presenting ability. On the other hand, when alpha-syn induced both neuronal pathology and cell death, there was a delayed increase in microglia cell numbers, which correlated with long-lasting CD68 expression and a morphology reminiscent of peripheral macrophages. In addition T-lymphocyte infiltration, as judged by the presence of CD4+ and CD8+ cells, showed distinct kinetics depending on the degree of neurodegeneration, and was significantly higher when cell death occurred. We have thus for the first time shown that the microglial response differs depending on whether alpha-syn expression results on cell death or not, suggesting that microglia may play different roles during disease progression. Furthermore, our data suggest that the microglial response is modulated by early events related to alpha-syn expression in substantia nigra and persists at the long term.

  20. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    Science.gov (United States)

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  1. Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein.

    Science.gov (United States)

    Martinez, Jimena Hebe; Alaimo, Agustina; Gorojod, Roxana Mayra; Porte Alcon, Soledad; Fuentes, Federico; Coluccio Leskow, Federico; Kotler, Mónica Lidia

    2018-04-01

    Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Curcumin Treatment Improves Motor Behavior in α-Synuclein Transgenic Mice

    Science.gov (United States)

    Spinelli, Kateri J.; Osterberg, Valerie R.; Meshul, Charles K.; Soumyanath, Amala; Unni, Vivek K.

    2015-01-01

    The curry spice curcumin plays a protective role in mouse models of neurodegenerative diseases, and can also directly modulate aggregation of α-synuclein protein in vitro, yet no studies have described the interaction of curcumin and α-synuclein in genetic synucleinopathy mouse models. Here we examined the effect of chronic and acute curcumin treatment in the Syn-GFP mouse line, which overexpresses wild-type human α-synuclein protein. We discovered that curcumin diet intervention significantly improved gait impairments and resulted in an increase in phosphorylated forms of α-synuclein at cortical presynaptic terminals. Acute curcumin treatment also caused an increase in phosphorylated α-synuclein in terminals, but had no direct effect on α-synuclein aggregation, as measured by in vivo multiphoton imaging and Proteinase-K digestion. Using LC-MS/MS, we detected ~5 ng/mL and ~12 ng/mL free curcumin in the plasma of chronic or acutely treated mice, with a glucuronidation rate of 94% and 97%, respectively. Despite the low plasma levels and extensive metabolism of curcumin, these results show that dietary curcumin intervention correlates with significant behavioral and molecular changes in a genetic synucleinopathy mouse model that mimics human disease. PMID:26035833

  3. LARGE ANIMAL PARKINSONS DISEASE MODELS USING VIRAL VECTORS AND INOCULATION OF PREFORMED FIBRILS TO MEDIATE ALPHA-SYNUCLEIN OVEREXPRESSION AND MISFOLDING IN THE GOTTINGEN MINIPIG CNS

    DEFF Research Database (Denmark)

    Glud, Andreas Nørgaard; Landau, A.M.; Johnsen, Erik Lisbjerg

    2015-01-01

    Animal models towards understanding and treating Parkinson’s disease (PD) are important translational steps toward clinical applications. The Göttingen minipig(GM), fits progressional neurological models due to an relative low adult weight between 20-40 kg, and has a large gyrencephalic brain (6x...... such as antiaggreganttreatment, induced pluripotent stem cells or immunotherapy and development of novel radioligands for early diagnosis and assess disease progression....... x 4 cm) that can be examined at sufficient resolution using both conventional clinical scanning modalities and preclinical testing of deep brain stimulation, stem cell grafting and other neuromodulatory devices. Aim: Using inoculating of human or pig alpha-synuclein(aSYN) fibrils or overexpressing a......SYN using Lenti virus(LV) and Adeno Assosiated Virus(AAV) vectors in the nigrostriatal system, we hope to create a new porcine model for PD. Methods: Using conventional human-intended stereotaxic neurosurgery methods, we apply aSYN in the catecholamine nigrostriatal system of 13 GM. The changes...

  4. Proteasome impairment by α-synuclein.

    Directory of Open Access Journals (Sweden)

    Lisa Zondler

    Full Text Available Parkinson's disease (PD is the second most prevalent neurodegenerative disorder worldwide and characterized by the loss of dopaminergic neurons in the patients' midbrains. Both the presence of the protein α-synuclein in intracellular protein aggregates in surviving neurons and the genetic linking of the α-synuclein encoding gene point towards a major role of α-synuclein in PD etiology. The exact pathogenic mechanisms of PD development are not entirely described to date, neither is the specific role of α-synuclein in this context. Previous studies indicate that one aspect of α-synuclein-related cellular toxicity might be direct proteasome impairment. The 20/26S proteasomal machinery is an important instrument of intracellular protein degradation. Thus, direct proteasome impairment by α-synuclein might explain or at least contribute to the formation of intracellular protein aggregates. Therefore this study investigates direct proteasomal impairment by α-synuclein both in vitro using recombinant α-synuclein and isolated proteasomes as well as in living cells. Our experiments demonstrate that the impairment of proteasome activity by α-synuclein is highly dependent upon the cellular background and origin. We show that recombinant α-synuclein oligomers and fibrils scarcely affect 20S proteasome function in vitro, neither does transient α-synuclein expression in U2OS ps 2042 (Ubi(G76V-GFP cells. However, stable expression of both wild-type and mutant α-synuclein in dopaminergic SH-SY5Y and PC12 cells results in a prominent impairment of the chymotrypsin-like 20S/26S proteasomal protein cleavage. Thus, our results support the idea that α-synuclein in a specific cellular environment, potentially present in dopaminergic cells, cannot be processed by the proteasome and thus contributes to a selective vulnerability of dopaminergic cells to α-synuclein pathology.

  5. In parkinsonian substantia nigra, alpha-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity.

    Science.gov (United States)

    Shamoto-Nagai, M; Maruyama, W; Hashizume, Y; Yoshida, M; Osawa, T; Riederer, P; Naoi, M

    2007-01-01

    alpha-Synuclein (alphaSYN) plays a central role in the neural degeneration of Parkinson's disease (PD) through its conformational change. In PD, alphaSYN, released from the membrane, accumulates in the cytoplasm and forms Lewy body. However, the mechanism behind the translocation and conformational change of alphaSYN leading to the cell death has not been well elucidated. This paper reports that in the dopamine neurons of the substantia nigra containing neuromelanin from PD patients, alphaSYN was modified with acrolein (ACR), an aldehyde product of lipid peroxidation. Histopathological observation confirmed the co-localization of protein immunoreactive to anti-alphaSYN and ACR antibody. By Western blot analyses of samples precipitated with either anti-alphaSYN or anti-ACR antibody, increase in ACR-modified alphaSYN was confirmed in PD brain. Modification of recombinant alphaSYN by ACR enhanced its oligomerization, and at higher ACR concentrations alphaSYN was fragmented and polymerized forming a smear pattern in SDS-PAGE. ACR reduced 20S proteasome activity through the direct modification of the proteasome proteins and the production of polymerized ACR-modified proteins, which inhibited proteasome activity in vitro. These results suggest that ACR may initiate vicious cycle of modification and aggregation of proteins, including alphaSYN, and impaired proteolysis system, to cause neuronal death in PD.

  6. Long-term polarization of microglia upon alpha-synuclein overexpression in nonhuman primates

    DEFF Research Database (Denmark)

    Barkholt, Pernille; Sanchez-Guajardo, Vanesa Maria; Kirik, Denis

    2012-01-01

    We have previously shown that persistent ﰇ-sy- nuclein overexpression in ventral midbrain of marmoset leads to a distinctive neurodegenerative process and motor defects. The neurodegeneration was confined to caudate putamen dopaminergic fibers in animals overexpressing wild-type (wt) ﰇ-synuclein....

  7. In vivo silencing of alpha-synuclein using naked siRNA

    Directory of Open Access Journals (Sweden)

    Charisse Klaus

    2008-11-01

    Full Text Available Abstract Background Overexpression of α-synuclein (SNCA in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD, possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked, murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion. Conclusion We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression.

  8. In vivo silencing of alpha-synuclein using naked siRNA

    Science.gov (United States)

    Lewis, Jada; Melrose, Heather; Bumcrot, David; Hope, Andrew; Zehr, Cynthia; Lincoln, Sarah; Braithwaite, Adam; He, Zhen; Ogholikhan, Sina; Hinkle, Kelly; Kent, Caroline; Toudjarska, Ivanka; Charisse, Klaus; Braich, Ravi; Pandey, Rajendra K; Heckman, Michael; Maraganore, Demetrius M; Crook, Julia; Farrer, Matthew J

    2008-01-01

    Background Overexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked), murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion. Conclusion We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression. PMID:18976489

  9. Explorations of the application of cyanine dyes for quantitative alpha-synuclein detection

    NARCIS (Netherlands)

    Volkova, K.D.; Kovalska, V.B.; Segers-Nolten, Gezina M.J.; Veldhuis, G.; Veldhuis, G.J.; Subramaniam, Vinod; Yarmoluk, S.M.

    2009-01-01

    We examined the practical aspects of using fluorescent mono (T-284) and trimethinecyanine (SH-516) dyes for detecting and quantifying fibrillar α-synuclein (ASN). We studied the interaction of cyanine dyes with fibrillar proteins using fluorescence spectroscopy and atomic force microscopy. The

  10. Chaperone-like activities of α-synuclein: α-Synuclein assists enzyme activities of esterases

    International Nuclear Information System (INIS)

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo; Doohun Kim, T.

    2006-01-01

    α-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of α-synuclein has not yet been known. Here we have shown that α-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of α-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with α-synuclein. Our results indicate that α-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo

  11. Rapid Self-assembly of alpha-Synuclein Observed by In Situ Atomic Force Microscopy

    NARCIS (Netherlands)

    Hoyer, Wolfgang; Cherny, Dmitry; Subramaniam, Vinod; Jovin, Thomas M.

    2004-01-01

    Self-assembly of α-synuclein resulting in protein aggregates of diverse morphology has been implicated in the pathogenesis of Parkinson's disease and other neurodegenerative disorders known as synucleinopathies. Apart from its biomedical relevance, this aggregation process is representative of the

  12. Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein

    Science.gov (United States)

    Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald

    2016-11-01

    Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson’s disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young’s modulus).

  13. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease.

    Science.gov (United States)

    Masliah, Eliezer; Rockenstein, Edward; Mante, Michael; Crews, Leslie; Spencer, Brian; Adame, Anthony; Patrick, Christina; Trejo, Margarita; Ubhi, Kiren; Rohn, Troy T; Mueller-Steiner, Sarah; Seubert, Peter; Barbour, Robin; McConlogue, Lisa; Buttini, Manuel; Games, Dora; Schenk, Dale

    2011-04-29

    Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB.

  14. Low CSF levels of both α-synuclein and the α-synuclein cleaving enzyme neurosin in patients with synucleinopathy.

    Directory of Open Access Journals (Sweden)

    Malin Wennström

    Full Text Available Neurosin is a protease that in vitro degrades α-synuclein, the main constituent of Lewy bodies found in brains of patients with synucleinopathy including Parkinson's disease (PD and dementia with Lewy bodies (DLB. Several studies have reported reduced cerebrospinal fluid (CSF levels of α-synuclein in synucleinopathy patients and recent data also proposes a significant role of α-synuclein in the pathophysiology of Alzheimer's disease (AD. To investigate potential links between neurosin and its substrate α-synuclein in vivo we used a commercially available sandwich ELISA and an in-house developed direct ELISA to quantify CSF levels of α-synuclein and neurosin in patients diagnosed with DLB, PD and PD dementia (PDD versus AD patients and non-demented controls. We found that patients with synucleinopathy displayed lower CSF levels of neurosin and α-synuclein compared to controls and AD patients. In contrast, AD patients demonstrated significantly increased CSF α-synuclein but similar neurosin levels compared to non-demented controls. Further, CSF neurosin and α-synuclein concentrations were positively associated in controls, PD and PDD patients and both proteins were highly correlated to CSF levels of phosphorylated tau in all investigated groups. We observed no effect of gender or presence of the apolipoprotein Eε4 allele on neither neurosin or α-synuclein CSF levels. In concordance with the current literature our study demonstrates decreased CSF levels of α-synuclein in synucleinopathy patients versus AD patients and controls. Importantly, decreased α-synuclein levels in patients with synucleinopathy appear linked to low levels of the α-synuclein cleaving enzyme neurosin. In contrast, elevated levels of α-synuclein in AD patients were not related to any altered CSF neurosin levels. Thus, altered CSF levels of α-synuclein and neurosin in patients with synucleinopathy versus AD may not only mirror disease-specific neuropathological

  15. Structural Investigations of on-pathway Oligomers of α-Synuclein

    DEFF Research Database (Denmark)

    Pedersen, Martin Nors; Horvath, Istvan; Weise, Christoph F.

    Academy of Sciences of the United States of America 108(8): 3246-3251. Horvath, I., et al. (2012). "Mechanisms of protein oligomerization: In-hibitor of functional amyloids templates a-synuclein fibrilla-tion." Journal of the American Chemical Society. Spillantini, M. G., et al. (1997). "[alpha...... by decomposition of SAXS data from the evolving fibrillating solution (Giehm et al. 2011). NMR data have furthermore suggested that the C-terminal is exposed on oligomers obtained by incubation with the ligand FN075 (Horvath et al. 2012). In this study we aim at obtaining SAXS data from isolated stabilized...... oligomer (MAX-lab, May 2012); data analysis is in progress. ITC experiments are furthermore planned to more accurately determine the stoichiometry between α-synuclein and FN075. Horvath and co-workers have already shown that the FN075 stabilized oligomer is on pathway. We have shown that the in...

  16. The G209A mutation in the alpha-synuclein gene in Brazilian families with Parkinson's disease Mutação G209A no gene da alfa-sinucleína em famílias brasileiras com doença de Parkinson

    Directory of Open Access Journals (Sweden)

    Hélio A.G. Teive

    2001-09-01

    Full Text Available A missense G209A mutation of the alpha-synuclein gene was recently described in a large Contursi kindred with Parkinson's disease (PD. The objective of this study is to determine if the mutation G209A of the alpha-synuclein gene was present in 10 Brazilian families with PD. PD patients were recruited from movement disorders clinics of Brazil. A family history with two or more affected in relatives was the inclusion criterion for this study. The alpha-synuclein G209A mutation assay was made using polymerase chain reaction and the restriction enzyme Tsp45I. Ten patients from 10 unrelated families were studied. The mean age of PD onset was 42.7 years old. We did not find the G209A mutation in our 10 families with PD. Our results suggest that alpha-synuclein mutation G209A is uncommon in Brazilian PD families.Recentemente foi detectada mutação missense G209A no gene da alfa-sinucleína em uma grande família com doença de Parkinson (DP de Contursi, Itália. Este estudo tem o objetivo de determinar se a mutação G209A está presente em 10 famílias brasileiras com DP. Pacientes com DP foram recrutados em clínicas de distúrbio do movimento no Brasil. O critério de inclusão no estudo foi à presença de dois ou mais familiares acometidos pela DP. A mutação G209A do gene da alfa-sinucleína foi pesquisada usando a técnica de reação em cadeia de polimerase e a enzima de restrição Tsp45I. Foram estudados 10 pacientes de famílias não-relacionadas. A idade média do início dos sintomas da DP foi 42,7 anos. Não encontramos a mutação estudada neste grupo de pacientes. Nossos resultados sugerem que a mutação G209A é incomum em famílias brasileiras com DP.

  17. α-Synuclein overexpression increases dopamine toxicity in BE(2-M17 cells

    Directory of Open Access Journals (Sweden)

    Miller David W

    2010-03-01

    Full Text Available Abstract Background Oxidative stress has been proposed to be involved in the pathogenesis of Parkinson's disease (PD. A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine and produce various toxic molecules, i.e., free radicals and quinone species. α-Synuclein, a protein found in Lewy bodies characteristic of PD, is also thought to be involved in the pathogenesis of PD and point mutations and multiplications in the gene coding for α-synuclein have been found in familial forms of PD. Results We used dopaminergic human neuroblastoma BE(2-M17 cell lines stably transfected with WT or A30P mutant α-synuclein to characterize the effect of α-synuclein on dopamine toxicity. Cellular toxicity was analyzed by lactate dehydrogenase assay and by fluorescence-activated cell sorter analysis. Increased expression of either wild-type or mutant α-synuclein enhances the cellular toxicity induced by the accumulation of intracellular dopamine or DOPA. Conclusions Our results suggest that an interplay between dopamine and α-synuclein can cause cell death in a neuron-like background. The data presented here are compatible with several models of cytotoxicity, including the formation of α-synuclein oligomers and impairment of the lysosomal degradation.

  18. Evidence for Alpha Receptors in the Human Ureter

    Science.gov (United States)

    Madeb, Ralph; Knopf, Joy; Golijanin, Dragan; Bourne, Patricia; Erturk, Erdal

    2007-04-01

    An immunohistochemical and western blot expression analysis of human ureters was performed in order to characterize the alpha-1-adrenergic receptor distribution along the length of the human ureteral wall. Mapping the distribution will assist in understanding the potential role alpha -1-adrenergic receptors and their subtype density might have in the pathophysiology of ureteral colic and stone passage. Patients diagnosed with renal cancer or bladder cancer undergoing nephrectomy, nephroureterectomy, or cystectomy had ureteral specimens taken from the proximal, mid, distal and tunneled ureter. Tissues were processed for fresh frozen examination and fixed in formalin. None of the ureteral specimens were involved with cancer. Serial histologic sections and immunohistochemical studies were performed using antibodies specific for alpha-1-adrenergic receptor subtypes (alpha 1a, alpha 1b, alpha 1d). The sections were examined under a light microscope and scored as positive or negative. In order to validate and quantify the alpha receptor subtypes along the human ureter. Western blotting techniques were applied. Human ureter stained positively for alpha -1-adrenergic receptors. Immunostaining appeared red, with intense reaction in the smooth muscle of the ureter and endothelium of the neighboring blood vessels. There was differential expression between all the receptors with the highest staining for alpha-1D subtype. The highest protein expression for all three subtypes was in the renal pelvis and decreased with advancement along the ureter to the distal ureter. At the distal ureter, there was marked increase in expression as one progressed towards the ureteral orifice. The same pattern of protein expression was exhibited for all three alpha -1-adrenergic receptor subtypes. We provide preliminary evidence for the ability to detect and quantify the alpha-1-receptor subtypes along the human ureter which to the best of our knowledge has never been done with

  19. Sensitive Electrochemical Detection of Native and Aggregated x-Synuclein Protein Involved in Parkinson's Disease

    NARCIS (Netherlands)

    Masarik, Michal; Stobiecka, Agata; Kizek, René; Jelen, Frantisek; Pechan, Zdenk; Hoyer, Wolfgang; Subramaniam, Vinod; Palecek, Emil

    2004-01-01

    The aggregation of α-synuclein, a 14 kDa protein, is involved in several human neurodegenerative disorders, including Parkinson's disease. We studied native and in vitro aggregated α-synuclein by circular dichroism (CD), atomic force microscopy (AFM) and electrochemical methods. We used constant

  20. Inhibiting α-synuclein oligomerization by stable cell-penetrating β-synuclein fragments recovers phenotype of Parkinson's disease model flies.

    Directory of Open Access Journals (Sweden)

    Ronit Shaltiel-Karyo

    Full Text Available The intracellular oligomerization of α-synuclein is associated with Parkinson's disease and appears to be an important target for disease-modifying treatment. Yet, to date, there is no specific inhibitor for this aggregation process. Using unbiased systematic peptide array analysis, we identified molecular interaction domains within the β-synuclein polypeptide that specifically binds α-synuclein. Adding such peptide fragments to α-synuclein significantly reduced both amyloid fibrils and soluble oligomer formation in vitro. A retro-inverso analogue of the best peptide inhibitor was designed to develop the identified molecular recognition module into a drug candidate. While this peptide shows indistinguishable activity as compared to the native peptide, it is stable in mouse serum and penetrates α-synuclein over-expressing cells. The interaction interface between the D-amino acid peptide and α-synuclein was mapped by Nuclear Magnetic Resonance spectroscopy. Finally, administering the retro-inverso peptide to a Drosophila model expressing mutant A53T α-synuclein in the nervous system, resulted in a significant recovery of the behavioral abnormalities of the treated flies and in a significant reduction in α-synuclein accumulation in the brains of the flies. The engineered retro-inverso peptide can serve as a lead for developing a novel class of therapeutic agents to treat Parkinson's disease.

  1. Effects of Trehalose on Thermodynamic Properties of Alpha-synuclein Revealed through Synchrotron Radiation Circular Dichroism

    Directory of Open Access Journals (Sweden)

    Paolo Ruzza

    2015-05-01

    Full Text Available Many neurodegenerative diseases, including Huntington’s, Alzheimer’s and Parkinson’s diseases, are characterized by protein misfolding and aggregation. The capability of trehalose to interfere with protein misfolding and aggregation has been recently evaluated by several research groups. In the present work, we studied, by means of synchrotron radiation circular dichroism (SRCD spectroscopy, the dose-effect of trehalose on α-synuclein conformation and/or stability to probe the capability of this osmolyte to interfere with α-synuclein’s aggregation. Our study indicated that a low trehalose concentration stabilized α-synuclein folding much better than at high concentration by blocking in vitro α-synuclein’s polymerisation. These results suggested that trehalose could be associated with other drugs leading to a new approach for treating Parkinson’s and other brain-related diseases.

  2. Photobiomodulation Suppresses Alpha-Synuclein-Induced Toxicity in an AAV-Based Rat Genetic Model of Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Abid Oueslati

    Full Text Available Converging lines of evidence indicate that near-infrared light treatment, also known as photobiomodulation (PBM, may exert beneficial effects and protect against cellular toxicity and degeneration in several animal models of human pathologies, including neurodegenerative disorders. In the present study, we report that chronic PMB treatment mitigates dopaminergic loss induced by unilateral overexpression of human α-synuclein (α-syn in the substantia nigra of an AAV-based rat genetic model of Parkinson's disease (PD. In this model, daily exposure of both sides of the rat's head to 808-nm near-infrared light for 28 consecutive days alleviated α-syn-induced motor impairment, as assessed using the cylinder test. This treatment also significantly reduced dopaminergic neuronal loss in the injected substantia nigra and preserved dopaminergic fibers in the ipsilateral striatum. These beneficial effects were sustained for at least 6 weeks after discontinuing the treatment. Together, our data point to PBM as a possible therapeutic strategy for the treatment of PD and other related synucleinopathies.

  3. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice.

    Directory of Open Access Journals (Sweden)

    Alexander Kurz

    2010-07-01

    Full Text Available Parkinson's disease (PD, the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA. PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons.Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD was absent in corticostriatal slices from old transgenic mice.Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches.

  4. Alpha-synuclein A53T mutation is not frequent on a sample of Brazilian Parkinson’s disease patients

    Directory of Open Access Journals (Sweden)

    Gabriela S. Longo

    2015-06-01

    Full Text Available Introduction The pathogenesis of Parkinson’s disease (PD involves both genetic susceptibility and environmental factors, with focus on the mutation in the alpha-synuclein gene (SNCA.Objective To analyse the polymorphism SNCA-A53T in patients with familial PD (FPD and sporadic PD (SPD.Method A total of 294 individuals were studied, regardless of sex and with mixed ethnicity. The study group with 154 patients with PD, and the control group included 140 individuals without PD. The genotyping of SNCA-A53T was performed by PCR/RFLP. Significance level was p < 0.05.Results Among all patients, 37 (24% had FPD and 117 (75.9% had SPD. The absence of SNCA-A53T mutation was observed in all individuals.Conclusion SPD is notably observed in patients. However, the SNCA-A53T mutation was absent in all individuals, which does not differ controls from patients. This fact should be confirmed in a Brazilian study case with a more numerous and older population.

  5. Biophysical Characterization of α-Synuclein and Rotenone Interaction

    Directory of Open Access Journals (Sweden)

    Anthony L. Fink

    2013-09-01

    Full Text Available Previous studies revealed that pesticides interact with α-synuclein and accelerate the rate of fibrillation. These results are consistent with the prevailing hypothesis that the direct interaction of α-synuclein with pesticides is one of many suspected factors leading to α-synuclein fibrillation and ultimately to Parkinson’s disease. In this study, the biophysical properties and fibrillation kinetics of α-synuclein in the presence of rotenone were investigated and, more specifically, the effects of rotenone on the early-stage misfolded forms of α-synuclein were considered. The thioflavine T (ThT fluorescence assay studies provide evidence that early-phase misfolded α-synuclein forms are affected by rotenone and that the fibrillation process is accelerated. Further characterization by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR shows that rotenone increases the amount of ordered secondary structure in this intrinsically disordered protein. Morphological characterization by transmission electron microscopy (TEM and atomic force microscopy (AFM provide visualization of the differences in the aggregated α-synuclein species developing during the early kinetics of the fibrillation process in the absence and presence of rotenone. We believe that these data provide useful information for a better understanding of the molecular basis of rotenone-induced misfolding and aggregation of α-synuclein.

  6. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hang; Ma, Wen [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Han, Wei [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Schulten, Klaus, E-mail: kschulte@ks.uiuc.edu [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-12-28

    Parkinson’s disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and {sup 3}J(H{sub N}H{sub C{sub α}})-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  7. Role of Human Na,K-ATPase alpha 4 in Sperm Function, Derived from Studies in Transgenic Mice

    Science.gov (United States)

    McDermott, Jeffrey; Sánchez, Gladis; Nangia, Ajay K.; Blanco, Gustavo

    2014-01-01

    SUMMARY Most of our knowledge on the biological role of the testis-specific Na,K-ATPase alpha 4 isoform derives from studies performed in non-human species. Here, we studied the function of human Na,K-ATPase alpha 4 after its expression in transgenic mice. Using a bacterial artificial chromosome (BAC) construct, containing the human ATP1A4 gene locus, we obtained expression of the human α4 transgene specifically in mouse sperm, enriched in the sperm flagellum. The expressed, human alpha 4 was active, and compared to wild-type sperm, those from transgenic mice displayed higher Na,K-ATPase alpha 4 activity and greater binding of fluorescently labeled ouabain, which is typical of the alpha 4 isoform. The expression and activity of endogenous alpha 4 and the other Na,K-ATPase alpha isoform present in sperm, alpha 1, remained unchanged. Male mice expressing the human ATP1A4 transgene exhibited similar testis size and morphology, normal sperm number and shape, and no changes in overall fertility compared to wild-type mice. Sperm carrying the human transgene exhibited enhanced total motility and an increase in multiple parameters of sperm movement, including higher sperm hyperactive motility. In contrast, no statistically significant changes in sperm membrane potential, protein tyrosine phosphorylation, or spontaneous acrosome reaction were found between wild-type and transgenic mice. Altogether, these results provide new genetic evidence for an important role of human Na,K-ATPase alpha 4 in sperm motility and hyperactivation, and establishes a new animal model for future studies of this isoform. PMID:25640246

  8. Potential Modes of Intercellular α-Synuclein Transmission

    Directory of Open Access Journals (Sweden)

    Dario Valdinocci

    2017-02-01

    Full Text Available Intracellular aggregates of the α-synuclein protein result in cell loss and dysfunction in Parkinson’s disease and atypical Parkinsonism, such as multiple system atrophy and dementia with Lewy bodies. Each of these neurodegenerative conditions, known collectively as α-synucleinopathies, may be characterized by a different suite of molecular triggers that initiate pathogenesis. The mechanisms whereby α-synuclein aggregates mediate cytotoxicity also remain to be fully elucidated. However, recent studies have implicated the cell-to-cell spread of α-synuclein as the major mode of disease propagation between brain regions during disease progression. Here, we review the current evidence for different modes of α-synuclein cellular release, movement and uptake, including exocytosis, exosomes, tunneling nanotubes, glymphatic flow and endocytosis. A more detailed understanding of the major modes by which α-synuclein pathology spreads throughout the brain may provide new targets for therapies that halt the progression of disease.

  9. Potential Modes of Intercellular α-Synuclein Transmission.

    Science.gov (United States)

    Valdinocci, Dario; Radford, Rowan A W; Siow, Sue Maye; Chung, Roger S; Pountney, Dean L

    2017-02-22

    Intracellular aggregates of the α-synuclein protein result in cell loss and dysfunction in Parkinson's disease and atypical Parkinsonism, such as multiple system atrophy and dementia with Lewy bodies. Each of these neurodegenerative conditions, known collectively as α-synucleinopathies, may be characterized by a different suite of molecular triggers that initiate pathogenesis. The mechanisms whereby α-synuclein aggregates mediate cytotoxicity also remain to be fully elucidated. However, recent studies have implicated the cell-to-cell spread of α-synuclein as the major mode of disease propagation between brain regions during disease progression. Here, we review the current evidence for different modes of α-synuclein cellular release, movement and uptake, including exocytosis, exosomes, tunneling nanotubes, glymphatic flow and endocytosis. A more detailed understanding of the major modes by which α-synuclein pathology spreads throughout the brain may provide new targets for therapies that halt the progression of disease.

  10. Structural and functional properties of prefibrillar α-synuclein oligomers.

    Science.gov (United States)

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-04-14

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity.

  11. γ-Synuclein antibodies have neuroprotective potential on neuroretinal cells via proteins of the mitochondrial apoptosis pathway.

    Directory of Open Access Journals (Sweden)

    Corina Wilding

    Full Text Available The family of synuclein proteins (α, β and γ are related to neurodegenerative disease e.g. Parkinson disease and Morbus Alzheimer. Additionally, a connection between γ-synuclein and glaucoma, a neurodegenerative disease characterized by a progressive loss of retinal ganglion cells, which finally leads to blindness, exists. The reason for the development of glaucoma is still unknown. Recent studies evaluating the participation of immunological components, demonstrate complex changed antibody reactivities in glaucoma patients in comparison to healthy people, showing not only up-regulations (e.g. alpha-fodrin antibody but also down-regulations (e.g. γ-synuclein antibody of antibodies in glaucoma patients. Up-regulated antibodies could be auto-aggressive, but the role of down-regulated antibodies is still unclear. Previous studies show a significant influence of the serum and the antibodies of glaucoma patients on protein expression profiles of neuroretinal cells. The aim of this study was to investigate the effect of γ-synuclein antibody on the viability and reactive oxygen species levels of a neuroretinal cell line (RGC-5 as well as their interaction with cellular proteins. We found a protective effect of γ-synuclein antibody resulting in an increased viability (up to 15% and decreased reactive oxygen species levels (up to -12% of glutamate and oxidative stressed RGC-5. These can be traced back to anti-apoptotic altered protein expressions in the mitochondrial apoptosis pathway indicated by mass spectrometry and validated by microarray analysis such as active caspase 3, bcl-2 associated-x-protein, S100A4, voltage-dependent anion channel, extracellular-signal-regulated-kinase (down-regulated and baculoviral IAP repeat-containing protein 6, phosphorylated extracellular-signal-regulated-kinase (up-regulated. These changed protein expression are triggered by the γ-synuclein antibody internalization of RGC-5 we could see in immunohistochemical

  12. Agrochemicals, α-synuclein, and Parkinson's disease.

    Science.gov (United States)

    Silva, Blanca A; Breydo, Leonid; Fink, Anthony L; Uversky, Vladimir N

    2013-04-01

    Epidemiological, population-based case-control, and experimental studies at the molecular, cellular, and organism levels revealed that exposure to various environmental agents, including a number of structurally different agrochemicals, may contribute to the pathogenesis of Parkinson's disease (PD) and several other neurodegenerative disorders. The role of genetic predisposition in PD has also been increasingly acknowledged, driven by the identification of a number of disease-related genes [e.g., α-synuclein, parkin, DJ-1, ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1), and nuclear receptor-related factor 1]. Therefore, the etiology of this multifactorial disease is likely to involve both genetic and environmental factors. Various neurotoxicants, including agrochemicals, have been shown to elevate the levels of α-synuclein expression in neurons and to promote aggregation of this protein in vivo. Many agrochemicals physically interact with α-synuclein and accelerate the fibrillation and aggregation rates of this protein in vitro. This review analyzes some of the aspects linking α-synuclein to PD, provides brief structural and functional descriptions of this important protein, and represents some data connecting exposure to agrochemicals with α-synuclein aggregation and PD pathogenesis.

  13. Application of MALDI-TOF mass spectrometry for study on fibrillar and oligomeric aggregates of alpha-synuclein

    NARCIS (Netherlands)

    Severinovskaya, O. V.; Kovalska, V B; Losytskyy, M Yu; Cherepanov, V. V.; Subramaniam, V.; Yarmoluk, S M

    2014-01-01

    Aim. To study the α-synuclein (ASN) aggregates of different structural origin, namely amyloid fibrils and spherical oligomers, in comparison with a native protein. Methods. MALDI TOF mass spectrometry and atomic force microscopy (AFM). Results. The mass spectra of native and fibrillar ASN have

  14. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo.

    Science.gov (United States)

    Rockenstein, Edward; Nuber, Silke; Overk, Cassia R; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H; Winner, Beate; Masliah, Eliezer

    2014-05-01

    In Parkinson's disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the

  15. Seeking a Mechanism for the Toxicity of Oligomeric α-Synuclein

    Directory of Open Access Journals (Sweden)

    Hazel L. Roberts

    2015-03-01

    Full Text Available In a number of neurological diseases including Parkinson’s disease (PD, α‑synuclein is aberrantly folded, forming abnormal oligomers, and amyloid fibrils within nerve cells. Strong evidence exists for the toxicity of increased production and aggregation of α-synuclein in vivo. The toxicity of α-synuclein is popularly attributed to the formation of “toxic oligomers”: a heterogenous and poorly characterized group of conformers that may share common molecular features. This review presents the available evidence on the properties of α-synuclein oligomers and the potential molecular mechanisms of their cellular disruption. Toxic α-synuclein oligomers may impact cells in a number of ways, including the disruption of membranes, mitochondrial depolarization, cytoskeleton changes, impairment of protein clearance pathways, and enhanced oxidative stress. We also examine the relationship between α-synuclein toxic oligomers and amyloid fibrils, in the light of recent studies that paint a more complex picture of α-synuclein toxicity. Finally, methods of studying and manipulating oligomers within cells are described.

  16. Applying chaperones to protein-misfolding disorders: molecular chaperones against α-synuclein in Parkinson's disease.

    Science.gov (United States)

    Chaari, Ali; Hoarau-Véchot, Jessica; Ladjimi, Moncef

    2013-09-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the accumulation of a protein called α-synuclein (α-syn) into inclusions known as lewy bodies (LB) within neurons. This accumulation is also due to insufficient formation and activity of dopamine produced in certain neurons within the substantia nigra. Lewy bodies are the pathological hallmark of the idiopathic disorder and the cascade that allows α-synuclein to misfold, aggregate and form these inclusions has been the subject of intensive research. Targeting these early steps of oligomerization is one of the main therapeutic approaches in order to develop neurodegenerative-modifying agents. Because the folding and refolding of alpha synuclein is the key point of this cascade, we are interested in this review to summarize the role of some molecular chaperones proteins such as Hsp70, Hsp90 and small heat shock proteins (sHsp) and Hsp 104. Hsp70 and its co-chaperone, Hsp70 and small heat shock proteins can prevent neurodegeneration by preventing α-syn misfolding, oligomerization and aggregation in vitro and in Parkinson disease animal models. Hsp104 is able to resolve disordered protein aggregates and cross beta amyloid conformers. Together, these chaperones have a complementary effect and can be a target for therapeutic intervention in PD. Published by Elsevier B.V.

  17. Nascent histamine induces α-synuclein and caspase-3 on human cells

    Energy Technology Data Exchange (ETDEWEB)

    Caro-Astorga, Joaquín; Fajardo, Ignacio; Ruiz-Pérez, María Victoria; Sánchez-Jiménez, Francisca; Urdiales, José Luis, E-mail: jlurdial@uma.es

    2014-09-05

    Highlights: • Nascent histamine alters cyclin expression pattern. • Nascent histamine increases expression of α-synuclein. • Nascent histamine activates caspase-3. - Abstract: Histamine (Hia) is the most multifunctional biogenic amine. It is synthetized by histidine decarboxylase (HDC) in a reduced set of mammalian cell types. Mast cells and histaminergic neurons store Hia in specialized organelles until the amine is extruded by exocytosis; however, other immune and cancer cells are able to produce but not store Hia. The intracellular effects of Hia are still not well characterized, in spite of its physiopathological relevance. Multiple functional relationships exist among Hia metabolism/signaling elements and those of other biogenic amines, including growth-related polyamines. Previously, we obtained the first insights for an inhibitory effect of newly synthetized Hia on both growth-related polyamine biosynthesis and cell cycle progression of non-fully differentiated mammalian cells. In this work, we describe progress in this line. HEK293 cells were transfected to express active and inactive versions of GFP-human HDC fusion proteins and, after cell sorting by flow cytometry, the relative expression of a large number of proteins associated with cell signaling were measured using an antibody microarray. Experimental results were analyzed in terms of protein–protein and functional interaction networks. Expression of active HDC induced a cell cycle arrest through the alteration of the levels of several proteins such as cyclin D1, cdk6, cdk7 and cyclin A. Regulation of α-synuclein and caspase-3 was also observed. The analyses provide new clues on the molecular mechanisms underlying the regulatory effects of intracellular newly synthetized Hia on cell proliferation/survival, cell trafficking and protein turnover. This information is especially interesting for emergent and orphan immune and neuroinflammatory diseases.

  18. p25alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy

    DEFF Research Database (Denmark)

    Song, Yun Ju C; Lundvig, Ditte M S; Huang, Yue

    2007-01-01

    cytoplasmic inclusions. Overall, the data indicate that changes in the cellular interactions between MBP and p25alpha occur early in MSA and contribute to abnormalities in myelin and subsequent alpha-synuclein aggregation and the ensuing neuronal degeneration that characterizes this disease....

  19. Olfactory dysfunction of human α-synucleinA53T transgenic mice in simulation of early symptoms of Parkinson's disease%模拟帕金森病的表达人α-synucleinA53T转基因小鼠的早期嗅觉功能观察

    Institute of Scientific and Technical Information of China (English)

    章素芳; 李丽喜; 倪俊; 乐卫东

    2012-01-01

    Objective To examine the olfactory function of human α-synucleinA53T transgenic mice, and establish a model for olfactory dysfunction of early Parkinson's disease. Methods Human α-synuclein transgenic (TG) mice of different ages and their wildtype ( WT) littermates were selected. Rotarod test was used to examine the voluntary motion of TG mice aged 10 months, and DAB method was employed to observe the dopaminergic neurons in substantia nigra in mice aged 10 months for identification of motor function. Odor discrimination and habituation tests were used to observe the short-term memory and habituation of familiar scents and identification of novel scents in mice. Long-term memory test with varied intervals was employed to examine the memory of exposed scents. Besides, buried pellet test was used to investigate the perception on scents of food, which reflected the odor threshold. Results Rotarod test and observation of dopaminergic neurons indicated that the voluntary motion in TG mice aged 10 months did not change. TG mice aged 6 months exhibited subtle deficit in odor discrimination, and there was no significant difference between the time of discrimination of novel scents and that of familiar scents (P=0. 120). TG mice aged 10 months exhibited more significant deficit in discrimination of scents ( P =0. 295) . The time for finding food in TG mice aged 6 months was longer than that in WT mice ( P =0. 015). The short memory and habituation of mice of different ages were normal, while TG mice aged 9 months exhibited decrease in long-term memory (60 min, 80 min and 100 min of test intervals). Conclusion Human α-synucleinA53T transgenic mice exhibit deficiency in olfaction before motion function alterations, including the aspects of discrimination, memory and perception of scents, which can well simulate the early olfactory disfunction in Parkinson's disease.%目的 通过对表达人α-synucleinA53T

  20. End-to-end Structural Restriction of α-Synuclein and Its Influence on Amyloid Fibril Formation

    International Nuclear Information System (INIS)

    Hong, Chul Suk; Park, Jae Hyung; Choe, Young Jun; Paik, Seung R.

    2014-01-01

    Relationship between molecular freedom of amyloidogenic protein and its self-assembly into amyloid fibrils has been evaluated with α-synuclein, an intrinsically unfolded protein related to Parkinson's disease, by restricting its structural plasticity through an end-to-end disulfide bond formation between two newly introduced cysteine residues on the N- and C-termini. Although the resulting circular form of α-synuclein exhibited an impaired fibrillation propensity, the restriction did not completely block the protein's interactive core since co-incubation with wild-type α-synuclein dramatically facilitated the fibrillation by producing distinctive forms of amyloid fibrils. The suppressed fibrillation propensity was instantly restored as the structural restriction was unleashed with β-mercaptoethanol. Conformational flexibility of the accreting amyloidogenic protein to pre-existing seeds has been demonstrated to be critical for fibrillar extension process by exerting structural adjustment to a complementary structure for the assembly

  1. End-to-end Structural Restriction of α-Synuclein and Its Influence on Amyloid Fibril Formation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Chul Suk; Park, Jae Hyung; Choe, Young Jun; Paik, Seung R. [Seoul National University, Seoul (Korea, Republic of)

    2014-09-15

    Relationship between molecular freedom of amyloidogenic protein and its self-assembly into amyloid fibrils has been evaluated with α-synuclein, an intrinsically unfolded protein related to Parkinson's disease, by restricting its structural plasticity through an end-to-end disulfide bond formation between two newly introduced cysteine residues on the N- and C-termini. Although the resulting circular form of α-synuclein exhibited an impaired fibrillation propensity, the restriction did not completely block the protein's interactive core since co-incubation with wild-type α-synuclein dramatically facilitated the fibrillation by producing distinctive forms of amyloid fibrils. The suppressed fibrillation propensity was instantly restored as the structural restriction was unleashed with β-mercaptoethanol. Conformational flexibility of the accreting amyloidogenic protein to pre-existing seeds has been demonstrated to be critical for fibrillar extension process by exerting structural adjustment to a complementary structure for the assembly.

  2. Evaluation of the synuclein-y (SNCG) gene as a PPARy target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue

    Science.gov (United States)

    Synuclein-gamma is highly expressed in both adipocytes and peripheral nervous system (PNS) somatosensory neurons. Its mRNA is induced during adipogenesis, increased in obese human white adipose tissue (WAT), may be coordinately regulated with leptin, and is decreased following treatment of murine 3T...

  3. Urea and thiourea modified polypropyleneimine dendrimers clear intracellular α-synuclein aggregates in a human cell line

    DEFF Research Database (Denmark)

    Laumann, Kristoffer; Boas, Ulrik; Larsen, Hjalte Martin

    2015-01-01

    Synucleinopathies are neurodegenerative pathologies in which disease progression is closely correlated to brain accumulation of insoluble α-synuclein, a small protein abundantly expressed in neural tissue. Here, two types of modified polypropyleneimine (PPI) dendrimers having either urea or methy......Synucleinopathies are neurodegenerative pathologies in which disease progression is closely correlated to brain accumulation of insoluble α-synuclein, a small protein abundantly expressed in neural tissue. Here, two types of modified polypropyleneimine (PPI) dendrimers having either urea...

  4. Deuterium isotope shifts for backbone {sup 1}H, {sup 15}N and {sup 13}C nuclei in intrinsically disordered protein {alpha}-synuclein

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, Alexander S.; Ying Jinfa; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-10-15

    Intrinsically disordered proteins (IDPs) are abundant in nature and characterization of their potential structural propensities remains a widely pursued but challenging task. Analysis of NMR secondary chemical shifts plays an important role in such studies, but the output of such analyses depends on the accuracy of reference random coil chemical shifts. Although uniform perdeuteration of IDPs can dramatically increase spectral resolution, a feature particularly important for the poorly dispersed IDP spectra, the impact of deuterium isotope shifts on random coil values has not yet been fully characterized. Very precise {sup 2}H isotope shift measurements for {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 15}N, and {sup 1}H{sup N} have been obtained by using a mixed sample of protonated and uniformly perdeuterated {alpha}-synuclein, a protein with chemical shifts exceptionally close to random coil values. Decomposition of these isotope shifts into one-bond, two-bond and three-bond effects as well as intra- and sequential residue contributions shows that such an analysis, which ignores conformational dependence, is meaningful but does not fully describe the total isotope shift to within the precision of the measurements. Random coil {sup 2}H isotope shifts provide an important starting point for analysis of such shifts in structural terms in folded proteins, where they are known to depend strongly on local geometry.

  5. Distinct mechanisms of axonal globule formation in mice expressing human wild type α-synuclein or dementia with Lewy bodies-linked P123H ß-synuclein

    Directory of Open Access Journals (Sweden)

    Sekigawa Akio

    2012-09-01

    Full Text Available Abstract Background Axonopathy is critical in the early pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD and dementia with Lewy bodies (DLB. Axonal swellings such as globules and spheroids are a distinct feature of axonopathy and our recent study showed that transgenic (tg mice expressing DLB-linked P123H β-synuclein (P123H βS were characterized by P123H βS-immunoreactive axonal swellings (P123H βS-globules. Therefore, the objectives of this study were to evaluate α-synuclein (αS-immunoreactive axonal swellings (αS-globules in the brains of tg mice expressing human wild-type αS and to compare them with the globules in P123H βS tg mice. Results In αS tg mice, αS-globules were formed in an age-dependent manner in various brain regions, including the thalamus and basal ganglia. These globules were composed of autophagosome-like membranous structures and were reminiscent of P123H βS-globules in P123H βS tg mice. In the αS-globules, frequent clustering and deformation of mitochondria were observed. These changes were associated with oxidative stress, based on staining of nitrated αS and 4-hydroxy-2-nonenal (4-HNE. In accord with the absence of mitochondria in the P123H βS-globules, staining of nitrated αS and 4-HNE in these globules was weaker than that for αS-globules. Leucine-rich repeat kinase 2 (LRRK2, the PARK8 of familial PD, was detected exclusively in αS-globules, suggesting a specific role of this molecule in these globules. Conclusions Lysosomal pathology was similarly observed for both αS- and P123H βS-globules, while oxidative stress was associated with the αS-globules, and to a lesser extent with the P123H βS-globules. Other pathologies, such as mitochondrial alteration and LRRK2 accumulation, were exclusively detected for αS-globules. Collectively, both αS- and P123H βS-globules were formed through similar but distinct pathogenic mechanisms. Our findings suggest that synuclein

  6. Alpha-synuclein is present in dental calculus but not altered in Parkinson's disease patients in comparison to controls.

    Science.gov (United States)

    Schmid, Sabrina; Goldberg-Bockhorn, Eva; Schwarz, Silke; Rotter, Nicole; Kassubek, Jan; Del Tredici, Kelly; Pinkhardt, Elmar; Otto, Markus; Ludolph, Albert C; Oeckl, Patrick

    2018-06-01

    In autopsy cases staged for sporadic Parkinson's disease (PD), the neuropathology is characterized by a preclinical phase that targets the enteric nervous system of the gastrointestinal tract (GIT). Therefore, the ENS might be a source of potential (presymptomatic) PD biomarkers. In this clinically based study, we examined the alpha-synuclein (αSyn) concentration in an easily accessible protein storage medium of the GIT, dental calculus, in 21/50 patients with PD and 28/50 age- and gender-matched controls using ELISA. αSyn was detectable in dental calculus and the median concentration in the control patients was 8.6 pg/mg calculus (interquartile range 2.6-13.1 pg/mg). αSyn concentrations were significantly influenced by blood contamination and samples with a hemoglobin concentration of > 4000 ng/mL were excluded. There was no significant difference of αSyn concentrations in the dental calculus of PD patients (5.76 pg/mg, interquartile range 2.91-9.74 pg/mg) compared to those in controls (p = 0.40). The total αSyn concentration in dental calculus is not a suitable biomarker for sporadic PD. Disease-related variants such as oligomeric or phosphorylated αSyn in calculus might prove to be more specific.

  7. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Solt, Anna C; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Nuse, Bryan; Herritt, Lou; Villarreal-Calderón, Rafael; Osnaya, Norma; Stone, Ida; García, Raquel; Brooks, Diane M; González-Maciel, Angelica; Reynoso-Robles, Rafael; Delgado-Chávez, Ricardo; Reed, William

    2008-02-01

    Air pollution is a serious environmental problem. We investigated whether residency in cities with high air pollution is associated with neuroinflammation/neurodegeneration in healthy children and young adults who died suddenly. We measured mRNA cyclooxygenase-2, interleukin-1beta, and CD14 in target brain regions from low (n = 12) or highly exposed residents (n = 35) aged 25.1 +/- 1.5 years. Upregulation of cyclooxygenase-2, interleukin-1beta, and CD14 in olfactory bulb, frontal cortex, substantia nigrae and vagus nerves; disruption of the blood-brain barrier; endothelial activation, oxidative stress, and inflammatory cell trafficking were seen in highly exposed subjects. Amyloid beta42 (Abeta42) immunoreactivity was observed in 58.8% of apolipoprotein E (APOE) 3/3 < 25 y, and 100% of the APOE 4 subjects, whereas alpha-synuclein was seen in 23.5% of < 25 y subjects. Particulate material (PM) was seen in olfactory bulb neurons, and PM < 100 nm were observed in intraluminal erythrocytes from lung, frontal, and trigeminal ganglia capillaries. Exposure to air pollution causes neuroinflammation, an altered brain innate immune response, and accumulation of Abeta42 and alpha-synuclein starting in childhood. Exposure to air pollution should be considered a risk factor for Alzheimer's and Parkinson's diseases, and carriers of the APOE 4 allele could have a higher risk of developing Alzheimer's disease if they reside in a polluted environment.

  8. Inflammation kinase PKR phosphorylates α-synuclein and causes α-synuclein-dependent cell death

    DEFF Research Database (Denmark)

    Reimer, Lasse; Lund, Louise Buur; Betzer, Cristine

    2018-01-01

    , and acute brain slices), while overexpression of constitutively active PKR increases Ser129 α-syn phosphorylation. Treatment with pre-formed α-synuclein fibrils, proteostatic stress-promoting MG-132 and known PKR activators, herpes simplex virus-1-∆ICP34.5 and LPS, as well as PKR inducer, IFN-β-1b, lead...... on Ser129. Although the inflammation-associated serine-threonine kinase, PKR (EIF2AK2), promotes cellular protection against infection, we demonstrate a pro-degenerative role of activated PKR in an α-synuclein-dependent cell model of multiple system atrophy, where inhibition and silencing of PKR decrease...

  9. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape.

    Science.gov (United States)

    Ferreon, Allan Chris M; Moosa, Mahdi Muhammad; Gambin, Yann; Deniz, Ashok A

    2012-10-30

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.

  10. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape

    Science.gov (United States)

    Ferreon, Allan Chris M.; Moosa, Mahdi Muhammad; Deniz, Ashok A.

    2012-01-01

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson’s disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 2∶1 [urea]∶[TMAO] ratio has a net neutral effect on the protein’s dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments. PMID:22826265

  11. Covalent α-synuclein dimers: chemico-physical and aggregation properties.

    Directory of Open Access Journals (Sweden)

    Micaela Pivato

    Full Text Available The aggregation of α-synuclein into amyloid fibrils constitutes a key step in the onset of Parkinson's disease. Amyloid fibrils of α-synuclein are the major component of Lewy bodies, histological hallmarks of the disease. Little is known about the mechanism of aggregation of α-synuclein. During this process, α-synuclein forms transient intermediates that are considered to be toxic species. The dimerization of α-synuclein could represent a rate-limiting step in the aggregation of the protein. Here, we analyzed four covalent dimers of α-synuclein, obtained by covalent link of the N-terms, C-terms, tandem cloning of two sequences and tandem juxtaposition in one protein of the 1-104 and 29-140 sequences. Their biophysical properties in solution were determined by CD, FT-IR and NMR spectroscopies. SDS-induced folding was also studied. The fibrils formation was analyzed by ThT and polarization fluorescence assays. Their morphology was investigated by TEM and AFM-based quantitative morphometric analysis. All dimers were found to be devoid of ordered secondary structure under physiological conditions and undergo α-helical transition upon interaction with SDS. All protein species are able to form amyloid-like fibrils. The reciprocal orientation of the α-synuclein monomers in the dimeric constructs affects the kinetics of the aggregation process and a scale of relative amyloidogenic propensity was determined. Structural investigations by FT IR spectroscopy, and proteolytic mapping of the fibril core did not evidence remarkable difference among the species, whereas morphological analyses showed that fibrils formed by dimers display a lower and diversified level of organization in comparison with α-synuclein fibrils. This study demonstrates that although α-synuclein dimerization does not imply the acquisition of a preferred conformation by the participating monomers, it can strongly affect the aggregation properties of the molecules. The results

  12. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity

    DEFF Research Database (Denmark)

    Decressac, Mickael; Mattsson, Bengt; Weikop, Pia

    2013-01-01

    that the PD-like neurodegenerative changes induced by excess cellular levels of α-synuclein in nigral dopamine neurons are closely linked to a progressive decline in markers of lysosome function, accompanied by cytoplasmic retention of transcription factor EB (TFEB), a major transcriptional regulator...... in both A9 and A10 dopamine neurons. Delayed activation of TFEB function through inhibition of mammalian target of rapamycin blocked α-synuclein induced neurodegeneration and further disease progression. The results provide a mechanistic link between α-synuclein toxicity and impaired TFEB function......The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show...

  13. Glucocerebrosidase expression patterns in the non-human primate brain

    OpenAIRE

    Dopeso-Reyes, Iria G.; Sucunza, Diego; Rico, Alberto J.; Pignataro, Diego; Marín-Ramos, David; Roda, Elvira; Rodríguez-Pérez, Ana I.; Labandeira-García, José L.; Lanciego, José L.

    2017-01-01

    Glucocerebrosidase (GCase) is a lysosomal enzyme encoded by the GBA1 gene. Mutations in GBA1 gene lead to Gaucher’s disease, the most prevalent lysosomal storage disorder. GBA1 mutations reduce GCase activity, therefore promoting the aggregation of alpha-synuclein, a common neuropathological finding underlying Parkinson’s disease (PD) and dementia with Lewy bodies. However, it is also worth noting that a direct link between GBA1 mutations and alpha-synuclein aggregation indicating cause and e...

  14. α-Synuclein Immunotherapy Blocks Uptake and Templated Propagation of Misfolded α-Synuclein and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Hien T. Tran

    2014-06-01

    Full Text Available Accumulation of misfolded alpha-synuclein (α-syn into Lewy bodies (LBs and Lewy neurites (LNs is a major hallmark of Parkinson’s disease (PD and dementia with LBs (DLB. Recent studies showed that synthetic preformed fibrils (pffs recruit endogenous α-syn and induce LB/LN pathology in vitro and in vivo, thereby implicating propagation and cell-to-cell transmission of pathological α-syn as mechanisms for the progressive spread of LBs/LNs. Here, we demonstrate that α-syn monoclonal antibodies (mAbs reduce α-syn pff-induced LB/LN formation and rescue synapse/neuron loss in primary neuronal cultures by preventing both pff uptake and subsequent cell-to-cell transmission of pathology. Moreover, intraperitoneal (i.p. administration of mAb specific for misfolded α-syn into nontransgenic mice injected intrastriatally with α-syn pffs reduces LB/LN pathology, ameliorates substantia nigra dopaminergic neuron loss, and improves motor impairments. We conclude that α-syn antibodies could exert therapeutic effects in PD/DLB by blocking entry of pathological α-syn and/or its propagation in neurons.

  15. Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes.

    Science.gov (United States)

    Abounit, Saïda; Bousset, Luc; Loria, Frida; Zhu, Seng; de Chaumont, Fabrice; Pieri, Laura; Olivo-Marin, Jean-Christophe; Melki, Ronald; Zurzolo, Chiara

    2016-10-04

    Synucleinopathies such as Parkinson's disease are characterized by the pathological deposition of misfolded α-synuclein aggregates into inclusions throughout the central and peripheral nervous system. Mounting evidence suggests that intercellular propagation of α-synuclein aggregates may contribute to the neuropathology; however, the mechanism by which spread occurs is not fully understood. By using quantitative fluorescence microscopy with co-cultured neurons, here we show that α-synuclein fibrils efficiently transfer from donor to acceptor cells through tunneling nanotubes (TNTs) inside lysosomal vesicles. Following transfer through TNTs, α-synuclein fibrils are able to seed soluble α-synuclein aggregation in the cytosol of acceptor cells. We propose that donor cells overloaded with α-synuclein aggregates in lysosomes dispose of this material by hijacking TNT-mediated intercellular trafficking. Our findings thus reveal a possible novel role of TNTs and lysosomes in the progression of synucleinopathies. © 2016 The Authors.

  16. Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases.

    Science.gov (United States)

    Kline, Rachel A; Kaifer, Kevin A; Osman, Erkan Y; Carella, Francesco; Tiberi, Ariana; Ross, Jolill; Pennetta, Giuseppa; Lorson, Christian L; Murray, Lyndsay M

    2017-03-01

    The term "motor neuron disease" encompasses a spectrum of disorders in which motor neurons are the primary pathological target. However, in both patients and animal models of these diseases, not all motor neurons are equally vulnerable, in that while some motor neurons are lost very early in disease, others remain comparatively intact, even at late stages. This creates a valuable system to investigate the factors that regulate motor neuron vulnerability. In this study, we aim to use this experimental paradigm to identify potential transcriptional modifiers. We have compared the transcriptome of motor neurons from healthy wild-type mice, which are differentially vulnerable in the childhood motor neuron disease Spinal Muscular Atrophy (SMA), and have identified 910 transcriptional changes. We have compared this data set with published microarray data sets on other differentially vulnerable motor neurons. These neurons were differentially vulnerable in the adult onset motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but the screen was performed on the equivalent population of neurons from neurologically normal human, rat and mouse. This cross species comparison has generated a refined list of differentially expressed genes, including CELF5, Col5a2, PGEMN1, SNCA, Stmn1 and HOXa5, alongside a further enrichment for synaptic and axonal transcripts. As an in vivo validation, we demonstrate that the manipulation of a significant number of these transcripts can modify the neurodegenerative phenotype observed in a Drosophila line carrying an ALS causing mutation. Finally, we demonstrate that vector-mediated expression of alpha-synuclein (SNCA), a transcript decreased in selectively vulnerable motor neurons in all four screens, can extend life span, increase weight and decrease neuromuscular junction pathology in a mouse model of SMA. In summary, we have combined multiple data sets to identify transcripts, which are strong candidates for being phenotypic modifiers

  17. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport

    Science.gov (United States)

    Freundt, Eric C.; Maynard, Nate; Clancy, Eileen K.; Roy, Shyamali; Bousset, Luc; Sourigues, Yannick; Covert, Markus; Melki, Ronald; Kirkegaard, Karla; Brahic, Michel

    2012-01-01

    Objective The lesions of Parkinson's disease spread through the brain in a characteristic pattern that corresponds to axonal projections. Previous observations suggest that misfolded α-synuclein could behave as a prion, moving from neuron to neuron and causing endogenous α-synuclein to misfold. Here, we characterized and quantified the axonal transport of α-synuclein fibrils and showed that fibrils could be transferred from axons to second-order neurons following anterograde transport. Methods We grew primary cortical mouse neurons in microfluidic devices to separate soma from axonal projections in fluidically isolated microenvironments. We used live-cell imaging and immunofluorescence to characterize the transport of fluorescent α-synuclein fibrils and their transfer to second-order neurons. Results Fibrillar α-synuclein was internalized by primary neurons and transported in axons with kinetics consistent with slow component-b of axonal transport (fast axonal transport with saltatory movement). Fibrillar α-synuclein was readily observed in the cell bodies of second-order neurons following anterograde axonal transport. Axon-to-soma transfer appeared not to require synaptic contacts. Interpretation These results support the hypothesis that the progression of Parkinson's disease can be caused by neuron-to-neuron spread of α-synuclein aggregates and that the anatomical pattern of progression of lesions between axonally connected areas results from the axonal transport of such aggregates. That the transfer did not appear to be transsynaptic gives hope that α-synuclein fibrils could be intercepted by drugs during the extra-cellular phase of their journey. PMID:23109146

  18. Formation of covalent di-tyrosine dimers in recombinant α-synuclein

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, A; Pedersen, MN; Peterson, H

    2015-01-01

    in standard recombinant protein preparations, induced without extrinsic oxidative or nitrative agents. The dimers exhibit no secondary structure but advanced SAXS studies reveal an increased structural definition, resulting in a more hydrophobic micro-environment than the highly disordered monomer......Parkinson's disease is associated with fibril deposition in the diseased brain. Misfolding events of the intrinsically disordered synaptic protein α-synuclein are suggested to lead to the formation of transient oligomeric and cytotoxic species. The etiology of Parkinson's disease is further...

  19. Investigation of intramolecular dynamics and conformations of α-, β- and γ-synuclein.

    Directory of Open Access Journals (Sweden)

    Vanessa C Ducas

    Full Text Available The synucleins are a family of natively unstructured proteins consisting of α-, β-, and γ-synuclein which are primarily expressed in neurons. They have been linked to a wide variety of pathologies, including neurological disorders, such as Parkinson's disease (α-synuclein and dementia with Lewy bodies (α- and β-synuclein, as well as various types of cancers (γ-synuclein. Self-association is a key pathological feature of many of these disorders, with α-synuclein having the highest propensity to form aggregates, while β-synuclein is the least prone. Here, we used a combination of fluorescence correlation spectroscopy and single molecule Förster resonance energy transfer to compare the intrinsic dynamics of different regions of all three synuclein proteins to investigate any correlation with putative functional or dysfunctional interactions. Despite a relatively high degree of sequence homology, we find that individual regions sample a broad range of diffusion coefficients, differing by almost a factor of four. At low pH, a condition that accelerates aggregation of α-synuclein, on average smaller diffusion coefficients are measured, supporting a hypothesis that slower intrachain dynamics may be correlated with self-association. Moreover, there is a surprising inverse correlation between dynamics and bulkiness of the segments. Aside from this observation, we could not discern any clear relationship between the physico-chemical properties of the constructs and their intrinsic dynamics. This work suggests that while protein dynamics may play a role in modulating self-association or interactions with other binding partners, other factors, particularly the local cellular environment, may be more important.

  20. Triptolide Promotes the Clearance of α-Synuclein by Enhancing Autophagy in Neuronal Cells.

    Science.gov (United States)

    Hu, Guanzheng; Gong, Xiaoli; Wang, Le; Liu, Mengru; Liu, Yang; Fu, Xia; Wang, Wei; Zhang, Ting; Wang, Xiaomin

    2017-04-01

    Parkinson's disease (PD) is an aging-associated neurodegenerative disease with a characteristic feature of α-synuclein accumulation. Point mutations (A53T, A30P) that increase the aggregation propensity of α-synuclein result in familial early onset PD. The abnormal metabolism of α-synuclein results in aberrant level changes of α-synuclein in PD. In pathological conditions, α-synuclein is degraded mainly by the autophagy-lysosome pathway. Triptolide (T10) is a monomeric compound isolated from a traditional Chinese herb. Our group demonstrated for the first time that T10 possesses potent neuroprotective properties both in vitro and in vivo PD models. In the present study, we reported T10 as a potent autophagy inducer in neuronal cells, which helped to promote the clearance of various forms of α-synuclein in neuronal cells. We transfected neuronal cells with A53T mutant (A53T) or wild-type (WT) α-synuclein plasmids and found T10 attenuated the cytotoxicity induced by pathogenic A53T α-synuclein overexpression. We observed that T10 significantly reduced both A53T and WT α-synuclein level in neuronal cell line, as well as in primary cultured cortical neurons. Excluding the changes of syntheses, secretion, and aggregation of α-synuclein, we further added autophagy inhibitor or proteasome inhibitor with T10, and we noticed that T10 promoted the clearance of α-synuclein mainly by the autophagic pathway. Lastly, we observed increased autophagy marker LC3-II expression and autophagosomes by GFP-LC3-II accumulation and ultrastructural characterization. However, the lysosome activity and cell viability were not modulated by T10. Our study revealed that T10 could induce autophagy and promote the clearance of both WT and A53T α-synuclein in neurons. These results provide evidence of T10 as a promising mean to treat PD and other neurodegenerative diseases by reducing pathogenic proteins in neurons.

  1. Demonstration of specific binding sites for 3H-RRR-alpha-tocopherol on human erythrocytes

    International Nuclear Information System (INIS)

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for 3 H-RRR-alpha-tocopherol ( 3 H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for 3 H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for 3 H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane

  2. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of α-synuclein in midbrain dopamine neurons

    DEFF Research Database (Denmark)

    Decressac, M; Mattsson, Bente; Lundblad, M

    2012-01-01

    -synuclein, we have now been able to achieve increased levels of α-synuclein in the transduced midbrain dopamine neurons sufficient to induce profound deficits in motor function, accompanied by reduced expression of proteins involved in dopamine neurotransmission and a time-dependent loss of nigral dopamine......Parkinson's disease (PD) is characterised by the progressive loss of nigral dopamine neurons and the presence of synucleinopathy. Overexpression of α-synuclein in vivo using viral vectors has opened interesting possibilities to model PD-like pathology in rodents. However, the attempts made so far...... have failed to show a consistent behavioural phenotype and pronounced dopamine neurodegeneration. Using a more efficient adeno-associated viral (AAV) vector construct, which includes a WPRE enhancer element and uses the neuron-specific synapsin-1 promoter to drive the expression of human wild-type α...

  3. Conformational Ensembles of α-Synuclein Derived Peptide with Different Osmolytes from Temperature Replica Exchange Sampling

    Directory of Open Access Journals (Sweden)

    Salma Jamal

    2017-12-01

    Full Text Available Intrinsically disordered proteins (IDP are a class of proteins that do not have a stable three-dimensional structure and can adopt a range of conformations playing various vital functional role. Alpha-synuclein is one such IDP which can aggregate into toxic protofibrils and has been associated largely with Parkinson's disease (PD along with other neurodegenerative diseases. Osmolytes are small organic compounds that can alter the environment around the proteins by acting as denaturants or protectants for the proteins. In the present study, we have conducted a series of replica exchange molecular dynamics simulations to explore the role of osmolytes, urea which is a denaturant and TMAO (trimethylamine N-oxide, a protecting osmolyte, in aggregation and conformations of the synuclein peptide. We observed that both the osmolytes have significantly distinct impacts on the peptide and led to transitions of the conformations of the peptide from one state to other. Our findings highlighted that urea attenuated peptide aggregation and resulted in the formation of extended peptide structures whereas TMAO led to compact and folded forms of the peptide.

  4. Oxidative stress induces nuclear translocation of C-terminus of α-synuclein in dopaminergic cells

    International Nuclear Information System (INIS)

    Xu Shengli; Zhou Ming; Yu Shun; Cai Yanning; Zhang Alex; Ueda, Kenji; Chan Piu

    2006-01-01

    Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of α-synuclein. However, the role of α-synuclein under physiological and pathological conditions remains poorly understood. In the present study, we examined the possible interaction between the α-synuclein and oxidative stress. In a dopaminergic cell line MES23.5, we have found that the 200 μM H 2 O 2 treatment induced the translocation of α-synuclein from cytoplasm to nuclei at 30 min post-treatment. The immunoactivity of α-synuclein became highly intensive in the nuclei after 2 h treatment. The protein translocated to nucleus was a 10 kDa fragment of C-terminus region of α-synuclein, while full-length α-synuclein remained in cytoplasm. Thioflavine-S staining suggested that the C-terminal fragment in the nuclei has no β-sheet structures. Our present results indicated that 200 μM H 2 O 2 treatment induces the intranuclear accumulation of the C-terminal fragment of α-synuclein in dopaminergic neurons, whose role remains to be investigated

  5. Distribution of alpha3, alpha5 and alpha(v) integrin subunits in mature and immature human oocytes.

    Science.gov (United States)

    Capmany, G; Mart, M; Santaló, J; Bolton, V N

    1998-10-01

    The distribution of three integrin subunits, alpha3, alpha5 and alpha(v), in immature and mature human oocytes has been examined using immunofluorescence and confocal microscopy. The results demonstrate that both alpha5 and alpha(v) are present at the germinal vesicle stage, while alpha3 was only detected in oocytes after germinal vesicle breakdown, in metaphase I and II stage oocytes. The cortical concentration of integrin subunits alpha3 and alpha5 is consistent with their localization in the oolemma. In contrast, the homogeneous distribution of alpha(v) throughout the oocyte suggests the existence of cytoplasmic reservoirs of this protein in the oocyte.

  6. Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins

    DEFF Research Database (Denmark)

    Varkey, Jobin; Isas, Jose Mario; Mizuno, Naoko

    2010-01-01

    Synucleins and apolipoproteins have been implicated in a number of membrane and lipid trafficking events. Lipid interaction for both types of proteins is mediated by 11 amino acid repeats that form amphipathic helices. This similarity suggests that synucleins and apolipoproteins might have...... of amphipathic helices alone. Moreover, we frequently observed that a-synuclein caused membrane structures that had the appearance of nascent budding vesicles. The ability to function as a minimal machinery for vesicle budding agrees well with recent findings that a-synuclein plays a role in vesicle trafficking...

  7. Novel Dimer Compounds That Bind α-Synuclein Can Rescue Cell Growth in a Yeast Model Overexpressing α-Synuclein. A Possible Prevention Strategy for Parkinson's Disease.

    Science.gov (United States)

    Kakish, Joe; Allen, Kevin J H; Harkness, Troy A; Krol, Ed S; Lee, Jeremy S

    2016-12-21

    The misfolding of α-synuclein is a critical event in the death of dopaminergic neurons and the progression of Parkinson's disease. Previously, it was suggested that drugs, which bind to α-synuclein and form a loop structure between the N- and C-termini, tend to be neuroprotective, whereas others, which cause a more compact structure, tend to be neurotoxic. To improve the binding to α-synuclein, eight novel compounds were synthesized from a caffeine scaffold attached to (R,S)-1-aminoindan, (R,S)-nicotine, and metformin, and their binding to α-synuclein determined through nanopore analysis and isothermal titration calorimetry. The ability of the dimers to interact with α-synuclein in a cell system was assayed in a yeast model of PD which expresses an AS-GFP (α-synuclein-Green Fluorescent Protein) construct under the control of a galactose promoter. In 5 mM galactose this yeast strain will not grow and large cytoplasmic foci are observed by fluorescent microscopy. Two of the dimers, C 8 -6-I and C 8 -6-N, at a concentration of 0.1 μM allowed the yeast to grow normally in 5 mM galactose and the AS-GFP became localized to the periphery of the cell. Both dimers were superior when compared to the monomeric compounds. The presence of the dimers also caused the disappearance of preformed cytoplasmic foci. Nanopore analysis of C 8 -6-I and C 8 -6-N were consistent with simultaneous binding to both the N- and C-terminus of α-synuclein but the binding constants were only 10 5 M -1 .

  8. The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells.

    Directory of Open Access Journals (Sweden)

    Tianhong Pan

    Full Text Available The relatively high co-occurrence of Parkinson's disease (PD and melanoma has been established by a large number of epidemiological studies. However, a clear biological explanation for this finding is still lacking. Ultra-violet radiation (UVR-induced skin melanin synthesis is a defense mechanism against UVR-induced damage relevant to the initiation of melanoma, whereas, increased neuromelanin (NM, the melanin synthesized in dopaminergic neurons, may enhance the susceptibility to oxidative stress-induced neuronal injury relevant to PD. SNCA is a PD-causing gene coding for alpha-Synuclein (α-Syn that expresses not only in brain, but also in skin as well as in tumors, such as melanoma. The findings that α-Syn can interact with tyrosinase (TYR and inhibit tyrosine hydroxylase (TH, both of which are enzymes involved in the biosynthesis of melanin and dopamine (DA, led us to propose that α-Syn may participate in the regulation of melanin synthesis. In this study, by applying ultraviolet B (UVB light, a physiologically relevant stimulus of melanogenesis, we detected melanin synthesis in A375 and SK-MEL-28 melanoma cells and in SH-SY5Y and PC12 dopaminergic neuronal cells and determined effects of α-Syn on melanin synthesis. Our results showed that UVB light exposure increased melanin synthesis in all 4 cell lines. However, we found that α-Syn expression reduced UVB light-induced increase of melanin synthesis and that melanin content was lower when melanoma cells were expressed with α-Syn, indicating that α-Syn may have inhibitory effects on melanin synthesis in melanoma cells. Different from melanoma cells, the melanin content was higher in α-Syn-over-expressed dopaminergic neuronal SH-SY5Y and PC12 cells, cellular models of PD, than that in non-α-Syn-expressed control cells. We concluded that α-Syn could be one of the points responsible for the positive association between PD and melanoma via its differential roles in melanin synthesis in

  9. Long-lasting pathological consequences of overexpression-induced α-synuclein spreading in the rat brain.

    Science.gov (United States)

    Rusconi, Raffaella; Ulusoy, Ayse; Aboutalebi, Helia; Di Monte, Donato A

    2018-04-01

    Increased expression of α-synuclein can initiate its long-distance brain transfer, representing a potential mechanism for pathology spreading in age-related synucleinopathies, such as Parkinson's disease. In this study, the effects of overexpression-induced α-synuclein transfer were assessed over a 1-year period after injection of viral vectors carrying human α-synuclein DNA into the rat vagus nerve. This treatment causes targeted overexpression within neurons in the dorsal medulla oblongata and subsequent diffusion of the exogenous protein toward more rostral brain regions. Protein advancement and accumulation in pontine, midbrain, and forebrain areas were contingent upon continuous overexpression, because death of transduced medullary neurons resulted in cessation of spreading. Lack of sustained spreading did not prevent the development of long-lasting pathological changes. Particularly remarkable were findings in the locus coeruleus, a pontine nucleus with direct connections to the dorsal medulla oblongata and greatly affected by overexpression-induced transfer in this model. Data revealed progressive degeneration of catecholaminergic neurons that proceeded long beyond the time of spreading cessation. Neuronal pathology in the locus coeruleus was accompanied by pronounced microglial activation and, at later times, astrocytosis. Interestingly, microglial activation was also featured in another region reached by α-synuclein transfer, the central amygdala, even in the absence of frank neurodegeneration. Thus, overexpression-induced spreading, even if temporary, causes long-lasting pathological consequences in brain regions distant from the site of overexpression but anatomically connected to it. Neurodegeneration may be a consequence of severe protein burden, whereas even a milder α-synuclein accumulation in tissues affected by protein transfer could induce sustained microglial activation. © 2018 The Authors. Aging Cell published by the Anatomical Society and

  10. Piceatannol and Other Wine Stilbenes: A Pool of Inhibitors against α-Synuclein Aggregation and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Hamza Temsamani

    2016-06-01

    Full Text Available The aggregation of α-synuclein is one on the key pathogenic events in Parkinson’s disease. In the present study, we investigated the inhibitory capacities of stilbenes against α-synuclein aggregation and toxicity. Thioflavin T fluorescence, transmission electronic microscopy, and SDS-PAGE analysis were performed to investigate the inhibitory effects of three stilbenes against α-synuclein aggregation: piceatannol, ampelopsin A, and isohopeaphenol. Lipid vesicle permeabilization assays were performed to screen stilbenes for protection against membrane damage induced by aggregated α-synuclein. The viability of PC12 cells was examined using an MTT assay to assess the preventive effects of stilbenes against α-synuclein-induced toxicity. Piceatannol inhibited the formation of α synuclein fibrils and was able to destabilize preformed filaments. It seems to induce the formation of small soluble complexes protecting membranes against α-synuclein-induced damage. Finally, piceatannol protected cells against α-synuclein-induced toxicity. The oligomers tested (ampelopsin A and hopeaphenol were less active.

  11. α-Synuclein oligomers induced by docosahexaenoic acid affect membrane integrity.

    Directory of Open Access Journals (Sweden)

    Chiara Fecchio

    Full Text Available A key feature of Parkinson disease is the aggregation of α-synuclein and its intracellular deposition in fibrillar form. Increasing evidence suggests that the pathogenicity of α-synuclein is correlated with the activity of oligomers formed in the early stages of its aggregation process. Oligomers toxicity seems to be associated with both their ability to bind and affect the integrity of lipid membranes. Previously, we demonstrated that α-synuclein forms oligomeric species in the presence of docosahexaenoic acid and that these species are toxic to cells. Here we studied how interaction of these oligomers with membranes results in cell toxicity, using cellular membrane-mimetic and cell model systems. We found that α-synuclein oligomers are able to interact with large and small unilamellar negatively charged vesicles acquiring an increased amount of α-helical structure, which induces small molecules release. We explored the possibility that oligomers effects on membranes could be due to pore formation, to a detergent-like effect or to fibril growth on the membrane. Our biophysical and cellular findings are consistent with a model where α-synuclein oligomers are embedded into the lipid bilayer causing transient alteration of membrane permeability.

  12. α-Synuclein inclusions in the skin of Parkinson's disease and parkinsonism.

    Science.gov (United States)

    Rodríguez-Leyva, Ildefonso; Calderón-Garcidueñas, Ana Laura; Jiménez-Capdeville, María E; Rentería-Palomo, Ana Arely; Hernandez-Rodriguez, Héctor Gerardo; Valdés-Rodríguez, Rodrigo; Fuentes-Ahumada, Cornelia; Torres-Álvarez, Bertha; Sepúlveda-Saavedra, Julio; Soto-Domínguez, Adolfo; Santoyo, Martha E; Rodriguez-Moreno, José Ildefonso; Castanedo-Cázares, Juan Pablo

    2014-07-01

    The presence in the brain of α-synuclein containing Lewy neurites, or bodies, is the histological hallmark of Parkinson's disease (PD). The discovery of α-synuclein aggregates in nerve endings of the heart, digestive tract, and skin has lent support to the concept of PD as a systemic disease. Our goals were, first, to demonstrate the presence of α-synuclein inclusions in the skin and, second, to detect quantitative differences between patients with PD and atypical parkinsonism (AP). Skin biopsies were taken from 67 patients and 20 controls. The biopsies underwent immunohistochemistry (IHC) and immunofluorescence (IF) testing for α-synuclein, whereupon its presence was quantified as the percentage of positive cells. Patients were divided into those with PD and those with AP. AP patients included AP with neurodegenerative disease (proteinopathies) and secondary AP. Sixty-seven patients (34 with PD) and 20 controls were recruited. In the PD group, α-synuclein was detected in 58% of the cells in the spinous cell layer (SCL), 62% in the pilosebaceous unit (PSU), and 58% in the eccrine glands (EG). The AP-proteinopathies group showed 7%, 7%, and 0% expression of α-synuclein, respectively. No expression was found in the skin of the control group. The expression of α-synuclein in the skin was relatively high in the PD group, scarce in AP, and null for the individuals in the control group. While these findings require further confirmation, this minimally invasive technique may aid in the improvement of the accuracy of PD diagnoses.

  13. Amyloid formation and disaggregation of α-synuclein and its tandem repeat (α-TR)

    International Nuclear Information System (INIS)

    Bae, Song Yi; Kim, Seulgi; Hwang, Heejin; Kim, Hyun-Kyung; Yoon, Hyun C.; Kim, Jae Ho; Lee, SangYoon; Kim, T. Doohun

    2010-01-01

    Research highlights: → Formation of the α-synuclein amyloid fibrils by [BIMbF 3 Im]. → Disaggregation of amyloid fibrils by epigallocatechin gallate (EGCG) and baicalein. → Amyloid formation of α-synuclein tandem repeat (α-TR). -- Abstract: The aggregation of α-synuclein is clearly related to the pathogenesis of Parkinson's disease. Therefore, detailed understanding of the mechanism of fibril formation is highly valuable for the development of clinical treatment and also of the diagnostic tools. Here, we have investigated the interaction of α-synuclein with ionic liquids by using several biochemical techniques including Thioflavin T assays and transmission electron microscopy (TEM). Our data shows a rapid formation of α-synuclein amyloid fibrils was stimulated by 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BIMbF 3 Im], and these fibrils could be disaggregated by polyphenols such as epigallocatechin gallate (EGCG) and baicalein. Furthermore, the effect of [BIMbF 3 Im] on the α-synuclein tandem repeat (α-TR) in the aggregation process was studied.

  14. Ultrastructural studies of human and rabbit alpha-M-globulins.

    Science.gov (United States)

    Bloth, B; Chesebro, B; Svehag, S E

    1968-04-01

    Electron micrographs of isolated human alpha(2)M-molecules, obtained by the negative contrast technique, revealed morphologically homogenous structures resembling a graceful monogram of the two letters H and I. The modal values for the length and width of the alpha(2)M particles were 170 A and 100 A, respectively. Purified rabbit alphamacroglobulins contained about 80% alpha(1)M- and 20% alpha(2)M-globulins. The isolated rabbit alpha(1)M- and alpha(2)M-molecules were morphologically indistinguishable from one another and from human alpha(2)M-molecules. Preliminary immunoprecipitation studies demonstrated that the two rabbit alphaM-globulins were antigenically different. Sedimentation constant determinations gave s(20, w) values of 18.8 and 18.2 for rabbit alpha(1)M and alpha(2)M, respectively.

  15. Altered α-synuclein, parkin, and synphilin isoform levels in multiple system atrophy brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Rasmussen, Nadja Bredo

    2016-01-01

    Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease-specific transcript......Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease......-specific transcription patterns in frontal cortex in PD, dementia with Lewy bodies, and MSA, and thus may mediate the development of α-synucleinopathies. In this study, the differential expression of α-synuclein isoforms on transcriptional and translational levels was ascertained in MSA patients in comparison with PD......-synuclein in the brain. We report differential expression of α-synuclein, parkin, and synphilin-1 isoforms in multiple system atrophy (MSA) versus Parkinson's disease and normal control brains. We have focused on brain regions that are severely affected by α-synuclein pathology and neurodegeneration in MSA. The reported...

  16. Structural and dynamical insights into the membrane-bound α-synuclein.

    Directory of Open Access Journals (Sweden)

    Neha Jain

    Full Text Available Membrane-induced disorder-to-helix transition of α-synuclein, a presynaptic protein, has been implicated in a number of important neuronal functions as well as in the etiology of Parkinson's disease. In order to obtain structural insights of membrane-bound α-synuclein at the residue-specific resolution, we took advantage of the fact that the protein is devoid of tryptophan and incorporated single tryptophan at various residue positions along the sequence. These tryptophans were used as site-specific markers to characterize the structural and dynamical aspects of α-synuclein on the negatively charged small unilamellar lipid vesicles. An array of site-specific fluorescence readouts, such as the spectral-shift, quenching efficiency and anisotropy, allowed us to discern various features of the conformational rearrangements occurring at different locations of α-synuclein on the lipid membrane. In order to define the spatial localization of various regions of the protein near the membrane surface, we utilized a unique and sensitive indicator, namely, red-edge excitation shift (REES, which originates when a fluorophore is located in a highly ordered micro-environment. The extent of REES observed at different residue positions allowed us to directly identify the residues that are localized at the membrane-water interface comprising a thin (∼ 15 Å layer of motionally restrained water molecules and enabled us to construct a dynamic hydration map of the protein. The combination of site-specific fluorescence readouts allowed us to unravel the intriguing molecular details of α-synuclein on the lipid membrane in a direct model-free fashion. Additionally, the combination of methodologies described here are capable of distinguishing subtle but important structural alterations of α-synuclein bound to different negatively charged lipids with varied head-group chemistry. We believe that the structural modulations of α-synuclein on the membrane could

  17. Double-stranded DNA Stimulates the Fibrillation of alpha-Synuclein in vitro and is Associated with the Mature Fibrils: An Electron Microscopy Study

    NARCIS (Netherlands)

    Cherny, Dmitry; Hoyer, Wolfgang; Subramaniam, Vinod; Jovin, Thomas M.

    2004-01-01

    Filamentous aggregates formed by α-synuclein are a prominent and presumably key etiological factor in Parkinson's and other neurodegenerative diseases characterized by motor disorders. Numerous studies have demonstrated that various environmental and intracellular factors affect the fibrillation

  18. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson's disease.

    Science.gov (United States)

    Akhtar, Rizwan S; Licata, Joseph P; Luk, Kelvin C; Shaw, Leslie M; Trojanowski, John Q; Lee, Virginia M-Y

    2018-03-03

    Biomarkers for α-synuclein are needed for diagnosis and prognosis in Parkinson's disease (PD). Endogenous auto-antibodies to α-synuclein could serve as biomarkers for underlying synucleinopathy, but previous assessments of auto-antibodies have shown variability and inconsistent clinical correlations. We hypothesized that auto-antibodies to α-synuclein could be diagnostic for PD and explain its clinical heterogeneity. To test this hypothesis, we developed an enzyme-linked immunosorbent assay for measuring α-synuclein auto-antibodies in human samples. We evaluated 69 serum samples (16 healthy controls (HC) and 53 PD patients) and 145 CSF samples (52 HC and 93 PD patients) from our Institution. Both serum and CSF were available for 24 participants. Males had higher auto-antibody levels than females in both fluids. CSF auto-antibody levels were significantly higher in PD patients as compared to HC, whereas serum levels were not significantly different. CSF auto-antibody levels did not associate with amyloid-β 1-42 , total tau, or phosphorylated tau. CSF auto-antibody levels correlated with performance on the Montreal Cognitive Assessment, even when controlled for CSF amyloidβ 1-42 . CSF hemoglobin levels, as a proxy for contamination of CSF by blood during lumbar puncture, did not influence these observations. Using recombinant α-synuclein with N- and C-terminal truncations, we found that CSF auto-antibodies target amino acids 100 through 120 of α-synuclein. We conclude that endogenous CSF auto-antibodies are significantly higher in PD patients as compared to HC, suggesting that they could indicate the presence of underlying synucleinopathy. These auto-antibodies associate with poor cognition, independently of CSF amyloidβ 1-42 ., and target a select C-terminal region of α-synuclein. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Viologen-Phosphorus Dendrimers Inhibit α-Synuclein Fibrillation.

    Science.gov (United States)

    Milowska, Katarzyna; Grochowina, Justyna; Katir, Nadia; El Kadib, Abdelkrim; Majoral, Jean-Pierre; Bryszewska, Maria; Gabryelak, Teresa

    2013-03-04

    Inhibition of α-synuclein (ASN) fibril formation is a potential therapeutic strategy in Parkinson's disease and other synucleinopathies. The aim of this study was to examine the role of viologen-phosphorus dendrimers in the α-synuclein fibrillation process and to assess the structural changes in α-synuclein under the influence of dendrimers. ASN interactions with phosphonate and pegylated surface-reactive viologen-phosphorus dendrimers were examined by measuring the zeta potential, which allowed determining the number of dendrimer molecules that bind to the ASN molecule. The fibrillation kinetics and the structural changes were examined using ThT fluorescence and CD spectroscopy. Depending on the concentration of the used dendrimer and the nature of the reactive groups located on the surface, ASN fibrillation kinetics can be significantly reduced, and even, in the specific case of phosphonate dendrimers, the fibrillation can be totally inhibited at low concentrations. The presented results indicate that viologen-phosphorus dendrimers are able to inhibit ASN fibril formation and may be used as fibrillar regulating agents in neurodegenerative disorders.

  20. MIDBRAIN CATECHOLAMINERGIC NEURONS CO-EXPRESS α-SYNUCLEIN AND TAU IN PROGRESSIVE SUPRANUCLEAR PALSY

    Directory of Open Access Journals (Sweden)

    María Elena eErro Aguirre

    2015-03-01

    Full Text Available Objective: To analyze the frequency and distribution of α-synuclein deposits in progressive supranuclear palsy (PSP.Methods: The brains of 25 cases of pathologically confirmed PSP were evaluated with immunohistochemistry for α-synuclein and tau. Multiple immunofluorescent stains were applied to analyze the expression of tau and α-synuclein aggregates in catecholaminergic neurons. Patients’ clinical symptoms were retrospectively recorded. Results: Deposits α-synuclein in the form of typical Lewy bodies (LBs were only found in two PSP cases (8% that fulfilled the clinical subtype of PSP known as Richardson’s syndrome (RS. LBs were present in the locus ceruleus, substantia nigra pars compacta, basal forebrain, amygdala and cingulated cortex in a distribution mimicking that of Parkinson’s disease. Triple-immunolabeling revealed co-expression of α-synuclein and tau proteins in some tyrosine hydroxilase-positive neurons of the locus ceruleus and substantia nigra pars compacta.Conclusions: There is no apparent clinical correlation between the presence of LBs in PSP. Tau protein co-aggregate with α-synuclein in catecholaminergic neurons of PSP brains suggesting a synergistic interaction between the two proteins. This is in keeping with the current view of neurodegenerative disorders as ‘misfolded protein diseases’.

  1. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson's disease.

    Science.gov (United States)

    Guerrero, Erika; Vasudevaraju, P; Hegde, Muralidhar L; Britton, G B; Rao, K S

    2013-04-01

    The toxicity of α-synuclein in the neuropathology of Parkinson's disease which includes its hallmark aggregation has been studied scrupulously in the last decade. Although little is known regarding the normal functions of α-synuclein, its association with membrane phospholipids suggests its potential role in signaling pathways. Following extensive evidences for its nuclear localization, we and others recently demonstrated DNA binding activity of α-synuclein that modulates its conformation as well as aggregation properties. Furthermore, we also underscored the similarities among various amyloidogenic proteins involved in neurodegenerative diseases including amyloid beta peptides and tau. Our more recent studies show that α-synuclein is glycated and glycosylated both in vitro and in neurons, significantly affecting its folding, oligomeric, and DNA binding properties. Glycated α-synuclein causes increased genome damage both via its direct interaction with DNA and by increased generation of reactive oxygen species as glycation byproduct. In this review, we discuss the mechanisms of glycation and other posttranslational modifications of α-synuclein, including phosphorylation and nitration, and their role in neuronal death in Parkinson's disease.

  2. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    Science.gov (United States)

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders.

  3. Threonine 53 in α-synuclein is conserved in long-living non-primate animals

    DEFF Research Database (Denmark)

    Larsen, Knud; Hedegaard, Claus; Bertelsen, Mads Frost

    2009-01-01

    α-Synuclein is the main constituent of Lewy bodies in familial and sporadic cases of Parkinson's disease (PD). Autosomal dominant point mutations, gene duplications or triplications in the α-synuclein (SNCA) gene cause hereditary forms of PD. One of the α-synuclein point mutations, Ala53Thr, is a...... that 53Thr is not a molecular adaptation for long-living animals to minimize the risk of developing PD...

  4. Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity.

    Science.gov (United States)

    Haskell-Luevano, C; Sawyer, T K; Hendrata, S; North, C; Panahinia, L; Stum, M; Staples, D J; Castrucci, A M; Hadley, M F; Hruby, V J

    1996-01-01

    Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity: PEPTIDES 17(6) 995-1002, 1996.-Systematic analysis of fragment derivatives of the superpotent alpha-MSH analogue. Ac-Ser.Tyr-Ser-Nle4-Glu- His-DPhe7-Arg-Trp-Gly-Lys-Pro-Val-NH2(NDP-MSH), led to the discovery of tripeptide agonists possessing prolonged bioactivity in the frog skin assay. Of particular significance to this discovery was Ac-DPhe-Arg-DTrp-NH2, which was the most potent tripeptide in this series exhibiting sustained melanotropic activity. Different pharmacophore models appear to exist that are dependent on the substructure and stereochemistry of the MSH(6-9) "active site." The tripeptides Ac-DPhe-Arg-Trp-NH2, Ac-DPhe-Arg-DTrp-NH2, and Ac-DPhe-DArg-Trp-NH2 stereo-chemical combinations require only Phe7-Xaa8-Trp9, whereas Ac-DPhe-DArg-DTrp-NH2, Ac-Phe-Arg-DTrp-NH2, and Ac-Phe-Arg-Trp-NH2 additionally require His4 for minimal biological activity. Ac-DPhe-Arg-DTrp-NH2 represents a novel prototype lead for the development of MSH-based peptidomimetic agonists.

  5. Mesenchymal Stem Cells Inhibit Transmission of α-Synuclein by Modulating Clathrin-Mediated Endocytosis in a Parkinsonian Model

    Directory of Open Access Journals (Sweden)

    Se Hee Oh

    2016-02-01

    Full Text Available Ample evidence suggests that α-synuclein is released from cells and propagated from one area of the brain to others via cell-to-cell transmission. In terms of their prion-like behavior, α-synuclein propagation plays key roles in the pathogenesis and progression of α-synucleinopathies. Using α-synuclein-enriched models, we show that mesenchymal stem cells (MSCs inhibited α-synuclein transmission by blocking the clathrin-mediated endocytosis of extracellular α-synuclein via modulation of the interaction with N-methyl-D-aspartate receptors, which led to a prosurvival effect on cortical and dopaminergic neurons with functional improvement of motor deficits in α-synuclein-enriched models. Furthermore, we identify that galectin-1, a soluble factor derived from MSCs, played an important role in the transmission control of aggregated α-synuclein in these models. The present data indicated that MSCs exert neuroprotective properties through inhibition of extracellular α-synuclein transmission, suggesting that the property of MSCs may act as a disease-modifying therapy in subjects with α-synucleinopathies.

  6. Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Vestergaard, Bente

    2015-01-01

    composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model...... of cholesterol for mediating interactions between physiologically relevant membranes and α-synuclein....

  7. Human fat cell alpha-2 adrenoceptors. I. Functional exploration and pharmacological definition with selected alpha-2 agonists and antagonists

    International Nuclear Information System (INIS)

    Galitzky, J.; Mauriege, P.; Berlan, M.; Lafontan, M.

    1989-01-01

    This study was undertaken to investigate more fully the pharmacological characteristics of the human fat cell alpha-2 adrenoceptor. Biological assays were performed on intact isolated fat cells while radioligand binding studies were carried out with [ 3 H]yohimbine in membranes. These pharmacological studies brought: (1) a critical definition of the limits of the experimental conditions required for the exploration of alpha-2 adrenergic responsiveness on human fat cells and membranes; (2) an improvement in the pharmacological definition of the human fat cell postsynaptic alpha-2 adrenoceptor. Among alpha-2 agonists, UK-14,304 was the most potent and the relative order of potency was: UK-14,304 greater than p-aminoclonidine greater than clonidine = B-HT 920 greater than rilmenidine. For alpha-2 antagonists, the potency order was: yohimbine greater than idazoxan greater than SK ampersand F-86,466 much greater than benextramine; (3) a description of the impact of benextramine (irreversible alpha-1/alpha-2 antagonist) on human fat cell alpha-2 adrenergic receptors and on human fat cell function; the drug inactivates the alpha-2 adrenergic receptors with a minor impact on beta adrenergic receptors and without noticeable alterations of fat cell function as assessed by preservation of beta adrenergic and Al-adenosine receptor-mediated lipolytic responses; and (4) a definition of the relationship existing between alpha-2 adrenergic receptor occupancy, inhibition of adenylate cyclase activity and antilipolysis with full and partial agonists. The existence of a receptor reserve must be taken into account when evaluating alpha-2 adrenergic receptor distribution and regulation of human fat cells

  8. Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells.

    Science.gov (United States)

    Koh, Phil-Ok

    2017-09-01

    α-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined α-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in α-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased α-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that α-synuclein regulates neuronal survival, and low levels of α-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in α-synuclein and consequently causes serious brain damage.

  9. Phosphorylated α-Synuclein-Copper Complex Formation in the Pathogenesis of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Juan Antonio Castillo-Gonzalez

    2017-01-01

    Full Text Available Parkinson’s disease is the second most important neurodegenerative disorder worldwide. It is characterized by the presence of Lewy bodies, which are mainly composed of α-synuclein and ubiquitin-bound proteins. Both the ubiquitin proteasome system (UPS and autophagy-lysosomal pathway (ALS are altered in Parkinson’s disease, leading to aggregation of proteins, particularly α-synuclein. Interestingly, it has been observed that copper promotes the protein aggregation process. Additionally, phosphorylation of α-synuclein along with copper also affects the protein aggregation process. The interrelation among α-synuclein phosphorylation and its capability to interact with copper, with the subsequent disruption of the protein degradation systems in the neurodegenerative process of Parkinson’s disease, will be analyzed in detail in this review.

  10. Structural variation of alpha-synuclein with temperature by a coarse-grained approach with knowledge-based interactions

    Directory of Open Access Journals (Sweden)

    Peter Mirau

    2015-09-01

    Full Text Available Despite enormous efforts, our understanding the structure and dynamics of α-synuclein (ASN, a disordered protein (that plays a key role in neurodegenerative disease is far from complete. In order to better understand sequence-structure-property relationships in α-SYNUCLEIN we have developed a coarse-grained model using knowledge-based residue-residue interactions and used it to study the structure of free ASN as a function of temperature (T with a large-scale Monte Carlo simulation. Snapshots of the simulation and contour contact maps show changes in structure formation due to self-assembly as a function of temperature. Variations in the residue mobility profiles reveal clear distinction among three segments along the protein sequence. The N-terminal (1-60 and C-terminal (96-140 regions contain the least mobile residues, which are separated by the higher mobility non-amyloid component (NAC (61-95. Our analysis of the intra-protein contact profile shows a higher frequency of residue aggregation (clumping in the N-terminal region relative to that in the C-terminal region, with little or no aggregation in the NAC region. The radius of gyration (Rg of ASN decays monotonically with decreasing the temperature, consistent with the finding of Allison et al. (JACS, 2009. Our analysis of the structure function provides an insight into the mass (N distribution of ASN, and the dimensionality (D of the structure as a function of temperature. We find that the globular structure with D ≈ 3 at low T, a random coil, D ≈ 2 at high T and in between (2 ≤ D ≤ 3 at the intermediate temperatures. The magnitudes of D are in agreement with experimental estimates (J. Biological Chem 2002.

  11. A New Glucocerebrosidase Chaperone Reduces α-Synuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism.

    Science.gov (United States)

    Aflaki, Elma; Borger, Daniel K; Moaven, Nima; Stubblefield, Barbara K; Rogers, Steven A; Patnaik, Samarjit; Schoenen, Frank J; Westbroek, Wendy; Zheng, Wei; Sullivan, Patricia; Fujiwara, Hideji; Sidhu, Rohini; Khaliq, Zayd M; Lopez, Grisel J; Goldstein, David S; Ory, Daniel S; Marugan, Juan; Sidransky, Ellen

    2016-07-13

    Among the known genetic risk factors for Parkinson disease, mutations in GBA1, the gene responsible for the lysosomal disorder Gaucher disease, are the most common. This genetic link has directed attention to the role of the lysosome in the pathogenesis of parkinsonism. To study how glucocerebrosidase impacts parkinsonism and to evaluate new therapeutics, we generated induced human pluripotent stem cells from four patients with Type 1 (non-neuronopathic) Gaucher disease, two with and two without parkinsonism, and one patient with Type 2 (acute neuronopathic) Gaucher disease, and differentiated them into macrophages and dopaminergic neurons. These cells exhibited decreased glucocerebrosidase activity and stored the glycolipid substrates glucosylceramide and glucosylsphingosine, demonstrating their similarity to patients with Gaucher disease. Dopaminergic neurons from patients with Type 2 and Type 1 Gaucher disease with parkinsonism had reduced dopamine storage and dopamine transporter reuptake. Levels of α-synuclein, a protein present as aggregates in Parkinson disease and related synucleinopathies, were selectively elevated in neurons from the patients with parkinsonism or Type 2 Gaucher disease. The cells were then treated with NCGC607, a small-molecule noninhibitory chaperone of glucocerebrosidase identified by high-throughput screening and medicinal chemistry structure optimization. This compound successfully chaperoned the mutant enzyme, restored glucocerebrosidase activity and protein levels, and reduced glycolipid storage in both iPSC-derived macrophages and dopaminergic neurons, indicating its potential for treating neuronopathic Gaucher disease. In addition, NCGC607 reduced α-synuclein levels in dopaminergic neurons from the patients with parkinsonism, suggesting that noninhibitory small-molecule chaperones of glucocerebrosidase may prove useful for the treatment of Parkinson disease. Because GBA1 mutations are the most common genetic risk factor for

  12. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.

    Science.gov (United States)

    Rudd, M Katharine; Mays, Robert W; Schwartz, Stuart; Willard, Huntington F

    2003-11-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.

  13. The different faces of the p. A53T alpha-synuclein mutation: A screening of Greek patients with parkinsonism and/or dementia.

    Science.gov (United States)

    Breza, Marianthi; Koutsis, Georgios; Karadima, Georgia; Potagas, Constantin; Kartanou, Chrisoula; Papageorgiou, Sokratis G; Paraskevas, George P; Kapaki, Elisabeth; Stefanis, Leonidas; Panas, Marios

    2018-04-13

    The p. A53T mutation in the alpha-synuclein (SNCA) gene is a rare cause of autosomal dominant Parkinson's disease (PD). Although generally rare, it is particularly common in the Greek population due to a founder effect. A53T-positive PD patients often develop dementia during disease course and may very rarely present with dementia. We screened for the p. A53T SNCA mutation a total of 347 cases of Greek origin with parkinsonism and/or dementia, collected over 15 years at the Neurogenetics Unit, Eginition Hospital, University of Athens. Cases were classified into: "pure parkinsonism", "pure dementia" and "parkinsonism plus dementia". In total, 4 p. A53T SNCA mutation carriers were identified. All had autosomal dominant family history and early onset. Screening of the "pure parkinsonism" category revealed 2 cases with typical PD. The other two mutation carriers were identified in the "parkinsonism plus dementia" category. One had a diagnosis of PD dementia and the other of behavioral variant frontotemporal dementia. Screening of patients with "pure dementia" failed to identify any further A53T-positive cases. Our results confirm that the p. A53T SNCA mutation is relatively common in Greek patients with PD or PD plus dementia, particularly in cases with early onset and/or autosomal dominant family history. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. α-Synuclein oligomers and clinical implications for Parkinson disease

    Science.gov (United States)

    Kalia, Lorraine V.; Kalia, Suneil K.; McLean, Pamela J.; Lozano, Andres M.; Lang, Anthony E.

    2012-01-01

    Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long-held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent suggesting another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α-synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α-synuclein also forms oligomeric species with certain conformations being toxic to cells. The mechanisms by which these α-synuclein oligomers cause cell death are being actively investigated as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α-synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications. PMID:23225525

  15. FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70.

    Science.gov (United States)

    Bao, Xiu-Qi; Wang, Xiao-Liang; Zhang, Dan

    2017-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The pathology of PD is caused by progressive degeneration of dopaminergic neurons and is characterized by the presence of intracellular inclusions known as Lewy bodies, composed mainly of α-synuclein. Heat shock proteins (HSPs) are crucial in protein quality control in cells. HSP70 in particular prevents the aggregation of protein aggregation, such as α-synuclein, providing a degree of protection against PD. The compound FLZ has been shown to protect several PD models in previous studies and was reported as an HSP inducer to protect against MPP + -induced neurotoxicity, but the mechanism remains unclear. In this study, we investigated the effects of FLZ-mediated HSP70 induction in α-synuclein transgenic mice and cells. FLZ treatment alleviated motor dysfunction and improved dopaminergic neuronal function in α-synuclein transgenic mice. HSP70 protein expression and transcriptional activity were increased by FLZ treatment, eliciting a reduction of α-synuclein aggregation and associated toxicity. The inhibition of HSP70 by quercetin or HSP70 siRNA markedly attenuated the neuroprotective effects of FLZ, confirming that FLZ exerted a neuroprotective effect through HSP70. We revealed that FLZ directly bound to and increased the expression of Hip, a cochaperone of HSP70, which in turn enhanced HSP70 activity. In conclusion, we defined a critical role for HSP70 and its cochaperones activated by FLZ in preventing neurodegeneration and proposed that targeting the HSP70 system may represent a potential therapy for α-synuclein-related diseases, such as PD.

  16. Education or business? - exhibition of human corpses

    Directory of Open Access Journals (Sweden)

    Grzegorz Wróbel

    2017-09-01

    Full Text Available Exhibition "BODY WORLDS" which are presented exhibits of human remains are presented all over the world and are a major problem for the modern man, as presented on the preparations of the human not only serve scientific research, are not transferred to the medical schools to educate future doctors, but they were made available to the general public in the form of commercial and ambiguous. The aim of this study was to assess the ethical commercialization of human corpses "BODY WORLDS" exhibitions. Individual approach to the problems presented the dignity and value of human remains after death, of course, strongly related to the professed worldview. In the exhibits can be seen in both the scientific interest anatomical structures, as well as desecrated human remains or beautiful by its functional perfection of the body, understood also in terms of art. The question of ethics determines the right to decide for themselves, on the other hand, allows you to protect bodily integrity even after death. "BODY WORLDS" exhibition goes for the moral and ethical boundaries. In terms of people Gunther von Hagens for plastination of human remains which became a very profitable business, and its current activities defined as "plastination business" should be firmly said about the lack of moral principles.

  17. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.

    Science.gov (United States)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-12-02

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson's disease associated mutations A53T and E46K.

    Directory of Open Access Journals (Sweden)

    Luisel R Lemkau

    Full Text Available Parkinson's disease (PD is pathologically characterized by the presence of Lewy bodies (LBs in dopaminergic neurons of the substantia nigra. These intracellular inclusions are largely composed of misfolded α-synuclein (AS, a neuronal protein that is abundant in the vertebrate brain. Point mutations in AS are associated with rare, early-onset forms of PD, although aggregation of the wild-type (WT protein is observed in the more common sporadic forms of the disease. Here, we employed multidimensional solid-state NMR experiments to assess A53T and E46K mutant fibrils, in comparison to our recent description of WT AS fibrils. We made de novo chemical shift assignments for the mutants, and used these chemical shifts to empirically determine secondary structures. We observe significant perturbations in secondary structure throughout the fibril core for the E46K fibril, while the A53T fibril exhibits more localized perturbations near the mutation site. Overall, these results demonstrate that the secondary structure of A53T has some small differences from the WT and the secondary structure of E46K has significant differences, which may alter the overall structural arrangement of the fibrils.

  19. Characterization of the human pH- and PKA-activated ClC-2G(2 alpha) Cl- channel.

    Science.gov (United States)

    Sherry, A M; Stroffekova, K; Knapp, L M; Kupert, E Y; Cuppoletti, J; Malinowska, D H

    1997-08-01

    A ClC-2G(2 alpha) Cl- channel was identified to be present in human lung and stomach, and a partial cDNA for this Cl- channel was cloned from a human fetal lung library. A full-length expressible human ClC-2G(2 alpha) cDNA was constructed by ligation of mutagenized expressible rabbit ClC-2G(2 alpha) cDNA with the human lung ClC-2G(2 alpha) cDNA, expressed in oocytes, and characterized at the single-channel level. Adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) treatment increased the probability of opening of the channel (Po). After PKA activation, the channel exhibited a linear (r = 0.99) current-voltage curve with a slope conductance of 22.1 +/- 0.8 pS in symmetric 800 mM tetraethylammonium chloride (TEACl; pH 7.4). Under fivefold gradient conditions of TEACl, a reversal potential of +21.5 +/- 2.8 mV was measured demonstrating anion-to-cation discrimination. As previously demonstrated for the rabbit ClC-2G(2 alpha) Cl- channel, the human analog, hClC-2G(2 alpha), was active at pH 7.4 as well as when the pH of the extracellular face of the channel (trans side of the bilayer; pHtrans) was asymmetrically reduced to pH 3.0. The extent of PKA activation was dependent on pHtrans. With PKA treatment, Po increased fourfold with a pHtrans of 7.4 and eightfold with a pHtrans of 3.0. Effects of sequential PKA addition followed by pHtrans reduction on the same channel suggested that the PKA- and pH-dependent increases in channel Po were separable and cumulative. Northern analysis showed ClC-2G(2 alpha) mRNA to be present in human adult and fetal lung and adult stomach, and quantitative reverse transcriptase-polymerase chain reaction showed this channel to be present in the adult human lung and stomach at about one-half the level found in fetal lung. The findings of the present study suggest that the ClC-2G(2 alpha) Cl- channel may play an important role in Cl- transport in the fetal and adult human lung.

  20. New roles of glycosaminoglycans in α-synuclein aggregation in a cellular model of Parkinson disease.

    Directory of Open Access Journals (Sweden)

    Sonia Lehri-Boufala

    Full Text Available The causes of Parkinson disease (PD remain mysterious, although some evidence supports mitochondrial dysfunctions and α-synuclein accumulation in Lewy bodies as major events. The abnormal accumulation of α-synuclein has been associated with a deficiency in the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Cathepsin D (cathD, the major lysosomal protease responsible of α-synuclein degradation was described to be up-regulated in PD model. As glycosaminoglycans (GAGs regulate cathD activity, and have been recently suggested to participate in PD physiopathology, we investigated their role in α-synuclein accumulation by their intracellular regulation of cathD activity. In a classical neuroblastoma cell model of PD induced by MPP+, the genetic expression of GAGs-biosynthetic enzymes was modified, leading to an increase of GAGs amounts whereas intracellular level of α-synuclein increased. The absence of sulfated GAGs increased intracellular cathD activity and limited α-synuclein accumulation. GAGs effects on cathD further suggested that specific sequences or sulfation patterns could be responsible for this regulation. The present study identifies, for the first time, GAGs as new regulators of the lysosome degradation pathway, regulating cathD activity and affecting two main biological processes, α-synuclein aggregation and apoptosis. Finally, this opens new insights into intracellular GAGs functions and new fields of investigation for glycobiological approaches in PD and neurobiology.

  1. The influence of N-terminal acetylation on micelle-induced conformational changes and aggregation of α-Synuclein.

    Directory of Open Access Journals (Sweden)

    David Ruzafa

    Full Text Available The biological function of α-Synuclein has been related to binding to lipids and membranes but these interactions can also mediate α-Synuclein aggregation, which is associated to Parkinson's disease and other neuropathologies. In brain tissue α-Synuclein is constitutively N-acetylated, a modification that plays an important role in its conformational propensity, lipid and membrane binding, and aggregation propensity. We studied the interactions of the lipid-mimetic SDS with N-acetylated and non-acetylated α-Synuclein, as well as their early-onset Parkinson's disease variants A30P, E46K and A53T. At low SDS/protein ratios α-Synuclein forms oligomeric complexes with SDS micelles with relatively low α-helical structure. These micellar oligomers can efficiently nucleate aggregation of monomeric α-Synuclein, with successive formation of oligomers, protofibrils, curly fibrils and mature amyloid fibrils. N-acetylation reduces considerably the rate of aggregation of WT α-Synuclein. However, in presence of any of the early-onset Parkinson's disease mutations the protective effect of N-acetylation against micelle-induced aggregation becomes impaired. At higher SDS/protein ratios, N-acetylation favors another conformational transition, in which a second type of α-helix-rich, non-aggregating oligomers become stabilized. Once again, the Parkinson's disease mutations disconnect the influence of N-acetylation in promoting this transition. These results suggest a cooperative link between the N-terminus and the region of the mutations that may be important for α-Synuclein function.

  2. Reduced TH expression and α-synuclein accumulation contribute towards nigrostriatal dysfunction in experimental hepatic encephalopathy.

    Science.gov (United States)

    Suárez, Isabel; Bodega, Guillermo; Rubio, Miguel; Fernández, Benjamín

    2017-01-01

    The present work examines α-synuclein expression in the nigrostriatal system of a rat chronic hepatic encephalopathy model induced by portacaval anastomosis (PCA). There is evidence that dopaminergic dysfunction in disease conditions is strongly associated with such expression. Possible relationships among dopaminergic neurons, astroglial cells and α-synuclein expression were sought. Brain tissue samples from rats at 1 and 6 months post-PCA, and controls, were analysed immunohistochemically using antibodies against tyrosine hydroxylase (TH), α-synuclein, glial fibrillary acidic protein (GFAP) and ubiquitin (Ub). In the control rats, TH immunoreactivity was detected in the neuronal cell bodies and processes in the substantia nigra pars compacta (SNc). A dense TH-positive network of neurons was also seen in the striatum. In the PCA-exposed rats, however, a reduction in TH-positive neurons was seen at both 1 and 6 months in the SNc, as well as a reduction in TH-positive fibres in the striatum. This was coincident with the appearance of α-synuclein-immunoreactive neurons in the SNc; some of the TH-positive neurons also showed α-synuclein immunoreactivity. In addition, α-synuclein accumulation was seen in the SNc and striatum at both 1 and 6 months post-PCA, whereas α-synuclein was only mildly expressed in the nigrostriatal pathway of the controls. Astrogliosis was also seen following PCA, as revealed by increased GFAP expression from 1 month to 6 months post-PCA in both the SN and striatum. The astroglial activation level in the SN paralleled the reduced neuronal expression of TH throughout PCA exposure. α-synuclein accumulation following PCA may induce dopaminergic dysfunction via the downregulation of TH, as well as astroglial activation.

  3. Intracellular formation of α-synuclein oligomers and the effect of heat shock protein 70 characterized by confocal single particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Johannes [Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich (Germany); German Center for Neurodegenerative Diseases – DZNE, Site Munich, Feodor-Lynen-Str. 17, 81377 Munich (Germany); Hillmer, Andreas S. [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich (Germany); Högen, Tobias [Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich (Germany); McLean, Pamela J. [Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 (United States); Giese, Armin, E-mail: armin.giese@med.uni-muenchen.de [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich (Germany)

    2016-08-12

    Synucleinopathies such as dementia with Lewy bodies or Parkinson’s disease are characterized by intracellular deposition of pathologically aggregated α-synuclein. The details of the molecular pathogenesis of PD and especially the conditions that lead to intracellular aggregation of α-synuclein and the role of these aggregates in cell death remain unknown. In cell free in vitro systems considerable knowledge about the aggregation processes has been gathered. In comparison, the knowledge about these aggregation processes in cells is far behind. In cells α-synuclein aggregates can be toxic. However, the crucial particle species responsible for decisive steps in pathogenesis such as seeding a continuing aggregation process and triggering cell death remain to be identified. In order to understand the complex nature of intracellular α-synuclein aggregate formation, we analyzed fluorescent particles formed by venus and α-synuclein-venus fusion proteins and α-synuclein-hemi-venus fusion proteins derived from gently lyzed cells. With these techniques we were able to identify and characterize α-synuclein oligomers formed in cells. Especially the use of α-synuclein-hemi-venus fusion proteins enabled us to identify very small α-synuclein oligomers with high sensitivity. Furthermore, we were able to study the molecular effect of heat shock protein 70, which is known to inhibit α-synuclein aggregation in cells. Heat shock protein 70 does not only influence the size of α-synuclein oligomers, but also their quantity. In summary, this approach based on fluorescence single particle spectroscopy, that is suited for high throughput measurements, can be used to detect and characterize intracellularly formed α-synuclein aggregates and characterize the effect of molecules that interfere with α-synuclein aggregate formation. - Highlights: • Single particle spectroscopy detects intracellular formed α-synuclein aggregates. • Fusion proteins allow detection of protein

  4. Induction of human airway hyperresponsiveness by tumour necrosis factor-alpha.

    Science.gov (United States)

    Anticevich, S Z; Hughes, J M; Black, J L; Armour, C L

    1995-09-15

    Tumour necrosis factor-alpha (TNF alpha) is implicated in the pathogenesis of asthma; however, little is known of its direct effect on smooth muscle reactivity. We investigated the effect of TNF alpha on the responsiveness of human bronchial tissue to electrical field stimulation in vitro. Incubation of non-sensitized tissue with 1 nM, 3 nM and 10 nM TNF alpha significantly increased responsiveness to electrical field stimulation (113 +/- 8, 110 +/- 4 and 112 +/- 2% respectively) compared to control (99 +/- 2%) (P 0.05) nor were responses to exogenous acetylcholine (93 +/- 4% versus 73 +/- 7%, n = 3, P = 0.38). These results show that TNF alpha causes an increase in responsiveness of human bronchial tissue and that this occurs prejunctionally on the parasympathetic nerve pathway. This is the first report of a cytokine increasing human airway tissue responsiveness.

  5. A blood-brain barrier (BBB) disrupter is also a potent α-synuclein (α-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD).

    Science.gov (United States)

    Shaltiel-Karyo, Ronit; Frenkel-Pinter, Moran; Rockenstein, Edward; Patrick, Christina; Levy-Sakin, Michal; Schiller, Abigail; Egoz-Matia, Nirit; Masliah, Eliezer; Segal, Daniel; Gazit, Ehud

    2013-06-14

    The development of disease-modifying therapy for Parkinson disease has been a main drug development challenge, including the need to deliver the therapeutic agents to the brain. Here, we examined the ability of mannitol to interfere with the aggregation process of α-synuclein in vitro and in vivo in addition to its blood-brain barrier-disrupting properties. Using in vitro studies, we demonstrated the effect of mannitol on α-synuclein aggregation. Although low concentration of mannitol inhibited the formation of fibrils, high concentration significantly decreased the formation of tetramers and high molecular weight oligomers and shifted the secondary structure of α-synuclein from α-helical to a different structure, suggesting alternative potential pathways for aggregation. When administered to a Parkinson Drosophila model, mannitol dramatically corrected its behavioral defects and reduced the amount of α-synuclein aggregates in the brains of treated flies. In the mThy1-human α-synuclein transgenic mouse model, a decrease in α-synuclein accumulation was detected in several brain regions following treatment, suggesting that mannitol promotes α-synuclein clearance in the cell bodies. It appears that mannitol has a general neuroprotective effect in the transgenic treated mice, which includes the dopaminergic system. We therefore suggest mannitol as a basis for a dual mechanism therapeutic agent for the treatment of Parkinson disease.

  6. Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy

    Science.gov (United States)

    Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander

    2017-01-01

    The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies.

  7. Electrophilic trifluoromethyl-thiolation reaction and synthesis of radioligand for medicinal PET imaging of l'α-synuclein

    International Nuclear Information System (INIS)

    Alazet, Sebastien

    2015-01-01

    Part 1: More and more applications for fluorinated molecules are being found in various fields, from materials to life sciences. In recent years, a growing interest has emerged in the association of the trifluoromethyl group with heteroatoms such as CF3O or CF3S. The CF3S moiety is of particular interest, because of its high hydrophobicity parameter (π=1.44). Consequently compounds bearing this group are important targets for various applications, in particular in medicinal chemistry and agrochemistry. However, the majority of previous methods described in the literature use toxic reagents under harsh conditions. Trifluoromethane-sulfenamides (1. and 2. generation) have demonstrated their potential in the electrophilic trifluoromethyl-thiolations. Because of their interesting reactivity, these two generations of shelf-stable reagents are now in the toolbox of organic chemists for the trifluoromethyl-thiolation of molecules, providing a convenient method to pursue less toxic pathways. Part 2: α-synuclein aggregation is a neuro-pathological hallmark of many neuro-degenerative diseases including Parkinson's disease (PD) and dementia with Lewy bodies (DLB), collectively termed synucleinopathies. PET imaging can reflect the amount and distribution of alpha-synuclein aggregates in the brain and would be advantageous to use for specific diagnosis of synucleinopathies in pre-symptomatic stages of disease. We focused our interest onto benzimidazole derivatives as small, planar and π-delocalized compounds to design radiotracers of synuclein aggregates. Compounds based on the association of benzimidazole moiety, rigid linker (alkyne and triazole) and another aromatic part have been designed. The radiolabeling could be performed by nucleophilic substitution with K18F during the last step. With this convergent strategy, we could have access to a large series of molecules to be evaluated. (author)

  8. Enhanced motivation to alcohol in transgenic mice expressing human α-synuclein.

    Science.gov (United States)

    Rotermund, Carola; Reolon, Gustavo K; Leixner, Sarah; Boden, Cindy; Bilbao, Ainhoa; Kahle, Philipp J

    2017-11-01

    α-Synuclein (αSYN) is the neuropathological hallmark protein of Parkinson's disease (PD) and related neurodegenerative disorders. Moreover, the gene encoding αSYN (SNCA) is a major genetic contributor to PD. Interestingly, independent genome-wide association studies also identified SNCA as the most important candidate gene for alcoholism. Furthermore, single-nucleotide-polymorphisms have been associated with alcohol-craving behavior and alcohol-craving patients showed augmented αSYN expression in blood. To investigate the effect of αSYN on the addictive properties of chronic alcohol use, we examined consumption, motivation, and seeking responses induced by environmental stimuli and relapse behavior in transgenic mice expressing the human mutant [A30P]αSYN throughout the brain. The primary reinforcing effects of alcohol under operant self-administration conditions were increased, while consumption and the alcohol deprivation effect were not altered in the transgenic mice. The same mice were subjected to immunohistochemical measurements of immediate-early gene inductions in brain regions involved in addiction-related behaviors. Acute ethanol injection enhanced immunostaining for the phosphorylated form of cAMP response element binding protein in both amygdala and nucleus accumbens of αSYN transgenic mice, while in wild-type mice no effect was visible. However, at the same time, levels of cFos remain unchanged in both genotypes. These results provide experimental confirmation of SNCA as a candidate gene for alcoholism in addition to its known link to PD. © 2017 International Society for Neurochemistry.

  9. Application of four anti-human interferon-alpha monoclonal antibodies for immunoassay and comparative analysis of natural interferon-alpha mixtures

    International Nuclear Information System (INIS)

    Andersson, G.; Lundgren, E.; Ekre, H.P.

    1991-01-01

    Four different mouse monoclonal antibodies to human interferon-alpha (IFN-alpha) were evaluated for application in quantitative and comparative analysis of natural IFN-alpha mixtures. Binding to IFN-alpha subtypes in solution revealed individual reactivity patterns. These patterns changed if the IFN-alpha molecules were immobilized either passively to a surface or bound by another antibody. Also, substitution of a single amino acid in IFN-alpha 2 affected the binding, apparently by altering the conformation. Isoelectric focusing of three natural IFN-alpha preparations from different sources, followed by immunoblotting, resulted in individual patterns with each of the four mAbs and also demonstrated variation in the composition of the IFN-alpha preparations. None of the mAbs was subtype specific, but by combining the different mAbs, and also applying polyclonal anti-human IFN-alpha antibodies, it was possible to design sensitive sandwich ELISAs with broad or more limited IFN-alpha subtype specificity

  10. Mitochondria and α-Synuclein: Friends or Foes in the Pathogenesis of Parkinson's Disease?

    Science.gov (United States)

    Faustini, Gaia; Bono, Federica; Valerio, Alessandra; Pizzi, Marina; Spano, PierFranco; Bellucci, Arianna

    2017-12-08

    Parkinson's disease (PD) is a movement disorder characterized by dopaminergic nigrostriatal neuron degeneration and the formation of Lewy bodies (LB), pathological inclusions containing fibrils that are mainly composed of α-synuclein. Dopaminergic neurons, for their intrinsic characteristics, have a high energy demand that relies on the efficiency of the mitochondria respiratory chain. Dysregulations of mitochondria, deriving from alterations of complex I protein or oxidative DNA damage, change the trafficking, size and morphology of these organelles. Of note, these mitochondrial bioenergetics defects have been related to PD. A series of experimental evidence supports that α-synuclein physiological action is relevant for mitochondrial homeostasis, while its pathological aggregation can negatively impinge on mitochondrial function. It thus appears that imbalances in the equilibrium between the reciprocal modulatory action of mitochondria and α-synuclein can contribute to PD onset by inducing neuronal impairment. This review will try to highlight the role of physiological and pathological α-synuclein in the modulation of mitochondrial functions.

  11. Characterization of receptors for recombinant human tumor necrosis factor-alpha from human placental membranes

    International Nuclear Information System (INIS)

    Aiyer, R.A.; Aggarwal, B.B.

    1990-01-01

    High affinity receptors for recombinant human tumor necrosis factor-alpha (rhTNF-alpha) were identified on membranes prepared from full term human placenta. Highly purified rhTNF-alpha iodinated by the iodogen method was found to bind placental membranes in a displaceable manner with an approximate dissociation constant (KD) of 1.9 nM. The membrane bound TNF-alpha receptor could be solubilized by several detergents with optimum extraction being obtained with 1% Triton X-100. The binding of 125I-rhTNF-alpha to the solubilized receptor was found to be time and temperature dependent, yielding maximum binding within 1 h, 24 h and 48 h at 37 degrees C, 24 degrees C and 4 degrees C, respectively. However, the maximum binding obtainable at 4 degrees C was only 40% of that at 37 degrees C. The binding 125I-rhTNF-alpha to solubilized placental membrane extracts was displaceable by unlabeled rhTNF-alpha, but not by a related protein recombinant human tumor necrosis factor-beta (rhTNF-beta; previously called lymphotoxin). This is similar to the behavior of TNF-alpha receptors derived from detergent-solubilized cell extracts, although on intact cells, both rhTNF-alpha and rhTNF-beta bind with equal affinity to TNF receptors. The Scatchard analysis of the binding data of the solubilized receptor revealed high affinity binding sites with a KD of approximately 0.5 nM and a receptor concentration of about 1 pmole/mg protein. Gel filtration of the solubilized receptor-ligand complexes on Sephacryl S-300 revealed two different peaks of radioactivity at approximate molecular masses of 50,000 Da and 400,000 Da. The 400,000 dalton peak corresponded to the receptor-ligand complex. Overall, our results suggest that high affinity receptors for TNF-alpha are present on human placental membranes and provide evidence that these receptors may be different from that of rhTNF-beta

  12. alpha-MSH and its receptors in regulation of tumor necrosis factor-alpha production by human monocyte/macrophages.

    Science.gov (United States)

    Taherzadeh, S; Sharma, S; Chhajlani, V; Gantz, I; Rajora, N; Demitri, M T; Kelly, L; Zhao, H; Ichiyama, T; Catania, A; Lipton, J M

    1999-05-01

    The hypothesis that macrophages contain an autocrine circuit based on melanocortin [ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH)] peptides has major implications for neuroimmunomodulation research and inflammation therapy. To test this hypothesis, cells of the THP-1 human monocyte/macrophage line were stimulated with lipopolysaccharide (LPS) in the presence and absence of alpha-MSH. The inflammatory cytokine tumor necrosis factor (TNF)-alpha was inhibited in relation to alpha-MSH concentration. Similar inhibitory effects on TNF-alpha were observed with ACTH peptides that contain the alpha-MSH amino acid sequence and act on melanocortin receptors. Nuclease protection assays indicated that expression of the human melanocortin-1 receptor subtype (hMC-1R) occurs in THP-1 cells; Southern blots of RT-PCR product revealed that additional subtypes, hMC-3R and hMC-5R, also occur. Incubation of resting macrophages with antibody to hMC-1R increased TNF-alpha concentration; the antibody also markedly reduced the inhibitory influence of alpha-MSH on TNF-alpha in macrophages treated with LPS. These results in cells known to produce alpha-MSH at rest and to increase secretion of the peptide when challenged are consistent with an endogenous regulatory circuit based on melanocortin peptides and their receptors. Targeting of this neuroimmunomodulatory circuit in inflammatory diseases in which myelomonocytic cells are prominent should be beneficial.

  13. Characterization of fibrillation process of α-synuclein at the initial stage

    International Nuclear Information System (INIS)

    Tashiro, Mitsuru; Kojima, Masaki; Kihara, Hiroshi; Kasai, Kouki; Kamiyoshihara, Tomoaki; Ueda, Kenji; Shimotakahara, Sakurako

    2008-01-01

    α-Synuclein is the major component of the filamentous Lewy bodies and Lewy-related neurites, neuropathological hallmarks of Parkinson's disease. Although numerous studies on α-synuclein fibrillation have been reported, the molecular mechanisms of aggregation and fibrillation at the initial stage are still unclear. In the present study, structural properties and propensities to form fibrils of α-synuclein at the initial stage were investigated using 2D 1 H- 15 N NMR spectroscopy, electron microscope, and small angle X-ray scattering (SAXS). Observation of the 2D 1 H- 15 N HSQC spectra indicated significant attenuation of many cross peak intensities in the regions of KTKEGV-type repeats and the non-Aβ component of Alzheimer's disease amyloid (NAC), suggesting that these regions contributed fibril formation. Oligomerization comprising heptamer was successfully monitored at the initial stage using the time-dependent SAXS measurements

  14. Assignment of casein kinase 2 alpha sequences to two different human chromosomes

    DEFF Research Database (Denmark)

    Boldyreff, B; Klett, C; Göttert, E

    1992-01-01

    Human casein kinase 2 alpha gene (CK-2-alpha) sequences have been localized within the human genome by in situ hybridization and somatic cell hybrid analysis using a CK-2 alpha cDNA as a probe. By in situ hybridization, the CK-2 alpha cDNA could be assigned to two different loci, one on 11p15.1-ter...

  15. Immunostimulatory effects of natural human interferon-alpha (huIFN-alpha) on carps Cyprinus carpio L.

    Science.gov (United States)

    Watanuki, Hironobu; Chakraborty, Gunimala; Korenaga, Hiroki; Kono, Tomoya; Shivappa, R B; Sakai, Masahiro

    2009-10-15

    Human interferon-alpha (huIFN-alpha) is an important immunomodulatory substance used in the treatment and prevention of numerous infectious and immune-related diseases in animals. However, the immunostimulatory effects of huIFN-alpha in fish remain to be investigated. In the current study, the immune responses of the carp species Cyprinus carpio L. to treatment with huIFN-alpha were analyzed via measurement of superoxide anion production, phagocytic activity and the expression of cytokine genes including interleukin-1beta, tumor necrosis factor-alpha and interleukin 10. Low doses of huIFN-alpha were administered orally once a day for 3 days, and sampling was carried out at 1, 3 and 5 days post-treatment. Our results indicate that a low dose of huIFN-alpha significantly increased phagocytic activity and superoxide anion production in the carp kidney. The huIFN-alpha-treated fish also displayed a significant upregulation in cytokine gene expression. The current study demonstrates the stimulatory effects of huIFN-alpha on the carp immune system and highlights the immunomodulatory role of huIFN-alpha in fish.

  16. Mechanistic study of the inhibitory activity of Geum urbanum extract against α-Synuclein fibrillation

    DEFF Research Database (Denmark)

    Lobbens, Eva Stephanie; Breydo, Leonid; Pedersen, Thomas Skamris

    2016-01-01

    microscopy. Since the extract is a complex mixture, structure-function relationships could not be determined. Under the experimental conditions investigated, Geum urbanum was found to inhibit α-Synuclein fibrillation in a concentration dependent way, and to partly disintegrate preformed α-Synuclein fibrils...

  17. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  18. Reverse-phase HPLC analysis of human alpha crystallin.

    Science.gov (United States)

    Swamy, M S; Abraham, E C

    1991-03-01

    A rapid and highly sensitive reverse-phase HPLC (RP-HPLC) method was used to separate crystallin subunits from human alpha crystallin. Three distinct peaks were separated; by electrophoretic and immunological analyses the first and second peaks were identified as alpha B and alpha A respectively. On the other hand, peak 3 appeared to be a modified form of alpha crystallin. The ratio of alpha A and alpha B proteins was 3:1 in 1 day old lenses which gradually changed to 2:1 in 17 year old lenses and to 1:1 in the 50 and 82 year old whole lenses and 82 year old lens cortex, with a concomitant increase in the modified alpha, suggesting that alpha A subunits are relatively more involved in aggregation. Analysis of the 82 year old lens nucleus also supported this conclusion. The RP-HPLC analysis of the HMW aggregate fraction showed substantial enrichment of the modified alpha. The alpha A and alpha B subunits independently reassociated to form polymeric alpha crystallin whereas the modified alpha reassociated to form HMW aggregates as shown by molecular sieve HPLC. Hence it appears that the HMW aggregate peak was constituted by modified alpha crystallin. Only in the peak 3 material the 280 nm absorbance was about 2-fold higher than what was expected from the actual protein content. The data suggest that the changes induced by post-translational modifications may have some role in the formation of modified alpha. The present RP-HPLC method is useful in separating these modified alpha from the unmodified alpha A and alpha B subunits.

  19. Immunotherapy targeting α-synuclein, with relevance for future treatment of Parkinson's disease and other Lewy body disorders.

    Science.gov (United States)

    Lindström, Veronica; Ihse, Elisabet; Fagerqvist, Therese; Bergström, Joakim; Nordström, Eva; Möller, Christer; Lannfelt, Lars; Ingelsson, Martin

    2014-01-01

    Immunotherapy targeting α-synuclein has evolved as a potential therapeutic strategy for neurodegenerative diseases, such as Parkinson's disease, and initial studies on cellular and animal models have shown promising results. α-synuclein vaccination of transgenic mice reduced the number of brain inclusions, whereas passive immunization studies demonstrated that antibodies against the C-terminus of α-synuclein can pass the blood-brain barrier and affect the pathology. In addition, preliminary evidence suggests that transgenic mice treated with an antibody directed against α-synuclein oligomers/protofibrils resulted in reduced levels of such species in the CNS. The underlying mechanisms of immunotherapy are not yet fully understood, but may include antibody-mediated clearance of pre-existing aggregates, prevention of protein propagation between cells and microglia-dependent protein clearance. Thus, immunotherapy targeting α-synuclein holds promise, but needs to be further developed as a future disease-modifying treatment in Parkinson's disease and other α-synucleinopathies.

  20. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors.

    Science.gov (United States)

    Newman-Tancredi, A; Nicolas, J P; Audinot, V; Gavaudan, S; Verrièle, L; Touzard, M; Chaput, C; Richard, N; Millan, M J

    1998-08-01

    This study examined the activity of chemically diverse alpha2 adrenoceptor ligands at recombinant human (h) and native rat (r) alpha2A adrenoceptors compared with 5-HT1A receptors. First, in competition binding experiments at h alpha2A and h5-HT1A receptors expressed in CHO cells, several compounds, including the antagonists 1-(2-pyrimidinyl)piperazine (1-PP), (+/-)-idazoxan, benalfocin (SKF 86466), yohimbine and RX 821,002, displayed preference for h alpha2A versus h5-HT1A receptors of only 1.4-, 3.6-, 4-, 10- and 11-fold, respectively (based on differences in pKi values). Clonidine, brimonidine (UK 14304), the benzopyrrolidine fluparoxan and the guanidines guanfacine and guanabenz exhibited intermediate selectivity (22- to 31-fold) for h alpha2A receptors. Only the antagonist atipamezole and the agonist dexmedetomidine (DMT) displayed high preference for alpha2 adrenoceptors (1290- and 91-fold, respectively). Second, the compounds were tested for their ability to induce h5-HT1A receptor-mediated G-protein activation, as indicated by the stimulation of [35S]GTPgammaS binding. All except atipamezole and RX 821,002 exhibited agonist activity, with potencies which correlated with their affinity for h5-HT1A receptors. Relative efficacies (Emax values) were 25-35% for guanabenz, guanfacine, WB 4101 and benalfocin, 50-65% for 1-PP, (+/-)-idazoxan and clonidine, and over 70% for fluparoxan, oxymetazoline and yohimbine (relative to 5-HT = 100%). Yohimbine-induced [35S]GTPgammaS binding was inhibited by the selective 5-HT1A receptor antagonist WAY 100,635. In contrast, RX 821,002 was the only ligand which exhibited antagonist activity at h5-HT1A receptors, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Atipamezole, which exhibited negligeable affinity for 5-HT1A receptors, was inactive. Third, the affinities for r alpha2A differed considerably from the affinities for h alpha2A receptors whereas the affinities for r5-HT1A differed much less from the affinities for h5-HT

  1. Alpha-Synuclein Pathology in Sensory Nerve Terminals of the Upper Aerodigestive Tract of Parkinson's Disease Patients.

    Science.gov (United States)

    Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H; Caviness, John N; Shill, Holly A; Sabbagh, Marwan; Samanta, Johan E; Sue, Lucia I; Beach, Thomas G

    2015-08-01

    Dysphagia is common in Parkinson's disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia.

  2. α-Synuclein expression in the mouse cerebellum is restricted to VGluT1 excitatory terminals and is enriched in unipolar brush cells.

    Science.gov (United States)

    Lee, Sun Kyong; Sillitoe, Roy V; Silva, Coralie; Martina, Marco; Sekerkova, Gabriella

    2015-10-01

    α-Synuclein has a crucial role in synaptic vesicle release and synaptic membrane recycling. Although its general expression pattern has been described in the cerebellum, the precise cerebellar structures where α-synuclein is localized are poorly understood. To address this question, we used α-synuclein immunohistochemistry in adult mice cerebellar sections. We found that α-synuclein labels glutamatergic but not glycinergic and GABAergic synaptic terminals in the molecular and granule cell layers. α-Synuclein was preferentially expressed in parallel and mossy fiber synaptic terminals that also express vesicular glutamate transporter 1 (VGluT1), while it was not detected in VGluT2-positive climbing fibers. α-Synuclein was particularly enriched in lobules IX and X, a region known to contain a high density of unipolar brush cells (UBCs). To elucidate whether the α-synuclein-positive mossy fibers belong to UBCs, we double-labeled cerebellar sections with antibodies to α-synuclein and UBC-type-specific markers (calretinin for type I and metabotropic glutamate receptor 1α (mGluR1α) for type II UBCs) and took advantage of organotypic cerebellar cultures (in which all mossy fibers are UBC axons) and moonwalker mice (in which almost all UBCs are ablated) and found that both type I and type II UBCs express α-synuclein. In moonwalker mutant cerebella, the α-synuclein/VGluT1 immunolabeling showed a dramatic decrease in the vestibulocerebellum that correlated with the absence of UBC. α-Synuclein appears to be an excellent marker for intrinsic mossy fibers of the VGluT1 subset in conjunction with UBCs of both subtypes.

  3. Effect of curcumin analogs onα-synuclein aggregation and cytotoxicity

    Science.gov (United States)

    Jha, Narendra Nath; Ghosh, Dhiman; Das, Subhadeep; Anoop, Arunagiri; Jacob, Reeba S.; Singh, Pradeep K.; Ayyagari, Narasimham; Namboothiri, Irishi N. N.; Maji, Samir K.

    2016-01-01

    Alpha-synuclein (α-Syn) aggregation into oligomers and fibrils is associated with dopaminergic neuron loss occurring in Parkinson’s disease (PD) pathogenesis. Compounds that modulate α-Syn aggregation and interact with preformed fibrils/oligomers and convert them to less toxic species could have promising applications in the drug development efforts against PD. Curcumin is one of the Asian food ingredient which showed promising role as therapeutic agent against many neurological disorders including PD. However, the instability and low solubility makes it less attractive for the drug development. In this work, we selected various curcumin analogs and studied their toxicity, stability and efficacy to interact with different α-Syn species and modulation of their toxicity. We found a subset of curcumin analogs with higher stability and showed that curcumin and its various analogs interact with preformed fibrils and oligomers and accelerate α-Syn aggregation to produce morphologically different amyloid fibrils in vitro. Furthermore, these curcumin analogs showed differential binding with the preformed α-Syn aggregates. The present data suggest the potential role of curcumin analogs in modulating α-Syn aggregation. PMID:27338805

  4. Exhibiting the Human/Exhibiting the Cyborg: “Who Am I?”

    Directory of Open Access Journals (Sweden)

    Sophia C. Vackimes

    2013-08-01

    Full Text Available The role of the museum in shaping our relationship to science and technology, particularly cyborgization, is illuminated by a close examination of the Who Am I permanent exhibition in the Wellcome Wing of the Science Museum of London. This innovative exhibition raises real questions both about the human-technology-science relationship but also about museography. In the context of the history and current practices of museums engaging contemporary technological developments the evidence suggest that even as the Who am I? exhibit did break somewhat from previous approaches, especially the didactic presentation of the socially useful, it has not changed the feld as a whole.

  5. Prolongation of chemically-induced methemoglobinemia in mice lacking α-synuclein: A novel pharmacologic and toxicologic phenotype

    Directory of Open Access Journals (Sweden)

    Yien-Ming Kuo

    2015-01-01

    Full Text Available The protein α-synuclein is considered central to the pathogenesis of Parkinson disease (PD on genetic and histopathological grounds. It is widely expressed in fetal life and continues to be highly expressed in adult neural tissues, red blood cells and platelets, while the remainder of adult tissues are reported to have little or no expression. Despite cellular and molecular evidence for a role in neuronal function including synaptic vesicle trafficking, neurotransmitter release, mitochondrial function, lipid metabolism, neurogenesis, neuroprotection, and neuromelanin biosynthesis, mice ablated for the gene encoding α-synuclein (Snca have little or no neurological phenotype. Thus, nearly 20 years of intensive study have yet to reveal conclusively what the normal function of this highly abundant protein is in the nervous system. Interestingly, α-synuclein has also been shown to have enzymatic activity as a ferrireductase capable of reducing Fe+3 to Fe+2. Given its abundant expression in red blood cells, we set out to explore the role of α-synuclein in converting chemically-induced Fe+3 methemoglobin to normal Fe+2 hemoglobin. Initial in vivo experiments with the potent methemoglobin inducer, para-aminopropiophenone and its active metabolite, 4-hydroxy para-aminopropiophenone, demonstrated significantly greater and more prolonged methemoglobinemia in Snca−/− mice compared to Snca+/+ mice. In vitro experiments with red blood cells, however, and in vivo experiments in genetically engineered mouse strains that differ in their α-synuclein expression in various tissues, including the nervous system, red blood cells and liver, revealed that contrary to the initial hypothesis, a lack of expression of α-synuclein in red blood cells did not correlate with higher levels or more prolonged duration of methemoglobinemia. Instead, the greater sensitivity to chemically induced methemoglobinemia correlated with the absence of hepatic α-synuclein

  6. Mitochondrial Dysfunction and α-Synuclein Synaptic Pathology in Parkinson’s Disease: Who’s on First?

    Directory of Open Access Journals (Sweden)

    Michela Zaltieri

    2015-01-01

    Full Text Available Parkinson’s disease (PD is the most common neurodegenerative movement disorder. Its characteristic neuropathological features encompass the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies and Lewy neurites. These are intraneuronal and intraneuritic proteinaceous insoluble aggregates whose main constituent is the synaptic protein α-synuclein. Compelling lines of evidence indicate that mitochondrial dysfunction and α-synuclein synaptic deposition may play a primary role in the onset of this disorder. However, it is not yet clear which of these events may come first in the sequel of processes leading to neurodegeneration. Here, we reviewed data supporting either that α-synuclein synaptic deposition precedes and indirectly triggers mitochondrial damage or that mitochondrial deficits lead to neuronal dysfunction and α-synuclein synaptic accumulation. The present overview shows that it is still difficult to establish the exact temporal sequence and contribution of these events to PD.

  7. Neural protein gamma-synuclein interacting with androgen receptor promotes human prostate cancer progression

    International Nuclear Information System (INIS)

    Chen, Junyi; Jiao, Li; Xu, Chuanliang; Yu, Yongwei; Zhang, Zhensheng; Chang, Zheng; Deng, Zhen; Sun, Yinghao

    2012-01-01

    Gamma-synuclein (SNCG) has previously been demonstrated to be significantly correlated with metastatic malignancies; however, in-depth investigation of SNCG in prostate cancer is still lacking. In the present study, we evaluated the role of SNCG in prostate cancer progression and explored the underlying mechanisms. First, alteration of SNCG expression in LNCaP cell line to test the ability of SNCG on cellular properties in vitro and vivo whenever exposing with androgen or not. Subsequently, the Dual-luciferase reporter assays were performed to evaluate whether the role of SNCG in LNCaP is through AR signaling. Last, the association between SNCG and prostate cancer progression was assessed immunohistochemically using a series of human prostate tissues. Silencing SNCG by siRNA in LNCaP cells contributes to the inhibition of cellular proliferation, the induction of cell-cycle arrest at the G1 phase, the suppression of cellular migration and invasion in vitro, as well as the decrease of tumor growth in vivo with the notable exception of castrated mice. Subsequently, mechanistic studies indicated that SNCG is a novel androgen receptor (AR) coactivator. It interacts with AR and promotes prostate cancer cellular growth and proliferation by activating AR transcription in an androgen-dependent manner. Finally, immunohistochemical analysis revealed that SNCG was almost undetectable in benign or androgen-independent tissues prostate lesions. The high expression of SNCG is correlated with peripheral and lymph node invasion. Our data suggest that SNCG may serve as a biomarker for predicting human prostate cancer progression and metastasis. It also may become as a novel target for biomedical therapy in advanced prostate cancer

  8. 13 native human interferon-alpha species assessed for immunoregulatory properties

    DEFF Research Database (Denmark)

    Heron, I; Hokland, M; Berg, K

    1983-01-01

    Human leukocytes treated with Sendai virus yield interferon predominantly of the alpha-type (HuIFN-alpha). Successful attempts to purify these "native" species have been performed and the final analysis, which included an SDS-PAGE disclosed 13 stained and separated IFN-proteins in the molecular...... by IFN titration on human cells, the "immunological efficacies" of the 13 different HuIFN-alpha species were determined in three different immunological systems with the following results: (1) Augmentation of the NK function was a property of all species, although the two lower species (16.6 kD, 16.9 k...

  9. Detection of hyperphosphorylated tau protein and α-synuclein in spinal cord of patients with Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Guo YJ

    2016-02-01

    Full Text Available Yanjun Guo,1,2 Luning Wang,2 Mingwei Zhu,2 Honghong Zhang,3 Yazhuo Hu,3 Zhitao Han,3 Jia Liu,4 Weiqin Zhao,1 Dexin Wang11Department of Neurology, Beijing Friendship Hospital, Capital Medical University, 2Department of Geriatric Neurology, PLA General Hospital, 3Institute of Geriatrics, Chinese PLA General Hospital & Chinese PLA Medical Academy, 4Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of ChinaAbstract: The aim of this study was to investigate the neuropathological features of the spinal cord in patients suffering with Alzheimer’s disease (AD. Spinal cord tissue collected from three AD patients and eight controls was selected for the study. Data were collected at T2, T8, T10, L4, and S2 spinal levels. The sections were subjected to hematoxylin and eosin and Gallyas–Braak staining methods and then were immunostained with antibodies such as phosphorylated tau protein (AT8, α-synuclein, Aβ, amyloid precursor protein , ubiquitin, and TDP-43. Pathological changes exhibited by the biomarkers were detected by microscopy. Neurofibrillary tangles (NFTs were detectable in spinal anterior horn motor neurons in two of the three AD patients. AT8-positive axons or axon-like structures and AT8 expression in glial cells were detected in all three AD cases. Hyperphosphorylation of tau protein was detected in spinal anterior horn cells, glial cells, and axons, and its severity was associated with NFTs in the brain tissue. α-Synuclein-positive Lewy bodies and scattered Lewy-like neuritis were detected in the medial horn of the thoracic spinal cord and ventral sacral gray matter, respectively, in one patient who had AD with Lewy bodies. Neither amyloid deposition nor amyloid precursor protein and TDP-43 expression was detected in the spinal cord of AD patients. Spinal cord of AD patients was observed to contain phosphorylated tau protein and α-synuclein immunoreactive structures, which may play a

  10. Modulation of α-synuclein fibrillization by ring-fused 2-pyridones: templation and inhibition involve oligomers with different structure.

    Science.gov (United States)

    Horvath, Istvan; Sellstedt, Magnus; Weise, Christoph; Nordvall, Lina-Maria; Krishna Prasad, G; Olofsson, Anders; Larsson, Göran; Almqvist, Fredrik; Wittung-Stafshede, Pernilla

    2013-04-15

    In a recent study we discovered that a ring-fused 2-pyridone compound triggered fibrillization of a key protein in Parkinson's disease, α-synuclein. To reveal how variations in compound structure affect protein aggregation, we now prepared a number of strategic analogs and tested their effects on α-synuclein amyloid fiber formation in vitro. We find that, in contrast to the earlier templating effect, some analogs inhibit α-synuclein fibrillization. For both templating and inhibiting compounds, the key species formed in the reactions are α-synuclein oligomers that contain compound. Despite similar macroscopic appearance, the templating and inhibiting oligomers are distinctly different in secondary structure content. When the inhibitory oligomers are added in seed amounts, they inhibit fresh α-synuclein aggregation reactions. Our study demonstrates that small chemical changes to the same central fragment can result in opposite effects on protein aggregation. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Complex rearrangements within the human J delta-C delta/J alpha-C alpha locus and aberrant recombination between J alpha segments

    NARCIS (Netherlands)

    Baer, R.; Boehm, T.; Yssel, H.; Spits, H.; Rabbitts, T. H.

    1988-01-01

    We have examined DNA rearrangements within a 120 kb cloned region of the human T cell receptor J delta-C delta/J alpha-C alpha locus. Three types of pattern emerge from an analysis of T cell lines and clones. Firstly, cells with two rearrangements within J delta-C delta; secondly, cells with one

  12. Neural Protein Synuclein Gamma (SNCG) in Breast Cancer Progression

    National Research Council Canada - National Science Library

    Jiang, Yangfu

    2002-01-01

    Synucleins are emerging as a central player in the fundamental neural processes and in the formation of pathologically insoluble deposits characteristic of Alzheimer's (AD) and Parkinson's (PD) diseases...

  13. Alpha-tocopherol transfer factor (aTTF) from rat liver mediates the transfer of d-alpha-[3H]-tocopherol from liposomes to human erythrocyte ghosts and exhibits saturation kinetics

    International Nuclear Information System (INIS)

    Verdon, C.P.; Blumberg, J.B.

    1986-01-01

    aTTF was observed to transfer d-alpha-[ 3 H]-tocopherol ( 3 HaT) from egg lecithin liposomes to human erythrocyte ghosts (EG). aTTF may be associated with the 32,000-35,000 MW alpha-Tocopherol Binding Protein previously described to transfer 3 HaT from liposomes to rat liver microsomes and mitochondria prepared by ammonium sulfate precipitation of rat liver cytosol followed by dialysis against 50 mM TRIS-HCl/1 mM EDTA buffer, pH 7.4. Assay for aTTF activity consisted of incubating liposomal 3 HaT and EG in the presence of aTTF or buffer blank for various time periods at 37 0 C, then counting the resulting radioactivity in washed EG after pelleting by centrifugation. Liposomes were prelabeled-with non-exchangable glycerol-[ 14 C]-trioleate to correct for liposomes adhering to pelleted EG. Greater than 50% of the tritium found with the EG pellet was recovered by HPLC as 3 HaT. aTTF activity increased with increasing liposomal 3 HaT concentration before reaching a plateau. aTTF activity was similarly saturated by increasing EG concentrations. The same assay conditions with buffer blank along resulted in negligible transfer activity

  14. Sensitive radioimmunoassay for detection of antibodies to recombinant human interferon-alpha A

    International Nuclear Information System (INIS)

    Palleroni, A.V.; Trown, P.W.

    1986-01-01

    A radioimmunoassay (RIA) for the detection of antibodies to recombinant human leukocyte interferon A (rHuIFN-alpha A) in human serum has been developed and validated against the standard antiviral neutralization bioassay (ANB). The assay measures the binding of 125 I-labeled rHuIFN-alpha A to immunoglobulins in serum. Aliquots of patients' sera are incubated with 125 I-rHuIFN-alpha A and the complexes formed between antibodies in the sera and the 125 I-rHuIFN-alpha A are precipitated with goat anti-human IgG serum. The radioactivity in the immune precipitate is a measure of the quantity of antibody (if present) in the serum. The sensitivity of this RIA is 5 ng of IgG/ml of serum

  15. Cross-seeding of prions by aggregated α-synuclein leads to transmissible spongiform encephalopathy.

    Directory of Open Access Journals (Sweden)

    Elizaveta Katorcha

    2017-08-01

    Full Text Available Aggregation of misfolded proteins or peptides is a common feature of neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's, prion and other diseases. Recent years have witnessed a growing number of reports of overlap in neuropathological features that were once thought to be unique to only one neurodegenerative disorder. However, the origin for the overlap remains unclear. One possibility is that diseases with mixed brain pathologies might arise from cross-seeding of one amyloidogenic protein by aggregated states of unrelated proteins. In the current study we examined whether prion replication can be induced by cross-seeding by α-synuclein or Aβ peptide. We found that α-synuclein aggregates formed in cultured cells or in vitro display cross-seeding activity and trigger misfolding of the prion protein (PrPC in serial Protein Misfolding Cyclic Amplification reactions, producing self-replicating PrP states characterized by a short C-terminal proteinase K (PK-resistant region referred to as PrPres. Non-fibrillar α-synuclein or fibrillar Aβ failed to cross-seed misfolding of PrPC. Remarkably, PrPres triggered by aggregated α-synuclein in vitro propagated in animals and, upon serial transmission, produced PrPSc and clinical prion disease characterized by spongiosis and astrocytic gliosis. The current study demonstrates that aggregated α-synuclein is potent in cross-seeding of prion protein misfolding and aggregation in vitro, producing self-replicating states that can lead to transmissible prion diseases upon serial passaging in wild type animals. In summary, the current work documents direct cross-seeding between unrelated amyloidogenic proteins associated with different neurodegenerative diseases. This study suggests that early interaction between unrelated amyloidogenic proteins might underlie the etiology of mixed neurodegenerative proteinopathies.

  16. Targeting the intrinsically disordered structural ensemble of α-synuclein by small molecules as a potential therapeutic strategy for Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Gergely Tóth

    Full Text Available The misfolding of intrinsically disordered proteins such as α-synuclein, tau and the Aβ peptide has been associated with many highly debilitating neurodegenerative syndromes including Parkinson's and Alzheimer's diseases. Therapeutic targeting of the monomeric state of such intrinsically disordered proteins by small molecules has, however, been a major challenge because of their heterogeneous conformational properties. We show here that a combination of computational and experimental techniques has led to the identification of a drug-like phenyl-sulfonamide compound (ELN484228, that targets α-synuclein, a key protein in Parkinson's disease. We found that this compound has substantial biological activity in cellular models of α-synuclein-mediated dysfunction, including rescue of α-synuclein-induced disruption of vesicle trafficking and dopaminergic neuronal loss and neurite retraction most likely by reducing the amount of α-synuclein targeted to sites of vesicle mobilization such as the synapse in neurons or the site of bead engulfment in microglial cells. These results indicate that targeting α-synuclein by small molecules represents a promising approach to the development of therapeutic treatments of Parkinson's disease and related conditions.

  17. Tumor necrosis factor-alpha modulates human in vivo lipolysis

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Fischer, Christian P; Ibfelt, Tobias

    2008-01-01

    CONTEXT: Low-grade systemic inflammation is a feature of most lifestyle-related chronic diseases. Enhanced TNF-alpha concentrations have been implicated in the development of hyperlipidemia. OBJECTIVE: We hypothesized that an acute elevation of TNF-alpha in plasma would cause an increase...... in lipolysis, increasing circulatory free fatty acid (FFA) levels. SUBJECTS AND METHODS: Using a randomized controlled, crossover design, healthy young male individuals (n = 10) received recombinant human (rh) TNF-alpha (700 ng/m(-2).h(-1)) for 4 h, and energy metabolism was evaluated using a combination...... of tracer dilution methodology and arterial-venous differences over the leg. RESULTS: Plasma TNF-alpha levels increased from 0.7 +/- 0.04 to 16.7 +/- 1.8 pg/ml, and plasma IL-6 increased from 1.0 +/- 0.2 to 9.2 +/- 1.0 pg/ml (P alpha infusion. Here, we demonstrate that 4-h rhTNF-alpha...

  18. Alpha-Synuclein Pathology in Sensory Nerve Terminals of the Upper Aerodigestive Tract of Parkinson’s Disease Patients

    Science.gov (United States)

    Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H.; Caviness, John N.; Shill, Holly A.; Sabbagh, Marwan; Samanta, Johan E.; Sue, Lucia I.; Beach, Thomas G.

    2015-01-01

    Dysphagia is common in Parkinson’s disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia. PMID:26041249

  19. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Takeuchi, Kentaro; Inada, Hirohiko [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yamasaki, Daisuke [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ishimoto, Kenji [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Doi, Takefumi [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2009-11-20

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial {beta}-oxidation. The peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is a ligand-activated transcription factor that plays an important role in the regulation of {beta}-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPAR{alpha} and found that PPAR{alpha} induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPAR{alpha} regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  20. Alpha-amidated peptides derived from pro-opiomelanocortin in normal human pituitary

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H

    1988-01-01

    Normal human pituitaries were extracted in boiling water and acetic acid, and the alpha-amidated peptide products of pro-opiomelanocortin (POMC), alpha-melanocyte-stimulating hormone (alpha MSH), gamma-melanocyte-stimulating hormone (gamma 1MSH), and amidated hinge peptide (HP-N), as well...... (ACTH)-(1-39), ACTH-(1-14) and alpha MSH immunoreactivity]. alpha MSH and ACTH-(1-14) were only present in non- or mono-acetylated forms. Only large forms of gamma 1MSH and gamma 2MSH were present in partly glycosylated states. The hinge peptides were amidated to an extent two to three orders...... amidated POMC-related peptides are present in normal human pituitary. It also shows that cleavage in vivo at all dibasic amino acids but one, takes place at the N-terminal POMC region; the exception is at the POMC-(49-50) N-terminal of the gamma MSH sequence. The pattern of peptides produced suggests...

  1. Curcumin Modulates α-Synuclein Aggregation and Toxicity

    Science.gov (United States)

    2012-01-01

    In human beings, Parkinson’s disease (PD) is associated with the oligomerization and amyloid formation of α-synuclein (α-Syn). The polyphenolic Asian food ingredient curcumin has proven to be effective against a wide range of human diseases including cancers and neurological disorders. While curcumin has been shown to significantly reduce cell toxicity of α-Syn aggregates, its mechanism of action remains unexplored. Here, using a series of biophysical techniques, we demonstrate that curcumin reduces toxicity by binding to preformed oligomers and fibrils and altering their hydrophobic surface exposure. Further, our fluorescence and two-dimensional nuclear magnetic resonance (2D-NMR) data indicate that curcumin does not bind to monomeric α-Syn but binds specifically to oligomeric intermediates. The degree of curcumin binding correlates with the extent of α-Syn oligomerization, suggesting that the ordered structure of protein is required for effective curcumin binding. The acceleration of aggregation by curcumin may decrease the population of toxic oligomeric intermediates of α-Syn. Collectively; our results suggest that curcumin and related polyphenolic compounds can be pursued as candidate drug targets for treatment of PD and other neurological diseases. PMID:23509976

  2. Cloning, expression, and mapping of allergenic determinants of alphaS1-casein, a major cow's milk allergen.

    Science.gov (United States)

    Schulmeister, Ulrike; Hochwallner, Heidrun; Swoboda, Ines; Focke-Tejkl, Margarete; Geller, Beate; Nystrand, Mats; Härlin, Annika; Thalhamer, Josef; Scheiblhofer, Sandra; Keller, Walter; Niggemann, Bodo; Quirce, Santiago; Ebner, Christoph; Mari, Adriano; Pauli, Gabrielle; Herz, Udo; Valenta, Rudolf; Spitzauer, Susanne

    2009-06-01

    Milk is one of the first components introduced into human diet. It also represents one of the first allergen sources, which induces IgE-mediated allergies in childhood ranging from gastrointestinal, skin, and respiratory manifestations to severe life-threatening manifestations, such as anaphylaxis. Here we isolated a cDNA coding for a major cow's milk allergen, alphaS1-casein, from a bovine mammary gland cDNA library with allergic patients' IgE Abs. Recombinant alphaS1-casein was expressed in Escherichia coli, purified, and characterized by circular dichroism as a folded protein. IgE epitopes of alphaS1-casein were determined with recombinant fragments and synthetic peptides spanning the alphaS1-casein sequence using microarrayed components and sera from 66 cow's milk-sensitized patients. The allergenic activity of ralphaS1-casein and the alphaS1-casein-derived peptides was determined using rat basophil leukemia cells transfected with human FcepsilonRI, which had been loaded with the patients' serum IgE. Our results demonstrate that ralphaS1-casein as well as alphaS1-casein-derived peptides exhibit IgE reactivity, but mainly the intact ralphaS1-casein induced strong basophil degranulation. These results suggest that primarily intact alphaS1-casein or larger IgE-reactive portions thereof are responsible for IgE-mediated symptoms of food allergy. Recombinant alphaS1-casein as well as alphaS1-casein-derived peptides may be used in clinical studies to further explore pathomechanisms of food allergy as well as for the development of new diagnostic and therapeutic strategies for milk allergy.

  3. Taraxacum officinale induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

    Science.gov (United States)

    Koo, Hyun-Na; Hong, Seung-Heon; Song, Bong-Keun; Kim, Cheorl-Ho; Yoo, Young-Hyun; Kim, Hyung-Min

    2004-01-16

    Taraxacum officinale (TO) has been frequently used as a remedy for women's disease (e.g. breast and uterus cancer) and disorders of the liver and gallbladder. Several earlier studies have indicated that TO exhibits anti-tumor properties, but its mechanism remains to be elucidated. In this study, we investigated the effect of TO on the cytotoxicity and production of cytokines in human hepatoma cell line, Hep G2. Our results show that TO decreased the cell viability by 26%, and significantly increased the tumor necrosis factor (TNF)-alpha and interleukin (IL)-1alpha production compared with media control (about 1.6-fold for TNF-alpha, and 2.4-fold for IL-1alpha, P < 0.05). Also, TO strongly induced apoptosis of Hep G2 cells as determined by flow cytometry. Increased amounts of TNF-alpha and IL-1alpha contributed to TO-induced apoptosis. Anti-TNF-alpha and IL-1alpha antibodies almost abolished it. These results suggest that TO induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

  4. Genetic evidence that HNF-1alpha-dependent transcriptional control of HNF-4alpha is essential for human pancreatic beta cell function

    DEFF Research Database (Denmark)

    Hansen, Sara K; Párrizas, Marcelina; Jensen, Maria L

    2002-01-01

    Mutations in the genes encoding hepatocyte nuclear factor 4alpha (HNF-4alpha) and HNF-1alpha impair insulin secretion and cause maturity onset diabetes of the young (MODY). HNF-4alpha is known to be an essential positive regulator of HNF-1alpha. More recent data demonstrates that HNF-4alpha...... in human islets and exocrine cells is primarily mediated by the P2 promoter. Furthermore, we describe a G --> A mutation in a conserved nucleotide position of the HNF-1alpha binding site of the P2 promoter, which cosegregates with MODY. The mutation results in decreased affinity for HNF-1alpha...

  5. Saw palmetto extracts potently and noncompetitively inhibit human alpha1-adrenoceptors in vitro.

    Science.gov (United States)

    Goepel, M; Hecker, U; Krege, S; Rübben, H; Michel, M C

    1999-02-15

    We wanted to test whether phytotherapeutic agents used in the treatment of lower urinary tract symptoms have alpha1-adrenoceptor antagonistic properties in vitro. Preparations of beta-sitosterol and extracts of stinging nettle, medicinal pumpkin, and saw palmetto were obtained from several pharmaceutical companies. They were tested for their ability to inhibit [3H]tamsulosin binding to human prostatic alpha1-adrenoceptors and [3H]prazosin binding to cloned human alpha1A- and alpha1B-adrenoceptors. Inhibition of phenylephrine-stimulated [3H]inositol phosphate formation by cloned receptors was also investigated. Up to the highest concentration which could be tested, preparations of beta-sitosterol, stinging nettle, and medicinal pumpkin were without consistent inhibitory effect in all assays. In contrast, all tested saw palmetto extracts inhibited radioligand binding to human alpha1-adrenoceptors and agonist-induced [3H]inositol phosphate formation. Saturation binding experiments in the presence of a single saw palmetto extract concentration indicated a noncompetitive antagonism. The relationship between active concentrations in vitro and recommended therapeutic doses for the saw palmetto extracts was slightly lower than that for several chemically defined alpha1-adrenoceptor antagonists. Saw palmetto extracts have alpha1-adrenoceptor-inhibitory properties. If bioavailability and other pharmacokinetic properties of these ingredients are similar to those of the chemically defined alpha1-adrenoceptor antagonists, alpha1-adrenoceptor antagonism might be involved in the therapeutic effects of these extracts in patients with lower urinary tract symptoms suggestive of benign prostatic obstruction.

  6. Immunoregulatory and antioxidant performance of alpha-tocopherol and selenium on human lymphocytes.

    Science.gov (United States)

    Lee, Chung-Yung Jetty; Wan, Jennifer Man-Fan

    2002-05-01

    The role of alpha-tocopherol (alpha-toco) and selenium (Se) on human lymphocyte oxidative stress and T-cells proliferation were studied by flow cytometry. We measured the hydrogen peroxide and glutathione levels in cultured human T-lymphocytes and the proliferation of their subsets: T-helper/inducer, T-suppressor/cytotoxic, and natural killer and interleukin-2 receptors upon stimulation by the mitogens phytohemaglutinin (PHA) and lipopolysaccharide (LPS). The results indicate that early stimulation by mitogens is affected by the glutathione and hydrogen peroxide status of the T-lymphocytes. The addition of 100 microM or 500 microM alpha-toco or 0.5 microM Se alone shows weak antioxidant and immunostimulant properties. When combined, an enhanced antioxidant and immunoregulatory effect was observed. The present findings indicate that alpha-toco and Se have interactive effects as oxygen radical scavengers, thus promoting human lymphocyte response to antigens. This suggests that micronutrient status is an important factor in considering when interpreting the results of in vitro assays of lymphocyte function.

  7. Copper(II) Binding Sites in N-Terminally Acetylated α-Synuclein: A Theoretical Rationalization.

    Science.gov (United States)

    Ramis, Rafael; Ortega-Castro, Joaquín; Vilanova, Bartolomé; Adrover, Miquel; Frau, Juan

    2017-08-03

    The interactions between N-terminally acetylated α-synuclein and Cu(II) at several binding sites have been studied with DFT calculations, specifically with the M06 hybrid functional and the ωB97X-D DFT-D functional. In previous experimental studies, Cu(II) was shown to bind several α-synuclein residues, including Met1-Asp2 and His50, forming square planar coordination complexes. Also, it was determined that a low-affinity binding site exists in the C-terminal domain, centered on Asp121. However, in the N-terminally acetylated protein, present in vivo, the Met1 site is blocked. In this work, we simplify the representation of the protein by modeling each experimentally found binding site as a complex between an N-terminally acetylated α-synuclein dipeptide (or several independent residues) and a Cu(II) cation, and compare the results with a number of additional, structurally analogous sites not experimentally found. This way of representing the binding sites, although extremely simple, allows us to reproduce experimental results and to provide a theoretical rationale to explain the preference of Cu(II) for certain sites, as well as explicit geometrical structures for the complexes formed. These results are important to understand the interactions between α-synuclein and Cu(II), one of the factors inducing structural changes in the protein and leading to aggregated forms of it which may play a role in neurodegeneration.

  8. Survival of human osteosarcoma cells and normal human fibroblasts following alpha particle irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.

    1981-01-01

    Cell survival of human osteosarcoma cells in culture following alpha particle irradiation is reported here for the first time. The osteosarcoma cell line (TE-85) is found to be less sensitive to inactivation by 5.6 MeV alpha particles (LET 86 keV/μm) than normal diploid human fibroblasts (NFS). Values for the mean lethal doses were estimated to be 103 rads for the TE-85 cells compared with 68 rads for the NFS cultures irradiated under identical conditions. It is postulated that the aneuploidy of the tumor cells with increased DNA chromosomal material may confer a selective advantage for the survival of tumor cells relative to normal cells with diploid chromosomes

  9. Fish Synucleins: An Update

    Directory of Open Access Journals (Sweden)

    Mattia Toni

    2015-10-01

    Full Text Available Synucleins (syns are a family of proteins involved in several human neurodegenerative diseases and tumors. Since the first syn discovery in the brain of the electric ray Torpedo californica, members of the same family have been identified in all vertebrates and comparative studies have indicated that syn proteins are evolutionary conserved. No counterparts of syns were found in invertebrates suggesting that they are vertebrate-specific proteins. Molecular studies showed that the number of syn members varies among vertebrates. Three genes encode for α-, β- and γ-syn in mammals and birds. However, a variable number of syn genes and encoded proteins is expressed or predicted in fish depending on the species. Among biologically verified sequences, four syn genes were identified in fugu, encoding for α, β and two γ (γ1 and γ2 isoforms, whereas only three genes are expressed in zebrafish, which lacks α-syn gene. The list of “non verified” sequences is much longer and is often found in sequence databases. In this review we provide an overview of published papers and known syn sequences in agnathans and fish that are likely to impact future studies in this field. Indeed, fish models may play a key role in elucidating some of the molecular mechanisms involved in physiological and pathological functions of syn proteins.

  10. Striatal dopamine transmission is subtly modified in human A53Tα-synuclein overexpressing mice.

    Directory of Open Access Journals (Sweden)

    Nicola J Platt

    Full Text Available Mutations in, or elevated dosage of, SNCA, the gene for α-synuclein (α-syn, cause familial Parkinson's disease (PD. Mouse lines overexpressing the mutant human A53Tα-syn may represent a model of early PD. They display progressive motor deficits, abnormal cellular accumulation of α-syn, and deficits in dopamine-dependent corticostriatal plasticity, which, in the absence of overt nigrostriatal degeneration, suggest there are age-related deficits in striatal dopamine (DA signalling. In addition A53Tα-syn overexpression in cultured rodent neurons has been reported to inhibit transmitter release. Therefore here we have characterized for the first time DA release in the striatum of mice overexpressing human A53Tα-syn, and explored whether A53Tα-syn overexpression causes deficits in the release of DA. We used fast-scan cyclic voltammetry to detect DA release at carbon-fibre microelectrodes in acute striatal slices from two different lines of A53Tα-syn-overexpressing mice, at up to 24 months. In A53Tα-syn overexpressors, mean DA release evoked by a single stimulus pulse was not different from wild-types, in either dorsal striatum or nucleus accumbens. However the frequency responsiveness of DA release was slightly modified in A53Tα-syn overexpressors, and in particular showed slight deficiency when the confounding effects of striatal ACh acting at presynaptic nicotinic receptors (nAChRs were antagonized. The re-release of DA was unmodified after single-pulse stimuli, but after prolonged stimulation trains, A53Tα-syn overexpressors showed enhanced recovery of DA release at old age, in keeping with elevated striatal DA content. In summary, A53Tα-syn overexpression in mice causes subtle changes in the regulation of DA release in the striatum. While modest, these modifications may indicate or contribute to striatal dysfunction.

  11. The Brainstem Pathologies of Parkinson's Disease and Dementia with Lewy Bodies

    NARCIS (Netherlands)

    Seidel, Kay; Mahlke, Josefine; Siswanto, Sonny; Krueger, Reijko; Heinsen, Helmut; Auburger, Georg; Bouzrou, Mohamed; Grinberg, Lea T.; Wicht, Helmut; Korf, Horst-Werner; den Dunnen, Wilfred; Rueb, Udo

    Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are among the human synucleinopathies, which show alpha-synuclein immunoreactive neuronal and/or glial aggregations and progressive neuronal loss in selected brain regions (eg, substantia nigra, ventral tegmental area, pedunculopontine

  12. Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Margarita Chumarina

    2017-03-01

    Full Text Available Mouse embryonic stem cell (mESC lines were derived by crossing heterozygous transgenic (tg mice expressing green fluorescent protein (GFP under the control of the rat tyrosine hydroxylase (TH promoter, with homozygous alpha-synuclein (aSYN mice expressing human mutant SNCAA53T under the control of the mouse Prion promoter (MoPrP, or wildtype (WT mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons.

  13. Identification of the human ApoAV gene as a novel ROR{alpha} target gene

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Ulrika [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Nilsson, Tina [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); McPheat, Jane [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Stroemstedt, Per-Erik [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Bamberg, Krister [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Balendran, Clare [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Kang, Daiwu [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden)

    2005-04-29

    Retinoic acid receptor-related orphan receptor-{alpha} (ROR{alpha}) (NR1F1) is an orphan nuclear receptor with a potential role in metabolism. Previous studies have shown that ROR{alpha} regulates transcription of the murine Apolipoprotein AI gene and human Apolipoprotein CIII genes. In the present study, we present evidence that ROR{alpha} also induces transcription of the human Apolipoprotein AV gene, a recently identified apolipoprotein associated with triglyceride levels. Adenovirus-mediated overexpression of ROR{alpha} increased the endogenous expression of ApoAV in HepG2 cells and ROR{alpha} also enhanced the activity of an ApoAV promoter construct in transiently transfected HepG2 cells. Deletion and mutation studies identified three AGGTCA motifs in the ApoAV promoter that mediate ROR{alpha} transactivation, one of which overlaps with a previously identified binding site for PPAR{alpha}. Together, these results suggest a novel mechanism whereby ROR{alpha} modulates lipid metabolism and implies ROR{alpha} as a potential target for the treatment of dyslipidemia and atherosclerosis.

  14. Ancient roots for polymorphism at the HLA-DQ. alpha. locus in primates

    Energy Technology Data Exchange (ETDEWEB)

    Gyllensten, U.B.; Erlich, H.A. (Cetus Corp., Emeryville, CA (USA))

    1989-12-01

    The genes encoding the human histocompatibility antigens (HLA) exhibit a remarkable degree of polymorphism as revealed by immunologic and molecular analyses. This extensive sequence polymorphism either may have been generated during the lifetime of the human species or could have arisen before speciation and been maintained in the contemporary human population by selection or, possibly, by genetic drift. These two hypotheses were examined using the polymerase chain reaction method to amplify polymorphic sequences from the DQ{alpha} locus, as well as the DX{alpha} locus, an homologous but nonexpressed locus, in a series of primates that diverged at known times. In general, the amino acid sequence of a specific human DQ{alpha} allelic type is more closely related to its chimpanzee or gorilla counterpart than to other human DQ{alpha} alleles. Phylogenetic analysis of the silent nucleotide position changes shows that the similarity of allelic types between species is due to common ancestry rather than convergent evolution. Thus, most of the polymorphism at the DQ{alpha} locus in the human species was already present at least 5 million years ago in the ancestral species that gave rise to the chimpanzee, gorilla, and human lineages. However, one of the DQ{alpha} alleles may have arisen after speciation by recombination between two ancestral alleles.

  15. The remarkable stability of chimeric, sialic acid-derived alpha/delta-peptides in human blood plasma.

    Science.gov (United States)

    Saludes, Jonel P; Natarajan, Arutselvan; DeNardo, Sally J; Gervay-Hague, Jacquelyn

    2010-05-01

    Peptides are labile toward proteolytic enzymes, and structural modifications are often required to prolong their metabolic half-life and increase resistance. One modification is the incorporation of non-alpha-amino acids into the peptide to deter recognition by hydrolytic enzymes. We previously reported the synthesis of chimeric alpha/delta-peptides from glutamic acids (Glu) and the sialic acid derivative Neu2en. Conformational analyses revealed these constructs adopt secondary structures in water and may serve as conformational surrogates of polysialic acid. Polysialic acid is a tumor-associated polysaccharide and is correlated with cancer metastasis. Soluble polysialic acid is rapidly cleared from the blood limiting its potential for vaccine development. One motivation in developing structural surrogates of polysialic acid was to create constructs with increased bioavailability. Here, we report plasma stability profiles of Glu/Neu2en alpha/delta-peptides. DOTA was conjugated at the peptide N-termini by solid phase peptide synthesis, radiolabeled with (111)In, incubated in human blood plasma at 37 degrees C, and their degradation patterns monitored by cellulose acetate electrophoresis and radioactivity counting. Results indicate that these peptides exhibit a long half-life that is two- to three-orders of magnitude higher than natural alpha-peptides. These findings provide a viable platform for the synthesis of plasma stable, sialic acid-derived peptides that may find pharmaceutical application.

  16. Interaction between viologen-phosphorus dendrimers and α-synuclein

    International Nuclear Information System (INIS)

    Milowska, Katarzyna; Grochowina, Justyna; Katir, Nadia; El Kadib, Abdelkrim; Majoral, Jean-Pierre; Bryszewska, Maria; Gabryelak, Teresa

    2013-01-01

    In this study the interaction between viologen-phosphorus dendrimers and α-synuclein (ASN) was examined. Polycationic viologen-phosphorus dendrimers (two positive charges per viologen unit) are novel compounds with relatively unknown properties. The influence of these viologen dendrimers on ASN was tested using fluorimetric and circular dichroism methods. ASN contains four tyrosine residues; therefore, the influence of dendrimers on protein molecular conformation by measuring the changes in the ASN fluorescence in the presence of dendrimers was evaluated. The interaction of dendrimers with free L-tyrosine was also monitored. Results show that viologen-phosphorus dendrimers interact with ASN; they quenched the fluorescence of ASN as well as free tyrosine by dynamic and static ways. However, the quenching was not accompanied by modifications in the ASN secondary structure. - Highlights: ► Interaction between viologen-phosphorus dendrimers and α-synuclein (ASN) was investigated. ► Viologen-phosphorus dendrimers can quench the fluorescence of tyrosine in ASN. ► Dendrimers caused red-shift in maximum of fluorescence. ► Viologen-phosphorus dendrimers did not change the secondary structure of ASN.

  17. α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9).

    Science.gov (United States)

    Daniel, Guillaume; Musso, Alessandra; Tsika, Elpida; Fiser, Aris; Glauser, Liliane; Pletnikova, Olga; Schneider, Bernard L; Moore, Darren J

    2015-01-01

    Mutations in the ATP13A2 (PARK9) gene cause early-onset, autosomal recessive Parkinson's disease (PD) and Kufor-Rakeb syndrome. ATP13A2 mRNA is spliced into three distinct isoforms encoding a P5-type ATPase involved in regulating heavy metal transport across vesicular membranes. Here, we demonstrate that three ATP13A2 mRNA isoforms are expressed in the normal human brain and are modestly increased in the cingulate cortex of PD cases. ATP13A2 can mediate protection toward a number of stressors in mammalian cells and can protect against α-synuclein-induced toxicity in cellular and invertebrate models of PD. Using a primary cortical neuronal model combined with lentiviral-mediated gene transfer, we demonstrate that human ATP13A2 isoforms 1 and 2 display selective neuroprotective effects toward toxicity induced by manganese and hydrogen peroxide exposure through an ATPase-independent mechanism. The familial PD mutations, F182L and G504R, abolish the neuroprotective effects of ATP13A2 consistent with a loss-of-function mechanism. We further demonstrate that the AAV-mediated overexpression of human ATP13A2 is not sufficient to attenuate dopaminergic neurodegeneration, neuropathology, and striatal dopamine and motoric deficits induced by human α-synuclein expression in a rat model of PD. Intriguingly, the delivery of an ATPase-deficient form of ATP13A2 (D513N) to the substantia nigra is sufficient to induce dopaminergic neuronal degeneration and motor deficits in rats, potentially suggesting a dominant-negative mechanism of action. Collectively, our data demonstrate a distinct lack of ATP13A2-mediated protection against α-synuclein-induced neurotoxicity in the rat nigrostriatal dopaminergic pathway, and limited neuroprotective capacity overall, and raise doubts about the potential of ATP13A2 as a therapeutic target for PD. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice

    International Nuclear Information System (INIS)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-01-01

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.

  19. Cloning and sequencing of the casein kinase 2 alpha subunit from Zea mays

    DEFF Research Database (Denmark)

    Dobrowolska, G; Boldyreff, B; Issinger, O G

    1991-01-01

    The nucleotide sequence of the cDNA coding for the alpha subunit of casein kinase 2 of Zea mays has been determined. The cDNA clone contains an open reading frame of 996 nucleotides encoding a polypeptide comprising 332 amino acids. The primary amino acid sequence exhibits 75% identity to the alpha...... subunit and 71% identity to the alpha' subunit of human casein kinase 2....

  20. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peigen; Allam, Ayman; Perez, Luis A; Taghian, Alphonse; Freeman, Jill; Suit, Herman D

    1995-04-30

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-{alpha}) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-{alpha} with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm{sup 3}, mice were randomly assigned to treatment: rHuTNF-{alpha} alone compared with normal saline control; or local radiation plus rHuTNF-{alpha} vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-{alpha} on this tumor. The TCD{sub 50} (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-{alpha} with local radiation. Results: Tumor growth in mice treated with a dose of 150 {mu}g/kg body weight rHuTNF-{alpha}, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-{alpha} also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-{alpha} starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD{sub 50} from the control value of 60.9 Gy to 50.5 Gy (p < 0.01). Conclusion: rHuTNF-{alpha} exhibits an antitumor effect against U87 xenograft in nude mice, as evidenced by an increased delay in tumor growth as well as cell loss factor. Also, there was an augmentation of tumor curability when given in combination with radiotherapy, resulting in a significantly lower TCD{sub 50} value in the treatment vs. the

  1. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons.

    Science.gov (United States)

    Schapansky, Jason; Khasnavis, Saurabh; DeAndrade, Mark P; Nardozzi, Jonathan D; Falkson, Samuel R; Boyd, Justin D; Sanderson, John B; Bartels, Tim; Melrose, Heather L; LaVoie, Matthew J

    2018-03-01

    Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation. Data from LRRK2 null model organisms and LRRK2-inhibitor treated animals support a physiological role for LRRK2 in regulating lysosome function. Since idiopathic and LRRK2-linked PD are associated with the intraneuronal accumulation of protein aggregates, a series of critical questions emerge. First, how do pathogenic mutations that increase LRRK2 kinase activity affect lysosome biology in neurons? Second, are mutation-induced changes in lysosome function sufficient to alter the metabolism of α-synuclein? Lastly, are changes caused by pathogenic mutation sensitive to reversal with LRRK2 kinase inhibitors? Here, we report that mutation of LRRK2 induces modest but significant changes in lysosomal morphology and acidification, and decreased basal autophagic flux when compared to WT neurons. These changes were associated with an accumulation of detergent-insoluble α-synuclein and increased neuronal release of α-synuclein and were reversed by pharmacologic inhibition of LRRK2 kinase activity. These data demonstrate a critical and disease-relevant influence of native neuronal LRRK2 kinase activity on lysosome function and α-synuclein homeostasis. Furthermore, they also suggest that lysosome dysfunction, altered neuronal α-synuclein metabolism, and the insidious accumulation of aggregated protein over decades may contribute to pathogenesis in this late-onset form of familial PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. α-Synuclein deficiency and efferent nerve degeneration in the mouse cochlea: a possible cause of early-onset presbycusis.

    Science.gov (United States)

    Park, S N; Back, S A; Choung, Y H; Kim, H L; Akil, O; Lustig, L R; Park, K H; Yeo, S W

    2011-11-01

    Efferent nerves under the outer hair cells (OHCs) play a role in the protection of these cells from loud stimuli. Previously, we showed that cochlear α-synuclein expression is localized to efferent auditory synapses at the base of the OHCs. To prove our hypothesis that α-synuclein deficiency and efferent auditory deficit might be a cause of hearing loss, we compared the morphology of efferent nerve endings and α-synuclein expression within the cochleae of two mouse models of presbycusis. Comparative animal study of presbycusis. The C57BL/6J(C57) mouse strain, a well-known model of early-onset hearing loss, and the CBA mouse strain, a model of relatively late-onset hearing loss, were examined. Auditory brainstem responses and distortion product otoacoustic emissions were recorded, and cochlear morphology with efferent nerve ending was compared. Western blotting was used to examine α-synuclein expression in the cochlea. Compared with CBA mice, C57 mice showed earlier onset high-frequency hearing loss and decreased function in OHCs, especially within high-frequency regions. C57 mice demonstrated more severe pathologic changes within the cochlea, particularly within the basal turn, than CBA mice of the same age. Weaker α-synuclein and synaptophysin expression in the efferent nerve endings and cochlear homogenates in C57 mice was observed. Our results support the hypothesis that efferent nerve degeneration, possibly due to differential α-synuclein expression, is a potential cause of early-onset presbycusis. Further studies at the cellular level are necessary to verify our results. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. alpha isoforms of soluble and membrane-linked folate-binding protein in human blood

    DEFF Research Database (Denmark)

    Hoier-Madsen, M.; Holm, J.; Hansen, S.I.

    2008-01-01

    supported the hypothesis that serum FBP (29 kDa) mainly originates from neutrophils. The presence of FBP/FR alpha isoforms were established for the first time in human blood using antibodies specifically directed against human milk FBP alpha. The alpha isoforms identified on erythrocyte membranes......, and in granulocytes and serum, only constituted an almost undetectable fraction of the functional FBP The FBP alpha in neutrophil granulocytes was identified as a cytoplasmic component by indirect immunofluorescence. Gel filtration of serum revealed a peak of FBP alpha (>120 kDa), which could represent receptor...... fragments from decomposed erythrocytes and granulocytes. The soluble FBPs may exert bacteriostatic effects and protect folates in plasma from biological degradation, whereas FRs on the surface of blood cells could be involved in intracellular folate uptake or serve as signal proteins. The latter receptors...

  4. Defined α-synuclein prion-like molecular assemblies spreading in cell culture.

    Science.gov (United States)

    Aulić, Suzana; Le, Tran Thanh Nhat; Moda, Fabio; Abounit, Saïda; Corvaglia, Stefania; Casalis, Loredana; Gustincich, Stefano; Zurzolo, Chiara; Tagliavini, Fabrizio; Legname, Giuseppe

    2014-06-04

    α-Synuclein (α-syn) plays a central role in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders that includes Parkinson disease, dementia with Lewy bodies and multiple system atrophy. Several findings from cell culture and mouse experiments suggest intercellular α-syn transfer. Through a methodology used to obtain synthetic mammalian prions, we tested whether recombinant human α-syn amyloids can promote prion-like accumulation in neuronal cell lines in vitro. A single exposure to amyloid fibrils of human α-syn was sufficient to induce aggregation of endogenous α-syn in human neuroblastoma SH-SY5Y cells. Remarkably, endogenous wild-type α-syn was sufficient for the formation of these aggregates, and overexpression of the protein was not required. Our results provide compelling evidence that endogenous α-syn can accumulate in cell culture after a single exposure to exogenous α-syn short amyloid fibrils. Importantly, using α-syn short amyloid fibrils as seed, endogenous α-syn aggregates and accumulates over several passages in cell culture, providing an excellent tool for potential therapeutic screening of pathogenic α-syn aggregates.

  5. Conformational landscape and pathway of disulfide bond reduction of human alpha defensin

    NARCIS (Netherlands)

    Snijder, Joost; Van De Waterbeemd, Michiel; Glover, Matthew S.; Shi, Liuqing; Clemmer, David E.; Heck, Albert J R

    2015-01-01

    Human alpha defensins are a class of antimicrobial peptides with additional antiviral activity. Such antimicrobial peptides constitute a major part of mammalian innate immunity. Alpha defensins contain six cysteines, which form three well defined disulfide bridges under oxidizing conditions.

  6. The Neuroprotective Role of Protein Quality Control in Halting the Development of Alpha-Synuclein Pathology

    Directory of Open Access Journals (Sweden)

    Destiny-Love Manecka

    2017-09-01

    Full Text Available Synucleinopathies are a family of neurodegenerative disorders that comprises Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Each of these disorders is characterized by devastating motor, cognitive, and autonomic consequences. Current treatments for synucleinopathies are not curative and are limited to improvement of quality of life for affected individuals. Although the underlying causes of these diseases are unknown, a shared pathological hallmark is the presence of proteinaceous inclusions containing the α-synuclein (α-syn protein in brain tissue. In the past few years, it has been proposed that these inclusions arise from the self-templated, prion-like spreading of misfolded and aggregated forms of α-syn throughout the brain, leading to neuronal dysfunction and death. In this review, we describe how impaired protein homeostasis is a prominent factor in the α-syn aggregation cascade, with alterations in protein quality control (PQC pathways observed in the brains of patients. We discuss how PQC modulates α-syn accumulation, misfolding and aggregation primarily through chaperoning activity, proteasomal degradation, and lysosome-mediated degradation. Finally, we provide an overview of experimental data indicating that targeting PQC pathways is a promising avenue to explore in the design of novel neuroprotective approaches that could impede the spreading of α-syn pathology and thus provide a curative treatment for synucleinopathies.

  7. Expression of human lymphotoxin alpha in Aspergillus niger

    NARCIS (Netherlands)

    Krasevec, N.; Hondel, C.A.M.J.J. van de; Komel, R.

    2000-01-01

    A gene-fusion expression strategy was applied for heterologous expression of human lymphotoxin alpha (LTα) in the Aspergillus niger AB1.13 protease-deficient strain. The LTα gene was fused with the A. niger glucoamylase GII-form as a carrier-gene, behind its transcription control and secretion

  8. Nanomolar oligomerization and selective co-aggregation of α-synuclein pathogenic mutants revealed by single-molecule fluorescence

    Science.gov (United States)

    Sierecki, Emma; Giles, Nichole; Bowden, Quill; Polinkovsky, Mark E.; Steinbeck, Janina; Arrioti, Nicholas; Rahman, Diya; Bhumkar, Akshay; Nicovich, Philip R.; Ross, Ian; Parton, Robert G.; Böcking, Till; Gambin, Yann

    2016-01-01

    Protein aggregation is a hallmark of many neurodegenerative diseases, notably Alzheimer’s and Parkinson’s disease. Parkinson’s disease is characterized by the presence of Lewy bodies, abnormal aggregates mainly composed of α-synuclein. Moreover, cases of familial Parkinson’s disease have been linked to mutations in α-synuclein. In this study, we compared the behavior of wild-type (WT) α-synuclein and five of its pathological mutants (A30P, E46K, H50Q, G51D and A53T). To this end, single-molecule fluorescence detection was coupled to cell-free protein expression to measure precisely the oligomerization of proteins without purification, denaturation or labelling steps. In these conditions, we could detect the formation of oligomeric and pre-fibrillar species at very short time scale and low micromolar concentrations. The pathogenic mutants surprisingly segregated into two classes: one group forming large aggregates and fibrils while the other tending to form mostly oligomers. Strikingly, co-expression experiments reveal that members from the different groups do not generally interact with each other, both at the fibril and monomer levels. Together, this data paints a completely different picture of α-synuclein aggregation, with two possible pathways leading to the development of fibrils. PMID:27892477

  9. Characterization of binding of human alpha 2-macroglobulin to group G streptococci

    International Nuclear Information System (INIS)

    Chhatwal, G.S.; Mueller, H.P.; Blobel, H.

    1983-01-01

    An interaction was observed between human alpha 2-macroglobulin (alpha 2M) and streptococci belonging to group A, C, and G. Of 27 group C and 19 group G streptococcal cultures, 13 and 14, respectively, bound 125 I-labeled alpha 2M. Some group A streptococci also interacted with alpha 2M. A number of other bacterial species tested did not react with alpha 2M. The binding of 125 I-labeled alpha 2M to group G streptococci was time dependent, saturable, and could be inhibited by unlabeled alpha 2M. Inhibition experiments indicated that the streptococcal binding site for alpha 2M differed from the receptors for immunoglobulin G, fibrinogen, aggregated beta 2-microglobulin, albumin, and fibronectin. The alpha 2M binding activity was remarkably sensitive to trypsin and heat treatment indicating its protein nature. Kinetic analysis indicated a homogenous population of binding sites. The number of binding sites per bacterial cell was estimated to be approximately 20,000

  10. Human myometrial adrenergic receptors during pregnancy: identification of the alpha-adrenergic receptor by [3H] dihydroergocryptine binding

    International Nuclear Information System (INIS)

    Jacobs, M.M.; Hayashida, D.; Roberts, J.M.

    1985-01-01

    The radioactive alpha-adrenergic antagonist [ 3 H] dihydroergocryptine binds to particulate preparations of term pregnant human myometrium in a manner compatible with binding to the alpha-adrenergic receptor (alpha-receptor). [ 3 H] Dihydroergocryptine binds with high affinity (KD = 2 nmol/L and low capacity (receptor concentration = 100 fmol/mg of protein). Adrenergic agonists compete for [ 3 H] dihydroergocryptine binding sites stereo-selectively ([-]-norepinephrine is 100 times as potent as [+]-norepinephrine) and in a manner compatible with alpha-adrenergic potencies (epinephrine approximately equal to norepinephrine much greater than isoproterenol). Studies in which prazosin, an alpha 1-antagonist, and yohimbine, and alpha 2-antagonist, competed for [ 3 H] dihydroergocryptine binding sites in human myometrium indicated that approximately 70% are alpha 2-receptors and that 30% are alpha 1-receptors. [ 3 H] dihydroergocryptine binding to human myometrial membrane particulate provides an important tool with which to study the molecular mechanisms of uterine alpha-adrenergic response

  11. Analysis of Maxi-K alpha subunit splice variants in human myometrium

    Directory of Open Access Journals (Sweden)

    Morrison John J

    2004-09-01

    Full Text Available Abstract Background Large-conductance, calcium-activated potassium (Maxi-K channels are implicated in the modulation of human uterine contractions and myometrial Ca2+ homeostasis. However, the regulatory mechanism(s governing the expression of Maxi-K channels with decreased calcium sensitivity at parturition are unclear. The objectives of this study were to investigate mRNA expression of the Maxi-K alpha subunit, and that of its splice variants, in human non-pregnant and pregnant myometrium, prior to and after labour onset, to determine whether altered expression of these splice variants is associated with decreased calcium sensitivity observed at labour onset. Methods Myometrial biopsies were obtained at hysterectomy (non-pregnant, NP, and at Caesarean section, at elective (pregnant not-in-labour, PNL and intrapartum (pregnant in-labour, PL procedures. RNA was extracted from all biopsies and quantitative real-time RT-PCR was used to investigate for possible differential expression of the Maxi-K alpha subunit, and that of its splice variants, between these functionally-distinct myometrial tissue sets. Results RT-PCR analysis identified the presence of a 132 bp and an 87 bp spliced exon of the Maxi-K alpha subunit in all three myometrial tissue sets. Quantitative real-time PCR indicated a decrease in the expression of the Maxi-K alpha subunit with labour onset. While there was no change in the proportion of Maxi-K alpha subunits expressing the 87 bp spliced exon, the proportion of alpha subunits expressing the 132 bp spliced exon was significantly increased with labour onset, compared to both non-pregnant and pregnant not-in-labour tissues. An increased proportion of 132 bp exon-containing alpha subunit variants with labour onset is of interest, as channels expressing this spliced exon have decreased calcium and voltage sensitivities. Conclusions Our findings suggest that decreased Maxi-K alpha subunit mRNA expression in human myometrium at

  12. Acute moderate elevation of TNF-{alpha} does not affect systemic and skeletal muscle protein turnover in healthy humans

    DEFF Research Database (Denmark)

    Petersen, Anne Marie; Plomgaard, Peter; Fischer, Christian P

    2009-01-01

    -alpha infusion (rhTNF-alpha). We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibit synthesis. Subjects and Methods: Using a randomized controlled, crossover design post-absorptive healthy young males (n=8) were studied 2 hours under basal conditions followed by 4 hours infusion...... with the phenylalanine 3-compartment model showed similar muscle synthesis, breakdown and net muscle degradation after 2 hours basal and after 4 hours Control or rhTNF-alpha infusion. Conclusion: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when......Context: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. Objective: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover, via a 4 hours recombinant human TNF...

  13. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    2007-06-01

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  14. Human skeletal uptake of natural alpha radioactivity from 210Pb-supported 210Po

    International Nuclear Information System (INIS)

    Oyedepo, A.C.

    1998-06-01

    This thesis contributes to increasing knowledge on the dosimetry of natural alpha-particle radiation in skeletal tissues, particularly in utero, and associated risks of malignancy. Alpha-particle radiation is an established aetiological factor of cancer. In the human body, polonium-210 decayed from skeletal lead-210 ( 210 Pb/ 210 Po) is the predominant natural alpha-emitter. 210 Pb displaces calcium (Ca) in mineral hydroxyapatite, especially during periods of rapid bone growth and remodelling when Ca is laid down. It was therefore necessary to study alpha activity uptake and calcification concurrently within bone. Human studies were undertaken on: fetal vertebrae, 17 - 42 weeks of gestation, 74 samples; adult vertebrae, 40 - 95 years, 40 samples; and adult ribs, 20 - 95 years, 51 samples. Specimens were unconcentrated and weighed 210 Pb/ 210 Po. Alpha track data were resolved by specially written software named SPATS (Selection Program for Analysing Track Structures). Ca and phosphorus (P) were biochemically determined. Results were examined for trends in bone type, gender and chronological ageing in humans. The main research findings were: 1) The Ca content of fetal vertebrae increased linearly at a weekly rate of 0.2g Ca 100 g -1 wet bone (typical values of 2, 4, 6 g 100 g -1 at 16, 26 and 36 weeks). 2) The P concentration also increased with advancing fetal age. 3) The Ca:P bone weight ratio rose from 1.7 to 2.2 by 32 gestational weeks. 4) The overall range in bone 210 Pb/ 210 Po alpha activity was 0.25 - 1.1 Bq kg -1 with correlation between activity concentration and fetal age (0.47 ± 0.05 Bq kg -1 for 17 - 26 weeks, 0.67 ± 0.04 Bq kg -1 for 32 - 42 weeks). 5) The correlation between increased alpha radioactivity and increased Ca concentration approximating to 0.0046 Bq g -1 of Ca. 6) A decreasing Ca content of adult vertebrae with increasing age from 40 - 95 years, from ∼ 14 to 5 g 100 g-1, but no correlation with age for adult rib Ca content of 10 - 30 g

  15. Measurement of gross alpha and gross beta activity concentrations in human tooth

    International Nuclear Information System (INIS)

    Soeguet, Omer; Aydin, Mehmet Fatih; Kuecuekoender, Erdal; Zorer, Ozlem Selcuk; Dogru, Mahmut

    2010-01-01

    The gross alpha and gross beta activity concentrations were measured in human tooth taken from 3 to 6 age-groups to 40 and over ones. Accumulated teeth samples are investigated in two groups as under and above 18 years. The gross alpha and beta radioactivity of human tooth samples was measured by using a gas-flow proportional counter (PIC-MPC 9604-α/β counter). In tooth samples, for female age-groups, the obtained results show that the mean gross alpha and gross beta activity concentrations varied between 0.534-0.203 and 0.010-0.453 Bq g -1 and the same concentrations for male age-groups varied between 0.009-1.168 and 0.071-0.204 Bq g -1 , respectively.

  16. Choosing an alpha radiation weighting factor for doses to non-human biota

    International Nuclear Information System (INIS)

    Chambers, Douglas B.; Osborne, Richard V.; Garva, Amy L.

    2006-01-01

    The risk to non-human biota from exposure to ionizing radiation is of current international interest. In calculating radiation doses to humans, it is common to multiply the absorbed dose by a factor to account for the relative biological effectiveness (RBE) of the radiation type. However, there is no international consensus on the appropriate value of such a factor for weighting doses to non-human biota. This paper summarizes our review of the literature on experimentally determined RBEs for internally deposited alpha-emitting radionuclides. The relevancy of each experimental result in selecting a radiation weighting factor for doses from alpha particles in biota was judged on the basis of criteria established a priori. We recommend a nominal alpha radiation weighting factor of 5 for population-relevant deterministic and stochastic endpoints, but to reflect the limitations in the experimental data, uncertainty ranges of 1-10 and 1-20 were selected for population-relevant deterministic and stochastic endpoints, respectively

  17. 15 beta-hydroxysteroids (Part IV). Steroids of the human perinatal period: the synthesis of 3 alpha,15 beta,17 alpha-trihydroxy-5 alpha-pregnan-20-one and its A/B-ring configurational isomers.

    Science.gov (United States)

    Reeder, A Y; Joannou, G E

    1995-12-01

    In recent years several 15 beta-hydroxysteroids have emerged pathognomonic of adrenal disorders in human neonates of which 3 alpha,15 beta,17 alpha-trihydroxy-5 beta-pregnan-20-one (2) was the first to be identified in the urine of newborn infants affected with congenital adrenal hyperplasia. In this investigation we report the synthesis of the three remaining 3 xi,5 xi-isomers, namely 3 alpha,15 beta,17 alpha-trihydroxy-5 alpha-pregnan-20-one (3), 3 beta,15 beta,17 alpha-trihydroxy-5 alpha-pregnan-20-one (7) and 3 beta,15 beta,17 alpha-trihydroxy-5 beta-pregnan-20-one (8) for their definitive identification in pathological conditions in human neonates. 3 beta,15 beta-Diacetoxy-17 alpha-hydroxy-5-pregnen-20-one (11), a product of chemical synthesis was converted to the isomeric 3 and 7, while conversion of 15 beta,17 alpha-dihydroxy-4-pregnen-3,20-dione (4), a product of microbiological transformation, resulted in the preparation of 8. In brief, selective acetate hydrolysis of 11 gave 15 beta-acetoxy-3 beta,17 alpha-dihydroxy-5-pregnen-20-one (12) which on catalytic hydrogenation gave 15 beta-acetoxy-3 beta,17 alpha-dihydroxy-5 alpha-pregnan-20-one (13) a common intermediate for the synthesis of the 3 beta(and alpha),5 alpha-isomers. Hydrolysis of the 15 beta-acetate gave 7, whereas oxidation with pyridinium chlorochromate gave 15 beta-acetoxy-17 alpha-hydroxy-5 alpha-pregnan-3,20-dione (14) which on reduction with L-Selectride and hydrolysis of the 15 beta-acetate gave 3. Finally, hydrogenation of 4 gave 15 beta, 17 alpha-dihydroxy-5 beta-pregnan-3,20-dione (10) which on reduction with L-Selectride gave 8.

  18. alpha AD alpha hybrids of Cryptococcus neoformans: evidence of same-sex mating in nature and hybrid fitness.

    Directory of Open Access Journals (Sweden)

    Xiaorong Lin

    2007-10-01

    Full Text Available Cryptococcus neoformans is a ubiquitous human fungal pathogen that causes meningoencephalitis in predominantly immunocompromised hosts. The fungus is typically haploid, and sexual reproduction involves two individuals with opposite mating types/sexes, alpha and a. However, the overwhelming predominance of mating type (MAT alpha over a in C. neoformans populations limits alpha-a mating in nature. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions, especially between alpha isolates. Whether same-sex mating occurs in nature and contributes to the current population structure was unknown. In this study, natural alpha AD alpha hybrids that arose by fusion between two alpha cells of different serotypes (A and D were identified and characterized, providing definitive evidence that same-sex mating occurs naturally. A novel truncated allele of the mating-type-specific cell identity determinant SXI1 alpha was also identified as a genetic factor likely involved in this process. In addition, laboratory-constructed alpha AD alpha strains exhibited hybrid vigor both in vitro and in vivo, providing a plausible explanation for their relative abundance in nature despite the fact that AD hybrids are inefficient in meiosis/sporulation and are trapped in the diploid state. These findings provide insights on the origins, genetic mechanisms, and fitness impact of unisexual hybridization in the Cryptococcus population.

  19. Increased virulence and competitive advantage of a/alpha over a/a or alpha/alpha offspring conserves the mating system of Candida albicans.

    Science.gov (United States)

    Lockhart, Shawn R; Wu, Wei; Radke, Joshua B; Zhao, Rui; Soll, David R

    2005-04-01

    The majority of Candida albicans strains in nature are a/alpha and must undergo homozygosis to a/a or alpha/alpha to mate. Here we have used a mouse model for systemic infection to test the hypothesis that a/alpha strains predominate in nature because they have a competitive advantage over a/a and alpha/alpha offspring in colonizing hosts. Single-strain injection experiments revealed that a/alpha strains were far more virulent than either their a/a or alpha/alpha offspring. When equal numbers of parent a/alpha and offspring a/a or alpha/alpha cells were co-injected, a/alpha always exhibited a competitive advantage at the time of extreme host morbidity or death. When equal numbers of an engineered a/a/alpha2 strain and its isogenic a/a parent strain were co-injected, the a/a/alpha2 strain exhibited a competitive advantage at the time of host morbidity or death, suggesting that the genotype of the mating-type (MTL) locus, not associated genes on chromosome 5, provides a competitive advantage. We therefore propose that heterozygosity at the MTL locus not only represses white-opaque switching and genes involved in the mating process, but also affects virulence, providing a competitive advantage to the a/alpha genotype that conserves the mating system of C. albicans in nature.

  20. Single particle detection and characterization of synuclein co-aggregation

    International Nuclear Information System (INIS)

    Giese, Armin; Bader, Benedikt; Bieschke, Jan; Schaffar, Gregor; Odoy, Sabine; Kahle, Philipp J.; Haass, Christian; Kretzschmar, Hans

    2005-01-01

    Protein aggregation is the key event in a number of human diseases such as Alzheimer's and Parkinson's disease. We present a general method to quantify and characterize protein aggregates by dual-colour scanning for intensely fluorescent targets (SIFT). In addition to high sensitivity, this approach offers a unique opportunity to study co-aggregation processes. As the ratio of two fluorescently labelled components can be analysed for each aggregate separately in a homogeneous assay, the molecular composition of aggregates can be studied even in samples containing a mixture of different types of aggregates. Using this method, we could show that wild-type α-synuclein forms co-aggregates with a mutant variant found in familial Parkinson's disease. Moreover, we found a striking increase in aggregate formation at non-equimolar mixing ratios, which may have important therapeutic implications, as lowering the relative amount of aberrant protein may cause an increase of protein aggregation leading to adverse effects

  1. High-density lipoprotein-like particle formation of Synuclein variants.

    Science.gov (United States)

    Eichmann, Cédric; Kumari, Pratibha; Riek, Roland

    2017-01-01

    α-Synuclein (α-Syn) is an intrinsically disordered protein in solution whose fibrillar aggregates are the hallmark of Parkinson's disease (PD). Although the specific function of α-Syn is still unclear, its high structural plasticity is key for the interactions of α-Syn with biological membranes. Recently, it has been observed that α-Syn is able to form high-density lipoprotein-like (HDL-like) particles that are reminiscent of self-assembling phospholipid bilayer nanodiscs. Here, we extended our preparation method for the production of α-Syn lipoprotein particles to the β- and γ-Syn variants, and the PD-related familial α-Syn mutants. We show that all human Syns can form stable and homogeneous populations of HDL-like particles with distinct morphologies. Our results characterize the impact of the individual Syns on the formation capacity of these particles and indicate that Syn HDL-like particles are neither causing toxicity nor a toxicity-related loss of α-Syn in PD. © 2016 Federation of European Biochemical Societies.

  2. Interaction of Synuclein and Inflammation in Dopaminergic Neurodegeneration

    Science.gov (United States)

    2014-06-01

    induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res. 19: 63-72, (2011). Kalia, L. V., S...1998). Zhang J, Niu N, Wang M, McNutt MA, Zhang D, Zhang B, Lu S, Liu Y, Liu Z. Neuron-derived IgG protects dopaminergic neurons from insult by 6...AD_________________ Award Number: W81XWH-08-1-0465 TITLE: Interaction of Synuclein and Inflammation in Dopaminergic

  3. Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Lennon, V A; Lambert, E H; Leiby, K R; Okarma, T B; Talib, S

    1991-04-01

    A synthetic gene encoding the 210 N-terminal residues of the alpha-subunit of the nicotinic acetylcholine receptor (AChR) of human skeletal muscle was cloned into an inducible expression plasmid to produce a fusion protein in high yield in Escherichia coli. Like native human AChR, the recombinant human alpha 1-210 protein induced AChR-binding, AChR-modulating, and AChR-blocking autoantibodies in rats when injected once intradermally as an emulsion in CFA, with Bordetella pertussis vaccine as supplementary adjuvant. The minimum dose of recombinant protein required to induce biochemical signs of experimental autoimmune myasthenia gravis (EAMG) with 100% incidence was 2.2 micrograms. With 6.6 to 22 micrograms, serum levels of autoantibodies were persistent, and clinically apparent EAMG lasted more than a month. Clinical, electrophysiological, and biochemical indices of EAMG induced by doses of 66 micrograms or more were more uniformly severe and persistent, with 33% fatality. Rats receiving a control extract of E. coli containing plasmid without the alpha 1-210 codon insert, with adjuvants, did not develop autoantibodies or signs of EAMG. This highly reproducible new model of EAMG induced by a recombinant human autoantigen should be valuable for testing Ag-specific immunotherapeutic strategies that might be applicable to treating acquired myasthenia gravis in humans.

  4. Human ADAM 12 (meltrin alpha) is an active metalloprotease

    DEFF Research Database (Denmark)

    Loechel, F; Gilpin, B J; Engvall, E

    1998-01-01

    The ADAMs (a disintegrin and metalloprotease) are a family of multidomain proteins with structural homology to snake venom metalloproteases. We recently described the cloning and sequencing of human ADAM 12 (meltrin alpha). In this report we provide evidence that the metalloprotease domain of ADAM...

  5. A Managerial Approach To A Controversial Exhibition: The Human Body

    Directory of Open Access Journals (Sweden)

    Viorica Aura Păuş

    2013-12-01

    Full Text Available This paper will analyse the reception of the Human Body exhibition of 2013 in Romania, from a managerial point of view. The research is based on the exhibition visitors’ book, to which a content analysis was applied. The main aim of the paper is to investigate how the ‘Grigore Antipa’ Museum (Romania constructed the cultural context in which the scientific arguments prevailed over the religious ones, turning the exhibition of plastinated human bodies into an accepted public event, with a strong emphasis on education and science (medicine. At the same time, ethical concerns and religious criticism were downplayed by maintaining the focus on the ‘education for health’ frame.

  6. Evidence for alpha-MSH binding sites on human scalp hair follicles: preliminary results

    NARCIS (Netherlands)

    Nanninga, P. B.; Ghanem, G. E.; Lejeune, F. J.; Bos, J. D.; Westerhof, W.

    1991-01-01

    Alpha-MSH, considered an important pigmentation hormone, binds to melanocytes and is thought to stimulate melanogenesis through a cyclic-AMP-dependent mechanism. The binding of alpha-MSH to follicular melanocytes has been investigated in human hair of different colors, ranging from black to blond

  7. In vitro cytotoxicity of human recombinant tumor necrosis factor alpha in association with radiotherapy in a human ovarian carcinoma cell line

    International Nuclear Information System (INIS)

    Manetta, A.; Lucci, J.; Soopikian, J.; Granger, G.; Berman, M.L.; DiSaia, P.J.

    1990-01-01

    It has been speculated that tumor necrosis factor alpha (TNF-alpha) may decrease the cytotoxicity of radiotherapy by increasing the scavenging of toxic superoxide radicals. Because of the possible clinical implications, the cytotoxicity of TNF-alpha in combination with radiotherapy (RT) was compared with that of RT alone in a human ovarian cancer cell line. NIH:OVCAR-3 cells were incubated with TNF-alpha at 10.0, 1.0, 0.1, and 0.01 microgram/ml. Plates were divided into two groups; one received 150 cGy of radiotherapy and the other received no further therapy. Seventy-two hours later, supernatants were aspirated and viable cells were stained with a 1% solution of crystal violet. Survival of cells treated with RT plus TNF-alpha was expressed as a percentage of surviving irradiated controls. Analysis of results revealed minimal additive cell killing effect between TNF-alpha and radiotherapy at all concentrations of tumor necrosis factor, with the greatest difference noted in the group treated with 10 micrograms/ml TNF-alpha. A continued radiotherapy dose-response study with TNF-alpha showed a similar additive, not radioprotective, effect. This may have implication as a potentiator of RT in some human tumors

  8. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.; Lennon, V.A.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodies to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.

  9. Chameleon behaviour of α-synuclein: brownian dynamics simulations of protein aggregation

    NARCIS (Netherlands)

    Ilie, Ioana Mariuca

    2015-01-01

    Over the past decades a large number of studies have been carried out in order to determine the physiological function of α-synuclein and its implication in Parkinson's disease. A complementary tool to experiments are computer simulations, which are intensively used for problems for which

  10. Targeting α-synuclein oligomers

    DEFF Research Database (Denmark)

    van Diggelen, Femke

    Parkinson’s Disease (PD) is a complex disease, characterised by degeneration of neocortical, limbic and nigrostriatal neurons. It is unknown what initiates neurodegeneration, but soluble oligomers of the protein α-synuclein (αSn) seem to be particularly toxic, compared to insoluble fibrils...... unique characteristics, e.g. they were recognized by different conformational antibodies and DHA–αSOs also formed a second elongated species in addition to the dominant spherical species. Although further functional testing is needed, this suggests that each species has its own distinct toxic mechanism......+/K+ ATPase, V-type ATPase, VDAC, CaMKII and Rab-3A. The identification of these targets is a first step towards unravelling the toxic pathways which are activated upon synaptic binding of extracellularly added αSOs, and hopefully will contribute to the discovery of new disease modifying compounds, which can...

  11. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver.

    Science.gov (United States)

    Deyashiki, Y; Tamada, Y; Miyabe, Y; Nakanishi, M; Matsuura, K; Hara, A

    1995-08-01

    Human liver cytosol contains multiple forms of 3 alpha-hydroxysteroid dehydrogenase and dihydrodiol dehydrogenase with hydroxysteroid dehydrogenase activity, and multiple cDNAs for the enzymes have been cloned from human liver cDNA libraries. To understand the relationship of the multiple enzyme froms to the genes, a cDNA, which has been reported to code for an isoenzyme of human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase, was expressed in Escherichia coli. The recombinant enzyme showed structural and functional properties almost identical to those of the isoenzyme purified from human liver. In addition, the recombinant isoenzyme efficiently reduced 5 alpha-dihydrotestosterone and 5 beta-dihydrocortisone, the known substrates of human liver 3 alpha-hydroxysteroid dehydrogenase and chlordecone reductase previously purified, which suggests that these human liver enzymes are identical. Furthermore, the steady-state kinetic data for NADP(+)-linked (S)-1-indanol oxidation by the recombinant isoenzyme were consistent with a sequential ordered mechanism in which NADP+ binds first. Phenolphthalein inhibited this isoenzyme much more potently than it did the other human liver dihydrodiol dehydrogenases, and was a competitive inhibitor (Ki = 20 nM) that bound to the enzyme-NADP+ complex.

  12. The T alpha 2 nuclear protein binding site from the human T cell receptor alpha enhancer functions as both a T cell-specific transcriptional activator and repressor

    OpenAIRE

    1990-01-01

    T cell-specific expression of the human T cell receptor alpha (TCR- alpha) gene is regulated by the interaction of variable region promoter elements with a transcriptional enhancer that is located 4.5 kb 3' of the TCR-alpha constant region (C alpha) gene segment. The minimal TCR- alpha enhancer is composed of two nuclear protein binding sites, T alpha 1 and T alpha 2, that are both required for the T cell-specific activity of the enhancer. The T alpha 1 binding site contains a consensus cAMP ...

  13. Evaluating the relationship between amyloid-β and α-synuclein phosphorylated at Ser129 in dementia with Lewy bodies and Parkinson’s disease

    OpenAIRE

    Swirski, Marta; Miners, J Scott; de Silva, Rohan; Lashley, Tammaryn; Ling, Helen; Holton, Janice; Revesz, Tamas; Love, Seth

    2014-01-01

    Introduction Lewy body and Alzheimer-type pathologies often co-exist. Several studies suggest a synergistic relationship between amyloid-β (Aβ) and α-synuclein (α-syn) accumulation. We have explored the relationship between Aβ accumulation and the phosphorylation of α-syn at serine-129 (pSer129 α-syn), in post-mortem human brain tissue and in SH-SY5Y neuroblastoma cells transfected to overexpress human α-syn. Methods We measured levels of Aβ40, Aβ42, α-syn and pSer129 α-syn by sandwich enzyme...

  14. Expression and function of hypoxia inducible factor-1 alpha in human melanoma under non-hypoxic conditions

    Directory of Open Access Journals (Sweden)

    Joshi Sandeep S

    2009-11-01

    Full Text Available Abstract Background Hypoxia inducible factor-1 alpha (HIF-1α protein is rapidly degraded under normoxic conditions. When oxygen tensions fall HIF-1α protein stabilizes and transactivates genes involved in adaptation to hypoxic conditions. We have examined the normoxic expression of HIF-1α RNA and protein in normal human melanocytes and a series of human melanoma cell lines isolated from radial growth phase (RGP, vertical growth phase (VGP and metastatic (MET melanomas. Results HIF-1α mRNA and protein was increased in RGP vs melanocytes, VGP vs RGP and MET vs VGP melanoma cell lines. We also detected expression of a HIF-1α mRNA splice variant that lacks part of the oxygen-dependent regulation domain in WM1366 and WM9 melanoma cells. Over-expression of HIF-1α and its splice variant in the RGP cell line SbCl2 resulted in a small increase in soft agar colony formation and a large increase in matrigel invasion relative to control transfected cells. Knockdown of HIF-1α expression by siRNA in the MET WM9 melanoma cell line resulted in a large decrease in both soft agar colony formation and matrigel invasion relative to cells treated with non-specific siRNA. There is a high level of ERK1/2 phosphorylation in WM9 cells, indicating an activated Ras-Raf-MEK-ERK1/2 MAPK pathway. Treatment of WM9 cells with 30 μM U0126 MEK inhibitor, decreased ERK1/2 phosphorylation and resulted in a decrease in HIF-1α expression. However, a 24 h treatment with 10 μM U0126 totally eliminated Erk1/2 phosphorylation, but did not change HIF-1alpha levels. Furthermore, siRNA knockdown of MEK siRNA did not change HIF-1alpha levels. Conclusion We speculate that metabolic products of U0126 decrease HIF-1alpha expression through "off target" effects. Overall our data suggest that increased HIF-1α expression under normoxic conditions contributes to some of the malignant phenotypes exhibited by human melanoma cells. The expanded role of HIF-1α in melanoma biology increases

  15. Interaction between subclinical doses of the Parkinson's disease associated gene, α-synuclein, and the pesticide, rotenone, precipitates motor dysfunction and nigrostriatal neurodegeneration in rats.

    Science.gov (United States)

    Naughton, Carol; O'Toole, Daniel; Kirik, Deniz; Dowd, Eilís

    2017-01-01

    In most patients, Parkinson's disease is thought to emerge after a lifetime of exposure to, and interaction between, various genetic and environmental risk factors. One of the key genetic factors linked to this condition is α-synuclein, and the α-synuclein protein is pathologically associated with idiopathic cases. However, α-synuclein pathology is also present in presymptomatic, clinically "normal" individuals suggesting that environmental factors, such as Parkinson's disease-linked agricultural pesticides, may be required to precipitate Parkinson's disease in these individuals. In this context, the aim of this study was to assess the behavioural and neuropathological impact of exposing rats with a subclinical load of α-synuclein to subclinical doses of the organic pesticide, rotenone. Rats were randomly assigned to two groups for intra-nigral infusion of AAV 2/5- GFP or AAV 2/5 -α-synuclein. Post viral motor function was assessed at 8, 10 and 12 weeks in the Corridor, Stepping and Whisker tests of lateralised motor function. At week 12, animals were performance-matched to receive a subsequent intra-striatal challenge of the organic pesticide rotenone (or its vehicle) to yield four final groups (Control, Rotenone, AAV 2/5 -α-synuclein and Combined). Behavioural testing resumed one week after rotenone surgery and continued for 5 weeks. We found that, when administered alone, neither intra-nigral AAV-α-synuclein nor intra-striatal rotenone caused sufficient nigrostriatal neurodegeneration to induce a significant motor impairment in their own right. However, when these were administered sequentially to the same rats, the interaction between the two Parkinsonian challenges significantly exacerbated nigrostriatal neurodegeneration which precipitated a pronounced impairment in motor function. These results indicate that exposing rats with a subclinical α-synuclein-induced pathology to the pesticide, rotenone, profoundly exacerbates their Parkinsonian

  16. On studying protein phosphorylation patterns using bottom-up LC-MS/MS: the case of human alpha-casein

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Savitski, Mikhail M; Nielsen, Michael L

    2007-01-01

    -LC-MS/MS. The occupancy rates of phosphosites in proteins may differ by orders of magnitude, and thus the occupancy rate must be reported for each occupied phosphosite. To highlight potential pitfalls in quantifying the occupancy rates, alpha(s1)-casein from human milk was selected as a model molecule representing...... moderately phosphorylated proteins. For this purpose, human milk from one Caucasian woman in the eighth month of lactation was used. The phosphorylation level of caseins is believed to have major implications for the formation of micelles that are involved in delivering valuable calcium phosphate and other...... minerals to the new-born. Human alpha(s1)-casein has been reported to be much less phosphorylated than ruminant caseins, which may indicate a different function of caseins in humans. Revealing the phosphorylation pattern in human casein can thus shed light on its function. The current study found...

  17. Interaction of C-terminal truncated human alphaA-crystallins with target proteins.

    Directory of Open Access Journals (Sweden)

    Anbarasu Kumarasamy

    2008-09-01

    Full Text Available Significant portion of alphaA-crystallin in human lenses exists as C-terminal residues cleaved at residues 172, 168, and 162. Chaperone activity, determined with alcohol dehydrogenase (ADH and betaL-crystallin as target proteins, was increased in alphaA(1-172 and decreased in alphaA(1-168 and alphaA(1-162. The purpose of this study was to show whether the absence of the C-terminal residues influences protein-protein interactions with target proteins.Our hypothesis is that the chaperone-target protein binding kinetics, otherwise termed subunit exchange rates, are expected to reflect the changes in chaperone activity. To study this, we have relied on fluorescence resonance energy transfer (FRET utilizing amine specific and cysteine specific fluorescent probes. The subunit exchange rate (k for ADH and alphaA(1-172 was nearly the same as that of ADH and alphaA-wt, alphaA(1-168 had lower and alphaA(1-162 had the lowest k values. When betaL-crystallin was used as the target protein, alphaA(1-172 had slightly higher k value than alphaA-wt and alphaA(1-168 and alphaA(1-162 had lower k values. As expected from earlier studies, the chaperone activity of alphaA(1-172 was slightly better than that of alphaA-wt, the chaperone activity of alphaA(1-168 was similar to that of alphaA-wt and alphaA(1-162 had substantially decreased chaperone activity.Cleavage of eleven C-terminal residues including Arg-163 and the C-terminal flexible arm significantly affects the interaction with target proteins. The predominantly hydrophilic flexible arm appears to be needed to keep the chaperone-target protein complex soluble.

  18. α-Synuclein pathology in the cranial and spinal nerves in Lewy body disease.

    Science.gov (United States)

    Nakamura, Keiko; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Kakita, Akiyoshi; Takahashi, Hitoshi; Yamada, Masahito; Wakabayashi, Koichi

    2016-06-01

    Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA. © 2015 Japanese Society of Neuropathology.

  19. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  20. Expression of active recombinant human alpha 1-antitrypsin in transgenic rabbits

    NARCIS (Netherlands)

    Massoud, M.; Bischoff, Rainer; Dalemans, W.; Pointu, H.; Attal, J.; Schultz, H.; Clesse, D.; Stinnakre, M.G.; Pavirani, A.; Houdebine, L.M.

    1991-01-01

    A DNA construct containing the human alpha 1-antitrypsin gene including 1.5 and 4 kb of 5' and 3' flanking sequences, was microinjected into the pronucleus of rabbit embryos. The recombinant human protein was (a) expressed in the blood circulation of F0 and F1 transgenic rabbits at an average

  1. Statins and PPAR{alpha} agonists induce myotoxicity in differentiated rat skeletal muscle cultures but do not exhibit synergy with co-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy E [Department of Safety Assessment, Merck Research Laboratories, WP45-319, Merck Research Laboratories, West Point, PA 19486 (United States); Zhang, Xiaohua [Department of Biometrics Research, Merck Research Laboratories, West Point, PA 19486 (United States); Shi, Shu [Department of Safety Assessment, Merck Research Laboratories, WP45-319, Merck Research Laboratories, West Point, PA 19486 (United States); Umbenhauer, Diane R [Department of Safety Assessment, Merck Research Laboratories, WP45-319, Merck Research Laboratories, West Point, PA 19486 (United States)

    2005-11-01

    Statins and fibrates (weak PPAR{alpha} agonists) are prescribed for the treatment of lipid disorders. Both drugs cause myopathy, but with a low incidence, 0.1-0.5%. However, combined statin and fibrate therapy can enhance myopathy risk. We tested the myotoxic potential of PPAR subtype selective agonists alone and in combination with statins in a differentiated rat myotube model. A pharmacologically potent experimental PPAR{alpha} agonist, Compound A, induced myotoxicity as assessed by TUNEL staining at a minimum concentration of 1 nM, while other weaker PPAR{alpha} compounds, for example, WY-14643, Gemfibrozil and Bezafibrate increased the percentage of TUNEL-positive nuclei at micromolar concentrations. In contrast, the PPAR{gamma} agonist Rosiglitazone caused little or no cell death at up to 10 {mu}M and the PPAR{delta} ligand GW-501516 exhibited comparatively less myotoxicity than that seen with Compound A. An experimental statin (Compound B) and Atorvastatin also increased the percentage of TUNEL-positive nuclei and co-treatment with WY-14643, Gemfibrozil or Bezafibrate had less than a full additive effect on statin-induced cell killing. The mechanism of PPAR{alpha} agonist-induced cell death was different from that of statins. Unlike statins, Compound A and WY-14643 did not activate caspase 3/7. In addition, mevalonate and geranylgeraniol reversed the toxicity caused by statins, but did not prevent the cell killing induced by WY-14643. Furthermore, unlike statins, Compound A did not inhibit the isoprenylation of rab4 or rap1a. Interestingly, Compound A and Compound B had differential effects on ATP levels. Taken together, these observations support the hypothesis that in rat myotube cultures, PPAR{alpha} agonism mediates in part the toxicity response to PPAR{alpha} compounds. Furthermore, PPAR{alpha} agonists and statins cause myotoxicity through distinct and independent pathways.

  2. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    Science.gov (United States)

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  3. Alternative splicing of T cell receptor (TCR) alpha chain transcripts containing V alpha 1 or V alpha 14 elements.

    Science.gov (United States)

    Mahotka, C; Hansen-Hagge, T E; Bartram, C R

    1995-10-01

    Human acute lymphoblastic leukemia cell lines represent valuable tools to investigate distinct steps of the complex regulatory pathways underlying T cell receptor recombination and expression. A case in point are V delta 2D delta 3 and subsequent V delta 2D delta 3J alpha rearrangements observed in human leukemic pre-B cells as well as in normal lymphopoiesis. The functional expression of these unusual (VD) delta (JC) alpha hybrids is almost exclusively prevented by alternative splicing events. In this report we show that alternative splicing at cryptic splice donor sites within V elements is not a unique feature of hybrid TCR delta/alpha transcripts. Among seven V alpha families analyzed by RT-PCR, alternatively spliced products were observed in TCR alpha recombinations containing V alpha 1 or V alpha 14 elements. In contrast to normal peripheral blood cells and thymocytes, the leukemia cell line JM expressing functional V alpha 1J alpha 3C alpha transcripts lacked evidence of aberrant TCR alpha RNA species.

  4. Insights into the function and dysfunction of α-synuclein in cells

    NARCIS (Netherlands)

    Raiss, C.C.

    2015-01-01

    This thesis sheds light on the function and dysfunction of the protein α-synuclein (α-S) in the test tube and in cells and ultimately its possible involvement in Parkinson’s disease (PD). Following the introduction in Chapter 1, Chapters 2 and 3 concentrate on the investigation of the interaction

  5. Human alpha-fetoprotein and prostaglandins suppress human lymphocyte transformation by different mechanisms

    International Nuclear Information System (INIS)

    Yachnin, S.; Lester, E.P.

    1979-01-01

    The capacity of human alpha-fetoprotein (HAFP) to suppress human lymphocyte transformation is well established, although some investigators have reported negative results in their efforts to demonstrate this phenomenon. This discrepancy may reside in the fact that not all isolates of HAFP are potent inhibitors of lymphocyte transformation and that the immunosuppressive potency of various HAFP isolates may be correlated with the proportion of certain negatively charged HAFP isomers which they contain. The possibility was considered that noncovalent binding of low-molecular-weight, negatively charged molecules might be partially responsible. Since fatty acids, including certain prostaglandins (PG), are capable of binding to a partly related serum protein, namely, human serum albumin, and since certain prostaglandins are known to be potent suppressors of human lymphocyte transformation, a study was undertaken of the role which prostaglandins might play in HAFP-induced suppression of human lymphocyte transformation

  6. Tumor necrosis factor alpha selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation

    International Nuclear Information System (INIS)

    Wong, G.H.; McHugh, T.; Weber, R.; Goeddel, D.V.

    1991-01-01

    We report here that infection of the human T-cell line HUT-78 with human immunodeficiency virus (HIV) increases its sensitivity to heat and radiation toxicity. A possible explanation for this result may be the reduced expression of manganous superoxide dismutase (MnSOD) in HIV-infected cells compared to uninfected cells. Tumor necrosis factor alpha (TNF-alpha) further sensitizes HIV-infected cells but not uninfected cells to heat and radiation. This is consistent with the ability of TNF-alpha to induce the expression of MnSOD in uninfected but not in HIV-infected cells. HIV-infected HUT-78 cell lines engineered to overexpress MnSOD are more resistant to heat and radiation than HIV-infected cells that do not overexpress MnSOD. However, treatment with TNF-alpha still sensitizes these cells to heat and radiation

  7. Characterization of the Met326Ile variant of phosphatidylinositol 3-kinase p85alpha

    DEFF Research Database (Denmark)

    Almind, Katrine; Delahaye, Laurent; Hansen, Torben

    2002-01-01

    . When the four human p85alpha proteins were expressed in yeast, a 27% decrease occurred in the level of protein expression of p85alpha(Ile/Asp) (P = 0.03) and a 43% decrease in p85alpha(Ile/Asn) (P = 0.08) as compared with p85alpha(Met/Asp). Both p85alpha(Ile/Asp) and p85alpha(Ile/Asn) also exhibited...... increased binding to phospho-insulin receptor substrate-1 by 41% and 83%, respectively (P substrate-1 slightly increased in brown preadipocytes derived from p85alpha...... knockout mice. Both p85alpha(Met) and p85alpha(Ile) had similar effects on AKT activity and were able to reconstitute differentiation of the preadipocytes, although the triglyceride concentration in fully differentiated adipocytes and insulin-stimulated 2-deoxyglucose uptake were slightly lower than...

  8. Human skeletal uptake of natural alpha radioactivity from {sup 210}Pb-supported {sup 210}Po

    Energy Technology Data Exchange (ETDEWEB)

    Oyedepo, A.C

    1998-06-01

    This thesis contributes to increasing knowledge on the dosimetry of natural alpha-particle radiation in skeletal tissues, particularly in utero, and associated risks of malignancy. Alpha-particle radiation is an established aetiological factor of cancer. In the human body, polonium-210 decayed from skeletal lead-210 ({sup 210}Pb/{sup 210}Po) is the predominant natural alpha-emitter. {sup 210}Pb displaces calcium (Ca) in mineral hydroxyapatite, especially during periods of rapid bone growth and remodelling when Ca is laid down. It was therefore necessary to study alpha activity uptake and calcification concurrently within bone. Human studies were undertaken on: fetal vertebrae, 17 - 42 weeks of gestation, 74 samples; adult vertebrae, 40 - 95 years, 40 samples; and adult ribs, 20 - 95 years, 51 samples. Specimens were unconcentrated and weighed <5 g each. TASTRAK alpha-particle autoradiography was used to assess the bone activity concentration and spatial microdistribution of {sup 210}Pb/{sup 210}Po. Alpha track data were resolved by specially written software named SPATS (Selection Program for Analysing Track Structures). Ca and phosphorus (P) were biochemically determined. Results were examined for trends in bone type, gender and chronological ageing in humans. The main research findings were: 1) The Ca content of fetal vertebrae increased linearly at a weekly rate of 0.2g Ca 100 g{sup -1} wet bone (typical values of 2, 4, 6 g 100 g{sup -1} at 16, 26 and 36 weeks). 2) The P concentration also increased with advancing fetal age. 3) The Ca:P bone weight ratio rose from 1.7 to 2.2 by 32 gestational weeks. 4) The overall range in bone {sup 210}Pb/{sup 210}Po alpha activity was 0.25 - 1.1 Bq kg{sup -1} with correlation between activity concentration and fetal age (0.47 {+-} 0.05 Bq kg{sup -1} for 17 - 26 weeks, 0.67 {+-} 0.04 Bq kg{sup -1} for 32 - 42 weeks). 5) The correlation between increased alpha radioactivity and increased Ca concentration approximating to 0

  9. Loss of tumorigenic potential by human lung tumor cells in the presence of antisense RNA specific to the ectopically synthesized alpha subunit of human chorionic gonadotropin.

    Science.gov (United States)

    Rivera, R T; Pasion, S G; Wong, D T; Fei, Y B; Biswas, D K

    1989-06-01

    A clonal strain of human lung tumor cells in culture (ChaGo), derived from a bronchogenic carcinoma, synthesizes and secretes large amounts of alpha (alpha) and a comparatively lower level of beta (beta) subunit of the glycoprotein hormone, human chorionic gonadotropin (HCG). ChaGo cells lost their characteristic anchorage-independent growth phenotype in the presence of anti-alpha-HCG antibody. The effect of the antibody was partially reversed by addition of alpha-HCG to the culture medium. ChaGo cells were transfected with an expression vector (pRSV-anti-alpha-HCG), that directs synthesis of RNA complementary to alpha-HCG mRNA. The transfectants produced alpha-HCG antisense RNA which was associated with the reduced level of alpha-HCG. Transfectants also displayed several altered phenotypic properties, including altered morphology, less mitosis, reduced growth rate, loss of anchorage-independent growth, and loss of tumorigenicity in nude mice. Treatment of transfectants with 8,bromo-cAMP resulted in increased accumulation of alpha-HCG mRNA, no change in the level of alpha-HCG antisense RNA, release of the inhibition of [3H]thymidine incorporation, and restoration of anchorage-independent growth phenotype. The overexpression of c-myc, observed in ChaGo cells, was unaffected by the reduced level of alpha-HCG. These results suggest that ectopic synthesis of the alpha subunit of HCG plays a functional role in the transformation of these human lung cells.

  10. Synergistic influence of phosphorylation and metal ions on tau oligomer formation and coaggregation with α-synuclein at the single molecule level

    Directory of Open Access Journals (Sweden)

    Nübling Georg

    2012-07-01

    Full Text Available Abstract Background Fibrillar amyloid-like deposits and co-deposits of tau and α-synuclein are found in several common neurodegenerative diseases. Recent evidence indicates that small oligomers are the most relevant toxic aggregate species. While tau fibril formation is well-characterized, factors influencing tau oligomerization and molecular interactions of tau and α-synuclein are not well understood. Results We used a novel approach applying confocal single-particle fluorescence to investigate the influence of tau phosphorylation and metal ions on tau oligomer formation and its coaggregation with α-synuclein at the level of individual oligomers. We show that Al3+ at physiologically relevant concentrations and tau phosphorylation by GSK-3β exert synergistic effects on the formation of a distinct SDS-resistant tau oligomer species even at nanomolar protein concentration. Moreover, tau phosphorylation and Al3+ as well as Fe3+ enhanced both formation of mixed oligomers and recruitment of α-synuclein in pre-formed tau oligomers. Conclusions Our findings provide a new perspective on interactions of tau phosphorylation, metal ions, and the formation of potentially toxic oligomer species, and elucidate molecular crosstalks between different aggregation pathways involved in neurodegeneration.

  11. In vitro cytotoxicity of alpha conjugates for human pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Qu, C.; Li, Y.; Rizvi, M.A.; Allen, B.; Samra, J.; Smith, R.

    2003-01-01

    Targeted Alpha therapy (TAT) can inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The aim of this study is to demonstrate the cytotoxicity of different alpha conjugates in vitro to human metastatic pancreatic cancer cell lines (CAPAN-1, CFPAN-1 and PANC-1). We are labeling the C595 and J591 (non-specific controls) monoclonal antibodies (Mabs) with 213 Bi were performed according to the standard methods in our laboratory. 213 Bi-C595 is specifically cytotoxic to CAPAN-1, CFPAN-1 and PANC-1cell lines in a concentration-dependent fashion. While non-specific alpha conjugates only killed very small fractions of pancreatic cancer cells. These alpha conjugates might be useful agents for the treatment of micro-metastases in pancreatic cancer patients with over-expression of the targeted receptors

  12. Parkinson disease: α-synuclein mutational screening and new clinical insight into the p.E46K mutation.

    Science.gov (United States)

    Pimentel, Márcia M G; Rodrigues, Fabíola C; Leite, Marco Antônio A; Campos Júnior, Mário; Rosso, Ana Lucia; Nicaretta, Denise H; Pereira, João S; Silva, Delson José; Della Coletta, Marcus V; Vasconcellos, Luiz Felipe R; Abreu, Gabriella M; Dos Santos, Jussara M; Santos-Rebouças, Cíntia B

    2015-06-01

    Amongst Parkinson's disease-causing genetic factors, missense mutations and genomic multiplications in the gene encoding α-synuclein are well established causes of the disease, although genetic data in populations with a high degree of admixture, such as the Brazilian one, are still scarce. In this study, we conducted a molecular screening of α-synuclein point mutations and copy number variation in the largest cohort of Brazilian patients with Parkinson's disease (n = 549) and also in twelve Portuguese and one Bolivian immigrants. Genomic DNA was isolated from peripheral blood leukocytes or saliva, and the mutational screening was performed by quantitative and qualitative real-time PCR. The only alteration identified was the p.E46K mutation in a 60-year-old man, born in Bolivia, with a familial history of autosomal dominant Parkinson's disease. This is the second family ever reported, in which this rare pathogenic mutation is segregating. The same mutation was firstly described ten years ago in a Spanish family with a neurodegenerative syndrome combining parkinsonism, dementia and visual hallucinations. The clinical condition of our proband reveals a less aggressive phenotype than previously described and reinforces that marked phenotypic heterogeneity is common among patients with Parkinson's disease, even among those carriers sharing the same mutation. Our findings add new insight into the preexisting information about α-synuclein p.E46K, improving our understanding about the endophenotypes associated to this mutation and corroborate that missense alterations and multiplications in α-synuclein are uncommon among Brazilian patients with Parkinson's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Early events in copper-ion catalyzed oxidation of α-synuclein

    DEFF Research Database (Denmark)

    Tiwari, Manish Kumar; Leinisch, Fabian; Sahin, Cagla

    2018-01-01

    -synuclein modification using six different molar ratios of Cu2+/H2O2/protein and Cu2+/H2O2/ascorbate/protein resulting in mild to moderate extents of oxidation. For a Cu2+/H2O2/protein molar ratio of 2.3:7.8:1 only low levels of carbonyls were detected (0.078 carbonyls per protein), whereas a molar ratio of 4...

  14. Anti-human α-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an AAV-α-synuclein rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Md Shahaduzzaman

    Full Text Available The protein α-synuclein (α-Syn has a central role in the pathogenesis of Parkinson's disease (PD and immunotherapeutic approaches targeting this molecule have shown promising results. In this study, novel antibodies were generated against specific peptides from full length human α-Syn and evaluated for effectiveness in ameliorating α-Syn-induced cell death and behavioral deficits in an AAV-α-Syn expressing rat model of PD. Fisher 344 rats were injected with rAAV vector into the right substantia nigra (SN, while control rats received an AAV vector expressing green fluorescent protein (GFP. Beginning one week after injection of the AAV-α-Syn vectors, rats were treated intraperitoneally with either control IgG or antibodies against the N-terminal (AB1, or central region (AB2 of α-Syn. An unbiased stereological estimation of TH+, NeuN+, and OX6 (MHC-II immunostaining revealed that the α-Syn peptide antibodies (AB1 and AB2 significantly inhibited α-Syn-induced dopaminergic cell (DA and NeuN+ cell loss (one-way ANOVA (F (3, 30 = 5.8, p = 0.002 and (F (3, 29 = 7.92, p = 0.002 respectively, as well as decreasing the number of activated microglia in the ipsilateral SN (one-way ANOVA F = 14.09; p = 0.0003. Antibody treated animals also had lower levels of α-Syn in the ipsilateral SN (one-way ANOVA F (7, 37 = 9.786; p = 0.0001 and demonstrated a partial intermediate improvement of the behavioral deficits. Our data suggest that, in particular, an α-Syn peptide antibody against the N-terminal region of the protein can protect against DA neuron loss and, to some extent behavioral deficits. As such, these results may be a potential therapeutic strategy for halting the progression of PD.

  15. Exogenous α-synuclein hinders synaptic communication in cultured cortical primary rat neurons

    NARCIS (Netherlands)

    Hassink, G. C.; Raiss, C. C.; Segers-Nolten, I. M.J.; Van Wezel, R. J.A.; Subramaniam, V.; Le Feber, J.; Claessens, M. M.A.E.

    2018-01-01

    Amyloid aggregates of the protein a-synuclein (aS) called Lewy Bodies (LB) and Lewy Neurites (LN) are the pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. We have previously shown that high extracellular αS concentrations can be toxic to cells and that neurons take up

  16. Expression and characterization of a recombinant maize CK-2 alpha subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Dobrowolska, G

    1993-01-01

    to support the immunological data also by biochemical and biophysical experiments the availability of a recombinant CK-2 alpha from maize was a prerequisite. A maize cDNA clone of maize CK-2 alpha was expressed in the bacterial strain BL21 (DE3). The recombinant protein was purified to homogeneity; its......CKIIB, one of the CK-2 like enzymes which have been isolated from maize, has been shown to be a monomeric enzyme that cross-reacts with anti CK-2 alpha specific antibodies suggesting a possible relationship between the two proteins (Dobrowolska et al. (1992) Eur. J. Biochem. 204, 299-303). In order...... molecular mass on one-dimensional SDS PAGE was estimated to be 36.5 kDa. The calculated molecular mass according to the amino acid composition is 39,228 Da (332 amino acids). The recombinant maize CK-2 alpha (rmCK-2 alpha) exhibited mostly the same properties as the recombinant human CK-2 alpha (rhCK-2...

  17. Characterization of the binding of radioiodinated hybrid recombinant IFN-alpha A/D to murine and human lymphoid cell lines

    International Nuclear Information System (INIS)

    Faltynek, C.R.; Princler, G.L.; Schwabe, M.; Shata, M.T.; Lewis, G.K.; Kamin-Lewis, R.M.

    1990-01-01

    The hybrid recombinant human interferon (IFN) rIFN-alpha A/D was radioiodinated. Specific binding of [125I]rIFN-alpha A/D was observed with both human and murine cell lines. The binding of [125I]rIFN-alpha A/D to human Daudi cells had similar characteristics to the previously described binding of [125I]rIFN-alpha A or -alpha 2. The following lines of evidence demonstrated that [125I]rIFN-alpha A/D bound with high affinity to the same receptor on murine cells as murine IFN-alpha and -beta: (i) the binding of [125I]rIFN-alpha A/D to murine LBRM cells was inhibited to a similar extent by natural murine IFN-alpha, natural murine IFN-beta, and rIFN-A/D; (ii) the Kd (approximately 2 X 10(-10) M) obtained from both competition experiments and saturation binding experiments with [125I]rIFN-alpha A/D was comparable to the previously reported Kd for the binding of natural murine IFN-alpha and -beta to other murine cell lines; (iii) the size of the cross-linked [125I]rIFN-alpha A/D receptor complex formed on murine LBRM cells was similar to the previously reported cross-linked complex formed after binding radioiodinated natural murine IFN-beta to other murine cell lines. Due to the current lack of readily available recombinant murine IFN-alpha or -beta for radiolabeling and the previously demonstrated biological activity of rIFN-alpha A/D on murine cells, [125I]rIFN-alpha A/D should prove to be a useful reagent for further studies of murine IFN receptors

  18. Do saw palmetto extracts block human alpha1-adrenoceptor subtypes in vivo?

    Science.gov (United States)

    Goepel, M; Dinh, L; Mitchell, A; Schäfers, R F; Rübben, H; Michel, M C

    2001-02-15

    To test whether saw palmetto extracts, which act as alpha1-adrenoceptor antagonists in vitro, also do so in vivo in man. In a placebo-controlled, double-blind, four-way cross-over study 12 healthy young men were treated with three different saw palmetto extract preparations (320 mg o.d.) for 8 days each. On the last day, before and 2, 4 and 6 hr after drug intake blood pressure and heart rate were determined and blood samples obtained, which were used in an ex vivo radioreceptor assay with cloned human alpha1-adrenoceptor subtypes. Saw palmetto extract treatment did not result in alpha1-adrenoceptor subtype occupancy in the radioreceptor assay. Although the saw palmetto extracts caused minor reductions of supine blood pressure, they did not affect blood pressure during orthostatic stress testing and did not alter heart rate under either condition. Moreover, plasma catecholamines remained largely unaltered. Despite their alpha1-adrenoceptor antagonist effects in vitro, therapeutically used doses of saw palmetto extracts do not cause alpha1-adrenoceptor antagonism in man in vivo. Copyright 2001 Wiley-Liss, Inc.

  19. Alpha-lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Svensson, Malin; Fast, Jonas; Mossberg, Ann-Kristin; Düringer, Caroline; Gustafsson, Lotta; Hallgren, Oskar; Brooks, Charles L; Berliner, Lawrence; Linse, Sara; Svanborg, Catharina

    2003-12-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex of human alpha-lactalbumin and oleic acid (C18:1:9 cis) that kills tumor cells by an apoptosis-like mechanism. Previous studies have shown that a conformational change is required to form HAMLET from alpha-lactalbumin, and that a partially unfolded conformation is maintained in the HAMLET complex. This study examined if unfolding of alpha-lactalbumin is sufficient to induce cell death. We used the bovine alpha-lactalbumin Ca(2+) site mutant D87A, which is unable to bind Ca(2+), and thus remains partially unfolded regardless of solvent conditions. The D87A mutant protein was found to be inactive in the apoptosis assay, but could readily be converted to a HAMLET-like complex in the presence of oleic acid. BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) and D87A-BAMLET complexes were both able to kill tumor cells. This activity was independent of the Ca(2+)site, as HAMLET maintained a high affinity for Ca(2+) but D87A-BAMLET was active with no Ca(2+) bound. We conclude that partial unfolding of alpha-lactalbumin is necessary but not sufficient to trigger cell death, and that the activity of HAMLET is defined both by the protein and the lipid cofactor. Furthermore, a functional Ca(2+)-binding site is not required for conversion of alpha-lactalbumin to the active complex or to cause cell death. This suggests that the lipid cofactor stabilizes the altered fold without interfering with the Ca(2+)site.

  20. Primary structure of human alpha 2-macroglobulin. V. The complete structure

    DEFF Research Database (Denmark)

    Sottrup-Jensen, Lars; Stepanik, Terrence M; Kristensen, Torsten

    1984-01-01

    The primary structure of the tetrameric plasma glycoprotein human alpha 2-macroglobulin has been determined. The identical subunits contain 1451 amino acid residues. Glucosamine-based oligosaccharide groups are attached to asparagine residues 32, 47, 224, 373, 387, 846, 968, and 1401. Eleven......-SH group of Cys-949 is thiol esterified to the gamma-carbonyl group of Glx-952, thus forming an activatable reactive site which can mediate covalent binding of nucleophiles. A putative transglutaminase cross-linking site is constituted by Gln-670 and Gln-671. The primary sites of proteolytic cleavage......-macroglobulin subunit is discussed. A comparison of stretches of sequences from alpha 2-macroglobulin with partial sequence data for complement components C3 and C4 indicates that these proteins are evolutionary related. The properties of alpha 2-macroglobulin are discussed within the context of proteolytically...

  1. LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance

    NARCIS (Netherlands)

    Rothaug, Michelle; Zunke, Friederike; Mazzulli, Joseph R.; Schweizer, Michaela; Altmeppen, Hermann; Lüllmann-Rauch, Renate; Kallemeijn, Wouter W.; Gaspar, Paulo; Aerts, Johannes M.; Glatzel, Markus; Saftig, Paul; Krainc, Dimitri; Schwake, Michael; Blanz, Judith

    2014-01-01

    Mutations within the lysosomal enzyme β-glucocerebrosidase (GC) result in Gaucher disease and represent a major risk factor for developing Parkinson disease (PD). Loss of GC activity leads to accumulation of its substrate glucosylceramide and α-synuclein. Since lysosomal activity of GC is tightly

  2. Premotor Diagnosis of Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Heinz Reichmann

    2017-01-01

    Typical Parkinsonian symptoms consist of bradykinesia plus rigidity and/or resting tremor.Some time later postural instability occurs.Pre-motor symptoms such as hyposmia,constipation,REM sleep behavior disorder and depression may antecede these motor symptoms for years.It would be ideal,if we had a biomarker which would allow to predict who with one or two of these pre-motor symptoms will develop the movement disorder Parkinson's disease (PD).Thus,it is interesting to learn that biopsies of the submandibular gland or colon biopsies may be a means to predict PD,if there is a high amout of abnormally folded alpha-synuclein and phosphorylated alpha-synuclein.This would be of relevance if we would have available means to stop the propagation of abnormal alpha-synuclein which is otherwise one of the reasons of this spreading disease PD.

  3. Localization of alpha-uterine protein in human endometrium.

    Science.gov (United States)

    Horne, C H; Paterson, W F; Sutcliffe, R G

    1982-07-01

    Immunoperoxidase staining was used to investigate the origin of human alpha-uterine protein (AUP). Specific staining was observed in the glandular epithelium of the endometrium during the secretory phase of the menstrual cycle and during pregnancy, and in a patient on an oestrogen-progestagen contraceptive pill. The pattern of staining strongly suggests that AUP is secreted into the uterine lumen. The location and concentration of AUP in the uterus may explain the relative concentrations of AUP in amniotic fluid and maternal serum.

  4. Anti-apoptotic effects of Z alpha1-antitrypsin in human bronchial epithelial cells.

    LENUS (Irish Health Repository)

    Greene, C M

    2010-05-01

    alpha(1)-antitrypsin (alpha(1)-AT) deficiency is a genetic disease which manifests as early-onset emphysema or liver disease. Although the majority of alpha(1)-AT is produced by the liver, it is also produced by bronchial epithelial cells, amongst others, in the lung. Herein, we investigate the effects of mutant Z alpha(1)-AT (ZAAT) expression on apoptosis in a human bronchial epithelial cell line (16HBE14o-) and delineate the mechanisms involved. Control, M variant alpha(1)-AT (MAAT)- or ZAAT-expressing cells were assessed for apoptosis, caspase-3 activity, cell viability, phosphorylation of Bad, nuclear factor (NF)-kappaB activation and induced expression of a selection of pro- and anti-apoptotic genes. Expression of ZAAT in 16HBE14o- cells, like MAAT, inhibited basal and agonist-induced apoptosis. ZAAT expression also inhibited caspase-3 activity by 57% compared with control cells (p = 0.05) and was a more potent inhibitor than MAAT. Whilst ZAAT had no effect on the activity of Bad, its expression activated NF-kappaB-dependent gene expression above control or MAAT-expressing cells. In 16HBE14o- cells but not HEK293 cells, ZAAT upregulated expression of cIAP-1, an upstream regulator of NF-kappaB. cIAP1 expression was increased in ZAAT versus MAAT bronchial biopsies. The data suggest a novel mechanism by which ZAAT may promote human bronchial epithelial cell survival.

  5. Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy--implications for excitotoxicity.

    Directory of Open Access Journals (Sweden)

    Diana L Price

    2010-11-01

    Full Text Available Dementia with Lewy bodies (DLB and Parkinson's Disease (PD are neurodegenerative disorders of the aging population characterized by the abnormal accumulation of alpha-synuclein (alpha-syn. Previous studies have suggested that excitotoxicity may contribute to neurodegeneration in these disorders, however the underlying mechanisms and their relationship to alpha-syn remain unclear. For this study we proposed that accumulation of alpha-syn might result in alterations in metabotropic glutamate receptors (mGluR, particularly mGluR5 which has been linked to deficits in murine models of PD. In this context, levels of mGluR5 were analyzed in the brains of PD and DLB human cases and alpha-syn transgenic (tg mice and compared to age-matched, unimpaired controls, we report a 40% increase in the levels of mGluR5 and beta-arrestin immunoreactivity in the frontal cortex, hippocampus and putamen in DLB cases and in the putamen in PD cases. In the hippocampus, mGluR5 was more abundant in the CA3 region and co-localized with alpha-syn aggregates. Similarly, in the hippocampus and basal ganglia of alpha-syn tg mice, levels of mGluR5 were increased and mGluR5 and alpha-syn were co-localized and co-immunoprecipitated, suggesting that alpha-syn interferes with mGluR5 trafficking. The increased levels of mGluR5 were accompanied by a concomitant increase in the activation of downstream signaling components including ERK, Elk-1 and CREB. Consistent with the increased accumulation of alpha-syn and alterations in mGluR5 in cognitive- and motor-associated brain regions, these mice displayed impaired performance in the water maze and pole test, these behavioral alterations were reversed with the mGluR5 antagonist, MPEP. Taken together the results from study suggest that mGluR5 may directly interact with alpha-syn resulting in its over activation and that this over activation may contribute to excitotoxic cell death in select neuronal regions. These results highlight the

  6. Ida-1, the Caenorhabditis elegans orthologue of mammalian diabetes autoantigen IA-2, potentially acts as a common modulator between Parkinson's disease and Diabetes: role of Daf-2/Daf-16 insulin like signalling pathway.

    Science.gov (United States)

    Fatima, Soobiya; Haque, Rizwanul; Jadiya, Pooja; Shamsuzzama; Kumar, Lalit; Nazir, Aamir

    2014-01-01

    The lack of cure to age associated Parkinson's disease (PD) has been challenging the efforts of researchers as well as health care providers. Recent evidences suggest that diabetic patients tend to show a higher future risk for PD advocating a strong correlation between PD and Diabetes, thus making it intriguing to decipher common genetic cues behind these ailments. We carried out studies on ida-1, the C. elegans orthologue of mammalian type-1 diabetes auto-antigen IA-2 towards achieving its functional workup vis-à-vis various associated endpoints of PD and Diabetes. Employing transgenic C. elegans strain expressing "human" alpha synuclein (NL5901) under normal and increased glucose concentrations, we studied aggregation of alpha synuclein, content of dopamine, expression of dopamine transporter, content of reactive oxygen species, locomotor activity, nuclear translocation of FOXO transcription factor Daf-16, and quantification of Daf2/Daf-16 mRNA. Our findings indicate that ida-1 affords protection in the studied disease conditions as absence of ida-1 resulted in higher alpha-synuclein aggregation under conditions that mimic the blood glucose levels of diabetic patients. We also observed reduced dopamine content, decreased motility, defective Daf-16 translocation and reduced expression of Daf-2 and Daf-16. Our studies establish important function of ida-1 as a modulator in Daf-2/Daf-16 insulin like signalling pathway thus possibly being a common link between PD and Diabetes.

  7. Human cancers converge at the HIF-2alpha oncogenic axis.

    Science.gov (United States)

    Franovic, Aleksandra; Holterman, Chet E; Payette, Josianne; Lee, Stephen

    2009-12-15

    Cancer development is a multistep process, driven by a series of genetic and environmental alterations, that endows cells with a set of hallmark traits required for tumorigenesis. It is broadly accepted that growth signal autonomy, the first hallmark of malignancies, can be acquired through multiple genetic mutations that activate an array of complex, cancer-specific growth circuits [Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57-70; Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789-799]. The superfluous nature of these pathways is thought to severely limit therapeutic approaches targeting tumor proliferation, and it has been suggested that this strategy be abandoned in favor of inhibiting more systemic hallmarks, including angiogenesis (Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: Mechanisms of anti-tumor activity. Nat Rev Cancer 8:579-591; Stommel JM, et al. (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318:287-290; Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727-739; Kaiser J (2008) Cancer genetics: A detailed genetic portrait of the deadliest human cancers. Science 321:1280-1281]. Here, we report the unexpected observation that genetically diverse cancers converge at a common and obligatory growth axis instigated by HIF-2alpha, an element of the oxygen-sensing machinery. Inhibition of HIF-2alpha prevents the in vivo growth and tumorigenesis of highly aggressive glioblastoma, colorectal, and non-small-cell lung carcinomas and the in vitro autonomous proliferation of several others, regardless of their mutational status and tissue of origin. The concomitant deactivation of select receptor tyrosine kinases, including the EGFR and IGF1R, as well as downstream ERK/Akt signaling, suggests that HIF-2alpha exerts its proliferative effects by endorsing these major pathways. Consistently

  8. Identification and characterization of an alternative promoter of the human PGC-1{alpha} gene

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Toyo; Inagaki, Kenjiro [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Noguchi, Tetsuya, E-mail: noguchi@med.kobe-u.ac.jp [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Sakai, Mashito; Ogawa, Wataru; Hosooka, Tetsuya [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Iguchi, Haruhisa; Watanabe, Eijiro; Matsuki, Yasushi; Hiramatsu, Ryuji [Genomic Science Laboratories, DainipponSumitomo Pharma Co. Ltd., 4-2-1 Takatsukasa, Takarazuka 665-8555 (Japan); Kasuga, Masato [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655 (Japan)

    2009-04-17

    The transcriptional regulator peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1{alpha} expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1{alpha} transcript (designated PGC-1{alpha}-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1{alpha}-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca{sup 2+}- and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated protein kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1{alpha}-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1{alpha} expression in contracting muscle.

  9. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions

    DEFF Research Database (Denmark)

    Lundby, Carsten; Gassmann, Max; Pilegaard, Henriette

    2005-01-01

    and 2 (HIFs) are clearly related heterodimeric transcription factors that consist of an oxygen-depended alpha-subunit and a constitutive beta-subunit. With hypoxic exposure, HIF-1alpha and HIF-2alpha protein are stabilized. Upon heterodimerization, HIFs induce the transcription of a variety of genes......Regular exercise induces a variety of adaptive responses that enhance the oxidative and metabolic capacity of human skeletal muscle. Although the physiological adjustments of regular exercise have been known for decades, the underlying mechanisms are still unclear. The hypoxia inducible factors 1...... including erythropoietin (EPO), transferrin and its receptor, as well as vascular endothelial growth factor (VEGF) and its receptor. Considering that several of these genes are also induced with exercise, we tested the hypothesis that the mRNA level of HIF-1alpha and HIF-2alpha subunits increases...

  10. Human cytogenetic dosimetry: a dose-response relationship for alpha particle radiation from 241Am

    International Nuclear Information System (INIS)

    DuFrain, R.J.; Littlefield, L.G.; Joiner, E.E.; Frome, E.L.

    1979-01-01

    Cytogenetic dosimetry estimates to guide treatment of persons internally contaminated with transuranic elements have not previously been possible because appropriate in vitro dose-response curves specifically for alpha particle irradiation of human lymphocytes do not exist. Using well-controlled cytogenetic methods for human lymphocyte culture, an experimentally derived dose-response curve for 241 Am alpha particle (5.49 and 5.44 MeV) radiation of G 0 lymphocytes was generated. Cells were exposed to 43.8, 87.7, 175.3 or 350.6 nCi/ml 241 Am for 1.7 hr giving doses of 0.85, 1.71, 3.42 or 6.84 rad. Based on dicentric chromosome yield, the linear dose-response equation is Y = 4.90(+-0.42) x 10 -2 X, with Y given as dicentrics per cell and X as dose in rads. The study also shows that the two-break asymmetrical exchanges in cells damaged by alpha particle radiation are overdispersed when compared to a Poisson distribution. An example is presented to show how the derived dose-response equation can be used to estimate the radiation dose for a person internally contaminated with an actinide. An experimentally derived RBE value of 118 at 0.85 rad is calculated for the efficiency of 241 Am alpha particle induction of dicentric chromosomes in human G 0 lymphocytes as compared with the efficiency of 60 Co gamma radiation. The maximum theoretical value for the RBE for cytogenetic damage from alpha irradiation was determined to be 278 at 0.1 rad or less which is in marked contrast to previously reported RBE values of approx. 20. (author)

  11. Human keratinocytes are a source for tumor necrosis factor alpha: Evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light

    International Nuclear Information System (INIS)

    Koeck, A.S.; Schwarz, T.; Kirnbauer, R.; Urbanski, A.; Perry, P.; Ansel, J.C.; Luger, T.A.

    1990-01-01

    Tumor necrosis factor alpha (TNF-alpha), in addition to being cytotoxic for certain tumor cells, has turned out as a multifunctional cytokine that is involved in the regulation of immunity and inflammation. Since human keratinocytes have been demonstrated to be a potent source of various cytokines, it was investigated whether epidermal cells synthesize and release TNF-alpha. Supernatants derived from normal human keratinocytes (HNK) and human epidermoid carcinoma cell lines (KB, A431) were tested both in a TNF-alpha-specific ELISA and a bioassay. In supernatants of untreated epidermal cells, no or minimal TNF-alpha activity was found, while after stimulation with lipopolysaccharide (LPS) or ultraviolet (UV) light, significant amounts were detected. Western blot analysis using an antibody directed against human TNF-alpha revealed a molecular mass of 17 kD for keratinocyte-derived TNF-alpha. These biological and biochemical data were also confirmed by Northern blot analysis revealing mRNA specific for TNF-alpha in LPS- or ultraviolet B (UVB)-treated HNK and KB cells. In addition, increased TNF-alpha levels were detected in the serum obtained from human volunteers 12 and 24 h after a single total body UVB exposure, which caused a severe sunburn reaction. These findings indicate that keratinocytes upon stimulation are able to synthesize and release TNF-alpha, which may gain access to the circulation. Thus, TNF-alpha in concert with other epidermal cell-derived cytokines may mediate local and systemic inflammatory reactions during host defense against injurious events caused by microbial agents or UV irradiation

  12. Gross alpha and beta activities in Tunisian mineral water

    International Nuclear Information System (INIS)

    Hamrouni Benbelgacem, Samar

    2011-01-01

    The quality of natural mineral water is a universal health problem seeing its vital importance. This problem is related to the presence of the radionuclides since this water is coming from underground, during their circulation it dissolves and conveys the radionuclides which are present in the earth's crust. This problem which leads to the contamination of the mineral water urged the World Health Organization to set standards and to recommend the respect of the median values of the activities alpha and beta within the framework of the man protection against this internal exhibition. Concerning the radiological quality of Tunisian mineral water studied in this project, we showed, by using the gross alpha and beta activities counting, that this water is specific to human consumption since their gross alpha and beta activities do not forward any risk on health.

  13. Human Artificial Chromosomes with Alpha Satellite-Based De Novo Centromeres Show Increased Frequency of Nondisjunction and Anaphase Lag

    OpenAIRE

    Rudd, M. Katharine; Mays, Robert W.; Schwartz, Stuart; Willard, Huntington F.

    2003-01-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fu...

  14. Perimovement decrease of alpha/beta oscillations in the human nucleus accumbens.

    Science.gov (United States)

    Stenner, Max-Philipp; Dürschmid, Stefan; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Kaufmann, Jörn; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J; Schoenfeld, Mircea Ariel

    2016-10-01

    The human nucleus accumbens is thought to play an important role in guiding future action selection via an evaluation of current action outcomes. Here we provide electrophysiological evidence for a more direct, i.e., online, role during action preparation. We recorded local field potentials from the nucleus accumbens in patients with epilepsy undergoing surgery for deep brain stimulation. We found a consistent decrease in the power of alpha/beta oscillations (10-30 Hz) before and around the time of movements. This perimovement alpha/beta desynchronization was observed in seven of eight patients and was present both before instructed movements in a serial reaction time task as well as before self-paced, deliberate choices in a decision making task. A similar beta decrease over sensorimotor cortex and in the subthalamic nucleus has been directly related to movement preparation and execution. Our results support the idea of a direct role of the human nucleus accumbens in action preparation and execution. Copyright © 2016 the American Physiological Society.

  15. Silencing alpha-fetoprotein inhibits VEGF and MMP-2/9 production in human hepatocellular carcinoma cell.

    Science.gov (United States)

    Meng, Wenbo; Li, Xun; Bai, Zhongtian; Li, Yan; Yuan, Jinqiu; Liu, Tao; Yan, Jun; Zhou, Wence; Zhu, Kexiang; Zhang, Hui; Li, Yumin

    2014-01-01

    Alpha-fetoprotein not only serves as a diagnostic marker for liver cancer, but also posses a variety of biological functions. However, the role of Alpha-fetoprotein on tumor angiogenesis and cell invasion remains incompletely understood. In this study, we aimed to evaluate if Alpha-fetoprotein can regulate the major angiogenic factors and matrix metalloproteinases in human liver cancer cells. Alpha-fetoprotein silencing was achieved by Stealth RNAi. Expression of Alpha-fetoprotein was examined by a full-automatic electrochemistry luminescence immunity analyzer. Expression of VEGF, VEGFR-2, MMP-9, and MMP-2 was examined by Western blot and immunocytochemistry. Apoptosis was detected by TUNEL assay. Angiogenesis was detected by in vitro angiogenesis assay kit. Silencing of Alpha-fetoprotein led to an increased apoptosis, which was associated with a decreased expression of vascular endothelial growth factor, vascular endothelial growth factor receptor 2, matrix metalloproteinases-2/9. These results suggest that Alpha-fetoprotein may play a regulatory role on angiogenesis and cell invasion during liver cancer development.

  16. Non-uniform self-assembly : On the anisotropic architecture of α-synuclein supra-fibrillar aggregates

    NARCIS (Netherlands)

    Semerdzhiev, Slav A.; Shvadchak, Volodymyr V.; Subramaniam, Vinod; Claessens, Mireille M.A.E.

    2017-01-01

    Although the function of biopolymer hydrogels in nature depends on structural anisotropy at mesoscopic length scales, the self-assembly of such anisotropic structures in vitro is challenging. Here we show that fibrils of the protein α-synuclein spontaneously self-assemble into structurally

  17. Normalization of Overexpressed α-Synuclein Causing Parkinson's Disease By a Moderate Gene Silencing With RNA Interference

    Directory of Open Access Journals (Sweden)

    Masaki Takahashi

    2015-01-01

    Full Text Available The α-synuclein (SNCA gene is a responsible gene for Parkinson's disease (PD; and not only nucleotide variations but also overexpression of SNCA appears to be involved in the pathogenesis of PD. A specific inhibition against mutant SNCA genes carrying nucleotide variations may be feasible by a specific silencing such as an allele-specific RNA interference (RNAi; however, there is no method for restoring the SNCA overexpression to a normal level. Here, we show that an atypical RNAi using small interfering RNAs (siRNAs that confer a moderate level of gene silencing is capable of controlling overexpressed SNCA genes to return to a normal level; named “expression-control RNAi” (ExCont-RNAi. ExCont-RNAi exhibited little or no significant off-target effects in its treated PD patient's fibroblasts that carry SNCA triplication. To further assess the therapeutic effect of ExCont-RNAi, PD-model flies that carried the human SNCA gene underwent an ExCont-RNAi treatment. The treated PD-flies demonstrated a significant improvement in their motor function. Our current findings suggested that ExCont-RNAi might be capable of becoming a novel therapeutic procedure for PD with the SNCA overexpression, and that siRNAs conferring a moderate level of gene silencing to target genes, which have been abandoned as useless siRNAs so far, might be available for controlling abnormally expressed disease-causing genes without producing adverse effects.

  18. Alpha Momentum and Price Momentum

    Directory of Open Access Journals (Sweden)

    Hannah Lea Hühn

    2018-05-01

    Full Text Available We analyze a novel alpha momentum strategy that invests in stocks based on three-factor alphas which we estimate using daily returns. The empirical analysis for the U.S. and for Europe shows that (i past alpha has power in predicting the cross-section of stock returns; (ii alpha momentum exhibits less dynamic factor exposures than price momentum and (iii alpha momentum dominates price momentum only in the U.S. Connecting both strategies to behavioral explanations, alpha momentum is more related to an underreaction to firm-specific news while price momentum is primarily driven by price overshooting due to momentum trading.

  19. Human alpha2-macroglobulin is composed of multiple domains, as predicted by homology with complement component C3.

    Science.gov (United States)

    Doan, Ninh; Gettins, Peter G W

    2007-10-01

    Human alpha2M (alpha2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human alpha2M to be made. We describe here the expression and characterization of three alpha(2)M domains predicted to be involved in the stabilization of the thiol ester in native alpha2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the alpha2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of alpha2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1-MG8 of C3. TED is, as predicted, an alpha-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these alpha2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of alpha2M, and the consequent thiol ester-stabilizing domain-domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein.

  20. Preparation and Characterization of Stable α-Synuclein Lipoprotein Particles.

    Science.gov (United States)

    Eichmann, Cédric; Campioni, Silvia; Kowal, Julia; Maslennikov, Innokentiy; Gerez, Juan; Liu, Xiaoxia; Verasdonck, Joeri; Nespovitaya, Nadezhda; Choe, Senyon; Meier, Beat H; Picotti, Paola; Rizo, Josep; Stahlberg, Henning; Riek, Roland

    2016-04-15

    Multiple neurodegenerative diseases are caused by the aggregation of the human α-Synuclein (α-Syn) protein. α-Syn possesses high structural plasticity and the capability of interacting with membranes. Both features are not only essential for its physiological function but also play a role in the aggregation process. Recently it has been proposed that α-Syn is able to form lipid-protein particles reminiscent of high-density lipoproteins. Here, we present a method to obtain a stable and homogeneous population of nanometer-sized particles composed of α-Syn and anionic phospholipids. These particles are called α-Syn lipoprotein (nano)particles to indicate their relationship to high-density lipoproteins formed by human apolipoproteins in vivo and of in vitro self-assembling phospholipid bilayer nanodiscs. Structural investigations of the α-Syn lipoprotein particles by circular dichroism (CD) and magic angle solid-state nuclear magnetic resonance (MAS SS-NMR) spectroscopy establish that α-Syn adopts a helical secondary structure within these particles. Based on cryo-electron microscopy (cryo-EM) and dynamic light scattering (DLS) α-Syn lipoprotein particles have a defined size with a diameter of ∼23 nm. Chemical cross-linking in combination with solution-state NMR and multiangle static light scattering (MALS) of α-Syn particles reveal a high-order protein-lipid entity composed of ∼8-10 α-Syn molecules. The close resemblance in size between cross-linked in vitro-derived α-Syn lipoprotein particles and a cross-linked species of endogenous α-Syn from SH-SY5Y human neuroblastoma cells indicates a potential functional relevance of α-Syn lipoprotein nanoparticles. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Purification of human alpha uterine protein.

    Science.gov (United States)

    Sutcliffe, R G; Bolton, A E; Sharp, F; Nicholson, L V; MacKinnon, R

    1980-03-01

    Human alpha uterine protein (AUP) has been prepared from extracts of decudua by antibody affinity chromatography, DEAE Sepharose chromatography and by filtration through Sephadex G-150. This procedure yielded a protein fraction containing AUP, which was labelled with 125I by chloramine T. When analysed by SDS gel electrophoresis this radioiodinated protein fraction was found to contain predominantly a single species of protein which was precipitated by antibodies against AUP in antibody-antigen crossed electrophoresis. Rabbit anti-AUP precipitated 55-65% of the tracer in a double-antibody system. Sephadex G150 gel filtration of AUP obtained before and after affinity chromatography provided a molecular weight estimate of 50000. Since SDS gel electrophoresis revealed a polypeptide molecular weight of 23000-25000, it is suggested that AUP is a dimer.

  2. Antimicrobial screening of some derivatives of methyl alpha-D-glucopyranoside

    International Nuclear Information System (INIS)

    Abdul, K.M.S.; Kawsar, S.M.S.; Rehman, S.

    2009-01-01

    In vitro antimicrobial functionality test of methyl 4,6-O-cyclohexylidene-alpha-D-glucopyranoside and its twelve acylated derivatives against ten human pathogenic bacteria and six phytopathogenic fungi comparative to Ampicillin and Nystatin revealed the tested chemicals to possess moderate to good antibacterial and antifungal activity and to be more effective against fungal phytopathogens. Many of these chemicals exhibited better antimicrobial activity than the standard antibiotics. Minimum Inhibition Concentration (MIC) of methyl 4,6-O-cyclohexylidene-2-O-myristoyl- 3-O-palmitoyl-alpha-D-glucopyranoside against Bacillus cereus, Bacillus subtilis and Staphylococcus aureus was 25, 12.5 and 25 macro g/disc, respectively. (author)

  3. Correlation of repressed transcription of alpha-tocopherol transfer protein with serum alpha-tocopherol during hepatocarcinogenesis

    NARCIS (Netherlands)

    Wu, C. G.; Hoek, F. J.; Groenink, M.; Reitsma, P. H.; van Deventer, S. J.; Chamuleau, R. A.

    1997-01-01

    Using a subtraction-enhanced display technique, we identified a rodent alpha-tocopherol transfer protein (alpha-TTP) cDNA which exhibited markedly lower messenger RNA (mRNA) amounts in rat hepatocellular carcinoma (HCC) than in healthy controls. Several lines of evidence have substantiated that

  4. Whole-body irradiation transiently diminishes the adrenocorticotropin response to recombinant human interleukin-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Perlstein, R.S.; Mehta, N.R.; Neta, R.; Whitnall, M.H. [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States); Mougey, E.H. [Walter Reed Army Institute of Research, Washington, DC (United States)

    1995-03-01

    Recombinant human interleukin-1{alpha} (rhIL-1{alpha}) has significant potential as a radioprotector and/or treatment for radiation-induced hematopoietic injury. Both IL-1 and whole-body ionizing irradiation acutely stimulate the hypothalamic-pituitary-adrenal axis. We therefore assessed the interaction of whole-body irradiation and rhIL-1{alpha} in altering the functioning of the axis in mice. Specifically, we determined the adrenocorticotropin (ACTH) and corticosterone responses to rhIL-1{alpha} administered just before and hours to days after whole-body or sham irradiation. Our results indicate that whole-body irradiation does not potentiate the rhIL-1{alpha}-induced increase in ACTH levels at the doses used. In fact, the rhIL-1{alpha}-induced increase in plasma ACTH is transiently impaired when the cytokine is administered 5 h after, but not 1 h before, exposure to whole-body irradiation. The ACTH response may be inhibited by elevated corticosterone levels after whole-body irradiation, or by other radiation-induced effects on the pituitary gland and hypothalamus. 36 refs., 3 figs.

  5. The Parkinson’s disease-associated protein α-synuclein disrupts stress signaling – a possible implication for methamphetamine use?

    Directory of Open Access Journals (Sweden)

    Shaoxiao Wang

    2014-03-01

    Full Text Available The human neuronal protein α-synuclein (α-syn has been linked by a plethora of studies as a causative factor in sporadic Parkinson’s disease (PD. To speed the pace of discovery about the biology and pathobiology of α-syn, organisms such as yeast, worms, and flies have been used to investigate the mechanisms by which elevated levels of α-syn are toxic to cells and to screen for drugs and genes that suppress this toxicity. We recently reported [Wang et al. Proc. Natl. Acad. Sci.(2012 109: 16119–16124] that human α-syn, at high expression levels, disrupts stress-activated signal transduction pathways in both yeast and human neuroblastoma cells. Disruption of these signaling pathways ultimately leads to vulnerability to stress and to cell death. Here we discuss how the disruption of cell signaling by α-syn may have relevance to the parkinsonism that is associated with the abuse of the drug methamphetamine (meth.

  6. Human Exhibitions

    DEFF Research Database (Denmark)

    Andreassen, Rikke

    light on the staging of exhibitions, the daily life of the exhibitees, the wider connections between shows across Europe and the thinking of the time on matters of race, science, gender and sexuality. A window onto contemporary racial understandings, the book presents interviews with the descendants...... of displayed people, connecting the attitudes and science of the past with both our (continued) modern fascination with ‘the exotic’, and contemporary language and popular culture. As such, it will be of interest to scholars of sociology, anthropology and history working in the areas of gender and sexuality...

  7. Alpha-, gamma- and delta-tocopherols reduce inflammatory angiogenesis in human microvascular endothelial cells.

    Science.gov (United States)

    Wells, Shannon R; Jennings, Merilyn H; Rome, Courtney; Hadjivassiliou, Vicky; Papas, Konstantinos A; Alexander, Jonathon S

    2010-07-01

    Vitamin E, a micronutrient (comprising alpha-, beta-, gamma- and delta-tocopherols, alpha-, beta-, gamma- and delta-tocotrienols), has documented antioxidant and non-antioxidant effects, some of which inhibit inflammation and angiogenesis. We compared the abilities of alpha-, gamma- and delta-tocopherols to regulate human blood cytotoxicity (BEC) and lymphatic endothelial cytotoxicity (LEC), proliferation, invasiveness, permeability, capillary formation and suppression of TNF-alpha-induced VCAM-1 as in vitro models of inflammatory angiogenesis. alpha-, gamma- and delta-tocopherols were not toxic to either cell type up to 40 microM. In BEC, confluent cell density was decreased by all concentrations of delta- and gamma-tocopherol (10-40 microM) but not by alpha-tocopherol. LEC showed no change in cell density in response to tocopherols. delta-Tocopherol (40 microM), but not other isomers, decreased BEC invasiveness. In LEC, all doses of gamma-tocopherol, as well as the highest dose of alpha-tocopherol (40 microM), decreased cell invasiveness. delta-Tocopherol had no effect on LEC invasiveness at any molarity. delta-Tocopherol dose dependently increased cell permeability at 48 h in BEC and LEC; alpha- and gamma-tocopherols showed slight effects. Capillary tube formation was decreased by high dose (40 microM) concentrations of alpha-, gamma- and delta-tocopherol, but showed no effects with smaller doses (10-20 microM) in BEC. gamma-Tocopherol (10-20 microM) and alpha-tocopherol (10 microM), but not delta-tocopherol, increased LEC capillary tube formation. Lastly, in BEC, alpha-, gamma- and delta-tocopherol each dose-dependently reduced TNF-alpha-induced expression of VCAM-1. In LEC, there was no significant change to TNF-alpha-induced VCAM-1 expression with any concentration of alpha-, gamma- or delta-tocopherol. These data demonstrate that physiological levels (0-40 microM) of alpha-, gamma- and delta-tocopherols are nontoxic and dietary tocopherols, especially delta

  8. Suppressed Alpha Oscillations Predict Intelligibility of Speech and its Acoustic Details

    Science.gov (United States)

    Weisz, Nathan

    2012-01-01

    Modulations of human alpha oscillations (8–13 Hz) accompany many cognitive processes, but their functional role in auditory perception has proven elusive: Do oscillatory dynamics of alpha reflect acoustic details of the speech signal and are they indicative of comprehension success? Acoustically presented words were degraded in acoustic envelope and spectrum in an orthogonal design, and electroencephalogram responses in the frequency domain were analyzed in 24 participants, who rated word comprehensibility after each trial. First, the alpha power suppression during and after a degraded word depended monotonically on spectral and, to a lesser extent, envelope detail. The magnitude of this alpha suppression exhibited an additional and independent influence on later comprehension ratings. Second, source localization of alpha suppression yielded superior parietal, prefrontal, as well as anterior temporal brain areas. Third, multivariate classification of the time–frequency pattern across participants showed that patterns of late posterior alpha power allowed best for above-chance classification of word intelligibility. Results suggest that both magnitude and topography of late alpha suppression in response to single words can indicate a listener's sensitivity to acoustic features and the ability to comprehend speech under adverse listening conditions. PMID:22100354

  9. Human CRISP-3 binds serum alpha(1)B-glycoprotein across species

    DEFF Research Database (Denmark)

    Udby, Lene; Johnsen, Anders H; Borregaard, Niels

    2010-01-01

    CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular...

  10. Expression of biologically active human interferon alpha 2 in aloe vera

    Science.gov (United States)

    We have developed a system for transgenic expression of proteins in Aloe Vera. Using this approach we have generated plants expressing the human gene interferon alpha 2, IFNa2. IFNa2 is a small secreted cytokine that plays a vital role in regulating the body’s immune response to viral infections a...

  11. Pathological role of lipid interaction with α-synuclein in Parkinson's disease.

    Science.gov (United States)

    Suzuki, Mari; Sango, Kazunori; Wada, Keiji; Nagai, Yoshitaka

    2018-01-03

    Alpha-synuclein (αSyn) plays a central role in the pathogenesis of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In sporadic PD and DLB, normally harmless αSyn proteins without any mutations might gain toxic functions by unknown mechanisms. Thus, it is important to elucidate the factors promoting the toxic conversion of αSyn, towards understanding the pathogenesis of and developing disease-modifying therapies for PD and DLB. Accumulating biophysical and biochemical studies have demonstrated that αSyn interacts with lipid membrane, and the interaction influences αSyn oligomerization and aggregation. Furthermore, genetic and clinicopathological studies have revealed mutations in the glucocerebrosidase 1 (GBA1) gene, which encodes a degrading enzyme for the glycolipid glucosylceramide (GlcCer), as strong risk factors for PD and DLB, and we recently demonstrated that GlcCer promotes toxic conversion of αSyn. Moreover, pathological studies have shown the existence of αSyn pathology in lysosomal storage disorders (LSDs) patient' brain, in which glycosphingolipids (GSLs) is found to be accumulated. In this review, we focus on the lipids as a key factor for inducing wild-type (WT) αSyn toxic conversion, we summarize the knowledge about the interaction between αSyn and lipid membrane, and propose our hypothesis that aberrantly accumulated GSLs might contribute to the toxic conversion of αSyn. Identifying the trigger for toxic conversion of αSyn would open a new therapeutic road to attenuate or prevent crucial events leading to the formation of toxic αSyn. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Mutant LRRK2 Toxicity in Neurons Depends on LRRK2 Levels and Synuclein But Not Kinase Activity or Inclusion Bodies

    Science.gov (United States)

    Skibinski, Gaia; Nakamura, Ken; Cookson, Mark R.

    2014-01-01

    By combining experimental neuron models and mathematical tools, we developed a “systems” approach to deconvolve cellular mechanisms of neurodegeneration underlying the most common known cause of Parkinson's disease (PD), mutations in leucine-rich repeat kinase 2 (LRRK2). Neurons ectopically expressing mutant LRRK2 formed inclusion bodies (IBs), retracted neurites, accumulated synuclein, and died prematurely, recapitulating key features of PD. Degeneration was predicted from the levels of diffuse mutant LRRK2 that each neuron contained, but IB formation was neither necessary nor sufficient for death. Genetic or pharmacological blockade of its kinase activity destabilized LRRK2 and lowered its levels enough to account for the moderate reduction in LRRK2 toxicity that ensued. By contrast, targeting synuclein, including neurons made from PD patient-derived induced pluripotent cells, dramatically reduced LRRK2-dependent neurodegeneration and LRRK2 levels. These findings suggest that LRRK2 levels are more important than kinase activity per se in predicting toxicity and implicate synuclein as a major mediator of LRRK2-induced neurodegeneration. PMID:24403142

  13. Protein/lipid coaggregates are formed during α-synuclein-induced disruption of lipid bilayers

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Langkilde, Annette Eva

    2014-01-01

    Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including the molec......Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including...... the molecular mechanisms behind potential amyloid-mediated toxic effects, is still missing. Interaction between amyloid aggregates and the lipid cell membrane is expected to play a key role in the disease progress. Here, we present experimental data based on hybrid analysis of two-photon-microscopy, solution...... small-angle X-ray scattering and circular dichroism data. Data show in real time changes in liposome morphology and stability upon protein addition and reveal that membrane disruption mediated by amyloidogenic αSN is associated with dehydration of anionic lipid membranes and stimulation of protein...

  14. Dynamical Behavior of Human α-Synuclein Studied by Quasielastic Neutron Scattering.

    Directory of Open Access Journals (Sweden)

    Satoru Fujiwara

    Full Text Available α-synuclein (αSyn is a protein consisting of 140 amino acid residues and is abundant in the presynaptic nerve terminals in the brain. Although its precise function is unknown, the filamentous aggregates (amyloid fibrils of αSyn have been shown to be involved in the pathogenesis of Parkinson's disease, which is a progressive neurodegenerative disorder. To understand the pathogenesis mechanism of this disease, the mechanism of the amyloid fibril formation of αSyn must be elucidated. Purified αSyn from bacterial expression is monomeric but intrinsically disordered in solution and forms amyloid fibrils under various conditions. As a first step toward elucidating the mechanism of the fibril formation of αSyn, we investigated dynamical behavior of the purified αSyn in the monomeric state and the fibril state using quasielastic neutron scattering (QENS. We prepared the solution sample of 9.5 mg/ml purified αSyn, and that of 46 mg/ml αSyn in the fibril state, both at pD 7.4 in D2O. The QENS experiments on these samples were performed using the near-backscattering spectrometer, BL02 (DNA, at the Materials and Life Science Facility at the Japan Accelerator Research Complex, Japan. Analysis of the QENS spectra obtained shows that diffusive global motions are observed in the monomeric state but largely suppressed in the fibril state. However, the amplitude of the side chain motion is shown to be larger in the fibril state than in the monomeric state. This implies that significant solvent space exists within the fibrils, which is attributed to the αSyn molecules within the fibrils having a distribution of conformations. The larger amplitude of the side chain motion in the fibril state than in the monomeric state implies that the fibril state is entropically favorable.

  15. Using gastrocnemius sEMG and plasma α-synuclein for the prediction of freezing of gait in Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Xiao-Ying Wang

    Full Text Available Freezing of gait (FOG is a complicated gait disturbance in Parkinson's disease (PD and a relevant subclinical predictor algorithm is lacking. The main purpose of this study is to explore the potential value of surface electromyograph (sEMG and plasma α-synuclein levels as predictors of the FOG seen in PD. 21 PD patients and 15 normal controls were recruited. Motor function was evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS and Freezing of gait questionnaire (FOG-Q. Simultaneously, gait analysis was also performed using VICON capture system in PD patients and sEMG data was recorded as well. Total plasma α-synuclein was quantitatively assessed by Luminex assay in all participants. Recruited PD patients were classified into two groups: PD patients with FOG (PD+FOG and without FOG (PD-FOG, based on clinical manifestation, the results of the FOG-Q and VICON capture system. PD+FOG patients displayed higher FOG-Q scores, decreased walking speed, smaller step length, smaller stride length and prolonged double support time compared to the PD-FOG in the gait trial. sEMG data indicated that gastrocnemius activity in PD+FOG patients was significantly reduced compared to PD-FOG patients. In addition, plasma α-synuclein levels were significantly decreased in the PD+FOG group compared to control group; however, no significant difference was found between the PD+FOG and PD-FOG groups. Our study revealed that gastrocnemius sEMG could be used to evaluate freezing gait in PD patients, while plasma α-synuclein might discriminate freezing of gait in PD patients from normal control, though no difference was found between the PD+FOG and PD-FOG groups.

  16. Suppression of TNF-alpha production by S-adenosylmethionine in human mononuclear leukocytes is not mediated by polyamines

    DEFF Research Database (Denmark)

    Yu, J.; Parlesak, Alexandr; Sauter, S.

    2006-01-01

    precursors or metabolites [phosphatidylcholine, choline, betaine, S-adenosylmethionine (SAM)] have a modulating effect on tumor necrosis factor alpha (TNF-alpha) production by endotoxin-stimulated human mononuclear leukocytes and whether SAM-dependent polyamines (spermidine, spermine) are mediators of SAM......-induced inhibition of TNF-alpha synthesis. Methionine and betaine had a moderate stimulatory effect on TNF-alpha production, whereas phosphatidylcholine (ID(50) 5.4 mM), SAM (ID(50) 131 microM), spermidine (ID(50) 4.5 microM) and spermine (ID(50) 3.9 microM) had a predominantly inhibitory effect. Putrescine did...

  17. Lack of effect of the alpha2C-adrenoceptor Del322-325 polymorphism on inhibition of cyclic AMP production in HEK293 cells.

    Science.gov (United States)

    Montgomery, M D; Bylund, D B

    2010-02-01

    The alpha(2C)-adrenoceptor has multiple functions, including inhibiting release of noradrenaline from presynaptic nerve terminals. A human alpha(2C) polymorphism, Del322-325, a potential risk factor for heart failure, has been reported to exhibit reduced signalling in CHO cells. To further understand the role of the Del322-325 polymorphism on receptor signalling, we attempted to replicate and further study the reduced signalling in HEK293 cells. Human alpha(2C) wild-type (WT) and Del322-325 adrenoceptors were stably transfected into HEK293 cells. Radioligand binding was performed to determine affinities for both receptors. In intact cells, inhibition of forskolin-stimulated cyclic AMP production by WT and Del322-325 clones with a range of receptor densities (200-2320 fmol.mg(-1) protein) was measured following agonist treatment. Noradrenaline, brimonidine and clonidine exhibited similar binding affinities for WT and Del322-325. Brimonidine and clonidine also had similar efficacies and potencies for both receptors for the inhibition of cyclic AMP production at all receptor densities tested. A linear regression analysis comparing efficacy and potency with receptor expression levels showed no differences in slopes between WT and Del322-325. The alpha(2C) WT and Del322-325 adrenoceptors exhibited similar binding properties. Additionally, inhibition of cyclic AMP production by Del322-325 was similar to that of WT over a range of receptor densities. Therefore, in intact HEK293 cells, the alpha(2C)-Del322-325 polymorphism does not exhibit reduced signalling to adenylyl cyclase and may not represent a clinically important phenotype.

  18. Immunolocalization of transforming growth factor alpha in normal human tissues

    DEFF Research Database (Denmark)

    Christensen, M E; Poulsen, Steen Seier

    1996-01-01

    anchorage-independent growth of normal cells and was, therefore, considered as an "oncogenic" growth factor. Later, its immunohistochemical presence in normal human cells as well as its biological effects in normal human tissues have been demonstrated. The aim of the present investigation was to elucidate...... the distribution of the growth factor in a broad spectrum of normal human tissues. Indirect immunoenzymatic staining methods were used. The polypeptide was detected with a polyclonal as well as a monoclonal antibody. The polyclonal and monoclonal antibodies demonstrated almost identical immunoreactivity. TGF......-alpha was found to be widely distributed in cells of normal human tissues derived from all three germ layers, most often in differentiated cells. In epithelial cells, three different kinds of staining patterns were observed, either diffuse cytoplasmic, cytoplasmic in the basal parts of the cells, or distinctly...

  19. Novel P2 promoter-derived HNF4{alpha} isoforms with different N-terminus generated by alternate exon insertion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianmin, E-mail: jmhuang@partners.org [Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, 02114-2696 (United States); Levitsky, Lynne L. [Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, 02114-2696 (United States); Rhoads, David B., E-mail: rhoads@helix.mgh.harvard.edu [Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, 02114-2696 (United States)

    2009-04-15

    Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a critical transcription factor for pancreas and liver development and functions in islet {beta} cells to maintain glucose homeostasis. Mutations in the human HNF4A gene lead to maturity onset diabetes of the young (MODY1) and polymorphisms are associated with increased risk for type 2 diabetes mellitus (T2DM). Expression of six HNF4{alpha} variants, three each from two developmentally regulated promoters, has been firmly established. We have now detected a new set of HNF4{alpha} variants designated HNF4{alpha}10-12 expressed from distal promoter P2. These variants, generated by inclusion of previously undetected exon 1E (human = 222 nt, rodent = 136 nt) following exon 1D have an altered N-terminus but identical remaining reading frame. HNF4{alpha}10-{alpha}12 are expressed in pancreatic islets (and liver) and exhibit transactivation potentials similar to the corresponding {alpha}7-{alpha}9 isoforms. DNA-binding analyses implied much higher protein levels of HNF4{alpha}10-{alpha}12 in liver than expected from the RT-PCR data. Our results provide evidence for a more complex expression pattern of HNF4{alpha} than previously appreciated. We recommend inclusion of exon 1E and nearby DNA sequences in screening for HNF4{alpha} mutations and polymorphisms in genetic analyses of MODY1 and T2DM.

  20. 77 FR 38374 - Culturally Significant Objects Imported for Exhibition Determinations: “The Human Beast: German...

    Science.gov (United States)

    2012-06-27

    ... DEPARTMENT OF STATE [Public Notice 7935] Culturally Significant Objects Imported for Exhibition Determinations: ``The Human Beast: German Expressionism at The San Diego Museum of Art'' SUMMARY: Notice is... objects to be included in the exhibition ``The Human Beast: German Expressionism at The San Diego Museum...

  1. Bonobos and chimpanzees exhibit human-like framing effects

    Science.gov (United States)

    Krupenye, Christopher; Rosati, Alexandra G.; Hare, Brian

    2015-01-01

    Humans exhibit framing effects when making choices, appraising decisions involving losses differently from those involving gains. To directly test for the evolutionary origin of this bias, we examined decision-making in humans' closest living relatives: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). We presented the largest sample of non-humans to date (n = 40) with a simple task requiring minimal experience. Apes made choices between a ‘framed’ option that provided preferred food, and an alternative option that provided a constant amount of intermediately preferred food. In the gain condition, apes experienced a positive ‘gain’ event in which the framed option was initially presented as one piece of food but sometimes was augmented to two. In the loss condition, apes experienced a negative ‘loss' event in which they initially saw two pieces but sometimes received only one. Both conditions provided equal pay-offs, but apes chose the framed option more often in the positive ‘gain’ frame. Moreover, male apes were more susceptible to framing than were females. These results suggest that some human economic biases are shared through common descent with other apes and highlight the importance of comparative work in understanding the origins of individual differences in human choice. PMID:25672997

  2. Bonobos and chimpanzees exhibit human-like framing effects.

    Science.gov (United States)

    Krupenye, Christopher; Rosati, Alexandra G; Hare, Brian

    2015-02-01

    Humans exhibit framing effects when making choices, appraising decisions involving losses differently from those involving gains. To directly test for the evolutionary origin of this bias, we examined decision-making in humans' closest living relatives: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). We presented the largest sample of non-humans to date (n = 40) with a simple task requiring minimal experience. Apes made choices between a 'framed' option that provided preferred food, and an alternative option that provided a constant amount of intermediately preferred food. In the gain condition, apes experienced a positive 'gain' event in which the framed option was initially presented as one piece of food but sometimes was augmented to two. In the loss condition, apes experienced a negative 'loss' event in which they initially saw two pieces but sometimes received only one. Both conditions provided equal pay-offs, but apes chose the framed option more often in the positive 'gain' frame. Moreover, male apes were more susceptible to framing than were females. These results suggest that some human economic biases are shared through common descent with other apes and highlight the importance of comparative work in understanding the origins of individual differences in human choice. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: no association with neuroaxonal dystrophy?

    NARCIS (Netherlands)

    Bakker, H. D.; de Sonnaville, M. L.; Vreken, P.; Abeling, N. G.; Groener, J. E.; Keulemans, J. L.; van Diggelen, O. P.

    2001-01-01

    Two new individuals with alpha-NAGA deficiency are presented. The index patient, 3 years old, has congenital cataract, slight motor retardation and secondary demyelinisation. Screening of his sibs revealed an alpha-NAGA deficiency in his 7-year-old healthy brother who had no clinical or neurological

  4. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies.

    Science.gov (United States)

    Mazzulli, Joseph R; Xu, You-Hai; Sun, Ying; Knight, Adam L; McLean, Pamela J; Caldwell, Guy A; Sidransky, Ellen; Grabowski, Gregory A; Krainc, Dimitri

    2011-07-08

    Parkinson's disease (PD), an adult neurodegenerative disorder, has been clinically linked to the lysosomal storage disorder Gaucher disease (GD), but the mechanistic connection is not known. Here, we show that functional loss of GD-linked glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises lysosomal protein degradation, causes accumulation of α-synuclein (α-syn), and results in neurotoxicity through aggregation-dependent mechanisms. Glucosylceramide (GlcCer), the GCase substrate, directly influenced amyloid formation of purified α-syn by stabilizing soluble oligomeric intermediates. We further demonstrate that α-syn inhibits the lysosomal activity of normal GCase in neurons and idiopathic PD brain, suggesting that GCase depletion contributes to the pathogenesis of sporadic synucleinopathies. These findings suggest that the bidirectional effect of α-syn and GCase forms a positive feedback loop that may lead to a self-propagating disease. Therefore, improved targeting of GCase to lysosomes may represent a specific therapeutic approach for PD and other synucleinopathies. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. 99MTC Alpha-Fetoprotein: A Novel, Specific Agent for the Detection of Human Breast Cancer

    National Research Council Canada - National Science Library

    Line, Bruce

    1998-01-01

    .... We have demonstrated that technetium-99m radiolabeled human alpha-fetoprotein (99mTc AFP) localizes in human breast cancer cells in-vivo, most likely concentrating in breast cancer cells due to a specific receptor not found in normal adult breast tissue...

  6. 99MTC Alpha-Fetoprotein: A Novel, Specific Agent for the Detection of Human Breast Cancer

    National Research Council Canada - National Science Library

    Line, Bruce

    1999-01-01

    .... We have demonstrated that technetium-99m radiolabeled human alpha-fetoprotein (99mTc AFP) localizes in human breast cancer cells in-vivo, most likely concentrating in breast cancer cells due to a specific receptor not found in normal adult breast tissue...

  7. Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson's disease models

    NARCIS (Netherlands)

    Karpinar, D.P.; Giller, K.; Becker, S.; Baldus, M.

    2009-01-01

    The relation of -synuclein (S) aggregation to Parkinson's disease (PD) has long been recognized, but the mechanism of toxicity, the pathogenic species and its molecular properties are yet to be identified. To obtain insight into the function different aggregated S species have in neurotoxicity in

  8. Urinary transforming growth factors in neoplasia: separation of 125I-labeled transforming growth factor-alpha from epidermal growth factor in human urine

    International Nuclear Information System (INIS)

    Stromberg, K.; Hudgins, W.R.

    1986-01-01

    Purified human epidermal growth factor (hEGF) from urine promotes anchorage-independent cell growth in soft agar medium. This growth is enhanced by transforming growth factor-beta (TGF-beta), and is specifically inhibited by hEGF antiserum. Transforming growth factors of the alpha type (TGF-alpha), potentially present in normal human urine or urine from tumor-bearing patients, also promote anchorage-independent cell growth and compete with EGF for membrane receptor binding. Consequently, TGF-alpha cannot be distinguished from urinary hEGF by these two functional assays. Therefore, a technique for separation of TGF-alpha and related peptides from urinary EGF based on biochemical characteristics would be useful. Radioiodination of characterized growth factors [mouse EGF (mEGF), hEGF, and rat TGF-alpha (rTGF-alpha)], which were then separately added to human urine, was used to evaluate a resolution scheme that separates TGF-alpha from the high level of background hEGF present in human urine. Methyl bonded microparticulate silica efficiently adsorbed the 125 I-labeled mEGF, 125 I-labeled hEGF, and 125 I-labeled rTGF-alpha that were added to 24-h human urine samples. Fractional elution with acetonitrile (MeCN) of the adsorbed silica released approximately 70 to 80% of the 125 I-labeled mEGF and 125 I-labeled hEGF between 25 and 30% MeCN, and over 80% of the 125 I-labeled rTGF-alpha between 15 and 25% MeCN, with retention after dialysis of less than 0.2 and 1.7% of the original urinary protein, respectively. A single-step enrichment of about 400-fold for mEGF and hEGF, and 50-fold for rTGF-alpha were achieved rapidly. 125 I-labeled mEGF and 125 I-labeled hEGF eluted later than would be predicted on the basis of their reported molecular weight of approximately 6000, whereas 125 I-labeled rTGF-alpha eluted from Bio-Gel P-10 at an approximate molecular weight of 8000 to 9000

  9. Effects of alpha-2 agonists on renal function in hypertensive humans.

    Science.gov (United States)

    Goldberg, M; Gehr, M

    1985-01-01

    Centrally acting adrenergic agonists, by decreasing peripheral adrenergic activity, are effective antihypertensive agents. The older agents, however, especially methyldopa, have been associated with weight gain, clinical edema, and antihypertensive tolerance when used as monotherapy. While acute studies in humans have demonstrated weight gain and sodium retention with clonidine and guanabenz, chronic administration results in a decrease in weight and plasma volume. The absence of chronic weight gain and of sodium retention could be the result of a counterbalance between hypotension-related antinatriuresis, secondary to a decrease in glomerular filtration rate and renal blood flow, and natriuretic activity, as a result of a decrease in renal sympathetic tone. Whereas natriuresis and water diuresis have been demonstrated in animals with acute clonidine or guanabenz administration, this has not been demonstrated in humans. Recent studies in which saline administration was used to precondition humans to a subsequent natriuretic stimulus (i.e., guanabenz-induced decreased renal adrenergic activity) resulted in stabilization of renal blood flow and natriuresis. Selective reduction renal sympathetic activity affecting salt and water transport may explain why guanabenz and probably also clonidine seem to be devoid of the sodium/fluid-retaining properties that are common with other antihypertensive agents. Because agents of this class have effects other than pure central alpha-2 agonism (such as alpha-1 activity), they might have confounding and counterbalancing side effects leading to sodium and water retention.

  10. Chorionic gonadotropin regulates the transcript level of VHL, p53, and HIF-2alpha in human granulosa lutein cells.

    Science.gov (United States)

    Herr, D; Keck, C; Tempfer, C; Pietrowski, Detlef

    2004-12-01

    The ovarian corpus luteum plays a critical role in reproduction being the primary source of circulating progesterone. After ovulation the corpus luteum is build by avascular granulosa lutein cells through rapid vascularization regulated by gonadotropic hormones. The present study was performed to investigate whether this process might be influenced by the human chorionic gonadotropin (hCG)-dependent expression of different tumor suppressor genes and hypoxia dependent transcription factors. RNA was isolated from cultured granulosa lutein cells, transcribed into cDNA, and the transcript level of following genes were determined: RB-1, VHL, NF-1, NF-2, Wt-1, p53, APC, and hypoxia inducible factor-1 (HIF-1), -2, and -3alpha. Additionally, the influence of hCG on the expression of VHL, p53, and HIf2alpha were investigated. We demonstrate that in human granulosa lutein cells the tumor suppressor genes RB-1, VHL, NF-1, NF-2, Wt-1, p53, and APC and the hypoxia dependent transcription factors HIF-1alpha, -2alpha, and -3alpha are expressed. In addition, we showed that hCG regulates the expression of p53, VHL, and HIF-2alpha. Our results indicate that hCG may determine the growth and development of the corpus luteum by mediating hypoxic and apoptotic pathways in human granulosa lutein cells. Copyright 2004 Wiley-Liss, Inc.

  11. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    Science.gov (United States)

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  12. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor suppressor in hepatocellular carcinoma.

    Science.gov (United States)

    Liu, Rui; Zhang, Haiyang; Zhang, Yan; Li, Shuang; Wang, Xinyi; Wang, Xia; Wang, Cheng; Liu, Bin; Zen, Ke; Zhang, Chen-Yu; Zhang, Chunni; Ba, Yi

    2017-04-01

    Peroxisome proliferator-activated receptor gamma coactivator-1 alpha plays a crucial role in regulating the biosynthesis of mitochondria, which is closely linked to the energy metabolism in various tumors. This study investigated the regulatory role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha in the pathogenesis of hepatocellular carcinoma. In this study, the changes of peroxisome proliferator-activated receptor gamma coactivator-1 alpha messenger RNA levels between normal human liver and hepatocellular carcinoma tissue were examined by quantitative reverse transcription polymerase chain reaction. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by RNA interference in the human liver cell line L02, while overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha complementary DNA in the human hepatocarcinoma cell line HepG2. Cellular morphological changes were observed via optical and electron microscopy. Cellular apoptosis was determined by Hoechst 33258 staining. In addition, the expression levels of 21,400 genes in tissues and cells were detected by microarray. It was shown that peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression was significantly downregulated in hepatocellular carcinoma compared with normal liver tissues. After knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression in L02 cells, cells reverted to immature and dedifferentiated morphology exhibiting cancerous tendency. Apoptosis occurred in the HepG2 cells after transfection by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Microarray analysis showed consistent results. The results suggest that peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor

  13. Alpha-Fetoprotein, Identified as a Novel Marker for the Antioxidant Effect of Placental Extract, Exhibits Synergistic Antioxidant Activity in the Presence of Estradiol

    Science.gov (United States)

    Choi, Hye Yeon; Kim, Seung Woo; Kim, BongWoo; Lee, Hae Na; Kim, Su-Jeong; Song, Minjung; Kim, Sol; Kim, Jungho; Kim, Young Bong; Kim, Jin-Hoi; Cho, Ssang-Goo

    2014-01-01

    Placenta, as a reservoir of nutrients, has been widely used in medical and cosmetic materials. Here, we focused on the antioxidant properties of placental extract and attempted to isolate and identify the main antioxidant factors. Porcine placental extracts were prepared through homogenization or acid hydrolysis, and their antioxidant activity was investigated in the human keratinocyte HaCaT cell line. Treatment with homogenized placental extract (H-PE) increased the cell viability of H2O2-treated HaCaT cells more than two-fold. H-PE treatment suppressed H2O2-induced apoptotic and necrotic cell death and decreased intracellular ROS levels in H2O2-treated HaCaT cells. The antioxidant factors in H-PE were found to be thermo-unstable and were thus expected to include proteins. The candidate antioxidant proteins were fractionated with cation-exchange, anion-exchange, and size-exclusion chromatography, and the antioxidant properties of the chromatographic fractions were investigated. We obtained specific antioxidant fractions that suppressed ROS generation and ROS-induced DNA strand breaks. From silver staining and MALDI-TOF analyses, alpha-fetoprotein (AFP) precursor was identified as a main marker for the antioxidant effect of H-PE. Purified AFP or ectopically expressed AFP exhibited synergistic antioxidant activity in the presence of estradiol. Taken together, our data suggest that AFP, a serum glycoprotein produced at high levels during fetal development, is a novel marker protein for the antioxidant effect of the placenta that exhibits synergistic antioxidant activity in the presence of estradiol. PMID:24922551

  14. Alpha-fetoprotein, identified as a novel marker for the antioxidant effect of placental extract, exhibits synergistic antioxidant activity in the presence of estradiol.

    Directory of Open Access Journals (Sweden)

    Hye Yeon Choi

    Full Text Available Placenta, as a reservoir of nutrients, has been widely used in medical and cosmetic materials. Here, we focused on the antioxidant properties of placental extract and attempted to isolate and identify the main antioxidant factors. Porcine placental extracts were prepared through homogenization or acid hydrolysis, and their antioxidant activity was investigated in the human keratinocyte HaCaT cell line. Treatment with homogenized placental extract (H-PE increased the cell viability of H2O2-treated HaCaT cells more than two-fold. H-PE treatment suppressed H2O2-induced apoptotic and necrotic cell death and decreased intracellular ROS levels in H2O2-treated HaCaT cells. The antioxidant factors in H-PE were found to be thermo-unstable and were thus expected to include proteins. The candidate antioxidant proteins were fractionated with cation-exchange, anion-exchange, and size-exclusion chromatography, and the antioxidant properties of the chromatographic fractions were investigated. We obtained specific antioxidant fractions that suppressed ROS generation and ROS-induced DNA strand breaks. From silver staining and MALDI-TOF analyses, alpha-fetoprotein (AFP precursor was identified as a main marker for the antioxidant effect of H-PE. Purified AFP or ectopically expressed AFP exhibited synergistic antioxidant activity in the presence of estradiol. Taken together, our data suggest that AFP, a serum glycoprotein produced at high levels during fetal development, is a novel marker protein for the antioxidant effect of the placenta that exhibits synergistic antioxidant activity in the presence of estradiol.

  15. Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ.

    Directory of Open Access Journals (Sweden)

    David C Butler

    Full Text Available Misfolding, abnormal accumulation, and secretion of α-Synuclein (α-Syn are closely associated with synucleinopathies, including Parkinson's disease (PD. VH14 is a human single domain intrabody selected against the non-amyloid component (NAC hydrophobic interaction region of α-Syn, which is critical for initial aggregation. Using neuronal cell lines, we show that as a bifunctional nanobody fused to a proteasome targeting signal, VH14PEST can counteract heterologous proteostatic effects of mutant α-Syn on mutant huntingtin Exon1 and protect against α-Syn toxicity using propidium iodide or Annexin V readouts. We compared this anti-NAC candidate to NbSyn87, which binds to the C-terminus of α-Syn. NbSyn87PEST degrades α-Syn as well or better than VH14PEST. However, while both candidates reduced toxicity, VH14PEST appears more effective in both proteostatic stress and toxicity assays. These results show that the approach of reducing intracellular monomeric targets with novel antibody engineering technology should allow in vivo modulation of proteostatic pathologies.

  16. Technetium-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptides for human melanoma imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianquan; Guo Haixun [College of Pharmacy, University of New Mexico, Albuquerque, NM 87131 (United States); Miao Yubin, E-mail: ymiao@salud.unm.ed [College of Pharmacy, University of New Mexico, Albuquerque, NM 87131 (United States); Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131 (United States); Department of Dermatology, University of New Mexico, Albuquerque, NM 87131 (United States)

    2010-11-15

    Introduction: The purpose of this study was to examine whether {sup 99m}Tc-labeled Arg-Gly-Asp (RGD)-conjugated alpha-melanocyte stimulating hormone ({alpha}-MSH) hybrid peptide targeting both melanocortin-1 (MC1) and {alpha}{sub v{beta}3} integrin receptors was superior in melanoma targeting to {sup 99m}Tc-labeled {alpha}-MSH or RGD peptide targeting only the MC1 or {alpha}{sub v{beta}3} integrin receptor. Methods: RGD-Lys-(Arg{sup 11})CCMSH, RAD-Lys-(Arg{sup 11})CCMSH and RGD-Lys-(Arg{sup 11})CCMSHscramble were designed to target both MC1 and {alpha}{sub v{beta}3} integrin receptors, MC1 receptor only and {alpha}{sub v{beta}3} integrin receptor only, respectively. The MC1 or {alpha}{sub v{beta}3} integrin receptor binding affinities of three peptides were determined in M21 human melanoma cells. The melanoma targeting properties of {sup 99m}Tc-labeled RGD-Lys-(Arg{sup 11})CCMSH, RAD-Lys-(Arg{sup 11})CCMSH and RGD-Lys-(Arg{sup 11})CCMSHscramble were determined in M21 human melanoma-xenografted nude mice. Meanwhile, the melanoma uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH was blocked with various non-radiolabeled peptides in M21 melanoma xenografts. Results: RGD-Lys-(Arg{sup 11})CCMSH displayed 2.0 and 403 nM binding affinities to both MC1 and {alpha}{sub v{beta}3} integrin receptors, whereas RAD-Lys-(Arg{sup 11})CCMSH or RGD-Lys-(Arg{sup 11})CCMSHscramble lost their {alpha}{sub v{beta}3} integrin receptor binding affinity by greater than 248-fold or MC1 receptor binding affinity by more than 100-fold, respectively. The melanoma uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH was 2.49 and 2.24 times (P < .05) the melanoma uptakes of {sup 99m}Tc-RAD-Lys-(Arg{sup 11})CCMSH and {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSHscramble at 2 h post-injection, respectively. Either RGD or (Arg{sup 11})CCMSH peptide co-injection could block 42% and 57% of the tumor uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH, whereas the coinjection of RGD+(Arg{sup 11})CCMSH peptide mixture

  17. BstXI RFLP in the human inter-alpha-trypsin inhibitor light chain gene

    Energy Technology Data Exchange (ETDEWEB)

    Leveillard, T; Bourguignon, J; Sesbouee, R; Hanauer, A; Salier, J P; Diarra-Mehrpour, M; Martin, J P

    1988-03-25

    The 1.2 kb EcoRI/SmaI fragment of lambdaHuLITI2 was used as probe. lambdaHuLITI2 is a full length cDNA clone coding for human inter-alpha-trypsin inhibitor light chain isolated from immunochemical screening of a lambdagt11 library. Its sequence coding for HI-30 and alpha-1-microglobulin is in agreement. BstXI identifies five invariant bands at 5.0 kb, 2.3 kb, 1.5 kb, 1.1 kb, and 0.7 kb and a diallelic polymorphism with DNA fragments at 2.0 kb or 1.7 kb.

  18. The antagonistic effect of antipsychotic drugs on a HEK293 cell line stably expressing human alpha(1A1)-adrenoceptors

    DEFF Research Database (Denmark)

    Nourian, Zahra; Mulvany, Michael J; Nielsen, Karsten Bork

    2008-01-01

    challenged with phenylephrine (EC(50)=1.61x10(-8) M). From Schild analysis, prazosin, sertindole, risperidone, and haloperidol caused a concentration-dependent, rightward shift of the cumulative concentration-response curves for phenylephrine in cells expressing human recombinant alpha(1A1)-adrenoceptors...... human alpha(1A1)-adrenoceptors in competition binding studies confirmed much higher antagonist affinity of sertindole and risperidone than haloperidol for these receptors. In summary, it can be concluded that there is an approximately 10-fold higher adrenoceptor affinity of risperidone and sertindole...... for human alpha(1A1)-adrenoceptors compared to haloperidol. These findings are consistent with the observation that risperidone and sertindole have a higher incidence of orthostatic hypotension than haloperidol....

  19. α-Synuclein and huntingtin exon 1 amyloid fibrils bind laterally to the cellular membrane.

    Science.gov (United States)

    Monsellier, Elodie; Bousset, Luc; Melki, Ronald

    2016-01-13

    Fibrillar aggregates involved in neurodegenerative diseases have the ability to spread from one cell to another in a prion-like manner. The underlying molecular mechanisms, in particular the binding mode of the fibrils to cell membranes, are poorly understood. In this work we decipher the modality by which aggregates bind to the cellular membrane, one of the obligatory steps of the propagation cycle. By characterizing the binding properties of aggregates made of α-synuclein or huntingtin exon 1 protein displaying similar composition and structure but different lengths to mammalian cells we demonstrate that in both cases aggregates bind laterally to the cellular membrane, with aggregates extremities displaying little or no role in membrane binding. Lateral binding to artificial liposomes was also observed by transmission electron microscopy. In addition we show that although α-synuclein and huntingtin exon 1 fibrils bind both laterally to the cellular membrane, their mechanisms of interaction differ. Our findings have important implications for the development of future therapeutic tools that aim to block protein aggregates propagation in the brain.

  20. Kinetic studies of the inhibition of a human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme by bile acids and anti-inflammatory drugs.

    Science.gov (United States)

    Miyabe, Y; Amano, T; Deyashiki, Y; Hara, A; Tsukada, F

    1995-01-01

    We have investigated the steady-state kinetics for a cytosolic 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme of human liver and its inhibition by several bile acids and anti-inflammatory drugs such as indomethacin, flufemanic acid and naproxen. Initial velocity and product inhibition studies performed in the NADP(+)-linked (S)-1-indanol oxidation at pH 7.4 were consistent with a sequential ordered mechanism in which NADP+ binds first and leaves last. The bile acids and drugs, competitive inhibitors with respect to the alcohol substrate, exhibited uncompetitive inhibition with respect to the coenzyme, with Ki values less than 1 microM, whereas indomethacin exhibited noncompetitive inhibition (Ki < 24 microM). The kinetics of the inhibition by a mixture of the two inhibitors suggests that bile acids and drugs, except indomethacin, bind to overlapping sites at the active center of the enzyme-coenzyme binary complex.

  1. Human alpha-enolase from endothelial cells as a target antigen of anti-endothelial cell antibody in Behçet's disease.

    Science.gov (United States)

    Lee, Kwang Hoon; Chung, Hae-Shin; Kim, Hyoung Sup; Oh, Sang-Ho; Ha, Moon-Kyung; Baik, Ja-Hyun; Lee, Sungnack; Bang, Dongsik

    2003-07-01

    To identify and recombine a protein of the human dermal microvascular endothelial cell (HDMEC) that specifically reacts with anti-endothelial cell antibody (AECA) in the serum of patients with Behçet's disease (BD), and to evaluate the usefulness of this protein in BD. The proteomics technique, with 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry, was used to identify and recombine HDMEC antigen. Western blotting and enzyme-linked immunosorbent assay (ELISA) of recombinant protein isolated by gene cloning were performed on serum from healthy controls, patients with BD, and patients with other rheumatic diseases (rheumatoid arthritis, systemic lupus erythematosus, and Wegener's granulomatosis). Eighteen of 40 BD patients had serum IgM antibody to HDMEC antigen. The purified protein that reacted with AECA in BD patient sera was found to be alpha-enolase by 2-dimensional gel electrophoresis followed by immunoblotting and MALDI-TOF mass spectrometry. Recombinant alpha-enolase protein was isolated and refined by gene cloning. On Western blots, AECA-positive IgM from the sera of patients with active BD reacted strongly with recombinant human alpha-enolase. BD patient sera positive for anti-alpha-enolase did not react with human gamma-enolase. On dot-blotting, reactivity to human alpha-enolase was detected only in the IgM-positive group. Fifteen of the 18 AECA-positive sera that were positive for the HDMEC antigen showed reactivity to recombinant alpha-enolase IgM antibody by ELISA. The alpha-enolase protein is the target protein of serum AECA in BD patients. This is the first report of the presence of IgM antibodies to alpha-enolase in endothelial cells from the serum of BD patients. Although further studies relating this protein to the pathogenesis of BD will be necessary, alpha-enolase and its antibody may prove useful in the development of new diagnostic and treatment modalities in BD.

  2. The Exosomal/Total α-Synuclein Ratio in Plasma Is Associated With Glucocerebrosidase Activity and Correlates With Measures of Disease Severity in PD Patients

    Directory of Open Access Journals (Sweden)

    Silvia Cerri

    2018-05-01

    Full Text Available Intensive research efforts in the field of Parkinson’s disease (PD are focusing on identifying reliable biomarkers which possibly help physicians in predicting disease onset, diagnosis, and progression as well as evaluating the response to disease-modifying treatments. Given that abnormal alpha-synuclein (α-syn accumulation is a primary component of PD pathology, this protein has attracted considerable interest as a potential biomarker for PD. Alpha-synuclein can be detected in several body fluids, including plasma, where it can be found as free form or in association with exosomes, small membranous vesicles secreted by virtually all cell types. Together with α-syn accumulation, lysosomal dysfunctions seem to play a central role in the pathogenesis of PD, given the crucial role of lysosomes in the α-syn degradation. In particular, heterozygous mutations in the GBA1 gene encoding lysosomal enzyme glucocerebrosidase (GCase are currently considered as the most important risk factor for PD. Different studies have found that GCase deficiency leads to accumulation of α-syn; whereas at the same time, increased α-syn may inhibit GCase function, thus inducing a bidirectional pathogenic loop. In this study, we investigated whether changes in plasma total and exosome-associated α-syn could correlate with disease status and clinical parameters in PD and their relationship with GCase activity. We studied 39 PD patients (mean age: 65.2 ± 8.9; men: 25, without GBA1 mutations, and 33 age-matched controls (mean age: 61.9 ± 6.2; men: 15. Our results showed that exosomes from PD patients contain a greater amount of α-syn compared to healthy subjects (25.2 vs. 12.3 pg/mL, p < 0.001 whereas no differences were found in plasma total α-syn levels (15.7 vs. 14.8 ng/mL, p = 0.53. Moreover, we highlighted a significant increase of plasma exosomal α-syn/total α-syn ratio in PD patients (1.69 vs. 0.89, p < 0.001, which negatively correlates with disease

  3. Alpha band frequency differences between low-trait and high-trait anxious individuals.

    Science.gov (United States)

    Ward, Richard T; Smith, Shelby L; Kraus, Brian T; Allen, Anna V; Moses, Michael A; Simon-Dack, Stephanie L

    2018-01-17

    Trait anxiety has been shown to cause significant impairments on attentional tasks. Current research has identified alpha band frequency differences between low-trait and high-trait anxious individuals. Here, we further investigated the underlying alpha band frequency differences between low-trait and high-trait anxious individuals during their resting state and the completion of an inhibition executive functioning task. Using human participants and quantitative electroencephalographic recordings, we measured alpha band frequency in individuals both high and low in trait anxiety during their resting state, and while they completed an Eriksen Flanker Task. Results indicated that high-trait anxious individuals exhibit a desynchronization in alpha band frequency from a resting state to when they complete the Eriksen Flanker Task. This suggests that high-trait anxious individuals maintain fewer attentional resources at rest and must martial resources for task performance as compared with low-trait anxious individuals, who appear to maintain stable cognitive resources between rest and task performance. These findings add to the cognitive neuroscience literature surrounding the role of alpha band frequency in low-trait and high-trait anxious individuals.

  4. Functional characterisation of the human alpha1 glycine receptor in a fluorescence-based membrane potential assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Kristiansen, Uffe

    2004-01-01

    In the present study, we have created a stable HEK293 cell line expressing the human homomeric alpha1 glycine receptor (GlyR) and characterised its functional pharmacology in a conventional patch-clamp assay and in the FLIPR Membrane Potential (FMP) assay, a fluorescence-based high throughput scr...... not be suited for sophisticated studies of GlyR pharmacology and kinetics. However, the assay offers several advantages in studies of ligand-receptor interactions. Furthermore, the assay could be highly useful in the search for structurally novel ligands acting at GlyRs.......In the present study, we have created a stable HEK293 cell line expressing the human homomeric alpha1 glycine receptor (GlyR) and characterised its functional pharmacology in a conventional patch-clamp assay and in the FLIPR Membrane Potential (FMP) assay, a fluorescence-based high throughput...... ion did not appear to potentiate GlyR function at lower concentrations. Analogously, whereas pregnenolone sulphate inhibited alpha1 GlyR function, the potentiation of alpha1 GlyR by pregnenolone in electrophysiological studies could not be reproduced in the assay. In conclusion, the FMP assay may...

  5. Specificity and kinetics of alpha-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe.

    Science.gov (United States)

    Shvadchak, Volodymyr V; Falomir-Lockhart, Lisandro J; Yushchenko, Dmytro A; Jovin, Thomas M

    2011-04-15

    Parkinson disease is characterized cytopathologically by the deposition in the midbrain of aggregates composed primarily of the presynaptic neuronal protein α-synuclein (AS). Neurotoxicity is currently attributed to oligomeric microaggregates subjected to oxidative modification and promoting mitochondrial and proteasomal dysfunction. Unphysiological binding to membranes of these and other organelles is presumably involved. In this study, we performed a systematic determination of the influence of charge, phase, curvature, defects, and lipid unsaturation on AS binding to model membranes using a new sensitive solvatochromic fluorescent probe. The interaction of AS with vesicular membranes is fast and reversible. The protein dissociates from neutral membranes upon thermal transition to the liquid disordered phase and transfers to vesicles with higher affinity. The binding of AS to neutral and negatively charged membranes occurs by apparently different mechanisms. Interaction with neutral bilayers requires the presence of membrane defects; binding increases with membrane curvature and rigidity and decreases in the presence of cholesterol. The association with negatively charged membranes is much stronger and much less sensitive to membrane curvature, phase, and cholesterol content. The presence of unsaturated lipids increases binding in all cases. These findings provide insight into the relation between membrane physical properties and AS binding affinity and dynamics that presumably define protein localization in vivo and, thereby, the role of AS in the physiopathology of Parkinson disease.

  6. Xanthophylls and alpha-tocopherol decrease UVB-induced lipid peroxidation and stress signaling in human lens epithelial cells.

    Science.gov (United States)

    Chitchumroonchokchai, Chureeporn; Bomser, Joshua A; Glamm, Jayme E; Failla, Mark L

    2004-12-01

    Epidemiological studies suggest that consumption of vegetables rich in the xanthophylls lutein (LUT) and zeaxanthin (ZEA) reduces the risk for developing age-related cataract, a leading cause of vision loss. Although LUT and ZEA are the only dietary carotenoids present in the lens, direct evidence for their photoprotective effect in this organ is not available. The present study examined the effects of xanthophylls and alpha-tocopherol (alpha-TC) on lipid peroxidation and the mitogen-activated stress signaling pathways in human lens epithelial (HLE) cells following ultraviolet B light (UVB) irradiation. When presented with LUT, ZEA, astaxanthin (AST), and alpha-TC as methyl-beta-cyclodextrin complexes, HLE cells accumulated the lipophiles in a concentration- and time-dependent manner with uptake of LUT exceeding that of ZEA and AST. Pretreatment of cultures with either 2 micromol/L xanthophyll or 10 micromol/L alpha-TC for 4 h before exposure to 300 J/m(2) UVB radiation decreased lipid peroxidation by 47-57% compared with UVB-treated control HLE cells. Pretreatment with the xanthophylls and alpha-TC also inhibited UVB-induced activation of c-JUN NH(2)-terminal kinase (JNK) and p38 by 50-60 and 25-32%, respectively. There was substantial inhibition of UVB-induced JNK and p38 activation for cells containing xanthophylls/mg, respectively, whereas >2.3 nmol alpha-TC/mg protein was required to significantly decrease UVB-induced stress signaling. These data suggest that xanthophylls are more potent than alpha-TC for protecting human lens epithelial cells against UVB insult.

  7. Defining the Role of Alpha-Synuclein in Enteric Dysfunction in Parkinsons Disease

    Science.gov (United States)

    2017-10-01

    gastrointestinal pathology Gastrointestinal motility was evaluated monthly in rats following treatment by measuring fecal water content (A) and total...fecal output (B). A) Both PFF (black bars, n = 15) and monomer ( grey bars; n = 15) treated animals exhibited a significant decrease in fecal water ...assay. AAV-α-syn treatment (black circles) was associated with significant slowing of colonic motility as compared to AAV-GFP treated animals (n=6

  8. Assays for alpha-synuclein aggregation

    DEFF Research Database (Denmark)

    Giehm, Lise; Lorenzen, Nikolai; Otzen, Daniel

    2011-01-01

    Over the last few decades, protein aggregation gone from being an irritating side product in the test tube to becoming a subject of great interest. This has been stimulated by the realization that a large and growing number of diseases is associated with the formation and accumulation of proteins...

  9. Specific pesticide-dependent increases in α-synuclein levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines.

    Science.gov (United States)

    Chorfa, Areski; Bétemps, Dominique; Morignat, Eric; Lazizzera, Corinne; Hogeveen, Kevin; Andrieu, Thibault; Baron, Thierry

    2013-06-01

    Epidemiological studies indicate a role of genetic and environmental factors in Parkinson's disease involving alterations of the neuronal α-synuclein (α-syn) protein. In particular, a relationship between Parkinson's disease and occupational exposure to pesticides has been repeatedly suggested. Our objective was to precisely assess changes in α-syn levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines following acute exposure to pesticides (rotenone, paraquat, maneb, and glyphosate) using Western blot and flow cytometry. These human cell lines express α-syn endogenously, and overexpression of α-syn (wild type or mutated A53T) can be obtained following recombinant adenoviral transduction. We found that endogenous α-syn levels in the SH-SY5Y neuroblastoma cell line were markedly increased by paraquat, and to a lesser extent by rotenone and maneb, but not by glyphosate. Rotenone also clearly increased endogenous α-syn levels in the SK-MEL-2 melanoma cell line. In the SH-SY5Y cell line, similar differences were observed in the α-syn adenovirus-transduced cells, with a higher increase of the A53T mutated protein. Paraquat markedly increased α-syn in the SK-MEL-2 adenovirus-transduced cell line, similarly for the wild-type or A53T proteins. The observed differences in the propensities of pesticides to increase α-syn levels are in agreement with numerous reports that indicate a potential role of exposure to certain pesticides in the development of Parkinson's disease. Our data support the hypothesis that pesticides can trigger some molecular events involved in this disease and also in malignant melanoma that consistently shows a significant but still unexplained association with Parkinson's disease.

  10. Regulation of human lung fibroblast C1q-receptors by transforming growth factor-beta and tumor necrosis factor-alpha.

    Science.gov (United States)

    Lurton, J; Soto, H; Narayanan, A S; Raghu, G

    1999-03-01

    Transforming growth factor-beta (TGF-beta) and tumor necrosis factor-alpha (TNF-alpha) are two polypeptide mediators which are believed to play a role in the evolution of idiopathic pulmonary fibrosis (IPF). We have evaluated the effect of these two substances on the expression of receptors for collagen (cC1q-R) and globular (gC1q-R) domains of C1q and on type I collagen in human lung fibroblasts. Two fibroblast subpopulations differing in C1q receptor expression were obtained by culturing human lung explants in medium containing fresh human serum and heated plasma-derived serum and separating them based on C1q binding [Narayanan, Lurton and Raghu: Am J Resp Cell Mol Biol. 1998; 17:84]. The cells, referred to as HH and NL cells, respectively, were exposed to TGF-beta and TNF-alpha in serum-free conditions. The levels of mRNA were assessed by in situ hybridization and Northern analysis, and protein levels compared after SDS-polyacrylamide gel electrophoresis and Western blotting. NL cells exposed to TGF-beta and TNF-alpha contained 1.4 and 1.6 times as much cC1q-R mRNA, respectively, whereas in HH cells cC1q-R mRNA increased 2.0- and 2.4-fold. The gC1q-R mRNA levels increased to a lesser extent in both cells. These increases were not reflected in protein levels of CC1q-R and gC1q-R, which were similar to or less than controls. Both TGF-beta and TNF-alpha also increased procollagen [I] mRNA levels in both cells. Overall, TNF-alpha caused a greater increase and the degree of response by HH fibroblasts to both TGF-beta and TNF-alpha was higher than NL cells. These results indicated that TGF-beta and TNF-alpha upregulate the mRNA levels for cC1q-R and collagen and that they do not affect gC1q-R mRNA levels significantly. They also indicated different subsets of human lung fibroblasts respond differently to inflammatory mediators.

  11. Muscarinic cholinergic and alpha 2-adrenergic receptors in the epithelium and muscularis of the human ileum

    International Nuclear Information System (INIS)

    Lepor, H.; Rigaud, G.; Shapiro, E.; Baumann, M.; Kodner, I.J.; Fleshman, J.W.

    1990-01-01

    The aim of this study was to characterize the binding and functional properties of muscarinic cholinergic (MCh) and alpha 2-adrenergic receptors in the human ileum to provide insight into pharmacologic strategies for managing urinary and fecal incontinence after bladder and rectal replacement with intestinal segments. MCh and alpha 2-adrenergic binding sites were characterized in the epithelium and muscularis of eight human ileal segments with 3H-N-methylscopolamine and 3H-rauwolscine, respectively. The dissociation constant for 3H-N-methylscopolamine in the epithelium and muscularis was 0.32 +/- 0.07 nmol/L and 0.45 +/- 0.10 nmol/L, respectively (p = 0.32). The MCh receptor content was approximately eightfold greater in the muscularis compared with the epithelium (p = 0.008). The dissociation constant for 3H-rauwolscine in the muscularis and epithelium was 2.55 +/- 0.42 nmol/L and 2.03 +/- 0.19 nmol/L, respectively (p = 0.29). The alpha 2-adrenoceptor density was twofold greater in the epithelium compared with the muscularis (p = 0.05). Noncumulative concentration-response experiments were performed with carbachol, an MCh agonist, and UK-14304, a selective alpha 2-adrenergic agonist. The epithelium did not contract in the presence of high concentrations of carbachol and UK-14304. The muscularis preparations were responsive only to carbachol. The muscularis contains primarily MCh receptors mediating smooth muscle contraction. The alpha 2-adrenoceptors are localized primarily to the epithelium and may regulate water secretion in the intestine. The distribution and functional properties of ileal MCh and alpha 2-adrenergic receptors provide a theoretic basis for the treatment of incontinence after bladder and rectal replacement with intestinal segments

  12. Release of long-range tertiary interactions potentiates aggregation of natively unstructured α-synuclein

    OpenAIRE

    Bertoncini, Carlos W.; Jung, Young-Sang; Fernandez, Claudio O.; Hoyer, Wolfgang; Griesinger, Christian; Jovin, Thomas M.; Zweckstetter, Markus

    2005-01-01

    In idiopathic Parkinson's disease, intracytoplasmic neuronal inclusions (Lewy bodies) containing aggregates of the protein α-synuclein (αS) are deposited in the pigmented nuclei of the brainstem. The mechanisms underlying the structural transition of innocuous, presumably natively unfolded, αS to neurotoxic forms are largely unknown. Using paramagnetic relaxation enhancement and NMR dipolar couplings, we show that monomeric αS assumes conformations that are stabilized by long-range interactio...

  13. Screening for mutations in human alpha-globin genes by nonradioactive single-strand conformation polymorphism

    Directory of Open Access Journals (Sweden)

    Jorge S.B.

    2003-01-01

    Full Text Available Point mutations and small insertions or deletions in the human alpha-globin genes may produce alpha-chain structural variants and alpha-thalassemia. Mutations can be detected either by direct DNA sequencing or by screening methods, which select the mutated exon for sequencing. Although small (about 1 kb, 3 exons and 2 introns, the alpha-globin genes are duplicate (alpha2 and alpha1 and highy G-C rich, which makes them difficult to denature, reducing sequencing efficiency and causing frequent artifacts. We modified some conditions for PCR and electrophoresis in order to detect mutations in these genes employing nonradioactive single-strand conformation polymorphism (SSCP. Primers previously described by other authors for radioactive SSCP and phast-SSCP plus denaturing gradient gel electrophoresis were here combined and the resultant fragments (6 new besides 6 original per alpha-gene submitted to silver staining SSCP. Nine structural and one thalassemic mutations were tested, under different conditions including two electrophoretic apparatus (PhastSystem(TM and GenePhor(TM, Amersham Biosciences, different polyacrylamide gel concentrations, run temperatures and denaturing agents, and entire and restriction enzyme cut fragments. One hundred percent of sensitivity was achieved with four of the new fragments formed, using the PhastSystem(TM and 20% gels at 15ºC, without the need of restriction enzymes. This nonradioactive PCR-SSCP approach showed to be simple, rapid and sensitive, reducing the costs involved in frequent sequencing repetitions and increasing the reliability of the results. It can be especially useful for laboratories which do not have an automated sequencer.

  14. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, P.E.; Gosden, J.; Lawson, D. [Western General Hospital, Edinburgh (United Kingdom)] [and others

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize and spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.

  15. Intralaminar nuclei of the thalamus in Lewy body diseases.

    Science.gov (United States)

    Brooks, Daniel; Halliday, Glenda M

    2009-02-16

    Although the intralaminar thalamus is a target of alpha-synuclein pathology in Parkinson's disease, the degree of neuronal loss in Lewy body diseases has not been assessed. We have used unbiased stereological techniques to quantify neuronal loss in intralaminar thalamic nuclei concentrating alpha-synuclein pathology (the anterodorsal, cucullar, parataenial, paraventricular, central medial, central lateral and centre-median/parafascicular complex) in different clinical forms of Lewy body disease (Parkinson's disease with and without dementia, and dementia with Lewy bodies, N=21) compared with controls (N=5). Associations were performed in the Lewy body cases between intralaminar cell loss and the main diagnostic clinical (parkinsonism, dementia, fluctuation in consciousness, and visual hallucinations) and pathological (Braak stage of Parkinson's disease) features of these diseases, as well as between cell loss and the scaled severity of the alpha-synuclein deposition within the intralaminar thalamus. As expected, significant alpha-synuclein accumulation occurred in the intralaminar thalamus in the cases with Lewy body disease. Pathology concentrated anteriorly and in the central lateral and paraventricular nuclei was related to the Braak stage of Parkinson's disease, ageing, and the presence of dementia. Across all types of Lewy body cases there was substantial atrophy and neuronal loss in the central lateral, cucullar and parataenial nuclei, and neuronal loss without atrophy in the centre-median/parafascicular complex. Cases with visual hallucinations showed a greater degree of atrophy of the cucullar nucleus, possibly due to amygdala denervation. The significant degeneration demonstrated in the intralaminar thalamus is likely to contribute to the movement and cognitive dysfunction observed in Lewy body disorders.

  16. Frequency of alpha- and beta-haemolysin in Staphylococcus aureus of bovine and human origin - A comparison between pheno- and genotype and variation in phenotypic expression

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Larsen, H.D.; Eriksen, N.H.R.

    1999-01-01

    The phenotypic expression of haemolysins and the presence of genes encoding alpha and beta-haemolysin were determined in 105 Sraphylococcus aureus isolates from bovine mastitis, 100 isolates from the nostrils of healthy humans, and 60 isolates from septicaemia in humans. Furthermore, the possible...... change in expression of haemolysins after subcultivation in human and bovine blood and milk was studied in selected isolates. alpha-haemolysin was expressed phenotypically in 39 (37%) of the bovine isolates, in 59 (59%) of the human carrier isolates, and in 40 (67%) of the isolates from septicaemia. beta......-haemolysin was expressed in 76 (72%) bovine, 11 (11%) carrier, and 8 (13%) septicaemia isolates. Significantly more bovine than human isolates expressed beta-haemolysin and significantly fewer expressed alpha-haemolysin. Genotypically, the gene encoding alpha-haemolysin was detected in all isolates. A significant...

  17. Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau181, and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease

    Science.gov (United States)

    Kang, Ju-Hee; Irwin, David J.; Chen-Plotkin, Alice S.; Siderowf, Andrew; Caspell, Chelsea; Coffey, Christopher S.; Waligórska, Teresa; Taylor, Peggy; Pan, Sarah; Frasier, Mark; Marek, Kenneth; Kieburtz, Karl; Jennings, Danna; Simuni, Tanya; Tanner, Caroline M.; Singleton, Andrew; Toga, Arthur W.; Chowdhury, Sohini; Mollenhauer, Brit; Trojanowski, John Q.; Shaw, Leslie M.

    2014-01-01

    Importance We observed a significant correlation between cerebrospinal fluid (CSF) levels of tau proteins and α-synuclein, but not β-amyloid 1–42 (Aβ1–42), and lower concentration of CSF biomarkers, as compared with healthy controls, in a cohort of entirely untreated patients with Parkinson disease (PD) at the earliest stage of the disease studied so far. Objective To evaluate the baseline characteristics and relationship to clinical features of CSF biomarkers (Aβ1–42, total tau [T-tau], tau phosphorylated at threonine 181 [P-tau181], and α-synuclein) in drug-naive patients with early PD and demographically matched healthy controls enrolled in the Parkinson’s Progression Markers Initiative (PPMI) study. Design, Setting, and Participants Cross-sectional study of the initial 102 research volunteers (63 patients with PD and 39 healthy controls) of the PPMI cohort. Main Outcomes and Measures The CSF biomarkers were measured by INNO-BIA AlzBio3 immunoassay (Aβ1–42, T-tau, and P-tau181; Innogenetics Inc) or by enzyme-linked immunosorbent assay (α-synuclein). Clinical features including diagnosis, demographic characteristics, motor, neuropsychiatric, and cognitive assessments, and DaTscan were systematically assessed according to the PPMI study protocol. Results Slightly, but significantly, lower levels of Aβ1–42, T-tau, P-tau181, α-synuclein, and T-tau/Aβ1–42 were seen in subjects with PD compared with healthy controls but with a marked overlap between groups. Using multivariate regression analysis, we found that lower Aβ1–42 and P-tau181 levels were associated with PD diagnosis and that decreased CSF T-tau and α-synuclein were associated with increased motor severity. Notably, when we classified patients with PD by their motor phenotypes, lower CSF Aβ1–42 and P-tau181 concentrations were associated with the postural instability–gait disturbance–dominant phenotype but not with the tremor-dominant or intermediate phenotype. Finally, we

  18. Enzyme replacement therapy for alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line Gutte; Dali, Christine I.; Fogh, J

    2013-01-01

    Alpha-mannosidosis (OMIM 248500) is a rare lysosomal storage disease (LSD) caused by alpha-mannosidase deficiency. Manifestations include intellectual disabilities, facial characteristics and hearing impairment. A recombinant human alpha-mannosidase (rhLAMAN) has been developed for weekly...

  19. Lectin interactions with alpha-galactosylated xenoantigens

    DEFF Research Database (Denmark)

    Kirkeby, Svend; Moe, Dennis

    2002-01-01

    alpha-Galactosylated xenoantigens (Galalpha1-3Galbeta1-4GlcNAcbeta1 and Galalpha1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc) are often detected with the alpha-Gal specific lectin Griffonia simplicifolia 1 isolectin B4 (GS1 B4). However, this lectin exhibits a broad and variable specificity for carboh...

  20. Antecedent occipital alpha band activity predicts the impact of oculomotor events in perceptual switching

    Directory of Open Access Journals (Sweden)

    Hironori eNakatani

    2013-05-01

    Full Text Available Oculomotor events such as blinks and saccades transiently interrupt the visual input and, even though this mostly goes undetected, these brief interruptions could still influence the percept. In particular, both blinking and saccades facilitate switching in ambiguous figures such as the Necker cube. To investigate the neural state antecedent to these oculomotor events during the perception of an ambiguous figure, we measured the human scalp electroencephalogram (EEG. When blinking led to perceptual switching, antecedent occipital alpha band activity exhibited a transient increase in amplitude. When a saccade led to switching, a series of transient increases and decreases in amplitude was observed in the antecedent occipital alpha band activity. Our results suggest that the state of occipital alpha band activity predicts the impact of oculomotor events on the percept.

  1. Free hemoglobin enhances tumor necrosis factor-alpha production in isolated human monocytes.

    Science.gov (United States)

    Carrillo, Eddy H; Gordon, Laura E; Richardson, J David; Polk, Hiram C

    2002-03-01

    A systemic inflammatory response (SIR) is seen in approximately 75% of patients with complex blunt liver injuries treated nonoperatively. Many feel this response is caused by blood, bile, and necrotic tissue accumulation in the peritoneal cavity. Our current treatment for these patients is a delayed laparoscopic washout of the peritoneal cavity, resulting in a dramatic resolution of the SIR. Spectrophotometric analysis of the intraperitoneal fluid has confirmed the presence of high concentrations of free hemoglobin (Hb). We hypothesize that free Hb enhances the local peritoneal response by increasing tumor necrosis factor-alpha (TNF-alpha) production by monocytes, contributing to the local inflammatory response and SIR. Monocytes from five healthy volunteers were isolated and cultured in RPMI-1640 for 24 hours. Treatment groups included saline controls, lipopolysaccharide ([LPS], 10 ng/mL, from Escherichia coli), human Hb (25 microg/mL), and Hb + LPS. Supernatants were analyzed by enzyme-linked immunosorbent assay. Student's t test with Mann-Whitney posttest was used for statistical analysis with p < or = 0.05 considered significant. Free Hb significantly increased TNF-alpha production 915 +/- 223 pg/mL versus saline (p = 0.02). LPS and Hb + LPS further increased TNF-alpha production (2294 pg/mL and 2501 pg/mL, respectively, p < 0.001) compared with saline controls. These data confirm that free Hb is a proinflammatory mediator resulting in the production of significant amounts of TNF-alpha. These in vitro findings support our clinical data in which timely removal of intraperitoneal free hemoglobin helps prevent its deleterious local and systemic inflammatory effects in patients with complex liver injuries managed nonoperatively.

  2. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson's disease-like models.

    Science.gov (United States)

    Games, Dora; Valera, Elvira; Spencer, Brian; Rockenstein, Edward; Mante, Michael; Adame, Anthony; Patrick, Christina; Ubhi, Kiren; Nuber, Silke; Sacayon, Patricia; Zago, Wagner; Seubert, Peter; Barbour, Robin; Schenk, Dale; Masliah, Eliezer

    2014-07-09

    Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common neurodegenerative disorders of the aging population, characterized by progressive and abnormal accumulation of α-synuclein (α-syn). Recent studies have shown that C-terminus (CT) truncation and propagation of α-syn play a role in the pathogenesis of PD/DLB. Therefore, we explored the effect of passive immunization against the CT of α-syn in the mThy1-α-syn transgenic (tg) mouse model, which resembles the striato-nigral and motor deficits of PD. Mice were immunized with the new monoclonal antibodies 1H7, 5C1, or 5D12, all directed against the CT of α-syn. CT α-syn antibodies attenuated synaptic and axonal pathology, reduced the accumulation of CT-truncated α-syn (CT-α-syn) in axons, rescued the loss of tyrosine hydroxylase fibers in striatum, and improved motor and memory deficits. Among them, 1H7 and 5C1 were most effective at decreasing levels of CT-α-syn and higher-molecular-weight aggregates. Furthermore, in vitro studies showed that preincubation of recombinant α-syn with 1H7 and 5C1 prevented CT cleavage of α-syn. In a cell-based system, CT antibodies reduced cell-to-cell propagation of full-length α-syn, but not of the CT-α-syn that lacked the 118-126 aa recognition site needed for antibody binding. Furthermore, the results obtained after lentiviral expression of α-syn suggest that antibodies might be blocking the extracellular truncation of α-syn by calpain-1. Together, these results demonstrate that antibodies against the CT of α-syn reduce levels of CT-truncated fragments of the protein and its propagation, thus ameliorating PD-like pathology and improving behavioral and motor functions in a mouse model of this disease. Copyright © 2014 the authors 0270-6474/14/349441-14$15.00/0.

  3. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    Science.gov (United States)

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  4. The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells.

    Science.gov (United States)

    Bolduc, Gilles R; Madoff, Lawrence C

    2007-12-01

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells.

  5. Radiobiological long-term accumulation of environmental alpha radioactivity in extracted human teeth and animal bones in Malaysia

    International Nuclear Information System (INIS)

    Almayahi, B.A.; Tajuddin, A.A.; Jaafar, M.S.

    2014-01-01

    In this study, the radiobiological analysis of natural alpha emitters in extracted human teeth and animal bones from Malaysia was estimated. The microdistributions of alpha particles in tooth and bone samples were measured using CR-39 alpha-particle track detectors. The lowest and highest alpha emission rates in teeth in the Kedah and Perak states were 0.0080 ± 0.0005 mBq cm −2 and 0.061 ± 0.008 mBq cm −2 , whereas those of bones in the Perlis and Kedah states were 0.0140 ± 0.0001 mBq cm −2 and 0.7700 ± 0.0282 mBq cm −2 , respectively. The average alpha emission rate in male teeth was 0.0209 ± 0.0008 mBq cm −2 , whereas that of female teeth was 0.0199 ± 0.0010 mBq cm −2 . The alpha emission rate in teeth is higher in smokers (0.0228 ± 0.0008 mBq cm −2 ) than in non-smokers (0.0179 ± 0.0008 mBq cm −2 ). Such difference was found statistically significant (p < 0.01). - Highlights: • Alpha emission rates in teeth from smokers slightly higher than non-smokers. • Difference between alpha rates in male and female tooth not statistically significant. • Alpha particles have the same effect at any age. • Difference between alpha rates in bones was statistically significant

  6. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    Science.gov (United States)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  7. Point mutations in the post-M2 region of human alpha-ENaC regulate cation selectivity.

    Science.gov (United States)

    Ji, H L; Parker, S; Langloh, A L; Fuller, C M; Benos, D J

    2001-07-01

    We tested the hypothesis that an arginine-rich region immediately following the second transmembrane domain may constitute part of the inner mouth of the epithelial Na+ channel (ENaC) pore and, hence, influence conduction and/or selectivity properties of the channel by expressing double point mutants in Xenopus oocytes. Double point mutations of arginines in this post-M2 region of the human alpha-ENaC (alpha-hENaC) led to a decrease and increase in the macroscopic conductance of alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, respectively, but had no effect on the single-channel conductance of either double point mutant. However, the apparent equilibrium dissociation constant for Na+ was decreased for both alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, and the maximum amiloride-sensitive Na+ current was decreased for alphaR586E,R587Ebetagamma-hENaC and increased for alphaR589E,R591Ebetagamma-hENaC. The relative permeabilities of Li+ and K+ vs. Na+ were increased 11.25- to 27.57-fold for alphaR586E,R587Ebetagamma-hENaC compared with wild type. The relative ion permeability of these double mutants and wild-type ENaC was inversely related to the crystal diameter of the permeant ions. Thus the region of positive charge is important for the ion permeation properties of the channel and may form part of the pore itself.

  8. Effect of salivary gland adenocarcinoma cell-derived alpha-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor.

    Science.gov (United States)

    Matsuura, Takashi; Uematsu, Takashi; Yamaoka, Minoru; Furusawa, Kiyofumi

    2004-03-01

    The aim of this study was to clarify the effects of alpha-N-acetylgalactosaminidase (alpha-NaGalase) produced by human salivary gland adenocarcinoma (SGA) cells on the bioactivity of macrophage-activating factor (GcMAF). High exo-alpha-NaGalase activity was detected in the SGA cell line HSG. HSG alpha-NaGalase had both exo- and endo-enzyme activities, cleaving the Gal-GalNAc and GalNAc residues linked to Thr/Ser but not releasing the [NeuAc2-6]GalNac residue. Furthermore, GcMAF enzymatically prepared from the Gc protein enhanced the superoxide-generation capacity and phagocytic activity of monocytes/macrophages. However, GcMAF treated with purified alpha-NaGalase did not exhibit these effects. Thus, HSG possesses the capacity to produce larger quantities of alpha-NaGalase, which inactivates GcMAF produced from Gc protein, resulting in reduced phagocytic activity and superoxide-generation capacity of monocytes/macrophages. The present data strongly suggest that HSG alpha-NaGalase acts as an immunodeficiency factor in cancer patients.

  9. Effect of size of alpha phases on cyclic deformation and fatigue crack initiation during fatigue of an alpha-beta titanium alloy

    Directory of Open Access Journals (Sweden)

    Sun Qiaoyan

    2018-01-01

    Full Text Available Alpha phase exhibits equiaxed or lamellar morphologies with size from submicron to microns in an alpha-beta titanium alloy. Cyclic deformation, slip characteristics and crack nucleation during fatigue in different microstructures of TC21 alloy (Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-0.1Si were systematically investigated and analyzed. During low-cycle fatigue, equiaxed microstructure (EM in TC21 alloy exhibits higher strength, ductility and longer low-cycle fatigue life than those of the lamellar microstructure (LM. There are more voids in the single lamellar alpha than the equiaxed alpha grains. As a result, voids more easily link up to form crack in the lamellar alpha phase than the equiaxed alpha phase. However, during high-cycle fatigue, the fine lamellar microstructure (FLM shows higher fatigue limit than bimodal microstructure (BM. The localized plastic deformation can be induced during high-cycle fatigue. The slip bands or twins are observed in the equiaxed and lamellar alpha phases(>1micron, which tends to form strain concentration and initiate fatigue crack. The localized slip within nanoscale alpha plates is seldom observed and extrusion/intrusion dispersedly distributed on the sample surface in FLM. This indicates that FLM show super resistance to fatigue crack which bring about higher fatigue limit than BM.

  10. Transcriptional Response of Human Cells to Microbeam Irradiation with 2.1 MeV Alpha Particles

    Science.gov (United States)

    Hellweg, C. E.; Bogner, S.; Spitta, L.; Arenz, A.; Baumstark-Khan, C.; Greif, K. D.; Giesen, U.

    Within the next decades an increasing number of human beings in space will be simultaneously exposed to different stimuli especially microgravity and radiation To assess the risks for humans during long-duration space missions the complex interplay of these parameters at the cellular level must be understood Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors Activation of the Nuclear Factor kappa B NF- kappa B pathway as a possible anti-apoptotic route represents such an important cellular stress response A screening assay for detection of NF- kappa B-dependent gene activation using the destabilized variant of Enhanced Green Fluorescent Protein d2EGFP as reporter protein had been developed It consists of Human Embryonic Kidney HEK 293 Cells stably transfected with a receptor-reporter-construct carrying d2EGFP under the control of a NF- kappa B response element Clones positive for Tumor Necrosis Factor alpha TNF- alpha inducible d2EGFP expression were selected as cellular reporters Irradiation was performed either with X-rays 150 kV 19 mA at DLR Cologne or with 2 1 MeV alpha particles LET sim 160 keV mu m at PTB Braunschweig After irradiation the following biological endpoints were determined i cell survival via the colony forming ability test ii time-dependent activation of NF- kappa B dependent d2EGFP gene expression using flow cytometry iii quantitative RT-PCR

  11. Selective effects of alpha interferon on human T-lymphocyte subsets during mixed lymphocyte cultures

    DEFF Research Database (Denmark)

    Hokland, M; Hokland, P; Heron, I

    1983-01-01

    Mixed lymphocyte reaction (MLR) cultures of human lymphocyte subsets with or without the addition of physiological doses of human alpha interferon (IFN-alpha) were compared with respect to surface marker phenotypes and proliferative capacities of the responder cells. A selective depression on the T...... T4 cells and decreased numbers of T4 cells harvested from IFN MLRs (days 5-6 of culture). In contrast, it was shown that the T8 (cytotoxic/suppressor) subset in MLRs was either not affected or slightly stimulated by the addition of IFN. The depression of the T4 cells by IFN was accompanied...... by a decrease in the number of activated T cells expressing Ia antigens. On the other hand, IFN MLRs contained greater numbers of cells expressing the T10 differentiation antigen. In experiments with purified T-cell subsets the IFN effect was exerted directly on the T4 cells and not mediated by either T8...

  12. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1.

    Science.gov (United States)

    Brahic, Michel; Bousset, Luc; Bieri, Gregor; Melki, Ronald; Gitler, Aaron D

    2016-04-01

    Accruing evidence suggests that prion-like behavior of fibrillar forms of α-synuclein, β-amyloid peptide and mutant huntingtin are responsible for the spread of the lesions that characterize Parkinson disease, Alzheimer disease and Huntington disease, respectively. It is unknown whether these distinct protein assemblies are transported within and between neurons by similar or distinct mechanisms. It is also unclear if neuronal death or injury is required for neuron-to-neuron transfer. To address these questions, we used mouse primary cortical neurons grown in microfluidic devices to measure the amounts of α-synuclein, Aβ42 and HTTExon1 fibrils transported by axons in both directions (anterograde and retrograde), as well as to examine the mechanism of their release from axons after anterograde transport. We observed that the three fibrils were transported in both anterograde and retrograde directions but with strikingly different efficiencies. The amount of Aβ42 fibrils transported was ten times higher than that of the other two fibrils. HTTExon1 was efficiently transported in the retrograde direction but only marginally in the anterograde direction. Finally, using neurons from two distinct mutant mouse strains whose axons are highly resistant to neurodegeneration (Wld(S) and Sarm1(-/-)), we found that the three different fibrils were secreted by axons after anterograde transport, in the absence of axonal lysis, indicating that trans-neuronal spread can occur in intact healthy neurons. In summary, fibrils of α-synuclein, Aβ42 and HTTExon1 are all transported in axons but in directions and amounts that are specific of each fibril. After anterograde transport, the three fibrils were secreted in the medium in the absence of axon lysis. Continuous secretion could play an important role in the spread of pathology between neurons but may be amenable to pharmacological intervention.

  13. Radioprotection of the intestinal crypts of mice by recombinant human interleukin-1 alpha

    International Nuclear Information System (INIS)

    Wu, S.G.; Miyamoto, T.

    1990-01-01

    Recombinant human interleukin-1 alpha (rHIL-1 alpha or IL-1) protected the intestinal crypt cells of mice against X-ray-induced damage. The survival of crypt cells measured in terms of their ability to form colonies of regenerating duodenal epithelium in situ was increased when IL-1 was given either before or after irradiation. The maximum degree of radioprotection was seen when the drug was given between 13 and 25 h before irradiation. The IL-1 dose producing maximum protection was about 6.3 micrograms/kg. This is the first report indicating that the cytokine IL-1 has a radioprotective effect in the intestine. The finding suggests that IL-1 may be of potential value in preventing radiation injury to the gut in the clinic

  14. Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors.

    Science.gov (United States)

    Kelley, Joshua B; Talley, Ashley M; Spencer, Adam; Gioeli, Daniel; Paschal, Bryce M

    2010-08-11

    Classical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin alpha and importin beta. NLS cargo is recognized by importin alpha, which is bound by importin beta. Importin beta mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin beta triggers disassembly of the complex. To date, six importin alpha family members, encoded by separate genes, have been described in humans. We sequenced and characterized a seventh member of the importin alpha family of transport factors, karyopherin alpha 7 (KPNA7), which is most closely related to KPNA2. The domain of KPNA7 that binds Importin beta (IBB) is divergent, and shows stronger binding to importin beta than the IBB domains from of other importin alpha family members. With regard to NLS recognition, KPNA7 binds to the retinoblastoma (RB) NLS to a similar degree as KPNA2, but it fails to bind the SV40-NLS and the human nucleoplasmin (NPM) NLS. KPNA7 shows a predominantly nuclear distribution under steady state conditions, which contrasts with KPNA2 which is primarily cytoplasmic. KPNA7 is a novel importin alpha family member in humans that belongs to the importin alpha2 subfamily. KPNA7 shows different subcellular localization and NLS binding characteristics compared to other members of the importin alpha family. These properties suggest that KPNA7 could be specialized for interactions with select NLS-containing proteins, potentially impacting developmental regulation.

  15. IFN-alpha antibodies in patients with age-related macular degeneration treated with recombinant human IFN-alpha2a

    DEFF Research Database (Denmark)

    Ross, Christian; Engler, Claus Bødker; Sander, Birgit

    2002-01-01

    We tested for development of binding and neutralizing antibodies to interferon-alpha (IFN-alpha) during IFN-alpha2a therapy of patients with age-related macular degeneration (AMD) of the eyes. Antibodies were investigated retrospectively in sera of 34 patients treated with 3 x 10(6) IU IFN-alpha2...

  16. IFN-alpha antibodies in patients with age-related macular degeneration treated with recombinant human IFN-alpha2a

    DEFF Research Database (Denmark)

    Ross, Christian; Engler, Claus Bødker; Sander, Birgit

    2002-01-01

    We tested for development of binding and neutralizing antibodies to interferon-alpha (IFN-alpha) during IFN-alpha2a therapy of patients with age-related macular degeneration (AMD) of the eyes. Antibodies were investigated retrospectively in sera of 34 patients treated with 3 x 10(6) IU IFN-alpha2a...

  17. Further exploration of the conformational space of α-synuclein fibrils: solid-state NMR assignment of a high-pH polymorph.

    Science.gov (United States)

    Verasdonck, Joeri; Bousset, Luc; Gath, Julia; Melki, Ronald; Böckmann, Anja; Meier, Beat H

    2016-04-01

    Polymorphism is a common and important phenomenon for protein fibrils which has been linked to the appearance of strains in prion and other neurodegenerative diseases. Parkinson disease is a frequently occurring neurodegenerative pathology, tightly associated with the formation of Lewy bodies. These deposits mainly consist of α-synuclein in fibrillar, β-sheet-rich form. α-synuclein is known to form numerous different polymorphs, which show distinct structural features. Here, we describe the chemical shift assignments, and derive the secondary structure, of a polymorph that was fibrillized at higher-than-physiological pH conditions. The fibrillar core contains residues 40-95, with both the C- and N-terminus not showing any ordered, rigid parts. The chemical shifts are similar to those recorded previously for an assigned polymorph that was fibrillized at neutral pH.

  18. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    Directory of Open Access Journals (Sweden)

    Park Raekil

    2006-01-01

    Full Text Available Abstract Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi and that interleukin 1 alpha (IL-1 alpha up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM. Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway.

  19. alpha-Lactalbumin species variation, HAMLET formation, and tumor cell death.

    Science.gov (United States)

    Pettersson, Jenny; Mossberg, Ann-Kristin; Svanborg, Catharina

    2006-06-23

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of apo alpha-lactalbumin and oleic acid, formed in casein after low pH treatment of human milk. This study examined if HAMLET-like complexes are present in casein from different species and if isolated alpha-lactalbumin from those species can form such complexes with oleic acid. Casein from human, bovine, equine, and porcine milk was separated by ion exchange chromatography and active complexes were only found in human casein. This was not explained by alpha-lactalbumin sequence variation, as purified bovine, equine, porcine, and caprine alpha-lactalbumins formed complexes with oleic acid with biological activity similar to HAMLET. We conclude that structural variation of alpha-lactalbumins does not preclude the formation of HAMLET-like complexes and that natural HAMLET formation in casein was unique to human milk, which also showed the highest oleic acid content.

  20. Human Alpha Defensin 5 Expression in the Human Kidney and Urinary Tract

    Science.gov (United States)

    Porter, Edith; Bevins, Charles L.; DiRosario, Julianne; Becknell, Brian; Wang, Huanyu

    2012-01-01

    Background The mechanisms that maintain sterility in the urinary tract are incompletely understood. Recent studies have implicated the importance of antimicrobial peptides (AMP) in protecting the urinary tract from infection. Here, we characterize the expression and relevance of the AMP human alpha-defensin 5 (HD5) in the human kidney and urinary tract in normal and infected subjects. Methodology/Principal Findings Using RNA isolated from human kidney, ureter, and bladder tissue, we performed quantitative real-time PCR to show that DEFA5, the gene encoding HD5, is constitutively expressed throughout the urinary tract. With pyelonephritis, DEFA5 expression significantly increased in the kidney. Using immunoblot analysis, HD5 production also increased with pyelonephritis. Immunostaining localized HD5 to the urothelium of the bladder and ureter. In the kidney, HD5 was primarily produced in the distal nephron and collecting tubules. Using immunoblot and ELISA assays, HD5 was not routinely detected in non-infected human urine samples while mean urinary HD5 production increased with E.coli urinary tract infection. Conclusions/Significance DEFA5 is expressed throughout the urinary tract in non-infected subjects. Specifically, HD5 is expressed throughout the urothelium of the lower urinary tract and in the collecting tubules of the kidney. With infection, HD5 expression increases in the kidney and levels become detectable in the urine. To our knowledge, our findings represent the first to quantitate HD5 expression and production in the human kidney. Moreover, this is the first report to detect the presence of HD5 in infected urine samples. Our results suggest that HD5 may have an important role in maintaining urinary tract sterility. PMID:22359618

  1. Autoradiographic analysis of alpha 1-noradrenergic receptors in the human brain postmortem. Effect of suicide

    International Nuclear Information System (INIS)

    Gross-Isseroff, R.; Dillon, K.A.; Fieldust, S.J.; Biegon, A.

    1990-01-01

    In vitro quantitative autoradiography of alpha 1-noradrenergic receptors, using tritiated prazosin as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found significant lower binding to alpha 1 receptors in several brain regions of the suicide group as compared with matched controls. This decrease in receptor density was evident in portions of the prefrontal cortex, as well as the temporal cortex and in the caudate nucleus. Age, sex, presence of alcohol, and time of death to autopsy did not affect prazosin binding, in our sample, as measured by autoradiography

  2. The chaperone-like activity of α-synuclein attenuates aggregation of its alternatively spliced isoform, 112-synuclein in vitro: plausible cross-talk between isoforms in protein aggregation.

    Directory of Open Access Journals (Sweden)

    Krishna Madhuri Manda

    Full Text Available Abnormal oligomerization and aggregation of α-synuclein (α-syn/WT-syn has been shown to be a precipitating factor in the pathophysiology of Parkinson's disease (PD. Earlier observations on the induced-alternative splicing of α-syn by Parkinsonism mimetics as well as identification of region specific abnormalities in the transcript levels of 112-synuclein (112-syn in diseased subjects underscores the role of 112-syn in the pathophysiology of PD. In the present study, we sought to identify the aggregation potential of 112-syn in the presence or absence of WT-syn to predict its plausible role in protein aggregation events. Results demonstrate that unlike WT-syn, lack of 28 aa in the C-terminus results in the loss of chaperone-like activity with a concomitant gain in vulnerability to heat-induced aggregation and time-dependent fibrillation. The effects were dose and time-dependent and a significant aggregation of 112-syn was evident at as low as 45 °C following 10 min of incubation. The heat-induced aggregates were found to be ill-defined structures and weakly positive towards Thioflavin-T (ThT staining as compared to clearly distinguishable ThT positive extended fibrils resulting upon 24 h of incubation at 37 °C. Further, the chaperone-like activity of WT-syn significantly attenuated heat-induced aggregation of 112-syn in a dose and time-dependent manner. On contrary, WT-syn synergistically enhanced fibrillation of 112-syn. Overall, the present findings highlight a plausible cross-talk between isoforms of α-syn and the relative abundance of these isoforms may dictate the nature and fate of protein aggregates.

  3. Radiobiological long-term accumulation of environmental alpha radioactivity in extracted human teeth and animal bones in Malaysia.

    Science.gov (United States)

    Almayahi, B A; Tajuddin, A A; Jaafar, M S

    2014-03-01

    In this study, the radiobiological analysis of natural alpha emitters in extracted human teeth and animal bones from Malaysia was estimated. The microdistributions of alpha particles in tooth and bone samples were measured using CR-39 alpha-particle track detectors. The lowest and highest alpha emission rates in teeth in the Kedah and Perak states were 0.0080 ± 0.0005 mBq cm(-2) and 0.061 ± 0.008 mBq cm(-2), whereas those of bones in the Perlis and Kedah states were 0.0140 ± 0.0001 mBq cm(-2) and 0.7700 ± 0.0282 mBq cm(-2), respectively. The average alpha emission rate in male teeth was 0.0209 ± 0.0008 mBq cm(-2), whereas that of female teeth was 0.0199 ± 0.0010 mBq cm(-2). The alpha emission rate in teeth is higher in smokers (0.0228 ± 0.0008 mBq cm(-2)) than in non-smokers (0.0179 ± 0.0008 mBq cm(-2)). Such difference was found statistically significant (p < 0.01). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Small interfering RNA targeting HIF-1{alpha} reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Staab, Adrian [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Paul Scherrer Institute (PSI), Villigen (Switzerland); Fleischer, Markus [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Wuerzburg Univ. (Germany). Medical Clinic II; Loeffler, Juergen; Einsele, Herrmann [Wuerzburg Univ. (Germany). Medical Clinic II; Said, Harun M.; Katzer, Astrid; Flentje, Michael [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Plathow, Christian [Freiburg Univ. (Germany). Dept. of Nuclear Medicine; Vordermark, Dirk [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Halle-Wittenberg Univ. (Germany). Dept. of Radiation Oncology

    2011-04-15

    Background: Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells. Material and Methods: HIF-1{alpha} expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1{alpha} siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1{alpha}. HIF-1{alpha} protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O{sub 2} (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1{alpha}-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER') was calculated as the ratio of the doses to achieve the same survival at 0.1% O{sub 2} as at ambient oxygen tensions. OER' was obtained at cell survival levels of 50%, 37%, and 10%. Results: HIF-1{alpha}-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1{alpha}-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro. Conclusion: Inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro. (orig.)

  5. A polymorphic variant in the human electron transfer flavoprotein alpha-chain (alpha-T171) displays decreased thermal stability and is overrepresented in very-long-chain acyl-CoA dehydrogenase-deficient patients with mild childhood presentation

    DEFF Research Database (Denmark)

    Bross, P; Pedersen, P; Nyholm, M

    1999-01-01

    The consequences of two amino acid polymorphisms of human electron transfer flavoprotein (alpha-T/I171 in the alpha-subunit and beta-M/T154 in the beta-subunit) on the thermal stability of the enzyme are described. The alpha-T171 variant displayed a significantly decreased thermal stability, wher....... This is compatible with a negative modulating effect of the less-stable alpha-T171 ETF variant in this group of VLCAD patients that harbor missense mutations in at least one allele and therefore potentially display residual levels of VLCAD enzyme activity. Udgivelsesdato: 1999-Jun...

  6. Cytokine vaccination: neutralising IL-1alpha autoantibodies induced by immunisation with homologous IL-1alpha

    DEFF Research Database (Denmark)

    Svenson, M; Hansen, M B; Thomsen, Allan Randrup

    2000-01-01

    with IL-1alpha coupled to purified protein derivative of tuberculin (PPD). Both unprimed and primed animals developed IgG aAb to IL-1alpha. These aAb persisted at high levels more than 100 days after vaccination and did not cross-react with murine IL-1beta. The induced anti-IL-1alpha aAb inhibited binding...... in mice by vaccination with recombinant murine IL-1alpha conjugated to PPD. Studies of the effects of IL-1alpha aAb in such animals may help clarify the importance of naturally occurring IL-1alpha aAb in humans and permit the evaluation of future therapies with cytokine aAb in patients...

  7. The human intestinal fatty acid binding protein (hFABP2) gene is regulated by HNF-4{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Klapper, Maja [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Boehme, Mike [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Nitz, Inke [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Doering, Frank [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany)

    2007-04-27

    The cytosolic human intestinal fatty acid binding protein (hFABP2) is proposed to be involved in intestinal absorption of long-chain fatty acids. The aim of this study was to investigate the regulation of hFABP2 by the endodermal hepatocyte nuclear factor 4{alpha} (HNF-4{alpha}), involved in regulation of genes of fatty acid metabolism and differentiation. Electromobility shift assays demonstrated that HNF-4{alpha} binds at position -324 to -336 within the hFABP2 promoter. Mutation of this HNF-4 binding site abolished the luciferase reporter activity of hFABP2 in postconfluent Caco-2 cells. In HeLa cells, this mutation reduced the activation of the hFABP2 promoter by HNF-4{alpha} by about 50%. Thus, binding element at position -336/-324 essentially determines the transcriptional activity of promoter and may be important in control of hFABP2 expression by dietary lipids and differentiation. Studying genotype interactions of hFABP2 and HNF-4{alpha}, that are both candidate genes for diabetes type 2, may be a powerful approach.

  8. The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases

    Directory of Open Access Journals (Sweden)

    Faris Azzouni

    2012-01-01

    Full Text Available Despite the discovery of 5 alpha-reduction as an enzymatic step in steroid metabolism in 1951, and the discovery that dihydrotestosterone is more potent than testosterone in 1968, the significance of 5 alpha-reduced steroids in human diseases was not appreciated until the discovery of 5 alpha-reductase type 2 deficiency in 1974. Affected males are born with ambiguous external genitalia, despite normal internal genitalia. The prostate is hypoplastic, nonpalpable on rectal examination and approximately 1/10th the size of age-matched normal glands. Benign prostate hyperplasia or prostate cancer does not develop in these patients. At puberty, the external genitalia virilize partially, however, secondary sexual hair remains sparse and male pattern baldness and acne develop rarely. Several compounds have been developed to inhibit the 5 alpha-reductase isozymes and they play an important role in the prevention and treatment of many common diseases. This review describes the basic biochemical properties, functions, tissue distribution, chromosomal location, and clinical significance of the 5 alpha-reductase isozyme family.

  9. An in vitro model for dengue virus infection that exhibits human monocyte infection, multiple cytokine production and dexamethasone immunomodulation

    Directory of Open Access Journals (Sweden)

    Sônia Regina Nogueira Ignácio Reis

    2007-12-01

    Full Text Available An important cytokine role in dengue fever pathogenesis has been described. These molecules can be associated with haemorrhagic manifestations, coagulation disorders, hypotension and shock, all symptoms implicated in vascular permeability and disease worsening conditions. Several immunological diseases have been treated by cytokine modulation and dexamethasone is utilized clinically to treat pathologies with inflammatory and autoimmune ethiologies. We established an in vitro model with human monocytes infected by dengue virus-2 for evaluating immunomodulatory and antiviral activities of potential pharmaceutical products. Flow cytometry analysis demonstrated significant dengue antigen detection in target cells two days after infection. TNF-alpha, IFN-alpha, IL-6 and IL-10 are produced by in vitro infected monocytes and are significantly detected in cell culture supernatants by multiplex microbead immunoassay. Dexamethasone action was tested for the first time for its modulation in dengue infection, presenting optimistic results in both decreasing cell infection rates and inhibiting TNF-alpha, IFN-alpha and IL-10 production. This model is proposed for novel drug trials yet to be applyed for dengue fever.

  10. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans

    DEFF Research Database (Denmark)

    Starkie, Rebecca; Ostrowski, Sisse Rye; Jauffred, Sune

    2003-01-01

    and atherosclerosis. To test this hypothesis, we performed three experiments in which eight healthy males either rested (CON), rode a bicycle for 3 h (EX), or were infused with recombinant human IL-6 (rhIL-6) for 3 h while they rested. After 2.5 h, the volunteers received a bolus of Escherichia coli...... exercise and rhIL-6 infusion at physiological concentrations inhibit endotoxin-induced TNF-alpha production in humans. Hence, these data provide the first experimental evidence that physical activity mediates antiinflammatory activity and suggest that the mechanism include IL-6, which is produced...

  11. The role of α-synuclein and tau hyperphosphorylation-mediated autophagy and apoptosis in lead-induced learning and memory injury.

    Science.gov (United States)

    Zhang, Jianbin; Cai, Tongjian; Zhao, Fang; Yao, Ting; Chen, Yaoming; Liu, Xinqin; Luo, Wenjing; Chen, Jingyuan

    2012-01-01

    Lead (Pb) is a well-known heavy metal in nature. Pb can cause pathophysiological changes in several organ systems including central nervous system. Especially, Pb can affect intelligence development and the ability of learning and memory of children. However, the toxic effects and mechanisms of Pb on learning and memory are still unclear. To clarify the mechanisms of Pb-induced neurotoxicity in hippocampus, and its effect on learning and memory, we chose Sprague-Dawley rats (SD-rats) as experimental subjects. We used Morris water maze to verify the ability of learning and memory after Pb treatment. We used immunohistofluorescence and Western blotting to detect the level of tau phosphorylation, accumulation of α-synuclein, autophagy and related signaling molecules in hippocampus. We demonstrated that Pb can cause abnormally hyperphosphorylation of tau and accumulation of α-synuclein, and these can induce hippocampal injury and the ability of learning and memory damage. To provide the new insight into the underlying mechanisms, we showed that Grp78, ATF4, caspase-3, autophagy-related proteins were induced and highly expressed following Pb-exposure. But mTOR signaling pathway was suppressed in Pb-exposed groups. Our results showed that Pb could cause hyperphosphorylation of tau and accumulation of α-synuclein, which could induce ER stress and suppress mTOR signal pathway. These can enhance type II program death (autophgy) and type I program death (apoptosis) in hippocampus, and impair the ability of learning and memory of rats. This is the first evidence showing the novel role of autophagy in the neurotoxicity of Pb.

  12. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    International Nuclear Information System (INIS)

    Tachibana, Keisuke; Takeuchi, Kentaro; Inada, Hirohiko; Yamasaki, Daisuke; Ishimoto, Kenji; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Doi, Takefumi

    2009-01-01

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial β-oxidation. The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor that plays an important role in the regulation of β-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPARα and found that PPARα induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPARα regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  13. Human placental Na/sup +/, K/sup +/-ATPase. cap alpha. subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Chehab, F.F.; Kan, Y.W.; Law, M.L.; Hartz, J.; Kao, F.T.; Blostein, R.

    1987-11-01

    A 2.2-kilobase clone comprising a major portion of the coding sequence of the Na/sup +/, K/sup +/-ATPase ..cap alpha.. subunit was cloned from human placenta and its sequence was identical to that encoding the ..cap alpha.. subunit of human kidney and HeLa cells. Transfer blot analysis of the mRNA products of the Na/sup +/, K/sup +/-ATPase gene from various human tissues and cell lines revealed only one band (approx. = 4.7 kilobases) under low and high stringency washing conditions. The levels of expression in the tissues were intestine > placenta > liver > pancreas, and in the cell lines the levels were human erythroleukemia > butyrate-induced colon > colon > brain > HeLa cells. mRNA was undetectable in reticulocytes, consistent with the authors failure to detect positive clones in a size-selected ( > 2 kilobases) lambdagt11 reticulocyte cDNA library. DNA analysis revealed by a polymorphic EcoRI band and chromosome localization by flow sorting and in situ hybridization showed that the ..cap alpha.. subunit is on the short is on the short arm (band p11-p13) of chromosome 1.

  14. A Very Liquid Heaven: An exhibit exploring the human perception of stars

    Science.gov (United States)

    Crone, M. M.

    2004-12-01

    This year the Tang Teaching Museum and Art Gallery at Skidmore College is showing an exhibit about the human perception of stars, accompanied by a catalog, a speaker series, and an outreach program. The exhibit includes historical documents and atlases as well as work by a variety of artists and scientists. A Very Liquid Heaven opened with a performance of George Crumb's musical piece Makrokosmos III surrounded by original dance, theater, and video art. The title of the exhibit is inspired by Rene Descartes' 1644 text Principles of Philosophy, where he describes the earth as "surrounded on all sides by a very liquid heaven." Although Isaac Newton's laws of mechanics and gravity later discredited his specific hypothesis, in a sense Descartes was correct: astronomy has indeed revealed stars not as hard, fixed objects, but as pulsing plasmas, and interstellar space not as a pure void, but as diffuse clouds of atoms and molecules. This exhibit is made possible with support from Beverly P. and R. Lawrence St. Clair, the Nathalie Potter Voorhees '45 Memorial fund, and the Friends of the Tang.

  15. Ubiquitous hazardous metal lead induces TNF-{alpha} in human phagocytic THP-1 cells: Primary role of ERK 1/2

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Mohd Imran [Fiber Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research (CSIR), Mahatma Gandhi Marg, P.O Box 80, Lucknow 226001, U.P. (India); Islam, Najmul [Department of Biochemistry, J.N Medical College, Aligarh Muslim University, Aligarh (India); Sahasrabuddhe, Amogh A. [Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow (India); Mahdi, Abbas Ali [Department of Biochemistry, C.S.M. Medical University, Lucknow (India); Siddiqui, Huma; Ashquin, Mohd [Fiber Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research (CSIR), Mahatma Gandhi Marg, P.O Box 80, Lucknow 226001, U.P. (India); Ahmad, Iqbal, E-mail: ahmadi@sify.com [Fiber Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research (CSIR), Mahatma Gandhi Marg, P.O Box 80, Lucknow 226001, U.P. (India)

    2011-05-15

    Induction of tumor necrosis factor-{alpha} (TNF-{alpha}) in response to lead (Pb) exposure has been implicated in its immunotoxicity. However, the molecular mechanism by which Pb upregulates the level of TNF-{alpha} is wagely known. An attempt was therefore made to elucidate the mechanistic aspect of TNF-{alpha} induction, mainly focusing transcriptional and post transcriptional regulation via mitogen activated protein kinases (MAPKs) activation. We observed that exposure of Pb to human monocytic THP-1 cells resulted in significant enhanced production of TNF-{alpha} m-RNA and protein secretion. Moreover, the stability of TNF-{alpha} m-RNA was also increased as indicated by its half life. Notably, activation of ERK 1/2, p38 and JNK in Pb exposed THP-1 was also evident. Specific inhibitor of ERK1/2, PD 98059 caused significant inhibition in production and stability of TNF-{alpha} m-RNA. However, SB 203580 partially inhibited production and stability of TNF-{alpha} m-RNA. Interestingly, a combined exposure of these two inhibitors completely blocked modulation of TNF-{alpha} m-RNA. Data tends to suggest that expression and stability of TNF-{alpha} induction due to Pb exposure is mainly regulated through ERK. Briefly, these observations are useful in understanding some mechanistic aspects of proinflammatory and immunotoxicity of Pb, a globally acknowledged key environmental contaminant.

  16. Explant culture of human peripheral lung. I. Metabolism of benzo[alpha]pyrene

    DEFF Research Database (Denmark)

    Stoner, G.D.; Harris, C.C.; Autrup, Herman

    1978-01-01

    the predominant alveolar epithelial cell type. Lamellar inclusion bodies were released from the type 2 cells and accumulated in the alveolar spaces. The metabolism of benzo[alpha]pyrene (BP) in human lung explants cultured for up to 7 days was investigated. Human lung explants had measurable aryl hydrocarbon......Human lung explants have been maintained in vitro for a period of 25 days. Autoradiographic studies indicated that the broncholar epithelial cells, type 2 alveolar epithelial cells, and stromal fibroblasts incorporated 3H-thymidine during the culture. After 7 to 10 days, type 2 cells were...... hydroxylase activity and could metabolize BP into forms that were bound to cellular DNA and protein. Peripheral lung had significantly lower aryl hydrocarbon hydroxylase activity than cultured bronchus but both tissues had similar binding levels of BP to DNA. Radioautographic studies indicated that all cell...

  17. [Engineering of a System for the Production of Mutant Human Alpha-Fetoprotein in the Methylotrophic Yeast Pichia pastoris].

    Science.gov (United States)

    Morozkina, E V; Vavilova, E A; Zatsepin, S S; Klyachko, E V; Yagudin, T A; Chulkin, A M; Dudich, I V; Semenkova, L N; Churilova, I V; Benevolenskii, S V

    2016-01-01

    A system for the production of mutant recombinant human alpha-fetoprotein (rhAFPO) lacking the glycosylation site has been engineered in the yeast Pichia pastoris. A strain of the methylotrophic yeast Pichia pastoris GS 115/pPICZ?A/rhAFP0, which produces unglycosylated rhAFPO and secretes it to the culture medium, has been constructed. Optimization and scale-up of the fermentation technology have resulted in an increase in the rhAFP0 yield to 20 mg/L. A scheme of isolation and purification of biologically active rhAFP0 has been developed. The synthesized protein has the antitumor activity, which is analogous to the activity of natural human embryonic alpha-fetoprotein.

  18. The thermal structural transition of alpha-crystallin modulates subunit interactions and increases protein solubility.

    Directory of Open Access Journals (Sweden)

    Giuseppe Maulucci

    Full Text Available BACKGROUND: Alpha crystallin is an oligomer composed of two types of subunits, alpha-A and alpha-B crystallin, and is the major constituent of human lens. The temperature induced condensation of alpha-crystallin, the main cause for eye lens opacification (cataract, is a two step-process, a nucleation followed by an aggregation phase, and a protective effect towards the aggregation is exhibited over the alpha crystallin phase transition temperature (Tc = 318.16 K. METHODS/RESULTS: To investigate if a modulation of the subunit interactions over Tc could trigger the protective mechanism towards the aggregation, we followed, by using simultaneously static and dynamic light scattering, the temperature induced condensation of alpha-crystallin. By developing a mathematical model able to uncouple the nucleation and aggregation processes, we find a previously unobserved transition in the nucleation rate constant. Its temperature dependence allows to determine fundamental structural parameters, the chemical potential (Δμ and the interfacial tension (γ of the aggregating phase, that characterize subunit interactions. CONCLUSIONS/GENERAL SIGNIFICANCE: The decrease of both Δμ and γ at Tc, and a relative increase in solubility, reveal a significative decrease in the strenght of alpha-crystallin subunits interactions, which protects from supramolecolar condensation in hypertermic conditions. On the whole, we suggest a general approach able to understand the structural and kinetic mechanisms involved in aggregation-related diseases and in drugs development and testing.

  19. Anti-interleukin-1 alpha autoantibodies in humans: Characterization, isotype distribution, and receptor-binding inhibition--higher frequency in Schnitzler's syndrome (urticaria and macroglobulinemia)

    International Nuclear Information System (INIS)

    Saurat, J.H.; Schifferli, J.; Steiger, G.; Dayer, J.M.; Didierjean, L.

    1991-01-01

    Since autoantibodies (Abs) to cytokines may modify their biologic activities, high-affinity binding factors for interleukin-1 alpha (IL-1 alpha BF) were characterized in human sera. IL-1 alpha BF was identified as IgG (1) by sucrose density-gradient centrifugation followed by immunodiffusion autoradiography, (2) by ligand-blotting method, (3) by ligand binding to affinity-immobilized serum IgG, and (4) by IgG affinity purification followed by sucrose density-gradient centrifugation. IL-1 alpha binding activity resided in the F(ab)2 fragment. The apparent equilibrium constant was in the range of IgG found after immunization with conventional antigens (i.e., 10(-9) to 10(-10) mol/L). Anti-IL-1 alpha IgG auto-Abs represented only an extremely small fraction of total IgG (less than 1/10(-5)). Some sera with IL-1 alpha BF and purified IgG thereof were able to inhibit by 96% to 98% the binding of human recombinant IL-1 alpha to its receptor on murine thymoma EL4-6.1 cells, whereas other sera did not. When 125I-labeled anti-IL-1 alpha IgG complexes were injected into rats, they prolonged the plasma half-life of 125I-labeled IL-1 alpha several fold and altered its tissue distribution. The predominant class was IgG (12/19), mainly IgG4 (9/19), but in five of the sera, anti-IL-1 alpha IgA was also detected. In a screening of 271 sera, IL-1 alpha BF was detected in 17/98 normal subjects and was not more frequent in several control groups of patients, except in patients with Schnitzler's syndrome (fever, chronic urticaria, bone pain, and monoclonal IgM paraprotein) (6/9; p less than 0.005). The pathologic significance of these auto-Abs remains to be determined

  20. Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria

    DEFF Research Database (Denmark)

    Grankowski, N; Boldyreff, B; Issinger, O G

    1991-01-01

    cDNA encoding the casein kinase II (CKII) subunits alpha and beta of human origin were expressed in Escherichia coli using expression vector pT7-7. Significant expression was obtained with E. coli BL21(DE3). The CKII subunits accounted for approximately 30% of the bacterial protein; however, most...

  1. A structural and kinetic link between membrane association and amyloid fibril formation of α-Synuclein

    OpenAIRE

    Heise, Henrike; Etzkorn, Manuel; Hoyer, Wolfgang; Buell, Alexander; Strodel, Birgit; Willbold, Dieter; Shaykhalishahi, Hamed; Poojari, Chetan; Uluca, Boran; Wördehoff, Michael; Viennet, Thibault

    2017-01-01

    The protein α-Synuclein (αS) is linked to Parkinson's disease through its abnormal aggregation, which is thought to involve an interplay between cytosolic and membrane-bound forms of αS. Therefore, better insights into the molecular determinants of membrane association and their implications for protein aggregation may help deciphering the pathogenesis of Parkinson's disease. Following previous studies using micelles and vesicles, we present a comprehensive study of αS interaction with phosph...

  2. Evaluate an impact of incident alpha particle and gamma ray on human blood components: A comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Asaad H.; Yaba, Sardar P.; Ismail, Haider J. [Medical Physics Research Group, Physics Department, Education College, Salahaddin University-Erbil, Iraqi Kurdistan (Iraq)

    2015-07-01

    An impact of alpha and gamma irradiation on human blood components have been evaluated and compared for healthy blood samples (male and females). Irradiation dose and time of irradiation calibrated and considered as a main comparison factors. Density of blood components measured for each in vitro irradiation before and after irradiation for males and females. Survey radiation dosimeter (Inspector Exp) and nuclear track detectors type CR-39 used to evaluate exposure dose rate and incident density of alpha particles, respectively. Experiment results verified that the irradiation of blood makes ionizing of blood components, either alpha or gamma irradiation dose, and the impacts of ionizing radiation were relativity for WBC, RBC, and PLT. Limited irradiation doses of 1-5 μSv/hr considered as a low radiation dose of alpha and gamma radiation sources ({sup 226}Ra, and {sup 137}Cs). Density of alpha particles accumulated on the blood surface was 34 (alpha particle/cm{sup 2}) for selected dose of incident alpha particle. Optimum value of irradiation dose and time of irradiation were 5 μSv/hr and 4 second for males and females. On the other hands, the values of irradiation dose and time of irradiation were 2.1 μSv/hr and 2 second for males and females for gamma irradiation. Thus, present results demonstrated that densities of RBC and WBC cells are capable of inducing reproduction in vitro for both type of irradiation. (authors)

  3. Evaluate an impact of incident alpha particle and gamma ray on human blood components: A comparison study

    International Nuclear Information System (INIS)

    Ismail, Asaad H.; Yaba, Sardar P.; Ismail, Haider J.

    2015-01-01

    An impact of alpha and gamma irradiation on human blood components have been evaluated and compared for healthy blood samples (male and females). Irradiation dose and time of irradiation calibrated and considered as a main comparison factors. Density of blood components measured for each in vitro irradiation before and after irradiation for males and females. Survey radiation dosimeter (Inspector Exp) and nuclear track detectors type CR-39 used to evaluate exposure dose rate and incident density of alpha particles, respectively. Experiment results verified that the irradiation of blood makes ionizing of blood components, either alpha or gamma irradiation dose, and the impacts of ionizing radiation were relativity for WBC, RBC, and PLT. Limited irradiation doses of 1-5 μSv/hr considered as a low radiation dose of alpha and gamma radiation sources ( 226 Ra, and 137 Cs). Density of alpha particles accumulated on the blood surface was 34 (alpha particle/cm 2 ) for selected dose of incident alpha particle. Optimum value of irradiation dose and time of irradiation were 5 μSv/hr and 4 second for males and females. On the other hands, the values of irradiation dose and time of irradiation were 2.1 μSv/hr and 2 second for males and females for gamma irradiation. Thus, present results demonstrated that densities of RBC and WBC cells are capable of inducing reproduction in vitro for both type of irradiation. (authors)

  4. Alpha-amidated peptides derived from pro-opiomelanocortin in human pituitary tumours

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H

    1988-01-01

    Human pituitary tumours, obtained at surgery for Cushing's disease and Nelson's syndrome, were extracted and the content and molecular forms of pro-opiomelanocortin (POMC)-derived peptides determined by radioimmunoassay, gel chromatography, reversed-phase high-performance liquid chromatography....... In conclusion, all the molecular forms of the amidated peptides detected in tumours from patients with Cushing's disease and Nelson's syndrome were similar to the molecular forms found in the normal human pituitary. The main difference between the tumours and the normal pituitary was the greater amount...... (HPLC) and sequence analysis. In the tumours from patients with Cushing's disease the mean concentrations of amidated peptides relative to the total amount of POMC were as follows: alpha-MSH, 1.7%; amidated gamma-MSH (gamma 1-MSH), 8.5% and the peptide linking gamma-MSH and ACTH in the precursor (hinge...

  5. Dopamine-mediated oxidation of methionine 127 in α-synuclein causes cytotoxicity and oligomerization of α-synuclein.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakaso

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. Many recent studies focused on the interaction between α-synuclein (α-syn and dopamine in the pathogenesis of PD, and fluorescent anisotropy suggested that the C-terminal region of α-syn may be a target for modification by dopamine. However, it is not well understood why PD-related pathogenesis occurs selectively in dopaminergic neurons. We investigated the interaction between dopamine and α-syn with regard to cytotoxicity. A soluble oligomer was formed by co-incubating α-syn and dopamine in vitro. To clarify the effect of dopamine on α-syn in cells, we generated PC12 cells expressing human α-syn, as well as the α-syn mutants, M116A, Y125D, M127A, S129A, and M116A/M127A, in a tetracycline-inducible manner (PC12-TetOFF-α-syn. Overexpression of wildtype α-syn in catecholaminergic PC12 cells decreased cell viability in long-term cultures, while a competitive inhibitor of tyrosine hydroxylase blocked this vulnerability, suggesting that α-syn-related cytotoxicity is associated with dopamine metabolism. The vulnerabilities of all mutant cell lines were lower than that of wildtype α-syn-expressing cells. Moreover, α-syn containing dopamine-mediated oxidized methionine (Met(O was detected in PC12-TetOFF-α-syn. Met(O was lower in methionine mutant cells, especially in the M127A or M116A/M127A mutants, but also in the Y125D and S129A mutants. Co-incubation of dopamine and the 125YEMPS129 peptide enhanced the production of H2O2, which may oxidize methionine residues and convert them to Met(O. Y125- or S129-lacking peptides did not enhance the dopamine-related production of H2O2. Our results suggest that M127 is the major target for oxidative modification by dopamine, and that Y125 and S129 may act as enhancers of this modification. These results may describe a mechanism of dopaminergic neuron

  6. Identification of distal regulatory regions in the human alpha IIb gene locus necessary for consistent, high-level megakaryocyte expression.

    Science.gov (United States)

    Thornton, Michael A; Zhang, Chunyan; Kowalska, Maria A; Poncz, Mortimer

    2002-11-15

    The alphaIIb/beta3-integrin receptor is present at high levels only in megakaryocytes and platelets. Its presence on platelets is critical for hemostasis. The tissue-specific nature of this receptor's expression is secondary to the restricted expression of alphaIIb, and studies of the alphaIIb proximal promoter have served as a model of a megakaryocyte-specific promoter. We have examined the alphaIIb gene locus for distal regulatory elements. Sequence comparison between the human (h) and murine (m) alphaIIb loci revealed high levels of conservation at intergenic regions both 5' and 3' to the alphaIIb gene. Additionally, deoxyribonuclease (DNase) I sensitivity mapping defined tissue-specific hypersensitive (HS) sites that coincide, in part, with these conserved regions. Transgenic mice containing various lengths of the h(alpha)IIb gene locus, which included or excluded the various conserved/HS regions, demonstrated that the proximal promoter was sufficient for tissue specificity, but that a region 2.5 to 7.1 kb upstream of the h(alpha)IIb gene was necessary for consistent expression. Another region 2.2 to 7.4 kb downstream of the gene enhanced expression 1000-fold and led to levels of h(alpha)IIb mRNA that were about 30% of the native m(alpha)IIb mRNA level. These constructs also resulted in detectable h(alpha)IIb/m(beta)3 on the platelet surface. This work not only confirms the importance of the proximal promoter of the alphaIIb gene for tissue specificity, but also characterizes the distal organization of the alphaIIb gene locus and provides an initial localization of 2 important regulatory regions needed for the expression of the alphaIIb gene at high levels during megakaryopoiesis.

  7. Production, purification, and characterization of human alpha1 proteinase inhibitor from Aspergillus niger.

    Science.gov (United States)

    Chill, Liat; Trinh, Loc; Azadi, Parastoo; Ishihara, Mayumi; Sonon, Roberto; Karnaukhova, Elena; Ophir, Yakir; Golding, Basil; Shiloach, Joseph

    2009-02-15

    Human alpha one proteinase inhibitor (alpha1-PI) was cloned and expressed in Aspergillus niger, filamentious fungus that can grow in defined media and can perform glycosylation. Submerged culture conditions were established using starch as carbon source, 30% dissolved oxygen concentration, pH 7.0 and 28 degrees C. Eight milligrams per liter of active alpha1-PI were secreted to the growth media in about 40 h. Controlling the protein proteolysis was found to be an important factor in the production. The effects of various carbon sources, pH and temperature on the production and stability of the protein were tested and the product was purified and characterized. Two molecular weights variants of the recombinant alpha1-PI were produced by the fungus; the difference is attributed to the glycosylated part of the molecule. The two glycoproteins were treated with PNGAse F and the released glycans were analyzed by HPAEC, MALDI/TOF-MS, NSI-MS(n), and GC-MS. The MALDI and NSI- full MS spectra of permethylated N-glycans revealed that the N-glycans of both variants contain a series of high-mannose type glycans with 5-20 hexose units. Monosaccharide analysis showed that these were composed of N-acetylglucos-amine, mannose, and galactose. Linkage analysis revealed that the galactosyl component was in the furanoic conformation, which was attaching in a terminal non-reducing position. The Galactofuranose-containing high-mannnose type N-glycans are typical structures, which recently have been found as part of several glycoproteins produced by Aspergillus niger.

  8. Blockade of alcohol's amnestic activity in humans by an alpha5 subtype benzodiazepine receptor inverse agonist.

    Science.gov (United States)

    Nutt, David J; Besson, Marie; Wilson, Susan J; Dawson, Gerard R; Lingford-Hughes, Anne R

    2007-12-01

    Alcohol produces many subjective and objective effects in man including pleasure, sedation, anxiolysis, plus impaired eye movements and memory. In human volunteers we have used a newly available GABA-A/benzodiazepine receptor inverse agonist that is selective for the alpha5 subtype (a5IA) to evaluate the role of this subtype in mediating these effects of alcohol on the brain. After pre-treatment with a5IA, we found almost complete blockade of the marked impairment caused by alcohol (mean breath concentration 150mg/100ml) of word list learning and partial but non-significant reversal of subjective sedation without effects on other measures such as intoxication, liking, and slowing of eye movements. This action was not due to alterations in alcohol kinetics and so provides the first proof of concept that selectively decreasing GABA-A receptor function at a specific receptor subtype can offset some actions of alcohol in humans. It also supports growing evidence for a key role of the alpha5 subtype in memory. Inverse agonists at other GABA-A receptor subtypes may prove able to reverse other actions of alcohol, and so offer a new approach to understanding the actions of alcohol in the human brain and in the treatment of alcohol related disorders in humans.

  9. Phytanic acid alpha-oxidation: decarboxylation of 2-hydroxyphytanoyl-CoA to pristanic acid in human liver

    NARCIS (Netherlands)

    Verhoeven, N. M.; Wanders, R. J.; Schor, D. S.; Jansen, G. A.; Jakobs, C.

    1997-01-01

    The degradation of the first intermediate in the alpha-oxidation of phytanic acid, 2-hydroxyphytanoyl-CoA, was investigated. Human liver homogenates were incubated with 2-hydroxyphytanoyl-CoA or 2-hydroxyphytanic acid, after which formation of 2-ketophytanic acid and pristanic acid were studied.

  10. TNF-alpha, leptin, and lymphocyte function in human aging

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.

    2000-01-01

    Aging is associated with increased inflammatory activity and concomitant decreased T cell mediated immune responses. Leptin may provide a link between inflammation and T cell function in aging. The aim of the study was to investigate if plasma levels of tumor necrosis factor (TNF)-alpha were...... there was no difference with regard to IL-2 production. Furthermore, there were no age-related differences in serum levels of leptin, However, women had higher levels than men. In the elderly people, serum levels of leptin were correlated with TNF-alpha in univariate regression analysis and in a multiple linear...... regression analysis adjusting for the effect of gender and body mass index. Furthermore, TNF-alpha, but not leptin, was positively correlated to sIL-2R and negatively correlated to IL-2 production. In conclusion, increased plasma levels of TNF-alpha in aging is associated with poor IL-2 production ex vivo...

  11. A Murine Model of Genetic and Environmental Neurotoxicant Action

    National Research Council Canada - National Science Library

    Richfield, Eric

    1999-01-01

    .... The major findings to date include the generation and characterization of transgenic lines of mice expressing alpha synuclein in catecholaminergic cell groups, their increased vulnerability to MPTP...

  12. Persistent short-term memory defects following sleep deprivation in a drosophila model of Parkinson disease.

    Science.gov (United States)

    Seugnet, Laurent; Galvin, James E; Suzuki, Yasuko; Gottschalk, Laura; Shaw, Paul J

    2009-08-01

    Parkinson disease (PD) is the second most common neurodegenerative disorder in the United States. It is associated with motor deficits, sleep disturbances, and cognitive impairment. The pathology associated with PD and the effects of sleep deprivation impinge, in part, upon common molecular pathways suggesting that sleep loss may be particularly deleterious to the degenerating brain. Thus we investigated the long-term consequences of sleep deprivation on shortterm memory using a Drosophila model of Parkinson disease. Transgenic strains of Drosophila melanogaster. Using the GAL4-UAS system, human alpha-synuclein was expressed throughout the nervous system of adult flies. Alpha-synuclein expressing flies (alpha S flies) and the corresponding genetic background controls were sleep deprived for 12 h at age 16 days and allowed to recover undisturbed for at least 3 days. Short-term memory was evaluated using aversive phototaxis suppression. Dopaminergic systems were assessed using mRNA profiling and immunohistochemistry. MEASURMENTS AND RESULTS: When sleep deprived at an intermediate stage of the pathology, alpha S flies showed persistent short-term memory deficits that lasted > or = 3 days. Cognitive deficits were not observed in younger alpha S flies nor in genetic background controls. Long-term impairments were not associated with accelerated loss of dopaminergic neurons. However mRNA expression of the dopamine receptors dDA1 and DAMB were significantly increased in sleep deprived alpha S flies. Blocking D1-like receptors during sleep deprivation prevented persistent shortterm memory deficits. Importantly, feeding flies the polyphenolic compound curcumin blocked long-term learning deficits. These data emphasize the importance of sleep in a degenerating/reorganizing brain and shows that pathological processes induced by sleep deprivation can be dissected at the molecular and cellular level using Drosophila genetics.

  13. Differences in genotoxic activity of alpha-Ni3S2 on human lymphocytes from nickel-hypersensitized and nickel-unsensitized donors.

    Science.gov (United States)

    Arrouijal, F Z; Marzin, D; Hildebrand, H F; Pestel, J; Haguenoer, J M

    1992-05-01

    The genotoxic activity of alpha-Ni3S2 was assessed on human lymphocytes from nickel-hypersensitized (SSL) and nickel-unsensitized (USL) subjects. Three genotoxicity tests were performed: the sister chromatid exchange (SCE) test, the metaphase analysis test and the micronucleus test. (i) The SCE test (3-100 micrograms/ml) showed a weak but statistically significant increase in the number of SCE in both lymphocyte types with respect to controls, USL presenting a slightly higher SCE incidence but only at one concentration. (ii) The metaphase analysis test demonstrated a high dose-dependent clastogenic activity of alpha-Ni3S2 in both lymphocyte types. The frequency of chromosomal anomalies was significantly higher in USL than in SSL for all concentrations applied. (iii) The micronucleus test confirmed the dose-dependent clastogenic activity of alpha-Ni3S2 and the differences already observed between USL and SSL, i.e. the number of cells with micronuclei was statistically higher in USL. Finally, the incorporation study with alpha-63Ni3S2 showed a higher uptake of its solubilized fraction by USL. This allows an explanation of the different genotoxic action of nickel on the two cell types. In this study we demonstrated that hypersensitivity has an influence on the incorporation of alpha-Ni3S2 and subsequently on the different induction of chromosomal aberrations in human lymphocytes.

  14. Divergent effects of 17-{beta}-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-{alpha}-induced neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Nintasen, Rungrat [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University (Thailand); Riches, Kirsten; Mughal, Romana S. [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Viriyavejakul, Parnpen; Chaisri, Urai; Maneerat, Yaowapa [Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University (Thailand); Turner, Neil A. [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Porter, Karen E., E-mail: medkep@leeds.ac.uk [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there

  15. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    Science.gov (United States)

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  16. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    Science.gov (United States)

    MacDonald, Patrick E; De Marinis, Yang Zhang; Ramracheya, Reshma; Salehi, Albert; Ma, Xiaosong; Johnson, Paul R V; Cox, Roger; Eliasson, Lena; Rorsman, Patrik

    2007-06-01

    Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  17. A Comparitive Assessement of Cytokine Expression in Human-Derived Cell Lines Exposed to Alpha Particles and X-Rays

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available Alpha- (α- particle radiation exposure has been linked to the development of lung cancer and has been identified as a radiation type likely to be employed in radiological dispersal devices. Currently, there exists a knowledge gap concerning cytokine modulations associated with exposure to α-particles. Bio-plex technology was employed to investigate changes in proinflammatory cytokines in two human-derived cell lines. Cells were irradiated at a dose of 1.5 Gy to either α-particles or X-rays at equivalent dose rates. The two cell lines exhibited a unique pattern of cytokine expression and the response varied with radiation type. Of the 27 cytokines assessed, only vascular endothelin growth factor (VEGF was observed to be modulated in both cell lines solely after α-particle exposure, and the expression of VEGF was shown to be dose responsive. These results suggest that certain proinflammatory cytokines may be involved in the biological effects related to α- particle exposure and the responses are cell type and radiation type specific.

  18. Impact of subunit linkages in an engineered homodimeric binding protein to α-synuclein.

    Science.gov (United States)

    Gauhar, Aziz; Shaykhalishahi, Hamed; Gremer, Lothar; Mirecka, Ewa A; Hoyer, Wolfgang

    2014-12-01

    Aggregation of the protein α-synuclein (α-syn) has been implicated in Parkinson's disease and other neurodegenerative disorders, collectively referred to as synucleinopathies. The β-wrapin AS69 is a small engineered binding protein to α-syn that stabilizes a β-hairpin conformation of monomeric α-syn and inhibits α-syn aggregation at substoichiometric concentrations. AS69 is a homodimer whose subunits are linked via a disulfide bridge between their single cysteine residues, Cys-28. Here we show that expression of a functional dimer as a single polypeptide chain is achievable by head-to-tail linkage of AS69 subunits. Choice of a suitable linker is essential for construction of head-to-tail dimers that exhibit undiminished α-syn affinity compared with the solely disulfide-linked dimer. We characterize AS69-GS3, a head-to-tail dimer with a glycine-serine-rich linker, under oxidized and reduced conditions in order to evaluate the impact of the Cys28-disulfide bond on structure, stability and α-syn binding. Formation of the disulfide bond causes compaction of AS69-GS3, increases its thermostability, and is a prerequisite for high-affinity binding to α-syn. Comparison of AS69-GS3 and AS69 demonstrates that head-to-tail linkage promotes α-syn binding by affording accelerated disulfide bond formation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Cellular response of human neuroblastoma cells to α-synuclein fibrils, the main constituent of Lewy bodies.

    Science.gov (United States)

    Pieri, Laura; Chafey, Philippe; Le Gall, Morgane; Clary, Guilhem; Melki, Ronald; Redeker, Virginie

    2016-01-01

    α-Synuclein (α-Syn) fibrils are the main constituent of Lewy bodies and a neuropathological hallmark of Parkinson's disease (PD). The propagation of α-Syn assemblies from cell to cell suggests that they are involved in PD progression. We previously showed that α-Syn fibrils are toxic because of their ability to bind and permeabilize cell membranes. Here, we document the cellular response in terms of proteome changes of SH-SY5Y cells exposed to exogenous α-Syn fibrils. We compare the proteomes of cells of neuronal origin exposed or not either to oligomeric or fibrillar α-Syn using two dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry. Only α-Syn fibrils induce significant changes in the proteome of SH-SY5Y cells. In addition to proteins associated to apoptosis and toxicity, or proteins previously linked to neurodegenerative diseases, we report an overexpression of proteins involved in intracellular vesicle trafficking. We also report a remarkable increase in fibrillar α-Syn heterogeneity, mainly due to C-terminal truncations. Our results show that cells of neuronal origin adapt their proteome to exogenous α-Syn fibrils and actively modify those assemblies. Cells of neuronal origin adapt their proteome to exogenous toxic α-Syn fibrils and actively modify those assemblies. Our results bring insights into the cellular response and clearance events the cells implement to face the propagation of α-Syn assemblies associated to pathology.

  20. Cow's milk increases the activities of human nuclear receptors peroxisome proliferator-activated receptors alpha and delta and retinoid X receptor alpha involved in the regulation of energy homeostasis, obesity, and inflammation.

    Science.gov (United States)

    Suhara, W; Koide, H; Okuzawa, T; Hayashi, D; Hashimoto, T; Kojo, H

    2009-09-01

    The nuclear peroxisome proliferator-activated receptors (PPAR) have been shown to play crucial roles in regulating energy homeostasis including lipid and carbohydrate metabolism, inflammatory responses, and cell proliferation, differentiation, and survival. Because PPAR agonists have the potential to prevent or ameliorate diseases such as hyperlipidemia, diabetes, atherosclerosis, and obesity, we have explored new natural agonists for PPAR. For this purpose, cow's milk was tested for agonistic activity toward human PPAR subtypes using a reporter gene assay. Milk increased human PPARalpha activity in a dose-dependent manner with a 3.2-fold increase at 0.5% (vol/vol). It also enhanced human PPARdelta activity in a dose-dependent manner with an 11.5-fold increase at 0.5%. However, it only slightly affected human PPARgamma activity. Ice cream, butter, and yogurt also increased the activities of PPARalpha and PPARdelta, whereas vegetable cream affected activity of PPARdelta but not PPARalpha. Skim milk enhanced the activity of PPAR to a lesser degree than regular milk. Milk and fresh cream increased the activity of human retinoid X receptor (RXR)alpha as well as PPARalpha and PPARdelta, whereas neither affected vitamin D3 receptor, estrogen receptors alpha and beta, or thyroid receptors alpha and beta. Both milk and fresh cream were shown by quantitative real-time PCR to increase the quantity of mRNA for uncoupling protein 2 (UCP2), an energy expenditure gene, in a dose-dependent manner. The increase in UCP2 mRNA was found to be reduced by treatment with PPARdelta-short interfering (si)RNA. This study unambiguously clarified at the cellular level that cow's milk increased the activities of human PPARalpha, PPARdelta, and RXRalpha. The possible role in enhancing the activities of PPARalpha, PPARdelta, and RXRalpha, and the health benefits of cow's milk were discussed.

  1. sup. alpha. N-acetyl derivatives of. beta. -endorphin-(1-31) and -(1-27) regulate the supraspinal antinociceptive activity of different opioids in mice

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, J.; Sanchez-Blazquez, P. (Cajal Institute, Madrid (Spain))

    1991-01-01

    {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) injected icv to mice antagonized the analgesic activity of {beta}-endorphin-(1-31) and morphine whereas the analgesia evoked by DADLE and DAGO was enhanced by this treatment. The modulatory activity of {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) was exhibited at remarkable low doses (fmols) reaching a maximum that persisted even though the dose was increased 100,000 times. The regulatory effect of a single dose of the acetylated neuropeptide lasted for 24h. The activity of {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) was partially retained by the shorter peptide {sup {alpha}}N-acetyl human {beta}-endorphin-(1-27) and to a lesser extent by {beta}-endorphin-(1-27), {beta}-endorphin-(1-31) lacked this regulatory activity on opioid analgesia. Acetylated {beta}-endorphin-(1-31) displayed a biphasic curve when competing with 5 pM ({sup 125}I)-Tyr{sup 27} human {beta}-endorphin-(1-31) specific binding, the first step was abolished with an apparent IC{sub 50} of 0.35 nM, and the rest with an IC{sub 50} of 200 nM. It is suggested that {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) changed the efficiency of the opioid analgesics by acting upon a specific substrate that is functionally coupled to the opioid receptor, presumably the guanine nucleotide binding regulatory proteins G{sub i}/G{sub 0}.

  2. Fetal antigen 2: an amniotic protein identified as the aminopropeptide of the alpha 1 chain of human procollagen type I

    DEFF Research Database (Denmark)

    Teisner, B; Rasmussen, H B; Højrup, P

    1992-01-01

    -PAGE analysis gave an M(r) = 27 kDa under reducing and non-reducing conditions for both forms, whereas the exact M(r) determined by mass spectrometry was 14,343 +/- 3 Da. FA2 was N-terminally blocked and after tryptic digestion the amino acid composition and sequences of the peptides showed identity...... with the aminopropeptide of the alpha 1 chain of human procollagen type I as determined by nucleotide sequences. After oxidative procedures normally employed for radio-iodination (iodogen and chloramine-T), FA2 lost its immunoreactivity. An antigen which cross-reacted with polyclonal rabbit anti-human FA2 was demonstrated...... to that of FA2 in human skin. FA2 is a circulating form of the aminopropeptide of the alpha 1 chain of procollagen type I, and this is the first description of its isolation and structural characterization in humans. Udgivelsesdato: 1992-Dec...

  3. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions.

    Science.gov (United States)

    Anandhan, Annadurai; Lei, Shulei; Levytskyy, Roman; Pappa, Aglaia; Panayiotidis, Mihalis I; Cerny, Ronald L; Khalimonchuk, Oleh; Powers, Robert; Franco, Rodrigo

    2017-07-01

    While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na + -glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism

  4. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons

    DEFF Research Database (Denmark)

    Fernandes, H. J. R.; Hartfield, E. M.; Christian Kjeldsen, Hans

    2016-01-01

    -derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets. © 2016 The Authors....

  5. Basal cell carcinoma is associated with high TNF-alpha release but nor with TNF-alpha polymorphism at position--308

    DEFF Research Database (Denmark)

    Skov, Lone; Allen, Michael H; Bang, Bo

    2003-01-01

    secretion of TNF-alpha has been identified in humans. We have therefore investigated the association of the --308 polymorphism with the risk of basal cell carcinoma (BCC) in humans. The frequency of TNF G and TNF A alleles among Caucasian patients with a previous BCC (n=191) and health adults (n-107) were...... compared. For the TNF--308 polymorphism there was significant association between the genotype or allele frequencies and having BCC. To determine whether patients with a previous BCC had an increased capacity to secrete TNF-alpha, mononuclear cells were stimulated with lipopolysaccharide. Mononuclear cells...... from patients with a previous BCC (n=15) demonstrated a significantly increased release of TNF-alpha upon stimulation with lipopolysaccharide (Pcells age-matched control subjects (n=16). Further studies of other polymorphisms of the TNF-alpha gene associated...

  6. Absorption and transport of deuterium-substituted 2R,4'R,8'R-alpha-tocopherol in human lipoproteins

    International Nuclear Information System (INIS)

    Traber, M.G.; Ingold, K.U.; Burton, G.W.; Kayden, H.J.

    1988-01-01

    Oral administration of a single dose of tri- or hexadeuterium substituted 2R,4'R,8'R-alpha-tocopheryl acetate (d3- or d6-alpha-T-Ac) to humans was used to follow the absorption and transport of vitamin E in plasma lipoproteins. Three hr after oral administration of d3-alpha-T-Ac (15 mg) to 2 subjects, plasma levels of d3-alpha-T were detectable; these increased up to 10 hr, reached a plateau at 24 hr, then decreased. Following administration of d6-alpha-T-Ac (15-16 mg) to 2 subjects, the percentage of deuterated tocopherol relative to the total tocopherol in chylomicrons increased more rapidly than the corresponding percentage in whole plasma. Chylomicrons and plasma lipoproteins were isolated from 2 additional subjects following administration of d3-alpha-T-Ac (140 or 60 mg). The percentage of deuterated tocopherol relative to the total tocopherol increased most rapidly in chylomicrons, then in very low density lipoproteins (VLDL), followed by essentially identical increases in low and high density lipoproteins (LDL and HDL, respectively) and lastly, in the red blood cells. This pattern of appearance of deuterated tocopherol is consistent with the concept that newly absorbed vitamin E is secreted by the intestine into chylomicrons; subsequently, chylomicron remnants are taken up by the liver from which the vitamin E is secreted in VLDL. The metabolism of VLDL in the circulation results in the simultaneous delivery of vitamin E into LDL and HDL

  7. GYY4137, an H2S Slow-Releasing Donor, Prevents Nitrative Stress and α-Synuclein Nitration in an MPTP Mouse Model of Parkinson's Disease.

    Science.gov (United States)

    Hou, Xiaoou; Yuan, Yuqing; Sheng, Yulan; Yuan, Baoshi; Wang, Yali; Zheng, Jiyue; Liu, Chun-Feng; Zhang, Xiaohu; Hu, Li-Fang

    2017-01-01

    The neuromodulator hydrogen sulfide (H 2 S) was shown to exert neuroprotection in different models of Parkinson's disease (PD) via its anti-inflammatory and anti-apoptotic properties. In this study, we evaluated the effect of an H 2 S slow-releasing compound GYY4137 (GYY) on a mouse PD model induced by acute injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). GYY was intraperitoneally (i.p.) injected once daily into male C57BL/6J mice 3 days before and 2 weeks after MPTP (14 mg/kg, four times at 2-h intervals, i.p.) administration. Saline was given as a control. Behavioral tests (rotarod, balance beam, and grid walking) showed that 50 mg/kg GYY significantly ameliorated MPTP-caused motor impairments. At lower doses (12.5 and 25 mg/kg) GYY exhibited a less obvious effect. Consistent with this, immunohistochemistry and western blot analysis demonstrated that 50 mg/kg GYY attenuated the loss of tyrosine hydroxylase (TH) positive neurons in the substantia nigra and the decrease of TH expression in the striatum of MPTP-treated mice. Moreover, at this regimen GYY relieved the nitrative stress, as indicated by the decreases in nitric oxide (NO) generation and neuronal NO synthase (nNOS) upregulation elicited by MPTP in the striatum. The suppression of GYY on nNOS expression was verified in vitro , and the results further revealed that Akt activation may participate in the inhibition by GYY on nNOS upregulation. More important, GYY reduced the nitrated modification of α-synuclein, a PD-related protein, in MPTP-induced mice. Overall, our findings suggest that GYY attenuated dopaminergic neuron degeneration and reduced α-synuclein nitration in the midbrain, thus exerting neuroprotection in MPTP-induced mouse model of PD.

  8. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart

    NARCIS (Netherlands)

    Schultz, D; Mikala, G; Yatani, A; Engle, D B; Iles, D E; Segers, B; Sinke, R J; Weghuis, D O; Klöckner, U; Wakamori, M

    1993-01-01

    A unique structural variant of the cardiac L-type voltage-dependent calcium channel alpha 1 subunit cDNA was isolated from libraries derived from normal human heart mRNA. The deduced amino acid sequence shows significant homology to other calcium channel alpha 1 subunits. However, differences from

  9. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    Directory of Open Access Journals (Sweden)

    Patrick E MacDonald

    2007-06-01

    Full Text Available Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+ responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+ signalling was blocked, but was reversed by low concentrations (1-20 muM of the ATP-sensitive K(+ (KATP channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM. Higher diazoxide concentrations (>/=30 muM decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+ responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (10 muM were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM, glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+ (TTX and N-type Ca(2+ channels (omega-conotoxin, but not L-type Ca(2+ channels (nifedipine, prevented glucagon secretion. Both the N-type Ca(2+ channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  10. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis.

    Science.gov (United States)

    Lee, Dae-Hee; Lee, Yong J

    2008-10-01

    Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis. (c) 2008 Wiley-Liss, Inc.

  11. Murine elongation factor 1 alpha (EF-1 alpha) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 alpha

    International Nuclear Information System (INIS)

    Whiteheart, S.W.; Shenbagamurthi, P.; Chen, L.; Cotter, R.J.; Hart, G.W.

    1989-01-01

    Elongation Factor 1 alpha (EF-1 alpha), an important eukaryotic translation factor, transports charged aminoacyl-tRNA from the cytosol to the ribosomes during poly-peptide synthesis. Metabolic radiolabeling with [ 3 H] ethanolamine shows that, in all cells examined, EF-1 alpha is the major radiolabeled protein. Radiolabeled EF-1 alpha has an apparent Mr = 53,000 and a basic isoelectric point. It is cytosolic and does not contain N-linked oligosaccharides. Trypsin digestion of murine EF-1 alpha generated two major [ 3 H]ethanolamine-labeled peptides. Three peptides were sequenced and were identical to two distinct regions of the human EF-1 alpha protein. Blank sequencing cycles coinciding with glutamic acid in the human cDNA-derived sequence were also found to release [ 3 H]ethanolamine, and compositional analysis of these peptides confirmed the presence of glutamic acid. Dansylation analysis demonstrates that the amine group of the ethanolamine is blocked. These results indicate that EF-1 alpha is posttranslationally modified by the covalent attachment of ethanolamine via an amide bond to at least two specific glutamic acid residues (Glu-301 and Glu-374). The hydroxyl group of the attached ethanolamine was shown by mass spectrometry and compositional analysis, to be further modified by the addition of a phosphoglycerol unit. This novel posttranslational modification may represent an important alteration of EF-1 alpha, comparable to the regulatory effects of posttranslational methylation of EF-1 alpha lysine residues

  12. The alpha-spectrin gene is on chromosome 1 in mouse and man.

    Science.gov (United States)

    Huebner, K; Palumbo, A P; Isobe, M; Kozak, C A; Monaco, S; Rovera, G; Croce, C M; Curtis, P J

    1985-06-01

    By using alpha-spectrin cDNA clones of murine and human origin and somatic cell hybrids segregating either mouse or human chromosomes, the gene for alpha-spectrin has been mapped to chromosome 1 in both species. This assignment of the mouse alpha-spectrin gene to mouse chromosome 1 by DNA hybridization strengthens the previous identification of the alpha-spectrin locus in mouse with the sph locus, which previously was mapped by linkage analysis to mouse chromosome 1, distal to the Pep-3 locus. By in situ hybridization to human metaphase chromosomes, the human alpha-spectrin gene has been localized to 1q22-1q25; interestingly, the locus for a non-Rh-linked form of elliptocytosis has been provisionally mapped to band 1q2 by family linkage studies.

  13. Interferon-gamma and tumor necrosis factor-alpha sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis

    DEFF Research Database (Denmark)

    Fluhr, Herbert; Krenzer, Stefanie; Stein, Gerburg M

    2007-01-01

    The subtle interaction between the implanting embryo and the maternal endometrium plays a pivotal role during the process of implantation. Human endometrial stromal cells (ESCs) express Fas and the implanting trophoblast cells secrete Fas ligand (FASLG, FasL), suggesting a possible role for Fas......-mediated signaling during early implantation. Here we show that ESCs are primarily resistant to Fas-mediated apoptosis independently of their state of hormonal differentiation. Pre-treatment of ESCs with interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha sensitizes them to become apoptotic upon stimulation...... of Fas by an agonistic anti-Fas antibody. Incubation of ESCs with the early embryonic signal human chorionic gonadotropin (hCG, CGB) does not influence their reaction to Fas stimulation. The sensitizing effect of IFN-gamma and TNF-alpha was accompanied by a significant upregulation of Fas and FLICE...

  14. Conformational analysis of HAMLET, the folding variant of human alpha-lactalbumin associated with apoptosis.

    Science.gov (United States)

    Casbarra, Annarita; Birolo, Leila; Infusini, Giuseppe; Dal Piaz, Fabrizio; Svensson, Malin; Pucci, Piero; Svanborg, Catharina; Marino, Gennaro

    2004-05-01

    A combination of hydrogen/deuterium (H/D) exchange and limited proteolysis experiments coupled to mass spectrometry analysis was used to depict the conformation in solution of HAMLET, the folding variant of human alpha-lactalbumin, complexed to oleic acid, that induces apoptosis in tumor and immature cells. Although near- and far-UV CD and fluorescence spectroscopy were not able to discriminate between HAMLET and apo-alpha-lactalbumin, H/D exchange experiments clearly showed that they correspond to two distinct conformational states, with HAMLET incorporating a greater number of deuterium atoms than the apo and holo forms. Complementary proteolysis experiments revealed that HAMLET and apo are both accessible to proteases in the beta-domain but showed substantial differences in accessibility to proteases at specific sites. The overall results indicated that the conformational changes associated with the release of Ca2+ are not sufficient to induce the HAMLET conformation. Metal depletion might represent the first event to produce a partial unfolding in the beta-domain of alpha-lactalbumin, but some more unfolding is needed to generate the active conformation HAMLET, very likely allowing the protein to bind the C18:1 fatty acid moiety. On the basis of these data, a putative binding site of the oleic acid, which stabilizes the HAMLET conformation, is proposed.

  15. The Significance of α-Synuclein, Amyloid-β and Tau Pathologies in Parkinson’s Disease Progression and Related Dementia

    Science.gov (United States)

    Compta, Y.; Parkkinen, L.; Kempster, P.; Selikhova, M.; Lashley, T.; Holton, J.L.; Lees, A.J.; Revesz, T.

    2014-01-01

    Background Dementia is one of the milestones of advanced Parkinson’s disease (PD), with its neuropathological substrate still being a matter of debate, particularly regarding its potential mechanistic implications. Objective The aim of this study was to review the relative importance of Lewy-related α-synuclein and Alzheimer’s tau and amyloid-β (Aβ) pathologies in disease progression and dementia in PD. Methods We reviewed studies conducted at the Queen Square Brain Bank, Institute of Neurology, University College London, using large PD cohorts. Results Cortical Lewy- and Alzheimer-type pathologies are associated with milestones of poorer prognosis and with non-tremor predominance, which have been, in turn, linked to dementia. The combination of these pathologies is the most robust neuropathological substrate of PD-related dementia, with cortical Aβ burden determining a faster progression to dementia. Conclusion The shared relevance of these pathologies in PD progression and dementia is in line with experimental data suggesting synergism between α-synuclein, tau and Aβ and with studies testing these proteins as disease biomarkers, hence favouring the eventual testing of therapeutic strategies targeting these proteins in PD. PMID:24028925

  16. Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Eletxigerra, U. [Micro-NanoFabrication Unit, IK4-Tekniker, Eibar (Spain); CIC microGUNE, Arrasate-Mondragón (Spain); Martinez-Perdiguero, J. [CIC microGUNE, Arrasate-Mondragón (Spain); Merino, S. [Micro-NanoFabrication Unit, IK4-Tekniker, Eibar (Spain); CIC microGUNE, Arrasate-Mondragón (Spain); Villalonga, R.; Pingarrón, J.M. [Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid (Spain); Campuzano, S., E-mail: susanacr@quim.ucm.es [Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid (Spain)

    2014-08-01

    Highlights: • Electrochemical magnetoimmunosensor for tumor necrosis factor alpha (TNFα) biomarker. • Sensitive and selective detection of TNFα in undiluted serum. • LOD achieved lower than the cut-off value established for relevant illnesses. • Useful and affordable alternative to ELISAs for TNFα determination in serum. - Abstract: An amperometric immunoassay for the determination of tumor necrosis factor alpha (TNFα) protein biomarker in human serum based on the use of magnetic microbeads (MBs) and disposable screen-printed carbon electrodes (SPCEs) has been developed. The specifically modified microbeads were magnetically captured on the working electrode surface and the amperometric responses were measured at −0.20 V (vs. Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as electron transfer mediator and H{sub 2}O{sub 2} as the enzyme substrate. After a thorough optimization of the assay, extremely low limits of detection were achieved: 2.0 pg mL{sup −1} (36 fM) and 5.8 pg mL{sup −1} (105 fM) for standard solutions and spiked human serum, respectively. The simplicity, robustness and this clinically interesting LOD proved the developed TNFα immunoassay as a good contender for real clinical application.

  17. Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum

    International Nuclear Information System (INIS)

    Eletxigerra, U.; Martinez-Perdiguero, J.; Merino, S.; Villalonga, R.; Pingarrón, J.M.; Campuzano, S.

    2014-01-01

    Highlights: • Electrochemical magnetoimmunosensor for tumor necrosis factor alpha (TNFα) biomarker. • Sensitive and selective detection of TNFα in undiluted serum. • LOD achieved lower than the cut-off value established for relevant illnesses. • Useful and affordable alternative to ELISAs for TNFα determination in serum. - Abstract: An amperometric immunoassay for the determination of tumor necrosis factor alpha (TNFα) protein biomarker in human serum based on the use of magnetic microbeads (MBs) and disposable screen-printed carbon electrodes (SPCEs) has been developed. The specifically modified microbeads were magnetically captured on the working electrode surface and the amperometric responses were measured at −0.20 V (vs. Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as electron transfer mediator and H 2 O 2 as the enzyme substrate. After a thorough optimization of the assay, extremely low limits of detection were achieved: 2.0 pg mL −1 (36 fM) and 5.8 pg mL −1 (105 fM) for standard solutions and spiked human serum, respectively. The simplicity, robustness and this clinically interesting LOD proved the developed TNFα immunoassay as a good contender for real clinical application

  18. Characterization and application of a radioimmunoassay for reduced, carboxymethylated human luteinizing hormone. cap alpha. -subunit. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Keutmann, H.T.; Beitins, I.Z.; Johnson, L.; McArthur, J.W.

    1978-12-01

    We have established a double antibody RIA using a rabbit antiserum prepared against reduced, carboxymethylated (RCXM) human LH ..cap alpha..-subunit, with RCXM-..cap alpha.. as tracer and standard. This antiserum did not cross-react with any native gonadotropins or subunit, and reacted only weakly with RCXM-..cap alpha... A tryptic digest of RCXM ..cap alpha..-subunit was completely reactive, while chymotryptic digestion abolished all immunoreactivity. By testing with separate tryptic fragments, the recognition site could be localized to a segment close to the amino-terminus of the peptide chain. When applied to measurement of serum and urine, an immunoreactive species, parallel to RCXM ..cap alpha..-subunit by serial dilution, was found in concentrations of 1-2 ng/ml in serum and 3-4 ng/ml in urine. Similar levels of the immunoreactive component were found in conditions of elevated gonadotropins (e.g. pregnancy) as well as gonadotropin deficiency (panhypopituitarism and Kallmann's syndrome). After stimulation with LHRH, no rise was noted at times up to 6 h despite the fact that both LH and LH-..cap alpha.. were elevated. The data indicate that the sequence-specific antiserum may be detecting an immunoreactive form of ..cap alpha..-subunit of LH whose kinetics of appearance and disappearance differs from those of the native subunit.

  19. Acute toxicity of high doses of the glycoalkaloids, alpha-solanine and alpha-chaconine, in the Syrian Golden hamster

    DEFF Research Database (Denmark)

    Langkilde, Søren; Schrøder, Malene; Stewart, Derek

    2008-01-01

    Sprouted, stressed, or spoiled potato tubers have reportedly led to human acute intoxication, coma, and death when consumed in high amounts. These effects have been attributed to glycoalkaloids (GAs), primarily alpha-solanine and alpha-chaconine, naturally present in all potatoes. The level of GAs...

  20. CRISPR/Cas9 and piggyBac-mediated footprint-free LRRK2-G2019S knock-in reveals neuronal complexity phenotypes and α-Synuclein modulation in dopaminergic neurons.

    Science.gov (United States)

    Qing, Xiaobing; Walter, Jonas; Jarazo, Javier; Arias-Fuenzalida, Jonathan; Hillje, Anna-Lena; Schwamborn, Jens C

    2017-10-01

    The p.G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) has been identified as the most prevalent genetic cause of familial and sporadic Parkinson's disease (PD). The Cre-LoxP recombination system has been used to correct the LRRK2-G2019S mutation in patient derived human induced pluripotent stem cells (hiPSCs) in order to generate isogenic controls. However, the remaining LoxP site can influence gene expression. In this study, we report the generation of a footprint-free LRRK2-G2019S isogenic hiPS cell line edited with the CRISPR/Cas9 and piggyBac technologies. We observed that the percentage of Tyrosine Hydroxylase (TH) positive neurons with a total neurite length of >2000μm was significantly reduced in LRRK2-G2019S dopaminergic (DA) neurons. The average branch number in LRRK2-G2019S DA neurons was also decreased. In addition, we have shown that in vitro TH positive neurons with a total neurite length of >2000μm were positive for Serine 129 phosphorylated (S129P) alpha-Synuclein (αS) and we hypothesize that S129P-αS plays a role in the maintenance or formation of long neurites. In summary, our footprint-free LRRK2-G2019S isogenic cell lines allow standardized, genetic background independent, in vitro PD modeling and provide new insights into the role of LRRK2-G2019S and S129P-αS in the pathogenesis of PD. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. A QUANTITATIVE STUDY OF α-SYNUCLEIN PATHOLOGY IN FIFTEEN CASES OF DEMENTIA ASSOCIATED WITH PARKINSON DISEASE

    OpenAIRE

    Armstrong, Richard A.; Kotzbauer, Paul T.; Perlmutter, Joel S.; Campbell, Meghan C.; Hurth, Kyle M.; Schmidt, Robert E.; Cairns, Nigel J.

    2013-01-01

    The α-synuclein-immunoreactive pathology of dementia associated with Parkinson disease (DPD) comprises Lewy bodies (LB), Lewy neurites (LN), and Lewy grains (LG). The densities of LB, LN, LG together with vacuoles, neurons, abnormally enlarged neurons (EN), and glial cell nuclei were measured in fifteen cases of DPD. Densities of LN and LG were up to 19 and 70 times those of LB respectively, depending on region. Densities were significantly greater in amygdala, entorhinal cortex (EC), and sec...

  2. Interaction between -Synuclein and Other Proteins in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Kurt A. Jellinger

    2011-01-01

    Full Text Available Protein aggregation is a common characteristic of many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic, and experimental differences, evidence increasingly indicates considerable overlap between synucleinopathies and tauopathies or other protein-misfolding diseases. Inclusions, characteristics of these disorders, also occurring in other neurodegenerative diseases, suggest interactions of pathological proteins engaging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Parkinson and Alzheimer diseases have confirmed correlations/overlaps between these and other neurodegenerative disorders. The synergistic effects of α-synuclein, hyperphosphorylated tau, amyloid-β, and other pathologic proteins, and the underlying molecular pathogenic mechanisms, including induction and spread of protein aggregates, are critically reviewed, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, although the etiology of most of these processes is still mysterious.

  3. The Z-isomer of 11 beta-methoxy-17 alpha-[123I]iodovinylestradiol is a promising radioligand for estrogen receptor imaging in human breast cancer

    NARCIS (Netherlands)

    Rijks, L. J.; Boer, G. J.; Endert, E.; de Bruin, K.; Janssen, A. G.; van Royen, E. A.

    1997-01-01

    The potential of both stereoisomers of 11 beta-methoxy-17 alpha-[123I] iodovinylestradiol (E- and Z-[123I]MIVE) as suitable radioligands for imaging of estrogen receptor (ER)-positive human breast tumours was studied. The 17 alpha-[123I]iodovinylestradiol derivatives were prepared stereospecifically

  4. GYY4137, an H2S Slow-Releasing Donor, Prevents Nitrative Stress and α-Synuclein Nitration in an MPTP Mouse Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Xiaoou Hou

    2017-10-01

    Full Text Available The neuromodulator hydrogen sulfide (H2S was shown to exert neuroprotection in different models of Parkinson’s disease (PD via its anti-inflammatory and anti-apoptotic properties. In this study, we evaluated the effect of an H2S slow-releasing compound GYY4137 (GYY on a mouse PD model induced by acute injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. GYY was intraperitoneally (i.p. injected once daily into male C57BL/6J mice 3 days before and 2 weeks after MPTP (14 mg/kg, four times at 2-h intervals, i.p. administration. Saline was given as a control. Behavioral tests (rotarod, balance beam, and grid walking showed that 50 mg/kg GYY significantly ameliorated MPTP-caused motor impairments. At lower doses (12.5 and 25 mg/kg GYY exhibited a less obvious effect. Consistent with this, immunohistochemistry and western blot analysis demonstrated that 50 mg/kg GYY attenuated the loss of tyrosine hydroxylase (TH positive neurons in the substantia nigra and the decrease of TH expression in the striatum of MPTP-treated mice. Moreover, at this regimen GYY relieved the nitrative stress, as indicated by the decreases in nitric oxide (NO generation and neuronal NO synthase (nNOS upregulation elicited by MPTP in the striatum. The suppression of GYY on nNOS expression was verified in vitro, and the results further revealed that Akt activation may participate in the inhibition by GYY on nNOS upregulation. More important, GYY reduced the nitrated modification of α-synuclein, a PD-related protein, in MPTP-induced mice. Overall, our findings suggest that GYY attenuated dopaminergic neuron degeneration and reduced α-synuclein nitration in the midbrain, thus exerting neuroprotection in MPTP-induced mouse model of PD.

  5. Amyloid-β and α-synuclein decrease the level of metal-catalyzed reactive oxygen species by radical scavenging and redox silencing

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Trudslev; Chen, Serene W.; Borg, Christian Bernsen

    2016-01-01

    of ROS in vitro in the presence of a biological reductant. We find that the levels of ROS, and the rate by which ROS is generated, are significantly reduced when the Cu2+ is bound to Aβ or α-synuclein, particularly when they are in the oligomeric or fibrillar forms. This effect is attributed...

  6. A peptide mimic of an antigenic loop of alpha-human chorionic gonadotropin hormone: solution structure and interaction with a llama V-HH domain

    NARCIS (Netherlands)

    Ferrat, G.; Renisio, J.G.; Morelli, X.; Slootstra, J.W.; Meloen, R.; Cambillau, C.; Darbon, H.

    2002-01-01

    The X-ray structure of a ternary complex between human chorionic gonadotropin hormone (hCG) and two Fvs recognizing its alpha and beta subunits has been recently determined. The Fvs recognize the elongated hCG molecule by its two ends, one being the Leu-12-Cys-29 loop of the alpha subunit. We have

  7. Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A(2A) and metabotropic glutamate type 5 receptors: focus on beta-synuclein expression.

    Science.gov (United States)

    Canela, Laia; Selga, Elisabet; García-Martínez, Juan Manuel; Amaral, Olavo B; Fernández-Dueñas, Víctor; Alberch, Jordi; Canela, Enric I; Franco, Rafael; Noé, Véronique; Lluís, Carme; Ciudad, Carlos J; Ciruela, Francisco

    2012-10-25

    G protein-coupled receptor oligomerization is a concept which is changing the understanding of classical pharmacology. Both, oligomerization and functional interaction between adenosine A(2A,) dopamine D(2) and metabotropic glutamate type 5 receptors have been demonstrated in the striatum. However, the transcriptional consequences of receptors co-activation are still unexplored. We aim here to determine the changes in gene expression of striatal primary cultured neurons upon isolated or simultaneous receptor activation. Interestingly, we found that 95 genes of the total analyzed (15,866 transcripts and variants) changed their expression in response to simultaneous stimulation of all three receptors. Among these genes, we focused on the β-synuclein (β-Syn) gene (SCNB). Quantitative PCR verified the magnitude and direction of change in expression of SCNB. Since β-Syn belongs to the homologous synuclein family and may be considered a natural regulator of α-synuclein (α-Syn), it has been proposed that β-Syn might act protectively against α-Syn neuropathology. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Lack of co-ordinate expression of the alpha1(I) and alpha1(III) procollagen genes in fibroblast clonal cultures.

    Science.gov (United States)

    Yamaguchi, Y; Crane, S; Zhou, L; Ochoa, S M; Falanga, V

    2000-12-01

    Several extracellular matrix genes, most notably alpha1(I) and alpha1(III) procollagen, are reported to be co-ordinately expressed in cultures of dermal fibroblasts. However, it remains unclear whether the expression of these genes is truly co-ordinate or whether it may be the result of averaging the phenotypic expression of different fibroblast subpopulations present within each culture. Objectives To determine by Northern analysis the correlation between alpha1(I) and alpha1(III) procollagen mRNA levels in clonal populations of human dermal fibroblasts. As previously described, clonal cultures were derived from parent strains of human dermal fibroblasts by a microscopically controlled dilution technique and by stimulation of single cells with low oxygen tension in the early phases of clonal growth. In agreement with previous reports, we found that baseline steady-state levels of alpha1(I) procollagen mRNA were co-ordinately regulated with the alpha1(III) procollagen mRNA in 26 parent strains (r = 0. 9003; P ordinate regulation observed in non-clonal cultures, suggesting that these two genes operate under different sets of regulatory controls. This clonal heterogeneity may provide additional flexibility to the process of tissue repair and fibroblast clonal expansion.

  9. The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation

    DEFF Research Database (Denmark)

    Lorenzen, Nikolai; Nielsen, Søren Bang; Buell, Alexander K.

    2014-01-01

    α-synuclein (αSN), whose aggregation is strongly implicated in the development of Parkinson’s disease (PD). The two types of oligomers are both formed under conditions where amyloid fibril formation is observed but differ in molecular weight by an order of magnitude. Both