WorldWideScience

Sample records for human albumin solution

  1. Aluminium and nickel in human albumin solutions

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Sandberg, E

    1989-01-01

    Five different brands of commercially available human albumin solutions for infusion were analysed for their aluminium and nickel contents by atomic absorption spectrometry. The aluminium concentrations ranged from 12 micrograms/l to 1109 micrograms/l and the nickel concentrations ranged from 17...

  2. Aluminium and nickel in human albumin solutions

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Sandberg, E

    1989-01-01

    Five different brands of commercially available human albumin solutions for infusion were analysed for their aluminium and nickel contents by atomic absorption spectrometry. The aluminium concentrations ranged from 12 micrograms/l to 1109 micrograms/l and the nickel concentrations ranged from 17...... micrograms/l to 77 micrograms/l. Examination of the aluminium and nickel contents of the constituents for the production of one brand showed too low levels to explain the final contamination of the product. By following the aluminium and nickel concentrations of the same brand during the production...... of a batch of albumin solution, filtration was shown to contribute to contamination, although the largest increase in aluminium as well as nickel concentrations appeared during the bulk concentrating process. To avoid health risks to certain patients, regulations should be established requiring aluminium...

  3. Solution behaviour of Human Serum Albumin and GLP-1variants

    DEFF Research Database (Denmark)

    Sønderby, Pernille

    interaction is critical for the long term stability of a pharmaceutical. Protein complex formation is important for extended half-life in vivo and is essential to cellular communication such as the induction of the insulin response. This thesis focuses on human serum albumin (HSA) as a central player...... approach to half-life extension is conjugation of molecules to HSA. In this part of the thesis, novel GLP-1-albumin conjugates developed by Albumedix A/S where examined by a combined approach of pharmacokinetic studies and solution structure determination with SAXS. GLP-1 was conjugated to Cys34...... of recombinant HSA (rHSA) and two rHSA variants with lower (NB) and higher binding (HB) affinity to the neonatal Fc receptor (FcRn). Binding kinetics showed that the conjugation had limited effect on the binding properties of the conjugates to FcRn compared to the respective rHSA variants. Increased in-vivo half...

  4. Removal of Endotoxin from Human Serum Albumin Solutions by Hydrophobic and Cationic Charged Membrane

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel matrix of macropore cellulose membrane was prepared by chemical graft, and immobilized the cationic charged groups as affinity ligands. The prepared membrane can be used for the removal of endotoxin from human serum albumin (HSA) solutions. With a cartridge of 20 sheets affinity membrane of 47 mm diameter, the endotoxin level in HSA solution can be reduced to 0.027 eu/mL. Recovery of HSA was over 95%.

  5. Influence of intralipid on free propofol fraction assayed in human serum albumin solutions and human plasma

    Institute of Scientific and Technical Information of China (English)

    Rafal KALITYNSKI; Andrzej L DAWIDOWICZ; Jacek POSZYTEK

    2006-01-01

    Aim: It is generally assumed that only unbound drugs can reach the site of action by diffusing across the membranes and exerting pharmacological effects by interacting with receptors. Recent research has shown that the percentage of free drugs may depend on the total drug concentration. The aim of the paper is to verify whether the mentioned dependence reported for propofol also takes place in plasma and human serum albumin samples in the presence of intralipid-the medium used as a vehicle for propofol infusions and a parenteral nutrition agent. Methods: Artificial plasma samples and human plasma were spiked with intralipid or ethanolic solutions of propofol. The samples were then assayed for free propofol concentration using ultrafiltration and high performance liquid chromatography with fluorimetric detection. Results: The decrease of the total drug concentration results in free propofol fraction increase, irrespectively of the used type of propofol solvent and sample type. The addition of intralipid causes the lowering of the overall free drug fraction with respect to the samples spiked with ethanolic solutions of the drug. Conclusion: The presence of intralipid does not influence the phenomenon of free propofol fraction rise at low total drug concentration. Such a rise cannot be ignored in clinical conditions when the drug is applied for sedative, antiemetic or other low-dosage purposes.

  6. Human serum albumin adsorption on TiO2 from single protein solutions and from plasma.

    Science.gov (United States)

    Sousa, S R; Moradas-Ferreira, P; Saramago, B; Melo, L Viseu; Barbosa, M A

    2004-10-26

    In the present work, the adsorption of human serum albumin (HSA) on commercially pure titanium with a titanium oxide layer formed in a H(2)O(2) solution (TiO(2) cp) and on TiO(2) sputtered on Si (TiO(2) sp) was analyzed. Adsorption isotherms, kinetic studies, and work of adhesion determinations were carried out. HSA exchangeability was also evaluated. Surface characterization was performed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and wettability studies. The two TiO(2) surfaces have very distinct roughnesses, the TiO(2) sp having a mean R(a) value 14 times smaller than the one of TiO(2) cp. XPS analysis revealed consistent peaks representative of TiO(2) on sputtered samples as well as on Ti cp substrate after 48 h of H(2)O(2) immersion. Nitrogen was observed as soon as protein was present, while sulfur, present in disulfide bonds in HSA, was observed for concentrations of protein higher than 0.30 mg/mL. The work of adhesion was determined from contact angle measurements. As expected from the surface free energy values, the work of adhesion of HSA solution is higher for the TiO(2) cp substrate, the more hydrophilic one, and lower for the TiO(2) sp substrate, the more hydrophobic one. The work of adhesion between plasma and the substrates assumed even higher values for the TiO(2) cp surface, indicating a greater interaction between the surface and the complex protein solutions. Adsorption studies by radiolabeling of albumin ((125)I-HSA) suggest that rapid HSA adsorption takes place on both surfaces, reaching a maximum value after approximately 60 min of incubation. For the higher HSA concentrations in solution, a multilayer coverage was observed on both substrates. After the adsorption step from single HSA solutions, the exchangeability of adsorbed HSA molecules by HSA in solution was evaluated. The HSA molecules adsorbed on TiO(2) sp seem to be more easily exchanged by HSA itself than those adsorbed on TiO(2) cp after 24 h. In

  7. Where does the Albumin go? Human Albumin Solution usage following the implementation of a demand management programme.

    Science.gov (United States)

    Yazdani, M S; Retter, A; Maggs, T; Li, P; Robson, M G; Reid, C; Holmes, P; Garood, T; Robinson, S E

    2017-06-01

    To outline the Guy's and St Thomas' NHS Foundation Trust (GSTFT) and Evelina London Children's Hospital (ELCH) demand management plan for human albumin solution (HAS) and usage. There is no UK-wide guidance governing the use of HAS. A severe shortage in 2015 prompted a Trust demand management programme. Indications were categorised according to locally agreed colour code and ASFA categories. Following the implementation of the demand management programme, a 6-month audit of HAS usage was completed. A total of 1303.1 L of HAS was used in 1139 infusions; 737 infusions were 20% HAS, accounting for 175.7 L (13.5%) in 181 patients. Indications for 20% HAS were red in 53.9% (94.7 L), blue in 26.5% (46.5 L) and grey in 19.6% (34.5 L). The remaining 1127.4 L (86.5%) infused were of 4.5 and 5 % HAS. A total of 1102.3 L (97.8%) was used for plasma exchange, 941.4 L (85.4%) ASFA category I, 93.7 L (8.5%) category II, 25.5 L (2.3%) category IV and 41.7 L (3.8%) for indications not specified according to ASFA; 25.1 L (2.2%) were used for a grey indication (volume resuscitation for hypovolaemia). The demand management programme provides surveillance of indications and retrospective verification of appropriate use. The majority of HAS indications were appropriate. Plasma exchange accounted for 84.6% of HAS usage and will be the focus of further demand management strategies. The demand management programme whilst aiming to promote best transfusion practice also ensures a tool to manage future shortages according to indication and available supply. © 2017 British Blood Transfusion Society.

  8. Conformational changes in human serum albumin induced by sodium perfluorooctanoate in aqueous solutions.

    Science.gov (United States)

    Messina, Paula V; Prieto, Gerardo; Ruso, Juan M; Sarmiento, Félix

    2005-08-18

    Conformational changes in the bulk solution and at the air-aqueous interface of human serum albumin (HSA) induced by changes in concentration of sodium perfluorooctanoate (C(7)F(15)COO(-)Na(+)) were studied by difference spectroscopy, zeta-potential data, and axisymmetric drop shape analysis. zeta-potential was used to monitor the formation of the HSA-C(7)F(15)COO(-)Na(+) complex and the surface charge of the complex. The conformational transition of HSA in the bulk solution was followed as a function of denaturant concentration by absorbance measurements at 280 nm. The data were analyzed to obtain values for the Gibbs energies of the transition in water (DeltaG(0)(W)) and in a hydrophobic environment (DeltaG(0)(hc)) pertaining to saturated protein-surfactant complexes. The conformational changes that surfactants induce in HSA molecules alter its absorption behavior at the air-water interface. Dynamic surface measurements were used to evaluate this behavior. At low [C(7)F(15)COO(-)Na(+)], proteins present three adsorption regimes: induction time, monolayer saturation, and interfacial gelation. When surfactant concentration increases and conformational changes in the bulk solution occur, the adsorption regimes disappear. HSA molecules in an intermediate conformational state migrate to the air-water interface and form a unique monolayer. At high [C(7)F(15)COO(-)Na(+)], the adsorption of denatured molecules exhibits a behavior analogous to that of dilute solutions.

  9. Study of the interaction of C60 fullerene with human serum albumin in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Song [Vanderbilt University; Zhao, Xiongce [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Mo, Yiming [ORNL; Cummings, Peter T [ORNL; Heller, William T [ORNL

    2013-01-01

    Concern about the toxicity of engineered nanoparticles, such as the prototypical nanomaterial C60 fullerene, continues to grow. While evidence continues to mount that C60 and its derivatives may pose health hazards, the specific molecular interactions of these particles with biological macromolecules require further investigation. To better understand the interaction of C60 with proteins, the protein human serum albumin (HSA) was studied in solution with C60 at C60:HSA molar ratios ranging from 1:2 to 4:1. HSA is the major protein component of blood plasma and plays a role in a variety of functions, such as the maintenance of blood pH and pressure. The C60-HSA interaction was probed by a combination of circular dichroism (CD) spectroscopy, small-angle neutron scattering (SANS) and atomistic molecular dynamics (MD) simulations to understand C60-driven changes in the structure of HSA in solution. The CD spectroscopy demonstrates that the secondary structure of the protein decreases in -helical content in response to the presence of C60. Similarly, C60 produces subtle changes in the solution conformation of HSA, as evidenced by the SANS data and MD. The data do not indicate that C60 is causing a change in the oligomerization state of the protein. Taken together results demonstrate that C60 interacts with HSA, but it does not strongly perturb the structure of the protein by unfolding it or inducing aggregation, suggesting a mechanism for transporting C60 throughout the body to accumulate in various tissues.

  10. Human albumin solution for patients with cirrhosis and acute on chronic liver failure: Beyond simple volume expansion

    Institute of Scientific and Technical Information of China (English)

    Christopher; Valerio; Eleni; Theocharidou; Andrew; Davenport; Banwari; Agarwal

    2016-01-01

    To provide an overview of the properties of human serum albumin(HSA), and to review the evidence for the use of human albumin solution(HAS) in critical illness, sepsis and cirrhosis. A MEDLINE search was performed using the terms "human albumin", "critical illness", "sepsis" and "cirrhosis". The references of retrieved articles were reviewed manually. Studies published between 1980 and 2014 were selected based on quality criteria. Data extraction was performed by all authors. HSA is the main plasma protein contributing greatly to its oncotic pressure. HSA demonstrates important binding properties for endogenous and exogenous toxins, drugs and drug metabolites that account for its anti-oxidant and anti-inflammatory properties. In disease states, hypoalbuminaemia is secondary to decreased HSA production, increased loss or transcapillary leakage into the interstitial space. HSA function can be also altered in disease with reduced albumin binding capacity and increased production of modified isoforms. HAS has been used as volume expander in critical illness, but received criticism due to cost and concerns regarding safety. More recent studies confirmed the safety of HAS, but failed to show any survival benefit compared to the cheaper crystalloid fluids, therefore limiting its use. On the contrary, in cirrhosis there is robust data to support the efficacy of HAS for the prevention of circulatory dysfunction post-large volume paracentesis and in the context of spontaneous bacterial peritonitis, and for the treatment of hepato-renal syndrome and hypervolaemic hyponatraemia. It is likely that not only the oncotic properties of HAS are beneficial in cirrhosis, but also its functional properties, as HAS replaces the dysfunctional HSA. The role of HAS as the resuscitation fluid of choice in critically ill patients with cirrhosis, beyond the established indications for HAS use, should be addressed in future studies.

  11. A comparative study of some physico-chemical properties of human serum albumin samples from different sources--I : Some physico-chemical properties of isoionic human serum albumin solutions

    NARCIS (Netherlands)

    Dröge, J.H.M.; Janssen, L.H.M.; Wilting, J.

    1982-01-01

    Human serum albumin samples from different sources were investigated. The fatty acid content of the albumin before and after deionization on a mixed bed ion-exchange column varied from sample to sample. When an albumin sample from one source was deionized under standard conditions the amount of fatt

  12. Hydrophobic Volume Effects in Albumin Solutions.

    Science.gov (United States)

    Schrade, P.; Klein, H.; Egry, I.; Ademovic, Z.; Klee, D.

    2001-02-15

    Density measurements of aqueous albumin solutions as a function of concentration and temperature are reported. The solvents were H(2)O, D(2)O, and a physiological H(2)O-based buffer. An anomaly of the density at very small concentrations of albumin in D(2)O was found. Furthermore, the partial specific volume of albumin is remarkably different in D(2)O and H(2)O. We attribute both effects to structural differences of the solvents. Copyright 2001 Academic Press.

  13. Surface characterization of human serum albumin and sodium perfluorooctanoate mixed solutions by pendant drop tensiometry and circular dichroism.

    Science.gov (United States)

    Messina, Paula; Prieto, Gerardo; Dodero, Verónica; Cabrerizo-Vílchez, M A; Maldonado-Valderrama, J; Ruso, Juan M; Sarmiento, Félix

    2006-06-15

    The interfacial behavior of mixed human serum albumin (HSA)/sodium perfluorooctanoate (C8FONa) solutions is examined by using two experimental techniques, pendant drop tensiometry and circular dichroism spectroscopy. Through the analysis of the surface tension of the mixed solutions, surface competitive adsorption at the air-water interface between C8FONa and HSA is detected. The dynamic adsorption curves exhibit the distinct regimes in their time-dependent surface tension. The nature of these regimes is further analyzed in terms of the variation of the molecules surface areas. As a consequence, a compact and dense structure was formed where protein molecules were interconnected and overlapped. Thus, a reduction of the area occupied per molecule from 100 to 0.2 nm(2) is interpreted as a gel-like structure at the surface. The presence of the surfactant seems to favor the formation of this interfacial structure. Finally, measurements of circular dichroism suggests a compaction of the protein due to the association with the surfactant given by an increase of alpha-helix structure in the complexes as compared to that of pure protein.

  14. 21 CFR 640.80 - Albumin (Human).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Albumin (Human). 640.80 Section 640.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Albumin (Human) § 640.80 Albumin (Human). (a)...

  15. Solution structure of allergenic 2 S albumins.

    Science.gov (United States)

    Pantoja-Uceda, D; Bruix, M; Santoro, J; Rico, M; Monsalve, R; Villalba, M

    2002-11-01

    The NMR solution structures at different levels of refinement of three different 2 S albumin seed proteins, the recombinant pronapin precursor from Brassica napus, the recombinant RicC3 from Ricinus communis and the methionine-rich protein from sunflower ( Helianthus annuus ), are described. The resulting common structure consists of a bundle of five alpha-helices, folded in a right-handed superhelix. The structure is very similar to that of other plant proteins: the hydrophobic protein from soybean, non-specific lipid transfer proteins and amylase/trypsin inhibitors. Analogies and differences in the structures of these families, as well as their possible relationship to allergenicity, are discussed.

  16. Ion release and surface oxide composition of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys immersed in human serum albumin solutions

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Shima, E-mail: shimak80@gmail.com; Alfantazi, Akram M.

    2014-07-01

    The long-term weight loss, ion release, and surface composition of 316L, Co–28Cr–6Mo and Ti–6Al–4V alloys were investigated in a simulated body environment. The samples were immersed in phosphate-buffered saline (PBS) solutions with various human serum albumin (HSA) concentrations for 8, 14, and 22 weeks. The specimens initially lost weight up to 14 weeks and then slightly gained weight. The analysis of the released ions was performed by induced coupled plasma-optical emission spectrometer (ICP-OES). The results revealed that the precipitation of the dissolved Fe and Co could cause the weight gain of the 316L and Co–28Cr–6Mo alloys. The surface chemistry of the specimens was determined by X-ray photoelectron spectroscopy (XPS). The XPS analysis of Co–28Cr–6Mo alloy showed that the interaction of Mo with HSA is different from Mo with bovine serum albumin (BSA). This was also observed for Na adsorption into the oxide layer of Ti–6Al–4V alloy in the presence of HSA and BSA. - Highlights: • Long-term study of weight loss, ion release, and surface composition in HSA solution • Comparison between HSA and BSA as protein simulators in PBS solutions • The most ions released from 316L and Co–28Cr–6Mo were Fe and Co. • The oxide composition of 316L contained Fe{sub 2}O{sub 3}, MoO{sub 2}, and MoO{sub 3} in only HSA solutions.

  17. Ion release and surface oxide composition of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys immersed in human serum albumin solutions.

    Science.gov (United States)

    Karimi, Shima; Alfantazi, Akram M

    2014-07-01

    The long-term weight loss, ion release, and surface composition of 316L, Co-28Cr-6Mo and Ti-6Al-4V alloys were investigated in a simulated body environment. The samples were immersed in phosphate-buffered saline (PBS) solutions with various human serum albumin (HSA) concentrations for 8, 14, and 22 weeks. The specimens initially lost weight up to 14 weeks and then slightly gained weight. The analysis of the released ions was performed by induced coupled plasma-optical emission spectrometer (ICP-OES). The results revealed that the precipitation of the dissolved Fe and Co could cause the weight gain of the 316L and Co-28Cr-6Mo alloys. The surface chemistry of the specimens was determined by X-ray photoelectron spectroscopy (XPS). The XPS analysis of Co-28Cr-6Mo alloy showed that the interaction of Mo with HSA is different from Mo with bovine serum albumin (BSA). This was also observed for Na adsorption into the oxide layer of Ti-6Al-4V alloy in the presence of HSA and BSA.

  18. Human microglial cells synthesize albumin in brain.

    Directory of Open Access Journals (Sweden)

    Sung-Min Ahn

    Full Text Available Albumin, an abundant plasma protein with multifunctional properties, is mainly synthesized in the liver. Albumin has been implicated in Alzheimer's disease (AD since it can bind to and transport amyloid beta (Abeta, the causative agent of AD; albumin is also a potent inhibitor of Abeta polymerization. Despite evidence of non-hepatic transcription of albumin in many tissues including kidney and pancreas, non-hepatic synthesis of albumin at the protein level has been rarely confirmed. In a pilot phase study of Human Brain Proteome Project, we found evidence that microglial cells in brain may synthesize albumin. Here we report, for the first time, the de novo synthesis of albumin in human microglial cells in brain. Furthermore, we demonstrate that the synthesis and secretion of albumin from microglial cells is enhanced upon microglial activation by Abeta(1-42- or lipopolysaccharide (LPS-treatment. These data indicate that microglial cells may play a beneficial role in AD by secreting albumin that not only inhibits Abeta polymerization but also increases its clearance.

  19. Antioxidant flavonoids bind human serum albumin

    Science.gov (United States)

    Kanakis, C. D.; Tarantilis, P. A.; Polissiou, M. G.; Diamantoglou, S.; Tajmir-Riahi, H. A.

    2006-10-01

    Human serum albumin (HSA) is a principal extracellular protein with a high concentration in blood plasma and carrier for many drugs to different molecular targets. Flavonoids are powerful antioxidants and prevent DNA damage. The antioxidative protections are related to their binding modes to DNA duplex and complexation with free radicals in vivo. However, flavonoids are known to inhibit the activities of several enzymes such as calcium phospholipid-dependent protein kinase, tyrosine protein kinase from rat lung, phosphorylase kinase, phosphatidylinositol 3-kinase and DNA topoisomerases that exhibit the importance of flavonoid-protein interaction. This study was designed to examine the interaction of human serum albumin (HSA) with quercetin (que), kaempferol (kae) and delphinidin (del) in aqueous solution at physiological conditions, using constant protein concentration of 0.25 mM (final) and various drug contents of 1 μM-1 mM. FTIR and UV-vis spectroscopic methods were used to determine the polyphenolic binding mode, the binding constant and the effects of flavonoid complexation on protein secondary structure. The spectroscopic results showed that flavonoids are located along the polypeptide chains through H-bonding interactions with overall affinity constant of Kque = 1.4 × 10 4 M -1, Kkae = 2.6 × 10 5 M -1 and Kdel = 4.71 × 10 5 M -1. The protein secondary structure showed no alterations at low pigment concentration (1 μM), whereas at high flavonoid content (1 mM), major reduction of α-helix from 55% (free HSA) to 42-46% and increase of β-sheet from 15% (free HSA) to 17-19% and β-anti from 7% (free HSA) to 10-20% occurred in the flavonoid-HSA adducts. The major reduction of HSA α-helix is indicative of a partial protein unfolding upon flavonoid interaction.

  20. Imidazole binding to human serum albumin.

    Science.gov (United States)

    Rodrigo, M C; Ceballos, A; Mariño, E; Cachaza, J M; Domínguez-Gil, A; Kuemmerle, H P

    1988-06-01

    Imidazole is a substance released by the organism when a new salicylate derivative, imidazole salicylate is administered. A study was made of the binding of imidazole to human serum albumin by an in vitro assay employing an ultrafiltration technique. For the concentration range that imidazole was found in plasma following administration of the drug to healthy volunteers, the mean binding percentages were: 12.1 +/- 1.8 and 19.7 +/- 3.1 at 37 degrees C and 25 degrees C, respectively. The results obtained in the study follow a model entailing three equal and independent binding sites of imidazole to serum albumin and the values of the corresponding constants were determined. Apparently, the presence in the plasma samples of sodium salicylate at a concentration of 100 micrograms/ml does not affect the binding of imidazole to human serum albumin.

  1. Structure and thermodynamics of nonideal solutions of colloidal particles. Investigation of salt-free solutions of human serum albumin by using small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjøberg, B.; Mortensen, K.

    1997-01-01

    Carlo simulation, to study salt-free solutions of human serum albumin (HSA) in the concentration range up to 0.26 g ml(-1). The model calculations of the theoretical SANS intensities are quite general, thus avoiding the approximation that the relative positions and orientations of the particles...... are independent of each other. The computation of the theoretical intensities also includes the calculation of a 'thermodynamic' intensity scattered at zero angle, which is obtained via the nonideal part of the chemical potential. The latter quantity is obtained by applying the test particle method during...... the Monte Carlo simulations. It is found that the SANS data can be explained by a model where the HSA molecules behave as hard ellipsoids of revolution with semiaxes a = 6.8 nm, b = c = 1.9 nm. In addition to the hard core interaction, the particles are also surrounded by a soft, repulsive rectangular...

  2. Binding of furosemide to albumin isolated from human fetal and adult serum.

    Science.gov (United States)

    Viani, A; Cappiello, M; Silvestri, D; Pacifici, G M

    1991-01-01

    Albumin was isolated from pooled fetal serum from 58 placentas obtained at normal delivery at term and from pooled adult plasma from 8 individuals. Albumin isolation was carried out by means of PEG precipitation followed by ion-exchange chromatography on DEAE-Sephadex A 50 and then on SP-Sephadex C 50. The electrophoresis on SDS-polyacrylamide gels showed only one spot that comigrated with commercial human albumin. Binding to albumin was measured by equilibrium dialysis of an aliquot of albumin solution (0.7 ml) against the same volume of 0.13 M sodium orthophosphate buffer (pH 7.4). At a total concentration of 2 micrograms/ml (therapeutic range), the unbound fraction of furosemide was 2.71% (fetal albumin) and 2.51% (adult albumin). Two classes of binding sites for furosemide were observed in fetal and adult albumin. The number of binding sites (moles of furosemide per mole of albumin) was 1.22 (fetal albumin) and 1.58 (adult albumin) for the high-affinity site and 2.97 (fetal albumin) and 3.25 (adult albumin) for the low-affinity site. The association constants (M-1) were 3.1 X 10(4) (fetal albumin) and 2.6 X 10(4) (adult albumin) for the high-affinity set of sites and 0.83 X 10(4) (fetal albumin) and 1.0 X 10(4) (adult albumin) low-affinity site. The displacement of furosemide from albumin was studied with therapeutic concentrations of several drugs. Valproic acid, salicylic acid, azapropazone and tolbutamide had the highest displacing effects which were significantly higher with fetal than with adult albumin.

  3. Interaction of Citrinin with Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Miklós Poór

    2015-12-01

    Full Text Available Citrinin (CIT is a mycotoxin produced by several Aspergillus, Penicillium, and Monascus species. CIT occurs worldwide in different foods and drinks and causes health problems for humans and animals. Human serum albumin (HSA is the most abundant plasma protein in human circulation. Albumin forms stable complexes with many drugs and xenobiotics; therefore, HSA commonly plays important role in the pharmacokinetics or toxicokinetics of numerous compounds. However, the interaction of CIT with HSA is poorly characterized yet. In this study, the complex formation of CIT with HSA was investigated using fluorescence spectroscopy and ultrafiltration techniques. For the deeper understanding of the interaction, thermodynamic, and molecular modeling studies were performed as well. Our results suggest that CIT forms stable complex with HSA (logK ~ 5.3 and its primary binding site is located in subdomain IIA (Sudlow’s Site I. In vitro cell experiments also recommend that CIT-HSA interaction may have biological relevance. Finally, the complex formations of CIT with bovine, porcine, and rat serum albumin were investigated, in order to test the potential species differences of CIT-albumin interactions.

  4. Review: Glycation of human serum albumin.

    Science.gov (United States)

    Anguizola, Jeanethe; Matsuda, Ryan; Barnaby, Omar S; Hoy, K S; Wa, Chunling; DeBolt, Erin; Koke, Michelle; Hage, David S

    2013-10-21

    Glycation involves the non-enzymatic addition of reducing sugars and/or their reactive degradation products to amine groups on proteins. This process is promoted by the presence of elevated blood glucose concentrations in diabetes and occurs with various proteins that include human serum albumin (HSA). This review examines work that has been conducted in the study and analysis of glycated HSA. The general structure and properties of HSA are discussed, along with the reactions that can lead to modification of this protein during glycation. The use of glycated HSA as a short-to-intermediate term marker for glycemic control in diabetes is examined, and approaches that have been utilized for measuring glycated HSA are summarized. Structural studies of glycated HSA are reviewed, as acquired for both in vivo and in vitro glycated HSA, along with data that have been obtained on the rate and thermodynamics of HSA glycation. In addition, this review considers various studies that have investigated the effects of glycation on the binding of HSA with drugs, fatty acids and other solutes and the potential clinical significance of these effects.

  5. Biocompatibility of electrospun human albumin: a pilot study.

    Science.gov (United States)

    Noszczyk, B H; Kowalczyk, T; Łyżniak, M; Zembrzycki, K; Mikułowski, G; Wysocki, J; Kawiak, J; Pojda, Z

    2015-03-02

    Albumin is rarely used for electrospinning because it does not form fibres in its native globular form. This paper presents a novel method for electrospinning human albumin from a solution containing pharmaceutical grade protein and 25% polyethylene oxide (PEO) used as the fibre-forming agent. After spontaneous cross-linking at body temperature, with no further chemicals added, the fibres become insoluble and the excess PEO can be washed out. Albumin deposited along the fibres retains its native characteristics, such as its non-adhesiveness to cells and its susceptibility for degradation by macrophages. To demonstrate this we evaluated the mechanical properties, biocompatibility and biodegradability of this novel product. After subcutaneous implantation in mice, albumin mats were completely resorbable within six days and elicited only a limited local inflammatory response. In vitro, the mats suppressed cell attachment and migration. As this product is inexpensive, produced from human pharmaceutical grade albumin without chemical modifications, retains its native protein properties and fulfils the specific requirements for anti-adhesive dressings, its clinical use can be expedited. We believe that it could specifically be used when treating paediatric patients with epidermolysis bullosa, in whom non-healing wounds occur after minor hand injuries which lead to rapid adhesions and devastating contractures.

  6. [Excess mortality in critically ill patients after treatment with human albumin].

    Science.gov (United States)

    Offringa, M; Gemke, R J; Henny, C P

    1998-08-15

    According to the results of a systematic review of randomized clinical studies administration of human albumin to critically ill patients is associated with excess mortality, compared with withholding albumin or administration of crystalloid fluids. The study appears to be well done. Also, there are various explanatory pathophysiological mechanisms supporting the association. However, a favourable effect of albumin in certain patient groups cannot be excluded. Alternatives to albumin are available in most clinical situations, but unfortunately, they are not completely without drawbacks. The use of albumin has to be limited; it might only be abolished when a better effect of other fluids, such as synthetic solutions, is demonstrated.

  7. Binding of disodium cromoglycate to human serum albumin

    Science.gov (United States)

    Ochoa de Aspuru, Eduardo; Zatón, Ana M. L.

    1998-07-01

    The binding of several benzopiranone derivatives to human serum albumin was determined. The antiallergic drug disodium cromoglycate binds weakly to serum albumin. However, its precursors, chromones of smaller size, were able to bind in a hydrophobic pocket in the protein, and are carried by serum albumin in blood.

  8. Albumin removal from human fibrinogen preparations for manufacturing human fibrin-based biomaterials

    Directory of Open Access Journals (Sweden)

    Vaibhav Sharma

    2015-01-01

    Full Text Available Commercially available two component human fibrin sealants are commonly used to manufacture human fibrin-based biomaterials. However, this method is costly and allows little room for further tuning of the biomaterial. Human fibrinogen solutions offer a more cost-effective and versatile alternative to manufacture human fibrin-based biomaterials. Yet, human fibrinogen is highly unstable and contains certain impurities like human albumin. Within the context of biomaterials and tissue engineering we offer a simple yet novel solution based on classical biochemical techniques to significantly reduce albumin in human fibrinogen solutions. This method can be used for various tissue engineering and biomedical applications as an initial step in the manufacturing of human fibrin-based biomaterials to optimise their regenerative application.

  9. [New recommendations on the use of human albumin solutions in patients with severe sepsis and septic shock. A critical evaluation of the literature].

    Science.gov (United States)

    Latour-Pérez, J

    2013-01-01

    The third edition of the Surviving Sepsis Campaign guidelines opens the door to the use of albumin for fluid resuscitation in patients with severe sepsis and septic shock. This recommendation is based on a recent meta-analysis that included studies with evidence of insufficient plasma expansion in the control group and studies performed in children with malaria with clear statistical heterogeneity (P for interaction=.02). After excluding pediatric studies, the confidence interval of the effect estimate was consistent with a mortality excess in the group treated with albumin (OR=.87 [95%CI: .71 to 1.07]). Two new randomized studies reported after publication of the meta-analysis found no benefit in patients treated with albumin. Given the uncertainty about the true effect of albumin (due to the existence of indirectness and imprecision) and its cost considerations, it is suggested not to use albumin in the initial resuscitation of patients with severe sepsis and septic shock (GRADE2C).

  10. Binding interactions of pefloxacin mesylate with bovine lactoferrin and human serum albumin

    Institute of Scientific and Technical Information of China (English)

    FAN Ji-cai; CHEN Xiang; WANG Yun; FAN Cheng-ping; SHANG Zhi-cai

    2006-01-01

    The binding of pefloxacin mesylate (PFLX) to bovine lactoferrin (BLf) and human serum albumin (HSA) in dilute aqueous solution was studied using fluorescence spectra and absorbance spectra. The binding constant K and the binding sites n were obtained by fluorescence quenching method. The binding distance r and energy-transfer efficiency E between pefloxacin mesylate and bovine lactoferrin as well as human serum albumin were also obtained according to the mechanism of Forster-type dipole-dipole nonradiative energy-transfer. The effects of pefloxacin mesylate on the conformations of bovine lactoferrin and human serum albumin were also analyzed using synchronous fluorescence spectroscopy.

  11. Nephroprotective Potential of Human Albumin Infusion: A Narrative Review

    Directory of Open Access Journals (Sweden)

    Christian J. Wiedermann

    2015-01-01

    Full Text Available Albumin infusion improves renal function in cirrhosis; however, mechanisms are incompletely understood. In clinical practice, human albumin is used in various intensive care unit indications to deal with a wide range of problems, from volume replacement in hypovolemic shock, or sepsis, to treatment of ascites in patients with liver cirrhosis. Against the background of the results of recent studies on the use of human albumin in septic patients, the importance of the natural colloid in these critically ill patients is being redefined. In addition to the hemodynamic effects of administration of human albumin impacting on sympathetic tone, attention is being paid to other effects in which its pharmacodynamics is associated with the physiological importance of endogenous albumin. The morbidity and mortality data discussed in this paper support the importance of both the hemodynamic and the pharmacological effects of the administration of human albumin in various indications. The contribution that human albumin could make towards the maintenance of renal function in the course and treatment of severe sepsis and cirrhosis of the liver is the subject of this narrative review.

  12. 99M-technetium labeled macroaggregated human serum albumin pharmaceutical

    Science.gov (United States)

    Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer

    1977-05-17

    A reagent comprising macroaggregated human serum albumin having dispersed therein particles of stannous tin and a method for instantly making a labeled pharmaceutical therefrom, are disclosed. The labeled pharmaceutical is utilized in organ imaging.

  13. Atomic structure and chemistry of human serum albumin

    Science.gov (United States)

    He, Xiao M.; Carter, Daniel C.

    1992-01-01

    The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 A. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and ILIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.

  14. Effects of glycation on meloxicam binding to human serum albumin

    Science.gov (United States)

    Trynda-Lemiesz, Lilianna; Wiglusz, Katarzyna

    2011-05-01

    The current study reports a binding of meloxicam a pharmacologically important new generation, non-steroidal anti-inflammatory drug to glycated form of the human serum albumin (HSA). The interaction of the meloxicam with nonglycated and glycated albumin has been studied at pH 7.4 in 0.05 M sodium phosphate buffer with 0.1 M NaCl, using fluorescence quenching technique and circular dichroism spectroscopy. Results of the present study have shown that the meloxicam could bind both forms of albumin glycated and nonglycated at a site, which was close to the tryptophan residues. Similarly, how for native albumin glycated form has had one high affinity site for the drug with association constants of the order of 10 5 M -1. The glycation process of the HSA significantly has affected the impact of the meloxicam on the binding of other ligands such as warfarin and bilirubin. The affinity of the glycated albumin for bilirubin as for native albumin has been reduced by meloxicam but observed effect was weaker by half (about 20%) compared with nonglycated albumin. In contrast to the native albumin meloxicam binding to glycated form of the protein only slightly affected the binding of warfarin. It seemed possible that the effects on warfarin binding might be entirely attributable to the Lys 199 modification which was in site I.

  15. Interaction of aloe-emodin with human serum albumin

    Institute of Scientific and Technical Information of China (English)

    DU JinFeng; LI Ying; ZHANG Qi; YAO XiaoJun

    2007-01-01

    The presence of several high affinity binding sites on human serum albumin (HAS) makes it a possible target for many drugs. This study is designed to examine the effect of aloe-emodin on HAS by fluorescence, CD spectroscopy and molecular modeling. The results of fluorescence measurements suggested that the hydrophobic interaction was the predominant intermolecular force stabilizing the AE-HAS complex, which was in good agreement with the result of molecular modeling study. And the enthalpy change ΔH0 and the entropy change ΔS0 were calculated to be -7.041 kJ·mol-1 and 76.619 J·mol-1·K-1 according to the Van't Hoff equation. The alterations of protein secondary structure in the presence of AE in aqueous solution were quantitatively calculated from CD spectra, and the content of α-helices obviously increased.

  16. Interparticle interactions and structure in nonideal solutions of human serum albumin studied by small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjöberg, B.; Mortensen, K.

    1994-01-01

    Moderately or highly concentrated nonideal solutions of macromolecules are very important systems e.g. in biology and in many technical processes. In this work we have used the small-angle neutron scattering technique (SANS) to study the interactions and interparticle structure in solutions...

  17. [Preparation of Human Serum Albumin Micro/Nanotubes].

    Science.gov (United States)

    Jiao, Pei-pei; Guo, Yan-li; Niu, Ai-hua; Kang, Xiao-feng

    2016-01-01

    In this research, protein micro/nanotubes were fabricated by alternate layer-by-layer (LbL) assembly of human serum albumin (HSA) and polyethyleneimine (PEI) into polycarbonate (PC) membranes. The experimental conditions of pH values, ionic strength, the depositions cycles and the diameter of porous membrane were discussed. The morphology and composition of tubes were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), fourier transform infrared spectroscopy (FTIR) and energy dispersive spectroscopy (EDS). The results show that pH and ionic strength of the solution are the key factors that influence the effect of assembly. Micro/nanotubes with good opening hollow tubular structure were obtained when pH 7.4 HSA solution and pH 10.3 PEI solution without NaCl were used in synthesis procedure. The outer diameter of tube was dependent on the PC template, thus the micro/nanotubes size was controlled by the wall thickness, which can be adjusted by the number of layers of the HSA and PEI deposited along the pore walls. To avoid the thin wall being damaged in dissolving the template and vacuum drying, the PEI/HSA bilayer number should not be less than 3. The polar solvent N,N-dimethylformamide (DMF) can dissolve PC template to release the micro/nanotubes.

  18. Competitive Protein Adsorption of Albumin and Immunoglobulin G from Human Serum onto Polymer Surfaces

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2010-01-01

    Competitive protein adsorption from human serum onto unmodified polyethylene terephthalate (PET) surfaces and plasma-polymerized PET surfaces, using the monomer diethylene glycol vinyl ether (DEGVE), has been investigated using radioactive labeling. Albumin and immunoglobulin G (IgG) labeled...... with two different iodine isotopes have been added to human serum solutions of different concentrations, and adsorption has been performed using adsorption times from approximately 5 s to 24 h. DEGVE surfaces showed indications of being nonfouling regarding albumin and IgG adsorption during competitive...

  19. Determination of human albumin in serum and urine samples by constant-energy synchronous fluorescence method.

    Science.gov (United States)

    Madrakian, Tayyebeh; Bagheri, Habibollah; Afkhami, Abbas

    2015-08-01

    A sensitive spectrofluorimetric method using constant-energy synchronous fluorescence technique is proposed for the determination of human albumin without separation. In this method, no reagent was used for enhancement of the fluorescence signal of albumin in the solution. Effects of some parameters, such as energy difference between excitation and emission monochromators (ΔE), emission and excitation slit widths and scan rate of wavelength were studied and the optimum conditions were established. For this purpose factorial design and response surface method were employed for optimization of the effective parameters on the fluorescence signal. The results showed that the scan rate of the wavelength has no significant effect on the analytical signal. The calibration curve was linear in the range 0.1-220.0 µg mL(-1) of albumin with a detection limit of 7.0 × 10(-3)  µg mL(-1). The relative standard deviations (RSD) for six replicate measurements of albumin were calculated as 2.2%, 1.7% and 1.3% for 0.5, 10.0 and 100.0 µg mL(-1) albumin, respectively. Furthermore the proposed method has been employed for the determination of albumin in human serum and urine samples.

  20. Molecular basis of indomethacin-human serum albumin interaction

    DEFF Research Database (Denmark)

    Trivedi, V D; Vorum, H; Honoré, B

    1999-01-01

    Studies on the strength and extent of binding of the non-steroidal anti-inflammatory drug indomethacin to human serum albumin (HSA) have provided conflicting results. In the present work, the serum-binding of indomethacin was studied in 55 mM sodium phosphate buffer (pH 7.0) at 28 degrees C, by u...

  1. A new application of micellar liquid chromatography in the determination of free ampicillin concentration in the drug-human serum albumin standard solution in comparison with the adsorption method.

    Science.gov (United States)

    Stępnik, Katarzyna E; Malinowska, Irena; Maciejewska, Małgorzata

    2016-06-01

    The determination of free drug concentration is a very important issue in the field of pharmacology because only the unbound drug fraction can achieve a pharmacological effect. Due to the ability to solubilize many different compounds in micellar aggregates, micellar liquid chromatography (MLC) can be used for direct determination of free drug concentration. Proteins are not retained on the stationary phase probably due to the formation of protein - surfactant complexes which are excluded from the pores of stationary phase. The micellar method is simple and fast. It does not require any pre-preparation of the tested samples for analysis. The main aim of this paper is to demonstrate a completely new applicability of the analytical use of MLC concerning the determination of free drug concentration in the standard solution of human serum albumin. The well-known adsorption method using RP-HPLC and the spectrophotometric technique was applied as the reference method. The results show that the free drug concentration value obtained in the MLC system (based on the RP-8 stationary phase and CTAB) is similar to that obtained by the adsorption method: both RP-HPLC (95.83μgmL(-1), 79.86% of free form) and spectrophotometry (95.71μgmL(-1), 79.76%). In the MLC the free drug concentration was 93.98μgmL(-1) (78.3%). This indicates that the obtained results are within the analytical range of % of free ampicillin fraction and the MLC with direct sample injection can be treated like a promising method for the determination of free drug concentration.

  2. Virus-Enabled Biosensor for Human Serum Albumin.

    Science.gov (United States)

    Ogata, Alana F; Edgar, Joshua M; Majumdar, Sudipta; Briggs, Jeffrey S; Patterson, Shae V; Tan, Ming X; Kudlacek, Stephan T; Schneider, Christine A; Weiss, Gregory A; Penner, Reginald M

    2017-01-17

    The label-free detection of human serum albumin (HSA) in aqueous buffer is demonstrated using a simple, monolithic, two-electrode electrochemical biosensor. In this device, both millimeter-scale electrodes are coated with a thin layer of a composite containing M13 virus particles and the electronically conductive polymer poly(3,4-ethylenedioxy thiophene) or PEDOT. These virus particles, engineered to selectively bind HSA, serve as receptors in this biosensor. The resistance component of the electrical impedance, Zre, measured between these two electrodes provides electrical transduction of HSA binding to the virus-PEDOT film. The analysis of sample volumes as small as 50 μL is made possible using a microfluidic cell. Upon exposure to HSA, virus-PEDOT films show a prompt increase in Zre within 5 s and a stable Zre signal within 15 min. HSA concentrations in the range from 100 nM to 5 μM are detectable. Sensor-to-sensor reproducibility of the HSA measurement is characterized by a coefficient-of-variance (COV) ranging from 2% to 8% across this entire concentration range. In addition, virus-PEDOT sensors successfully detected HSA in synthetic urine solutions.

  3. Interactions of human serum albumin with doxorubicin in different media

    Science.gov (United States)

    Gun'ko, Vladimir M.; Turov, Vladimir V.; Krupska, Tetyana V.; Tsapko, Magdalina D.

    2017-02-01

    Interactions of human serum albumin (10 wt% H2O and 0.3 wt% sodium caprylate) with doxorubicin hydrochloride (1 wt%) were studied alone or with addition of HCl (3.6 wt% HCl) using 1H NMR spectroscopy. A model of hydrated HSA/12DOX was calculated using PM7 method with COSMO showing large variations in the binding constant depending on structural features of DOX/HSA complexes. DOX molecules/ions displace bound water from narrow intramolecular voids in HSA that leads to diminution of freezing-melting point depression of strongly bound water (SBW). Structure of weakly bound water (WBW) depends much weaker on the presence of DOX than SBW because a major fraction of DOX is bound to adsorption sites of HSA. Addition of HCl results in strong changes in structure of macromolecules and organization of water in hydration shells of HSA (i.e., mainly SBW) and in the solution (i.e., WBW + non-bound bulk water).

  4. Study on the conformal variations of bovine and human serum albumin in solution using small angle X-ray scattering; Estudo das variacoes conformacionais das albuminas humana e bovina em solucao por espalhamento de raios-X a baixo angulo

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, Johnny Rizzieri

    1992-12-31

    It is reported a Small Angle X-Ray Scattering (SAXS) study of BSA (Bovine Serum Albumin) and HSA (Human Serum Albumin) on pH between 2.5 and 7.0. The measured scattering intensities, normalized in relation to incident beam, exposition time and scattering due to solvent and capillary, and corrected due to concentration and beam shape effects, have shown a strong dependence of the protein shape with pH for both albumins. It was found that the radius of gyration varies between 26.7 and 35 A, and the analyses of the distance distribution function. P(r), indicated that these proteins undergoes conformational changes with pH. Different theoretical shapes have been proposed and analysed comparing the computed P(r) function generated from the models with the experimental P(r). A large variety of shapes were found in both proteins, indicating that BSA and HSA are very flexibility macromolecules. (author). 60 refs., 49 figs., 7 tabs.

  5. Pharmacokinetics and anti-HIV-1 efficacy of negatively charged human serum albumins in mice

    NARCIS (Netherlands)

    Kuipers, M E; Swart, P J; Schutten, M; Smit, C; Proost, J H; Osterhaus, A D; Meijer, D K

    1997-01-01

    Negatively charged albumins (NCAs, with the prototypes succinylated human serum albumin (Suc-HSA) and aconitylated human serum albumin (Aco-HSA)), modified proteins with a potent anti-human immunodeficiency virus type 1 (anti-HIV-1) activity in vitro, were studied for their pharmacokinetic behaviour

  6. Human serum albumin complexes with chlorophyll and chlorophyllin.

    Science.gov (United States)

    Ouameur, A Ahmed; Marty, R; Tajmir-Riahi, H A

    2005-02-15

    Porphyrins and their metal derivatives are strong protein binders. Some of these compounds have been used for radiation sensitization therapy of cancer and are targeted to interact with cellular DNA and protein. The presence of several high-affinity binding sites on human serum albumin (HSA) makes it possible target for many organic and inorganic molecules. Chlorophyll a and chlorophyllin (a food-grade derivative of chlorophyll), the ubiquitous green plant pigment widely consumed by humans, are potent inhibitors of experimental carcinogenesis and interact with protein and DNA in many ways. This study was designed to examine the interaction of HSA with chlorophyll (Chl) and chlorophyllin (Chln) in aqueous solution at physiological conditions. Fourier transform infrared, UV-visible, and CD spectroscopic methods were used to determine the pigment binding mode, the binding constant, and the effects of porphyrin complexation on protein secondary structure. Spectroscopic results showed that chlorophyll and chlorophyllin are located along the polypeptide chains with no specific interaction. Stronger protein association was observed for Chl than for Chln, with overall binding constants of K(Chl) = 2.9 x 10(4)M(-1) and K(Chln) = 7.0 x 10(3)M(-1). The protein conformation was altered (infrared data) with reduction of alpha-helix from 55% (free HSA) to 41-40% and increase of beta-structure from 22% (free HSA) to 29-35% in the pigment-protein complexes. Using the CDSSTR program (CD data) also showed major reduction of alpha-helix from 66% (free HSA) to 58 and 55% upon complexation with Chl and Chln, respectively.

  7. [Reaction mechanism of cefotaxime with human serum albumin].

    Science.gov (United States)

    Liu, Luo-sheng; Wang, Xing-po; Zhao, Quan-qin; Zhang, Yu-yi

    2006-06-01

    The reaction mechanism of cefotaxime with human serum albumin (HSA) and the affinity between cefotaxime and beta-lactamase were investigated by spectrometry and spectrofluorimetry. The interaction dissociation constants of human serum albumin and cefotaxime were determined from a double reciprocal Lineweaver-Burk plot. The binding distance and transfer efficiency between cefotaxime and HSA were also obtained according to the theory of Förster non-radiation energy transfer. The result suggested that the main binding force between cefotaxime and HSA is electrostatic force interaction. The high beta-lactamase stability of cefotaxime may be correlative with its molecular structure. The antibiotic activity and valence are connected with transfer efficiency and dissociation constant. The effect of cefotaxime on the conformation of HSA was also analyzed using synchronous fluorescence spectrometry.

  8. Characterization of isomeric VX nerve agent adducts on albumin in human plasma using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Saeidian, Hamid; Mirkhani, Valioallah; Mousavi Faraz, Sajjad; Taghi Naseri, Mohammad; Babri, Mehran

    2015-01-01

    This study includes the characterization of isomeric VX organophosphorus adducts on albumin in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). VX or its structural isomers were spiked into a vial containing plasma in order to obtain phosphorylated albumin. After pronase and trypsin digestion, the resulting solutions were analyzed to confirm adduct formation with the amino acid tyrosine on the albumin in human plasma. The LC-MS/MS experiments show that VX and its isomers can be attached to tyrosine on the albumin in human blood. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as ethylene, formic acid and ammonia elimination and an intermolecular electrophilic aromatic substitution reaction. The proposed mechanisms for the formation of the fragments were confirmed through the analysis of fragments of deuterated adducts.

  9. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    Science.gov (United States)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  10. In vitro inhibition of human neutrophil elastase by oleic acid albumin formulations from derivatized cotton wound dressings.

    Science.gov (United States)

    Edwards, J Vincent; Howley, Phyllis; Cohen, I Kelman

    2004-10-13

    Human neutrophil elastase (HNE) is elevated in chronic wounds. Oleic acid albumin formulations that inhibit HNE may be applicable to treatment modalities for chronic wounds. Oleic acid/albumin formulations with mole ratios of 100:1, 50:1, and 25:1 (oleic acid to albumin) were prepared and found to have dose response inhibition properties against HNE. The IC50 values for inhibition of HNE with oleic acid/albumin formulations were 0.029-0.049 microM. Oleic acid/albumin (BSA) formulations were bound to positively and negatively charged cotton wound dressings and assessed for elastase inhibition using a fiber bound formulation in an assay designed to mimic HNE inhibition in the wound. Cotton derivatized with both carboxylate and amine functional groups were combined with oleic acid/albumin formulations at a maximum loading of 0.030 mg oleic acid + 0.14 mg BSA/mg fiber. The IC50 values for inhibition of HNE with oleic acid/albumin formulations bound to derivatized cotton were 0.26-0.42 microM. Release of the oleic acid/albumin formulation from the fiber was measured by measuring oleic acid levels with quantitative GC analysis. Approximately, 35-50% of the fiber bound formulation was released into solution within the first 15 min of incubation. Albumin was found to enhance the rate of elastase hydrolysis of the substrate within a concentration range of 0.3-50 g/L. The acceleration of HNE substrate hydrolysis by albumin required increased concentration of inhibitor in the formulation to obtain complete inhibition of HNE. Oleic acid formulations prepared with albumin enable transport, solubility and promote dose response inhibition of HNE from derivatized cotton fibers under aqueous conditions mimicking the chronic wound.

  11. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  12. Biomolecular Interaction Study of Cyclolinopeptide A with Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Ben Rempel

    2010-01-01

    Full Text Available The kinetics, energetics, and structure of Cyclolinopeptide A binding with Human Serum Albumin were investigated with surface plasmon resonance and circular dichroism. The complex is formed through slow recognition kinetics that is temperature sensitive in the range of 20°C–37°C. The overall reaction was observed to be endothermic (ΔH=204 kJ mol−1 and entropy driven (ΔS=746 J mol−1K−1 with overall small changes to the tertiary structure.

  13. The preparation of albumin as a biological drug from human plasma by fiber filtration

    Directory of Open Access Journals (Sweden)

    Mousavi Hosseini K

    2011-08-01

    Full Text Available "nBackground: In recent years, consumption of whole-blood for the treatment of patients has decreased but use of biological plasma-derived medicines such as albumin, immunoglobulin and coagulation factors have increased instead. Paying attention to albumin molecular structure is important for its isolation from human plasma. Albumin is a single-chain protein consisting of about 585 amino acids and a molecular weight of 66500 Daltons. Albumin is a stable molecule and it is spherical in shape. There are different methods for human albumin preparation. Considering the large consumption of this biological drug in clinical settings, methods with fewer steps in production line are of big advantage in saving time and manufacturing more products."n "nMethods: In this project, we prepared human albumin using hollow fiber cartridges in order to omit the rework on fraction V+VI. Human albumin is usually produced by the application of cold ethanol method, where albumin is obtained from fraction V by doing a rework on fraction V+VI to separate fraction V."n "nResults: In the current work, human albumin was prepared from fraction V+VI by the help of hollow fiber cartridges. With a concentration of 20%, the obtained albumin had 96.5% of monomer and 3.5% of polymer and polymer aggregate."n "nConclusion: Comparing the obtained human albumin with a number of commercial human albumin samples by the use of SDS-page, the results were satisfactory regarding the 3.5 percent polymer and aggregate rate for the prepared albumin.

  14. POTENT INVITRO ANTI-HUMAN IMMUNODEFICIENCY VIRUS-1 ACTIVITY OF MODIFIED HUMAN SERUM ALBUMINS

    NARCIS (Netherlands)

    JANSEN, RW; MOLEMA, G; PAUWELS, R; SCHOLS, D; DECLERCQ, E; MEIJER, DKF

    1991-01-01

    A series of neoglycoproteins was synthesized by coupling of thiophosgene-activated p-aminophenyl derivatives [Biol. Cell. 47:95-110 (1983); J. Histochem. Cytochem. 32:1091-1094 (1984)] of various sugars to human serum albumin. The compounds were evaluated for their in vitro activity against human im

  15. Investigation of Human Albumin-Induced Circular Dichroism in Dansylglycine

    Science.gov (United States)

    Graciani, Fernanda S.; Ximenes, Valdecir F.

    2013-01-01

    Induced circular dichroism (ICD), or induced chirality, is a phenomenon caused by the fixation of an achiral substance inside a chiral microenvironment, such as the hydrophobic cavities in proteins. Dansylglycine belongs to a class of dansylated amino acids, which are largely used as fluorescent probes for the characterization of the binding sites in albumin. Here, we investigated the ICD in dansylglycine provoked by its binding to human serum albumin (HSA). We found that the complexation of HSA with dansylglycine resulted in the appearance of an ICD band centred at 346 nm. Using this ICD signal and site-specific ligands of HSA, we confirmed that dansylglycine is a site II ligand. The intensity of the ICD signal was dependent on the temperature and revealed that the complexation between the protein and the ligand was reversible. The induced chirality of dansylglycine was susceptive to the alteration caused by the oxidation of the protein. A comparison was made between hypochlorous acid (HOCl) and hypobromous acid (HOBr), and revealed that site II in the protein is more susceptible to alteration provoked by the latter oxidant. These findings suggest the relevance of the aromatic amino acids in the site II, since HOBr is a more efficient oxidant of these residues in proteins than HOCl. The three-dimensional structure of HSA is pH-dependent, and different conformations have been characterised. We found that HSA in its basic form at pH 9.0, which causes the protein to be less rigid, lost the capacity to bind dansylglycine. At pH 3.5, HSA retained almost all of its capacity for binding to dansylglycine. Since the structure of HSA at pH 3.5 is expanded, separating the domain IIIA from the rest of the molecule, we concluded that this separation did not alter its binding capacity to dansylglycine. PMID:24146932

  16. Investigation of human albumin-induced circular dichroism in dansylglycine.

    Directory of Open Access Journals (Sweden)

    Fernanda S Graciani

    Full Text Available Induced circular dichroism (ICD, or induced chirality, is a phenomenon caused by the fixation of an achiral substance inside a chiral microenvironment, such as the hydrophobic cavities in proteins. Dansylglycine belongs to a class of dansylated amino acids, which are largely used as fluorescent probes for the characterization of the binding sites in albumin. Here, we investigated the ICD in dansylglycine provoked by its binding to human serum albumin (HSA. We found that the complexation of HSA with dansylglycine resulted in the appearance of an ICD band centred at 346 nm. Using this ICD signal and site-specific ligands of HSA, we confirmed that dansylglycine is a site II ligand. The intensity of the ICD signal was dependent on the temperature and revealed that the complexation between the protein and the ligand was reversible. The induced chirality of dansylglycine was susceptive to the alteration caused by the oxidation of the protein. A comparison was made between hypochlorous acid (HOCl and hypobromous acid (HOBr, and revealed that site II in the protein is more susceptible to alteration provoked by the latter oxidant. These findings suggest the relevance of the aromatic amino acids in the site II, since HOBr is a more efficient oxidant of these residues in proteins than HOCl. The three-dimensional structure of HSA is pH-dependent, and different conformations have been characterised. We found that HSA in its basic form at pH 9.0, which causes the protein to be less rigid, lost the capacity to bind dansylglycine. At pH 3.5, HSA retained almost all of its capacity for binding to dansylglycine. Since the structure of HSA at pH 3.5 is expanded, separating the domain IIIA from the rest of the molecule, we concluded that this separation did not alter its binding capacity to dansylglycine.

  17. Human Serum Albumin Complexed with Myristate and AZT

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lili; Yang, Feng; Chen, Liqing; Meehan, Edward J.; Huang, Mingdong (UGA); (UAH)

    2008-06-16

    3'-Azido-3'-deoxythymidine (AZT) is the first clinically effective drug for the treatment of human immunodeficiency virus infection. The drug interaction with human serum albumin (HSA) has been an important component in understanding its mechanism of action, especially in drug distribution and in drug-drug interaction on HSA in the case of multi-drug therapy. We present here crystal structures of a ternary HSA-Myr-AZT complex and a quaternary HSA-Myr-AZT-SAL complex (Myr, myristate; SAL, salicylic acid). From this study, a new drug binding subsite on HSA Sudlow site 1 was identified. The presence of fatty acid is needed for the creation of this subsite due to fatty acid induced conformational changes of HSA. Thus, the Sudlow site 1 of HSA can be divided into three non-overlapped subsites: a SAL subsite, an indomethacin subsite and an AZT subsite. Binding of a drug to HSA often influences simultaneous binding of other drugs. From the HSA-Myr-AZT-SAL complex structure, we observed the coexistence of two drugs (AZT and SAL) in Sudlow site 1 and the competition between these two drugs in subdomain IB. These results provide new structural information on HSA-drug interaction and drug-drug interaction on HSA.

  18. Non-enzymatic glucosylation induced neo-epitopes on human serum albumin: A concentration based study

    Science.gov (United States)

    Neelofar, Km; Arif, Zarina; Ahmad, Jamal; Alam, Khursheed

    2017-01-01

    Hyperglycaemia induced non enzymatic glycation is accelerated in diabetic patients and aggressively involved in diabetes progression. Human serum albumin (HSA) is the most abundant protein in blood circulation. In hyperglycaemia, it undergoes fast glycation and results in the impairment of structure. Our previous study has demonstrated structural alterations in Amadori-albumin modified with different glucose concentrations from physiological to pathophysiological range. Here, we focused on immunological characterization of Amadori-albumin. Immunogenicity of Amadori-albumin was analysed by direct binding and competitive ELISA. Amadori-albumin was found to be highly immunogenic (expect albumin modified with 5mM) and induced high titre antibodies depending upon the extent of modification. Very high titre antibodies were obtained with albumin modified with 75mM glucose as compared to native albumin. Anti-Amadori-albumin-IgG from rabbit sera exhibited increased recognition of Amadori-albumin than native albumin in competitive immunoassay. Alteration induced in albumin after glucosylation has made it highly immunogenic. Induced antibodies were quite specific for respective immunogens but showed cross-reaction with other Amadori/native proteins. It suggests that glucosylation has generated highly immunogenic epitopes on albumin. Formation of high molecular weight immune complex with retarded mobility further supports specificity of anti-Amadori-albumin-IgG towards Amadori-albumin. It may be concluded that due to early glycation, an array of modification occurred in HSA structure. Such gross structural changes might favour polymerization of most of the native epitopes into potent immunogenic neo-epitopes, but some original epitopes were still active and has contributed in the immunogenicity. It could be concluded that induction of anti-Amadori-albumin antibodies may be due to protection of glucose modified albumin from protiolytic breakdown. We assumed that this type of

  19. Ionization of tyrosine residues in human serum albumin and in its complexes with bilirubin and laurate

    DEFF Research Database (Denmark)

    Honoré, B; Brodersen, R

    1992-01-01

    Spectrophotometric titration of human serum albumin indicates that ionization of the 18 tyrosine residues takes place between pH 9 and 12.7. A Hill plot indicates that protons dissociate co-operatively from tyrosine residues, in pure albumin between pH 11.0 and 11.4 with a Hill coefficient 1.7, a...

  20. Interaction of indomethacin with adult human albumin and neonatal serum

    DEFF Research Database (Denmark)

    Honoré, B; Brodersen, R; Robertson, A

    1983-01-01

    The binding of indomethacin to albumin was investigated at 37 degrees C, pH 7.4. The first stoichiometric binding constant is 2.5 X 10(5) M-1. Indomethacin utilizes both the bilirubin and diazepam binding functions equally. The effect on bilirubin binding to albumin is negligible at therapeutic i...... no significant correlation of the reserve binding to the albumin level. This methodology may be useful in studying the variable response of infants with patent ductus arteriosus to indomethacin. Udgivelsesdato: 1983-null...

  1. Interaction of perfluorooctanoic acid with human serum albumin

    Directory of Open Access Journals (Sweden)

    Chen Fang-Fang

    2009-05-01

    Full Text Available Abstract Background Recently, perfluorooctanoic acid (PFOA has become a significant issue in many aspects of environmental ecology, toxicology, pathology and life sciences because it may have serious effects on the endocrine, immune and nervous systems and can lead to embryonic deformities and other diseases. Human serum albumin (HSA is the major protein component of blood plasma and is called a multifunctional plasma carrier protein because of its ability to bind an unusually broad spectrum of ligands. Results The interaction of PFOA with HSA was investigated in the normal physiological condition by equilibrium dialysis, fluorospectrometry, isothermal titration calorimetry (ITC and circular dichroism (CD. The non-covalent interaction is resulted from hydrogen bond, van der Waals force and hydrophobic stack. PFOA binding to HSA accorded with two-step binding model with the saturation binding numbers of PFOA, only 1 in the hydrophobic intracavity of HSA and 12 on the exposed outer surface. The interaction of PFOA with HSA is spontaneous and results in change of HSA conformation. The possible binding sites were speculated. Conclusion The present work suggested a characterization method for the intermolecular weak interaction. It is potentially useful for elucidating the toxigenicity of perfluorochemicals when combined with biomolecular function effect, transmembrane transport, toxicological testing and the other experiments.

  2. Cooperative binding of drugs on human serum albumin

    Science.gov (United States)

    Varela, L. M.; Pérez-Rodríguez, M.; García, M.

    In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer-Emmet-Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.

  3. Complexation of insecticide chlorantraniliprole with human serum albumin: Biophysical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Ding Fei [Department of Chemistry, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193 (China); Liu Wei [College of Economics and Management, China Agricultural University, Beijing 100083 (China); Diao Jianxiong [Department of Chemistry, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193 (China); Yin Bin [Key Laboratory of Pesticide Chemistry and Application Technology, Ministry of Agriculture, Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China); Zhang Li, E-mail: zhli.work@gmail.co [Key Laboratory of Pesticide Chemistry and Application Technology, Ministry of Agriculture, Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China); Sun Ying, E-mail: sunying@cau.edu.c [Department of Chemistry, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193 (China)

    2011-07-15

    Chlorantraniliprole is a novel insecticide belonging to the diamide class of selective ryanodine receptor agonists. A biophysical study on the binding interaction of a novel diamide insecticide, chlorantraniliprole, with staple in vivo transporter, human serum albumin (HSA) has been investigated utilizing a combination of steady-state and time-resolved fluorescence, circular dichroism (CD), and molecular modeling methods. The interaction of chlorantraniliprole with HSA gives rise to fluorescence quenching through static mechanism, this corroborates the fluorescence lifetime outcomes that the ground state complex formation and the predominant forces in the HSA-chlorantraniliprole conjugate are van der Waals forces and hydrogen bonds, as derived from thermodynamic analysis. The definite binding site of chlorantraniliprole in HSA has been identified from the denaturation of protein, competitive ligand binding, and molecular modeling, subdomain IIIA (Sudlow's site II) was designated to possess high-affinity binding site for chlorantraniliprole. Moreover, using synchronous fluorescence, CD, and three-dimensional fluorescence we testified some degree of HSA structure unfolding upon chlorantraniliprole binding. - Highlights: {yields} Our study highlights for the first time how binding dynamics can predominate for the new diamide insecticide, chlorantraniliprole. {yields} Chlorantraniliprole is situated within subdomain IIIA, Sudlow's site II, which is the same as that of indole-benzodiazepine site. {yields} Biophysical and molecular modeling approaches are useful to resolve the ligand interaction with biomacromolecule. {yields} It serves as a protective device in binding and in inactivating potential toxic compounds to which the body is exposed.

  4. Intermolecular forces in bovine serum albumin solutions exhibiting solidlike mechanical behaviors.

    Science.gov (United States)

    Ikeda, S; Nishinari, K

    2000-01-01

    Mechanical properties of bovine serum albumin (BSA) solutions were analyzed to gain information on intermolecular forces that stabilize the system under normal physiological conditions. BSA solutions showed unexpectedly large zero shear viscosity values under steady shear flows but responded like solids to sinusoidal linear strains: the storage shear moduli were always larger than the loss shear moduli in the frequency range 1-100 rad/s. These results suggest that BSA solutions are so-called colloidal crystals in which colloidal particles are ordered in an array due to strong repulsive forces among particles. However, the pair potential between BSA molecules predicted based on the conventional Derjaguin-Landau-Verwey-Overbeek theory failed to explain these remarkable mechanical properties of BSA solutions. Additional repulsive forces other than electrostatic must be introduced to explain stability of BSA aqueous dispersions.

  5. Synthesis of Micron-size Functional Polystyrene Fluorescent Micro- spheres and their Adsorbability to Human Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    Di Qiang WANG; He LI; Jie HU; Xian Feng LIAO; Bai Ling LIU

    2004-01-01

    Polystyrene microspheres with sulfo- or aldehyde- surface were synthesized through dispersion polymerization. Functional polystyrene fluorescent microspheres were prepared by the way of adding 2, 5-diphenyloxazole (PPO) into the reaction system directly and dying the blank microspheres in the ethanol solution of PPO. The influence of preparing matters on the encapsulating rate of PPO, and the influence of functional groups on the adsorbability to human serum albumin (HSA) were investigated.

  6. Effects of fluorinated and hydrogenated surfactants on human serum albumin at different pHs.

    Science.gov (United States)

    Sabín, Juan; Prieto, Gerardo; González-Pérez, Alfredo; Ruso, Juan M; Sarmiento, Félix

    2006-01-01

    Complexation between human serum albumin (HSA) and two different surfactants, one fully fluorinated (sodium perfluorooctanoate, SPFO) and one fully hydrogenated (sodium caprylate, SO), was studied using zeta-potential measurements and difference spectroscopy. The study was carried out at three different pHs, 3.2, 6.7, and 10.0. The spectroscopy study was performed at pHs 6.7 and 10.0, given that at pH 3.2 high turbidity was observed in the wide range of surfactant concentrations. The results were interpreted in terms of the electrostatic and hydrophobic contributions to the stability of the different phases formed in the water-surfactant-HSA system. Solutions and precipitates were observed in the concentration range investigated in more detail. Using Pace methods, the thermodynamic values of the surfactant-induced conformational changes in HSA were determined for sodium perfluorooctanoate in the concentration range 2-12 mmol dm(-3) at pH 6.7 and 5-22 mmol dm(-3) at pH 10.0. Electrophoretic measurements were used to characterize surfactant adsorption by determining the number of molecules adsorbed on the surface of HSA and the Gibbs energy of adsorption. Finally, the interactions between human serum albumin and other anionic surfactants studied by other authors were compared with those observed in the present work.

  7. Structural basis of transport of lysophospholipids by human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shihui; Shi, Xiaoli; Yang, Feng; Chen, Liqing; Meehan, Edward J.; Bian, Chuanbing; Huang, Mingdong; (UAH); (Chinese Aca. Sci.)

    2010-10-08

    Lysophospholipids play important roles in cellular signal transduction and are implicated in many biological processes, including tumorigenesis, angiogenesis, immunity, atherosclerosis, arteriosclerosis, cancer and neuronal survival. The intracellular transport of lysophospholipids is through FA (fatty acid)-binding protein. Lysophospholipids are also found in the extracellular space. However, the transport mechanism of lysophospholipids in the extracellular space is unknown. HSA (human serum albumin) is the most abundant carrier protein in blood plasma and plays an important role in determining the absorption, distribution, metabolism and excretion of drugs. In the present study, LPE (lysophosphatidylethanolamine) was used as the ligand to analyse the interaction of lysophospholipids with HSA by fluorescence quenching and crystallography. Fluorescence measurement showed that LPE binds to HSA with a K{sub d} (dissociation constant) of 5.6 {micro}M. The presence of FA (myristate) decreases this binding affinity (K{sub d} of 12.9 {micro}M). Moreover, we determined the crystal structure of HSA in complex with both myristate and LPE and showed that LPE binds at Sudlow site I located in subdomain IIA. LPE occupies two of the three subsites in Sudlow site I, with the LPE acyl chain occupying the hydrophobic bottom of Sudlow site I and the polar head group located at Sudlow site I entrance region pointing to the solvent. This orientation of LPE in HSA suggests that HSA is capable of accommodating other lysophospholipids and phospholipids. The study provides structural information on HSA-lysophospholipid interaction and may facilitate our understanding of the transport and distribution of lysophospholipids.

  8. Optimization of a colorimetric assay for glycosylated human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Bohney, J.P.; Feldhoff, R.C.

    1986-05-01

    The thiobarbituric acid (TBA) assay has been used for several years to quantitate the amount of glucose which has been non-enzymatically linked to hemoglobin and other proteins. The ketoamine-protein adduct is converted to 5-hydroxymethylfurfural (HMF) by mild hydrolysis with oxalic acid. Reaction of HMF with TBA yields a colored product which has an absorbance maximum at 443 nm. Several modifications of the original procedure has been published, but none permit the unambiguous quantitation of glycosylated human serum albumin (glc-HSA). Problems relate to reagent preparation and stability, the time and temperature of hydrolysis, the choice of standards, and background color corrections. The authors have found that maximum color yield occurs after hydrolysis in an autoclave for 2 h. This increases the sensitivity 3-fold and cuts the assay time in half relative to hydrolysis for 4.5 h at 100/sup 0/C. A NaBH/sub 4/ reduction of a parallel protein sample must be performed to correct for variable background color associated with different sample sources and amounts. HMF can be used as a standard, however, corrections must be made for HMF degradation. Fructose is a better standard, but HMF formation from fructose is faster than formation from glc-HSA. This may result in an underestimate of percent glycosylation. The best standard appears to be glc-HSA prepared with (/sup 3/H)glucose. It appears that with proper controls and standards the TBA assay can be used to determine actual rather than relative percent glycosylation.

  9. Differential solubility of curcuminoids in serum and albumin solutions: implications for analytical and therapeutic applications

    Directory of Open Access Journals (Sweden)

    Quitschke Wolfgang W

    2008-11-01

    Full Text Available Abstract Background Commercially available curcumin preparations contain a mixture of related polyphenols, collectively referred to as curcuminoids. These encompass the primary component curcumin along with its co-purified derivatives demethoxycurcumin and bisdemethoxycurcumin. Curcuminoids have numerous biological activities, including inhibition of cancer related cell proliferation and reduction of amyloid plaque formation associated with Alzheimer disease. Unfortunately, the solubility of curcuminoids in aqueous solutions is exceedingly low. This restricts their systemic availability in orally administered formulations and limits their therapeutic potential. Results Methods are described that achieve high concentrations of soluble curcuminoids in serum. Solid curcuminoids were either mixed directly with serum, or they were predissolved in dimethyl sulfoxide and added as aliquots to serum. Both methods resulted in high levels of curcuminoid-solubility in mammalian sera from different species. However, adding aliquots of dimethyl sulfoxide-dissolved curcuminoids to serum proved to be more efficient, producing soluble curcuminoid concentrations of at least 3 mM in human serum. The methods also resulted in the differential solubility of individual curcuminoids in serum. The addition of dimethyl sulfoxide-dissolved curcuminoids to serum preferentially solubilized curcumin, whereas adding solid curcuminoids predominantly solubilized bisdemethoxycurcumin. Either method of solubilization was equally effective in inhibiting dose-dependent HeLa cell proliferation in culture. The maximum concentration of curcuminoids achieved in serum was at least 100-fold higher than that required for inhibiting cell proliferation in culture and 1000-fold higher than the concentration that has been reported to prevent amyloid plaque formation associated with Alzheimer disease. Curcuminoids were also highly soluble in solutions of purified albumin, a major component of

  10. Behavior of human serum albumin on strong cation exchange resins: I. experimental analysis.

    Science.gov (United States)

    Voitl, Agnes; Butté, Alessandro; Morbidelli, Massimo

    2010-08-20

    Experiments with human serum albumin on the strong cation exchange resin Fractogel EMD SE Hicap (M) were carried out. Even though human serum albumin was used at high purity, two peaks in gradient elution experiments occurred. The obtained data can be explained by considering that human serum albumin binds to Fractogel EMD SE Hicap (M) in two different binding conformations: the protein adsorbs instantaneously in the first conformation and then changes into the second one with a kinetic limitation. The two-peak behavior of human serum albumin was analyzed in detail, especially at various gradient lengths, concentrations and temperatures. Breakthrough curves were performed at four modifier concentrations and three velocities. The characteristic adsorption behavior, found for gradient experiments, was confirmed by the breakthrough curves. The two-peak elution pattern of human serum albumin was also found for other strong cation exchange resins, but not for weak cation exchange resins. It is concluded that the described behavior is peculiar for the interaction of human serum albumin with the strong cation exchange ligand of the resin.

  11. Pharmaceutical aspects of the recombinant human serum albumin dimer: structural characteristics, biological properties, and medical applications.

    Science.gov (United States)

    Taguchi, Kazuaki; Chuang, Victor Tuan Giam; Maruyama, Toru; Otagiri, Masaki

    2012-09-01

    Human serum albumin is the most abundant protein in the blood. It is clinically used in the treatment of severe hypoalbuminemia and as a plasma expander. The use of albumins as a carrier for drugs is currently being developed, and some are now in the preclinical and clinical trial stages. The main technologies for utilizing an albumin as a drug carrier are protein fusion, polymerization and surface modification, and so on. Among these technologies, albumin dimerization has wide clinical applications as a plasma expander as well as a drug carrier. Despite the fact that many reports have appeared on drugs using an albumin dimer as a carrier, our knowledge of the characteristics of the albumin dimer itself is incomplete. In this review, we summarize the structural characteristics of recombinant albumin dimers produced by two methods, namely, chemical linkage with 1,6-bis(maleimido)hexane and genetically linked with an amino acid linker, and the physicochemical characteristics and biological properties of these preparations. Finally, the potential for pharmaceutical applications of albumin dimers in clinical situations is discussed.

  12. Interaction of VO2+ ion with human serum transferrin and albumin.

    Science.gov (United States)

    Sanna, Daniele; Garribba, Eugenio; Micera, Giovanni

    2009-04-01

    The complexation of VO(2+) ion with the high molecular mass components of the blood serum, human serum transferrin (hTf) and albumin (HSA), has been re-examined using EPR spectroscopy. In the case of transferrin, the results confirm those previously obtained, showing that VO(2+) ion occupies three different binding sites, A, B(1) and B(2), distinguishable in the X-band anisotropic spectrum recorded in D(2)O. With albumin the results show that a dinuclear complex (VO)(2)(d)HSA is formed in equimolar aqueous solutions or with an excess of protein; in the presence of an excess of VO(2+), the multinuclear complex (VO)(x)(m)HSA is the prevalent species, where x=5-6 indicates the equivalents of metal ion coordinated by HSA. The structure of the dinuclear species is discussed and the donor atoms involved in the metal coordination are proposed on the basis of the measured EPR parameters. Two different binding modes of albumin can be distinguished varying the pH, with only one species being present at the physiological value. The results show that the previously named "strong" site is not the N-terminal copper binding site, and some hypothesis on the metal coordination is discussed, with the (51)V A(z) values for the proposed donor sets obtained by DFT (density functional theory) calculations. Finally, preliminary results obtained in the ternary system VO(2+)/hTf/HSA are shown in order to determine the different binding strength of the two proteins. Due to the low VO(2+) concentration used, the recording of the EPR spectra through the repeated acquisition of the weak signals is essential to obtain a good signal to noise ratio in these systems.

  13. Human serum albumin binding to silica nanoparticles--effect of protein fatty acid ligand.

    Science.gov (United States)

    Ang, Joo Chuan; Henderson, Mark J; Campbell, Richard A; Lin, Jhih-Min; Yaron, Peter N; Nelson, Andrew; Faunce, Thomas; White, John W

    2014-06-07

    Neutron reflectivity shows that fatted (F-HSA) and defatted (DF-HSA) versions of human serum albumin behave differently in their interaction with silica nanoparticles premixed in buffer solutions although these proteins have close to the same surface excess when the silica is absent. In both cases a silica containing film is quickly established at the air-water interface. This film is stable for F-HSA at all relative protein-silica concentrations measured. This behaviour has been verified for two small silica nanoparticle radii (42 Å and 48 Å). Contrast variation and co-refinement have been used to find the film composition for the F-HSA-silica system. The film structure changes with protein concentration only for the DF-HSA-silica system. The different behaviour of the two proteins is interpreted as a combination of three factors: increased structural stability of F-HSA induced by the fatty acid ligand, differences in the electrostatic interactions, and the higher propensity of defatted albumin to self-aggregate. The interfacial structures of the proteins alone in buffer are also reported and discussed.

  14. Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements

    Directory of Open Access Journals (Sweden)

    Martin Alberto Masuelli

    2013-01-01

    Full Text Available The behavior of bovine serum albumin (BSA in water is scarcely studied, and the thermodynamic properties arising from the experimental measurements have not been reported. Intrinsic viscosity measurements are very useful in assessing the interaction between the solute and solvent. This work discussed in a simple determination of the enthalpy of BSA in aqueous solution when the concentration ranges from 0.2 to 36.71% wt. and the temperature from 35 to 40°C. The relationship between the concentration and intrinsic viscosity is determined according to the method of Huggins. The temperature increase reduces the ratio between inherent viscosity and concentration (ηi/c. This is reflected in the Van't Hoff curve. Furthermore, this work proposes hydrodynamic cohesion value as an indicator of the degree of affinity of protein with water and thermodynamic implications in conformational changes.

  15. Thermomechanical effects of co-solute on the structure formation of bovine serum albumin.

    Science.gov (United States)

    George, Paul; Lundin, Leif; Kasapis, Stefan

    2014-08-15

    The effect of glucose syrup on the structural properties of bovine serum albumin has been addressed in preparations from low to high solids. Fifteen percent protein was mixed with the co-solute at concentrations up to 65% and subjected to thermal treatment to examine the changes in phase and state transitions. Thermomechanics were the working protocol being carried out with micro differential scanning calorimetry and small deformation dynamic oscillation. Results argue that protein molecules have been extensively stabilised by the addition of a co-solute, recorded via a delayed thermal denaturation. Further, increasing the glucose syrup enhanced polymer-polymer interactions leading to stronger networks following thermal denaturation of the globular protein. Condensed BSA/glucose syrup mixtures, i.e. at 80% solids, were cooled at subzero temperatures to exhibit a considerable state of vitrification. Molecular relaxation phenomena were successfully followed using theoretical concepts from synthetic polymer research to yield the mechanical glass transition temperature.

  16. Self-assembling of poly(aspartic acid) with bovine serum albumin in aqueous solutions.

    Science.gov (United States)

    Nita, L E; Chiriac, A P; Bercea, M; Asandulesa, M; Wolf, Bernhard A

    2017-02-01

    Macromolecular co-assemblies built up in aqueous solutions, by using a linear polypeptide, poly(aspartic acid) (PAS), and a globular protein, bovine serum albumin (BSA), have been studied. The main interest was to identify the optimum conditions for an interpenetrated complex formation in order to design materials suitable for biomedical applications, such as drug delivery systems. BSA surface possesses several amino- and carboxylic groups available for covalent modification, and/or bioactive substances attachment. In the present study, mixtures between PAS and BSA were investigated at 37°C in dilute aqueous solution by viscometry, dynamic light scattering and zeta potential determination, as well as in solid state by AFM microscopy and dielectric spectroscopy. The experimental data have shown that the interpolymer complex formation occurs for a PAS/BSA molar ratio around 0.541.

  17. Interaction of cyclodextrins with human and bovine serum albumins: A combined spectroscopic and computational investigation

    Indian Academy of Sciences (India)

    Saptarshi Ghosh; Bijan Kumar Paul; Nitin Chattopadhyay

    2014-07-01

    Interaction of cyclodextrins (CDs) with the two most abundant proteins, namely human serum albumin (HSA) and bovine serum albumin (BSA), has been investigated using steady-state and time-resolved fluorometric techniques, circular dichroism measurements and molecular docking simulation. The study reveals that the three CDs interact differently on the fluorescence and fluorescence lifetimes of the serum albumins. However, fluorescence anisotropy and circular dichroism are not affected. Depending on their size, different CDs bind to the serum albumins in different positions, resulting in changes in the spectral behaviour of the proteins. Docking study suggests the probable binding sites of the three CDs with the proteins. Combined experimental and computational studies imply that sufficiently high concentration of CDs causes loosening of the rigid structures of these transport proteins, although their secondary structures remain intact. Thus, CDs are found to be safe for the serum proteins from the structural point of view.

  18. Human albumin use at hospitals in the Metropolitan Region of Rio de Janeiro, Brazil.

    Science.gov (United States)

    Matos, Guacira Corrêa de; Rozenfeld, Suely; Martins, Monica

    2010-05-01

    The study analyzes the use of human albumin in hospitals in Rio de Janeiro, Brazil, using inpatient data from the information system of Brazil's health system between 1999 and 2001. Death was the main outcome as patients died in 32% of admissions in which human albumin was used as compared with 4% of all admissions in the same period and region. The Charlson Comorbidity Index was included for risk adjustment. Human albumin was used in 10,111 in-patients more than 1 year old. 87,774 50-ml bottles of 20% human albumin were consumed at a cost of US$ 1,755. The main diagnoses were neoplasms (29.1%), diseases of the digestive system (17.5%) and circulatory system (16%). Death rate increased with age, public ownership of the hospital, clinical services (as opposed to surgical services), length of stay and use of intensive care. Death was associated with use of more than four bottles of human albumin (PR: 1.30; 99%CI: 1.23-1.37), adjusted for severity and speciality. The results are cause for concern as they may be related to poor compliance with guidelines, excess of risk to patients and unnecessary expenses for the public health system.

  19. Experimental and theoretical investigation on the interaction between cyclovirobuxine D and human serum albumin

    Science.gov (United States)

    Yue, Yuanyuan; Liu, Ren; Liu, Jianming; Dong, Qiao; Fan, Jing

    2014-07-01

    Cyclovirobuxine D is an active compound extracted from the plant Buxux microphylla, and widely available as medications; however, its abuse may casts potential detrimental effects on human health. By using multispectroscopic techniques and molecular modeling, the interaction of cyclovirobuxine D with human serum albumin was investigated. The fluorescence results manifested that static type was the operative mechanism for the interaction with human serum albumin. The structural investigation of the complexed HSA through CD, three-dimensional, FT-IR and synchronous fluorescence shown the polypeptide chain of HSA partially destabilizing. Docking studies revealed the molecule to be bound in the subdomain IIA. Finally, we investigated the distance between the bound ligand and Trp-214 of human serum albumin.

  20. Octanoate in Human Albumin Preparations Is Detrimental to Mesenchymal Stromal Cell Culture

    Directory of Open Access Journals (Sweden)

    Way-Wua Wong

    2015-01-01

    Full Text Available Cell therapies hold great promise as the next major advance in medical treatment. To enable safe, effective ex vivo culture whilst maintaining cell phenotype, growth media constituents must be carefully controlled. We have used a chemically defined mesenchymal stromal cell culture medium to investigate the influence of different preparations of human serum albumin. We examined two aspects of cell culture, growth rate as measured by population doubling time and colony forming ability which is a representative measure of the stemness of the cell population. Albumin preparations showed comparative differences in both of these criteria. Analysis of the albumin bound fatty acids also showed differences depending on the manufacturing procedure used. We demonstrated that octanoate, an additive used to stabilize albumin during pasteurization, slows growth and lowers colony forming ability during ex vivo culture. Further to this we also found the level of Na+/K+ ATPase, a membrane bound cation pump inhibited by octanoate, is increased in cells exposed to this compound. We conclude that the inclusion of human serum albumin in ex vivo growth media requires careful consideration of not only the source of albumin, but also the associated molecular cargo, for optimal cell growth and behavior.

  1. Human albumin prevents 6-hydroxydopamine-induced loss of tyrosine hydroxylase in in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Li-Juan Zhang

    Full Text Available Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH expression of dopaminergic (DA neurons induced by 6-hydroxydopamine (6-OHDA toxicity that is most commonly used to create a rat model of Parkinson's disease (PD. In the present study, two microliters of 1.25% human albumin were stereotaxically injected into the right striatum of rats one day before or 7 days after the 6-OHDA lesion in the same side. D-Amphetamine-induced rotational asymmetry was measured 7 days, 3 and 10 weeks after 6-OHDA lesion. We observed that intrastriatal administration of human albumin significantly reduced the degree of rotational asymmetry. The number of TH-immunoreactive neurons present in the substantia nigra was greater in 6-OHDA lesioned rats following human albumin-treatment than non-human albumin treatment. TH-immunoreactivity in the 6-OHDA-lesioned striatum was also significantly increased in the human albumin-treated rats. To examine the mechanisms underlying the effects of human albumin, we challenged PC12 cells with 6-OHDA as an in vitro model of PD. Incubation with human albumin prevented 6-OHDA-induced reduction of cell viability in PC12 cell cultures, as measured by MTT assay. Furthermore, human albumin reduced 6-OHDA-induced formation of reactive oxygen species (ROS and apoptosis in cultured PC12 cells, as assessed by flow cytometry. Western blot analysis showed that human albumin inhibited 6-OHDA-induced activation of JNK, c-Jun, ERK, and p38 mitogen-activated protein kinases (MAPK signaling in PC12 cultures challenged with 6-OHDA. Human albumin may protect against 6-OHDA toxicity by influencing MAPK pathway followed by anti-ROS formation and anti-apoptosis.

  2. A Highly Selective Colorimetric Sensor for Cysteine in Water Solution and Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Xuefang Shang

    2016-01-01

    Full Text Available A simple colorimetric sensor, 2-bromonaphthalene-1,4-dione, has been developed for the Cysteine detection. The sensor showed its best performance in a mixture of ethanol and HEPES (5 : 5, v/v solution at pH of 7.0. The results of UV-vis and fluorescence indicated that 2-bromonaphthalene-1,4-dione was selective and sensitive for Cysteine detection without the interference of other amino acids (Cysteine, Alanine, Arginine, Aspartinie, Glutamine, Glycine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Proline, Serine, Threonine, Phenylalanine, Valine, Tryptophan, and Hydroxyproline. 2-Bromonaphthalene-1,4-dione also showed binding ability for Cysteine in bovine serum albumin and could be used as a potential colorimetric sensor among eighteen kinds of natural amino acids. Importantly, the recognition of CySH could be observed by naked eye.

  3. Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand - receptor binding characterization.

    Directory of Open Access Journals (Sweden)

    Irina M Kuznetsova

    Full Text Available In this work we return to the problem of the determination of ligand-receptor binding stoichiometry and binding constants. In many cases the ligand is a fluorescent dye which has low fluorescence quantum yield in free state but forms highly fluorescent complex with target receptor. That is why many researchers use dye fluorescence for determination of its binding parameters with receptor, but they leave out of account that fluorescence intensity is proportional to the part of the light absorbed by the solution rather than to the concentration of bound dye. We showed how ligand-receptor binding parameters can be determined by spectrophotometry of the solutions prepared by equilibrium microdialysis. We determined the binding parameters of ANS - human serum albumin (HSA and ANS - bovine serum albumin (BSA interaction, absorption spectra, concentration and molar extinction coefficient, as well as fluorescence quantum yield of the bound dye. It was found that HSA and BSA have two binding modes with significantly different affinity to ANS. Correct determination of the binding parameters of ligand-receptor interaction is important for fundamental investigations and practical aspects of molecule medicine and pharmaceutics. The data obtained for albumins are important in connection with their role as drugs transporters.

  4. The in vitro anti-HIV efficacy of negatively charged human serum albumin is antagonized by heparin

    NARCIS (Netherlands)

    Swart, P J; Sun, C S; Kuipers, M E; Asuncion, C; Josephs, S; Smit, C; Meijer, D K

    1997-01-01

    Succinylated human serum albumin (Suc-HSA) was synthesized by treating human serum albumin with succinic anhydride, Among similar proteins and neo(glyco)proteins tested, Suc-HSA exhibits a pronounced net negative charge, a feature that largely contributes to its efficacy against replication of human

  5. (99m) Tc-labelled human serum albumin cannot replace (125) I-labelled human serum albumin to determine plasma volume in patients with liver disease

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Lütken; Henriksen, Jens H; Bendtsen, Flemming

    2013-01-01

    -labelled human serum albumin (99mTc-HSA) and iodine-labelled human serum albumin (125I-HSA), as the former may have advantages at repeated measurements and the latter is the classical gold standard. Study population and methods In 88 patients, (64 with liver disease, mainly cirrhosis, and 24 patients without......Summary Background and aims Determination of plasma volume (PV) is important in several clinical situations. Thus, patients with liver disease often have augmented PV as part of their sodium–water retention. This study was undertaken to compare PV determination by two indicators: technetium...... liver disease), simultaneous measurements of PV were taken with 99mTc-HSA and 125I-HSA after 1 h in the supine position. Blood samples were obtained before and 10 min after quantitative injection of the two indicators. In a subset of patients (n = 32), the measurements were repeated within 1 h. Results...

  6. Chemical-defined and albumin-free generation of human atrial and ventricular myocytes from human pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Fei Pei

    2017-03-01

    Full Text Available Most existing culture media for cardiac differentiation of human pluripotent stem cells (hPSCs contain significant amounts of albumin. For clinical transplantation applications of hPSC-derived cardiomyocytes (hPSC-CMs, culturing cells in an albumin containing environment raises the concern of pathogen contamination and immunogenicity to the recipient patients. In addition, batch-to-batch variation of albumin may cause the inconsistent of hPSC cardiac differentiation. Here, we demonstrated that antioxidants l-ascorbic acid, trolox, N-acetyl-l-cysteine (NAC and sodium pyruvate could functionally substitute albumin in the culture medium, and formulated an albumin-free, chemical-defined medium (S12 medium. We showed that S12 medium could support efficient hPSC cardiac differentiation with significantly improved reproducibility, and maintained long-term culture of hPSC-CMs. Furthermore, under chemical-defined and albumin-free conditions, human-induced pluripotent stem cells (hiPSCs were established, and differentiated into highly homogenous atrial and ventricular myocytes in a scalable fashion with normal electrophysiological properties. Finally, we characterized the activity of three typical cardiac ion channels of those cells, and demonstrated that hPSC-derived ventricular cardiomyocytes (hPSC-vCMs were suitable for drug cardiac safety evaluation. In summary, this simplified, chemical-defined and albumin-free culture medium supports efficient generation and maintaining of hPSC-CMs and facilitates both research and clinical applications of these cells.

  7. Interactions Between Sirolimus and Anti-Inflammatory Drugs: Competitive Binding for Human Serum Albumin

    Science.gov (United States)

    Khodaei, Arash; Bolandnazar, Soheila; Valizadeh, Hadi; Hasani, Leila; Zakeri-Milani, Parvin

    2016-01-01

    Purpose: The aim of the present study was investigating the effects of three anti-inflammatory drugs, on Sirolimus protein biding. The binding site of Sirolimus on human serum albumin (HSA) was also determined. Methods: Six different concentrations of Sirolimus were separately exposed to HSA at pH 7.4 and 37°C. Ultrafiltration method was used for separating free drug; then free drug concentrations were measured by HPLC. Finally, Sirolimus protein binding parameters was calculated using Scatchard plots. The same processes were conducted in the presence of NSAIDs at lower concentration of albumin and different pH conditions. To characterize the binding site of Sirolimus on albumin, the free concentration of warfarin sodium and Diazepam, site I and II specific probes, bound to albumin were measured upon the addition of increasing Sirolimus concentrations. Results: Based on the obtained results presence of Diclofenac, Piroxicam and Naproxen, could significantly decrease the percentage of Sirolimus protein binding. The Binding reduction was the most in the presence of Piroxicam. Sirolimus-NSAIDs interactions were increased in higher pH values and also in lower albumin concentrations. Probe displacement study showed that Sirolimus may mainly bind to site I on albumin molecule. Conclusion: More considerations in co-administration of NSAIDs and Sirolimus is recommended. PMID:27478785

  8. Albumin infusion in humans does not model exercise induced hypervolaemia after 24 hours

    Science.gov (United States)

    Haskell, A.; Gillen, C. M.; Mack, G. W.; Nadel, E. R.

    1998-01-01

    We rapidly infused 234 +/- 3 mL of 5% human serum albumin in eight men while measuring haematocrit, haemoglobin concentration, plasma volume (PV), albumin concentration, total protein concentration, osmolality, sodium concentration, renin activity, aldosterone concentration, and atrial natriuretic peptide concentration to test the hypotheses that plasma volume expansion and plasma albumin content expansion will not persist for 24 h. Plasma volume and albumin content were expanded for the first 6 h after infusion (44.3 +/- 1.9-47.2 +/- 2.0 mL kg-1 and 1.9 +/- 0.1-2.1 +/- 0.1 g kg-1 at pre-infusion and 1 h, respectively, P plasma volume and albumin content decreased significantly from 1 h post-infusion and were not different from pre-infusion (44.8 +/- 1.9 mL kg-1 and 1.9 +/- 0.1 g kg-1, respectively). Plasma aldosterone concentration showed a significant effect of time over the 24 h after infusion (P plasma volume and 10.5% expansion of plasma albumin content by infusion does not remain in the vascular space for 24 h and suggest a redistribution occurs between the intravascular space and interstitial fluid space.

  9. Comparison of Posttranslational Modification and the Functional Impairment of Human Serum Albumin in Commercial Preparations.

    Science.gov (United States)

    Miyamura, Shigeyuki; Imafuku, Tadashi; Anraku, Makoto; Taguchi, Kazuaki; Yamasaki, Keishi; Tominaga, Yuna; Maeda, Hitoshi; Ishima, Yu; Watanabe, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2016-03-01

    On account of its long circulating half-life, human serum albumin (HSA) is susceptible to posttranslational modifications that can alter its functions. Here, we comprehensively compared the degree of posttranslational modifications with the functional impairment of HSA derived from 5 different commercially available albumin preparations and clarified their relationships. We used electrospray ionization-time of flight mass spectrometry to evaluate the degree of posttranslational modification of the entire HSA molecule that was associated with disease development and found that the fraction of Cys34-cysteinylated HSA (Cys-Cys34-HSA), a major form of oxidative modification, varied substantially among the albumin preparations. Meanwhile, no remarkable difference was found in the degree of glycated or N-terminal truncated HSA among the preparations tested. The nonosmotic pressure maintenance functions of HSA, such as its antioxidative and ligand-binding activities significantly differed among the preparations. Interestingly, the alternations of these functions showed a significantly negative correlation only with the Cys-Cys34-HSA fraction. These findings suggest that the Cys-Cys34-HSA fraction, as estimated by electrospray ionization-time of flight mass spectrometry can be used as a predictive marker for the functional impairment of albumin preparations and that it would be preferable to use albumin preparations with higher contents of functionally effective albumin that correspond to a lower degree of cysteinylation of Cys34 in clinical practice.

  10. Fluorescence and Docking Studies of the Interaction between Human Serum Albumin and Pheophytin

    Directory of Open Access Journals (Sweden)

    Otávio Augusto Chaves

    2015-10-01

    Full Text Available In the North of Brazil (Pará and Amazonas states the leaves of the plant Talinum triangulare (popular: cariru replace spinach as food. From a phytochemical point of view, they are rich in compounds of the group of pheophytins. These substances, related to chlorophyll, have photophysical properties that give them potential application in photodynamic therapy. Human serum albumin (HSA is one of the main endogenous vehicles for biodistribution of molecules by blood plasma. Association constants and thermodynamic parameters for the interaction of HSA with pheophytin from Talinum triangulare were studied by UV-Vis absorption, fluorescence techniques, and molecular modeling (docking. Fluorescence quenching of the HSA’s internal fluorophore (tryptophan at temperatures 296 K, 303 K, and 310 K, resulted in values for the association constants of the order of 104 L∙mol−1, indicating a moderate interaction between the compound and the albumin. The negative values of ΔG° indicate a spontaneous process; ΔH° = 15.5 kJ∙mol−1 indicates an endothermic process of association and ΔS° = 0.145 kJ∙mol−1∙K−1 shows that the interaction between HSA and pheophytin occurs mainly by hydrophobic factors. The observed Trp fluorescence quenching is static: there is initial non-fluorescent association, in the ground state, HSA:Pheophytin. Possible solution obtained by a molecular docking study suggests that pheophytin is able to interact with HSA by means of hydrogen bonds with three lysine and one arginine residues, whereas the phytyl group is inserted in a hydrophobic pocket, close to Trp-214.

  11. Interaction mode and nanoparticle formation of bovine serum albumin and anthocyanin in three buffer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rui; Dong, Xueyan; Song, Lanlan; Jing, Hao, E-mail: hao.haojing@gmail.com

    2014-11-15

    Investigation of interaction mode of bovine serum albumin (BSA) and anthocyanin (ACN) in different solutions will help us understand the interaction mechanism and functional change of bioactive small molecule and biomacromolecule. This study investigated the binding mode, including binding constant, number of binding sites, binding force of BSA and ACN interaction in three buffer solutions of phosphate (PBS), sodium chloride (NaCl), and PBS-NaCl, using fluorescence spectroscopy and synchronous fluorescence spectroscopy. Formation and characteristics of BSA–ACN complex were also investigated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that ACN could interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues through both hydrogen bonds and van der Waals force, and the same binding mode was seen in dH{sub 2}O and three buffer solutions. The value of binding constant K was decreased as the temperature increased from 298 K to 308 K, and the decreasing degree was in the order of dH{sub 2}O (9.0×10{sup 4})>NaCl (2.64×10{sup 4})/PBS (2.37×10{sup 4})>PBS-NaCl (0.88×10{sup 4}), which was inversely correlated with the ionic strength of the buffer solutions of PBS-NaCl>NaCl>PBS. It indicated that stability of BSA–ACN complex was affected most in dH{sub 2}O than in three buffer solutions. The BSA and ACN interaction led to formation of BSA–ACN nanoparticles. The sizes of BSA–ACN nanoparticles in dH{sub 2}O were smaller than that in three buffer solutions, which correlated with stronger binding force between BSA and ACN in dH{sub 2}O than in three buffer solutions at room temperature (25 °C, 298 K). - Highlights: • We report the influences of four solutions on the BSA–ACN interaction. • We report the relationship between BSA–ACN interaction and particle size of complex. • The stability of BSA–ACN complex was affected most in dH{sub 2}O than in buffer solutions.

  12. Adsorption of an amphiphilic penicillin onto human serum albumin: characterisation of the complex.

    Science.gov (United States)

    Ruso, J M; Taboada, P; Varela, L M; Attwood, D; Mosquera, V

    2001-08-30

    The complex formed by the interaction of the amphiphilic penicillin drug nafcillin and human serum albumin (HSA) in water at 25 degrees C has been characterised using a range of physicochemical techniques. Measurements of the solution conductivity and the electrophoretic mobility of the complexes have shown an ionic adsorption of the drug on the protein surface leading to a surface saturation at a nafcillin concentration of 0.012 mmol kg(-1) and subsequent formation of drug micelles in solutions of higher nafcillin concentration. Measurements of the size of the complex and the thickness of the adsorbed layer by static and dynamic light scattering have shown a gradual change in hydrodynamic radius of the complex with increasing drug concentration typical of a saturation rather than a denaturation process, the magnitude of the change being insufficient to account for any appreciable extension or unfolding of the HSA molecule. The interaction potential between the HSA/nafcillin complexes, and the stability of the complexes were determined from the dependence of diffusion coefficients on protein concentration by application of the DLVO colloidal stability theory. The results indicate decreasing stability of the colloidal dispersion of the drug/protein complexes with an increase in the concentration of added drug.

  13. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhao, Junjie; Qian, Yu; Zhang, Xiali; Zhou, Feifei; Zhang, Hong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Yu, Wencong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China)

    2015-05-01

    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers.

  14. Molecular displacement of warfarin from human serum albumin by flavonoid aglycones

    Energy Technology Data Exchange (ETDEWEB)

    Poór, Miklós [Institute of Laboratory Medicine, University of Pécs, Pécs H-7624 (Hungary); Li, Yin; Kunsági-Máté, Sándor [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, H-7624 Pécs (Hungary); Petrik, József [Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb (Croatia); Vladimir-Knežević, Sanda [Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb (Croatia); Kőszegi, Tamás, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pécs, Pécs H-7624 (Hungary)

    2013-10-15

    The well-known 4-hydroxycoumarin derivative warfarin is a widespread anticoagulant drug. Besides its strong albumin binding property warfarin has a narrow therapeutic window. Therefore, a few percent of displacement from albumin can result in serious biological consequences. The flavonoid molecular group also shows very strong plasma albumin binding characteristics occupying the same binding site. It is plausible to hypothesize that flavonoid aglycones may be able to displace warfarin from human serum albumin (HSA). In our study the competing activities of different flavone (acacetin, apigenin, chrysin, luteolin), flavonol (galangin, quercetin) and flavanone (hesperetin, naringenin) aglycones were investigated using fluorescence spectroscopy. Our results represent that flavonoids are able to displace warfarin from the surface of HSA. On the other hand, when comparing flavone or flavonol groups to flavanones the latter group seems to be much weaker competitor. These observations were also supported by calculation of stability constants. Our investigations strongly suggest that we should reckon with the described molecular displacement. However, further in vivo studies are needed to support the findings of our model system. -- Highlights: • Various flavonoids are able to displace warfarin from human serum albumin. • Flavones and flavonols are much more effective competitors than flavanones. • Even 300 nM aglycone concentrations show the interaction with 3 μM warfarin. • Flavonoid pairs show quasi-additive desorbing property. • Flavones and flavonols are much stronger competitors than the examined drugs.

  15. Human Serum Albumin Conjugates of 7-Ethyl-10-hydroxycamptothecin (SN38) for Cancer Treatment

    Science.gov (United States)

    Sepehri, Nima; Rouhani, Hasti; Gharghabi, Mehdi; Tavassolian, Faranak; Amini, Mohsen; Ostad, Seyed Nasser

    2014-01-01

    SN38 (7-ethyl-10-hydroxy-comptothecin) is a potent metabolite of irinotecan, which has been approved for treatment of metastatic colorectal cancer. Considering the notable potency of SN38, it has been introduced as an anticancer candidate. In this study, human serum albumin (HSA) conjugates of SN38 were formulated to overcome the solubility problem beside improving the active form stability and tumor tissue targeting. In this target, two different molar ratios of conjugates (SN38 : HSA 15 : 1 and 60 : 1) were prepared by derivatization of 20-hydroxyl group of SN38 with glycine, followed by addition of succinyl group to glycine through which HSA was covalently attached. The conjugates with particle size of about 100 nm revealed enhanced water solubility and were relatively stable in neutral and acidic solutions. For SN38-HSA-15 and SN38-HSA-60 IC50 values were compared with irinotecan in HT-29 human colon cancer cells. Furthermore, biodistribution studies of SN38-HSA conjugate resulted in proper blood concentration level within 4 h. Moreover, blood cytotoxicity assay revealed no toxicity effect on liver and spleen. Collectively, our present investigation offers a water-soluble form of SN38 attached to HSA and suggests using favorable properties as a promising anticancer agent for further preclinical and clinical investigations. PMID:24895635

  16. Human Serum Albumin Conjugates of 7-Ethyl-10-hydroxycamptothecin (SN38 for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Nima Sepehri

    2014-01-01

    Full Text Available SN38 (7-ethyl-10-hydroxy-comptothecin is a potent metabolite of irinotecan, which has been approved for treatment of metastatic colorectal cancer. Considering the notable potency of SN38, it has been introduced as an anticancer candidate. In this study, human serum albumin (HSA conjugates of SN38 were formulated to overcome the solubility problem beside improving the active form stability and tumor tissue targeting. In this target, two different molar ratios of conjugates (SN38 : HSA 15 : 1 and 60 : 1 were prepared by derivatization of 20-hydroxyl group of SN38 with glycine, followed by addition of succinyl group to glycine through which HSA was covalently attached. The conjugates with particle size of about 100 nm revealed enhanced water solubility and were relatively stable in neutral and acidic solutions. For SN38-HSA-15 and SN38-HSA-60 IC50 values were compared with irinotecan in HT-29 human colon cancer cells. Furthermore, biodistribution studies of SN38-HSA conjugate resulted in proper blood concentration level within 4 h. Moreover, blood cytotoxicity assay revealed no toxicity effect on liver and spleen. Collectively, our present investigation offers a water-soluble form of SN38 attached to HSA and suggests using favorable properties as a promising anticancer agent for further preclinical and clinical investigations.

  17. A spectroscopic and molecular docking approach on the binding of tinzaparin sodium with human serum albumin

    Science.gov (United States)

    Abdullah, Saleh M. S.; Fatma, Sana; Rabbani, Gulam; Ashraf, Jalaluddin M.

    2017-01-01

    Protein bound toxins are poorly removed by conventional extracorporeal therapies. Venous thromboembolism (VTE) is a major cause of morbidity and mortality in patients with cancer. The interaction between tinzaparin, an inhibitor of angiotensin converting enzyme and human serum albumin, a principal plasma protein in the liver has been investigated in vitro under a simulated physiological condition by UV-vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence intensity of human serum albumin was strongly quenched by tinzaparin (TP). The binding constants and binding stoichiometry can be calculated from the data obtained from fluorescence quenching experiments. The negative value of ΔG° reveals that the binding process is a spontaneous process. Thermodynamic analysis shows that the HSA-TP complex formation occurs via hydrogen bonds, hydrophobic interactions and undergoes slight structural changes as evident by far-UV CD. It indicated that the hydrophobic interactions play a main role in the binding of TP to human serum albumin. In addition, the distance between TP (acceptor) and tryptophan residues of human serum albumin (donor) was estimated to be 2.21 nm according to the Förster's resonance energy transfer theory. For the deeper understanding of the interaction, thermodynamic, and molecular docking studies were performed as well. Our docking results suggest that TP forms stable complex with HSA (Kb ∼ 104) and its primary binding site is located in subdomain IIA (Sudlow Site I). The results obtained herein will be of biological significance in pharmacology and clinical medicine.

  18. Covalent binding of nitrogen mustards to the cysteine-34 residue in human serum albumin

    NARCIS (Netherlands)

    Noort, D.; Hulst, A.G.; Jansen, R.

    2002-01-01

    Covalent binding of various clinically important nitrogen mustards to the cysteine-34 residue of human serum albumin, in vitro and in vivo, is demonstrated. A rapid method for detection of these adducts is presented, based on liquid chromatography-tandem mass spectrometry analysis of the adducted

  19. Strategy to tether organometallic ruthenium-arene anticancer compounds to recombinant human serum albumin.

    Science.gov (United States)

    Ang, Wee Han; Daldini, Elisa; Juillerat-Jeanneret, Lucienne; Dyson, Paul J

    2007-10-29

    In order to utilize macromolecules for drug targeting and delivery, a strategy to tether organometallic ruthenium-arene drugs to carrier protein molecules was developed. The approach involves the design of a drug fragment capable of conjugating to linker molecules on a modified carrier protein via hydrazone bond formation. The proof-of-concept using recombinant human serum albumin is described.

  20. Targeted non-covalent self-assembled nanoparticles based on human serum albumin

    NARCIS (Netherlands)

    Bunschoten, Anton; Buckle, Tessa; Kuil, Joeri; Luker, Gary D.; Luker, Kathryn E.; Nieweg, Omgo; van Leeuwen, Fijs W. B.

    2012-01-01

    Human serum albumin (HSA) is a biological nanocarrier that forms non-covalent complexes with a number of synthetic and biomolecules. Previously we demonstrated radiolabeled HSA-based nanoparticles can form non-covalent complexes with fluorescent cyanine dyes yielding imaging agents for surgical guid

  1. Nanoparticles of Conjugated Methotrexate-Human Serum Albumin: Preparation and Cytotoxicity Evaluations

    Directory of Open Access Journals (Sweden)

    Azade Taheri

    2011-01-01

    Full Text Available Methotrexate-human serum albumin conjugates were developed by a simple carbodiimide reaction. Methotrexate-human serum albumin conjugates were then crosslinked with 1-ethyl-3-(3-dimethylaminopropyl carbodiimide HCl (EDC to form nanoparticles. The size of nanoparticles determined by laser light scattering and TEM was between 90–150 nm. Nanoparticles were very stable at physiologic conditions (PBS pH 7.4, 37∘C and after incubation with serum. The effect of amount of EDC used for crosslinking on the particle size and free amino groups of nanoparticles was examined. The amount of crosslinker showed no significant effect on the size of nanoparticles but free amino groups of nanoparticles were decreased by increasing the crosslinker. The physicochemical interactions between methotrexate and human serum albumin were investigated by differential scanning calorimetry (DSC. Nanoparticles were more cytotoxic on T47D cells compared to free methotrexate. Moreover, methotrexate-human serum albumin nanoparticles decreased the IC50 value of methotrexate on T47D cells in comparison with free methotrexate.

  2. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania

    2016-11-10

    Human serum albumin possesses multiple binding sites and transports a wide range of ligands that include the anti-inflammatory drug ibuprofen. A complete map of the binding sites of ibuprofen in albumin is difficult to obtain in traditional experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S-isomer) of ibuprofen to albumin, by using absolute binding free energy calculations in combination with classical molecular dynamics (MD) simulations and molecular docking. The most favorable binding modes correctly reproduce several experimentally identified binding locations, which include the two Sudlow\\'s drug sites (DS2 and DS1) and the fatty acid binding sites 6 and 2 (FA6 and FA2). Previously unknown details of the binding conformations were revealed for some of them, and formerly undetected binding modes were found in other protein sites. The calculated binding affinities exhibit trends which seem to agree with the available experimental data, and drastically degrade when the ligand is modeled in a protonated (neutral) state, indicating that ibuprofen associates with albumin preferentially in its charged form. These findings provide a detailed description of the binding of ibuprofen, help to explain a wide range of results reported in the literature in the last decades, and demonstrate the possibility of using simulation methods to predict ligand binding to albumin.

  3. Thermodynamic parameters for binding of fatty acids to human serum albumin

    DEFF Research Database (Denmark)

    Pedersen, A O; Honoré, B; Brodersen, R

    1990-01-01

    Binding of laurate and myristate anions to human serum albumin has been studied over a range of temperatures, 5-37 degrees C, at pH 7.4. The binding curves indicate that the strength of binding of the first few molecules of fatty acid to albumin (r less than 5) decreases with increasing temperature...... constant, it was possible to calculate values for the changes in enthalpy and entropy during the initial binding step. For the medium-chain fatty acids, laurate and myristate, binding of the first molecule to albumin appeared to be enthalpic, with a tendency to an increasing contribution of entropy...... to binding energy with increasing chain length of the fatty acid. Udgivelsesdato: 1990-Jul-5...

  4. Multiple binding of bilirubin to human serum albumin and cobinding with laurate

    DEFF Research Database (Denmark)

    Sato, H; Honoré, B; Brodersen, R

    1988-01-01

    method, based upon a difference of light absorption spectrum for free and bound bilirubin. The observations were supplemented with previous data from an independent technique, measurement of oxidation rates of free bilirubin with hydrogen peroxide and peroxidase. A continuous isotherm was obtained......Numerical analysis of multiple binding of two ligands to one carrier has been accomplished, using the principle of several sets of acceptable binding constants, with bilirubin-laurate-albumin as an example. Binding of bilirubin to defatted human serum albumin was investigated by a spectroscopic....... Cobinding of bilirubin and laurate was studied, with up to 2 mol of each ligand per mole albumin, using the peroxidase method for determination of free equilibrium concentrations of bilirubin, and a dialysis rate technique for free laurate. The findings could be described in terms of a stoichiometric model...

  5. The effect of Berberine on the secondary structure of human serum albumin

    Science.gov (United States)

    Li, Ying; He, WenYing; Tian, Jianniao; Tang, Jianghong; Hu, Zhide; Chen, Xingguo

    2005-05-01

    The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many drugs. This study is designed to examine the effect of Berberine (an ancient Chinese drug used for antimicrobial, antiplasmodial, antidiarrheal and cardiovascular) on the solution structure of HSA using fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopic methods. The fluorescence spectroscopic results show that the fluorescence intensity of HSA was significantly decreased in the presence of Berberine. The Scatchard's plots indicated that the binding of Berberine to HSA at 296, 303, 318 K is characterized by one binding site with the binding constant is 4.071(±0.128)×10 4, 3.741(±0.089)×10 4, 3.454(±0.110)×10 4 M -1, respectively. The protein conformation is altered (FT-IR and CD data) with reductions of α-helices from 54 to 47% for free HSA to 45-32% and with increases of turn structure5% for free HSA to 18% in the presence of Berberine. The binding process was exothermic, enthalpy driven and spontaneous, as indicated by the thermodynamic analyses, Berberine bound to HSA was mainly based on hydrophobic interaction and electrostatic interaction cannot be excluded from the binding. Furthermore, the displace experiments indicate that Berberine can bind to the subdomain IIA, that is, high affinity site (site II).

  6. Comparative Interactions of Dihydroquinazolin Derivatives with Human Serum Albumin Observed via Multiple Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-02-01

    Full Text Available The interactions of dihydroquinazolines with human serum albumin (HSA were studied in pH 7.4 aqueous solution via fluorescence, circular dichroism (CD and Fourier transform infrared (FTIR spectroscopic techniques. In this work, 6-chloro-1-(3,3-dimethyl-butanoyl-2(unsubstitutedphenyl-2,3-dihydroquinazolin-4(1H-one (PDQL derivatives were designed and synthesized to study the impact of five similar substituents (methyl, methoxy, cyano, trifluoromethyl and isopropyl on the interactions between PDQL and HSA using a comparative methodology. The results revealed that PDQL quenched the intrinsic fluorescence of HSA through a static quenching process. Displacement experiments with site-specific markers revealed that PDQL binds to HSA at site II (subdomain IIIA and that there may be only one binding site for PDQL on HSA. The thermodynamic parameters indicated that hydrophobic interactions mainly drove the interactions between PDQL and HSA. The substitution using five similar groups in the benzene ring could increase the interactions between PDQL and HSA to some extent through the van der Waals force or hydrogen bond effects in the proper temperature range. Isopropyl substitution could particularly enhance the binding affinity, as observed via comparative studies

  7. [Regularities of formation of chlorophyll-human serum albumin functionally active complexes in the aqueous medium].

    Science.gov (United States)

    Semichaevskiĭ, V D

    1975-01-01

    In the system with constant content of the chlorophyll a and increasing amounts of human serum albumin, dependence of pigment incorporation into the complex upon interaction of its aqueous associates with protein solutions was studied by applying the gel filtration on Sephadex G-75 and by measuring light scattering and rate of sensitized photoreduction of the methyl red by ascorbic-acid. The curves were obtained after extraction of the chlorophyll by acetone from dry pigment-protein films formed after desiccation of the aqueous systems. Sigmoid character of the above dependences, their linearization in Hill's coordinates and the value of cooperativity coefficient close to 2 testifies in favour of the cooperative character of the complex formation, two pigment molecules reacting with a single protein molecule. Measurement of adsorption isotherms and their treatment with use of the Brunauer-Emmett-Teller theory of polymolecular adsorption make it possible to evaluate the maximum molar ratio of the pigment to the protein in the complex (close to 2). The pigment-pigment interaction suggests that the chlorophyll molecules adsorbed on the protein are in the state of loosely packed dimers. Deaggregation of aqueus pigment associates by the protein in the course of complex formation results in a considerable increase of the protosensitizing chlorophyll activity.

  8. Simple, fast preparation of gallium-68-labelled human serum albumin microspheres.

    Science.gov (United States)

    Yvert, J P; Mazière, B; Verhas, M; Comar, D

    1979-04-01

    Following a study of the main factors involved in the 68-Ga labelling of human serum albumin microspheres (H.S.A.M.), especially methods of production and preparation of active solution and conditions of radioelement fixation on the protein support, the practical details of a fast technique (60 min) based on the process described by Hnatowich are presented. This method gives high labelling yields (93 +/- 3%), and after washing of the microspheres leads to a radiopharmaceutical product almost without free 68Ga (less than 2%). The spheres ready for use carry a total radioactivity corresponding to about 35%, including decay, of the activity originally recovered in the generator eluate and to more than 98% of that, found in the final suspension. The labelled product is sterile, non-pyrogenic and non-toxic. When it is injected in animals by left ventrical catheterization the uptake rates in the heart, lungs, spleen, left kidney and right kidney are similar to those observed with reference 85Sr-labelled carbonized microspheres. This radiopharmaceutical, easy to prepare and having excellent biological and nuclear properties, seems ideally suited for the scanning of organs by position emission tomoscintigraphy.

  9. 急诊患者人血白蛋白的临床应用分析%Clinical analysis of human serum albumin in emergency patients

    Institute of Scientific and Technical Information of China (English)

    欧凤荣; 金海丽; 吴限

    2012-01-01

    Objective To understand the application situation and the regularity of human serum albumin in the emergency patients, evaluate the reasonableness of its use and provide a reference for the clinical use of drugs. Methods A retrospective survey of an emergency department was made in January 2010 to June 2010,to evaluate the use of human serum albumin with reference to the American University Hospital Association " human serum albumin, non-protein colloid and crystalloid solution guide" and Taiwan National Health Insurance Use of human albumin and related literature. Results There were a total of 430 emergency department patients using human serum albumin, involving 26 kinds of diseases,and most patients with hypoproteinemia. After treatment,serum albumin,total protein and hemoglobin of the patients were significantly higher( P 和台湾全民健康保险人血白蛋白使用规定及相关文献等进行分析.结果 共有430例急诊患者使用人血白蛋白,涉及26类疾病,其中大多数患者合并低蛋白血症.用药后白蛋白(Alb)与总蛋白(Tp)及血红蛋白(Hb)水平明显升高(P和台湾全民健康保险人血白蛋白使用规定比较,符合适应证的概率分别为40.5%、37%.结论 该院急诊科对人血白蛋白的应用仍然存在一些误区,应加强人血白蛋白各环节的监管,提高合理用药水平.

  10. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun Mei, E-mail: sunmei@ustc.edu.cn [Hefei National Laboratory for Physical Sciences on Microscale, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026 (China); Wu Qianghua [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL{sup -1}. The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  11. HPLC separation of human serum albumin isoforms based on their isoelectric points

    OpenAIRE

    Turell, Lucía; Botti, Horacio; Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A.; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael

    2013-01-01

    Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the differ...

  12. Covalent binding of the flavonoid quercetin to human serum albumin

    NARCIS (Netherlands)

    Kaldas, M.I.; Walle, U.K.; Woude, van der H.; McMillan, J.M.; Walle, T.

    2005-01-01

    Quercetin is an abundant flavonoid in the human diet with numerous biological activities, which may contribute to the prevention of human disease but also may be potentially harmful. Quercetin is oxidized in cells to products capable of covalently binding to cellular proteins, a process that may be

  13. Influence of fatty acids on the binding of warfarin and phenprocoumon to human serum albumin with relation to anticoagulant therapy

    DEFF Research Database (Denmark)

    Vorum, H; Honoré, B

    1996-01-01

    Warfarin and phenprocoumon binding to human serum albumin was studied by equilibrium dialysis. The first stoichiometric binding constant was 1.89 x 10(5) M-1 for warfarin and 2.40 x 10(5) M-1 for phenprocoumon. The affinity of warfarin was markedly increased on addition of up to 3 mol mol-1 albumin...

  14. (19)F NMR spectroscopic characterization of the interaction of niflumic acid with human serum albumin.

    Science.gov (United States)

    Kitamura, Keisuke; Omran, Ahmed A; Takegami, Shigehiko; Tanaka, Rumi; Kitade, Tatsuya

    2007-04-01

    The interaction of a non-steroidal anti-inflammatory drug, niflumic acid (NFA), with human serum albumin (HSA) has been investigated by (19)F nuclear magnetic resonance (NMR) spectroscopy. A (19)F NMR spectrum of NFA in a buffered (pH 7.4) solution of NaCl (0.1 mol L(-1)) contained a single sharp signal of its CF(3) group 14.33 ppm from the internal reference 2,2,2-trifluoroethanol. Addition of 0.6 mmol L(-1) HSA to the NFA buffer solution caused splitting of the CF(3) signal into two broadened signals, shifted to the lower fields of 14.56 and 15.06 ppm, with an approximate intensity ratio of 1:3. Denaturation of HSA by addition of 3.0 mol L(-1) guanidine hydrochloride (GU) restored a single sharp signal of CF(3) at 14.38 ppm, indicating complete liberation of NFA from HSA as a result of its denaturation. These results suggest that the binding is reversible and occurs in at least two HSA regions. Competitive (19)F NMR experiments using warfarin, dansyl-L: -asparagine, and benzocaine (site I ligands), and L: -tryptophan and ibuprofen (site II ligands) revealed that NFA binds to site I at two different regions, Ia and Ib, in the ratio 1:3. By use of (19)F NMR with NFA as an (19)F NMR probe the nonfluorinated site I-binding drugs sulfobromophthalein and iophenoxic acid were also found to bind sites Ia and Ib, respectively. These results illustrate the usefulness and convenience of (19)F NMR for investigation of the HSA binding of both fluorinated and nonfluorinated drugs.

  15. Photosensitizer-Conjugated Human Serum Albumin Nanoparticles for Effective Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Hayoung Jeong, MyungSook Huh, So Jin Lee, Heebeom Koo, Ick Chan Kwon, Seo Young Jeong, Kwangmeyung Kim

    2011-01-01

    Full Text Available Photodynamic therapy (PDT is an emerging theranostic modality for various cancers and diseases. The focus of this study was the development of tumor-targeting albumin nanoparticles containing photosensitizers for efficient PDT. To produce tumor-targeting albumin nanoparticles, the hydrophobic photosensitizer, chlorin e6 (Ce6, was chemically conjugated to human serum albumin (HSA. The conjugates formed self-assembled nanoparticle structures with an average diameter of 88 nm under aqueous conditions. As expected, the Ce6-conjugated HSA nanoparticles (Ce6-HSA-NPs were nontoxic in their native state, but upon illumination with the appropriate wavelength of light, they produced singlet oxygen and damaged target tumor cells in a cell culture system. Importantly, when the nanoparticles were injected through the tail vein into tumor-bearing HT-29 mice, Ce6-HSA-NPs compared with free Ce6 revealed enhanced tumor-specific biodistribution and successful therapeutic results following laser irradiation. These results suggest that highly tumor-specific albumin nanoparticles have the potential to serve not only as efficient therapeutic agents, but also as photodynamic imaging (PDI reagents in cancer treatment.

  16. 人血白蛋白中氨浓度的测定%Determination of Ammonia Concentration in Human Albumin

    Institute of Scientific and Technical Information of China (English)

    张磊; 粟珊; 张茂

    2016-01-01

    目的:测定不同存放时间的人血白蛋白中的氨浓度,为患者提供安全保障,协助药剂科对人血白蛋白的管理。方法将人血白蛋白注射液按照存放时间分为30d、60d、90d、180d、360d共5组。应用紫外分光光度法,向人血白蛋白中加入过量定量的钨酸钠溶液、硫酸溶液,使蛋白沉淀的同时,氨与硫酸形成硫酸铵留在滤液中,再加入酚显色剂、碱性次氯酸钠溶液显色后于波长630nm处测定吸光度,再根据标准曲线转化为浓度。结果人血白蛋白内含有微量的氨,氨的浓度在4℃条件下不会随着保存时间的延长而显著增多,直至保存到360d时,氨浓度仍没有显著升高,维持在(31.42±2.37)μmol/L。结论目前人血白蛋白注射液的制备工艺不会产生高浓度的氨,安全性极高,且在药剂科4℃条件下能够安全保存至360d。%Objective To determine the different storage time of human Albumin in the ammonia concentration,to provide patients with safety and security,and to assist the pharmacy department of Human Albumin’s management. Methods Human Albu-min Injection was divided into 30 d,60 d,90 d,180 d,360 d,totally 5 groups according to the storage time. By using ultraviolet points spectrophotometric method,quantitative and excessive sodium tungstate solution and sulfuric acid solution were added to human serum albumin. Precipitated proteins at the same time,ammonia and sulfuric acid to form ammonium sulfate left in the filtrate,adding phenol reagent,sodium hypochlorite solution color at a wavelength of 630 nm absorbance,and transformed it into concentrationaccording to the standard curve. Results Human Albumin contained trace amounts of ammonia. Ammonia concentration at 4℃ did not increase with the prolongation of preservation time. Until 360 d, ammonia concentration was still not significantly increased, maintained at (31. 42 ± 2. 37)mol/L. Conclusion At present

  17. Radiopharmaceutical development based on human blood albumin microspheres and 90Y

    Science.gov (United States)

    Petriev, V. M.; Vlasova, O. P.; Postnov, A. A.; Epstein, N. B.

    2017-01-01

    New radiopharmaceutial (RP) based on human serum albumin microspheres (MSA) and 90Y was developed for treatment of liver cancer. The optimized synthesis using chelation resulted in approximately 80% yield with high specific activity. The RP developed was tested in mice with inoculated sarcoma-37. In two weeks the tumor size reduced by 43% after the treatment with the dose of 500 μCi injected into the tumor site.

  18. Thermodynamic study on the interaction between anti-tumor drug tegafur and human serum albumin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The changes of thermodynamic properties of the system on interaction between tegafur and human serum albumin (HSA) and the changes of secondary structure units of HSA in the system at 298.15 K have been investigated by the Nano-Watt-Scale isothermal titration calorimetry (ITC), the Langmuirs binding model and the circular dichroism (CD) spectrometry.(C) 2007 Lin Wei Li. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  19. Investigation of the interaction of deltamethrin (DM) with human serum albumin by multi-spectroscopic method

    Science.gov (United States)

    Wang, Jiaman; Ma, Liang; Zhang, Yuhao; Jiang, Tao

    2017-02-01

    The interaction of Deltamethrin (DM) with human serum albumin (HSA) under the condition of simulating human blood pH environment (pH = 7.4) was investigated by fluorescence, UV-Vis absorbance and circular dichroism (CD) spectroscopy. It was shown that DM was a static quencher of HSA. The binding constants (Ka) are 3.598 × 104 L mol-1 (25 °C); the thermodynamic parameters (ΔH = -3.269 × 104 kJ mol-1, ΔS = -22.81 kJ mol-1 k-1, ΔG = -25889.8 kJ mol-1) obtained with the thermodynamic equation. The hydrogen bond and Vander Waals were the main driving force. The effect of DM on the conformation of HSA was observed by three-dimensional (3D) fluorescence and circular dichroism spectra, indicating that the interaction between DM and HSA was achieved through the binding of DM with the tryptophan and tyrosine residues of HSA. The study on the interaction of DM and Bovine Serum Albumin (BSA) was researched and compared. Difference exists in the interactions of with each of the serum albumins. We will verify and supplement that DM residue in animals and human metabolism, toxicology and other mechanisms are different.

  20. Evaluation of albumin structural modifications through cobalt-albumin binding (CAB) assay.

    Science.gov (United States)

    Lee, Eunyoung; Eom, Ji-Eun; Jeon, Kyung-Hwa; Kim, Tae Hee; Kim, Eunnam; Jhon, Gil-Ja; Kwon, Youngjoo

    2014-03-01

    Human serum albumin (HSA) is the most abundant protein in the human body. HSA injections prepared by fractionating human blood have mainly covered the demand for albumin to treat hypoalbuminemia, the state of low concentration of albumin in blood. HSA in solution may exist in various forms such as monomers, oligomers, polymers, or as mixtures, and its conformational change and/or aggregation may occur easily. Considering these characteristics, there is a great chance of modification and polymer formation during the preparation processes of albumin products, especially injections. The albumin cobalt binding (ACB) test reported by Bar-Or et al. was originally designed to detect ischemia modified albumin (IMA), which contains the modified HSA N-terminal sequence by cleavage of the last two amino acids. In this study, we developed a cobalt albumin binding (CAB) assay to correct the flaws of the ACB test with improving the sensitivity and precision. The newly developed CAB assay easily detects albumin configuration alterations and may be able to be used in developing a quality control method for albumin and its pharmaceutical formulations including albumin injections. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Assessment of chemical exchange in tryptophan–albumin solution through {sup 19}F multicomponent transverse relaxation dispersion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ping-Chang, E-mail: pingchang.lin@howard.edu [Howard University, Department of Radiology, College of Medicine (United States)

    2015-06-15

    A number of NMR methods possess the capability of probing chemical exchange dynamics in solution. However, certain drawbacks limit the applications of these NMR approaches, particularly, to a complex system. Here, we propose a procedure that integrates the regularized nonnegative least squares (NNLS) analysis of multiexponential T{sub 2} relaxation into Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion experiments to probe chemical exchange in a multicompartmental system. The proposed procedure was validated through analysis of {sup 19}F T{sub 2} relaxation data of 6-fluoro-DL-tryptophan in a two-compartment solution with and without bovine serum albumin. Given the regularized NNLS analysis of a T{sub 2} relaxation curve acquired, for example, at the CPMG frequency υ{sub CPMG} = 125, the nature of two distinct peaks in the associated T{sub 2} distribution spectrum indicated 6-fluoro-DL-tryptophan either retaining the free state, with geometric mean */multiplicative standard deviation (MSD) = 1851.2 ms */1.51, or undergoing free/albumin-bound interconversion, with geometric mean */MSD = 236.8 ms */1.54, in the two-compartment system. Quantities of the individual tryptophan species were accurately reflected by the associated T{sub 2} peak areas, with an interconversion state-to-free state ratio of 0.45 ± 0.11. Furthermore, the CPMG relaxation dispersion analysis estimated the exchange rate between the free and albumin-bound states in this fluorinated tryptophan analog and the corresponding dissociation constant of the fluorinated tryptophan–albumin complex in the chemical-exchanging, two-compartment system.

  2. Human Serum Albumin (HSA) Suppresses the Effects of Glycerol Monolaurate (GML) on Human T Cell Activation and Function

    Science.gov (United States)

    Zhang, Michael S.; Houtman, Jon C. D.

    2016-01-01

    Glycerol monolaurate (GML) is a monoglyceride with well characterized anti-microbial properties. Because of these properties, GML is widely used in food, cosmetics, and personal care products and currently being tested as a therapeutic for menstrual associated toxic shock syndrome, superficial wound infections, and HIV transmission. Recently, we have described that GML potently suppresses select T cell receptor (TCR)-induced signaling events, leading to reduced human T cell effector functions. However, how soluble host factors present in the blood and at sites of infection affect GML-mediated human T cell suppression is unknown. In this study, we have characterized how human serum albumin (HSA) affects GML-induced inhibition of human T cells. We found that HSA and other serum albumins bind to 12 carbon acyl side chain of GML at low micromolar affinities and restores the TCR-induced formation of LAT, PLC-γ1, and AKT microclusters at the plasma membrane. Additionally, HSA reverses GML mediated inhibition of AKT phosphorylation and partially restores cytokine production in GML treated cells. Our data reveal that HSA, one of the most abundant proteins in the human serum and at sites of infections, potently reverses the suppression of human T cells by GML. This suggests that GML-driven human T cell suppression depends upon the local tissue environment, with albumin concentration being a major determinant of GML function. PMID:27764189

  3. Excited triplet state photophysics of the sulphonated aluminium phthalocyanines bound to human serum albumin.

    Science.gov (United States)

    Foley, M S; Beeby, A; Parker, A W; Bishop, S M; Phillips, D

    1997-03-01

    The binding of the sulphonated aluminum phthalocyanines to human serum albumin (HSA) in aqueous phosphate buffer solution at 25 degrees C has been studied by measuring the properties of the triplet excited states of these dyes. The triplet lifetimes were measured by triplet-triplet absorption flash photolysis. The triplet lifetime of the disulphonated AlS2Pc (2.5 microM) varies from 500 +/- 30 microseconds in the absence of protein to 1.100 microseconds and longer with HSA concentrations above 100 microM. Under identical conditions, the maximum triplet lifetimes of the mono-, tri- and tetrasulphonated compounds bound to HSA are shorter than those for the disulphonated species. The increase in the triplet state lifetimes is attributed to the ability of the bulk aqueous phase to interact with the sensitizer at the site of binding; the site of binding being dependent on the degree of sulphonation. For AlS2Pc and AlS3Pc at all HSA concentrations, and regardless of the degree of sulphonation, all the triplet state decay profiles follow simple pseudo-first-order kinetics. The exponential decay of the triplet phthalocyanine at all HSA concentrations is ascribed to the rapid association and dissociation of the phthalocyanine-HSA complex on the time-scales of the triplet state lifetimes. A simplified one-step binding model is utilized to describe the results. The association of AlS1Pc with HSA results in substantial quenching of the triplet state quantum yield, and a more complex model is required to analyze the results. The tetrasulphonated compound (AlS4Pc) binds to the protein at a site where it experiences some protection from the aqueous phase.

  4. Study on the Interaction between Pefloxacin Mesylate and Human Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    谭非; 文先红; 郭明; 易帅; 马国正; 俞庆森

    2005-01-01

    The binding characteristics of pefloxacin mesylate (PFLX) and human serum albumin (HSA) have been studied by fluorescence spectroscopy in aqueous solution, and the interaction influenced by copper(Ⅱ) was also explored in the paper. The results show that the two reaction equilibrium constant and the number of binding sites were K=1.7×105 L·mol-1, n=1.05 for PFLX and K=1.61×105 L·mo1-1, n=1.5 for PFLX-Cu2+,respectively. The quenching mechanism of fluorescence of HSA by PFLX is a static quenching procedure. The binding distance between PFLX and HSA and the energy transfer efficiency were obtained based on the theory of Fo(e)rster spectroscopy energy transfer. The effect of pefloxacin mesylate on the conformation of HSA has also been analyzed by using synchronous fluorescence spectroscopy. The interaction of PFLX and HSA have been studied by flow-mixed microcalorimetry in the absence and presence of copper(H), and their thermodynamic parameters were obtained. The enthalpy change and the entropy change were calculated to be △H≈0, △S>0 in the absence of copper(Ⅱ), indicating that hydrophobic forces played major role in the interaction between PFLX and HSA, and to be △H0in the presence of copper(H), indicated that the static forces played major role in the reaction. The molar free energy changes of the two reactions are identical with each other because the entropy-enthalpy compensation happened between the two reactions.

  5. Elucidation of the binding mechanism of coumarin derivatives with human serum albumin.

    Directory of Open Access Journals (Sweden)

    Archit Garg

    Full Text Available Coumarin is a benzopyrone which is widely used as an anti-coagulant, anti-oxidant, anti-cancer and also to cure arthritis, herpes, asthma and inflammation. Here, we studied the binding of synthesized coumarin derivatives with human serum albumin (HSA at physiological pH 7.2 by using fluorescence spectroscopy, circular dichroism spectroscopy, molecular docking and molecular dynamics simulation studies. By addition of coumarin derivatives to HSA the maximum fluorescence intensity was reduced due to quenching of intrinsic fluorescence upon binding of coumarin derivatives to HSA. The binding constant and free energy were found to be 1.957±0.01×10(5 M(-1, -7.175 Kcal M(-1 for coumarin derivative (CD enamide; 0.837±0.01×10(5 M(-1, -6.685 Kcal M(-1 for coumarin derivative (CD enoate, and 0.606±0.01×10(5 M(-1, -6.49 Kcal M(-1 for coumarin derivative methylprop (CDM enamide. The CD spectroscopy showed that the protein secondary structure was partially unfolded upon binding of coumarin derivatives. Further, the molecular docking studies showed that coumarin derivatives were binding to HSA at sub-domain IB with the hydrophobic interactions and also with hydrogen bond interactions. Additionally, the molecular dynamics simulations studies contributed in understanding the stability of protein-drug complex system in the aqueous solution and the conformational changes in HSA upon binding of coumarin derivatives. This study will provide insights into designing of the new inspired coumarin derivatives as therapeutic agents against many life threatening diseases.

  6. Interaction of human serum albumin with Fe(III)–deferasirox studied by multispectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan, Gholamreza, E-mail: dehghan2001d@yahoo.com [Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz (Iran, Islamic Republic of); Shaghaghi, Masoomeh [Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I.R. of Iran (Iran, Islamic Republic of); Sattari, Safura [Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Jouyban, Abolghasem [Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of)

    2014-05-01

    The interaction between the iron complex of deferasirox (Fe(III)–DFX) and human serum albumin (HSA) was studied by fluorescence, UV–vis absorption and circular dichroism (CD) spectroscopy. Binding constants, number of binding sites and binding distance (r) were calculated. Fluorescence data at different temperatures revealed that the fluorescence intensity of HSA is decreased in the presence of Fe(III)–DFX complex, and the fluorescence quenching was the result of the formation of the Fe(III)–DFX–HSA complex, therefore the quenching mechanism was static. The binding constant (K{sub a}) for the interaction was 10{sup 4}, and the number of binding site was obtained ∼1. The thermodynamic parameters including enthalpy (∆H), entropy (∆S) and Gibb's free energy (∆G) changes were calculated according to the van't Hoff equation. These data suggested that hydrophobic interaction was the dominant intermolecular force in stabilizing the complex and the association process was spontaneous. The interaction of HSA with Fe(III)–DFX was also confirmed by UV–vis absorption spectra. The quantitative analysis data of CD spectra showed significant alterations of HSA secondary structure in the presence of Fe(III)–DFX complex in aqueous solution with reduction of α-helices content and increase of β-turn structure. - Highlights: • The interaction between Fe(III)–DFX and (HSA) was studied by multispectroscopic methods. • Fluorescence intensity of HSA is decreased in the presence of Fe(III)–DFX complex through a static quenching procedure. • Thermodynamic data suggested that hydrophobic interaction was the dominant intermolecular force and the association process was spontaneous. • The CD spectra showed significant alterations of HSA secondary structure with reduction of α-helices content and increase of β-turn structure.

  7. Interactions of hybrid gold-tannic acid nanoparticles with human serum albumin.

    Science.gov (United States)

    Sekowski, Szymon; Tomaszewska, Emilia; Soliwoda, Katarzyna; Celichowski, Grzegorz; Grobelny, Jaroslaw

    2017-01-01

    Nanoparticles present a wide spectrum of chemical, biological, and physical properties which result in their usage in many branches of science. We present an investigation of the interaction between human serum albumin and hybrid gold-tannic acid nanoparticles synthesized via a chemical reduction method. The results obtained demonstrate that tannic acid can be a very effective reducing and stabilizing agent and allows monodisperse hybrid gold nanomaterial to be obtained. The synthesized hybrid gold-tannic acid nanoparticles strongly interact with human serum albumin by formation of protein-corona complexes. The strength of the interaction with albumin depends on the number of tannic acid molecules on the surface of the nanoparticles and the presence of citric acid. Nanoparticles of large size and rich in tannic acid react more strongly with the protein [K SV = (8.00 ± 0.2) × 10(5) M(-1)] compared with smaller ones [K SV = (6.83 ± 0.5) × 10(4) M(-1)] containing citric acid and low concentration of tannic acid.

  8. Covalent Modification of Human Serum Albumin by the Natural Sesquiterpene Lactone Parthenolide

    Directory of Open Access Journals (Sweden)

    Michael Plöger

    2015-04-01

    Full Text Available The reactivity of parthenolide (PRT, a natural sesquiterpene lactone from Tanacetum parthenium (Asteraceae, with human serum albumin (HSA was studied by UHPLC/+ESI-QqTOF MS analysis after tryptic digestion of albumin samples after incubation with this compound. It was found that the single free cysteine residue, C34, of HSA (0.6 mM reacted readily with PRT when incubated at approximately 13-fold excess of PRT (8 mM. Time-course studies with PRT and its 11β,13-dihydro derivative at equimolar ratios of the reactants revealed that PRT under the chosen conditions reacts preferably with C34 and does so exclusively via its α-methylene-γ-lactone moiety, while the epoxide structure is not involved in the reaction.

  9. Covalent modification of human serum albumin by the natural sesquiterpene lactone parthenolide.

    Science.gov (United States)

    Plöger, Michael; Sendker, Jandirk; Langer, Klaus; Schmidt, Thomas J

    2015-04-09

    The reactivity of parthenolide (PRT), a natural sesquiterpene lactone from Tanacetum parthenium (Asteraceae), with human serum albumin (HSA) was studied by UHPLC/+ESI-QqTOF MS analysis after tryptic digestion of albumin samples after incubation with this compound. It was found that the single free cysteine residue, C34, of HSA (0.6 mM) reacted readily with PRT when incubated at approximately 13-fold excess of PRT (8 mM). Time-course studies with PRT and its 11β,13-dihydro derivative at equimolar ratios of the reactants revealed that PRT under the chosen conditions reacts preferably with C34 and does so exclusively via its α-methylene-γ-lactone moiety, while the epoxide structure is not involved in the reaction.

  10. Ligand binding strategies of human serum albumin: how can the cargo be utilized?

    Science.gov (United States)

    Varshney, Ankita; Sen, Priyankar; Ahmad, Ejaz; Rehan, Mohd; Subbarao, Naidu; Khan, Rizwan Hasan

    2010-01-01

    Human serum albumin (HSA), being the most abundant carrier protein in blood and a modern day clinical tool for drug delivery, attracts high attention among biologists. Hence, its unfolding/refolding strategies and exogenous/endogenous ligand binding preference are of immense use in therapeutics and clinical biochemistry. Among its fellow proteins albumin is known to carry almost every small molecule. Thus, it is a potential contender for being a molecular cargo/or nanovehicle for clinical, biophysical and industrial purposes. Nonetheless, its structure and function are largely regulated by various chemical and physical factors to accommodate HSA to its functional purpose. This multifunctional protein also possesses enzymatic properties which may be used to convert prodrugs to active therapeutics. This review aims to highlight current overview on the binding strategies of protein to various ligands that may be expected to lead to significant clinical applications.

  11. Zinc phthalocyanine-conjugated with bovine serum albumin mediated photodynamic therapy of human larynx carcinoma

    Science.gov (United States)

    Silva, E. P. O.; Santos, E. D.; Gonçalves, C. S.; Cardoso, M. A. G.; Soares, C. P.; Beltrame, M., Jr.

    2016-10-01

    Phthalocyanines, which are classified as second-generation photosensitizers, have advantageous photophysical properties, and extensive studies have demonstrated their potential applications in photodynamic therapy. The present work describes the preparation of a new zinc phthalocyanine conjugated to bovine serum albumin (compound 4a) and its photodynamic efficiency in human larynx-carcinoma cells (HEp-2 cells). The unconjugated precursor (compound 4) was also studied. Compounds 4 and 4a penetrated efficiently into the cell, exhibiting cytoplasmic localization, and showed no cytotoxicity in the dark. However, high photodynamic activities were observed in HEp-2 cells after treatments with 5 µM photosensitizers and 4.5 J cm-2 light. These conditions were sufficient to decrease the cell viability to 57.93% and 32.75% for compounds 4 and 4a, respectively. The present results demonstrated high photodynamic efficiency of zinc phthalocyanine conjugated with bovine serum albumin in destroying the larynx-carcinoma cells.

  12. Investigation into the interaction of losartan with human serum albumin and glycated human serum albumin by spectroscopic and molecular dynamics simulation techniques: A comparison study.

    Science.gov (United States)

    Moeinpour, Farid; Mohseni-Shahri, Fatemeh S; Malaekeh-Nikouei, Bizhan; Nassirli, Hooriyeh

    2016-09-25

    The interaction between losartan and human serum albumin (HSA), as well as its glycated form (gHSA) was studied by multiple spectroscopic techniques and molecular dynamics simulation under physiological conditions. The binding information, including the binding constants, effective quenching constant and number of binding sites showed that the binding partiality of losartan to HSA was higher than to gHSA. The findings of three-dimensional fluorescence spectra demonstrated that the binding of losartan to HSA and gHSA would alter the protein conformation. The distances between Trp residue and the binding sites of the drug were evaluated on the basis of the Förster theory, and it was indicated that non-radiative energy transfer from HSA and gHSA to the losartan happened with a high possibility. According to molecular dynamics simulation, the protein secondary and tertiary structure changes were compared in HSA and gHSA for clarifying the obtained results.

  13. Effects of pH and ionic strength on the thermodynamics of human serum albumin-photosensitizer binding.

    Science.gov (United States)

    Jones, Cecil L; Dickson, Tireje; Hayes, Ronald; Thomas, Lana

    2012-10-10

    Fluorescence spectroscopy was used to measure the effects of pH and ionic strength on thermodynamic parameters governing the interaction of human serum albumin with zinc phthalocyanine tetrasulfonic acid. Fluorescence emission of zinc phthalocyanine increases at 686 nm with increasing concentrations of the protein. The non-linear correlation between protein concentration and emission of the photosensitizer was fitted using Chipman's analysis to calculate the binding affinities. The standard enthalpy and entropy changes were estimated from van't Hoff analysis of data that were acquired from temperature ramping studies. Results show that reaction is primarily driven by solution dynamics and that the change in enthalpy for the system becomes increasingly unfavorable with increasing pH and ionic strength. The effect of ionic strength on the entropy change for binding is shown to be significantly greater than the effects of pH. The interplay between entropy and enthalpy changes is demonstrated.

  14. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumin on the Synthesis and Stability of Gold Nanostructures

    Science.gov (United States)

    Miranda, Érica; Tofanello, Aryane; Brito, Adrianne; Lopes, David; Giacomelli, Fernando; Albuquerque, Lindomar; Costa, Fanny; Ferreira, Fabio; Araujo-Chaves, Juliana; de Castro, Carlos; Nantes, Iseli

    2016-03-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from fifteen days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After two months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination

  15. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumin on the Synthesis and Stability of Gold Nanostructures

    Directory of Open Access Journals (Sweden)

    Érica G. A. Miranda

    2016-03-01

    Full Text Available The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs. The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12 to solutions of human and bovine serum albumins (HSA and BSA at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR bands became detectable from fifteen days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After two months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol

  16. Cranberry phytochemicals inhibit glycation of human hemoglobin and serum albumin by scavenging reactive carbonyls.

    Science.gov (United States)

    Liu, Haiyan; Liu, Hanwei; Wang, Wei; Khoo, Christina; Taylor, James; Gu, Liwei

    2011-08-01

    Protein glycation caused by sugars and reactive carbonyls is a contributing factor to diabetic complications, aging, and other chronic diseases. The objective of this study was to investigate the inhibitory effects of cranberry phytochemicals on protein glycation. Cranberries, purified to yield sugar-free phytochemical powder, were fractionated into ethyl acetate and water fractions. Water fraction was further separated into water fraction I, II, and III on a Sephadex LH-20 column. Cranberry phytochemical powder and its fractions significantly inhibited the formation of glycated hemoglobin. The concentrations of cranberry phytochemicals required to inhibit 50% of albumin glycation (EC(50)) in albumin-glucose assay were lower than that of aminoguanidine except for water fraction I. Cranberry phytochemicals inhibited glycation of human serum albumin mediated by methylglyoxal, but the EC(50) were higher than that of aminoguanidine. Carbonyl scavenging assay showed that water fraction II scavenged 89.3% of methylglyoxal at 6 h of reaction. Fractions enriched with procyanidins showed higher antiglycation activities, suggesting procyanidins were the major active components. The hypothesis whether cranberry procyanidins scavenged reactive carbonyls by forming adducts was tested. Epicatechin was used as a model compound to react with methylglyoxal and glyoxal at pH 7.4. Five adducts were detected and their structures were tentatively identified using HPLC-ESI-MS/MS.

  17. PEGylated Human Serum Albumin: Review of PEGylation, Purification and Characterization Methods

    Directory of Open Access Journals (Sweden)

    Parvin Akbarzadehlaleh

    2016-09-01

    Full Text Available Human serum albumin (HSA is a non-glycosylated, negatively charged protein (Mw: about 65-kDa that has one free cystein residue (Cys 34, and 17 disulfide bridges that these bridges have main role in its stability and longer biological life-time (15 to 19 days. As HSA is a multifunctional protein, it can also bind to other molecules and ions in addition to its role in maintaining colloidal osmotic pressure (COP in various diseases. In critical illnesses changes in the level of albumin between the intravascular and extravascular compartments and the decrease in its serum concentration need to be compensated using exogenous albumin; but as the size of HSA is an important parameter in retention within the circulation, therefore increasing its molecular size and hydrodynamic radius of HSA by covalent attachment of poly ethylene glycol (PEG, that is known as PEGylation, provides HSA as a superior volume expander that not only can prevent the interstitial edema but also can reduce the infusion frequency. This review focuses on various PEGylation methods of HSA (solid phase and liquid phase, and compares various methods to purifiy and characterize the pegylated form.

  18. PEGylated Human Serum Albumin: Review of PEGylation, Purification and Characterization Methods

    Science.gov (United States)

    Akbarzadehlaleh, Parvin; Mirzaei, Mona; Mashahdi-Keshtiban, Mahdiyeh; Shamsasenjan, Karim; Heydari, Hamidreza

    2016-01-01

    Human serum albumin (HSA) is a non-glycosylated, negatively charged protein (Mw: about 65-kDa) that has one free cystein residue (Cys 34), and 17 disulfide bridges that these bridges have main role in its stability and longer biological life-time (15 to 19 days). As HSA is a multifunctional protein, it can also bind to other molecules and ions in addition to its role in maintaining colloidal osmotic pressure (COP) in various diseases. In critical illnesses changes in the level of albumin between the intravascular and extravascular compartments and the decrease in its serum concentration need to be compensated using exogenous albumin; but as the size of HSA is an important parameter in retention within the circulation, therefore increasing its molecular size and hydrodynamic radius of HSA by covalent attachment of poly ethylene glycol (PEG), that is known as PEGylation, provides HSA as a superior volume expander that not only can prevent the interstitial edema but also can reduce the infusion frequency. This review focuses on various PEGylation methods of HSA (solid phase and liquid phase), and compares various methods to purifiy and characterize the pegylated form. PMID:27766215

  19. Neo-epitopes on methylglyoxal modified human serum albumin lead to aggressive autoimmune response in diabetes.

    Science.gov (United States)

    Jyoti; Mir, Abdul Rouf; Habib, Safia; Siddiqui, Sheelu Shafiq; Ali, Asif; Moinuddin

    2016-05-01

    Glyco-oxidation of proteins has implications in the progression of diabetes type 2. Human serum albumin is prone to glyco-oxidative attack by sugars and methylglyoxal being a strong glycating agent may have severe impact on its structure and consequent role in diabetes. This study has probed the methylglyoxal mediated modifications of HSA, the alterations in its immunological characteristics and possible role in autoantibody induction. We observed an exposure of chromophoric groups, loss in the fluorescence intensity, generation of AGEs, formation of cross-linked products, decrease in α-helical content, increase in hydrophobic clusters, FTIR band shift, attachment of methylglyoxal to HSA and the formation of N(ε)-(carboxyethyl) lysine in the modified HSA, when compared to the native albumin. MG-HSA was found to be highly immunogenic with additional immunogenicity invoking a highly specific immune response than its native counterpart. The binding characteristics of circulating autoantibodies in type 2 diabetes mellitus (DM) patients showed the generation of anti-MG-HSA auto-antibodies in the these patients, that are preferentially recognized by the modified albumin. We propose that MG induced structural perturbations in HSA, result in the generation of neo-epitopes leading to an aggressive auto-immune response and may contribute to the immunopathogenesis of diabetes type 2 associated complications.

  20. Purification of human albumin by the combination of the method of Cohn with liquid chromatography

    Directory of Open Access Journals (Sweden)

    Tanaka K.

    1998-01-01

    Full Text Available Large volumes of plasma can be fractionated by the method of Cohn at low cost. However, liquid chromatography is superior in terms of the quality of the product obtained. In order to combine the advantages of each method, we developed an integrated method for the production of human albumin and immunoglobulin G (IgG. The cryoprecipitate was first removed from plasma for the production of factor VIII and the supernatant of the cryoprecipitate was fractionated by the method of Cohn. The first precipitate, containing fractions (F-I + II + III, was used for the production of IgG by the chromatographic method (see Tanaka K et al. (1998 Brazilian Journal of Medical and Biological Research, 31: 1375-1381. The supernatant of F-I + II + III was submitted to a second precipitation and F-IV was obtained and discarded. Albumin was obtained from the supernatant of the precipitate F-IV by liquid chromatography, ion-exchange on DEAE-Sepharose FF, filtration through Sephacryl S-200 HR and introduction of heat treatment for fatty acid precipitation. Viral inactivation was performed by pasteurization at 60ºC for 10 h. The albumin product obtained by the proposed procedure was more than 99% pure for the 15 lots of albumin produced, with a mean yield of 25.0 ± 0.5 g/l plasma, containing 99.0 to 99.3% monomer, 0.7 to 1.0% dimers, and no polymers. Prekallikrein activator levels were <=5 IU/ml. This product satisfies the requirements of the 1997 Pharmacopée Européenne.

  1. Interaction of chlorogenic acids and quinides from coffee with human serum albumin.

    Science.gov (United States)

    Sinisi, Valentina; Forzato, Cristina; Cefarin, Nicola; Navarini, Luciano; Berti, Federico

    2015-02-01

    Chlorogenic acids and their derivatives are abundant in coffee and their composition changes between coffee species. Human serum albumin (HSA) interacts with this family of compounds with high affinity. We have studied by fluorescence spectroscopy the specific binding of HSA with eight compounds that belong to the coffee polyphenols family, four acids (caffeic acid, ferulic acid, 5-O-caffeoyl quinic acid, and 3,4-dimethoxycinnamic acid) and four lactones (3,4-O-dicaffeoyl-1,5-γ-quinide, 3-O-[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, 3,4-O-bis[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, and 1,3,4-O-tris[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide), finding dissociation constants of the albumin-chlorogenic acids and albumin-quinides complexes in the micromolar range, between 2 and 30μM. Such values are comparable with those of the most powerful binders of albumin, and more favourable than the values obtained for the majority of drugs. Interestingly in the case of 3,4-O-dicaffeoyl-1,5-γ-quinide, we have observed the entrance of two ligand molecules in the same binding site, leading up to a first dissociation constant even in the hundred nanomolar range, which is to our knowledge the highest affinity ever observed for HSA and its ligands. The displacement of warfarin, a reference drug binding to HSA, by the quinide has also been demonstrated.

  2. Study on Interaction of Ginsenosides with Bovine or Human Serum Albumin Using Wavelength Modulation Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    LIU Xia; SUN Ying; SONG Da-Qian; LI Xu-Wen; ZHANG Qing-Lin; TIAN Yuan; LIU Zhong-Ying; ZHANG Han-Qi

    2006-01-01

    To use a newly developed wavelength modulation surface plasmon resonance (SPR) biosensor, an experimental protocol was developed to investigate the interaction of ginsenosides with serum albumin. With a known concentration of the ginsenosides, bound percentages of the ginsenosides with human serum albumin (HSA) or bovine serum albumin (BSA) were obtained. SPR technique could require no labeling and this method provided the detailed information on association and disassociation of molecules in real time. The results indicate that the sensitivity of wavelength modulation SPR biosensor is sufficient for detection and characterization of binding events involving low-molecular weight compounds and their immobilized protein targets.

  3. Serum Albumin Domain Structures in Human Blood Serum by Mass Spectrometry and Computational Biology.

    Science.gov (United States)

    Belsom, Adam; Schneider, Michael; Fischer, Lutz; Brock, Oliver; Rappsilber, Juri

    2016-03-01

    Chemical cross-linking combined with mass spectrometry has proven useful for studying protein-protein interactions and protein structure, however the low density of cross-link data has so far precluded its use in determining structures de novo. Cross-linking density has been typically limited by the chemical selectivity of the standard cross-linking reagents that are commonly used for protein cross-linking. We have implemented the use of a heterobifunctional cross-linking reagent, sulfosuccinimidyl 4,4'-azipentanoate (sulfo-SDA), combining a traditional sulfo-N-hydroxysuccinimide (sulfo-NHS) ester and a UV photoactivatable diazirine group. This diazirine yields a highly reactive and promiscuous carbene species, the net result being a greatly increased number of cross-links compared with homobifunctional, NHS-based cross-linkers. We present a novel methodology that combines the use of this high density photo-cross-linking data with conformational space search to investigate the structure of human serum albumin domains, from purified samples, and in its native environment, human blood serum. Our approach is able to determine human serum albumin domain structures with good accuracy: root-mean-square deviation to crystal structure are 2.8/5.6/2.9 Å (purified samples) and 4.5/5.9/4.8Å (serum samples) for domains A/B/C for the first selected structure; 2.5/4.9/2.9 Å (purified samples) and 3.5/5.2/3.8 Å (serum samples) for the best out of top five selected structures. Our proof-of-concept study on human serum albumin demonstrates initial potential of our approach for determining the structures of more proteins in the complex biological contexts in which they function and which they may require for correct folding. Data are available via ProteomeXchange with identifier PXD001692.

  4. Adsorption of biopolymers human serum albumin and human gamma globulin to well-defined surfaces of self-assembled monolayers

    Science.gov (United States)

    Cregger, Tricia Ann

    The tenacity with which the blood proteins Human Serum Albumin (HSA) and Human Gamma Globulin (HGG) adsorb to a surface modified with a monomolecular coating varies with the packing of the alkyl chains in the coating. The adsorption of proteins onto well-defined surfaces of self-assembled monolayers (SAMs) was studied with X-ray reflectometry (XR), neutron reflectometry (NR), optical reflectometry, and total internal reflection fluorescence (TIRF). NR and XR was used to study adsorption in the absence of flow, while optical reflectometry and TIRF were used to probe the adsorption under flow conditions. In particular, competitive adsorption measurements of binary solutions of HSA, HGG and Fibrinogen (FIB) were performed with TIRE The properties of the surface were varied by altering the alkyl chains' packing density and the chain end functionality of the SAMs. The depth profiles of protein concentration near the adsorbing surface measured by NR were dependent upon the chain packing density in the case of HSA. The concentration depth profile of HGG was unaltered by varying chain packing density. Measurements performed under flow using optical reflectometry showed a different behavior: the surface excess of adsorbed HSA was relatively independent of the surface packing, while the surface excess of HGG depended on the packing density of the SAM. The tenacity with which the proteins adsorbed to different functionalized surfaces was determined by attempting to remove the protein using a strong surfactant, sodium dodecyl sulfate (SDS). Ex situ XR measurements suggested that both HSA and HGG adsorb more tenaciously to a less densely-packed monolayer, almost independent of surface functionality. Two exceptions were a less densely-packed vinyl-terminated monolayer and a less densely-packed bromine-terminated monolayer, from which HSA could not be removed at all.

  5. TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin.

    Science.gov (United States)

    Moghaddassi, Shaida; Eyestone, Will; Bishop, Colin E

    2014-01-01

    As an initial step towards creating genetically modified cattle as a biopharming source of recombinant human serum albumin (rHSA), we report modification of the bovine albumin (bA) locus by transcription activator-like effector nuclease (TALEN)-stimulated homology-directed repair (HDR). Pedigreed bovine fibroblasts were co-transfected with TALENs and an 11.5-kb human serum albumin (HSA) minigene donor construct, designed to simultaneously disrupt and replace bovine serum albumin (BSA) expression with controlled rHSA expression in both the liver and the milk. Targeted integration of the HSA minigene was confirmed in transfected fibroblasts at a frequency of approximately 11% and transgenic bovine embryos were produced from targeted fibroblasts using somatic cell nuclear transfer (SCNT). The research delineated here lays the foundation for the future generation of transgenic rHSA cattle with the potential to provide a large-scale, reliable, and quality-controlled source of rHSA.

  6. Substantially improved pharmacokinetics of recombinant human butyrylcholinesterase by fusion to human serum albumin

    Directory of Open Access Journals (Sweden)

    Pierson Janice

    2008-05-01

    Full Text Available Abstract Background Human butyrylcholinesterase (huBChE has been shown to be an effective antidote against multiple LD50 of organophosphorus compounds. A prerequisite for such use of huBChE is a prolonged circulatory half-life. This study was undertaken to produce recombinant huBChE fused to human serum albumin (hSA and characterize the fusion protein. Results Secretion level of the fusion protein produced in vitro in BHK cells was ~30 mg/liter. Transgenic mice and goats generated with the fusion constructs expressed in their milk a bioactive protein at concentrations of 0.04–1.1 g/liter. BChE activity gel staining and a size exclusion chromatography (SEC-HPLC revealed that the fusion protein consisted of predominant dimers and some monomers. The protein was confirmed to have expected molecular mass of ~150 kDa by Western blot. The purified fusion protein produced in vitro was injected intravenously into juvenile pigs for pharmacokinetic study. Analysis of a series of blood samples using the Ellman assay revealed a substantial enhancement of the plasma half-life of the fusion protein (~32 h when compared with a transgenically produced huBChE preparation containing >70% tetramer (~3 h. In vitro nerve agent binding and inhibition experiments indicated that the fusion protein in the milk of transgenic mice had similar inhibition characteristics compared to human plasma BChE against the nerve agents tested. Conclusion Both the pharmacokinetic study and the in vitro nerve agent binding and inhibition assay suggested that a fusion protein retaining both properties of huBChE and hSA is produced in vitro and in vivo. The production of the fusion protein in the milk of transgenic goats provided further evidence that sufficient quantities of BChE/hSA can be produced to serve as a cost-effective and reliable source of BChE for prophylaxis and post-exposure treatment.

  7. Solution structure of a methionine-rich 2S albumin from sunflower seeds: relationship to its allergenic and emulsifying properties.

    Science.gov (United States)

    Pantoja-Uceda, David; Shewry, Peter R; Bruix, Marta; Tatham, Arthur S; Santoro, Jorge; Rico, Manuel

    2004-06-01

    The three-dimensional structure in aqueous solution of SFA-8, a 2S albumin 103-residue protein from seeds of sunflower (Helianthus anuus L.), has been determined by NMR methods. An almost complete (1)H resonance assignment was accomplished from analysis of two-dimensional (2D) COSY and 2D TOCSY spectra, and the structure was computed by using restrained molecular dynamics on the basis of 1393 upper limit distance constraints derived from NOE cross-correlation intensities measured in 2D NOESY spectra. In contrast with most other 2S albumins, SFA-8 consists of a single polypeptide chain without any cleavage in the segment of residues 30-46. The computed structures exhibited an rmsd radius of 0.52 A for the backbone structural core (residues 11-30 and 46-101) and 1.01 A for the side chain heavy atoms. The resulting structure consists of five amphipathic helices arranged in a right-handed superhelix, a folding motif first observed in nonspecific lipid transfer (nsLTP) proteins, and common to other 2S albumins. In contrast to nsLTP proteins, neither SFA-8 nor RicC3 (a 2S albumin from castor bean) has an internal cavity that is able to host a lipid molecule, which results from an exchange in the pairing of disulfide bridges in the CXC segment. Both 2S albumins and nonspecific lipid transfer proteins belong to the prolamin superfamily, which includes a number of important food allergens. Differences in the extension and solvent exposition of the so-called "hypervariable loop" (which connects helices III and IV) in SFA-8 and RicC3 may be responsible for the different allergenic properties of the two proteins. SFA-8 has been shown to form highly stable emulsions with oil/water mixtures. We propose that these properties may be determined partly by a hydrophobic patch at the surface of the protein which consists of five methionines that partially hide the Trp76 residue. The flexibility of the loop which contains Trp76 and the hydrophobicity of the whole environment may favor

  8. Thermodynamic Study of Human Serum Albumin upon Interaction with Ytterbium (III

    Directory of Open Access Journals (Sweden)

    G. Rezaei Behbehani

    2013-01-01

    Full Text Available Complexation reaction between Yb3+ and human serum albumin is examined using isothermal titration calorimetry (ITC. The extension solvation theory was used to reproduce the enthalpies of HAS + Yb3+ interactions over the whole range of Yb3+ concentrations. The binding parameters recovered from this model were attributed to the structural change of HSA. The results show that Yb3+ ions bind to HSA with three equivalent affinity sites. It was found that in the high concentrations of the ytterbium ions, the HSA structure was destabilized.

  9. Thermal investigation of Human Serum Albumin upon Interaction with Ytterbium (III

    Directory of Open Access Journals (Sweden)

    Gholamreza Rezaei Behbehani

    2012-01-01

    Full Text Available In this paper complexation reaction between Yb3+ and Human serum albumin is examined using isothermal titration calorimetry (ITC. The extended solvation model was used to reproduce the enthalpies of HAS+Yb3+ interactions over the whole range of Yb3+ concentrations. The binding parameters recovered from this model were attributed to the structural change of HSA. The results show that Yb3+ ions bind to HSA with three equivalent affinity sites. It was found that in the high concentrations of the ytterbium ions, the HSA structure was destabilized.

  10. Investigation of the Interaction between Adenosine and Human Serum Albumin by Fluorescent Spectroscopy and Molecular Modeling

    Institute of Scientific and Technical Information of China (English)

    CUI Feng-Ling; WANG Jun-Li; LI Fang; FAN Jing; QU Gui-Rong; YAO Xiao-Jun; LEI Bei-Lei

    2008-01-01

    The binding interaction of adenosine with human serum albumin (HSA) was investigated under simulative physiological conditions by fluorescence spectroscopy in combination with a molecular modeling method. A strong fluorescence quenching reaction of adenosine to HSA was observed and the quenching mechanism was suggested as static quenching according to the Stern-Volmer equation. The binding constants (K) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), were calculated according to relevant fluorescent data and Vant'Hoff equation. The hydrophobic interaction was a predominant intermolecular force in order to stabilize the complex, which was in agreement with the results of molecular modeling study.

  11. 6-Nitro-L-tryptophan: a novel spectroscopic probe of trp aporepressor and human serum albumin.

    Science.gov (United States)

    Phillips, R S; Marmorstein, R Q

    1988-04-01

    The binding of 6-nitro-L-tryptophan to trp aporepressor and human serum albumin has been examined by visible difference spectroscopy and circular dichroism. 6-Nitro-L-tryptophan, prepared by nitration of L-tryptophan with nitric acid in glacial acetic acid, exhibits a visible and near-uv absorption spectrum with lambda max at about 330 nm (epsilon = 7 X 10(3) M-1 cm-1) and a shoulder near 380 nm in H2O. In the presence of trp aporepressor, the visible absorption intensity is sharply diminished. Visible difference spectral titration data give KD = 1.27 X 10(-4) M and n = 0.95 per subunit at 25 degrees C. While 6-nitro-L-tryptophan exhibits no significant circular dichroism between 300 and 500 nm, the complex with trp aporepressor exhibits strong circular dichroism signals, with a negative maximum at 386 nm (delta epsilon = -7.5 M-1 cm-1) and a positive maximum at 310 nm (delta epsilon = +6 M-1 cm-1). Circular dichroism titration data give KD = 1.69 X 10(-4) M and n = 0.90 per subunit at 25 degrees C. The KD values determined spectroscopically are in excellent agreement with that determined by equilibrium dialysis, KD = 1.5 X 10(-4) M at 25 degrees C. In the presence of human serum albumin, the spectrum of 6-nitro-L-tryptophan exhibits a blue shift and an increase in absorption intensity; similar changes are observed in solvents of low dielectric contrast such as 80% aqueous dioxane. Visible difference spectral titration data give KD = 8.0 X 10(-5) M and n = 0.95 for human serum albumin. The complex of 6-nitro-L-tryptophan with human serum albumin exhibits a strong positive circular dichroism maximum at 380 nm (delta epsilon = +9.8 M-1 cm-1) with a shoulder at 310-320 nm. Circular dichroism titration data give KD = 6.4 X 10(-5) M and n = 0.83, in good agreement with the visible difference spectral results. Taken together, our results demonstrate the utility of 6-nitro-L-tryptophan as a spectroscopic probe for tryptophan-binding proteins.

  12. Nanoparticle Albumin Bound Paclitaxel in the Treatment of Human Cancer: Nanodelivery Reaches Prime-Time?

    Directory of Open Access Journals (Sweden)

    Iole Cucinotto

    2013-01-01

    Full Text Available Nanoparticle albumin bound paclitaxel (nab-paclitaxel represents the first nanotechnology-based drug in cancer treatment. We discuss the development of this innovative compound and report the recent changing-practice results in breast and pancreatic cancer. A ground-breaking finding is the demonstration that nab-paclitaxel can not only enhance the activity and reduce the toxicity of chromophore-diluted compound, but also exert activity in diseases considered refractory to taxane-based treatment. This is the first clinical demonstration of major activity of nanotechnologically modified drugs in the treatment of human neoplasms.

  13. Nanoparticle Albumin Bound Paclitaxel in the Treatment of Human Cancer: Nanodelivery Reaches Prime-Time?

    Science.gov (United States)

    Cucinotto, Iole; Fiorillo, Lucia; Gualtieri, Simona; Arbitrio, Mariamena; Ciliberto, Domenico; Staropoli, Nicoletta; Grimaldi, Anna; Luce, Amalia; Tassone, Pierfrancesco; Caraglia, Michele; Tagliaferri, Pierosandro

    2013-01-01

    Nanoparticle albumin bound paclitaxel (nab-paclitaxel) represents the first nanotechnology-based drug in cancer treatment. We discuss the development of this innovative compound and report the recent changing-practice results in breast and pancreatic cancer. A ground-breaking finding is the demonstration that nab-paclitaxel can not only enhance the activity and reduce the toxicity of chromophore-diluted compound, but also exert activity in diseases considered refractory to taxane-based treatment. This is the first clinical demonstration of major activity of nanotechnologically modified drugs in the treatment of human neoplasms. PMID:23738077

  14. Experimental investigation of the serum albumin fascia microstructure

    Science.gov (United States)

    Buzoverya, M. E.; Shcherbak, Yu. P.; Shishpor, I. V.

    2012-09-01

    The results of theoretical and experimental investigation of biological liquids are reported. Structural effects observed in fascias are considered with account of the molecular features of albumin and the concept of supramolecular organization of polymers. It is revealed that the morphology of human serum albumin fascias depends on the concentration and quality of the solvent. It is shown that the water-salt fascias of albumin are more structured than water solutions with the same concentration.

  15. Molecular interaction of PCB153 to human serum albumin: Insights from spectroscopic and molecular modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chao; Fang, Senbiao; Cao, Huiming; Lu, Yan; Ma, Yaqiong [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Wei, Dongfeng [Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700 (China); Xie, Xiaoyun [College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000 (China); Liu, Xiaohua [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Li, Xin [College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003 (China); Fei, Dongqing [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Zhao, Chunyan, E-mail: zhaochy07@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2013-03-15

    Highlights: ► We identify the binding mode of PCB153 to human serum albumin (HSA). ► Spectroscopic and molecular modeling results reveal that PCB153 binds at the site II. ► The interaction is mainly governed by hydrophobic and hydrogen bond forces. ► The work helps to probe transporting, distribution and toxicity effect of PCBs. -- Abstract: Polychlorinated biphenyls (PCBs) possessed much potential hazard to environment because of its chemical stability and biological toxicity. Here, we identified the binding mode of a representative compound, PCB153, to human serum albumin (HSA) using fluorescence and molecular dynamics simulation methods. The fluorescence study showed that the intrinsic fluorescence of HSA was quenched by addition of PCB153 through a static quenching mechanism. The thermodynamic analysis proved the binding behavior was mainly governed by hydrophobic force. Furthermore, as evidenced by site marker displacement experiments using two probe compounds, it revealed that PCB153 acted exactly on subdomain IIIA (site II) of HSA. On the other hand, the molecular dynamics studies as well as free energy calculations made another important contribution to understand the conformational changes of HSA and the stability of HSA-PCB153 system. Molecular docking revealed PCB153 can bind in a large hydrophobic activity of subdomain IIIA by the hydrophobic interaction and hydrogen bond interactions between chlorine atoms and residue ASN391. The present work provided reasonable models helping us further understand the transporting, distribution and toxicity effect of PCBs when it spread into human blood serum.

  16. Effects of Fenton Reaction on Human Serum Albumin: An In Vitro Study

    Science.gov (United States)

    Khosravifarsani, Meysam; Monfared, Ali Shabestani; Pouramir, Mahdi; Zabihi, Ebrahim

    2016-01-01

    Introduction Human serum albumin (HSA) is a critical protein in human blood plasma, which can be highly damaged by oxidative stress. The aim of this study was to analyze modifications of this protein after oxidation using a Fenton system. Methods In this 2015 experiment, different ratios of Fenton reagent (Fe2+/H2O2) was incubated with one concentration of human serum albumin (1mg/ml). Hence, HSA was incubated 30 min with various combinations of a Fenton system and quantified oxidation products such as carbonyl groups, fragmentations, degradations, and oxidized free thiol group using reliable techniques. Image and data analysis were carried out using ImageJ software and Excel (version 2007), respectively. Results An SDS-PAGE profile showed no cross link and aggregation. However, protein band intensity has decreased to 50% in the highest ratio of H2O2/Fe. Carbonylation assay indicated carbonyl/protein (molc/molp) ratio increased linearly in lower ratios and the values plateau at higher levels of H2O2/Fe 2+. The only free sulfhydryl group on HSA was oxidized in all ratios of the Fenton system. Conclusion To sum, the structure of HSA has been changed following treatment with Hydroxyl Radical as the main product of Fenton reaction. These data confirm the antioxidant activity of HSA.

  17. Data set for mass spectrometric analysis of recombinant human serum albumin from various expression systems

    Directory of Open Access Journals (Sweden)

    Daryl G.S. Smith

    2015-09-01

    Full Text Available Human serum albumin (HSA is a versatile and important protein for the pharmaceutical industry (Fanali et al., Mol. Aspects Med. 33(3 (2012 209–290. Due to the potential transmission of pathogens from plasma sourced albumin, numerous expression systems have been developed to produce recombinant HSA (rHSA (Chen et al., Biochim. Biophys. Acta (BBA—Gen. Subj. 1830(12 (2013 5515–5525; Kobayashi, Biologicals 34(1 (2006 55–59. Based on our previous study showing increased glycation of rHSA expressed in Asian rice (Frahm et al., J. Phys. Chem. B 116(15 (2012 4661–4670, both supplier-to-supplier and lot-to-lot variability of rHSAs from a number of expression systems were evaluated using reversed phase liquid chromatography linked with MS and MS/MS analyses. The data are associated with the research article ‘Determination of Supplier-to-Supplier and Lot-to-Lot Variability in Glycation of Recombinant Human Serum Albumin Expressed in Oryza sativa’ where further analysis of rHSA samples with additional biophysical methods can be found (Frahm et al., PLoS ONE 10(9 (2014 e109893. We determined that all rHSA samples expressed in rice showed elevated levels of arginine and lysine hexose glycation compared to rHSA expressed in yeast, suggesting that the extensive glycation of the recombinant proteins is a by-product of either the expression system or purification process and not a random occurrence.

  18. Application of headspace solid phase microextraction for study of noncovalent interaction of borneol with human serum albumin

    Institute of Scientific and Technical Information of China (English)

    Liang HU; Dong-ying CHEN

    2009-01-01

    Aim: To investigate noncovalent interactions between borneol and human serum albumin (HSA) under near-physiological conditions. Methods: A 65-um polydimethylsiloxane (PDMS) fiber was selected for sampling. The extraction temperature was kept at 37 ℃, and the extraction time was optimized at 10 min. Borneol solutions of different concentrations were equilibrated in 600 umol/L HSA and 67 mmol/L phosphate buffer solution (pH 7.4,37 ℃) for 24 h prior to solid phase microextraction (SPME) using headspace mode. The binding properties were obtained based on the calculation of extracted borneol amount using gas chromatography (GC) determination. Results: The headspace SPME extraction method avoided disturbance from the HSA binding matrix. The recovery showed good linearity for the borneol concentrations over the range of 0.4-16.3 μmol/L with a regression coefficient (R~2) of 0.9998. The limit of detection and lower limit of quantitation were determined to be 0.01 umol/L and 0.4 umol/L, respectively. The binding constant and the percentage binding rate were estimated to be 2.4×10~3(mol/L)~(-1) and 59.5%, respectively.Conclusion: Headspace SPME coupled to GC is a simple, sensitive and rapid method for the study of borneol binding to HSA. The method may be applied in the determination of other protein binding properties in human plasma.

  19. Structural consistency analysis of recombinant and wild-type human serum albumin

    Science.gov (United States)

    Cao, Hui-Ling; Sun, Li-Hua; Liu, Li; Li, Jian; Tang, Lin; Guo, Yun-Zhu; Mei, Qi-Bing; He, Jian-Hua; Yin, Da-Chuan

    2017-01-01

    Recombinant human serum albumin (rHSA) is potential alternatives for human serum albumin (HSA) which may ease severe shortage of HSA worldwide. In theory, rHSA and HSA are the same. Structure decides function. Therefore, the 3D structural consistency analysis of rHSA and HSA is outmost importance, which is the base of their function consistency. In this paper, the crystal structures of rHSA at resolution limit of 2.22 Å and HSA at 2.30 Å were determined by X-ray diffraction (XRD), which were deposited in the Protein Data Bank (PDB) with accession codes 4G03 (rHSA) and 4G04 (HSA). The differences between rHSA and HSA were systematically analyzed from the crystallization behavior, diffraction data and three-dimensional (3D) structure. The superimposed contrasted analysis indicated that rHSA and HSA achieved a structural similarity of 99% with an r.m.s. deviation of 0.397 Å for the corresponding overall Cα atoms. In addition, the number of α-helices in the rHSA or HSA molecule was verified to be 30. As a result, rHSA can potentially replace HSA. The study provides a theoretical and experimental basis for the clinical and additional applications of rHSA. Meanwhile, it is also a good example for applications of genetic engineering.

  20. A study on human serum albumin influence on glycation of fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr, E-mail: Piotr.stefanowicz@chem.uni.wroc.pl

    2013-09-13

    Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [{sup 13}C{sub 6}] glucose combined with LC-MS were applied as tool for identification possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein.

  1. O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Via della Vasca Navale 79, I-00146 Roma (Italy); National Institute for Infectious Diseases I.R.C.C.S. ' Lazzaro Spallanzani' , Via Portuense 292, I-00149 Roma (Italy); Gullotta, Francesca; Gioia, Magda; Coletta, Massimo [Department of Experimental Medicine and Biochemical Sciences, University of Roma ' Tor Vergata' , Via Montpellier 1, I-00133 Roma (Italy); Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Piazza Umberto I 1, I-87100 Bari (Italy); Fasano, Mauro [Department of Structural and Functional Biology, and Center of Neuroscience, University of Insubria, Via Alberto da Giussano 12a, I-21052 Busto Arsizio, VA (Italy)

    2011-03-04

    Research highlights: {yields} Human serum heme-albumin displays globin-like properties. {yields} O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin. {yields} Allosteric modulation of human serum heme-albumin reactivity. {yields} Rifampicin is an allosteric effector of human serum heme-albumin. {yields} Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O{sub 2}-mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10{sup -5} and 8.3 x 10{sup -4} s{sup -1}, and h = 1.3 x 10{sup -4} and 8.5 x 10{sup -4} s{sup -1}, in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 {sup o}C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O{sub 2} does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O{sub 2}-mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

  2. Interaction of weakly bound antibiotics neomycin and lincomycin with bovine and human serum albumin: biophysical approach.

    Science.gov (United States)

    Keswani, Neelam; Choudhary, Sinjan; Kishore, Nand

    2010-07-01

    The thermodynamics of interaction of neomycin and lincomycin with bovine serum albumin (BSA) and human serum albumin (HSA) has been studied using isothermal titration calorimetry (ITC), in combination with UV-visible, steady state and time resolved fluorescence spectroscopic measurements. Neomycin is observed to bind weakly to BSA and HSA whereas lincomycin did not show any evidence for binding with the native state of these proteins, rather it interacts in the presence of surfactants. The ITC results suggest 1 : 1 binding stoichiometry for neomycin in the studied temperature range. The values of the van't Hoff enthalpy do not agree with the calorimetric enthalpy in the case of neomycin, suggesting conformational changes in the protein upon ligand binding, as well as with the rise in the temperature. Experiments at different ionic strengths, and in the presence of tetrabutyl ammonium bromide and surfactants suggest the predominant involvement of electrostatic interactions in the complexation process of neomycin with BSA and HSA, and non-specific interaction behaviour of lincomycin with these proteins.

  3. Binding of ring-substituted indole-3-acetic acids to human serum albumin.

    Science.gov (United States)

    Soskić, Milan; Magnus, Volker

    2007-07-01

    The plant hormone, indole-3-acetic acid (IAA), and its ring-substituted derivatives have recently attracted attention as promising pro-drugs in cancer therapy. Here we present relative binding constants to human serum albumin for IAA and 34 of its derivatives, as obtained using the immobilized protein bound to a support suitable for high-performance liquid chromatography. We also report their octanol-water partition coefficients (logK(ow)) computed from retention data on a C(18) coated silica gel column. A four-parameter QSPR (quantitative structure-property relationships) model, based on physico-chemical properties, is put forward, which accounts for more than 96% of the variations in the binding affinities of these compounds. The model confirms the importance of lipophilicity as a global parameter governing interaction with serum albumin, but also assigns significant roles to parameters specifically related to the molecular topology of ring-substituted IAAs. Bulky substituents at ring-position 6 increase affinity, those at position 2 obstruct binding, while no steric effects were noted at other ring-positions. Electron-withdrawing substituents at position 5 enhance binding, but have no obvious effect at other ring positions.

  4. Serum Albumin Binding and Esterase Activity: Mechanistic Interactions with Organophosphates

    Directory of Open Access Journals (Sweden)

    Nikolay V. Goncharov

    2017-07-01

    Full Text Available The albumin molecule, in contrast to many other plasma proteins, is not covered with a carbohydrate moiety and can bind and transport various molecules of endogenous and exogenous origin. The enzymatic activity of albumin, the existence of which many scientists perceive skeptically, is much less studied. In toxicology, understanding the mechanistic interactions of organophosphates with albumin is a special problem, and its solution could help in the development of new types of antidotes. In the present work, the history of the issue is briefly examined, then our in silico data on the interaction of human serum albumin with soman, as well as comparative in silico data of human and bovine serum albumin activities in relation to paraoxon, are presented. Information is given on the substrate specificity of albumin and we consider the possibility of its affiliation to certain classes in the nomenclature of enzymes.

  5. Reciprocal allosteric modulation of carbon monoxide and warfarin binding to ferrous human serum heme-albumin.

    Directory of Open Access Journals (Sweden)

    Alessio Bocedi

    Full Text Available Human serum albumin (HSA, the most abundant protein in human plasma, could be considered as a prototypic monomeric allosteric protein, since the ligand-dependent conformational adaptability of HSA spreads beyond the immediate proximity of the binding site(s. As a matter of fact, HSA is a major transport protein in the bloodstream and the regulation of the functional allosteric interrelationships between the different binding sites represents a fundamental information for the knowledge of its transport function. Here, kinetics and thermodynamics of the allosteric modulation: (i of carbon monoxide (CO binding to ferrous human serum heme-albumin (HSA-heme-Fe(II by warfarin (WF, and (ii of WF binding to HSA-heme-Fe(II by CO are reported. All data were obtained at pH 7.0 and 25°C. Kinetics of CO and WF binding to the FA1 and FA7 sites of HSA-heme-Fe(II, respectively, follows a multi-exponential behavior (with the same relative percentage for the two ligands. This can be accounted for by the existence of multiple conformations and/or heme-protein axial coordination forms of HSA-heme-Fe(II. The HSA-heme-Fe(II populations have been characterized by resonance Raman spectroscopy, indicating the coexistence of different species characterized by four-, five- and six-coordination of the heme-Fe atom. As a whole, these results suggest that: (i upon CO binding a conformational change of HSA-heme-Fe(II takes place (likely reflecting the displacement of an endogenous ligand by CO, and (ii CO and/or WF binding brings about a ligand-dependent variation of the HSA-heme-Fe(II population distribution of the various coordinating species. The detailed thermodynamic and kinetic analysis here reported allows a quantitative description of the mutual allosteric effect of CO and WF binding to HSA-heme-Fe(II.

  6. Smartphone based point-of-care detector of urine albumin

    Science.gov (United States)

    Cmiel, Vratislav; Svoboda, Ondrej; Koscova, Pavlina; Provaznik, Ivo

    2016-03-01

    Albumin plays an important role in human body. Its changed level in urine may indicate serious kidney disorders. We present a new point-of-care solution for sensitive detection of urine albumin - the miniature optical adapter for iPhone with in-built optical filters and a sample slot. The adapter exploits smart-phone flash to generate excitation light and camera to measure the level of emitted light. Albumin Blue 580 is used as albumin reagent. The proposed light-weight adapter can be produced at low cost using a 3D printer. Thus, the miniaturized detector is easy to use out of lab.

  7. Behavior of human serum albumin on strong cation exchange resins: II. model analysis.

    Science.gov (United States)

    Voitl, Agnes; Butté, Alessandro; Morbidelli, Massimo

    2010-08-20

    Experiments with human serum albumin on a strong cation exchange resin exhibit a peculiar elution pattern: the protein elutes with two peaks in a modifier gradient. This behavior is modeled with a general rate model, where the two elution peaks are modeled with two binding conformations, one of which is at equilibrium conditions, while for the other, the adsorption process is rate limited. Isocratic experiments under nonadsorbing conditions were used to characterize the mass transfer process. The isotherm of both adsorption conformations as well as the kinetic of adsorption and desorption for the second conformation are functions of the modifier concentration. They are evaluated with linear modifier gradient experiments and step experiments with various adsorption times. All experimental features are well reproduced by the proposed modified general rate model.

  8. Studies on the binding of vinpocetine to human serum albumin by molecular spectroscopy and modeling

    Institute of Scientific and Technical Information of China (English)

    Hua Jiang; Rong Rong Chen; Hong Cui Wang; Han Lin Pu

    2012-01-01

    The interaction between vinpocetine (VPC) and human serum albumin (HSA) in physiological buffer (pH 7.40) was investigated by fluorescence,FT-IR,UV-vis absorption and molecular modeling.VPC effectively quenched the intrinsic fluorescence of HSA via static quenching.The binding site number n and apparent binding constant Ka,corresponding thermodynamic parameters △G,△H and △S at different temperatures were calculated.The synchronous fluorescence and FT-IR spectra were used to investigate the structural change of HSA molecules with addition of VPC.Molecular modeling indicated that VPC could bind to the site I of HSA and hydrophobic interaction was the major acting force,which was in agreement with the binding mode study.

  9. Doping Human Serum Albumin with Retinoate Markedly Enhances Electron Transport Across the Protein

    CERN Document Server

    Amdursky, Nadav; Sheves, Mordechai; Cahen, David

    2012-01-01

    Electrons can migrate via proteins over distances that are considered long for non-conjugated systems. Proteins' nano-scale dimensions and the enormous flexibility of their structures and chemistry makes them fascinating subjects for investigating the mechanism of their electron transport (ETp) capacity. One particular attractive research direction is that of tuning their ETp efficiency by doping them with external small molecules. Here we report that solid-state ETp across human serum albumin (HSA) increases by more than two orders of magnitude upon retinoate (RA) binding to HSA. RA was chosen because optical spectroscopy has provided evidence for the non-covalent binding of at least three RA molecules to HSA and indications for their relative structural positions. The temperature dependence of ETp shows that both the activation energy and the distance-decay constant decrease with increasing RA binding to HSA. Furthermore, the observed transition from temperature-activated ETp above 190K to temperature-indep...

  10. Fluorescence resonance energy transfer from tryptophan in human serum albumin to a bioactive indoloquinolizine system

    Indian Academy of Sciences (India)

    Paramita Das; Arabinda Mallick; Basudeb Haldar; Alok Chakrabarty; Nitin Chattopadhyay

    2007-03-01

    The interaction between a bioactive molecule, 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), with human serum albumin (HSA) has been studied using steady-state absorption and fluorescence techniques. A 1 : 1 complex formation has been established and the binding constant () and free energy change for the process have been reported. The AODIQ-HSA complex results in fluorescence resonance energy transfer (FRET) from the tryptophan moiety of HSA to the probe. The critical energy-transfer distance (0) for FRET and the Stern-Volmer constant (sv) for the fluorescence quenching of the donor in the presence of the acceptor have been determined. Importantly, SV has been shown to be equal to the binding constant itself, implying that the fluorescence quenching arises only from the FRET process. The study suggests that the donor and the acceptor are bound to the same protein at different locations but within the quenching distance.

  11. Kinetics of fatty acid binding ability of glycated human serum albumin

    Indian Academy of Sciences (India)

    Eiji Yamazaki; Minoru Inagaki; Osamu Kurita; Tetsuji Inoue

    2005-09-01

    Kinetics of fatty acid binding ability of glycated human serum albumin (HSA) were investigated by fluorescent displacement technique with 1-anilino-8-naphtharene sulphonic acid (ANS method), and photometric detection of nonesterified-fatty-acid (NEFA method). Changing of binding affinities of glycated HSA toward oleic acid, linoleic acid, lauric acid, and caproic acid, were not observed by the ANS method. However, decreases of binding capacities after 55 days glycation were confirmed by the NEFA method in comparison to control HSA. The decrease in binding affinities was: oleic acid (84%), linoleic acid (84%), lauric acid (87%), and caproic acid (90%), respectively. The decreases were consistent with decrease of the intact lysine residues in glycated HSA. The present observation indicates that HSA promptly loses its binding ability to fatty acid as soon as the lysine residues at fatty acid binding sites are glycated.

  12. Binding of caffeine, theophylline, and theobromine with human serum albumin: A spectroscopic study

    Science.gov (United States)

    Zhang, Hong-Mei; Chen, Ting-Ting; Zhou, Qiu-Hua; Wang, Yan-Qing

    2009-12-01

    The interaction between three purine alkaloids (caffeine, theophylline, and theobromine) and human serum albumin (HSA) was investigated using UV/vis absorption, circular dichroism (CD), fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques. The results revealed that three alkaloids caused the fluorescence quenching of HSA by the formation of alkaloid-HSA complex. The binding site number n and apparent binding constant KA, corresponding thermodynamic parameters the free energy change (Δ G), enthalpy change (Δ H), and entropy change (Δ S) at different temperatures were calculated. The hydrophobic interaction plays a major role in stabilizing the complex. The distance r between donor (HSA) and acceptor (alkaloids) was obtained according to fluorescence resonance energy transfer. The effect of alkaloids on the conformation of HSA was analyzed using circular dichroism (CD), UV/vis absorption, synchronous fluorescence and three-dimensional fluorescence spectra techniques.

  13. A novel therapeutic strategy for experimental stroke using docosahexaenoic acid complexed to human albumin

    Directory of Open Access Journals (Sweden)

    Belayev Ludmila

    2016-01-01

    Full Text Available Despite tremendous efforts in ischemic stroke research and significant improvements in patient care within the last decade, therapy is still insufficient. There is a compelling, urgent need for safe and effective neuroprotective strategies to limit brain injury, facilitate brain repair, and improve functional outcome. Recently, we reported that docosahexaenoic acid (DHA; 22:6, n-3 complexed to human albumin (DHA-Alb is highly neuroprotective after temporary middle cerebral artery occlusion (MCAo in young rats. This review highlights the potency of DHA-Alb therapy in permanent MCAo and aged rats and whether protection persists with chronic survival. We discovered that a novel therapy with DHA-Alb improved behavioral outcomes accompanied by attenuation of lesion volumes even when animals were allowed to survive three weeks after experimental stroke. This treatment might provide the basis for future therapeutics for patients suffering from ischemic stroke.

  14. Study of caffeine binding to human serum albumin using optical spectroscopic methods

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The binding of caffeine to human serum albumin (HSA) under physiological conditions has been stud-ied by the methods of fluorescence,UV-vis absorbance and circular dichroism (CD) spectroscopy. The mechanism of quenching of HSA fluorescence by caffeine was shown to involve a dynamic quenching procedure. The number of binding sites n and apparent binding constant Kb were measured by the fluorescence quenching method and the thermodynamic parameters △H,△G,△S were calculated. The results indicate that the binding is mainly enthalpy-driven,with van der Waals interactions and hydrogen bonding playing major roles in the reaction. The distance r between donor (HSA) and acceptor (caffeine) was obtained according to the Frster theory of non-radiative energy transfer. Synchronous fluorescence,CD and three-dimensional fluorescence spectroscopy showed that the microenvironment and conformation of HSA were altered during the reaction.

  15. Interaction of Hyperoside with Human Serum Albumin and Effect of Glucose on the Binding

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2014-01-01

    Full Text Available The interaction of hyperoside (Hyp with human serum albumin (HSA and effect of glucose on the binding were studied in simulating physiological condition (pH 7.40. The results suggested that Hyp quenched the endogenous fluorescence of HSA via a static quenching process with the distance of 1.95 nm between Hyp and HSA. Hydrophobic forces played a major role in stabilizing the Hyp-HSA complex. Through synchronous fluorescence monitoring of conformation of HSA, we found that the binding to Hyp can change the microenvironment around tryptophan (Trp residues. Increasing in glucose concentration over a range from 0 to 9 mM decreased the binding ability of HSA to Hyp, implying that increasing in glucose concentration would increase the concentration of free Hyp.

  16. Investigation of ketoprofen binding to human serum albumin by spectral methods

    Science.gov (United States)

    Bi, Shuyun; Yan, Lili; Sun, Yantao; Zhang, Hanqi

    2011-01-01

    The binding of ketoprofen with human serum albumin (HSA) was studied by fluorescence and absorption spectroscopic methods. Quenching of fluorescence of HSA was found to be a static quenching process. At 288.15, 298.15, 308.15 and 318.15 K, the binding constants and binding sites were obtained. The effects of Cu 2+, Al 3+, Ca 2+, Pb 2+ and K + on the binding at 288.15 K were also studied. The thermodynamic parameters, Δ H, Δ G and Δ S were got and the main sort of acting force between ketoprofen and HSA was studied. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r, between the acceptor (ketoprofen) and the donor (HSA) was calculated.

  17. Influence of the galloyl moiety in tea catechins on binding affinity for human serum albumin.

    Science.gov (United States)

    Minoda, Kanako; Ichikawa, Tatsuya; Katsumata, Tomoharu; Onobori, Ken-ichi; Mori, Taiki; Suzuki, Yukiko; Ishii, Takeshi; Nakayama, Tsutomu

    2010-01-01

    The major catechins of green tea extract are (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg). Recent research has indicated that catechins form complexes with human serum albumin (HSA) in blood, and differences in their binding affinity toward HSA are believed to modulate their bioavailability. In this study, we kinetically investigated the interaction between the catechins and HSA immobilized on a quartz-crystal microbalance (QCM). The association constants obtained from the frequency changes of QCM revealed interactions of ECg and EGCg with HSA that are 100 times stronger than those of EC and EGC. Furthermore, comparisons of these catechins by native-gel electrophoresis/blotting with redox-cycling staining revealed that, in a phosphate buffer, ECg and EGCg have a higher binding affinity toward HSA than EC and EGC. These observations indicate that catechins with a galloyl moiety have higher binding affinities toward HSA than catechins lacking a galloyl moiety.

  18. Binding properties of drospirenone with human serum albumin and lysozyme in vitro

    Science.gov (United States)

    Wang, Qing; Ma, Xiangling; He, Jiawei; Sun, Qiaomei; Li, Yuanzhi; Li, Hui

    2016-01-01

    The interaction of drospirenone (DP) with human serum albumin (HSA)/lysozyme (LYZ) was investigated using different optical techniques and molecular models. Results from the emission and time resolved fluorescence studies revealed that HSA/LYZ emission quenching with DP was initiated by static quenching mechanism. The LYZ-DP system was more easily influenced by temperature than the HSA-DP system. Displacement experiments demonstrated that the DP binding site was mainly located in site 1 of HSA. Based on the docking methods, DP was mainly bound in the active site hinge region where Trp-62 and Trp-63 are located. Conformation study showed that DP had different effects on the local conformation of HSA and LYZ molecules.

  19. Gold nanoparticles' blocking effect on UV-induced damage to human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Calzolai, Luigi, E-mail: luigi.calzolai@jrc.ec.europa.eu; Laera, Stefania; Ceccone, Giacomo; Gilliland, Douglas [Institute for Health and Consumer Protection, European Commission, Joint Research Centre (Italy); Hussain, Rohanah; Siligardi, Giuliano [Diamond Light Source (United Kingdom); Rossi, Francois [Institute for Health and Consumer Protection, European Commission, Joint Research Centre (Italy)

    2013-01-15

    Ultraviolet radiation can cause the unfolding and destabilization of proteins. By using high energy photons from a synchrotron radiation source, we show that the UV-induced destabilization of human serum albumin (HSA) can be detected and monitored by measuring the circular dichroism spectrum of the protein. The high flux radiation source damages the HSA protein by causing a partial unfolding of the protein and a significant reduction in the amount of its secondary structure. Gold nanoparticles can effectively stop this UV-induced unfolding of HSA caused by synchrotron radiation. These phenomena could offer interesting applications to protect HSA protein from UV-induced damage and provide an alternative method to measure the relative stability of HSA.

  20. Effects of human serun albumin in some biological properties of rhodium(II complexes

    Directory of Open Access Journals (Sweden)

    Espósito Breno P.

    2000-01-01

    Full Text Available The affinities for human albumin (HSA of five rhodium(II complexes of general formula [Rh2(bridge4] (bridge = acetate, propionate, butyrate, trifluoroacetate and trifluoroacetamidate were determined by spectrophotometry. In the case of the alkylcarboxylates, an inverse correlation of affinity with their liposolubilities was observed. Diffusion of the free or protein-bound complexes into Ehrlich cells in vitro seems to be primarily governed by the hydrophobic character of the complex. The complex [Rh2(tfc4] exhibited affinity towards the protein (K = 214.1 as well as cell partition both in the absence (32.1% and presence (48.6% of HSA. The compound HSA: [Rh2(tfc4] has had its antitumoral action in tumor-bearing Balb-c mice investigated, showing that HSA can be a drug reservoir for the rhodium complex.

  1. A Comparative Study on the Interaction of Sulfonamide and Nanosulfonamide with Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    G. Rezaei Behbehani

    2013-01-01

    Full Text Available Binding parameters of the N-phenyl benzene sulfonyl hydrazide, sulfonamide, and nanosulfonamide interaction with human serum albumin were determined by calorimetry method. The obtained binding parameters indicated that sulfonamide in the second binding sites has higher affinity for binding than the first binding sites. The binding process of sulfonamide to HSA is both enthalpy and entropy driven. The associated equilibrium constants confirm that sulfonamide binds to HSA with high affinity (2.2×106 and 3.86105 M−1 for first and second sets of binding sites, resp.. The obtained results indicate that sulfonamide increases the HSA antioxidant property. Nanosulfonamide has much more affinity for HSA (3.6×106 M−1 than sulfonamide.

  2. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin.

    Science.gov (United States)

    Takenaka, Musashi; Okumura, Yuzo; Amino, Tomokazu; Miyachi, Yusuke; Ogino, Chiaki; Kondo, Akihiko

    2017-02-15

    DNA-duplex interactions in thymines and adenins are used as a linker for the novel methodology of Atomic Force Microscope-Systematic Evolution of Ligands by EXpotential enrichment (AFM-SELEX). This study used the hydrogen bonds in 10 mer of both thymines (T10) and adenines (A10). Initially, the interactive force in T10-A10 was measured by AFM, which returned an average interactive force of approximately 350pN. Based on this result, DNA aptamers against human serum albumin could be selected in the 4th round, and 15 different clones could be sequenced. The lowest dissociation constant of the selected aptamer was identified via surface plasmon resonance, and it proved to be identical to that of the commercial aptamer. Therefore, specific hydrogen bonds in DNA can be useful linkers for AFM-SELEX. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Human Serum Albumin Hybrid Incorporating Synthetic Hemes :A Novel O2-Carrying Hemoprotein

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Incorporation of synthetic heme (FeP) into recombinant human serum albumin(rHSA) provides an artificial hemoprotein(rHSA-FeP) which can bind and release oxygenreversibly under physiological conditions(in aqueous media, pH 7.3, 37 ℃) like hemoglobin(Hb) and myoglobin. An rHSA host absorbs maximally eight FeP molecules, and thesolution properties are almost identical to those of rHSA itself. The second-order structureand surface charge distribution of rHSA were always constant independent of the bindingnumbers of FeP. Its O2-binding ability satisfies the initial clinical requirements for red cellsubstitute. Although the NO-binding affinity is 8-fold high compared to the Hb's,administration of this fluid into rats showed negligible change in the blood pressure.Physiological responses to exchange transfusion with this rHSA-FeP into anaesthetized ratshave also been evaluated.

  4. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, David, E-mail: caballero@unistra.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Martinez, Elena [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Bausells, Joan [Centre Nacional de Microelectronica (CNM-IMB), CSIC, Campus UAB, 08193 Bellaterra (Spain); Errachid, Abdelhamid, E-mail: abdelhamid.errachid-el-salhi@univ-lyon1.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Universite Claude Bernard - Lyon 1, LSA - UMR 5180, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Samitier, Josep [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. Black-Right-Pointing-Pointer Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. Black-Right-Pointing-Pointer Silicon nitride offers multiple advantages compared to other common materials. Black-Right-Pointing-Pointer The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si{sub 3}N{sub 4}) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si{sub 3}N{sub 4}-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO{sub 2}/Si{sub 3}N{sub 4} structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10{sup -13}-10{sup -7} M were detected, showing a sensitivity of 0.128 {Omega} {mu}M{sup -1} and a limit of detection of 10{sup -14} M. The specificity of the sensor was also addressed by studying the

  5. Calorimetric and spectroscopic studies on the interaction of anticancer drug mitoxantrone with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Keswani, Neelam [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Kishore, Nand, E-mail: nandk@chem.iitb.ac.in [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2011-09-15

    Highlights: > Human serum albumin exhibits two binding sites for mitoxantrone. > Discrepancies in calorimetric and spectroscopic results clarify binding sites. > Effect of ionic strength on binding permitted detailed analysis of interactions. > Electrostatic interactions predominate in binding. > One binding site on protein does not have tryptophan in immediate vicinity. - Abstract: Binding of the anticancer drug mitoxantrone with the protein human serum albumin (HSA) has been studied by using isothermal titration calorimetry (ITC), in combination with fluorescence, UV-visible, and circular dichroism spectroscopy. The thermodynamic parameters of binding have been evaluated from ITC and spectroscopic results and compared. The ITC results demonstrate that the binding of mitoxantrone with HSA occurs according to two sets of binding sites on the protein as opposed to the fluorescence and UV-visible spectroscopic results. Blockage of one binding site on HSA for mitoxantrone in the presence of NaCl indicates strong involvement of electrostatic interactions in the binding of the drug with the protein. An insignificant temperature dependence of the association constant observed in fluorescence measurements suggests a very low enthalpy of binding which is in close agreement with the results obtained from ITC measurements. Fluorescence life time measurements suggest formation of a static complex between mitoxantrone and HSA. The discrepancies in the ITC and fluorescence results suggest that one of the binding sites on the protein for mitoxantrone does not contain tryptophan residue in its immediate vicinity. The calorimetric and spectroscopic results have provided quantitative information on the binding of mitoxantrone with HSA and suggest that the binding is dominated by electrostatic interactions.

  6. Kinetics and thermodynamics of human serum albumin adsorption on silicon doped diamond like carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mukhtar H., E-mail: ahmed-m@email.ulster.ac.uk; Byrne, John A.; McLaughlin, James

    2015-03-15

    To gain a better understanding of protein adsorption onto biomaterial surfaces is required for the control of biocompatibility and bioactivity. Various samples of diamond like carbon (DLC) and silicon-doped DLC were synthesised using plasma enhanced chemical vapour deposition (PECVD). The effects of surface morphology on the interaction of human serum albumin (HSA) with doped and undoped DLC films was investigated using spectroscopic ellipsometry (SE) and other surface analysis techniques. The results highlighted an increase in both contact angle and hydrophobicity with increasing silicon dopant levels. A reduction on the contact angle values. After adsorption of HSA, the films showed a reduction in the contact angle with a significant change in the cosΔ and this gap increased with increasing surface coverage of HSA. The adsorption kinetics of HSA were also investigated and revealed that the maximum adsorption occurred at pH 5.0 and the process involved chemisorption. The experimental isotherm data were analysed using the Langmuir and Freundlich‎ models. The amount of HSA adsorbed increased with contact time and reached saturation ‎after 30 min. The adsorption ‎process was found to be pseudo first order with respect to the bulk concentration and was dependent on both the concentration of protein and surface characteristics of the samples. The amount of adsorbed HSA was higher with higher levels of silicon doping of the DLC. Therefore, doping DLC may provide an approach to controlling the protein adsorption. - Graphical abstract: The average thickness layer of HSA measurement onto surfaces of DLC and Si-DLC. - Highlights: • Diamond Like Carbon (DLC) and Silicon doped DLC were synthesised and characterised. • Si-DLC increases the hydrophobicity and decreases the surface free energy. • Adsorption study using human serum albumin (HSA). • The adsorbed amount of HSA increases with increasing of Silicon content DLC. • Adsorption process follow pseudo

  7. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer

    Directory of Open Access Journals (Sweden)

    Qu N

    2016-07-01

    Full Text Available Na Qu,1 Robert J Lee,1,2 Yating Sun,1 Guangsheng Cai,1 Junyang Wang,1 Mengqiao Wang,1 Jiahui Lu,1 Qingfan Meng,1 Lirong Teng,1 Di Wang,1 Lesheng Teng1,3 1School of Life Sciences, Jilin University, Changchun, People’s Republic of China; 2Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA; 3State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, People’s Republic of China Abstract: Cabazitaxel-loaded human serum albumin nanoparticles (Cbz-NPs were synthesized to overcome vehicle-related toxicity of current clinical formulation of the drug based on Tween-80 (Cbz-Tween. A salting-out method was used for NP synthesis that avoids the use of chlorinated organic solvent and is simpler compared to the methods based on emulsion-solvent evaporation. Cbz-NPs had a narrow particle size distribution, suitable drug loading content (4.9%, and superior blood biocompatibility based on in vitro hemolysis assay. Blood circulation, tumor uptake, and antitumor activity of Cbz-NPs were assessed in prostatic cancer xenograft-bearing nude mice. Cbz-NPs exhibited prolonged blood circulation and greater accumulation of Cbz in tumors along with reduced toxicity compared to Cbz-Tween. Moreover, hematoxylin and eosin histopathological staining of organs revealed consistent results. The levels of blood urea nitrogen and serum creatinine in drug-treated mice showed that Cbz-NPs were less toxic than Cbz-Tween to the kidneys. In conclusion, Cbz-NPs provide a promising therapeutic for prostate cancer. Keywords: cabazitaxel, human serum albumin, nanoparticle, drug delivery, toxicity, pros­tate cancer

  8. The Investigation of the Interaction between Lomefloxacin and Human Serume Albumin by Specteroscopic Methods

    Directory of Open Access Journals (Sweden)

    F. S. Goldouzian

    2012-03-01

    Full Text Available Mechanism of the binding of lomefloxacin (LMF with human serum albumin has been studied at physiological pH (7.4 using fluorescence spectroscopic technique. LMF is a third-generation fluoroquinolone antibiotic that exhibits striking potency against a broad spectrum of Gram-negative and Gram-positive bacteria through inhibition of DNA gyrase. Lomefloxacin is a drug that is excreted in urine and has very variable systemic absorption. Human serum albumin (HSA is the most important and abundant constituent of blood plasma and serves as a protein storage component. Recently, the three-dimensional structure of HSA was determined through X-ray crystallographic measurement. Fluorescence studies showed that (LMF has an ability to quench the intrinsic fluorescence of HSA through a static quenching  procedure  according to the Stern–Volmer equation .LMF showed two types of binding sites, the first having a very high affinity (1/72 ×107M-1 and a secondary binding site with an affinity two orders lower than the primary site. The number of binding sites for complex: HSA-LMF at 280 nm was calculated 1and0.5. The microenvironment of tryptophan and tyrosin residues and more hydrophobic of fluorophores microenvironment were changed and disturbed by the blue shift in maximum wavelength and decreased in fluorescence intensity in the presence of lomefloxacin revealed  decreased polarity of the fluorophores. The binding site for LMF is in a hydrophobic pocket in the sub-domain II A of HSA.

  9. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts

    Directory of Open Access Journals (Sweden)

    Liu X

    2014-03-01

    Full Text Available Xiangning Liu,1,* Xiaosong Zhou,2,* Shaobing Li,3 Renfa Lai,1 Zhiying Zhou,1 Ye Zhang,1 Lei Zhou3 1The First Affiliated Hospital of Jinan University, Guangzhou, 2Chemistry Science and Technology School, Zhanjiang Normal University, Zhanjiang, 3Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs with or without using bovine serum albumin (BSA to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE, were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1 gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because

  10. [Study of the content of alpha-fetoprotein and serum albumin in the vitreous body of the eye of human embryos].

    Science.gov (United States)

    Panova, I G; Tatikolov, A S

    2011-01-01

    The content of serum albumin and alpha-fetoprotein in the vitreous body of the eyes of human embryos from the 16th through the 24th week was investigated. It was detected that albumin and alpha-fetoprotein in the vitreous body of human eyes are presented in equal molar concentrations in the 16th week. There is 1.5-fold increased concentration of alpha-fetoprotein in comparison to albumin during the 17th week. Seventeen weeks later, there was a reduction in the concentration of both proteins. It was reported that cyanine dye, used for detection of albumin, does not interact with alpha-fetoprotein.

  11. Isolation of human anti-serum albumin Fab antibodies with an extended serum-half life.

    Science.gov (United States)

    Kang, Hyeon-Ju; Kim, Hye-Jin; Cha, Sang-Hoon

    2016-01-01

    The serum albumin (SA) has been exploited to generate long-acting biotherapeutics by taking advantage of the FcRn-mediated recycling mechanism in a direct or an indirect way. Since Fab fragments have been proven to be clinically safe for human usage, we assumed that human anti-SA Fab antibodies could have a great potential as a carrier molecule to extend the serum half-life of therapeutic proteins. We, herein, had attempted to isolate anti-SA Fab antibodies from HuDVFab-8L antibody library via a phage display technology, and identified eight discrete human Fab antibodies. One of the Fab antibodies, SL335, showed the strongest binding reactivity to human SA with nM range of affinity at both pH 6 and pH 7.4, and cross-reacted to SAs from various species including rat, mouse, canine and monkey. The in vivo pharmacokinetic assay using a rat model indicated that SL335 has approximately 10 fold longer serum half-life and 26 to 44-fold increase in AUC0 → ∞ compared to the negative control Fab molecule in both intravenous and subcutaneous administrations. Knowing that Fabs have proven to be safe in clinics for a long time, SL335 seems to have a great potential in generating long-acting protein drugs by tagging effector molecules with either chemical conjugation or genetic fusion.

  12. COUPLING OF THE ANTIVIRAL DRUG ARA-AMP TO LACTOSAMINATED ALBUMIN LEADS TO SPECIFIC UPTAKE IN RAT AND HUMAN HEPATOCYTES

    NARCIS (Netherlands)

    JANSEN, RW; KRUIJT, JK; VANBERKEL, TJC; MEIJER, DKF

    1993-01-01

    We covalently coupled 9-beta-D-arabinofuranosyladenine 5'-monophosphate (ara-AMP) to the carrier molecule lactosaminated human serum albumin using a water-soluble carbodiimide with a two-step conjugation method (pH 4.5 and pH 7.5) instead of the commonly used single-step conjugation at pH 7.5. This

  13. Applicability of (99m) Tc-Labeled Human Serum Albumin Scintigraphy in Dogs With Protein-Losing Enteropathy.

    Science.gov (United States)

    Engelmann, N; Ondreka, N; von Pückler, K; Mohrs, S; Sicken, J; Neiger, R

    2017-03-01

    Diagnosis of protein loss into the gastrointestinal tract using noninvasive techniques is challenging. In people, scintigraphy not only is a sensitive tool to confirm protein-losing enteropathy (PLE), but it also allows for localization of protein loss. To investigate the feasibility of (99m) Tc-labeled human serum albumin (HSA) scintigraphy in dogs with PLE in comparison with control dogs. A total of 8 clinically healthy control research dogs and 7 client-owned dogs with gastrointestinal clinical signs and hypoalbuminemia (serum albumin concentration Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Investigation on the binding activities of citalopram with human and bovine serum albumins

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jingjing; Liu, Yan, E-mail: liuyan@fjirsm.ac.cn; Chen, Mingmao; Huang, Huayin; Song, Ling, E-mail: songling@fjirsm.ac.cn

    2014-02-15

    The binding interactions of citalopram (CIT), an efficient antidepressant, with human serum albumin (HSA) and bovine serum albumin (BSA) were investigated by a series of spectroscopic methods including fluorescence, UV–vis absorption, circular dichroism (CD) and {sup 1}H nuclear magnetic resonance ({sup 1}H NMR). The fluorescence quenching and UV–vis absorption studies reveal that CIT could form complexes with both HSA and BSA. The CIT–BSA complex exhibits higher binding affinity than CIT–HSA complex. The thermodynamic study further suggests that the interactions between CIT and SAs are mainly driven by hydrophobic forces and hydrogen bonds. The {sup 1}H NMR analysis indicates that the participation of different functional groups of CIT is unequal in the complexation of CIT–HSA and CIT–BSA. Site marker competitive experiments show that the interactions between CIT and SAs primarily locate at sub-domain II A (site I). The effects of CIT on the conformation of SAs are further analyzed via synchronous fluorescence, three-dimensional fluorescence and CD spectra techniques. The results prove that the presence of CIT decreases the α-helical content of both SAs and induces the slight unfolding of the polypeptides of protein. Additionally, the conformational change of BSA induced by CIT is larger than that of HSA. -- Highlights: • The difference of binding activity between CIT–BSA and CIT–HSA is first reported. • Use spectroscopic, thermodynamic, and NMR methods. • CIT exhibits higher binding affinity to BSA than to HSA. • The binding forces between CIT and SA have been investigated. • The complexation of CIT–SA induces the conformational change of SA.

  15. Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas, E-mail: shoja-sa@modares.ac.ir [Tarbiat Modares University, Biotechnology Group, Faculty of Chemical Engineering (Iran, Islamic Republic of); Morshedi, Dina; Arpanaei, Ayyoob [National Institute of Genetic Engineering and Biotechnology, Department of Industrial and Environmental Biotechnology (Iran, Islamic Republic of); Marvian, Amir Tayaranian [Aarhus University, Department of Biomedicine (Denmark)

    2015-04-15

    Gallic acid (GA), as an antioxidant and antiparkinson agent, was loaded onto cationic human serum albumin nanoparticles (HSA NPs). Polyethylenimine (PEI)-coated HSA (PEI-HSA) NPs were prepared using three different methods: (I) coating negatively charged HSA NPs with positively charged PEI through attractive electrostatic interactions, (II) coating HSA NPs with PEI via covalent amide bond formation using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride, and (III) coating HSA NPs with PEI via covalent bonding using glutaraldehyde for linking amine groups of PEI and amine groups of albumin NPs. Method II was selected since it resulted in a higher shift in the zeta potential value (mV) and less zeta potential value deviation, and also less size polydispersity. GA was loaded by adsorption onto the surface of PEI-HSA NPs of two different sizes: 117 ± 2.9 nm (PEI-P1) and 180 ± 3.1 nm (PEI-P2) NPs. Both GA-entrapment and GA-loading efficiencies increased slightly with the increasing size of NPs, and were affected intensely by the mass ratio of GA to PEI-HSA NPs. Free radical scavenging of GA was quantified based on the 2,2-diphenyl-1-picrylhydrazyl method. The obtained results showed that GA remains active during the preparation of GA-loaded PEI-HSA NPs. The cytotoxicities of HSA, PEI-HSA, and GA-loaded PEI-HSA NPs on the PC-12 cells, as the neuroendocrine cell line, were measured. Our results indicate that positively charged PEI-HSA NPs are good candidates for efficient and safe delivery of GA to the brain.

  16. Methyl-triclosan binding to human serum albumin: multi-spectroscopic study and visualized molecular simulation.

    Science.gov (United States)

    Lv, Wenjuan; Chen, Yonglei; Li, Dayong; Chen, Xingguo; Leszczynski, Jerzy

    2013-10-01

    Methyl-triclosan (MTCS), a transformation product and metabolite of triclosan, has been widely spread in environment through the daily use of triclosan which is a commonly used anti-bacterial and anti-fungal substance in consumer products. Once entering human body, MTCS could affect the conformation of human serum albumin (HSA) by forming MTCS-HSA complex and alter function of protein and endocrine in human body. To evaluate the potential toxicity of MTCS, the binding mechanism of HSA with MTCS was investigated by UV-vis absorption, circular dichroism and Fourier transform infrared spectroscopy. Binding constants, thermodynamic parameters, the binding forces and the specific binding site were studied in detail. Binding constant at room tempreture (T = 298K) is 6.32 × 10(3)L mol(-1); ΔH(0), ΔS(0) and ΔG(0) were 22.48 kJ mol(-1), 148.16 J mol(-1)K(-1) and -21.68 kJ mol(-1), respectively. The results showed that the interactions between MTCS and HSA are mainly hydrophobic forces. The effects of MTCS on HSA conformation were also discussed. The binding distance (r = 1.2 nm) for MTCS-HSA system was calculated by the efficiency of fluorescence resonance energy transfer. The visualized binding details were also exhibited by molecular modeling method and the results could agree well with that from the experimental study.

  17. Human Liver Cells Expressing Albumin and Mesenchymal Characteristics Give Rise to Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Irit Meivar-Levy

    2011-01-01

    Full Text Available Activation of the pancreatic lineage in the liver has been suggested as a potential autologous cell replacement therapy for diabetic patients. Transcription factors-induced liver-to-pancreas reprogramming has been demonstrated in numerous species both in vivo and in vitro. However, human-derived liver cells capable of acquiring the alternate pancreatic repertoire have never been characterized. It is yet unknown whether hepatic-like stem cells or rather adult liver cells give rise to insulin-producing cells. Using an in vitro experimental system, we demonstrate that proliferating adherent human liver cells acquire mesenchymal-like characteristics and a considerable level of cellular plasticity. However, using a lineage-tracing approach, we demonstrate that insulin-producing cells are primarily generated in cells enriched for adult hepatic markers that coexpress both albumin and mesenchymal markers. Taken together, our data suggest that adult human hepatic tissue retains a substantial level of developmental plasticity, which could be exploited in regenerative medicine approaches.

  18. Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future

    Science.gov (United States)

    2016-01-01

    Serum albumin (Alb) is the most abundant protein in blood plasma. Alb reacts with many carcinogens and/or their electrophilic metabolites. Studies conducted over 20 years ago showed that Alb forms adducts with the human carcinogens aflatoxin B1 and benzene, which were successfully used as biomarkers in molecular epidemiology studies designed to address the role of these chemicals in cancer risk. Alb forms adducts with many therapeutic drugs or their reactive metabolites such as β-lactam antibiotics, acetylsalicylic acid, acetaminophen, nonsteroidal anti-inflammatory drugs, chemotherapeutic agents, and antiretroviral therapy drugs. The identification and characterization of the adduct structures formed with Alb have served to understand the generation of reactive metabolites and to predict idiosyncratic drug reactions and toxicities. The reaction of candidate drugs with Alb is now exploited as part of the battery of screening tools to assess the potential toxicities of drugs. The use of gas chromatography-mass spectrometry, liquid chromatography, or liquid chromatography-mass spectrometry (LC-MS) enabled the identification and quantification of multiple types of Alb xenobiotic adducts in animals and humans during the past three decades. In this perspective, we highlight the history of Alb as a target protein for adduction to environmental and dietary genotoxicants, pesticides, and herbicides, common classes of medicinal drugs, and endogenous electrophiles, and the emerging analytical mass spectrometry technologies to identify Alb-toxicant adducts in humans. PMID:27989119

  19. Assessment of the Dissociation Energetics of Some Selected Ligand Drugs Bound on Human Serum Albumin by Differential Scanning Calorimetry.

    Science.gov (United States)

    Faroongsarng, Damrongsak

    2016-04-01

    Drug-protein binding may play a role in the thermal energetics of protein denaturation and could lead to the determination of its equilibrium dissociation parameter. The aim of this study was to assess the energetics of a drug that was bound to human serum albumin (HSA) during thermal denaturation. Drugs that were bound at a single high-affinity primary binding site on HSA, including diazepam and ibuprofen, were employed. Commercial HSA was treated with charcoal to remove stabilizers and adjusted to 20% w/v in a pH 7.4 buffered solution. Serial concentrations of individual drugs up to 0.16 mmole/g-protein were added to the cleaned HSA solutions whereas diazepam was added to a commercial HSA solution. Samples were subjected to differential scanning calorimetry (DSC) set to run from 37 to 90°C at 3.0°C/min. Binding of the drug slightly increased the denaturing temperature of the cleaned HSA due to a shift in the equilibrium toward the native protein bound with the drug. Diazepam depressed the denaturing temperature of the commercial HSA by competing with the stabilizers already bound to the primary site of the HSA. This yielded not only the HSA-stabilizer but also the HSA-diazepam type complexes that exhibited a different denaturation process. A rational approximation of the Lumry-Eyring protein denaturation model was used to treat the DSC endotherms. The approximated scheme: [Formula: see text] was successfully fitted to the data. It was used to determine the dissociation parameters for diazepam and ibuprofen bound to the HSA. These results were comparable to those obtained from other methods.

  20. Biophysical studies of interaction between hydrolysable tannins isolated from Oenothera gigas and Geranium sanguineum with human serum albumin.

    Science.gov (United States)

    Sekowski, Szymon; Ionov, Maksim; Kaszuba, Mateusz; Mavlyanov, Saidmukhtar; Bryszewska, Maria; Zamaraeva, Maria

    2014-11-01

    Tannins, secondary plant metabolites, possess diverse biological activities and can interact with biopolymers such as lipids or proteins. Interactions between tannins and proteins depend on the structures of both and can result in changes in protein structure and activity. Because human serum albumin is the most abundant protein in plasma and responsible for interactions with important biological compounds (e.g. bilirubin) and proper blood pressure, therefore, it is very important to investigate reactions between HSA and tannins. This paper describes the interaction between human serum albumin (HSA) and two tannins: bihexahydroxydiphenoyl-trigalloylglucose (BDTG) and 1-O-galloyl-4,6-hexahydroxydiphenoyl-β-d-glucose (OGβDG), isolated from Geranium sanguineum and Oenothera gigas leafs, respectively. Optical (spectrofluorimetric) and chiral optical (circular dichroism) methods were used in this study. Fluorescence analysis demonstrated that OGβDG quenched HSA fluorescence more strongly than BDTG. Both OGβDG and BDTG formed complexes with albumin and caused a red shift of the fluorescence spectra but did not significantly change the protein secondary structure. Our studies clearly demonstrate that the tested tannins interact very strongly with human serum albumin (quenching constant K=88,277.26±407.04 M(-1) and K=55,552.67±583.07 M(-1) respectively for OGβDG and BDTG) in a manner depending on their chemical structure.

  1. Effect of human serum albumin upon the permeabilizing activity of sticholysin II, a pore forming toxin from Stichodactyla heliantus.

    Science.gov (United States)

    Celedón, Gloria; González, Gustavo; Gulppi, Felipe; Pazos, Fabiola; Lanio, María E; Alvarez, Carlos; Calderón, Cristian; Montecinos, Rodrigo; Lissi, Eduardo

    2013-12-01

    Sticholysin II (St II) is a haemolytic toxin isolated from the sea anemone Stichodactyla helianthus. The high haemolytic activity of this toxin is strongly dependent on the red cell status and the macromolecule conformation. In the present communication we evaluate the effect of human serum albumin on St II haemolytic activity and its capacity to form pores in the bilayer of synthetic liposomes. St II retains its pore forming capacity in the presence of large concentrations (up to 500 μM) of human serum albumin. This effect is observed both in its capacity to produce red blood cells haemolysis and to generate functional pores in liposomes. In particular, the capacity of the toxin to lyse red blood cells increases in the presence of human serum albumin (HSA). Regarding the rate of the pore forming process, it is moderately decreased in liposomes and in red blood cells, in spite of an almost total coverage of the interface by albumin. All the data obtained in red cells and model membranes show that St II remains lytically active even in the presence of high HSA concentrations. This stubbornness can explain why the toxin is able to exert its haemolytic activity on membranes immersed in complex plasma matrixes such as those present in living organisms.

  2. Fluorimetric study of the interaction between human serum albumin and quinolones-terbium complex and its application

    Science.gov (United States)

    Wang, Yusheng; Feng, Lin; Jiang, Chongqiu

    2005-10-01

    A highly sensitive spectrofluorimetric method is proposed for determination of human serum albumin (HSA) and some quinolone drugs. Using quinolones-terbium (Tb 3+) complex as a fluorescent probe, in the buffer solution of pH 7.8, HSA can remarkably enhance the fluorescence intensity of the quinolones-Tb 3+ complex at 545 nm and the enhanced fluorescence intensity of Tb 3+ ion is in proportion to the concentration of HSA and quinolone drugs. Optimum conditions for the determination of HSA were also investigated. The linear ranges and limits of detection are 8.0 × 10 -9 to 8.0 × 10 -8 mol L -1, 4.20 × 10 -9 mol L -1 (for HSA); 1.0 × 10 -6 to 4.0 × 10 -6 mol L -1, 1.87 × 10 -8 mol L -1 (for norfloxacin) and 1.0 × 10 -7 to 1.0 × 10 -6 mol L -1, 4.82 × 10 -8 mol L -1 (for enoxacine), respectively. This method is simple, practical and relatively free interference from coexisting substances, as well as much more sensitive than most of the existing assays.

  3. Investigation of the interaction between sophoricoside and human serum albumin by optical spectroscopy and molecular modeling methods

    Science.gov (United States)

    Tang, Jianghong; Lian, Ning; He, Xianghong; Zhang, Guohua

    2008-10-01

    The interaction of sophoricoside and human serum albumin (HSA) was investigated by UV-absorption, fluorescence spectroscopy and Fourier transform infrared (FT-IR) spectroscopy at simulative physiological pH with sophoricoside concentrations of 3.0 × 10 -6 to 2.3 × 10 -5 mol L -1. The experimental results suggested that the intrinsic fluorescence of HSA was quenched by addition of sophoricoside through static quenching mechanism. The interaction between sophoricoside and HSA was occurred via a single class of binding site. The binding constants at 290, 301, 310 and 318 K were 6.19 × 10 4, 4.69 × 10 4, 3.54 × 10 4, 3.11 × 10 4 L mol -1, respectively. In the presence of sophoricoside the protein secondary structure changed in aqueous solution. The standard enthalpy change (-19.44 kJ mol -1) and standard entropy change (24.71 J mol -1 K -1) of the binding reaction revealed that hydrophobic interaction was the predominant binding force. In addition, molecular modeling showed that sophoricoside was bound within the subdomain IIA of the HSA.

  4. Resonance energy transfer, pH-induced folded states and the molecular interaction of human serum albumin and icariin.

    Science.gov (United States)

    Cheng, Xiao-Xia; Fan, Xiao-Yang; Jiang, Feng-Lei; Liu, Yi; Lei, Ke-Lin

    2015-11-01

    Icariin is a flavonol glycoside with a wide range of pharmacological and biological activities. The pharmacological and biological functions of flavonoid compounds mainly originate from their binding to proteins. The mode of interaction of icariin with human serum albumin (HSA) has been characterized by fluorescence spectroscopy and far- and near-UV circular dichroism (CD) spectroscopy under different pH conditions. Fluorescence quenching studies showed that the binding affinity of icariin with HSA in the buffer solution at different pH values is: Ka (pH 4.5) > Ka (pH 3.5) > Ka (pH 9.0) > Ka (pH 7.0). Red-edge excitation shift (REES) studies revealed that pH had an obvious effect on the mobility of the tryptophan microenvironment and the addition of icariin made the REES effect more distinct. The static quenching mechanism and number of binding sites (n ≈ 1) were obtained from fluorescence data at three temperatures (298, 304 and 310 K). Both ∆H(0) energy transfer theory. We found that pH had little impact on the energy transfer between HSA and icariin. Far- and near-UV CD spectroscopy studies further indicated the influence of pH on the complexation process and the alteration in the protein conformation upon binding.

  5. The influence of the flavonoid quercetin on the interaction of propranolol with human serum albumin: Experimental and theoretical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni-Shahri, Fatemeh S., E-mail: fmohsenishahri@gmail.com [Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Housaindokht, Mohammad R. [Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Bozorgmehr, Mohammad R. [Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Moosavi-Movahedi, Ali A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-10-15

    The binding of propranolol (PROP) to human serum albumin (HSA) in the absence and presence of quercetin (QUER) in aqueous solution was investigated by multiple techniques. The presence of quercetin (QUER) increased binding constant of propranolol (PROP) with HSA. Fluorescence spectroscopy showed that quercetin (QUER) could quench the HSA fluorescence spectra. The results of synchronous fluorescence, resonance light scattering (RLS) and three-dimensional fluorescence spectra showed that propranolol (PROP) and quercetin (QUER) would alter the micro-environment around tryptophan (Trp) and tyrosine (Tyr) residues. According molecular dynamics (MD) simulation results suggested that these ligands can interact with the protein, with affecting the secondary structure of HSA and with a modification of its tertiary structure. Molecular docking studies showed that the affinity and binding site of each of the ligands to HSA altered in the presence of the other. All above results may have related consequence in rationalizing the interferences of ordinary food to cardiac dysrhythmias treatments. - Highlights: • The presence of quercetin increased binding constant of propranolol with HSA. • Quercetin quenched the fluorescence of HSA through a static quenching mechanism. • The binding of propranolol and quercetin with HSA induced partial unfolding. • The tertiary structure of HSA changed after ligand binding. • After the binding of quercetin, the helix content of HSA declined.

  6. Preparation and characterization of conjugates of (modified) human serum albumin and liposomes : Drug carriers with an intrinsic anti-HIV activity

    NARCIS (Netherlands)

    Kamps, JAAM; Swart, PJ; Morselt, HWM; Pauwels, R; DeBethune, MP; DeClercq, E; Meijer, DKF; Scherphof, GL

    1996-01-01

    Human serum albumin (HSA) derivatized with cis-aconitic anhydride (Aco-HSA) that was earlier shown to inhibit replication of human immunodeficiency virus type 1 (HIV-1), was covalently coupled to conventional liposomes, consisting of phosphatidylcholine, cholesterol and

  7. Study the interactions between human serum albumin and two antifungal drugs: fluconazole and its analogue DTP.

    Science.gov (United States)

    Zhang, Shao-Lin; Yao, Huankai; Wang, Chenyin; Tam, Kin Y

    2014-11-01

    Binding affinities of fluconazole and its analogue 2-(2,4-dichlorophenyl)-1,3-di(1H-1,2,4-triazol-yl)-2-propanol (DTP) to human serum albumin (HSA) were investigated under approximately human physiological conditions. The obtained result indicated that HSA could generate fluorescent quenching by fluconazole and DTP because of the formation of non-fluorescent ground-state complexes. Binding parameters calculated from the Stern-Volmer and the Scatchard equations showed that fluconazole and DTP bind to HSA with binding affinities of the order 10(4)L/mol. The thermodynamic parameters revealed that the binding was characterized by negative enthalpy and positive entropy changes, suggesting that the binding reaction was exothermic. Hydrogen bonds and hydrophobic interaction were found to be the predominant intermolecular forces stabilizing the drug-protein. The effect of metal ions on the binding constants of fluconazole-HSA complex suggested that the presence of Mg(2+) and Zn(2+) ions could decrease the free drug level and extend the half-life in the systematic circulation. Docking experiments revealed that fluconazole and DTP binds in HSA mainly by hydrophobic interaction with the possibility of hydrogen bonds formation between the drugs and the residues Arg 222, Lys 199 and Lys 195 in HSA.

  8. Interaction of oridonin with human serum albumin by isothermal titration calorimetry and spectroscopic techniques.

    Science.gov (United States)

    Li, Xiangrong; Yang, Zhenhua

    2015-05-05

    Oridonin has been traditionally and widely used for treatment of various human diseases due to its uniquely biological, pharmacological and physiological functions. In this study, the interaction between oridonin and human serum albumin (HSA) was investigated using isothermal titration calorimetry (ITC), in combination with fluorescence spectroscopy and UV-vis absorption spectroscopy. We found that the hydrogen bond and van der Waals force are the major binding forces in the binding of oridonin to HSA. The binding of oridonin to HSA is driven by favorable enthalpy and unfavorable entropy. Oridonin can quench the fluorescence of HSA through a static quenching mechanism. The binding constant between oridonin and HSA is moderate and the equilibrium fraction of unbound oridonin f(u) > 60%. Binding site I is found to be the primary binding site for oridonin. Additionally, oridonin may induce conformational changes of HSA and affect its biological function as the carrier protein. The results of the current study suggest that oridonin can be stored and transported from the circulatory system to reach its target organ to provide its therapeutic effects. But its side-effect in the clinics cannot be overlook. The study provides an accurate and full basic data for clarifying the binding mechanism of oridonin with HSA and is helpful for understanding its effect on protein function during the blood transportation process and its biological activity in vivo. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Potential toxicity of sulfanilamide antibiotic: Binding of sulfamethazine to human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiabin [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zhou, Xuefei [Key Laboratory of Yangtze River Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Gao, Haiping [Key Laboratory of Yangtze River Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China)

    2012-08-15

    Antibiotics are widely used in daily life but their abuse has posed a potential threat to human health. The interaction between human serum albumin (HSA) and sulfamethazine (SMZ) was investigated by capillary electrophoresis, fluorescence spectrometry, and circular dichroism. The binding constant and site were determined to be 1.09 Multiplication-Sign 10{sup 4} M{sup -1} and 1.14 at 309.5 K. The thermodynamic determination indicated that the interaction was driven by enthalpy change, where the electrostatic interaction and hydrogen bond were the dominant binding force. The binding distance between SMZ and tryptophan residue of HSA was obtained to be 3.07 nm according to Foerster non-radioactive energy transfer theory. The site marker competition revealed that SMZ bound into subdomain IIA of HSA. The binding of SMZ induced the unfolding of the polypeptides of HSA and transferred the secondary conformation of HSA. The equilibrium dialysis showed that only 0.13 mM SMZ decreased vitamin B{sub 2} by 38% transported on the HSA. This work provides a new quantitative evaluation method for antibiotics to cause the protein damage. -- Highlights: Black-Right-Pointing-Pointer Various techniques characterized the interactions between SMZ and HSA. Black-Right-Pointing-Pointer The electrostatic interaction and hydrogen bond dominated in the interaction. Black-Right-Pointing-Pointer SMZ induced the conformation change of HSA. Black-Right-Pointing-Pointer SMZ affected the transportation function of HSA.

  10. Determination of energies and sites of binding of PFOA and PFOS to human serum albumin.

    Science.gov (United States)

    Salvalaglio, Matteo; Muscionico, Isabella; Cavallotti, Carlo

    2010-11-25

    Structure and energies of the binding sites of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to human serum albumin (HSA) were determined through molecular modeling. The calculations consisted of a compound approach based on docking, followed by molecular dynamics simulations and by the estimation of the free binding energies adopting WHAM-umbrella sampling and semiempirical methodologies. The binding sites so determined are common either to known HSA fatty acids sites or to other HSA sites known to bind to pharmaceutical compounds such as warfarin, thyroxine, indole, and benzodiazepin. Among the PFOA binding sites, five have interaction energies in excess of -6 kcal/mol, which become nine for PFOS. The calculated binding free energy of PFOA to the Trp 214 binding site is the highest among the PFOA complexes, -8.0 kcal/mol, in good agreement with literature experimental data. The PFOS binding site with the highest energy, -8.8 kcal/mol, is located near the Trp 214 binding site, thus partially affecting its activity. The maximum number of ligands that can be bound to HSA is 9 for PFOA and 11 for PFOS. The calculated data were adopted to predict the level of complexation of HSA as a function of the concentration of PFOA and PFOS found in human blood for different levels of exposition. The analysis of the factors contributing to the complex binding energy permitted to outline a set of guidelines for the rational design of alternative fluorinated surfactants with a lower bioaccumulation potential.

  11. HPLC separation of human serum albumin isoforms based on their isoelectric points.

    Science.gov (United States)

    Turell, Lucía; Botti, Horacio; Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael

    2014-01-01

    Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA-SHg(+)), HSA with Cys34 oxidized to sulfenic acid (HSA-SOH) and HSA oxidized to sulfinate anion (HSA-SO2(-)) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3-585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.

    Science.gov (United States)

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari

    2016-05-01

    A novel CdTe quantum dots (QDs) were prepared in aqueous phase via a facile method. At first, poly (acrylic amide) grafted onto sodium alginate (PAAm-g-SA) were successfully synthesized and then TGA capped CdTe QDs (CdTe-TGA QDs) were embed into it. The prepared CdTe-PAAm-g-SA QDs were optimized and characterized by transmission electron microscopy (TEM), thermo-gravimetric (TG) analysis, Fourier transform infrared (FT-IR), UV-vis and fluorescence spectroscopy. The characterization results indicated that CdTe-TGA QDs, with particles size of 2.90 nm, were uniformly dispersed on the chains of PAAm-g-SA biopolymer. CdTe-PAAm-g-SA QDs also exhibited excellent UV-vis absorption and high fluorescence intensity. To explore biological behavior of CdTe-PAAm-g-SA QDs, the interactions between CdTe-PAAm-g-SA QDs and human serum albumin (HSA) (or bovine serum albumin (BSA)) were investigated by cyclic voltammetry, FT-IR, UV-vis, and fluorescence spectroscopic. The results confirmed the formation of CdTe-PAAm-g-SA QDs-HSA (or BSA) complex with high binding affinities. The thermodynamic parameters (ΔGCdTe-PAAm-g-SA QDs-HSA (or BSA) complexes. The binding distance between CdTe-PAAm-g-SA QDs and HSA (or BSA)) was calculated about 1.37 nm and 1.27 nm, respectively, according to Forster non-radiative energy transfer theory (FRET). Analyzing FT-IR spectra showed that the formation of QDs-HSA and QDs-BSA complexes led to conformational changes of the HSA and BSA proteins. All these experimental results clarified the effective transportation and elimination of CdTe-PAAm-g-SA QDs in the body by binding to HSA and BSA, which could be a useful guideline for the estimation of QDs as a drug carrier.

  13. Use of biotin targeted methotrexate–human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy

    Directory of Open Access Journals (Sweden)

    Taheri A

    2011-09-01

    Full Text Available Azade Taheri1, Rassoul Dinarvand1,2, Faranak Salman Nouri1, Mohammad Reza Khorramizadeh3, Atefeh Taheri Borougeni4, Pooria Mansoori5, Fatemeh Atyabi1,21Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 2Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical sciences, Tehran, Iran; 3Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; 4Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran; 5Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IranAbstract: Biotin molecules could be used as suitable targeting moieties in targeted drug delivery systems against tumors. To develop a biotin targeted drug delivery system, we employed human serum albumin (HSA as a carrier. Methotrexate (MTX molecules were conjugated to HSA. MTX-HSA nanoparticles (MTX-HSA NPs were prepared from these conjugates by cross-linking the HSA molecules. Biotin molecules were then conjugated on the surface of MTX-HSA NPs. The anticancer efficacy of biotin targeted MTX-HSA NPs was evaluated in mice bearing 4T1 breast carcinoma. A single dose of biotin targeted MTX-HSA NPs showed stronger in vivo antitumor activity than non-targeted MTX-HSA NPs and free MTX. By 7 days after treatment, average tumor volume in the biotin targeted MTX-HSA NPs-treated group decreased to 17.6% of the initial tumor volume when the number of attached biotin molecules on MTX-HSA-NPs was the highest. Average tumor volume in non-targeted MTX-HSA NPs-treated mice grew rapidly and reached 250.7% of the initial tumor volume. Biotin targeted MTX-HSA NPs increased the survival of tumor-bearing mice to 47.5 ± 0.71 days and increased their life span up to 216.7%. Mice treated with biotin targeted MTX-HSA NPs showed slight body weight loss (8% 21 days after treatment, whereas non-targeted MTX

  14. Evaluation of capillary zone electrophoresis for the determination of protein composition in therapeutic immunoglobulins and human albumins.

    Science.gov (United States)

    Christians, Stefan; van Treel, Nadine Denise; Bieniara, Gabriele; Eulig-Wien, Annika; Hanschmann, Kay-Martin; Giess, Siegfried

    2016-07-01

    Capillary zone electrophoresis (CZE) provides an alternative means of separating native proteins on the basis of their inherent electrophoretic mobilities. The major advantage of CZE is the quantification by UV detection, circumventing the drawbacks of staining and densitometry in the case of gel electrophoresis methods. The data of this validation study showed that CZE is a reliable assay for the determination of protein composition in therapeutic preparations of human albumin and human polyclonal immunoglobulins. Data obtained by CZE are in line with "historical" data obtained by the compendial method, provided that peak integration is performed without time correction. The focus here was to establish a rapid and reliable test to substitute the current gel based zone electrophoresis techniques for the control of protein composition of human immunoglobulins or albumins in the European Pharmacopoeia. We believe that the more advanced and modern CZE method described here is a very good alternative to the procedures currently described in the relevant monographs.

  15. [Protein losing enteropathy (PLE) detected by Tc99m-labelled human serum albumin abdominal scintigraphy--case report].

    Science.gov (United States)

    Hubalewska-Hoła, Alicja; Sowa-Staszczak, Anna; Szczerbiński, Tomasz; Lis, Grzegorz; Huszno, Bohdan; Szybiński, Zbigniew

    2003-01-01

    Protein losing enteropathy (PLE) is a gastrointestinal disorder that is associated with excessive loss of plasma protein into the gut resulting from abnormal mucosal permeability. The disease is usually caused by inflammation. The loss of protein in PLE is a nonselective process affecting albumin, globulin and transferrin. Abdominal scintigraphy with human serum albumin marked by Tc99m seems to be an easy and sensitive method for diagnosing PLE. An 4-year-old girl was presented to an outside Pediatric Department due to hypoproteinemia and recurrent pneumonia which had caused several prior hospitalizations. The laboratory tests revealed hypoproteinemia, hypoalbuminemia, low level of IgG, sideropenia, and a decreased level of T lymphocytes. The loss of protein into the gut was confirmed by fecal clearance of alfa-1 antitrypsin. Only nonspecific inflammation was detected by biopsy of the small intestine. These clinical and laboratory findings, quickly decreasing IgG and albumin levels in spite of i.v. supplementation and the lack of proteinuria permitted PLE diagnosis. The abdominal scintigraphy was planned to assess and localise protein losing through GIT and for strategy of possible surgical treatment. Abdominal dynamic scintigraphy was performed immediately after the injection of 300 MBq Tc99m human albumin. 90 images were taken within 180 minutes. Delayed abdominal images were obtained 6 and 24 hours after the tracer injection. Anterior abdominal scintigraphy showed pathological activity of Tc99m-albumin in small bowel in the upper left segment of the abdomen in the 40th minute after injection. Extensive accumulation of albumin was seen in the 160th minute. Delayed images, after 3 and 6 hours, revealed translocation of the tracer into the lower right abdominal segment. The further passage and tracer concentration was detected in ascendant and transverse colon. Based on the laboratory tests and scintigraphic images the girl was suspected to have segmental

  16. Oxidation Enhances Human Serum Albumin Thermal Stability and Changes the Routes of Amyloid Fibril Formation

    Science.gov (United States)

    Sancataldo, Giuseppe; Vetri, Valeria; Foderà, Vito; Di Cara, Gianluca; Militello, Valeria; Leone, Maurizio

    2014-01-01

    Oxidative damages are linked to several aging-related diseases and are among the chemical pathways determining protein degradation. Specifically, interplay of oxidative stress and protein aggregation is recognized to have a link to the loss of cellular function in pathologies like Alzheimer's and Parkinson's diseases. Interaction between protein and reactive oxygen species may indeed induce small changes in protein structure and lead to the inhibition/modification of protein aggregation process, potentially determining the formation of species with different inherent toxicity. Understanding the temperate relationship between these events can be of utmost importance in unraveling the molecular basis of neurodegeneration. In this work, we investigated the effect of hydrogen peroxide oxidation on Human Serum Albumin (HSA) structure, thermal stability and aggregation properties. In the selected conditions, HSA forms fibrillar aggregates, while the oxidized protein undergoes aggregation via new routes involving, in different extents, specific domains of the molecule. Minute variations due to oxidation of single residues affect HSA tertiary structure leading to protein compaction, increased thermal stability, and reduced association propensity. PMID:24416244

  17. Probing the Effect of Ag2S Quantum Dots on Human Serum Albumin Using Spectral Techniques

    Directory of Open Access Journals (Sweden)

    Yiying Fu

    2017-01-01

    Full Text Available The understanding of the interaction between protein and quantum dots (QDs has significant implications for biological applications of QDs. Herein, we studied the effect of Ag2S QDs on human serum albumin (HSA using UV-Vis absorption spectra and fluorescence spectroscopy and found that the fluorescence intensity of HSA was gradually decreased with increasing Ag2S QDs concentrations. By using the Stern-Volmer equation for the fluorescence quenching constant (KSV of the response of Ag2S QDs to HSA as well as thermodynamic equations, the values of thermodynamic enthalpy change (ΔHθ, entropy change (ΔSθ, and free energy change (ΔGθ were calculated to be −10.79 KJ·mol−1, 37.80 J·mol−1·K−1, and −22.27 KJ·mol−1, respectively. The results indicate that Ag2S QDs exert an obvious static fluorescence quenching effect on HSA and electrostatic interaction plays a key role in the binding process. Furthermore, Raman spectral analysis reveals that Ag2S QDs alter the external environment of tyrosine and tryptophan or the C-H bending of HSA but not the α-helical content.

  18. Glycation of human serum albumin in diabetes: impacts on the structure and function.

    Science.gov (United States)

    Cao, Hui; Chen, Tingting; Shi, Yujun

    2015-01-01

    Diabetes mellitus is one of the most serious diseases in the world. The levels of glycated proteins in the blood of diabetics are higher than that of non-diabetic subjects. The glycation of proteins is believed to link to the occurrence of diabetic complications and related diseases. This review focuses on the influence of glycation of human serum albumin (HSA) on its structure and function. The glycation leads to change the HSA conformation, which will further influence its ligand binding properties. The levels of glycated HSA in hyperglycemic conditions showed a significant relationship to the germination of serious complications for diabetics, especially by affecting various cells functions. The conclusion from individual report is contradictory to each other; therefore, it is very difficult to give an univocal comment on the impact of glycation on the binding behaviors of HSA for small molecules. The influence of glycation of HSA on the binding affinities for small molecules is decided by the assay, the structures of small molecules, as well as the degree of glycation. However, the glycation of HSA is believed to reduce the binding affinities for acidic drugs such as polyphenols and phenolic acids.

  19. Effect of (-)-epigallocatechin-3-gallate on glucose-induced human serum albumin glycation.

    Science.gov (United States)

    Li, M; Hagerman, A E

    2015-01-01

    (-)-Epigallocatechin-3-gallate (EGCg) is a naturally occurring polyphenol found in plant-based foods and beverages such as green tea. Although EGCg can eliminate carbonyl species produced by glucose autoxidation and thus can inhibit protein glycation, it is also reported to be a pro-oxidant that stimulates protein glycation in vitro. To better understand the balance between antioxidant and pro-oxidant features of EGCg, we evaluated EGCg-mediated bioactivities in a human serum albumin (HSA)/glucose model by varying three different parameters (glucose level, EGCg concentration, and time of exposure to EGCg). Measurements of glycation-induced fluorescence, protein carbonyls, and electrophoretic mobility showed that the level of HSA glycation was positively related to the glucose level over the range 10-100 mM during a 21-day incubation at 37°C and pH: 7.4. Under mild glycemic pressure (10 mM), long exposure to EGCg enhanced HSA glycation, while brief exposure to low concentrations of EGCg did not. Under high glycemic pressure (100 mM glucose), long exposure to EGCg inhibited glycation. For the first time we showed that brief exposure to EGCg reversed glycation-induced fluorescence, indicating a restorative effect. In conclusion, our research identified glucose level, EGCg concentration, and time of exposure as critical factors dictating EGCg bioactivities in HSA glycation. EGCg did not affect HSA glycation under normal physiological conditions but had a potential therapeutic effect on HSA severely damaged by glycation.

  20. Study on a noninvasive method for rapid screening Human Serum albumin injectables by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2017-01-01

    Full Text Available Human serum albumin (HSA injectable product is a severely afflicted area on drug safety due to its high price and restricted supply. Raman spectroscopy performances high specificity on HSA detection and it is even possible to determine HSA injectable products noninvasively. In this study, we developed a noninvasive rapid screening method for of HSA injectable products by using portable Raman spectrometer. Qualitative models were established by using principal component analysis combined with classical least squares (PCA-CLS algorithm, while quantitative model was established by using partial least squares (PLS algorithm. Model transfer in different instruments of both the same and different apparatus modules was further discussed in this paper. A total of 34 HSA injectable samples collected from markets were used for verification. The identification results showed 100% accuracy and the predicted concentrations of those identified as true HSA were consistent with their labeled concentrations. The quantitative results also indicated that model transfer was excellent in the same apparatus modules of Raman spectrometer at all concentration levels, and still good enough in the different apparatus modules although the relative standard deviation (RSD value showed a little increasing trend at low HSA concentration level. In conclusion, the method was proved to be feasible and efficient for screening HSA injections, especially on its screening speed and the consideration of glass containers. Moreover, with inspiring results on the model transfer, the method could be used as a universal screening mean to different Raman instruments.

  1. Probing the binding of fluoxetine hydrochloride to human serum albumin by multispectroscopic techniques

    Science.gov (United States)

    Katrahalli, Umesha; Jaldappagari, Seetharamappa; Kalanur, Shankara S.

    2010-01-01

    The interaction between human serum albumin (HSA) and fluoxetine hydrochloride (FLX) have been studied by using different spectroscopic techniques viz., fluorescence, UV-vis absorption, circular dichroism and FTIR under simulated physiological conditions. Fluorescence results revealed the presence of static type of quenching mechanism in the binding of FLX to HSA. The values of binding constant, K of FLX-HSA were evaluated at 289, 300 and 310 K and were found to be 1.90 × 10 3, 1.68 × 10 3 and 1.45 × 10 3 M -1, respectively. The number of binding sites, n was noticed to be almost equal to unity thereby indicating the presence of a single class of binding site for FLX on HSA. Based on the thermodynamic parameters, Δ H0 and Δ S0 nature of binding forces operating between HSA and FLX were proposed. Spectral results revealed the conformational changes in protein upon interaction. Displacement studies indicated the site I as the main binding site for FLX on HSA. The effect of common ions on the binding of FLX to HSA was also investigated.

  2. Immune response to acetaldehyde-human serum albumin adduct among healthy subjects related to alcohol intake.

    Science.gov (United States)

    Romanazzi, Valeria; Schilirò, Tiziana; Carraro, Elisabetta; Gilli, Giorgio

    2013-09-01

    Acetaldehyde (AA) is the main metabolic product in ethanol metabolism, although it can also derive from sources of airborne pollution. As a typical aldehyde, AA is able to react with a variety of molecular targets, including DNA and protein. This property justifies the hypothesis of a immune reaction against this kind of adduct, to be studied by a seroprevalence screening approach. In this study, the correlation between drinking habits and the amount of circulating AA-human serum albumin adduct (AA-HSA) was evaluated in a group of healthy subjects, non alcohol-addicted. Daily ethanol intake (grams) was inferred for each subject using the information collected through a questionnaire, and AA-HSA antibodies (AA-HSA ab) analyses were performed using the Displacement Assay on whole blood samples. The findings showed a correlation between ethanol intake and immune response to molecular adduct. These results underscore the evaluation of AA-HSA ab amount as a suitable molecular marker for alcohol intake that can be applied in future investigations on a large scale for prevention screening.

  3. Characteristics of magnetic Fe3O4 nanoparticles encapsulated with human serum albumin

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Magnetic nanoparticles (Fe3O4) were prepared by chemical precipitation method using Fe2+ and Fe3+salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin(HSA) for magnetic resonance imaging as contrast agent. Characteristics of magnetic particles coated or uncoated were carried out using scanning electron microscopy and X-ray diffraction. Zeta potentials, package effects and distributions of colloid particles were measured to confirm the attachment of HSA on magnetic particles. Effects of Fe3O4 nanoparticles coated with HSA on magnetic resonance imaging were investigated with rats. The experimental results show that the adsorption of HSA on magnetic particles is very favorable to dispersing of magnetic Fe3O4 particles, while the sizes of Fe3O4 particles coated are related to the molar ratio of Fe3O4 to HSA. The diameters of the majority of particles coated are less than 100 nm. Fe3O4 nanoparticle coated with HSA has a good biocompatibility and low toxicity. This new contrast agent has some effects on the nuclear magnetic resonance imaging of liver and the lowest dosage is 20 μmol/kg for the demands of diagnosis.

  4. Study of interaction between human serum albumin and three phenanthridine derivatives: Fluorescence spectroscopy and computational approach

    Science.gov (United States)

    Liu, Jianming; Yue, Yuanyuan; Wang, Jing; Yan, Xuyang; Liu, Ren; Sun, Yangyang; Li, Xiaoge

    2015-06-01

    Over the past decades, phenanthridine derivatives have captured the imagination of many chemists due to their wide applications. In the present work, the interaction between phenanthridine derivatives benzo [4,5]imidazo[1,2-a]thieno[2,3-c]quinoline (BTQ), benzo[4,5]imidazo[1,2-a]furo[2,3-c]quinoline (BFQ), 5,6-dimethylbenzo[4,5]imidazo[1,2-a]furo[2,3-c]quinoline (DFQ) and human serum albumin (HSA) were investigated by molecular modeling techniques and spectroscopic methods. The results of molecular modeling simulations revealed that the phenanthridine derivatives could bind on both site I in HSA. Fluorescence data revealed that the fluorescence quenching of HSA by phenanthridine derivatives were the result of the formation of phenanthridine derivatives-HSA complex, and the binding intensity between three phenanthridine derivatives and HSA was BTQ > BFQ > DFQ. Thermodynamics confirmed that the interaction were entropy driven with predominantly hydrophobic forces. The effects of some biological metal ions and toxic ions on the binding affinity between phenanthridine derivatives and HSA were further examined.

  5. Development of human serum albumin conjugated with near-infrared dye for photoacoustic tumor imaging

    Science.gov (United States)

    Kanazaki, Kengo; Sano, Kohei; Makino, Akira; Takahashi, Atsushi; Deguchi, Jun; Ohashi, Manami; Temma, Takashi; Ono, Masahiro; Saji, Hideo

    2014-09-01

    Photoacoustic (PA) imaging has emerged as a noninvasive diagnostic method which detects ultrasonic waves thermoelastically induced by optical absorbers irradiated with laser. For tumor diagnosis, PA contrast agent has been proposed to enhance the PA effect for detecting tumors sensitively. Here, we prepared a human serum albumin (HSA) conjugated with indocyanine green (ICG) as a PA contrast agent allowing enhanced permeability and retention effect for sensitive tumor imaging. The feasibility of PA imaging with HSA-ICG to detect allografted tumors was evaluated in tumor-bearing mice. In vivo fluorescence imaging and radiolabeled biodistribution study showed that the biodistribution dramatically changed as the number of ICG bound to HSA increased, and the maximum accumulation of ICG was achieved when around three ICG molecules were loaded on an HSA. In vivo PA imaging demonstrated a tumor-selective and dose-dependent increase of PA signal intensity in mice injected with HSA-ICG (R2=0.88, 387% increase for HSA-ICG, 104 nmol ICG). In conclusion, HSA-ICG clearly visualized the allografted tumors with high tumor-to-background ratios having high quantitative and spatial resolution for the sensitive PA imaging of tumors. HSA-ICG could be useful as a favorable contrast agent for PA tumor imaging for the management of cancer.

  6. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin

    Science.gov (United States)

    Min, Jiang; Meng-Xia, Xie; Dong, Zheng; Yuan, Liu; Xiao-Yu, Li; Xing, Chen

    2004-04-01

    Cinnamic acid and its derivatives possess various biological effects in remedy of many diseases. Interaction of cinnamic acid and its hydroxyl derivatives, p-coumaric acid and caffeic acid, with human serum albumin (HSA), and concomitant changes in its conformation were studied using fluorescence and Fourier transform infrared spectroscopic methods. Fluorescence data revealed the presence of one binding site on HSA for cinnamic acid and its hydroxyl derivatives, and their binding constants ( KA) are caffeic acid> p-coumaric acid> cinnamic acid when Cdrug/ CHSA ranging from 1 to 10. The changes of the secondary structure of HSA after interacting with the three drugs are estimated, respectively by combining the curve-fitting results of amid I and amid III bands. The α-helix structure has a decrease of ≈9, 5 and 3% after HSA interacted with caffeic acid, p-coumaric acid and cinnamic acid, respectively. It was found that the hydroxyls substituted on aromatic ring of the drugs play an important role in the changes of protein's secondary structure. Combining the result of fluorescence quenching and the changes of secondary structure of HSA after interaction with the three drugs, the drug-HSA interaction mode was discussed.

  7. Genetically engineered mannosylated-human serum albumin as a versatile carrier for liver-selective therapeutics.

    Science.gov (United States)

    Hirata, Kenshiro; Maruyama, Toru; Watanabe, Hiroshi; Maeda, Hitoshi; Nakajou, Keisuke; Iwao, Yasunori; Ishima, Yu; Katsumi, Hidemasa; Hashida, Mitsuru; Otagiri, Masaki

    2010-07-01

    Human serum albumin (HSA), a non-glycosylated protein, is widely employed as carrier for drug delivery systems. A series of recombinant, mannosylated-HSA mutants (Man-rHSAs: D63N, A320T and D494N) and their triple mutant (TM-rHSA: D63N/A320T/D494N) were prepared, that can be selectively delivered to the liver via mannose receptor (MR) on the liver non-parenchymal cells. A pharmacokinetic analysis of (111)In-Man-rHSAs in mice showed that they were rapidly cleared from the blood circulation, and were largely taken up by the liver rapidly in the order: TM-rHSA>D494N>A320T=D63N, consistent with their degree of mannosylation. In vivo competition experiments with an excess amount of chemically modified Man-BSA or mannan suggested that the hepatic uptake of TM-rHSA was selectively mediated by MR on Kupffer cells. Lastly, a TM-rHSA-NO conjugate, S-nitrosylated TM-rHSA, effectively delivered NO to the liver and then exhibited a significant inhibitory effect against hepatic ischemia/reperfusion injury model rats, accompanied by the induction of heme oxygenase-1.

  8. Mn(II) binding to human serum albumin: a ¹H-NMR relaxometric study.

    Science.gov (United States)

    Fanali, Gabriella; Cao, Yu; Ascenzi, Paolo; Fasano, Mauro

    2012-12-01

    Human serum albumin (HSA) displays several metal binding sites, participating to essential and toxic metal ions disposal and transport. The major Zn(II) binding site, called Site A, is located at the I/II domain interface, with residues His67, Asn99, His247, and Asp249 contributing with five donor atoms to the metal ion coordination. Additionally, one water molecule takes part of the octahedral coordination geometry. The occurrence of the metal-coordinated water molecule allows the investigation of the metal complex geometry by water (1)H-NMR relaxation, provided that the diamagnetic Zn(II) is replaced by the paramagnetic Mn(II). Here, the (1)H-NMR relaxometric study of Mn(II) binding to HSA is reported. Mn(II) binding to HSA is modulated by Zn(II), pH, and myristate through competitive inhibition and allosteric mechanisms. The body of results indicates that the primary binding site of Zn(II) corresponds to the secondary binding site of Mn(II), i.e. the multimetal binding site A. Excess Zn(II) completely displaces Mn(II) from its primary site suggesting that the primary Mn(II) site corresponds to the secondary Zn(II) site. This uncharacterized site is functionally-linked to FA1; moreover, metal ion binding is modulated by myristate and pH. Noteworthy, water (1)H-NMR relaxometry allowed a detailed analysis of thermodynamic properties of HSA-metal ion complexes.

  9. Chiral recognition of metalaxyl enantiomers by human serum albumin: evidence from molecular modeling and photophysical approach.

    Science.gov (United States)

    Ding, Fei; Li, Xiu-Nan; Diao, Jian-Xiong; Sun, Ye; Zhang, Li; Sun, Ying

    2012-06-01

    Metalaxyl is an acylamine fungicide, belonging to the most widely known member of the amide group. This task is aimed to scrutinize binding region and spatial structural change of principal vector human serum albumin (HSA) complex with (R)-/(S)-metalaxyl by exploiting molecular modeling, steady-state and time-resolved fluorescence, and circular dichroism (CD) approaches. According to molecular modeling, (R)-metalaxyl is situated within subdomains IIA and IIIA and the affinity of site I with (R)-metalaxyl is greater than site II, whereas (S)-metalaxyl is only located at subdomain IIA and the affinity of (S)-metalaxyl with site I is superior compared with that with (R)-metalaxyl. This coincides with the competitive ligand binding, guanidine hydrochloride-induced unfolding of protein, and hydrophobic 8-anilino-1-naphthalenesulfonic acid experiments; the acting forces between (R)-/(S)-metalaxyl and HSA are hydrophobic, π-π interactions, and hydrogen bonds, as derived from molecular modeling. Fluorescence emission manifested that the complex of (R)-/(S)-metalaxyl to HSA is the formation of adduct with an affinity of 10(4) M(-1), which corroborates the time-resolved fluorescence that the static type was operated. Furthermore, the changes of far-UV CD spectra evidence the polypeptide chain of HSA partially unfolded after conjugation with (R)-/(S)-metalaxyl. Through this work, we envisage that it can offer central clues on the biodistribution, absorption, and bioaccumulation of (R)-/(S)-metalaxyl. Copyright © 2012 Wiley Periodicals, Inc.

  10. Investigation of Interaction Between Ozagrel and Human Serum Albumin by Spectroscopic and Electrochemical Methods

    Science.gov (United States)

    Li, S.; Wang, Li; Hao, J.; Wang, L.; Tong, Y.-J.; Fu, Z.-Q.; Zhang, A.-P.

    2017-01-01

    The interaction between ozagrel and human serum albumin (HSA) was investigated by fl uorescence spectroscopy, UV-Vis absorption spectroscopy, cyclic voltammetry (CV), differential pulse voltammetry (DPV), and Fourier transform infrared spectroscopy (FTIR) under simulative physiological conditions. The results of CV, DPV and fl uorescence titration revealed that ozagrel bound to HSA. The enthalpy change (ΔH) and the entropy change (ΔS) were derived to be positive values, indicating that the hydrophobic force played the main role in the binding of ozagrel with HSA. The binding distance between ozagrel and HSA was 1.75 nm. Upon binding with ozagrel, the conformation and the secondary structure of HSA molecules were changed. The percentage of α-helix and β-sheet structures decreased by 7.25% and 4.58%, respectively, while the percentage of a β-turn structure increased by 2.67%. The effect of common ions on the binding of ozagrel with HSA was also examined. This study will give an insight into the evaluation of the drug's stabi-lity during transport and its releasing effi ciency at the target site under simulative physiological conditions.

  11. Fibrillar disruption by AC electric field induced oscillation: A case study with human serum albumin.

    Science.gov (United States)

    Sen, Shubhatam; Chakraborty, Monojit; Goley, Snigdha; Dasgupta, Swagata; DasGupta, Sunando

    2017-07-01

    The effect of oscillation induced by a frequency-dependent alternating current (AC) electric field to dissociate preformed amyloid fibrils has been investigated. An electrowetting-on-dielectric type setup has been used to apply the AC field of varying frequencies on preformed fibrils of human serum albumin (HSA). The disintegration potency has been monitored by a combination of spectroscopic and microscopic techniques. The experimental results suggest that the frequency of the applied AC field plays a crucial role in the disruption of preformed HSA fibrils. The extent of stress generated inside the droplet due to the application of the AC field at different frequencies has been monitored as a function of the input frequency of the applied AC voltage. This has been accomplished by assessing the morphology deformation of the oscillating HSA fibril droplets. The shape deformation of the oscillating droplets is characterized using image analysis by measuring the dynamic changes in the shape dependent parameters such as contact angle and droplet footprint radius and the amplitude. It is suggested that the cumulative effects of the stress generated inside the HSA fibril droplets due to the shape deformation induced hydrodynamic flows and the torque induced by the intrinsic electric dipoles of protein due to their continuous periodic realignment in presence of the AC electric field results in the destruction of the fibrillar species. Copyright © 2017. Published by Elsevier B.V.

  12. Short chain polyethylene glycols unusually assist thermal unfolding of human serum albumin.

    Science.gov (United States)

    Samanta, Nirnay; Mahanta, Debasish Das; Hazra, Soumitra; Kumar, Gopinatha Suresh; Mitra, Rajib Kumar

    2014-09-01

    In the present study we have investigated the thermal stability of the globular transport protein human serum albumin (HSA), in the presence of two small chain polyethylene glycols (namely PEG 200 and PEG 400). Both near- and far-UV circular dichroism (CD) study reveal that addition of PEG moderately increases the α-helical content of the protein without abruptly changing its tertiary structure. The hydration structure at the protein surface experiences a notable change at 30% PEG (v/v) concentration as evidenced from compressibility and dynamic light scattering (DLS) measurements. Thermal denaturation of HSA in the presence of PEG has been studied by CD and fluorescence spectroscopy using the intrinsic fluorophore tryptophan and it has been found that addition of PEG makes the protein more prone towards unfolding, which is in contrary to what has been observed in case of larger molecular weight polymers. The energetics of the thermal unfolding process has been obtained using differential scanning calorimetry (DSC) measurements. Our study concludes that both the indirect excluded volume principle as well as interaction of the polymer at the protein surface is responsible for the observed change of the unfolding process.

  13. Ethanol or/and captopril-induced precipitation and secondary conformational changes of human serum albumin

    Science.gov (United States)

    Lin, Shan-Yang; Li, Mei-Jane; Wei, Yen-Shan

    2004-11-01

    We determined the secondary structure of solid-state native human serum albumin (HSA) and its precipitates induced by ethanol, captopril, or a captopril/ethanol mixture. A transmission Fourier transform infrared (FT-IR) microspectroscopy equipped with a thermal analyzer was used. The secondary structural composition of solid-state native HSA was 54% α-helices (1655 cm -1), 22% β-turns (1679 cm -1), and 23% β-sheets (1633 cm -1). After ethanol treatment, a new peak was observed at 1690 cm -1, and the peak at 1633 cm -1 was more apparent in the HSA precipitates. The corresponding compositions consisted of 59% α-helices, 17% β-turns, and 24% β-sheets. After treatment with captopril with or without ethanol, the percentage of α-helices and β-turns decreased in both HSA precipitates, but the percentage of β-sheets increased. The temperature-dependent structural transformation from α-helices/random coils to β-sheets for the solid-state HSA samples occurred at markedly different onset temperatures. The onset temperature for native HSA was 85 °C, and that for HSA precipitates obtained from ethanol, captopril, or captopril/ethanol was 100, 48 or 57 °C, respectively. The thermal-induced structural transformation from α-helices/random coils to β-sheets implies a partial unfolding structure in these HSA samples.

  14. Binding of doxyl stearic spin labels to human serum albumin: an EPR study.

    Science.gov (United States)

    Pavićević, Aleksandra A; Popović-Bijelić, Ana D; Mojović, Miloš D; Šušnjar, Snežana V; Bačić, Goran G

    2014-09-18

    The binding of spin-labeled fatty acids (SLFAs) to the human serum albumin (HSA) examined by electron paramagnetic resonance (EPR) spectroscopy was studied to evaluate the potential of the HSA/SLFA/EPR technique as a biomarking tool for cancer. A comparative study was performed on two spin labels with nitroxide groups attached at opposite ends of the fatty acid (FA) chain, 5-doxyl stearic (5-DS) and 16-doxyl stearic (16-DS) acid. The effects of incubation time, different [SLFA]/[HSA] molar ratios, ethanol, and temperature showed that the position of the nitroxide group produces certain differences in binding between the two SLFAs. Spectra for different [SLFA]/[HSA] molar ratios were decomposed into two spectral components, which correspond to the weakly and strongly bound SLFAs. The reduction of SLFA with ascorbate showed the existence of a two component process, fast and slow, confirming the decomposition results. Warfarin has no effect on the binding of the two SLFAs, whereas ibuprofen significantly decreases the binding of 5-DS and has no effect on 16-DS. Together, the results of this study indicate that both SLFAs, 5-DS and 16-DS, should be used for the study of HSA conformational changes in blood induced by various medical conditions.

  15. (99m)Tc-human serum albumin nanocolloids: particle sizing and radioactivity distribution.

    Science.gov (United States)

    Persico, Marco G; Lodola, Lorenzo; Buroni, Federica E; Morandotti, Marco; Pallavicini, Piersandro; Aprile, Carlo

    2015-07-01

    Several parameters affect the biodistribution of administered nanocolloids (NC) for Sentinel Lymph Node (SLN) detection: particle size distribution, number of Tc atoms per particle and specific activity (SA). Relatively few data are available with frequently conflicting results. (99m)Tc-NC-human serum albumin (HSA) Nanocoll®, Nanoalbumon® and Nanotop® were analysed for particles' dimensional and radioactivity distribution, and a mathematical model was elaborated to estimate the number of particles involved. Commercially available kits were reconstituted at maximal SA of 11 MBq/µg HSA. Particles size distribution was evaluated by Dynamic Light Scattering. These data were related to the radioactivity distribution analysis passing labelled NC through three polycarbonate filters (15-30-50-nm pore size) under vacuum. Highest radioactivity was carried by 30-50 nm particles. The smallest ones, even though most numerous, carried only the 10% of (99m)Tc atoms. Nanocoll and Nanotop are not significantly different, while Nanoalbumon is characterized by largest particles (>30 nm) that carried the most of radioactivity (80%). Smallest particles could saturate the clearing capacity of macrophages; therefore, if the tracer is used for SLN detection, more node tiers could be visualized, reducing accuracy of SLN mapping. Manufacturers could implement technical leaflets with particle size distribution and could improve the labelling protocol to provide clinicians useful information.

  16. Pollutant-induced modulation in conformation and β-lactamase activity of human serum albumin.

    Directory of Open Access Journals (Sweden)

    Ejaz Ahmad

    Full Text Available Structural changes in human serum albumin (HSA induced by the pollutants 1-naphthol, 2-naphthol and 8-quinolinol were analyzed by circular dichroism, fluorescence spectroscopy and dynamic light scattering. The alteration in protein conformational stability was determined by helical content induction (from 55 to 75% upon protein-pollutant interactions. Domain plasticity is responsible for the temperature-mediated unfolding of HSA. These findings were compared to HSA-hydrolase activity. We found that though HSA is a monomeric protein, it shows heterotropic allostericity for β-lactamase activity in the presence of pollutants, which act as K- and V-type non-essential activators. Pollutants cause conformational changes and catalytic modifications of the protein (increase in β-lactamase activity from 100 to 200%. HSA-pollutant interactions mediate other protein-ligand interactions, such as HSA-nitrocefin. Therefore, this protein can exist in different conformations with different catalytic properties depending on activator binding. This is the first report to demonstrate the catalytic allostericity of HSA through a mechanistic approach. We also show a correlation with non-microbial drug resistance as HSA is capable of self-hydrolysis of β-lactam drugs, which is further potentiated by pollutants due to conformational changes in HSA.

  17. Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study

    Science.gov (United States)

    Islam, Mullah Muhaiminul; Sonu, Vikash K.; Gashnga, Pynsakhiat Miki; Moyon, N. Shaemningwar; Mitra, Sivaprasad

    2016-01-01

    The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0 × 104 M-1) in comparison with CAF (∼9.3 × 102 M-1) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure.

  18. Stereoselective binding of mexiletine and ketoprofen enantiomers with human serum albumin domains

    Institute of Scientific and Technical Information of China (English)

    Da SHI; Yin-xiu JIN; Yi-hong TANG; Hai-hong HU; Si-yun XU; Lu-shanYU; Hui-di JIANG; Su ZENG

    2012-01-01

    To investigate the stereoselective binding of mexiletine or ketoprofen enantiomers with different recombinant domains of human serum albumin (HSA).Methods:Three domains (HSA DOM Ⅰ,Ⅱ and Ⅲ) were expressed in Pichia pastoris GS115 cells.Blue Sepharose 6 Fast Flow was employed to purify the recombinant HSA domains.The binding properties of the standard ligands,digitoxin,phenylbutazone and diazepam,and the chiral drugs to HSA domains were investigated using ultrafiltration.The concentrations of the standard ligands,ketoprofen and mexiletine were analyzed with HPLC.Results:The recombinant HSA domains were highly purified as shown by SDS-PAGE and Western blotting analyses,The standard HSA ligands digitoxin,phenylbutazone and diazepam selectively binds to DOM Ⅰ,DOM Ⅱ and DOM Ⅲ,respectively.For the chiral drugs,R-ketoprofen showed a higher binding affinity toward DOM Ⅲ than S-ketoprofen,whereas S-mexiletine bound to DOM Ⅱ with a greater affinity than R-mexiletine.Conclusion:The results demonstrate that HSA DOM Ⅲ possesses the chiral recognition ability for the ketoprofen enantiomers,whereas HSA DOM Ⅱ possesses that for the mexiletine enantiomers.

  19. Stabilization of Human Serum Albumin against Urea Denaturation by Diazepam and Ketoprofen.

    Science.gov (United States)

    Manoharan, Pralad; Wong, Yin H; Tayyab, Saad

    2015-01-01

    Stabilizing effect of diazepam and ketoprofen, Sudlow's site II markers on human serum albumin (HSA) against urea denaturation was studied using fluorescence spectroscopy. The two-step, three-state urea transition of HSA was transformed into a single-step, two-state transition with the abolishment of the intermediate state along with a shift of the transition curve towards higher urea concentrations in the presence of diazepam or ketoprofen. Interestingly, a greater shift in the transition curve of HSA was observed in the presence of ketoprofen compared to diazepam. A comparison of the intrinsic fluorescence and three-dimensional fluorescence spectra of HSA and partially-denatured HSAs, obtained in the absence and the presence of diazepam or ketoprofen suggested significant retention of native-like conformation in the partially-denatured states of HSA in the presence of Sudlow's site II markers. Taken together, all these results suggested stabilization of HSA in the presence of diazepam or ketoprofen, being greater in the presence of ketoprofen.

  20. Multidrug Delivery Systems Based on Human Serum Albumin for Combination Therapy with Three Anticancer Agents.

    Science.gov (United States)

    Qi, Jinxu; Zhang, Yao; Gou, Yi; Lee, Philbert; Wang, Jun; Chen, Shifang; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong

    2016-09-06

    When administering several anticancer drugs within a single carrier, it is important to regulate their spatial distribution so as to avoid possible mutual interference and to thus enhance the drugs' selectivity and efficiency. To achieve this, we proposed to develop human serum albumin (HSA)-based multidrug delivery systems for combination anticancer therapy. We used three anticancer agents (an organic drug [5-fluorouracil, or 5FU], a metallic agent [2-benzoylpyridine thiosemicarbazide copper II, or BpT], and a gene agent [AS1411]) to treat liver cancer and confirm our hypothesis. The structure of the HSA-palmitic acid (PA)-5FU-BpT complex revealed that 5FU and BpT, respectively, bind to the IB and IIA subdomains of HSA. Our MALDI-TOF-MS spectral data show that one AS1411 molecule is conjugated to Cys-34 of the HSA-5FU-BpT complex via a linker. Compared with unregulated three-drug combination therapy, the HSA-5FU-BpT-AS1411 complex enhances cytotoxicity in Bel-7402 cells approximately 7-fold in vitro; however, in normal cells it does not raise cytotoxicity levels. Importantly, our in vivo results demonstrate that the HSA-5FU-BpT-AS1411 complex is superior to the unregulated three-drug combination in enhancing targeting ability, inhibiting liver tumor growth, and causing fewer side effects.

  1. Structural characteristics of green tea catechins for formation of protein carbonyl in human serum albumin.

    Science.gov (United States)

    Ishii, Takeshi; Mori, Taiki; Ichikawa, Tatsuya; Kaku, Maiko; Kusaka, Koji; Uekusa, Yoshinori; Akagawa, Mitsugu; Aihara, Yoshiyuki; Furuta, Takumi; Wakimoto, Toshiyuki; Kan, Toshiyuki; Nakayama, Tsutomu

    2010-07-15

    Catechins are polyphenolic antioxidants found in green tea leaves. Recent studies have reported that various polyphenolic compounds, including catechins, cause protein carbonyl formation in proteins via their pro-oxidant actions. In this study, we evaluate the formation of protein carbonyl in human serum albumin (HSA) by tea catechins and investigate the relationship between catechin chemical structure and its pro-oxidant property. To assess the formation of protein carbonyl in HSA, HSA was incubated with four individual catechins under physiological conditions to generate biotin-LC-hydrazide labeled protein carbonyls. Comparison of catechins using Western blotting revealed that the formation of protein carbonyl in HSA was higher for pyrogallol-type catechins than the corresponding catechol-type catechins. In addition, the formation of protein carbonyl was also found to be higher for the catechins having a galloyl group than the corresponding catechins lacking a galloyl group. The importance of the pyrogallol structural motif in the B-ring and the galloyl group was confirmed using methylated catechins and phenolic acids. These results indicate that the most important structural element contributing to the formation of protein carbonyl in HSA by tea catechins is the pyrogallol structural motif in the B-ring, followed by the galloyl group. The oxidation stability and binding affinity of tea catechins with proteins are responsible for the formation of protein carbonyl, and consequently the difference in these properties of each catechin may contribute to the magnitude of their biological activities.

  2. In vitro stereoselective covalent binding of carprofen glucuronides to human serum albumin: characterization of the mechanism.

    Science.gov (United States)

    Greige-Georges, Hélène; Buronfosse, Thierry; Netter, Patrcik; Magdalou, Jacques; Lapicque, Françoise

    2003-01-01

    The reactivity, in terms of covalent binding, of R- and S-carprofen acylglucuronides with human serum albumin (HSA) has been investigated in vitro. The irreversible binding of these metabolites to the HSA 580 mM occurred at pH 7.4 and 37 degrees C instantaneously and stereoselectively in favour of the R-enentiomer glucuronide. The amount of carprofen adducts remained stable with time up to 48 hr, and increased with the glucuronide concentration. It was not modified by addiction of imine-trapping reagents, suggesting that the reaction is not mediated by a Schiff base mechanism. Moreover the extreme rapidity of the covalent binding supports a mechanism of nucleophilic attack. Competition studies with ligands known to bind to different sites of HSA, indicated that carprofen glucuronides interacted mainly with site II. The extent of the binding of R-carprofen glucuronide increased with pH, thus suggesting the participation of an alkaline group in the process. The modification of HSA by amino-acid directed chemicals led to the conclusion that Tyr, Lys or Arg residues in site II were mainly involved.

  3. Enhancing the copper(II) complexes cytotoxicity to cancer cells through bound to human serum albumin.

    Science.gov (United States)

    Gou, Yi; Zhang, Yao; Qi, Jinxu; Zhou, Zuping; Yang, Feng; Liang, Hong

    2015-03-01

    We use Schiff-base salicylaldehyde benzoylhydrazone (HL) as the ligand for copper(II), resulting in the complexes [CuCl(L)]·H2O (C1), [CuNO3(L)]·H2O (C2) and [CuBr(L)]2 (C3). We characterize the Cu(II) compounds' interactions with human serum albumin (HSA) using fluorescence spectroscopy and molecular docking. These studies revealed that Cu(II) compounds propensity bound to IIA subdomain of HSA possible by hydrophobic interactions and hydrogen bond. Cu(II) compounds produce intracellular reactive oxygen species (ROS) in cancer cells. Complexes of HSA and copper(II) compounds enhance about 2-fold cytotoxicity in cancer cells but do not raise cytotoxicity levels in normal cells in vitro. Compared with C3 alone, HSA-C3 complex promotes HepG2 cell apoptosis and has a stronger capacity to promote cell cycle arrest at the G2/M phase of HepG2.

  4. Characterization of Gallic Acid Interaction with Human Serum Albumin by Spectral and Molecular Modeling Methods

    Institute of Scientific and Technical Information of China (English)

    LIU Zuo-jia; LI Dan; NIU Feng-lan

    2012-01-01

    The binding of drugs with human serum albumin(HSA)is a crucial factor influencing the distribution and bioactivity of drugs in the body.To understand the action mechanisms between gallic acid(GA,3,4,5-trihydroxybenzoic acid)and HSA,the binding of GA with HSA was investigated by a combined experimental and computational approach.The fluorescence properties of HSA and the binding parameters of GA collectively indicate that the binding is characterized by static quenching mechanism at one high affinity binding site.According to the estimated molecular distance between the donor(HSA)and the acceptor(GA),the binding is related to the fluorescence resonance energy transfer.As indicated by the thermodynamic parameters,hydrophobic interaction plays a major role in the GA-HSA complex.Further,the experimental results reveal that GA is bound in the large hydrophobic cavity of subdomain ⅡA in the site Ⅰ of HSA,which is well approved by molecular docking.

  5. Comparative Studies of Interactions between Fluorodihydroquinazolin Derivatives and Human Serum Albumin with Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-10-01

    Full Text Available In the present study, 3-(fluorobenzylideneamino-6-chloro-1-(3,3-dimethylbutanoyl-phenyl-2,3-dihydroquinazolin-4(1H-one (FDQL derivatives have been designed and synthesized to study the interaction between fluorine substituted dihydroquinazoline derivatives with human serum albumin (HSA using fluorescence, circular dichroism and Fourier transform infrared spectroscopy. The results indicated that the FDQL could bind to HSA, induce conformation and the secondary structure changes of HSA, and quench the intrinsic fluorescence of HSA through a static quenching mechanism. The thermodynamic parameters, ΔH, ΔS, and ΔG, calculated at different temperatures, revealed that the binding was through spontaneous and hydrophobic forces and thus played major roles in the association. Based on the number of binding sites, it was considered that one molecule of FDQL could bind to a single site of HSA. Site marker competition experiments indicated that the reactive site of HSA to FDQL mainly located in site II (subdomain IIIA. The substitution by fluorine in the benzene ring could increase the interactions between FDQL and HSA to some extent in the proper temperature range through hydrophobic effect, and the substitution at meta-position enhanced the affinity greater than that at para- and ortho-positions.

  6. Interaction of polyphenolic metabolites with human serum albumin: a circular dichroism study.

    Science.gov (United States)

    Nozaki, Akiko; Kimura, Toshikiro; Ito, Hideyuki; Hatano, Tsutomu

    2009-09-01

    Binding sites of polyphenolic compounds on human serum albumin (HSA) were investigated using induced Cotton effects on the circular dichroism (CD) spectra. Polyphenolic compounds used in this study are known to be metabolites from tannins and their related polyphenols in food and medicinal plants. The present investigation revealed that the structural differences markedly affected the binding of the compounds to HSA. Protocatechuic acid, together with its methylated compounds vanillic and isovanillic acids, were assigned to be bound to sites I and II of HSA, based on the competitive relationships with site-I-binding phenylbutazone (PB) and site-II-binding diazepam (DP). 4-O-Methylgallic acid, which is the metabolite from gallic acid, was bound to site I on HSA, while gallic acid did not affect the binding of PB and DP at the concentration examined. Neither ellagic acid nor its metabolite urolithin A was competitive with PB and DP on HSA. The addition of digitoxin did not affect the induced CD of the polyphenolic acids examined.

  7. The investigation of interaction between Thioguanine and human serum albumin by fluorescence and modeling

    Directory of Open Access Journals (Sweden)

    Xin An

    2017-05-01

    Full Text Available The interaction between Thioguanine (6-TG and human serum albumin (HSA under simulative physiological conditions was studied using fluorescence spectroscopy in combination with UV absorption and molecular modeling method. A strong fluorescence quenching reaction of 6-TG to HSA was observed and the quenching mechanism was suggested as static quenching according to the Stern–Volmer equation. The binding constants (K at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH and entropy change (ΔS, were calculated according to relevant fluorescent data and thermodynamic equation. It was indicated that the hydrophobic interaction was a predominant intermolecular force in order to stabilize the copolymer, which was in agreement with the results of molecular modeling study. In addition, the binding distance between 6-TG and the tryptophan residue of HSA was studied according to Föster’s non-radiative energy transfer theory and the effects of common ions on the binding constant of 6-TG-HSA copolymer were also discussed at room temperature.

  8. Quantitation of the residual DNA from rice-derived recombinant human serum albumin.

    Science.gov (United States)

    Chen, Zhen; Dai, Huixia; Liu, Zhenwei; Zhang, Liping; Pang, Jianlei; Ou, Jiquan; Yang, Daichang

    2014-04-01

    Residual DNA in recombinant protein pharmaceuticals can potentially cause safety issues in clinical applications; thus, maximum residual limit has been established by drug safety authorities. Assays for residual DNA in Escherichia coli, yeast, and Chinese hamster ovary (CHO) cell expression systems have been established, but no rice residual DNA assay for rice expression systems has been designed. To develop an assay for the quantification of residual DNA that is produced from rice seed, we established a sensitive assay using quantitative real-time polymerase chain reaction (qPCR) based on the 5S ribosomal RNA (rRNA) genes. We found that a 40-cycle qPCR exhibited a linear response when the template concentration was in the range of 2×10(4) to 0.2pg of DNA per reaction in TaqMan and SYBR Green I assays. The amplification efficiency was 103 to 104%, and the amount of residual DNA from recombinant human serum albumin from Oryza sativa (OsrHSA) was less than 3.8ng per dosage, which was lower than that recommended by the World Health Organization (WHO). Our results indicate that the current purification protocol could efficiently remove residual DNA during manufacturing and processing. Furthermore, this protocol could be viable in other cereal crop endosperm expression systems for developing a residual DNA quantitation assay using the highly conserved 5S rRNA gene of the crops.

  9. Noncovalent interactions between a trinuclear monofunctional platinum complex and human serum albumin.

    Science.gov (United States)

    Wang, Yanqing; Wang, Xiaoyong; Wang, Jing; Zhao, Yongmei; He, Weijiang; Guo, Zijian

    2011-12-19

    Interactions between platinum complexes and human serum albumin (HSA) play crucial roles in the metabolism, distribution, and efficacy of platinum-based anticancer drugs. Polynuclear monofunctional platinum(II) complexes represent a new class of anticancer agents that display distinct molecular characters of pharmacological action from those of cisplatin. In this study, the interaction between a trinuclear monofunctional platinum(II) complex, [Pt(3)LCl(3)](ClO(4))(3) (L = N,N,N',N',N",N"-hexakis(2-pyridylmethyl)-1,3,5-tris(aminomethyl)benzene) (1), and HSA was investigated using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, circular dichroism spectroscopy, fluorescence spectroscopy, molecular docking, and inductively coupled plasma mass spectrometry. The spectroscopic and thermodynamic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes being 14.6 kJ mol(-1) and 145.5 J mol(-1) K(-1), respectively. The reactive sites of HSA to complex 1 mainly locate within its hydrophobic cavity in domain II. Noncovalent actions such as π-π stacking and hydrophobic bonding are the primary contributors to the interaction between HSA and complex 1, which is different from the scenario for cisplatin in similar conditions. The results suggest that the connection between complex 1 and HSA is reversible, and therefore the cytotoxic activity of the complex could be preserved during blood circulation.

  10. Spectroscopic and calorimetric studies of interaction of methimazole with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Afrin, Sadaf [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh (India); Riyazuddeen, E-mail: rz1@rediffmail.com [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh (India); Rabbani, Gulam; Khan, Rizwan Hasan [Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh (India)

    2014-07-01

    The interaction of the anti-thyroid drug, 2-mercapto 1-methylimidazole (methimazole) with human serum albumin (HSA) has been examined by fluorescence and isothermal titration calorimetry (ITC) techniques. Fluorescence results indicate that in case of HSA–drug complex the quenching of fluorescence intensity is at 340 nm. The methimazole has an ability to quench the intrinsic fluorescence of HSA tryptophan through a static quenching procedure. The binding constant has been determined using Stern–Volmer modified equation and energy transfer mechanisms of quenching are discussed. The ΔG°, ΔH°, and ΔS° values are also calculated by ITC measurements. The experimental spectroscopic and thermodynamic parameters have been used for understanding the binding mechanism of anti-thyroid drug with HSA. - Highlights: • The binding of methimazole to HSA quenches the intrinsic fluorescence of tryptophan. • The negative ΔG° value suggests the binding of methimazole with HSA is spontaneous. • The main contribution to ΔG° arises from the ΔS° rather than from ΔH°, so hydrophobic forces most likely play a major role in the binding of methimazole to HSA.

  11. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts.

    Science.gov (United States)

    Liu, Xiangning; Zhou, Xiaosong; Li, Shaobing; Lai, Renfa; Zhou, Zhiying; Zhang, Ye; Zhou, Lei

    2014-01-01

    Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid.

  12. An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum.

    Science.gov (United States)

    Ahmed, Nuzhat; Barker, Gillian; Oliva, Karen; Garfin, David; Talmadge, Kenneth; Georgiou, Harry; Quinn, Michael; Rice, Greg

    2003-10-01

    Proteomic technologies are being used to discover and identify disease-associated biomarkers. The application of these technologies in the search for potential diagnostic/prognostic biomarkers in the serum of patients has been limited by the presence of highly abundant albumin and immunoglobulins that constitute approximately 60-97% of the total serum proteins. The purpose of the study was to evaluate whether treatment of human serum with Affi-Gel Blue alone or in combination with Protein A (Aurum serum protein mini kit, Bio-Rad) before two-dimensional gel electrophoresis (2-DE) analysis removed high abundance proteins to allow the visualization of low abundant proteins. Serum samples were treated with either Affi-Gel Blue or Aurum kit and then subjected to 2-DE using 11 cm, pH 4-7 isoelectric focussing strips for the first dimension and 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis for second dimension. Protein spots were visualized using a fluorescent protein dye (SYPRO Ruby, Bio-Rad). Comparison between treatment methods showed significant removal of albumin by both Affi-Gel Blue and Aurum kit and considerable differences in the protein profile of the gels after each treatment. Direct comparison between treatments revealed twenty-eight protein spots unique to Affi-Gel Blue while only two spots were unique after Aurum kit treatment. Unique spots in Affi-Gel Blue and Aurum kit treated serum were not visualized in untreated serum. Sixteen hours of Affi-Gel Blue treatment resulted in enhanced visualization of fifty-three protein spots by two-fold, thirty-one by five-fold, twelve by ten-fold and six by twenty-fold. In parallel after Aurum kit treatment two-, five-, ten- and twenty-fold enhancements of thirty, thirteen, eight and five protein spots, respectively, were observed. The pattern of increased visualization of protein spots with both treatment methods was similar. In conclusion, treatment of serum samples with Affi-Gel Blue or Aurum kit before

  13. Spectroscopic Investigations of the Binding Interaction of a New Indanedione Derivative with Human and Bovine Serum Albumins

    Directory of Open Access Journals (Sweden)

    Mihaela Hillebrand

    2009-04-01

    Full Text Available Binding of a newly synthesized indanedione derivative, 2-(2-hydroxy-3-ethoxybenzylidene-1,3-indanedione (HEBID, to human and bovine serum albumins (HSA and BSA, under simulated physiological conditions was monitored by fluorescence spectroscopy. The binding parameters (binding constants and number of binding sites and quenching constants were determined according to literature models. The quenching mechanism was assigned to a Förster non-radiative energy transfer due to the HEBID-SA complex formation. A slightly increased affinity of HEBID for HSA was found, while the number of binding sites is approximately one for both albumins. The molecular distance between donor (albumin and acceptor (HEBID and the energy transfer efficiency were estimated, in the view of Förster’s theory. The effect of HEBID on the protein conformation was investigated using circular dichroism and synchronous fluorescence spectroscopies. The results revealed partial unfolding in the albumins upon interaction, as well as changes in the local polarity around the tryptophan residues

  14. Interaction of biocompatible natural rosin-based surfactants with human serum albumin: A biophysical study

    Energy Technology Data Exchange (ETDEWEB)

    Ishtikhar, Mohd [Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India); Ali, Mohd Sajid [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Atta, Ayman M. [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Petroleum Application department, Egyptian Petroleum Research Institute, Ahmad Elzomor St., Nasr city, Cairo-11727 (Egypt); Al-Lohedan, H.A. [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Nigam, Lokesh; Subbarao, Naidu [Centre for Computational Biology and Bioinformatics, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Hasan Khan, Rizwan, E-mail: rizwanhkhan@hotmail.com [Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India)

    2015-11-15

    Biophysical insight into interaction of biocompatible rosin-based surfactants with human serum albumin (HSA) was studied at physiological conditions using various spectroscopic, calorimetric and molecular docking approaches. The binding constant (K{sub b}), enthalpy (ΔH{sup 0}), entropy (ΔS{sup 0}) and Gibbs free energy change (ΔG{sup 0}) were calculated by spectroscopic and calorimetric method. We have also calculated the probability of energy transfer by FRET analysis. The circular dichroism study showed that the cationic surfactant QRMAE significantly altered the secondary structure of HSA as compared to the nonionic rosin surfactants. The thermodynamic study was performed by ITC to determine binding constant as well as change in enthalpy of HSA in presence of rosin surfactants. It clearly showed that hydrogen binding and hydrophobic interaction play an important role in the binding of HSA to rosin surfactants. We have also performed molecular docking studies to locate the binding site on HSA and to visualize the mode of interaction. The present study provides a significant insight into HSA–rosin surfactants interaction, which also improves our understanding of the possible effect of rosin surfactants on human health. - Highlights: • RMPEG 750 has the highest Kb, Kq and Ksv value as compared to other rosin surfactants. • The probability of energy transfer from HSA to rosin surfactants was maximum in the case of RMPEG 750. • Cationic surfactant QRMAE significantly altered the secondary structure of the HSA as compared to other rosin surfactants. • Molecular docking and ITC experiment studies, to locate the binding site on HSA and to investigate the mode of interaction.

  15. Physiologically relevant plasma d,l-homocysteine concentrations mobilize Cd from human serum albumin.

    Science.gov (United States)

    Sagmeister, Peter; Gibson, Matthew A; McDade, Kyle H; Gailer, Jürgen

    2016-08-01

    Although low-level chronic exposure of humans to cadmium (Cd(2+)) can result in a variety of adverse health effects, little is known about the role that its interactions with plasma proteins and small molecular weight (SMW) ligands in the bloodstream may play in delivering this metal to its target organs. To gain insight, a Cd-human serum albumin (HSA) 1:1 (molar ratio) complex was analyzed by size exclusion chromatography (SEC) coupled on-line to a flame atomic absorption spectrometer (FAAS). Using a phosphate buffered saline (PBS)-buffer mobile phase, the stability of the Cd-HSA complex was investigated in the presence of 2.0mM of SMW ligands, including taurine, acetaminophen, l-methionine, l-cysteine (Cys), d,l-homocysteine (hCys) or l-cysteine methyl-ester (Cys-Me). While taurine, acetaminophen and l-methionine did not affect its integrity, Cys, hCys and Cys-Me completely abstracted Cd from HSA. Subsequent investigations into the effect of 1.5, 1.0 and 0.5mM Cys and hCys on the integrity of the Cd-HSA complex revealed clear differences with regard to the nature of the eluting SMW-Cd species between these structurally related endogenous thiols. Interestingly, the Cd-specific chromatograms that were obtained for 0.5mM hCys revealed the elution of an apparent mixture of the parent Cd-HSA complex with a significant contribution of a structurally uncharacterized CdxhCysy species. Since this hCys concentration is encountered in blood plasma of hyperhomocysteinemia patients and since previous studies by others have revealed that a SH-containing carrier mediates the uptake of Cd into hepatocytes, our results suggest that plasma hCys may play a role in the toxicologically relevant translocation of Cd from the bloodstream to mammalian target organs.

  16. Adsorption of human fibrinogen and albumin onto hydrophobic and hydrophilic Ti6Al4V powder

    Science.gov (United States)

    Rodríguez-Sánchez, Jesús; Gallardo-Moreno, Amparo M.; Bruque, José M.; González-Martín, M. Luisa

    2016-07-01

    Adsorption of proteins on solid surfaces has been widely studied because of its importance in various biotechnological, medical and technical applications, such as medical implants or biosensors. One of the main problems is the adsorption-induced conformational changes because they often modify the biological activity of the proteins, which is believed to be a key factor on the subsequent cellular adhesion. The aim of this work is the study of the adsorption of human fibrinogen (Fg) and human serum albumin (HSA) onto Ti6Al4V particles, commercially available on different size, that are used to elaborate scaffolds to provide structural support to cell proliferation, promoting tissue development and bone regeneration among others. The study was done through the analysis of the adsorption isotherms and the electrical characterization of surfaces after adsorption in terms of the zeta potential (ζ). From this analysis it seems that Fg adsorbs preferentially vertically oriented (end-on) and HSA moves sequentially over the surface of the Ti6Al4V particles through dimmer formation, allowing adsorption progress over this initial bilayer. The zeta potential values of both proteins remain constant when the monolayer is formed. The study also extends the analysis of both adsorption behaviour and ζ potential characterization factors to the influence of the substrate hydrophobicity as this property can be modified for the Ti6Al4V by irradiating it with ultraviolet light (UV-C) without changes on its chemical composition [1,2]. Differences at low protein concentrations were found for both isotherms and zeta-potential values.

  17. Adsorption of human fibrinogen and albumin onto hydrophobic and hydrophilic Ti6Al4V powder

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Sánchez, Jesús; Gallardo-Moreno, Amparo M.; Bruque, José M.; González-Martín, M. Luisa, E-mail: mlglez@unex.es

    2016-07-15

    Adsorption of proteins on solid surfaces has been widely studied because of its importance in various biotechnological, medical and technical applications, such as medical implants or biosensors. One of the main problems is the adsorption-induced conformational changes because they often modify the biological activity of the proteins, which is believed to be a key factor on the subsequent cellular adhesion. The aim of this work is the study of the adsorption of human fibrinogen (Fg) and human serum albumin (HSA) onto Ti6Al4V particles, commercially available on different size, that are used to elaborate scaffolds to provide structural support to cell proliferation, promoting tissue development and bone regeneration among others. The study was done through the analysis of the adsorption isotherms and the electrical characterization of surfaces after adsorption in terms of the zeta potential (ζ). From this analysis it seems that Fg adsorbs preferentially vertically oriented (end-on) and HSA moves sequentially over the surface of the Ti6Al4V particles through dimmer formation, allowing adsorption progress over this initial bilayer. The zeta potential values of both proteins remain constant when the monolayer is formed. The study also extends the analysis of both adsorption behaviour and ζ potential characterization factors to the influence of the substrate hydrophobicity as this property can be modified for the Ti6Al4V by irradiating it with ultraviolet light (UV-C) without changes on its chemical composition [1,2]. Differences at low protein concentrations were found for both isotherms and zeta-potential values.

  18. Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes

    OpenAIRE

    Sidhaye, AA; Bhuran, KC; Zambare, S; Abubaker, M; Nirmalan, NJ; Singh, KK

    2016-01-01

    Background: The intra-erythrocytic development of the malarial parasite is dependent on active uptake of nutrients, including human serum albumin(HSA), into parasitized erythrocytes(pRBCs). We have designed HSA-based nanoparticles as a potential drugdelivery\\ud option for antimalarials. \\ud Methods: Artemether-loaded nanoparticles(AAN) were designed and antimalarial activity evaluated in-vitro/in-vivo using Plasmodium falciparum/Plasmodium berghei species, respectively. \\ud Results: Selective...

  19. Investigation of the interaction between isomeric derivatives and human serum albumin by fluorescence spectroscopy and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruiyong, E-mail: wangry@zzu.edu.cn; Dou, Huanjing; Yin, Yujing; Xie, Yuanzhe; Sun, Li; Liu, Chunmei; Dong, Jingjing; Huang, Gang; Zhu, Yanyan; Song, Chuanjun, E-mail: chjsong@zzu.edu.cn; Chang, Junbiao, E-mail: changjunbiao@zzu.edu.cn

    2014-10-15

    In this paper, we have synthesized 9H-pyrrolo[1,2-a]indol-9-ones and the isomeric indeno[2,1-b]pyrrol-8-ones. The interactions of human serum albumin with series of isomeric derivatives have been studied by spectrophotometric methods. Results show the intrinsic fluorescence is quenched by the derivatives with a static quenching procedure. The thermodynamics parameters indicate that van der Waals forces and hydrogen bonds play a major role in the interactions. The results of synchronous fluorescence spectra demonstrate that the microenvironments of Trp residue of human serum albumin are disturbed by most derivatives. Thermodynamic results showed that the 9H-pyrrolo[1,2-a]indol-9-ones are stronger quenchers and bind to human serum albumin with the higher affinity than isomeric indeno[2,1-b]pyrrol-8-ones. The influence of molecular structure on the binding aspects has been investigated. - Highlights: • The interactions between isomeric derivatives and HSA have been investigated. • Results reveal that 9H-pyrrolo[1,2-a]indol-9-ones are stronger quenchers for HSA. • Hydrogen bonds and van der Waals forces play major role in the binding process. • The influence of molecular structure on the binding aspects has been investigated. • The binding study was also modeled by molecular docking.

  20. Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: characterization and in vitro/vivo evaluation

    Science.gov (United States)

    Song, Zhiwang; Lu, Yonglin; Zhang, Xia; Wang, Haiping; Han, Junyi; Dong, Chunyan

    2016-01-01

    Folate-conjugated, curcumin-loaded human serum albumin nanoparticles (F-CM-HSANPs) were obtained by the chemical conjugation of folate to the surface of the curcumin (CM)-loaded human serum albumin nanoparticles (NPs). The NPs were characterized by various parameters, including size, polydispersity, zeta potential, morphology, encapsulation efficiency, and drug release profile. The mean particle size of F-CM-HSANPs was 165.6±15.7 nm (polydispersity index <0.28), and the average encapsulation efficiency percentage and drug loading percentage of the F-CM-HSANPs were 88.7%±4.8% and 7.9%±0.4%, respectively. Applied in vitro, the CM NPs, after conjugation with folate, maintained sustained release, and a faster release of CM was more visibly observed than the unconjugated NPs. F-CM-HSANPs can prolong the retention time of CM significantly in vivo. However, after intravenous injection of F-CM-HSANPs, the pharmacokinetic parameters of CM were not significantly different from those of CM-loaded human serum albumin NPs. The improved antitumor activity of F-CM-HSANPs may be attributable to the protection of drug from enzymatic deactivation followed by the selective localization at the desired site. These results suggest that the intravenous injection of F-CM-HSANPs is likely to have an advantage in the current clinical CM formulation, because it does not require the use of a solubilization agent and it is better able to target the tumor tissue. PMID:27574403

  1. Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs in vivo

    Directory of Open Access Journals (Sweden)

    Tang QS

    2011-11-01

    Full Text Available Qiu-Sha Tang1,*, Dao-Zhen Chen2,*, Wen-Qun Xue2, Jing-Ying Xiang2, Yong-Chi Gong1, Li Zhang2, Cai-Qin Guo21Department of Pathology and Pathophysiology, Medical College, Southeast University, Nanjing, Jiangsu; 2Central Laboratory, Wuxi Hospital for Maternal and Child Health Care, Affiliated Medical School of Nanjin, Wuxi, Jiangsu, China *Authors contributed equally to this workBackground: The purpose of this study was to develop intraperitoneal hyperthermic therapy based on magnetic fluid hyperthermia, nanoparticle-wrapped cisplatin chemotherapy, and magnetic particles of albumin. In addition, to combine the multiple-killing effects of hyperthermal targeting therapy, chemotherapy, and radiotherapy, the albumin-nanoparticle surfaces were linked with radionuclide 188Re-labeled folic acid ligand (188Re-folate-CDDP/HSA.Methods: Human serum albumin was labeled with 188Re using the pre-tin method. Reaction time and optimal conditions of labeling were investigated. The particles were intravenously injected into mice, which were sacrificed at different time points. Radioactivity per gram of tissue of percent injected dose (% ID/g was measured in vital organs. The biodistribution of 188Re-folate-CDDP/HAS magnetic nanoparticles was assessed.Results: Optimal conditions for 188Re-labeled folate-conjugated albumin combined with cisplatin magnetic nanoparticles were: 0.1 mL of sodium gluconate solution (0.3 mol/L, 0.1 mL of concentrated hydrochloric acid with dissolved stannous chloride (10 mg/mL, 0.04 mL of acetic acid buffer solution (pH 5, 0.2 mol/L, 30 mg of folate-conjugated albumin combined with cisplatin magnetic nanoparticles, and 188ReO4 eluent (0.1 mL. The rate of 188Re-folate-CDDP-HSA magnetic nanoparticle formation exceeded 90%, and radiochemical purity exceeded 95%. The overall labeling rate was 83% in calf serum at 37°C. The major uptake tissues were the liver, kidney, intestine, and tumor after the 188Re-folate-CDDP/HSA magnetic nanoparticles

  2. Serum albumin: touchstone or totem?

    Science.gov (United States)

    Margarson, M P; Soni, N

    1998-08-01

    A decrease in serum albumin concentrations is an almost inevitable finding in disease states, and is primarily mediated in the acute phase by alterations in vascular permeability and redistribution. This change is not disease specific but marked changes that persist are generally associated with a poorer prognosis. Critical appraisal of long-standing practices and the availability of alternative colloid solutions have led to a reduction in albumin replacement therapy, and a widespread tolerance of lower albumin concentrations in patients. The factors determining serum albumin concentrations, their measurement and the implications of hypoalbuminaemia are reviewed. The clinical value of serum albumin measurement is discussed.

  3. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Bardajee, Ghasem Rezanejade, E-mail: rezanejad@pnu.ac.ir; Hooshyar, Zari

    2016-05-01

    A novel CdTe quantum dots (QDs) were prepared in aqueous phase via a facile method. At first, poly (acrylic amide) grafted onto sodium alginate (PAAm-g-SA) were successfully synthesized and then TGA capped CdTe QDs (CdTe-TGA QDs) were embed into it. The prepared CdTe-PAAm-g-SA QDs were optimized and characterized by transmission electron microscopy (TEM), thermo-gravimetric (TG) analysis, Fourier transform infrared (FT-IR), UV–vis and fluorescence spectroscopy. The characterization results indicated that CdTe-TGA QDs, with particles size of 2.90 nm, were uniformly dispersed on the chains of PAAm-g-SA biopolymer. CdTe-PAAm-g-SA QDs also exhibited excellent UV–vis absorption and high fluorescence intensity. To explore biological behavior of CdTe-PAAm-g-SA QDs, the interactions between CdTe-PAAm-g-SA QDs and human serum albumin (HSA) (or bovine serum albumin (BSA)) were investigated by cyclic voltammetry, FT-IR, UV–vis, and fluorescence spectroscopic. The results confirmed the formation of CdTe-PAAm-g-SA QDs-HSA (or BSA) complex with high binding affinities. The thermodynamic parameters (ΔG < 0, ΔH < 0 and ΔS < 0) were indicated that binding reaction was spontaneous and van der Waals interactions and hydrogen-bond interactions played a major role in stabilizing the CdTe-PAAm-g-SA QDs-HSA (or BSA) complexes. The binding distance between CdTe-PAAm-g-SA QDs and HSA (or BSA)) was calculated about 1.37 nm and 1.27 nm, respectively, according to Forster non-radiative energy transfer theory (FRET). Analyzing FT-IR spectra showed that the formation of QDs-HSA and QDs-BSA complexes led to conformational changes of the HSA and BSA proteins. All these experimental results clarified the effective transportation and elimination of CdTe-PAAm-g-SA QDs in the body by binding to HSA and BSA, which could be a useful guideline for the estimation of QDs as a drug carrier. - Highlights: • The CdTe quantum dots coated with polyacrylamide grafted onto sodium alginate. • The

  4. Environment sensitive fluorescent analogue of biologically active oxazoles differentially recognizes human serum albumin and bovine serum albumin: Photophysical and molecular modeling studies

    Science.gov (United States)

    Maiti, Jyotirmay; Biswas, Suman; Chaudhuri, Ankur; Chakraborty, Sandipan; Chakraborty, Sibani; Das, Ranjan

    2017-03-01

    An environment sensitive fluorophore, 4-(5-(4-(dimethylamino)phenyl)oxazol-2-yl)benzoic acid (DMOBA), that closely mimics biologically active 2,5-disubstituited oxazoles has been designed to probe two homologous serum proteins, human serum albumin (HSA) and bovine serum albumin (BSA) by means of photophysical and molecular modeling studies. This fluorescent analogue exhibits solvent polarity sensitive fluorescence due to an intramolecular charge transfer in the excited state. In comparison to water, the steady state emission spectra of DMOBA in BSA is characterized by a greater blue shift ( 10 nm) and smaller Stokes' shift ( 5980 cm- 1) in BSA than HSA (Stokes'shift 6600 cm- 1), indicating less polar and more hydrophobic environment of the dye in the former than the latter. The dye-protein binding interactions are remarkably stronger for BSA than HSA which is evident from higher value of the association constant for the DMOBA-BSA complex (Ka 5.2 × 106 M- 1) than the DMOBA-HSA complex (Ka 1.0 × 106 M- 1). Fӧrster resonance energy transfer studies revealed remarkably less efficient energy transfer (8%) between the donor tryptophans in BSA and the acceptor DMOBA dye than that (30%) between the single tryptophan moiety in HSA and the dye, which is consistent with a much larger distance between the donor (tryptophan)-acceptor (dye) pair in BSA (34.5 Å) than HSA (25.4 Å). Site specific competitive binding assays have confirmed on the location of the dye in Sudlow's site II of BSA and in Sudlow's site I of HSA, respectively. Molecular modeling studies have shown that the fluorescent analogue is tightly packed in the binding site of BSA due to strong steric complementarity, where, binding of DMOBA to BSA is primarily dictated by the van der Waals and hydrogen bonding interactions. In contrast, in HSA the steric complementarity is less significant and binding is primarily guided by polar interactions and van der Waals interactions appear to be less significant in the

  5. Spectroscopy and molecular docking studies on the binding of propyl gallate to human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guo-fei; Wang, Yu; Xi, Lei; Liu, Jin; Wang, Hao; Du, Lin-fang, E-mail: dulinfang@scu.edu.cn

    2015-03-15

    The interaction of propyl gallate (PG) with human serum albumin (HSA) was investigated by fluorescence, far-UV CD and FT-IR spectroscopic methods as well as molecular docking. Fluorescence emission spectra demonstrated that the HSA fluorescence was quenched by PG through static quenching and energy transfer with the binding constants in the order of 10{sup 5} L mol{sup −1}. The thermodynamic parameters (ΔH=−29.64 KJ mol{sup −1}, ΔS=2.7 J mol{sup −1} K{sup −1}) indicated that both hydrophobic force and hydrogen bond interactions played a leading role in the formation of PG–HSA complex. The results also showed the existence of a single binding site, which was located in subdomain IIA (site I) as revealed by molecular docking and competitive binding experiments. Molecular docking studies further showed the participation of several amino acids in PG–HSA complexation, which stabilized by H-bonding systems. The synchronous fluorescence spectra showed that the binding of drug caused the environment of tryptophan residues became more polar. FT-IR and CD spectroscopic further showed that drug complexation altered protein conformation by a major reduction of α-helix inducing a partial protein destabilization. - Highlights: • The interaction between propyl gallate and HSA has been investigated. • HSA fluorescence is quenched by propyl gallate through static quenching mechanism. • Both hydrophobic force and hydrogen bond play major role in the binding process. • Site I of the HSA is found to be the main binding site for propyl gallate. • The structure of HSA has been changed upon the interaction with propyl gallate.

  6. Interaction of ANS with human serum albumin under confinement: Important insights and relevance

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Ashima; Kundu, Jayanta; Karmakar, Sandip; Lai, Sima; Chowdhury, Pramit K., E-mail: pramitc@chemistry.iitd.ac.in

    2015-11-15

    Human serum albumin (HSA) has been extensively studied over the years not only as a model protein but also as an important small molecule carrier with its ability to bind a variety of ligands. This study focuses on the modulation in the conformational disposition of HSA within the confinement of water pools of AOT reverse micelles, and its interactions with 1-anilinonapthelenesulfonate (ANS), the latter serving as a drug moiety. Circular dichroism studies show that while on one hand the incorporation of the protein in the reverse micelles leads to significant distortion in its secondary structure, however, at the same time, addition of ANS leads to a marked increase in helicity of HSA. A combination of FRET studies, time resolved anisotropy measurements and global analyses of temperature dependent spectra reveal little or no significant interaction between HSA and ANS inside the AOT water pools, this being expected, based on the observed distortion of the protein secondary structure on reverse micelle entrapment (the latter resulting in disruption of the binding pockets available to ANS). Taken together our data show possible insights into how HSA releases its bound species (when interacting with membranes or charged confined spaces) and thereby remains a viable drug carrier. - Highlights: • Perturbation of the native structure of HSA in reverse micelles was investigated. • The thermal transition of HSA was quite non-cooperative inside the water pools. • 1-ANS was use to check whether it was binding to HSA inside the water pools. • Our analyses show the HSA subdomain cavities to be perturbed not allowing ANS to bind. • This we propose is a manner that HSA can release its bound molecules.

  7. Interaction of virstatin with human serum albumin: spectroscopic analysis and molecular modeling.

    Directory of Open Access Journals (Sweden)

    Tanaya Chatterjee

    Full Text Available Virstatin is a small molecule that inhibits Vibrio cholerae virulence regulation, the causative agent for cholera. Here we report the interaction of virstatin with human serum albumin (HSA using various biophysical methods. The drug binding was monitored using different isomeric forms of HSA (N form ∼pH 7.2, B form ∼pH 9.0 and F form ∼pH 3.5 by absorption and fluorescence spectroscopy. There is a considerable quenching of the intrinsic fluorescence of HSA on binding the drug. The distance (r between donor (Trp214 in HSA and acceptor (virstatin, obtained from Forster-type fluorescence resonance energy transfer (FRET, was found to be 3.05 nm. The ITC data revealed that the binding was an enthalpy-driven process and the binding constants K(a for N and B isomers were found to be 6.09×10(5 M(-1 and 4.47×10(5 M(-1, respectively. The conformational changes of HSA due to the interaction with the drug were investigated from circular dichroism (CD and Fourier Transform Infrared (FTIR spectroscopy. For 1:1 molar ratio of the protein and the drug the far-UV CD spectra showed an increase in α- helicity for all the conformers of HSA, and the protein is stabilized against urea and thermal unfolding. Molecular docking studies revealed possible residues involved in the protein-drug interaction and indicated that virstatin binds to Site I (subdomain IIA, also known as the warfarin binding site.

  8. Complexation of fluoroquinolone antibiotics with human serum albumin: A fluorescence quenching study

    Energy Technology Data Exchange (ETDEWEB)

    Seedher, Neelam, E-mail: nseedher@yahoo.co [Department of Chemistry, Panjab University, Chandigarh 160014 (India); Agarwal, Pooja [Department of Chemistry, Panjab University, Chandigarh 160014 (India)

    2010-10-15

    Mechanism of interaction and detailed physico-chemical characterization of the binding of four fluoroquinolones: levofloxacin, sparfloxacin, ciprofloxacin HCl and enrofloxacin with human serum albumin has been studied at physiological pH (7.4) using fluorescence spectroscopic technique. The stoichiometry of interaction was found to be 1:1 for all the drugs used. The association constants for the interaction were of the order of 10{sup 4} in most cases. At low drug:protein ratios, a significant fraction of the added drug was bound. The predominant interactions involved are hydrogen bonding and Van der Waal's interactions in the case of levofloxacin, hydrophobic interactions in the case of ciprofloxacin hydrochloride and enrofloxacin and hydrogen bonding, hydrophobic and electrostatic interactions in the case of sparfloxacin. The drug binding region did not coincide with that of the hydrophobic probe, 1-anilinonaphthalene-8-sulfonate (ANS). From the displacement of site-specific probes and site-marker drugs, it was concluded that ciprofloxacin hydrochloride is site II-specific while enrofloxacin is a site I-specific drug. Levofloxacin binds at both site I and site II with equal affinity. Sparfloxacin had higher affinity for site II than site I. It is also possible that sparfloxacin binds at the interface between site I and site II. Stern-Volmer analysis of the data showed that the quenching mechanism is predominantly collisional for the binding of ciprofloxacin HCl and enrofloxacin while both static and collisional quenching mechanisms are operative in the case of levofloxacin and sparfloxacin. High magnitude of the rate constant for quenching showed that the process is not entirely diffusion controlled. Circular dichroism (CD) spectroscopic studies showed that the presence of drugs did not cause any major changes in the secondary structure of HSA.

  9. Exploring the mechanism of interaction between sulindac and human serum albumin: Spectroscopic and molecular modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Ping; Hou, Ya-He [Department of Material Engineering, Xuzhou College of Industrial Technology, Xuzhou, Jiangsu 221140 (China); Wang, Li [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Zhang, Ye-Zhong, E-mail: zhangfluorescence@126.com [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Liu, Yi, E-mail: prof.liuyi@263.net [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); College of Chemistry and Molecular Sciences and State Key Laboratory of Virology, Wuhan University, Wuhan 430072 (China)

    2013-06-15

    In the present study, a combination of fluorescence, molecular modeling and circular dichroism (CD) approaches had been employed to investigate the interaction between sulindac and human serum albumin (HSA). Results of mechanism discussion demonstrated that the fluorescence quenching of HSA by sulindac was a static quenching procedure. Binding parameters calculated from the modified Stern–Volmer equation showed that sulindac bound to HSA with the binding affinities in the order of 10{sup 5} L mol{sup −1}. The thermodynamic parameters (ΔH=−18.58 kJ mol{sup −1}; ΔS=37.26 J mol{sup −1} K{sup −1}) obtained by the van′t Hoff equation revealed that hydrophobic forces played a leading role in the formation of sulindac–HSA complex, but hydrogen bonds could not be omitted. Site marker competitive experiments revealed a displacement of warfarin by sulindac, which indicated that the binding site of sulindac to HSA located in the sub-domain IIA (Sudlow′s site I). The molecular docking study confirmed the specific binding mode and binding site obtained by fluorescence and site marker competitive experiments. CD and three-dimensional fluorescence spectroscopy were used to investigate the changes of HSA secondary structure and microenvironment in the presence of sulindac. Alterations of HSA conformation were observed with the reduction of α-helix from 60.1% (free HSA) to 57.3%, manifesting a slight unfolding of the polypeptides of protein. -- Highlights: ► The quenching mechanism between sulindac and HSA is a static process. ► The binding of sulindac to HSA takes place in sub-domain IIA (Sudlow′s site I). ► The binding is spontaneous and hydrophobic force plays major role in stabilizing the complex. ► CD and 3-D fluorescence spectra prove the change of the microenvironment and conformation of HSA.

  10. Spectroscopic and molecular docking techniques study of the interaction between oxymetholone and human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Bagheri, Habibollah; Afkhami, Abbas; Soleimani, Mohammad

    2014-11-15

    In this study, the binding of oxymetholone (OXM), a doping drug, to human serum albumin (HSA) was explored at pH 7.40 by spectroscopic methods including spectrofluorimetry, three dimensional excitation–emission matrix (3D EEM), UV–vis absorption, resonance rayleigh scattering (RRS) and molecular docking. The fluorescence results showed that there was a considerable quenching of the intrinsic fluorescence of HSA upon binding to OXM by static quenching mechanism. The Stern–Volmer quenching constants (K{sub SV}) between OXM and HSA at three different temperatures 295, 303, 308 K, were obtained as 4.63×10{sup 4}, 3.05×10{sup 4} and 1.49×10{sup 4} L mol{sup −1}, respectively. Furthermore this interaction was confirmed by UV–vis spectrophotometric and RRS techniques. The binding site number, n, apparent binding constant, K{sub b}, and corresponding thermodynamic parameters (ΔS, ΔH and ΔG) were measured at different temperatures. The Van der Waals and hydrogen-bond forces were found to stabilize OXM–HSA complex. The distance (r) between the donor and acceptor was obtained from Förster's theory of fluorescence resonance energy transfer (FRET) and found to be 1.67 nm. The 3D EEM showed that OXM slightly changes the secondary structure of HSA. Furthermore, the molecular docking was employed for identification of drug binding sites and interaction of OXM with amino acid residues. - Highlights: • The binding of OXM as a doping drug with HSA was studied by different techniques. • The binding constant of HSA–OXM was calculated. • The binding site of OXM on HSA was characterized with molecular docking. • The thermodynamic parameters were calculated according to fluorescence technique.

  11. Spectral and computational features of the binding between riparins and human serum albumin.

    Science.gov (United States)

    Camargo, Cintia Ramos; Caruso, Ícaro Putinhon; Gutierrez, Stanley Juan Chavez; Fossey, Marcelo Andres; Filho, José Maria Barbosa; Cornélio, Marinônio Lopes

    2017-09-08

    The green Brazilian bay leaf, a spice much prized in local cuisine (Aniba riparia, Lauraceae), contains chemical compounds presenting benzoyl-derivatives named riparins, which have anti-inflammatory, antimicrobial and anxiolytic properties. However, it is unclear what kind of interaction riparins perform with any molecular target. As a profitable target, human serum albumin (HSA) is one of the principal extracellular proteins, with an exceptional capacity to interact with several molecules, and it also plays a crucial role in the transport, distribution, and metabolism of a wide variety of endogenous and exogenous ligands. To outline the HSA-riparin interaction mechanism, spectroscopy and computational methods were synergistically applied. An evaluation through fluorescence spectroscopy showed that the emission, attributed to Trp 214, at 346 nm decreased with titrations of riparins. A static quenching mechanism was observed in the binding of riparins to HSA. Fluorescence experiments performed at 298, 308 and 318 K made it possible to conduct thermodynamic analysis indicating a spontaneous reaction in the complex formation (ΔGcomplex, Hill's approach was utilized to distinguish the index of affinity and the binding constant. A correspondence between the molecular structures of riparins, due to the presence of the hydroxyl group in the B-ring, with thermodynamic parameters and index of affinity were observed. Riparin III performs an intramolecular hydrogen bond, which affects the Hill coefficient and the binding constant. Therefore, the presence of hydroxyl groups is capable of modulating the interaction between riparins and HSA. Site marker competitive experiments indicated Site I as being the most suitable, and the molecular modeling tools reinforced the experimental results detailing the participation of residues. Copyright © 2017. Published by Elsevier B.V.

  12. Spectroscopic investigation of the interactions of carbofuran and amitrol herbicides with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Tunç, Sibel, E-mail: stunc@akdeniz.edu.tr; Duman, Osman, E-mail: osmanduman@akdeniz.edu.tr; Soylu, İnanç; Kancı Bozoğlan, Bahar

    2014-07-01

    In this study, various spectroscopic techniques including UV absorption, fluorescence and synchronous fluorescence spectroscopy were used to examine the interactions of carbofuran (CF) and amitrol (AMT) herbicides with human serum albumin (HSA). The results of spectroscopic experiments illustrated that CF was bound by HSA, on the other hand there was no interaction between HSA and AMT molecules. In HSA–CF system, static quenching mechanism was responsible for the fluorescence quenching of HSA. The Stern–Volmer constant and binding constant decreased with increasing temperature. This means that an increase in temperature reduces the stability of HSA–CF complex. In HSA–CF system, the number of binding site on protein was found to be one. From the thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated as −22.30 kJ mol{sup −1} and −10.70 J mol{sup −1} K{sup −1}, respectively, which indicated that the interaction forces between HSA and CF molecules were mainly hydrogen bonding and van der Waals forces. The conformational change in the protein structure was investigated by synchronous fluorescence spectroscopy. According to the results of synchronous fluorescence analysis, there was a change in the protein structure owing to the interaction of CF with HSA. - Highlights: • UV absorption, fluorescence and synchronous fluorescence measurements confirm the formation of HSA–CF complex. • The formation of HSA–CF complex involves both hydrogen bonding and van der Waals forces. • There is no interaction between HSA and AMT molecules. • Binding constants, numbers of binding sites and thermodynamic parameters have been calculated. • The binding of CF to HSA changes the conformational structure of protein.

  13. Identification of dityrosine cross-linked sites in oxidized human serum albumin.

    Science.gov (United States)

    Annibal, Andrea; Colombo, Graziano; Milzani, Aldo; Dalle-Donne, Isabella; Fedorova, Maria; Hoffmann, Ralf

    2016-04-15

    Reactive oxygen species (ROS) can oxidize virtually all cellular components. In proteins cysteine, methionine, tryptophan, and tyrosine residues are most prone to oxidation and their oxidized forms are thus considered as biomarkers of oxidative protein damages. Ultraviolet radiation and some endogenous ROS can produce tyrosine radicals reacting with other tyrosine residues yielding intra- or intermolecular cross-links in proteins. These 3,3'-dityrosines can be quantified by their characteristic fluorescence, but analytical methods to identify the modification sites in proteins are still missing. Although mass spectrometry (MS) is routinely used to map other post-translational modifications, the analysis of dityrosines is challenged by simultaneous fragmentations of both cross-linked peptide chains producing complex tandem mass spectra. Additionally, the fragmentation patterns differ from linear peptides. Here, we studied the fragmentation behavior of dityrosine cross-linked peptides obtained by incubating three peptides (AAVYHHFISDGVR, TEVSSNHVLIYLDK, and LVAYYTLIGASGQR) with horseradish peroxidase in the presence of hydrogen peroxide. Homo- and hetero-dimerization via dityrosine was monitored by fluorescence spectroscopy and MS. The fragmentation characteristics of dityrosine-linked peptides were studied on an ESI-LTQ-Orbitrap-MS using collision induced dissociation, which allowed localizing the cross-linked positions and provided generic rules to identify this oxidative modification. When human serum albumin oxidized with 50-fold molar excess of HOCl in phosphate buffer saline was analyzed by nanoRPC-ESI-MS/MS, an automatic database search considering all possible (in-silico generated) tyrosine-containing peptides as dynamic modifications revealed four different types of oxidatively modified tyrosine residues including dityrosines linking ten different Tyr residues. The automatic database search was confirmed by manual interpretation of each tandem mass spectrum.

  14. Combined fluorescence and electrochemical investigation on the binding interaction between organic acid and human serum albumin

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Min; GUO Liang-Hong

    2009-01-01

    Human serum albumin (HSA) is a plasma protein responsible for the binding and transport of fatty acids and a variety of exogenous chemicals such as drugs and environmental pollutants. Such binding plays a crucial role in determining the ADME (absorption, distribution, metabolism, and excretion) and bioavailability of the pollutants. We report investigation on the binding interaction between HSA and acetic acid (C2), octanoic acid (C8) and dodecanoic acid (C12) by the combination of site-specific fluorescent probe, tryptophan intrinsic fluorescence and tyrosine electrochemistry. Two fluorescent probes, dansylamide and dansyl-L-proline, were employed in the displacement measurement to study fatty acid interaction with the two drug-binding sites on HSA. Intrinsic fluorescence of tryptophan in HSA was monitored upon addition of the fatty acids into HSA. Electrocatalyzed response of the tyrosine residues in HSA by a redox mediator was used to investigate the binding interaction. Qualitatively, observations made by the three approaches are very similar. HSA did not show any change in either fluorescence or electrochemistry after mixing with C2, suggesting there is no significant interaction with the short-chain fatty acid. For C8, the measured signal dropped in a single-exponential fashion, indicative of independent and non-cooperative binding. The calculated association constant and binding ratio is 3.1×106 L/mol and 1 with drug binding Site I, 1.1×107 L/mol and 1 with Site II, and 7.0×104 L/mol and 4 with the tryptophan site. The measurement with C12 displayed multiple phases of fluorescence change, suggesting cooperativity and allosteric effect of C12 binding. These results correlate well with those obtained by the established methods, and validate the new approach as a viable tool to study the interactions of environmental pollutants with biological molecules.

  15. Cytotoxicity and comparative binding mechanism of piperine with human serum albumin and α-1-acid glycoprotein.

    Science.gov (United States)

    Yeggoni, Daniel Pushparaju; Rachamallu, Aparna; Kallubai, Monika; Subramanyam, Rajagopal

    2015-01-01

    Human serum albumin (HSA) and α-1-acid glycoprotein (AGP) (acute phase protein) are the plasma proteins in blood system which transports many drugs. To understand the pharmacological importance of piperine molecule, here, we studied the anti-inflammatory activity of piperine on mouse macrophages (RAW 264.7) cell lines, which reveals that piperine caused an increase in inhibition growth of inflammated macrophages. Further, the fluorescence maximum quenching of proteins were observed upon binding of piperine to HSA and AGP through a static quenching mechanism. The binding constants obtained from fluorescence emission were found to be K(piperine) = 5.7 ± .2 × 10(5) M(-1) and K(piperine) = 9.3± .25 × 10(4) M(-1) which correspond to the free energy of -7.8 and -6.71 kcal M(-1)at 25 °C for HSA and AGP, respectively. Further, circular dichrosim studies revealed that there is a marginal change in the secondary structural content of HSA due to partial destabilization of HSA-piperine complexes. Consequently, inference drawn from the site-specific markers (phenylbutazone, site I marker) studies to identify the binding site of HSA noticed that piperine binds at site I (IIA), which was further authenticated by molecular docking and molecular dynamic (MD) studies. The binding constants and free energy corresponding to experimental and computational analysis suggest that there are hydrophobic and hydrophilic interactions when piperine binds to HSA. Additionally, the MD studies have showed that HSA-piperine complex reaches equilibration state at around 3 ns, which prove that the HSA-piperine complex is stable in nature.

  16. Binding between Saikosaponin C and Human Serum Albumin by Fluorescence Spectroscopy and Molecular Docking

    Directory of Open Access Journals (Sweden)

    Yi-Cun Chen

    2016-01-01

    Full Text Available Saikosaponin C (SSC is one of the major active constituents of dried Radix bupleuri root (Chaihu in Chinese that has been widely used in China to treat a variety of conditions, such as liver disease, for many centuries. The binding of SSC to human serum albumin (HSA was explored by fluorescence, circular dichroism (CD, UV-vis spectrophotometry, and molecular docking to understand both the pharmacology and the basis of the clinical use of SSC/Chaihu. SSC produced a concentration-dependent quenching effect on the intrinsic fluorescence of HSA, accompanied by a blue shift in the fluorescence spectra. The Stern-Volmer equation showed that this quenching was dominated by static quenching. The binding constant of SSC with HSA was 3.72 × 103 and 2.99 × 103 L·mol−1 at 26 °C and 36 °C, respectively, with a single binding site on each SSC and HSA molecule. Site competitive experiments demonstrated that SSC bound to site I (subdomain IIA and site II (subdomain IIIA in HSA. Analysis of thermodynamic parameters indicated that hydrogen bonding and van der Waals forces were mostly responsible for SSC-HSA association. The energy transfer efficiency and binding distance between SSC and HSA was calculated to be 0.23 J and 2.61 nm at 26 °C, respectively. Synchronous fluorescence and CD measurements indicated that SSC affected HSA conformation in the SSC-HSA complex. Molecular docking supported the experimental findings in conformational changes, binding sites and binding forces, and revealed binding of SSC at the interface between subdomains IIA-IIB.

  17. Investigation of neohesperidin dihydrochalcone binding to human serum albumin by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Bozoğlan, Bahar Kancı; Tunç, Sibel, E-mail: stunc@akdeniz.edu.tr; Duman, Osman, E-mail: osmanduman@akdeniz.edu.tr

    2014-11-15

    In this study, the interaction of human serum albumin (HSA) with neohesperidin dihydrochalcone (NHD) was investigated by UV, fluorescence, synchronous fluorescence and circular dichroism spectroscopic methods. Experimental results confirmed the complex formation between HSA and NHD molecules under physiological conditions. NHD quenched the intrinsic fluorescence spectrum of HSA by static quenching mechanism. The binding constant of this system was calculated as 2.79×10{sup 4} M{sup −1} at 298.15 K. The stability of HSA–NHD complex illustrated a decrease with increasing temperature. The number of binding sites was found to be 1. Thermodynamic parameter values were calculated by using van’t Hoff equation. According to sign and magnitude of thermodynamic parameters (ΔH=−29.22 kJ mol{sup −1} and ΔS=−12.91 J mol{sup −1} K{sup −1}), hydrogen bonding and van der Waals forces were found as the effective interaction forces between HSA and NHD molecules. Synchronous fluorescence and circular dichroism spectroscopic methods proved the alteration of secondary structure of HSA in the presence of NHD. Site marker competitive experiments indicated that the binding of NHD to HSA took place in subdomain IIA region of protein. - Highlights: • Static quenching mechanism is effective in the interaction of HSA with NHD. • Hydrogen bonding and van der Waals forces play an important role in the binding process. • NHD causes a slight change in the conformational structure of HSA. • The binding site of NHD takes place in subdomain IIA region of HSA.

  18. Interplay of Multiple Interaction Forces: Binding of Norfloxacin to Human Serum Albumin.

    Science.gov (United States)

    Paul, Bijan K; Ghosh, Narayani; Mukherjee, Saptarshi

    2015-10-15

    Herein, the binding interaction of a potential chemotherapeutic antibacterial drug norfloxacin (NOF) with a serum transport protein, human serum albumin (HSA), is investigated. The prototropic transformation of the drug (NOF) is found to be remarkably modified following interaction with the protein as manifested through significant modulations of the photophysics of the drug. The predominant zwitterionic form of NOF in aqueous buffer phase undergoes transformation to the cationic form within the protein-encapsulated state. This implies the possible role of electrostatic interaction force in NOF-HSA binding. This postulate is further substantiated from the effect of ionic strength on the interaction process. To this end, the detailed study of the thermodynamics of the drug-protein interaction process from isothermal titration calorimetric (ITC) experiments is found to unfold the signature of electrostatic as well as hydrophobic interaction forces underlying the binding process. Thus, interplay of more than one interaction forces is argued to be responsible for the overall drug-protein binding. The ITC results reveal an important finding in terms of enthalpy-entropy compensation (EEC) characterizing the NOF-HSA binding. The effect of drug-binding on the native protein conformation has also been evaluated from circular dichroism (CD) spectroscopy which unveils partial rupture of the protein secondary structure. In conjunction to this, the functionality of the native protein (in terms of esterase-like activity) is found to be lowered as a result of binding with NOF. The AutoDock-based docking simulation unravels the probable binding location of NOF within the hydrophilic subdomain IA of HSA. The present program also focuses on exploring the dynamical aspects of the drug-protein interaction scenario. The rotational-relaxation dynamics of the protein-bound drug reveals the not-so-common "dip-and-rise" pattern.

  19. Synthesis of biological active thiosemicarbazone and characterization of the interaction with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wangshu; Shi, Lei; Hui, Guangquan [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Cui, Fengling, E-mail: fenglingcui@hotmail.com [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China)

    2013-02-15

    The synthesis of a new biological active reagent, 2-((1,4-dihydroxy)-9,10-anthraquinone) aldehyde thiosemicarbazone (DHAQTS), was designed. The interaction between DHAQTS and HSA was studied by fluorescence spectroscopy in combination with molecular modeling under simulation of physiological conditions. According to the results of fluorescence measurements, the quenching mechanism was suggested to be static. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrophobic interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, DHAQTS was confirmed to be located in site I of HSA. The binding distance r=2.83 nm between the donor HSA and acceptor DHAQTS was obtained according to Foerster's non-radiative energy transfer theory. The three-dimensional fluorescence spectral results showed the conformation and microenvironment of HSA changed in the presence of DHAQTS. The effects of common ions on the binding of DHAQTS to HSA were also evaluated. The experimental results were in agreement with the results obtained via a molecular docking study. - Highlights: Black-Right-Pointing-Pointer 2-((1,4-dihydroxy)-9,10-anthraquinone)aldehyde thiosemicarbazone (DHAQTS) was synthesized. Black-Right-Pointing-Pointer DHAQTS can quench the fluorescence of human serum albumin (HSA) by static quenching mechanism. Black-Right-Pointing-Pointer Hydrophobic interactions were the predominant intermolecular forces. Black-Right-Pointing-Pointer The competitive experiment was carried out to identify the DHAQTS binding site on HSA. Black-Right-Pointing-Pointer Three-dimensional spectra confirmed DHAQTS caused the conformational change of HSA.

  20. Development of {sup 68}Ga-labelled DTPA galactosyl human serum albumin for liver function imaging

    Energy Technology Data Exchange (ETDEWEB)

    Haubner, Roland [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria); Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Nuklearmedizin, Innsbruck (Austria); Vera, David R.; Farshchi-Heydari, Salman [University of California, Department of Radiology, School of Medicine, and the UCSD Molecular Imaging Program, San Diego, CA (United States); Helbok, Anna; Rangger, Christine; Putzer, Daniel; Virgolini, Irene J. [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria)

    2013-08-15

    The hepatic asialoglycoprotein receptor is responsible for degradation of desialylated glycoproteins through receptor-mediated endocytosis. It has been shown that imaging of the receptor density using [{sup 99m}Tc]diethylenetriamine pentaacetic acid (DTPA) galactosyl human serum albumin ([{sup 99m}Tc]GSA) allows non-invasive determination of functional hepatocellular mass. Here we present the synthesis and evaluation of [{sup 68}Ga]GSA for the potential use with positron emission tomography (PET). Labelling of GSA with {sup 68}Ga was carried out using a fractionated elution protocol. For quality control thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) and size exclusion chromatography (SEC) techniques were evaluated. Stability of [{sup 68}Ga]GSA was studied in phosphate-buffered saline (PBS) and human serum. For in vivo evaluation [{sup 68}Ga]GSA distribution in Lewis rats was compared with [{sup 99m}Tc]GSA by using a dual isotope protocol. PET and planar imaging studies were performed using the same scaled molar dose of [{sup 68}Ga]GSA and [{sup 99m}Tc]GSA. Time-activity curves (TAC) for heart and liver were generated and corresponding parameters calculated (t50, t90). [{sup 68}Ga]GSA can be produced with high radiochemical purity. The best TLC methods for determining potential free {sup 68}Ga include 0.1 M sodium citrate as eluent. None of the TLC methods tested were able to determine potential colloids. This can be achieved by SEC. HPLC confirmed high radiochemical purity (>98 %). Stability after 120 min incubation at 37 C was high in PBS (>95 % intact tracer) and low in human serum ({proportional_to}27 % intact tracer). Biodistribution studies simultaneously injecting both tracers showed comparable liver uptake, whereas activity concentration in blood was higher for [{sup 68}Ga]GSA compared to [{sup 99m}Tc]GSA. The [{sup 99m}Tc]GSA TACs exhibited a small degree of hepatic metabolism compared to the [{sup 68}Ga]GSA curves. The mean

  1. Drug binding to human serum albumin: abridged review of results obtained with high-performance liquid chromatography and circular dichroism.

    Science.gov (United States)

    Ascoli, Giorgio A; Domenici, Enrico; Bertucci, Carlo

    2006-09-01

    The drug binding to plasma and tissue proteins are fundamental factors in determining the overall pharmacological activity of a drug. Human serum albumin (HSA), together with alpha1-acid glycoprotein (AGP), are the most important plasma proteins, which act as drug carriers, with drug pharmacokinetic implications, resulting in important clinical impacts for drugs that have a relatively narrow therapeutic index. This review focuses on the combination of biochromatography and circular dichroism as an effective approach for the characterization of albumin binding sites and their enantioselectivity. Furthermore, their applications to the study of changes in the binding properties of the protein arising by the reversible or covalent binding of drugs are discussed, and examples of physiological relevance reported. Perspectives of these studies reside in supporting the development of new drugs, which require miniaturization to facilitate the screening of classes of compounds for their binding to the target protein, and a deeper characterization of the mechanisms involved in the molecular recognition processes.

  2. Conformational changes in the bilirubin-human serum albumin complex at extreme alkaline pH

    DEFF Research Database (Denmark)

    Honoré, B; Frandsen, P C

    1986-01-01

    Light-absorption, c.d. and fluorescence of the bilirubin-albumin complex were investigated at extreme alkaline pH. Above pH 11.1 albumin binds the bilirubin molecule, twisted oppositely to the configuration at more neutral pH. On the basis of light-absorption it is shown that two alkaline...... transitions occur. The first alkaline transition takes place at pH between 11.3 and 11.8, co-operatively dissociating at least six protons. The second alkaline transition takes place at pH between 11.8 and 12.0. It probably implies a reversible unfolding of the albumin molecule, increasing the distance...

  3. Cobinding of bilirubin and laurate to human serum albumin: spectroscopic characterization of stoichiometric complexes

    DEFF Research Database (Denmark)

    Honoré, B; Sato, H; Brodersen, R

    1988-01-01

    Light absorption and CD spectra of bound bilirubin and albumin fluorescence spectra have been recorded from mixtures containing albumin, A, bilirubin, B, and laurate, L, in Tris-NaCl buffer at pH 8.2, 25 degrees C. Concentrations of the corresponding stoichiometric complexes, ABiLj, for i = 0....... Brodersen et al. (1987) Eur. J. Biochem. 169, 487-495). The results were utilized at the microscopic level to investigate ligand-induced conformational changes. When laurate was bound to AB, a decrease of the distance between Trp-214 and the bound bilirubin occurred, as measured according to Förster...

  4. Crystals of Human Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    Science.gov (United States)

    Carter, Daniel C. (Inventor)

    1994-01-01

    This invention pertains to crystals of serum albumin and processes for growing them. The purpose of the invention is to provide crystals of serum albumin which can be studied to determine binding sites for drugs. Form 2 crystals grow in the monoclinic space P2(sub 1), and possesses the following unit cell constraints: a = 58.9 +/- 7, b = 88.3 +/- 7, c = 60.7 +/- 7, Beta = 101.0 +/- 2 degrees. One advantage of the invention is that it will allow rational drug design

  5. Comparison of the interaction between three anthocyanins and human serum albumins by spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lin, E-mail: tanglin@sdnu.edu.cn; Zuo, Huijun; Shu, Li

    2014-09-15

    Anthocyanin is an important kind of water-soluble pigment existing widely in plants, and has various health benefits to human body. The number and location of the hydroxyl groups of the parent nucleus of Anthocyanins have significant effects on their activities. This research employed different spectroscopic methods (i.e. fluorescence spectroscopy, UV–vis absorbance, three-dimensional fluorescence spectra and circular dichroism (CD)) to investigate the mutual interactions between three differently substituted B-ring hydroxyl groups (Pelargonidin-3-O-glucoside, P3G; Cyanidin-3-O-glucoside, C3G and Delphinidin-3-O-glucoside, D3G) and human serum albumin (HSA) under physiological pH conditions. The calculated thermodynamic parameters and the spectrum showed that P3G, C3G and D3G could result in quenching of the intrinsic fluorescence. The comparison result of the strength of comprehensive binding parameter Y (i.e. Y=lg( K{sub a}×E×n/r)), which was used to reflect the extent of interaction of Anthocyanin–HSA system, was Y{sub D3G}>Y{sub C3G}>Y{sub P3G}. Moreover, the secondary structure of HSA was changed in the presence of P3G/C3G/D3G. The α-helix percentage of P3G–HSA increased while that of C3G/D3G–HSA decreased. Overall, these results showed that the number of B-ring –OH in each molecule played an important role in the interaction of these anthocyanins with HSA. - Highlights: • Study the interactions between three differently structured anthocyanins and HSA. • The order of binding parameter Y [Y=lg(K{sub a}×E×n/r)] as Delphinidin>Cyanidin>Pelargonidin. • Increase in the number of B-ring –OH may enhance the binding affinity for HSA. • HSA secondary structural changes occurred due to these interactions. • The number of B-ring –OH in each molecule played an important role in the interaction.

  6. Nickel(II) complexes of N2S2 donor set ligand and halide/pseudohalides: Synthesis, crystal structure, DNA and bovine/human serum albumin interaction

    Indian Academy of Sciences (India)

    Animesh Patra; Biplab Mondal; Buddhadeb Sen; Ennio Zangrando; Pabitra Chattopadhyay

    2015-11-01

    A series of neutral hexacoordinated nickel(II) complexes of formula [NiII (L)X2] (where L = 3,4-bis(2-pyridylmethylthio)toluene with tetradentate N2S2 donor set and X = chloride (1), azide (2), cyanate (3) and isothiocyanate anion (4)) have been synthesized and isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods along with detailed structural characterization of 1,2 and 3 by single crystal X-ray diffraction analyses. The structural study showed that the nickel(II) ion has a distorted octahedral geometry being chelated by the tetradentate N2S2 ligand and bound to cis- located choride or pseudohalide anions. In dimethylformamide solution the complexes showed quasi-reversible NiII/NiIII redox couples in cyclic voltammograms with E1/2 values of +0.723, +0.749, +0.768 and +0.868 V for 1, 2, 3 and 4, respectively. The study of interaction of the complexes with calf thymus DNA, bovine serum albumin (BSA) and human serum albumin (HSA) using spectroscopic and physicochemical tools clearly indicates that the complexes interact with DNA via groove binding mode.

  7. Chemically synthesized glycosides of hydroxylated flavylium ions as suitable models of anthocyanins: binding to iron ions and human serum albumin, antioxidant activity in model gastric conditions.

    Science.gov (United States)

    Al Bittar, Sheiraz; Mora, Nathalie; Loonis, Michèle; Dangles, Olivier

    2014-12-11

    Polyhydroxylated flavylium ions, such as 3',4',7-trihydroxyflavylium chloride (P1) and its more water-soluble 7-O-β-d-glucopyranoside (P2), are readily accessible by chemical synthesis and suitable models of natural anthocyanins in terms of color and species distribution in aqueous solution. Owing to their catechol B-ring, they rapidly bind FeIII, weakly interact with FeII and promote its autoxidation to FeIII. Both pigments inhibit heme-induced lipid peroxidation in mildly acidic conditions (a model of postprandial oxidative stress in the stomach), the colorless (chalcone) forms being more potent than the colored forms. Finally, P1 and P2 are moderate ligands of human serum albumin (HSA), their likely carrier in the blood circulation, with chalcones having a higher affinity for HSA than the corresponding colored forms.

  8. Chemically Synthesized Glycosides of Hydroxylated Flavylium Ions as Suitable Models of Anthocyanins: Binding to Iron Ions and Human Serum Albumin, Antioxidant Activity in Model Gastric Conditions

    Directory of Open Access Journals (Sweden)

    Sheiraz Al Bittar

    2014-12-01

    Full Text Available Polyhydroxylated flavylium ions, such as 3',4',7-trihydroxyflavylium chloride (P1 and its more water-soluble 7-O-β-d-glucopyranoside (P2, are readily accessible by chemical synthesis and suitable models of natural anthocyanins in terms of color and species distribution in aqueous solution. Owing to their catechol B-ring, they rapidly bind FeIII, weakly interact with FeII and promote its autoxidation to FeIII. Both pigments inhibit heme-induced lipid peroxidation in mildly acidic conditions (a model of postprandial oxidative stress in the stomach, the colorless (chalcone forms being more potent than the colored forms. Finally, P1 and P2 are moderate ligands of human serum albumin (HSA, their likely carrier in the blood circulation, with chalcones having a higher affinity for HSA than the corresponding colored forms.

  9. Application of liquid pre-column capillary electrophoresis technique to the study of interaction between drug enantiomers and human serum albumin

    Institute of Scientific and Technical Information of China (English)

    丁永生; 朱晓蜂; 林炳承

    1999-01-01

    Based on the chiral separation of several basie drugs, dimetindene, tetryzoline, theodrenaline and verapamil, the liquid pre-colunm capillary electrophoresis (LPC-CE) technique was established. It was used to determine free concentrations of drug enantiomers in mixed solutions with human serum albumin (HSA). To prevent HSA entering the CE chiral separation zone, the mobility differences between HSA and drugs under a specific pH condition were employed in the LPC. Thus, the detection confusion caused by protein was totally avoided. Further study of binding constants determination and protein binding competitions was carried out. The study proves that the LPC technique could be used for complex media, particularly the matrix of protein coexisting with a variety of drugs.

  10. A Comparative Analysis of Synonymous Codon Usage Bias Pattern in Human Albumin Superfamily

    Directory of Open Access Journals (Sweden)

    Hoda Mirsafian

    2014-01-01

    Full Text Available Synonymous codon usage bias is an inevitable phenomenon in organismic taxa across the three domains of life. Though the frequency of codon usage is not equal across species and within genome in the same species, the phenomenon is non random and is tissue-specific. Several factors such as GC content, nucleotide distribution, protein hydropathy, protein secondary structure, and translational selection are reported to contribute to codon usage preference. The synonymous codon usage patterns can be helpful in revealing the expression pattern of genes as well as the evolutionary relationship between the sequences. In this study, synonymous codon usage bias patterns were determined for the evolutionarily close proteins of albumin superfamily, namely, albumin, α-fetoprotein, afamin, and vitamin D-binding protein. Our study demonstrated that the genes of the four albumin superfamily members have low GC content and high values of effective number of codons (ENC suggesting high expressivity of these genes and less bias in codon usage preferences. This study also provided evidence that the albumin superfamily members are not subjected to mutational selection pressure.

  11. FORMATION OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE IN MOUSE, RAT, AND HUMAN BLOOD

    Science.gov (United States)

    Little is known about the formation and disposition of benzene oxide (BO), the initial metabolite arising from oxidation of benzene by cytochrome P450. In this study, reactions of BO with hemoglobin (Hb) and albumin (Alb) were investigated in blood from B6C3F1 mice, F344 rats, ...

  12. Educational Solutions for Human Development

    Directory of Open Access Journals (Sweden)

    Inês Kisil Miskalo

    2009-06-01

    Full Text Available The biggest challenge for education in Brazil is not only to popularize school access, but also to provide conditions for students to remain at school successfully. Therefore, it is necessary to invest in teachers qualification and in the adoption of efficient and effective public policies based on managerial patterns designed to cater to human resources articulations, equipment, finance and, mainly, to methodologies focused on results. Quality reorganization of public policy will only be possible through a triplet effort involving political will from public government, cooperation from the private sector and contribution from civil society. These partnerships assure public sphere the development of essential projects to enable the country to grow. They also allow Education to occupy the important place it deserves in the national agenda as a tool to foster human development. It is essential to guarantee to people knowledge and abilities that enable them to make sensible choices, have their health improved and thus, take part in the society actively. This essay intends to provide information on Instituto Ayrton Senna´s mission to boost quality education for new Brazilian generations as a precondition for human development. Its education programs supply managerial praxes to state and municipal public school systems that warrant conceptual changes and alter the school failure vicious cycle.

  13. Binding of Sulpiride to Seric Albumins.

    Science.gov (United States)

    da Silva Fragoso, Viviane Muniz; de Morais Coura, Carla Patrícia; Hoppe, Luanda Yanaan; Soares, Marília Amável Gomes; Silva, Dilson; Cortez, Celia Martins

    2016-01-04

    The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride-HSA were 2.20 (±0.08) × 10⁴ M(-1), at 37 °C, and 5.46 (±0.20) × 10⁴ M(-1), at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 10⁴ M(-1), at 37 °C and 2.17 (±0.04) × 10⁴ M(-1), at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure.

  14. Binding of Sulpiride to Seric Albumins

    Directory of Open Access Journals (Sweden)

    Viviane Muniz da Silva Fragoso

    2016-01-01

    Full Text Available The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA and bovine serum albumin (BSA through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride–HSA were 2.20 (±0.08 × 104 M−1, at 37 °C, and 5.46 (±0.20 × 104 M−1, at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01 × 104 M−1, at 37 °C and 2.17 (±0.04 × 104 M−1, at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure.

  15. Differential effects of methoxy group on the interaction of curcuminoids with two major ligand binding sites of human serum albumin.

    Directory of Open Access Journals (Sweden)

    Hiroki Sato

    Full Text Available Curcuminoids are a group of compounds with a similar chemical backbone structure but containing different numbers of methoxy groups that have therapeutic potential due to their anti-inflammatory and anti-oxidant properties. They mainly bind to albumin in plasma. These findings influence their body disposition and biological activities. Spectroscopic analysis using site specific probes on human serum albumin (HSA clearly indicated that curcumin (Cur, demethylcurcumin (Dmc and bisdemethoxycurcumin (Bdmc bind to both Site I (sub-site Ia and Ib and Site II on HSA. At pH 7.4, the binding constants for Site I were relatively comparable between curcuminoids, while the binding constants for Site II at pH 7.4 were increased in order Cur < Dmc < Bdmc. Binding experiments using HSA mutants showed that Trp214 and Arg218 at Site I, and Tyr411 and Arg410 at Site II are involved in the binding of curcuminoids. The molecular docking of all curcuminoids to the Site I pocket showed that curcuminoids stacked with Phe211 and Trp214, and interacted with hydrophobic and aromatic amino acid residues. In contrast, each curcuminoid interacted with Site II in a different manner depending whether a methoxy group was present or absent. A detailed analysis of curcuminoids-albumin interactions would provide valuable information in terms of understanding the pharmacokinetics and the biological activities of this class of compounds.

  16. Subnanosecond fluorescence spectroscopy of human serum albumin as a method to estimate the efficiency of the depression therapy

    Science.gov (United States)

    Syrejshchikova, T. I.; Gryzunov, Yu. A.; Smolina, N. V.; Komar, A. A.; Uzbekov, M. G.; Misionzhnik, E. J.; Maksimova, N. M.

    2010-05-01

    The efficiency of the therapy of psychiatric diseases is estimated using the fluorescence measurements of the conformational changes of human serum albumin in the course of medical treatment. The fluorescence decay curves of the CAPIDAN probe (N-carboxyphenylimide of the dimethylaminonaphthalic acid) in the blood serum are measured. The probe is specifically bound to the albumin drug binding sites and exhibits fluorescence as a reporter ligand. A variation in the conformation of the albumin molecule substantially affects the CAPIDAN fluorescence decay curve on the subnanosecond time scale. A subnanosecond pulsed laser or a Pico-Quant LED excitation source and a fast photon detector with a time resolution of about 50 ps are used for the kinetic measurements. The blood sera of ten patients suffering from depression and treated at the Institute of Psychiatry were preliminary clinically tested. Blood for analysis was taken from each patient prior to the treatment and on the third week of treatment. For ten patients, the analysis of the fluorescence decay curves of the probe in the blood serum using the three-exponential fitting shows that the difference between the amplitudes of the decay function corresponding to the long-lived (9 ns) fluorescence of the probe prior to and after the therapeutic procedure reliably differs from zero at a significance level of 1% ( p < 0.01).

  17. Albumin synthesis in humans increases immediately following the administration of endotoxin.

    Science.gov (United States)

    Barle, Hans; Januszkiewicz, Anna; Hållström, Lars; Essén, Pia; McNurlan, Margaret A; Garlick, Peter J; Wernerman, Jan

    2002-11-01

    In order to investigate the immediate (i.e. within 3 h) response of albumin synthesis to the administration of endotoxin, as a model of a moderate and well controlled catabolic insult, two measurements employing L-[(2)H(5)]phenylalanine were performed in 16 volunteers. One group ( n =8) received an intravenous injection of endotoxin (4 ng/kg; lot EC-6) immediately after the first measurement of albumin synthesis, whereas the other group received saline. A second measurement was initiated 1 h later. In the endotoxin group, the fractional synthesis rate of albumin was 6.9+/-0.6%/day (mean+/-S.D.) in the first measurement. In the second measurement, a significant increase was observed (9.6+/-1.2%/day; P <0.001). The corresponding values in the control group were were 6.6+/-0.6%/day and 7.0+/-0.6%/day respectively (not significant compared with first measurement and P <0.001 compared with the second measurement in the endotoxin group). The absolute synthesis rates of albumin were 148+/-35 and 201+/-49 mg x kg(-1) x day(-1) before and after endotoxin ( P <0.01). In the control group, the corresponding values were 131+/-21 and 132+/-20 mg x kg(-1) x day(-1) (not significant compared with the first measurement and P <0.01 compared with the second measurement in the endotoxin group). In conclusion, these results indicate that albumin synthesis increases in the very early phase after a catabolic insult, as represented by the administration of endotoxin.

  18. Quantitation of 4,4′-methylene diphenyl diisocyanate human serum albumin adducts

    Directory of Open Access Journals (Sweden)

    Leah G. Luna

    2014-01-01

    Full Text Available 4,4′-Methylene diphenyl diisocyanate (herein 4,4′-MDI is used in the production of polyurethane foams, elastomers, coatings, adhesives and the like for a wide range of commercial products. Occupational exposure to MDI levels above current airborne exposure limits can elicit immune mediated hypersensitivity reactions such as occupational asthma in sensitive individuals. To accurately determine exposure, there has been increasing interest in developing analytical methods to measure internal biomarkers of exposure to MDI. Previous investigators have reported methodologies for measuring MDI diamine metabolites and MDI-Lysine (4,4′-MDI-Lys adducts. The purpose of this study was to develop and validate an ultra performance liquid chromatography isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS quantitation method via a signature peptide approach to enable biomonitoring of 4,4′-MDI adducted to human serum albumin (HSA in plasma. A murine, anti-4,4′-MDI monoclonal IgM antibody was bound to magnetic beads and utilized for enrichment of the MDI adducted HSA. Following enrichment, trypsin digestion was performed to generate the expected 414 site (primary site of adduction 4,4′-MDI-adducted HSA signature peptide that was quantified by UPLC-ID/MS/MS. An Agilent 6530 UPLC/quadrupole time of flight MS (QTOF system was utilized for intact adducted protein analysis and an Agilent 6490 UPLC/MS/MS system operated in multiple reaction monitoring (MRM mode was utilized for quantification of the adducted signature peptide biomarker both for in chemico and worker serum samples. Worker serum samples were initially screened utilizing the previously developed 4,4′-MDI-Lys amino acid method and results showed that 12 samples were identified as quantifiable for 4,4′-MDI-Lys adducts. The signature peptide adduct approach was applied to the 12 worker samples identified as quantifiable for 4,4′-MDI-Lys adducts. Results indicated no positive results

  19. Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: characterization and in vitro/vivo evaluation

    Directory of Open Access Journals (Sweden)

    Song Z

    2016-08-01

    Full Text Available Zhiwang Song,1,* Yonglin Lu,1,* Xia Zhang,1,* Haiping Wang,2 Junyi Han,3 Chunyan Dong1 1Breast Cancer Center, 2Department of Pharmacy, 3Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Folate-conjugated, curcumin-loaded human serum albumin nanoparticles (F-CM-HSANPs were obtained by the chemical conjugation of folate to the surface of the curcumin (CM-loaded human serum albumin nanoparticles (NPs. The NPs were characterized by various parameters, including size, polydispersity, zeta potential, morphology, encapsulation efficiency, and drug release profile. The mean particle size of F-CM-HSANPs was 165.6±15.7 nm (polydispersity index <0.28, and the average encapsulation efficiency percentage and drug loading percentage of the F-CM-HSANPs were 88.7%±4.8% and 7.9%±0.4%, respectively. Applied in vitro, the CM NPs, after conjugation with folate, maintained sustained release, and a faster release of CM was more visibly observed than the unconjugated NPs. F-CM-HSANPs can prolong the retention time of CM significantly in vivo. However, after intravenous injection of F-CM-HSANPs, the pharmacokinetic parameters of CM were not significantly different from those of CM-loaded human serum albumin NPs. The improved antitumor activity of F-CM-HSANPs may be attributable to the protection of drug from enzymatic deactivation followed by the selective localization at the desired site. These results suggest that the intravenous injection of F-CM-HSANPs is likely to have an advantage in the current clinical CM formulation, because it does not require the use of a solubilization agent and it is better able to target the tumor tissue. Keywords: curcumin, folate, HSA nanoparticles, pharmacokinetic parameters 

  20. Humant serum-albumin som proteinkilde ved dyrkning af humane oocytter, spermatozoer og praeembryoer

    DEFF Research Database (Denmark)

    Andersen, C Y; Hay-Schmidt, Anders; Byskov, A G

    1991-01-01

    patient serum as source of protein in the culture of oocytes, spermatozoa and pre-embryos in IVF-ET treatment. The pregnancy rate per transplantation was increased from 30% in the serum group (21 pregnant out of 69 transplantations) to 39% in the albumin group (26 pregnant out of 66 transplantations......) but the difference is not significant. On the other hand, the quality of the pre-embryos as assessed by morphological criteria became significantly better and the implantation rate per transplanted pre-embryo was found to be significantly increased in the albumin group. On the basis of this investigation, h......In the treatment of infertility employing in vitro fertilisation and embryo transfer (IVF-EF), oocytes, spermatozoa and pre-embryos are cultured for 48 hours outside the woman's body before they are introduced into the uterus. In addition to the necessary salts, the media in which this culture...

  1. Characteristics and thermodynamics of the interaction of 6-shogaol with human serum albumin as studied by isothermal titration calorimetry

    Directory of Open Access Journals (Sweden)

    Shevin Rizal Feroz

    Full Text Available ABSTRACT The interaction between 6-shogaol, a pharmacologically active ginger constituent, and human serum albumin (HSA, the main in vivo drug transporter, was investigated using isothermal titration calorimetry (ITC. The value of the binding constant, Ka (5.02 ± 1.37 × 104 M−1 obtained for the 6-shogaol-HSA system suggested intermediate affinity. Analysis of the ITC data revealed feasibility of the binding reaction due to favorable enthalpy and entropy changes. The values of the thermodynamic parameters suggested involvement of van der Waals forces, hydrogen bonds and hydrophobic interactions in the 6-shogaol-HSA complex formation.

  2. Tc-99m-Human Serum Albumin Transit Time as a Measure of Arm Breast Cancer-Related Lymphedema

    DEFF Research Database (Denmark)

    Toyserkani, Navid M; Hvidsten, Svend; Tabatabaeifar, Siavosh

    2017-01-01

    34-68 years, with unilateral arm lymphedema following breast cancer treatment underwent bilateral lymphoscintigraphy using intradermal injection in both hands of technetium-99m-labeled human serum albumin and sequential 5 min imaging for 5 hours. The mean transit time (MTT) in the arms was calculated...... based on time activity curves generated from injection site and arm regions. Visual lymphedema scoring was performed based on dermal backflow and lymph node presence. Excess arm volume was calculated from circumference measurements. RESULTS: The MTT (mean ± SD) was significantly longer in the lymphedema......, 18.6-68.7 minutes; P lymphedema from...

  3. Explaining the highly enantiomeric photocyclodimerization of 2-anthracenecarboxylate bound to human serum albumin using time-resolved anisotropy studies.

    Science.gov (United States)

    Fuentealba, Denis; Kato, Hanako; Nishijima, Masaki; Fukuhara, Gaku; Mori, Tadashi; Inoue, Yoshihisa; Bohne, Cornelia

    2013-01-09

    The mechanism for the high enantiomeric excess (ee) (80-90%) observed in the photocyclodimerization of 2-anthracenecarboxylate (AC) in the chiral binding sites of human serum albumin (HSA) was studied using fluorescence anisotropy. A long rotational correlation time of 36 ns was observed for the excited states of the ACs bound to the HSA site responsible for the high ee, suggesting that the ACs have restricted rotational mobility in this site. The ACs in this site have the same prochiral face protected by the protein, and this protection is responsible for the high ee observed. These insights provide a strategy for the rational design of supramolecular photochirogenic systems.

  4. Study on interaction between salicylaldehyde l-serine schiff base and human serum albumin by fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Yang Yanqiu

    2017-01-01

    Full Text Available The interaction of salicylaldehyde L-serine Schiff base (L with human serum albumin (HSA was examined by fluorescence emission spectra at the excitation wavelength 290 nm. Through fluorescence quenching experiments, it was confirmed that the combination of L with HSA was static quenching process. Thermodynamic parameters, such as ΔG, ΔH and ΔS, were calculated at different temperatures, showing that van der Waals force or hydrogen bond interaction were mostly responsible for the binding of L to HSA. The experiments results showed that the microenvironment and the conformation of HSA changed during the binding reaction.

  5. Characterization of paracetamol binding with normal and glycated human serum albumin assayed by a new electrochemical method

    OpenAIRE

    Daneshegar,Parandis; Moosavi-Movahedi, Ali Akbar; NOROUZI, Parviz; GANJALI, Mohammad Reza; Farhadi, Mohammad; Sheibanid,Nader

    2012-01-01

    In the present study the interactions between paracetamol (PC) and human serum albumin, in non-glycated (HSA) and glycated form (GHSA), were investigated using continuous cyclic voltammetry in acetate buffer pH 7.4. The results showed lack of significant changes in formal potential E0 and electrode reaction constant rate, k s, of PC. The decay in the drug current, after the addition of protein, showed a decrease in free drug concentration and formation of a biocomplex. The contentious coulome...

  6. Binding of human serum albumin to PEGylated liposomes: insights into binding numbers and dynamics by fluorescence correlation spectroscopy

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Urquhart, Andrew; Thormann, Esben

    2016-01-01

    understood. For example, there is generally a lack of knowledge about the liposome binding affinities and dynamics of common types of blood plasma proteins. Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique that potentially can provide such knowledge. In this study, we have...... used FCS to investigate the binding of human serum albumin (HSA) to standard types of PEGylated fluid-phase liposomes (consisting of DOPC and DOPE-PEG2k) and PEGylated gel-phase liposomes (consisting of DSPC and DSPE-PEG2k) with various PEG chain surface densities. We detected no significant binding...

  7. Photoabsorption of Acridine Yellow and Proflavin Bound to Human Serum Albumin Studied by Means of Quantum Mechanics/Molecular Dynamics

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2013-01-01

    Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores—acridine yellow and proflavin—located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site....... The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted...

  8. Photophysical studies on the interaction of amides with Bovine Serum Albumin (BSA) in aqueous solution: Fluorescence quenching and protein unfolding

    Energy Technology Data Exchange (ETDEWEB)

    Kumaran, R., E-mail: kumaranwau@rediffmail.com [Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai 600106 (India); Ramamurthy, P. [National Centre for Ultrafast Processes, University of Madras, Sekhizar Campus, Taramani, Chennai 600113 (India)

    2014-04-15

    The manuscript deals with the absorption, emission and fluorescence lifetime studies of Bovine Serum Albumin with amides in aqueous medium. • Fluorescence is correlated to the presence of fluorescing amino acid, tryptophan located in a heterogeneous environment. • This article provides an insight about the fluorescence spectral characteristics of a protein in the presence of a denaturant containing hydrogen-bonding and hydrophobic moieties. • Circular Dichroism spectral studies were carried out to determine the conformational change in the protein in the presence of amides. • Fluorescence spectral techniques are employed as a tool in establishing the interaction of a non-fluorescent solute with an intrinsic fluorophore present in protein.

  9. Lapatinib-loaded human serum albumin nanoparticles for the prevention and treatment of triple-negative breast cancer metastasis to the brain

    Science.gov (United States)

    Wan, Xu; Zheng, Xiaoyao; Pang, Xiaoyin; Pang, Zhiqing; Zhao, Jingjing; Zhang, Zheming; Jiang, Tao; Xu, Wei; Zhang, Qizhi; Jiang, Xinguo

    2016-01-01

    Brain metastasis from triple-negative breast cancer (TNBC) has continued to lack effective clinical treatments until present. However, the feature of epidermal growth factor receptor (EGFR) frequently overexpressed in TNBC offers the opportunity to employ lapatinib, a dual-tyrosine kinase inhibitor of human epidermal growth factor receptor-2 (HER2) and EGFR, in the treatment of brain metastasis of TNBC. Unfortunately, the low oral bioavailability of lapatinib and drug efflux by blood-brain barrier have resulted in low drug delivery efficiency into the brain and limited therapeutic effects for patients with brain metastasis in clinical trials. To overcome such disadvantages, we developed lapatinib-loaded human serum albumin (HSA) nanoparticles, named LHNPs, by modified nanoparticle albumin-bound (Nab) technology. LHNPs had a core-shell structure and the new HSA/phosphatidylcholine sheath made LHNPs stable in bloodstream. Compared to free lapatinib, LHNPs could inhibit the adhesion, migration and invasion ability of high brain-metastatic 4T1 cells more effectively in vitro. Tissue distribution following intravenous administration revealed that LHNPs (i.v., 10 mg/kg) achieved increased delivery to the metastatic brain at 5.43 and 4.36 times the levels of Tykerb (p.o., 100 mg/kg) and lapatinib solution (LS, i.v., 10 mg/kg), respectively. Compared to the marketed Tykerb group, LHNPs had markedly better inhibition effects on brain micrometastasis and significantly extended the median survival time of 4T1 brain metastatic mice in consequence. The improved anti-tumor efficacy of LHNPs could be partly ascribed to down-regulating metastasis-related proteins. Therefore, these results clearly indicated that LHNPs could become a promising candidate for clinical applications against brain metastasis of TNBC. PMID:27086917

  10. Study on the interaction between tabersonine and human serum albumin by optical spectroscopy and molecular modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hua; Chen, Rongrong [Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Pu Hanlin, E-mail: tphl@jnu.edu.cn [Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China)

    2012-03-15

    The mechanism of interaction between tabersonine (TAB) and human serum albumin (HSA) was investigated by the methods of fluorescence spectroscopy, UV-vis absorption spectroscopy and molecular modeling under simulative physiological conditions. Results obtained from analysis of fluorescence spectrum and fluorescence intensity indicated that TAB has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The binding site number n and apparent binding constant K{sub a}, corresponding thermodynamic parameters {Delta}G, {Delta}H and {Delta}S at different temperatures were calculated. The distance r between donor (human serum albumin) and acceptor (tabersonine) was obtained according to the Foerster theory of non-radiation energy transfer. The effect of common ions on binding constant was also investigated. The synchronous fluorescence and three-dimensional fluorescence spectra were used to investigate the structural change of HSA molecules with addition of TAB. Furthermore, the study of molecular modeling indicated that TAB could bind to the site I of HSA and hydrophobic interaction was the major acting force, which was in agreement with the binding mode study. - Highlights: Black-Right-Pointing-Pointer Fluorescence study of the mechanism of interaction between tabersonine and HSA. Black-Right-Pointing-Pointer The binding parameters and thermodynamic parameters were calculated. Black-Right-Pointing-Pointer The distance r was obtained and common ions effects was investigated. Black-Right-Pointing-Pointer Conformation of HSA and its molecular modeling was analyzed.

  11. Molecular modeling and multispectroscopic studies of the interaction of hepatitis B drug, adefovir dipivoxil with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Shahabadi, Nahid, E-mail: nahidshahabadi@yahoo.com [Department of Chemistry, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Medical Biology Research Center (MBRC) Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Falsafi, Monireh [Department of Chemistry, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Hadidi, Saba [Department of Chemistry, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Medical Biology Research Center (MBRC) Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2015-11-15

    The interaction of hepatitis B drug, adefovir dipivoxil with human serum albumin (HSA) was studied by using UV–vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that the binding of the drug to HSA caused fluorescence quenching through static quenching mechanism with binding constant of 1.3×103 M{sup −1}. The thermodynamic parameters indicated that the hydrophobic force contacts are the major forces in the stability of protein-drug complex (ΔH>0 and ΔS>0). The displacement experiments using the site probes viz., warfarin and ibuprofen showed that adefovir dipivoxil could bind to the site III of HSA. The results of CD and UV–vis spectroscopy indicated that the binding of the drug induced some conformational changes in HSA. Furthermore, the study of molecular docking also confirmed binding of adefovir dipivoxil to the site III of HSA by hydrophobic interaction. - Highlights: • The interaction of adefovir dipivoxil, drug for the treatment of HIV and HBV with human serum albumin (HSA) is investigated. • The drug bound to HSA by hydrophobic force and induced some conformational changes in HSA. • The study of molecular docking showed that adefovir dipivoxil could bind to the site III of HSA mainly.

  12. Study on the interaction of antiviral drug 'Tenofovir' with human serum albumin by spectral and molecular modeling methods

    Science.gov (United States)

    Shahabadi, Nahid; Hadidi, Saba; Feizi, Foroozan

    2015-03-01

    This study was designed to examine the interaction of Tenofovir (Ten) with human serum albumin (HSA) under physiological conditions. The binding of drugs with human serum albumin is a crucial factor influencing the distribution and bioactivity of drugs in the body. To understand the action mechanisms between Ten and HSA, the binding of Ten with HSA was investigated by a combined experimental and computational approach. UV-vis results confirmed that Ten interacted with HSA to form a ground-state complex and values of the Stern-Volmer quenching constant indicate the presence of a static component in the quenching mechanism. As indicated by the thermodynamic parameters (positive ΔH and ΔS values), hydrophobic interaction plays a major role in the Ten-HSA complex. Through the site marker competitive experiment, Ten was confirmed to be located in site I of HSA. Furthermore, UV-vis absorption spectra, synchronous fluorescence spectrum and CD data were used to investigate the structural change of HSA molecules with addition of Ten, the results indicate that the secondary structure of HSA molecules was changed in the presence of Ten. The experimental results were in agreement with the results obtained via molecular docking study.

  13. Fetuin-A and albumin alter cytotoxic effects of calcium phosphate nanoparticles on human vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Yana Dautova

    Full Text Available Calcification is a detrimental process in vascular ageing and in diseases such as atherosclerosis and arthritis. In particular, small calcium phosphate (CaP crystal deposits are associated with inflammation and atherosclerotic plaque de-stabilisation. We previously reported that CaP particles caused human vascular smooth muscle cell (VSMC death and that serum reduced the toxic effects of the particles. Here, we found that the serum proteins fetuin-A and albumin (≥ 1 µM reduced intracellular Ca2+ elevations and cell death in VSMCs in response to CaP particles. In addition, CaP particles functionalised with fetuin-A, but not albumin, were less toxic than naked CaP particles. Electron microscopic studies revealed that CaP particles were internalised in different ways; via macropinocytosis, membrane invagination or plasma membrane damage, which occurred within 10 minutes of exposure to particles. However, cell death did not occur until approximately 30 minutes, suggesting that plasma membrane repair and survival mechanisms were activated. In the presence of fetuin-A, CaP particle-induced damage was inhibited and CaP/plasma membrane interactions and particle uptake were delayed. Fetuin-A also reduced dissolution of CaP particles under acidic conditions, which may contribute to its cytoprotective effects after CaP particle exposure to VSMCs. These studies are particularly relevant to the calcification observed in blood vessels in patients with kidney disease, where circulating levels of fetuin-A and albumin are low, and in pathological situations where CaP crystal formation outweighs calcification-inhibitory mechanisms.

  14. Review of the rational use and adverse reactions to human serum albumin in the People’s Republic of China

    Directory of Open Access Journals (Sweden)

    Zhou T

    2013-11-01

    Full Text Available Ting Zhou, Saihua Lu, Xiufeng Liu, Ye Zhang, Feng XuDepartment of Clinical Pharmacology, Fengxian Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: Human serum albumin (HSA is an ideal natural colloid that has been widely used in clinical practice for supplemental albumin or as a plasma substitute during therapeutic plasma exchanges to redress hypoproteinemia. However, a paucity of well-designed clinical trials, a lack of a clear cut survival benefit, and frequent case reports of adverse drug reaction (ADR make the use of HSA controversial. This study aims to review and to comment on the reported ADRs of HSA in People's Republic of China, so as to provide the basis for rational HSA use in clinical settings. Data on the ADR case reports from HSA administration between January 1990 and December 2012 available from the China National Knowledge Infrastructure (CNKI database, Wanfang data (WF, and Chinese Biomedical Literature (CBM were reviewed. The reasons for using HSA, the types of ADRs, the causality of ADRs and the rationality for HSA administration were extracted and analyzed. In total, 61 cases of ADR reports were identified of which the primary disease of patients using HSA was malignant tumor (34.42%. The primary ADR was anaphylaxis (59.02%. Of the 61 cases, 30 were caused by irrational use of HSA. The most common irrational use was off-label use (56.67%, followed by inappropriate infusion rate. Therefore, we conclude that to avoid the occurrence of ADRs, guidelines for using HSA are needed to guarantee its rational use and HSA should be used strictly according to these guidelines. In addition, medical staff, including clinical pharmacists and nurses, should pay more attention to the patients who inject HSA to ensure its safe use in the clinic.Keywords: HSA, off-label use, ADR, plasma substitute, albumin, hypoproteinemia

  15. Nature, Human Nature, and Solutions to Problems.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, B. C.

    This paper promotes an undergraduate course that would discuss the great ideas of Plato, St. Paul, Karl Marx, Sigmund Freud, Jean Paul Sartre, B. F. Skinner, and Konrad Lorenz. This course would help students understand human values and behaviors while focusing on historical, world, and national problems. Tentative solutions would then be…

  16. Nature, Human Nature, and Solutions to Problems.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, B. C.

    This paper promotes an undergraduate course that would discuss the great ideas of Plato, St. Paul, Karl Marx, Sigmund Freud, Jean Paul Sartre, B. F. Skinner, and Konrad Lorenz. This course would help students understand human values and behaviors while focusing on historical, world, and national problems. Tentative solutions would then be…

  17. Preparation and characterization of microspheres of albumin-heparin conjugates

    NARCIS (Netherlands)

    Kwon, Glen S.; Bae, You Han; Kim, Sung Wan; Cremers, Harry; Feijen, Jan

    1991-01-01

    Albumin-heparin microspheres have been prepared as a new drug carrier. A soluble albumin-heparin conjugate was synthesized by forming amide bonds between human serum albumin and heparin. After purification the albumin-heparin conjugate was crosslinked in a water-in-oil emulsion to form albumin-hepar

  18. Microdetermination of human serum albumin by differential pulse voltammetry at a L-cysteine modified silver electrode

    Indian Academy of Sciences (India)

    Liyuan Lu; Yanqin Zi; Hongling Wang

    2008-07-01

    A simple and highly sensitive electrochemical method for the determination of human serum albumin (HSA) using differential pulse voltammetry (DPV), based on a silver electrode modified with a self-assembled monolayer of L-cysteine, was developed. L-cysteine can be modified onto a silver electrode by covalent bonding through the sulfur to give stable and long-lived chemical electrodes. This electrode showed good sensitivity, selectivity, reproducibility and time stability in the determination of trace amounts of HSA by DPV technique. The detection limit can be as low as 4 × 10-17 mol/L. The optimum conditions for the determination were carefully investigated. This method had been applied to the determination of HSA in human serum samples. The results were in agreement with those given in standard method.

  19. New copper(I) complexes bearing lomefloxacin motif: Spectroscopic properties, in vitro cytotoxicity and interactions with DNA and human serum albumin.

    Science.gov (United States)

    Komarnicka, Urszula K; Starosta, Radosław; Kyzioł, Agnieszka; Płotek, Michał; Puchalska, Małgorzata; Jeżowska-Bojczuk, Małgorzata

    2016-12-01

    In this paper we present lomefloxacin's (HLm, 2nd generation fluoroquinolone antibiotic agent) organic and inorganic derivatives: aminomethyl(diphenyl)phosphine (PLm), its oxide as well as new copper(I) iodide or copper(I) thiocyanate complexes with PLm and 2,9-dimethyl-1,10-phenanthroline (dmp) or 2,2'-biquinoline (bq) as the auxiliary ligands. The synthesized compounds were fully characterised by NMR, UV-Vis and luminescence spectroscopies. Selected structures were analysed by theoretical DFT (density functional theory) methods. High stability of the complexes in aqueous solutions in the presence of atmosferic oxygen was proven. Cytotoxic activity of all compounds was tested towards three cancer cell lines (CT26 - mouse colon carcinoma, A549 - human lung adenocarcinoma, and MCF7 - human breast adenocarcinoma). All complexes are characterised by cytotoxic activity higher than the activity of the parent drug and its organic derivatives as well as cisplatin. Studied derivatives as well as parent drug do not intercalate to DNA, except Cu(I) complexes with bq ligand. All studied complexes caused single-stranded cleavage of the sugar-phosphate backbone of plasmid DNA. The addition of H2O2 caused distinct changes in the plasmid structure and led to single- and/or double-strain plasmid cleavage. Studied compounds interact with human serum albumin without affecting its secondary structure.

  20. Multispectroscopic and molecular modeling approach to investigate the interaction of diclofop-methyl enantiomers with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping; Liu, Donghui; Li, Zhe; Shen, Zhigang; Wang, Peng [Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China); Zhou, Meng [Business School, University of Bedfordshire, Luton LU1 3JU (United Kingdom); Zhou, Zhiqiang [Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China); Zhu, Wentao, E-mail: wentaozhu@cau.edu.cn [Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China)

    2014-11-15

    Pesticides and related environmental contaminants have always been threated to human health due to their intrinsic toxicity. In the context of this contribution, the interaction between diclofop-methyl (DM) enantiomers and human serum albumin (HSA) has been characterized by steady state and three-dimensional fluorescence, molecular modeling, circular dichroism (CD) and ultraviolet–visible (UV–vis) spectroscopy. The binding constants significantly showed the binding was enantioselective and HSA had higher affinity for S-DM. The thermodynamic parameters of the binding reaction (ΔG, ΔH and ΔS) clearly signified that hydrophobic effects and H-bonds contribute to the formation of DM-HSA complex. The alterations of protein secondary structure in the presence of DM enantiomers were confirmed by CD spectroscopy, UV–vis and three-dimensional fluorescence spectroscopy. In addition, both fluorescence probe study and molecular modeling simulation evidenced the binding of DM enantiomers to HSA primarily took place in subdomain IIIA (Sudlow's site II). This investigation highlights the binding mechanism, specific binding sites and binding region of DM enantiomers on human serum albumin at the first time. Besides, such task can provide important insight to the interaction of the physiological protein HSA with chiral aryloxyphenoxypropionate herbicides and give support to the human health risk assessment. - Highlights: • The binding of DM enantiomers to HSA was enantioselective. • HSA had higher affinity for S-DM than R-DM. • Hydrophobic effects and hydrogen bonds were involved in the DM-HSA interaction. • The binding of DM enantiomers to HSA primarily took place in Sudlow's site II. • DM enantiomers could alter the second structure of HSA.

  1. The Cluster [Re6Se8I6]3− Induces Low Hemolysis of Human Erythrocytes in Vitro: Protective Effect of Albumin

    Science.gov (United States)

    Rojas-Mancilla, Edgardo; Oyarce, Alexis; Verdugo, Viviana; Zheng, Zhiping; Ramírez-Tagle, Rodrigo

    2015-01-01

    The cluster Re6Se8I63− has been shown to induce preferential cell death of a hepatic carcinoma cell line, thus becoming a promising anti-cancer drug. Whether this cluster induces acute hemolysis or if it interacts with albumin remains unclear. The effect of acute exposure of human red blood cells to different concentrations of the cluster with and without albumin is described. Red blood cells from healthy donors were isolated, diluted at 1% hematocrit and exposed to the cluster (25–150 µM) at 37 °C, under agitation. Hemolysis and morphology were analyzed at 1 and 24 h. The potential protection of 0.1% albumin was also evaluated. Exposition to therapeutic doses of the cluster did not induce acute hemolysis. Similar results were observed following 24 h of exposition, and albumin slightly reduced hemolysis levels. Furthermore, the cluster induced alteration in the morphology of red blood cells, and this was prevented by albumin. Together, these results indicate that the cluster Re6Se8I63− is not a hemolytic component and induces moderate morphological alterations of red blood cells at high doses, which are prevented by co-incubation with albumin. In conclusion, the cluster Re6Se8I63− could be intravenously administered in animals at therapeutic doses for in vivo studies. PMID:25590300

  2. The Cluster [Re6Se8I6]3− Induces Low Hemolysis of Human Erythrocytes in Vitro: Protective Effect of Albumin

    Directory of Open Access Journals (Sweden)

    Edgardo Rojas-Mancilla

    2015-01-01

    Full Text Available The cluster Re6Se8I63− has been shown to induce preferential cell death of a hepatic carcinoma cell line, thus becoming a promising anti-cancer drug. Whether this cluster induces acute hemolysis or if it interacts with albumin remains unclear. The effect of acute exposure of human red blood cells to different concentrations of the cluster with and without albumin is described. Red blood cells from healthy donors were isolated, diluted at 1% hematocrit and exposed to the cluster (25–150 µM at 37 °C, under agitation. Hemolysis and morphology were analyzed at 1 and 24 h. The potential protection of 0.1% albumin was also evaluated. Exposition to therapeutic doses of the cluster did not induce acute hemolysis. Similar results were observed following 24 h of exposition, and albumin slightly reduced hemolysis levels. Furthermore, the cluster induced alteration in the morphology of red blood cells, and this was prevented by albumin. Together, these results indicate that the cluster Re6Se8I63− is not a hemolytic component and induces moderate morphological alterations of red blood cells at high doses, which are prevented by co-incubation with albumin. In conclusion, the cluster Re6Se8I63− could be intravenously administered in animals at therapeutic doses for in vivo studies.

  3. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin.

    Science.gov (United States)

    Ryan, Ali J; Chung, Chun-Wa; Curry, Stephen

    2011-04-18

    Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA). It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which--in drugs sites 1 and 2 on the protein--are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin.

  4. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin

    Directory of Open Access Journals (Sweden)

    Chung Chun-wa

    2011-04-01

    Full Text Available Abstract Background Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA. It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. Results We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which - in drugs sites 1 and 2 on the protein - are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. Conclusions The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin.

  5. Synthesis of bovine serum albumin-protected high fluorescence Pt16-nanoclusters and their application to detect sulfide ions in solutions

    Science.gov (United States)

    Xu, Na; Li, Hong-Wei; Yue, Yuan; Wu, Yuqing

    2016-10-01

    Highly fluorescent (quantum yield, QY = 17%) Pt16-nanoclusters (Pt16-NCs@BSA) have been prepared via a one-step ultrasonic-assistance method by using cheap and easily available ascorbic acid as reductant and bovine serum albumin (BSA) as a stabilizing agent in aqueous solution. The fluorescence properties of the Pt-NCs@BSA can be easily controlled by optimizing conditions, and the products are extremely stable and could be used for the detection of sulfide ions (S2-) in solutions as a specific luminescence sensor. The present synthesis method is performed in one step, being cost-effective with a particularly short reaction time, which could be extended to the synthesis of other kinds of protein-protected Pt-NCs.

  6. Results of a survey on albumin use in clinical practice in intensive care units.

    Science.gov (United States)

    Estébanez-Montiel, M B; Quintana-Díaz, M; García de Lorenzo y Mateos, A; Blancas Gomez-Casero, R; Acosta-Escribano, J; Marcos-Neira, P

    2014-10-01

    Human albumin solutions are used in a number of disorders, though their indications are not clear in all circumstances. These solutions are costly, and their benefit has not been established in all settings. It is therefore interesting to assess the presence of albumin solutions in the daily clinical practice of critical care professionals. To report the standard clinical practices and to describe the variability of albumin solutions use in critically ill patients. A survey sent by e-mail to Spanish and South American Intensive Care Units (ICUs) Planning and execution during the year 2012. A questionnaire comprising 35 questions. Fifty-seven surveys were analyzed. The use of albumin solutions was sporadic or negligible in critically ill patients (96.5%). The exceptions were patients with liver disease (87.7% of the responders administered albumin to these patients). A high percentage of professionals claimed to know the available scientific evidence on the use of albumin in patients with liver disease (82.5%) and in patients without liver disease (77.2%). Only 5.3% of the responders preferred to rely on their own experience to establish the indications of albumin use. The use of albumin solutions is infrequent in ICUs, except in patients with liver disease. Evidence-based knowledge on albumin use is declared to be extensive in ICUs. As a rule, opinions on the use of albumin solutions are based on the scientific recommendations, especially in patients with liver disease. Professional experience rarely prevails over the published clinical guidelines. Copyright © 2013 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  7. A Molecular Dynamics Approach to Ligand-Receptor Interaction in the Aspirin-Human Serum Albumin Complex

    Directory of Open Access Journals (Sweden)

    H. Ariel Alvarez

    2012-01-01

    Full Text Available In this work, we present a study of the interaction between human serum albumin (HSA and acetylsalicylic acid (ASA, C9H8O4 by molecular dynamics simulations (MD. Starting from an experimentally resolved structure of the complex, we performed the extraction of the ligand by means of the application of an external force. After stabilization of the system, we quantified the force used to remove the ASA from its specific site of binding to HSA and calculated the mechanical nonequilibrium external work done during this process. We obtain a reasonable value for the upper boundary of the Gibbs free energy difference (an equilibrium thermodynamic potential between the complexed and noncomplexed states. To achieve this goal, we used the finite sampling estimator of the average work, calculated from the Jarzynski Equality. To evaluate the effect of the solvent, we calculated the so-called “viscous work,” that is, the work done to move the aspirin in the same trajectory through the solvent in absence of the protein, so as to assess the relevance of its contribution to the total work. The results are in good agreement with the available experimental data for the albumin affinity constant for aspirin, obtained through quenching fluorescence methods.

  8. Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum

    Science.gov (United States)

    Liu, Jinxiang; Deng, Qiliang; Tao, Dingyin; Yang, Kaiguang; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2014-06-01

    Hierarchical imprinting was developed to prepare the protein imprinted materials, as the artificial antibody, for the selective depletion of HSA from the human serum proteome. Porcine serum albumin (PSA) was employed as the dummy template for the fabrication of the recognition sites. To demonstrate the advantages of the hierarchical imprinting, molecularly imprinted polymers prepared by hierarchical imprinting technique (h-MIPs) were compared with those obtained by bulk imprinting (b-MIPs), in terms of the binding capacity, adsorption kinetics, selectivity and synthesis reproducibility. The binding capacity of h-MIPs could reach 12 mg g-1. And saturation binding could be reached in less than 20 min for the h-MIPs. In the protein mixture, h-MIPs exhibit excellent selectivity for PSA, with imprinting factors as about 3.6, much higher than those for non-template proteins. For the proteomic application, the identified protein group number in serum treated by h-MIPs was increased to 422, which is 21% higher than that obtained from the original serum, meanwhile the identified protein group number for the Albumin Removal kit was only 376. The results demonstrate that protein imprinted polymers prepared by hierarchical imprinting technique, might become the artificial antibodies for the selective depletion of high abundance proteins in proteome study.

  9. Insight into the interaction of antitubercular and anticancer compound clofazimine with human serum albumin: spectroscopy and molecular modelling.

    Science.gov (United States)

    Ajmal, Mohammad Rehan; Zaidi, Nida; Alam, Parvez; Nusrat, Saima; Siddiqi, Mohd Khursheed; Badr, Gamal; Mahmoud, Mohamed H; Khan, Rizwan Hasan

    2017-01-01

    The binding of clofazimine to human serum albumin (HSA) was investigated by applying optical spectroscopy and molecular docking methods. Fluorescence quenching data revealed that clofazimine binds to protein with binding constant in the order of 10(4) M(-1), and with the increase in temperature, Stern-Volmer quenching constants gradually decreased indicating quenching mode to be static. The UV-visible spectra showed increase in absorbance upon interaction of HSA with clofazimine which further reveals formation of the drug-albumin complex. Thermodynamic parameters obtained from fluorescence data indicate that the process is exothermic and spontaneous. Forster distance (Ro) obtained from fluorescence resonance energy transfer is found to be 2.05 nm. Clofazimine impelled rise in α-helical structure in HSA as observed from far-UV CD spectra while there are minor alterations in tertiary structure of the protein. Clofazimine interacts strongly with HSA inducing secondary structure in the protein and slight alterations in protein topology as suggested by dynamic light scattering results. Moreover, docking results indicate that clofazimine binds to hydrophobic pocket near to the drug site II in HSA.

  10. Probing the interaction of human serum albumin with DPPH in the absence and presence of the eight antioxidants

    Science.gov (United States)

    Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan

    2015-02-01

    Albumin represents a very abundant and important circulating antioxidant in plasma. DPPH radical is also called 2,2-diphenyl-1-picrylhydrazyl. It has been widely used for measuring the efficiency of antioxidants. In this paper, the ability of human serum albumin (HSA) to scavenge DPPH radical was investigated using UV-vis absorption spectra. The interaction between HSA and DPPH was investigated in the absence and presence of eight popular antioxidants using fluorescence spectroscopy. These results indicate the antioxidant activity of HSA against DPPH radical is similar to glutathione and the value of IC50 is 5.200 × 10-5 mol L-1. In addition, the fluorescence experiments indicate the quenching mechanism of HSA, by DPPH, is a static process. The quenching process of DPPH with HSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with HSA. The binding of DPPH to HSA primarily takes place in subdomain IIA and exists two classes of binding sites with two different interaction behaviors. The decreased binding constants and the number of binding sites of DPPH with HSA by the introduction of the eight antioxidants may result from the competition of the eight antioxidants and DPPH binding to HSA. The binding of DPPH to HSA may induce the micro-environment of the lone Trp-214 from polar to slightly nonpolar.

  11. Probing the interaction of human serum albumin with DPPH in the absence and presence of the eight antioxidants.

    Science.gov (United States)

    Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan

    2015-02-25

    Albumin represents a very abundant and important circulating antioxidant in plasma. DPPH radical is also called 2,2-diphenyl-1-picrylhydrazyl. It has been widely used for measuring the efficiency of antioxidants. In this paper, the ability of human serum albumin (HSA) to scavenge DPPH radical was investigated using UV-vis absorption spectra. The interaction between HSA and DPPH was investigated in the absence and presence of eight popular antioxidants using fluorescence spectroscopy. These results indicate the antioxidant activity of HSA against DPPH radical is similar to glutathione and the value of IC50 is 5.200×10(-5) mol L(-1). In addition, the fluorescence experiments indicate the quenching mechanism of HSA, by DPPH, is a static process. The quenching process of DPPH with HSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with HSA. The binding of DPPH to HSA primarily takes place in subdomain IIA and exists two classes of binding sites with two different interaction behaviors. The decreased binding constants and the number of binding sites of DPPH with HSA by the introduction of the eight antioxidants may result from the competition of the eight antioxidants and DPPH binding to HSA. The binding of DPPH to HSA may induce the micro-environment of the lone Trp-214 from polar to slightly nonpolar. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. [A New Approach to the Depletion of Albumin and Immunoglobulin G from Human Serum].

    Science.gov (United States)

    Bormotova, E A; Mil'man, B L; Gupalova, T V

    2015-01-01

    The use of proteomic analysis to find potential diagnostic biomarkers is limited by the presence of serum albumin (HSA) and immunoglobulin (IgG) at high concentrations in patients' blood; these substances impede the detection of serum proteins with similar molecular weights. Recombinant HSA- and IgG-binding polypeptides are used as ligands in creating sorbents for complete removal of the proteins by affinity chromatography. The binding specificity of the sorbents for HAS and IgG is higher than that of the conventionally used antibodies. A composite sorbent enabling the depletion of HSA and IgG from serum by single-step affinity chromatography is obtained. The. developed sorbents were used to prepare serum for proteomic analysis.

  13. Exploring the binding of 4-thiothymidine with human serum albumin by spectroscopy, atomic force microscopy, and molecular modeling methods.

    Science.gov (United States)

    Zhang, Juling; Gu, Huaimin; Zhang, Xiaohui

    2014-01-30

    The interaction of 4-thiothymidine (S(4)TdR) with human serum albumin (HSA) was studied by equilibrium dialysis under normal physiological conditions. In this work, the mechanism of the interaction between S(4)TdR and human serum albumin (HSA) was exploited by fluorescence, UV, CD circular, and SERS spectroscopic. Fluorescence and UV spectroscopy suggest that HSA intensities are significantly decreased when adding S(4)TdR to HAS, and the quenching mechanism of the fluorescence is static. Also, the ΔG, ΔH, and ΔS values across temperature indicated that hydrophobic interaction was the predominant binding force. The CD circular results show that there is little change in the secondary structure of HSA except the environment of amino acid changes when adding S(4)TdR to HSA. The surface-enhanced Raman scattering (SERS) shows that the interaction between S(4)TdR and HSA can be achieved through different binding sites which are probably located in the II A and III A hydrophobic pockets of HSA which correspond to Sudlow's I and II binding sites. In addition, the molecular modeling displays that S(4)TdR-HSA complex is stabilized by hydrophobic forces, which result from amino acid residues. The atomic force microscopy results revealed that the single HSA molecular dimensions were larger after interaction of 4-thiothymidine. This work would be useful to understand the state of the transportation, distribution, and metabolism of the anticancer drugs in the human body, and it could provide a useful biochemistry parameter for the development of new anti-cancer drugs and research of pharmacology mechanisms.

  14. Noninvasive Imaging of Myocardial Inflammation in Myocarditis using 68Ga-tagged Mannosylated Human Serum Albumin Positron Emission Tomography

    Science.gov (United States)

    Lee, Seung-Pyo; Im, Hyung-Jun; Kang, Shinae; Chung, Seock-Jin; Cho, Ye Seul; Kang, Hyejeong; Park, Ho Seon; Hwang, Do-Won; Park, Jun-Bean; Paeng, Jin-Chul; Cheon, Gi-Jeong; Lee, Yun-Sang; Jeong, Jae Min; Kim, Yong-Jin

    2017-01-01

    The diagnosis of myocarditis traditionally relies on invasive endomyocardial biopsy but none of the imaging studies so far are specific for infiltration of the inflammatory cells itself. We synthesized 68Ga-2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) mannosylated human serum albumin (MSA) by conjugating human serum albumin with mannose, followed by conjugation with NOTA and labeling it with 68Ga. The efficacy of 68Ga-NOTA-MSA positron emission tomography (PET) for imaging myocardial inflammation was tested in a rat myocarditis model. A significant number of mannose receptor-positive inflammatory cells infiltrated the myocardium in both human and rat myocarditis tissue. 68Ga-NOTA-MSA uptake was upregulated in organs of macrophage accumulation, such as liver, spleen, bone marrow and myocardium (0.32 (0.31~0.33) for normal versus 1.02 (0.86~1.06) for myocarditis (median (range), SUV); n=4~6 per group, p-value=0.01). 68Ga-NOTA-MSA uptake in the left ventricle was upregulated in myocarditis compared with normal rats (2.29 (1.42~3.40) for normal versus 4.18 (3.43~6.15) for myocarditis (median (range), average standard uptake value ratio against paraspinal muscle); n=6 per group, p-valuerats with cyclosporine-A treated myocarditis (3.69 (2.59~3.86) for myocarditis versus 2.28 (1.76~2.60) for cyclosporine-A treated myocarditis; n=6 per group, p-valueechocardiography. These results demonstrate the potential utility of visualizing infiltration of mannose receptor-positive macrophages with 68Ga-NOTA-MSA PET in the early diagnosis of as well as in the monitoring of treatment response of myocarditis. PMID:28042344

  15. Application of capillary electrophoresis-frontal analysis for comparative evaluation of the binding interaction of captopril with human serum albumin in the absence and presence of hydrochlorothiazide.

    Science.gov (United States)

    Liu, Ting-Ting; Xiang, Li-Li; Wang, Jian-Ling; Chen, Dong-Ying

    2015-11-10

    The application of capillary electrophoresis-frontal analysis for comparative evaluation of the binding interaction between antihypertensive drug captopril and human serum albumin in the absence and presence of diuretic drug hydrochlorothiazide was presented in this work. At near-physiological conditions (67mM phosphate buffer, pH 7.4, I=0.17, 37°C), the individual solution of 100μM captopril and the co-binding solution with 60μM hydrochlorothiazide added were pre-equilibrated with series concentrations of HSA (10-475μM) respectively, introducing hydrodynamically into an uncoated fused silica capillary (35cm×50μm I.D. with 26.5cm effective length). The values of number of binding sites, the binding constant for captopril and hydrochlorothiazide binding to HSA were obtained, respectively. It can be found that both drugs exhibit moderate binding properties towards HSA and there does not exist significant competitive binding effects between them. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Design and optimization of a nanoprobe comprising amphiphilic chitosan colloids and Au-nanorods: Sensitive detection of human serum albumin in simulated urine

    Science.gov (United States)

    Jean, Ren-Der; Larsson, Mikael; Cheng, Wei-Da; Hsu, Yu-Yuan; Bow, Jong-Shing; Liu, Dean-Mo

    2016-12-01

    Metallic nanoparticles have been utilized as analytical tools to detect a wide range of organic analytes. In most reports, gold (Au)-based nanosensors have been modified with ligands to introduce selectivity towards a specific target molecule. However, in a recent study a new concept was presented where bare Au-nanorods on self-assembled carboxymethyl-hexanoyl chitosan (CHC) nanocarriers achieved sensitive and selective detection of human serum albumin (HSA) after manipulation of the solution pH. Here this concept was further advanced through optimization of the ratio between Au-nanorods and CHC nanocarriers to create a nanotechnology-based sensor (termed CHC-AuNR nanoprobe) with an outstanding lower detection limit (LDL) for HSA. The CHC-AuNR nanoprobe was evaluated in simulated urine solution and a LDL as low as 1.5 pM was achieved at an estimated AuNR/CHC ratio of 2. Elemental mapping and protein adsorption kinetics over three orders of magnitude in HSA concentration confirmed accumulation of HSA on the nanorods and revealed the adsorption to be completed within 15 min for all investigated concentrations. The results suggest that the CHC-AuNR nanoprobe has potential to be utilized for cost-effective detection of analytes in complex liquids.

  17. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    Science.gov (United States)

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  18. Effect of Human and Bovine Serum Albumin on kinetic Chemiluminescence of Mn (III-Tetrakis (4-Sulfonatophenyl Porphyrin-Luminol-Hydrogen Peroxide System

    Directory of Open Access Journals (Sweden)

    Sayed Yahya Kazemi

    2012-01-01

    Full Text Available The present work deals with an attempt to study the effect of human and bovine serum albumin on kinetic parameters of chemiluminescence of luminol-hydrogen peroxide system catalyzed by manganese tetrasulfonatophenyl porphyrin (MnTSPP. The investigated parameters involved pseudo-first-order rise and fall rate constant for the chemiluminescence burst, maximum level intensity, time to reach maximum intensity, total light yield, and values of the intensity at maximum CL which were evaluated by nonlinear least square program KINFIT. Because of interaction of metalloporphyrin with proteins, the CL parameters are drastically affected. The systems resulted in Stern-Volmer plots with values of 3.17×105 and 3.7×105M−1 in the quencher concentration range of 1.5×10−6 to 1.5×10−5 M for human serum albumin (HSA and bovine serum albumin (BSA, respectively.

  19. Heparin and albumin as part of the priming solution limits exposure to anticoagulation during hemodialysis: in vitro studies.

    Science.gov (United States)

    Kyrk, Tobias; Bechara, Alex; Skagerlind, Malin; Stegmayr, Bernd

    2014-10-01

    Hemodialysis patients who are subject to increased risk of hemorrhage may need specific dialysis regimes to avoid bleeding. The aim of this study was to determine in vitro which of various anticoagulation options were most beneficial. 60 in vitro hemodialyses (HD) were performed in parallel using blood from healthy donors. The dialysis circuits were rinsed with either 1 L of 0.9% NaCl alone (n = 6), or with 1 L saline and the addition of either 5 mL 20% albumin (Alb, n = 6), 5,000 U of heparin (Hep, n = 6), Hep and Alb in combination (HA, n = 30), 20,000 U of Hep and Alb (4H-A, n = 6), and finally Hep and 20 mL 20% albumin (H-4A, n = 6). The blood was recirculated for a maximum of 192 min. Clotting was graded. A 192 min dialysis was completed with all series of HA, 4H-A, and H-4A, all with a slight grade of clotting. In contrast to the above settings (p = 0.002, Fisher's test), a total clotting of the dialysis circuit occurred for all series using the NaCl rinsing alone (median time to stop: 21, range:18-27 min, p = 0.026 compared to the HA setting) and for the Alb rinsing (median 26, range: 19-35 min, p = 0.028). Priming using HA, Hep, 4H-A, and H-4A reduced clotting and allowed 192 min of HD. Clinical studies need to confirm these data in vivo.

  20. [The macrophage disappearance reaction in guinea pigs sensitized with bovine gamma globulin or human scrum albumin (author's transl)].

    Science.gov (United States)

    Schimke, R; Bernstein, B; Ambrosius, H

    1977-01-01

    The macrophage disappearance reaction (MDR) is a suitable test for detection of cell mediated immunity against bovine gamma globulin (BGG) and human serum albumin (HSA) in guinea pigs. The MDR is a technical simple, good manipulable, and quantifiable test. The optimal test conditions for the antigens BGC and HSA are the following: Peritoneal exudat cells (PEC) were stimulated with paraffin oil. On the 5th day after receiving oil the animals were injected with 80 microgram BGG or 30 microgram HSA i.p. 5 hours later the PEC were harvested and counted. With the MDR it is possible to detect differences with respect to degree of cell-mediated immunity. Supernatants of sensitized lymphocytes produces the MDR too.

  1. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations

    Science.gov (United States)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2012-10-01

    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  2. SERS spectroscopy of kaempferol and galangin under the interaction of human serum albumin with adsorbed silver nanoparticles

    Science.gov (United States)

    Zhang, Wei; Bai, Xueyuan; Wang, Yingping; Zhao, Bing; Zhao, Daqing; Zhao, Yu

    Raman and surface-enhanced Raman scattering (SERS) spectroscopy were employed to probe the interaction of the flavonol drugs, kaempferol and galangin, with human serum albumin (HSA). SERS spectra of both flavonol derivatives were obtained from a colloidal silver surface in physiological condition, based on the high performance of the enhanced substrate, the most enhanced modes of kaempferol and galangin were those with certain motions perpendicular to the metal surface. The SERS spectra were allowed to predict similar orientation geometry for both of the drugs on the colloidal surface with minor difference. In addition, both flavonols-HSA complexes were prepared in different concentration ratios and the orientated differences between kaempferol and galangin were investigated by SERS.

  3. Binding and conformational changes of human serum albumin upon interaction with 4-aminoantipyrine studied by spectroscopic methods and cyclic voltammetry.

    Science.gov (United States)

    Gowda, Jayant I; Nandibewoor, Sharanappa T

    2014-04-24

    The interactions of 4-aminoantipyrine (AAP) with human serum albumin (HSA) have been studied by UV-visible spectroscopy, fluorescence spectroscopy and cyclic voltammetry. The binding of 4-aminoantipyrine quenches the HSA fluorescence, revealing a 1:1 interaction with a binding constant of about 10(5) M(-1). The experimental results showed that AAP effectively quenched the intrinsic fluorescence of HSA via dynamic type of quenching. In addition, according to the synchronous fluorescence spectra of HSA in presence of 4-aminoantipyrine, the tryptophan residue of the proteins are most perturbed by the binding process. The number of binding sites, the binding constant, site probe study, some common metal ions effect and the thermodynamic parameters were calculated.

  4. Mechanistic and conformational studies on the interaction of food dye amaranth with human serum albumin by multispectroscopic methods.

    Science.gov (United States)

    Zhang, Guowen; Ma, Yadi

    2013-01-15

    The mechanism of interaction between food dye amaranth and human serum albumin (HSA) in physiological buffer (pH 7.4) was investigated by fluorescence, UV-vis absorption, circular dichroism (CD), and Fourier transform infrared (FT-IR) spectroscopy. Results obtained from analysis of fluorescence spectra indicated that amaranth had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The negative value of enthalpy change and positive value of entropy change elucidated that the binding of amaranth to HSA was driven mainly by hydrophobic and hydrogen bonding interactions. The surface hydrophobicity of HSA increased after binding with amaranth. The binding distance between HSA and amaranth was estimated to be 3.03 nm and subdomain IIA (Sudlow site I) was the primary binding site for amaranth on HSA. The results of CD and FT-IR spectra showed that binding of amaranth to HSA induced conformational changes of HSA.

  5. Investigation of binding behaviour of procainamide hydrochloride with human serum albumin using synchronous, 3D fluorescence and circular dichroism

    Directory of Open Access Journals (Sweden)

    Kirthi Byadagi

    2017-04-01

    Full Text Available Interaction of procainamide hydrochloride (PAH with human serum albumin (HSA is of great significance in understanding the pharmacokinetic and pharmacodynamic mechanisms of the drug. Multi-spectroscopic techniques were used to investigate the binding mode of PAH to HSA and results revealed the presence of static type of quenching mechanism. The number of binding sites, binding constants and thermodynamic parameters were calculated. The results showed a spontaneous binding of PAH to HSA and hydrophobic interactions played a major role. In addition, the distance between PAH and the Trp–214 was estimated employing the Förster's theory. Site marker competitive experiments indicated that the binding of PAH to HSA primarily took place in subdomain IIA (Sudlow's site I. The influence of interference of some common metal ions on the binding of PAH to HSA was studied. Synchronous fluorescence spectra (SFS, 3D fluorescence spectra and circular dichroism (CD results indicated the conformational changes in the structure of HSA.

  6. Thermodynamics of the binding of salicylate to human serum albumin: evidence of non-competition with imidazole.

    Science.gov (United States)

    Matias, I; Ceballos, A; Gonzalez-Velasco, F; Cachaza, J M

    1989-02-01

    The thermodynamic characteristics of the binding of salicylate to human serum albumin have been studied using a technique based on the variation of the quantum yield of fluorescence of salicylate when it binds to the protein. The binding constants, number of sites and the values of delta G degrees, delta H degrees and delta S degrees were determined. The results are consistent with a model that proposes two equal and independent types of binding site with a predominantly ionic interaction and an important hydrophobic contribution in one of the sites. The technique was also used to demonstrate that imidazole and salicylate (that can be found simultaneously in plasma following administration of imidazole-2-hydroxybenzoate) do not compete for the same binding sites on the protein.

  7. Interaction of fisetin with human serum albumin by fluorescence, circular dichroism spectroscopy and DFT calculations: binding parameters and conformational changes

    Energy Technology Data Exchange (ETDEWEB)

    Matei, Iulia; Ionescu, Sorana [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania); Hillebrand, Mihaela, E-mail: mihh@gw-chimie.math.unibuc.ro [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania)

    2011-08-15

    The interaction between fisetin, an antioxidant and neuroprotective flavonoid, and human serum albumin (HSA) is investigated by means of fluorescence (steady-state, synchronous, time-resolved) and circular dichroism (CD) spectroscopy. The formation of a 1:1 complex with a constant of about 10{sup 5} M{sup -1} was evidenced. Foerster's resonance energy transfer and competitive binding with site markers warfarin and ibuprofen were considered and discussed. Changes in the CD band of HSA indicate a decrease in the {alpha}-helix content upon binding. An induced CD signal for bound fisetin was observed and rationalized in terms of density functional theory calculations. - Highlights: > Fisetin-BSA system was studied by fluorescence spectroscopy. > Binding parameters, association constant and number of sites were estimated. > Binding site of fisetin was identified by competitive experiments. > Conformational changes in HSA and fisetin were evidenced by circular dichroism. > TDDFT calculated CD spectra supported the experimental data.

  8. Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes.

    Science.gov (United States)

    Sidhaye, Aditi A; Bhuran, Kanchan C; Zambare, Sneha; Abubaker, Munna; Nirmalan, Niroshini; Singh, Kamalinder K

    2016-10-19

    The intra-erythrocytic development of the malarial parasite is dependent on active uptake of nutrients, including human serum albumin (HSA), into parasitized red blood cells (pRBCs). We have designed HSA-based nanoparticles as a potential drug-delivery option for antimalarials. Artemether-loaded nanoparticles (AANs) were designed and antimalarial activity evaluated in vitro/in vivo using Plasmodium falciparum/Plasmodium berghei species, respectively. Selective internalization of AAN into Plasmodium-infected RBCs in preference to healthy erythrocytes was observed using confocal imaging. In vitro studies showed 50% dose reduction for AAN as compared with drug-only controls to achieve IC50 levels of inhibition. The nanoparticles exhibited twofold higher peak drug concentrations in RBCs with antimalarial activity at 50% of therapeutic doses in P. bergei infected mice. Novel HSA-based nanoparticles offer safe and effective approach for selective targeting of antimalarial drugs.

  9. Superoxide dismutase activity of the naturally occurring human serum albumin-copper complex without hydroxyl radical formation.

    Science.gov (United States)

    Kato, Ryunosuke; Akiyama, Matofusa; Kawakami, Hiroyoshi; Komatsu, Teruyuki

    2014-01-01

    The superoxide radical anion (O2(.-)) is biologically toxic and contributes to the pathogenesis of various diseases. Here we describe the superoxide dismutase (SOD) activity of human serum albumin (HSA) complexed with a single Cu(II) ion at the N-terminal end (HSA-Cu complex). The structure of this naturally occurring copper-coordinated blood serum protein has been characterized by several physicochemical measurements. The O2(.-) dismutation ability of the HSA-Cu (1:1) complex is almost the same as that of the well-known SOD mimics, such as Mn(III) -tetrakis(N-methylpyridinium)porphyrin. Interestingly, the HSA-Cu complex does not induce a subsequent Fenton reaction to produce the hydroxyl radical (OH(.)), which is one of the most harmful reactive oxygen species.

  10. Preparation, characterization and targeting of micronized 10-hydroxycamptothecin-loaded folate-conjugated human serum albumin nanoparticles to cancer cells

    Directory of Open Access Journals (Sweden)

    et al

    2011-02-01

    Full Text Available Qingyong Li, Chen Liu, Xiuhua Zhao, Yuangang Zu, Ying Wang, Baoyou Zhang, Dongmei Zhao, Qi Zhao, Lin Su, Yang Gao, Baihe SunKey Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang, People's Republic of ChinaBackground: The purpose of this study was to develop a method for targeted delivery of 10-hydroxycamptothecin (HCPT-loaded nanoparticles (NPs to cancer cells.Methods: We first used a supercritical antisolvent process to prepare micronized HCPT (nHCPT, and then folate-conjugated human serum albumin (HSA nHCPT-loaded NPs (FA-HSA-nHCPT-NPs were prepared using a NP-coated method combined with a desolvation technique. The amount of folate conjugation was 16 µg · mg-1 HSA.Results: The particle size of the spherical nHCPT microparticles obtained was 118.5 ± 6.6 nm. The particle size and zeta potential of the FA-HSA-nHCPT-NPs were 233.9 ± 1.2 nm and -25.23 ± 2.98 mV, respectively. The FA-HSA-nHCPT-NPs exhibited a smooth surface and a distinct spherical shape, and the results of differential scanning calorimetry and X-ray diffraction indicated that the FA-HSA-nHCPT-NPs presented in a nanostructured amorphous state. The FA-HSA-nHCPT-NPs showed sustained-release characteristics for 120 hours in vitro, with a drug-loading content of 7.3% and an encapsulating efficiency of 79.1%.Conclusion: The FA-NPs were effective delivery systems for uptake by SGC7901 cells compared with folate-free NPs. These results suggest that a NP-coated method combined with a desolvation technique is effective for preparing NPs with drugs having poor solubility in water and most organic solvents, using albumin as the wall material. FA-HSA-NPs are a stable delivery system and have the potential for targeted delivery of anticancer drugs.Keywords: nanoparticle-coated, desolvation technique, 10-hydroxycamptothecin, human serum albumin, folate, targeted delivery 

  11. Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: direct clinical biochemistry without reagents.

    Science.gov (United States)

    Jessen, Torben E; Höskuldsson, Agnar T; Bjerrum, Poul J; Verder, Henrik; Sørensen, Lars; Bratholm, Palle S; Christensen, Bo; Jensen, Lene S; Jensen, Maria A B

    2014-09-01

    Direct measurement of chemical constituents in complex biologic matrices without the use of analyte specific reagents could be a step forward toward the simplification of clinical biochemistry. Problems related to reagents such as production errors, improper handling, and lot-to-lot variations would be eliminated as well as errors occurring during assay execution. We describe and validate a reagent free method for direct measurement of six analytes in human plasma based on Fourier-transform infrared spectroscopy (FTIR). Blood plasma is analyzed without any sample preparation. FTIR spectrum of the raw plasma is recorded in a sampling cuvette specially designed for measurement of aqueous solutions. For each analyte, a mathematical calibration process is performed by a stepwise selection of wavelengths giving the optimal least-squares correlation between the measured FTIR signal and the analyte concentration measured by conventional clinical reference methods. The developed calibration algorithms are subsequently evaluated for their capability to predict the concentration of the six analytes in blinded patient samples. The correlation between the six FTIR methods and corresponding reference methods were 0.87triglycerides, urea, cholesterol, albumin and total protein in human plasma. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. Concurrent zero-dimensional and one-dimensional biomineralization of gold from a solution of Au3+ and bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Matthew R Hartings

    2013-11-01

    Full Text Available A technique was developed for preparing a novel material that consists of gold nanoparticles trapped within a fiber of unfolded proteins. These fibers are made in an aqueous solution that contains HAuCl4 and the protein, bovine serum albumin (BSA. By changing the ratio of gold to BSA in solution, two different types of outcomes are observed. At lower gold to BSA ratios (30–120, a purple solution results after heating the mixture at 80 °C for 4 h. At higher gold to BSA ratios (130–170, a clear solution containing purple fibers results after heating the mixture at 80 °C for 4 h. UV–Vis spectroscopy and light scattering techniques show growth in nanocolloid size as gold to BSA ratio rises above 100. Data indicate that, for the higher gold to BSA ratios, the gold is sequestered within the solid material. The material mass, visible by eye, appears to be an aggregation of smaller individual fibers. Scanning electron microscopy and transmission electron microscopy indicate that these fibers are primarily one-dimensional aggregates, which can display some branching, and can be as narrow as 400 nm in size. The likely mechanism for the synthesis of the novel material is discussed.

  13. Probing the molecular interaction of triazole fungicides with human serum albumin by multispectroscopic techniques and molecular modeling.

    Science.gov (United States)

    Zhang, Jing; Zhuang, Shulin; Tong, Changlun; Liu, Weiping

    2013-07-31

    Triazole fungicides, one category of broad-spectrum fungicides, are widely applied in agriculture and medicine. The extensive use leads to many residues and casts potential detrimental effects on aquatic ecosystems and human health. After exposure of the human body, triazole fungicides may penetrate into the bloodstream and interact with plasma proteins. Whether they could have an impact on the structure and function of proteins is still poorly understood. By using multispectroscopic techniques and molecular modeling, the interaction of several typical triazole fungicides with human serum albumin (HSA), the major plasma protein, was investigated. The steady-state and time-resolved fluorescence spectra manifested that static type, due to complex formation, was the dominant mechanism for fluorescence quenching. Structurally related binding modes speculated by thermodynamic parameters agreed with the prediction of molecular modeling. For triadimefon, hydrogen bonding with Arg-218 and Arg-222 played an important role, whereas for imazalil, myclobutanil, and penconazole, the binding process was mainly contributed by hydrophobic and electrostatic interactions. Via alterations in three-dimensional fluorescence and circular dichroism spectral properties, it was concluded that triazoles could induce slight conformational and some microenvironmental changes of HSA. It is anticipated that these data can provide some information for possible toxicity risk of triazole fungicides to human health and be helpful in reinforcing the supervision of food safety.

  14. Freeze-drying of HI-6-loaded recombinant human serum albumin nanoparticles for improved storage stability.

    Science.gov (United States)

    Dadparvar, Miriam; Wagner, Sylvia; Wien, Sascha; Worek, Franz; von Briesen, Hagen; Kreuter, Jörg

    2014-10-01

    Severe intoxications with organophosphates require the immediate administration of atropine in combination with acetyl cholinesterase (AChE) reactivators such as HI-6. Although this therapy regimen enables the treatment of peripheral symptoms, the blood-brain barrier (BBB) restricts the access of the hydrophilic antidotes to the central nervous system which could lead to a fatal respiratory arrest. Therefore, HI-6-loaded albumin nanoparticles were previously developed to enhance the transport across this barrier and were able to reactivate organophosphate-(OP)-inhibited AChE in an in vitro BBB model. Since HI-6 is known to be moisture-sensitive, the feasibility of freeze-drying of the HI-6-loaded nanoparticles was investigated in the present study using different cryo- and lyoprotectants at different concentrations. Trehalose and sucrose (3%, w/v)-containing formulations were superior to mannitol concerning the physicochemical parameters of the nanoparticles whereas trehalose-containing samples were subject of a prolonged storage stability study at temperatures between -20°C and +40°C for predetermined time intervals. Shelf-life computations of the freeze-dried HI-6 nanoparticle formulations revealed a shelf-life time of 18 months when stored at -20°C. The formulations' efficacy was proven in vitro by reactivation of OP-inhibited AChE after transport over a porcine brain capillary endothelial cell layer model.

  15. Effect of albumin-bound DHA on phosphoinositide phosphorylation in collagen stimulated human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Gaudette, D.C.; Holub, B.J. (Univ. of Guelph, Ontario (Canada))

    1990-05-15

    The effect of exogenous albumin-bound docosahexaenoic acid (22:6n-3) (DHA), arachidonic acid (20:4n-6) (AA), and eicosapendaenoic acid (20:5n-3) (EPA) on phosphoinositide metabolism following collagen stimulation was studied using (3H)inositol prelabelled platelets. Collagen stimulation (3 min, 1.8 micrograms/ml) increased the labelling of both phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol 4,5-biphosphate (PIP2). Of the fatty acids tested, only pre-incubation (2 min) with DHA (20 microM) significantly attenuated the collagen-induced increased PIP and PIP2 labelling; EPA was without effect, while AA enhanced PIP labelling. Forty microM DHA was less effective at attenuating the increased PIP and PIP2 labelling even though this concentration of DHA resulted in greater inhibition of platelet aggregation. Neither concentration of DHA attenuated the increased polyphosphoinositide labelling resulting from stimulation by the endoperoxide analogue U46619, or the phorbol ester, PMA. These data suggest that the effect of DHA on attenuating the increased PIP and PIP2 labelling following collagen stimulation likely occurs before thromboxane receptor occupancy, may not occur at the level of protein kinase C activation, and could be mediated in part via a lessened synthesis of thromboxane A2.

  16. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    Science.gov (United States)

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum.

  17. Ag(I)-bovine serum albumin hydrosol-mediated formation of Ag3PO4/reduced graphene oxide composites for visible-light degradation of Rhodamine B solution.

    Science.gov (United States)

    Ma, Peiyan; Chen, Anliang; Wu, Yan; Fu, Zhengyi; Kong, Wei; Che, Liyuan; Ma, Ruifang

    2014-03-01

    A cost-effective Ag(I)-bovine serum albumin (BSA) supramolecular hydrosol strategy was utilized to assemble Ag3PO4 nanospheres onto reduced graphene oxide (rGO) sheets. The obtained composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy. Compared with the pure Ag3PO4 crystals and Ag3PO4 particles prepared with Ag(I)-BSA hydrosol as precursor, the Ag3PO4/rGO composites obtained with different content of graphene oxide indicated improved visible-light-driven photocatalysis activity for the decomposition of Rhodamine B aqueous solution. The results pointed to the possibility of synthesizing graphene-based photocatalysts by metal ion-BSA hydrosol.

  18. Value of continuous leakage monitoring with radioactive iodine-131-labeled human serum albumin during hyperthermic isolated limb perfusion with tumor necrosis factor-alpha and melphalan

    NARCIS (Netherlands)

    van Ginkel, RJ; Limburg, PC; Piers, DA; Hoekstra, HJ; Schraffordt Koops, H.

    Background: The aim of this study was to analyze the value of continuous leakage monitoring with radioactive iodine-131-labeled human serum albumin (RISA) in patients treated with hyperthermic isolated limb perfusion with tumor necrosis factor-alpha (TNFalpha) and melphalan. Methods: Forty-eight

  19. Interaction of bovine serum albumin and human blood plasma with PEO-tethered surfaces : influence of PEO chain length, grafting density and temperature

    NARCIS (Netherlands)

    Norde, W.; Gage, R.A.

    2004-01-01

    Solid surfaces are modified by grafting poly(ethylene oxide), PEO, to influence their interaction with indwelling particles, in particular molecules of bovine serum albumin and human plasma proteins. As a rule, the grafted PEO layers suppress protein adsorption. The suppression is most effective whe

  20. The valence state of technetium-99 in its complexes with bleomycin, 1-hydroxy-ethylidene-1,1-diphosphonate and human serum albumin

    NARCIS (Netherlands)

    Korteland, J.; Dekker, B.G.; Ligny, C.L. de

    1980-01-01

    The valence state of technetium-99 in its complexes with bleomycin, 1-hydroxy-ethylidene-1,1-diphosphonate and human serum albumin was determined by titration of 99TcO4− with Sn(II) in the presence of these complexing agents. Both direct titration, and addition of an excess of Sn(II) and back-titrat

  1. The valence state of technetium-99 in its complexes with bleomycin, 1-hydroxy-ethylidene-1,1-diphosphonate and human serum albumin

    NARCIS (Netherlands)

    Korteland, J.; Dekker, B.G.; Ligny, C.L. de

    1980-01-01

    The valence state of technetium-99 in its complexes with bleomycin, 1-hydroxy-ethylidene-1,1-diphosphonate and human serum albumin was determined by titration of 99TcO4− with Sn(II) in the presence of these complexing agents. Both direct titration, and addition of an excess of Sn(II) and back-titrat

  2. Significance of technetium-99m human serum albumin diethylenetriamine pentaacetic acid scintigraphy in patients with nephrotic syndrome.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Takashima

    Full Text Available It is thought that a large amount of albumin leaking from the glomerulus in nephrotic syndrome (NS is reabsorbed at the proximal tubule and catabolized. Therefore, it is possible the final quantity of urinary protein does not always reflect the amount of leakage of protein from the glomerulus. We experienced two cases without nephrotic range proteinuria thought to involve hypoproteinemia due to the same pathophysiology as NS. On these patients, we performed protein leakage scintigraphy with technetium-99m human serum albumin diethylenetriamine pentaacetic acid (99mTc-HSAD to exclude a diagnosis of protein-losing gastroenteropathy and observed diffuse positive accumulation in the kidneys with more intense uptake in the kidney than the liver on the anterior view 24 hours after 99mTc-HSAD administration. In healthy adults intravenously given 99mTc-HSAD, the same dynamics are observed as in albumin metabolism, and the organ radioactivity of the liver and kidneys after 24 hours is equal. Therefore, we thought it was possible that the renal uptake 24 hours after 99mTc-HSAD administration was a characteristic finding of NS. In order to confirm it, the subjects were divided into two groups: the NS group (n = 10 and the non-NS group (n = 7. We defined more intense uptake in the kidney than the liver on the anterior view 24 hours after 99mTc-HSAD administration as Dense Kidney (+. Furthermore, we designed regions of interest in the right and left kidneys and liver on anterior and posterior images, then calculated the kidney-liver ratio. Nine of the ten patients had Dense Kidney (+ in the NS group, compared to none in the non-NS group. And the kidney-liver ratio was significantly higher in the NS group than in the non-NS group on each view in the bilateral kidneys. In conclusion, our results suggest that the renal uptake 24 hours after 99mTc-HSAD administration is a characteristic finding of NS.

  3. Complexation of serum albumins and triton X-100: Quenching of tryptophan fluorescence and analysis of the rotational diffusion of complexes

    Science.gov (United States)

    Vlasova, I. M.; Vlasov, A. A.; Saletskii, A. M.

    2016-07-01

    The polarized and nonpolarized fluorescence of bovine serum albumin and human serum albumin in Triton X-100 solutions is studied at different pH values. Analysis of the constants of fluorescence quenching for BSA and HSA after adding Triton X-100 and the hydrodynamic radii of BSA/HSA-detergent complexes show that the most effective complexation between both serum albumins and Triton X-100 occurs at pH 5.0, which lies near the isoelectric points of the proteins. Complexation between albumin and Triton X-100 affects the fluorescence of the Trp-214 residing in the hydrophobic pockets of both BSA and HSA.

  4. Molecular structure-affinity relationship of bufadienolides and human serum albumin in vitro and molecular docking analysis.

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    Full Text Available The development of bufadienolides as anti-tumor agents is limited due to poor pharmacokinetic properties regarding drug half-lives and toxicity in vivo. These serious factors might be improved by increasing the drug/albumin-binding ratio. This study therefore investigated the relationship between the structural properties of nine bufadienolides and their affinities for human serum albumin (HSA by a fluorescence spectroscopy-based analysis and molecular docking. Fluorescence quenching data showed that the interaction of each bufadienolide with HSA formed a non-fluorescent complex, while thermodynamic parameters revealed negative ΔS and ΔH values, corresponding to changes in enthalpy and entropy, respectively. The structural differences between the various bufadienolides markedly influenced their binding affinity for HSA. With the exception of a C = O bond at the C12 position that decreased the binding affinity for HSA, other polar groups tended to increase the affinity, especially a hydroxyl (OH group at assorted bufadienolide sites. The rank order of binding affinities for drugs with tri-hydroxyl groups was as follows: 11-OH > 5-OH > 16-OH; in addition, 16-acetoxy (OAc, 10-aldehyde and 14-epoxy constituents notably enhanced the binding affinity. Among these groups, 11-OH and 16-acetyl were especially important for a seamless interaction between the bufadienolides and HSA. Furthermore, molecular docking analysis revealed that either an 11-OH or a 16-OAc group spatially close to a five-membered lactone ring significantly facilitated the anchoring of these compounds within site I of the HSA pocket via hydrogen bonding (H-bonding with Tyr150 or Lys199, respectively. In summary, bufadienolide structure strongly affects binding with HSA, and 11-OH or 16-OAc groups improve the drug association with key amino acid residues. This information is valuable for the prospective development of bufadienolides with improved pharmacological profiles as novel

  5. Revealing the ionization ability of binding site I of human serum albumin using 2-(2'-hydroxyphenyl)benzoxazole as a pH sensitive probe.

    Science.gov (United States)

    Abou-Zied, Osama K

    2012-02-28

    The ability of site I of human serum albumin (HSA) to bind medium sized molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, we show that this binding site has the ionization ability that may alter the drug structure during the process of its delivery. We reveal this ability by employing 2-(2'-hydroxyphenyl)benzoxazole (HBO) as a pH sensitive probe. Binding of HBO in site I is studied here at physiological pH 7.2 using steady-state and lifetime spectroscopic measurements, molecular docking and molecular dynamics (MD) simulation methods. The complex photophysics of HBO and the unique fluorescence signature of its anionic form indicate that, upon binding with HSA, the molecule exists in equilibrium between the anionic and the syn-keto forms. The position of HBO inside the binding site was determined experimentally by measuring the fluorescence quenching of W214, the sole tryptophan residue in HSA. The ionization degree of HBO inside the binding site was estimated to be close to the ionization degree of HBO in an aqueous solution of pH 10. This was concluded by comparing the fluorescence behavior of bound HBO to that of HBO in different solvents and in aqueous solutions of different pH values. Molecular docking and MD simulations show that HBO binds in site I close to W214, confirming the experimental results, and pinpoint the dominant role of hydrophobic interactions in the binding site. The formation of the anionic form is proposed to be due to through-space interaction between the OH group of HBO and both R222 and I290 with a binding mode similar to that of warfarin in site I. Comparison of the results with those of HBO mixed with key amino acids in solution indicates the importance of through-space interaction in the formation of the anion, similar to enzymatic reactions.

  6. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...

  7. Stopped-flow studies of spectral changes in human serum albumin following an alkaline pH jump

    DEFF Research Database (Denmark)

    Honoré, B

    1987-01-01

    A stopped-flow technique was used to study the spectral changes occurring in albumin following a pH jump from 11.3 to 11.8 at 25 degrees C. Ultraviolet difference spectra between various albumin species participating in the process are reported. These spectra are similar in shape to the differenc...

  8. The cytotoxic effect of spiroflavanone derivatives, their binding ability to human serum albumin (HSA) and a DFT study on the mechanism of their synthesis

    Science.gov (United States)

    Budzisz, Elzbieta; Paneth, Piotr; Geromino, Inacrist; Muzioł, Tadeusz; Rozalski, Marek; Krajewska, Urszula; Pipiak, Paulina; Ponczek, Michał B.; Małecka, Magdalena; Kupcewicz, Bogumiła

    2017-06-01

    This paper examines the cytotoxic effect of nine compounds with spiropyrazoline structures, and determines the reaction mechanism between diazomethane and selected benzylideneflavanones, their lipophilicity, and their binding ability to human serum albumin. The cytotoxic effect was determined on two human leukaemia cell lines (HL-60 and NALM-6) and melanoma WM-115 cells, as well as on normal human umbilical vein endothelial cells (HUVEC). The highest cytotoxicity was exhibited by compound B7: it was found to have an IC50 of less than 10 μM for all three cancer cell lines, with five to 12-fold lower sensitivity against normal cells (HUVEC). All the compounds exhibit comparable affinity energy in human serum albumin binding (from -8.1 to -8.6 kcal mol-1) but vary in their binding sites depending on the substituent. X-ray crystallography of two derivatives confirmed their synthetic pathway, and their structures were carefully examined.

  9. Spectroscopic analysis of the impact of oxidative stress on the structure of human serum albumin (HSA) in terms of its binding properties

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Sułkowska, A.

    2015-02-01

    Oxygen metabolism has an important role in the pathogenesis of rheumatoid arthritis (RA). Reactive oxygen species (ROS) are produced in the course of cellular oxidative phosphorylation and by activated phagocytic cells during oxidative bursts, exceed the physiological buffering capacity and result in oxidative stress. ROS result in oxidation of serum albumin, which causes a number of structural changes in the spatial structure, may influence the binding and cause significant drug interactions, particularly in polytherapy. During the oxidation modification of amino acid residues, particularly cysteine and methionine may occur. The aim of the study was to investigate the influence of oxidative stress on human serum albumin (HSA) structure and evaluate of possible alterations in the binding of the drug to oxidized human serum albumin (oHSA). HSA was oxidized by a chloramine-T (CT). CT reacts rapidly with sulfhydryl groups and at pH 7.4 the reaction was monitored by spectroscopic techniques. Modification of free thiol group in the Cys residue in HSA was quantitatively determined by the use of Ellman's reagent. Changes of albumin conformation were examined by comparison of modified (oHSA) and nonmodified human serum albumin (HSA) absorption spectra, emission spectra, red-edge shift (REES) and synchronous spectroscopy. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region of 200-250 nm involve structural alterations in peptide backbone conformation. Synchronous fluorescence spectroscopy technique confirmed changes of position of tryptophanyl and tyrosyl residues fluorescent band caused by CT. Moreover analysis of REES effect allowed to observe structural changes caused by CT in the region of the hydrophobic pocket containing the tryptophanyl residue. Effect of oxidative stress on binding of anti-rheumatic drugs, sulfasalazine (SSZ) and sulindac (SLD) in the high and low affinity binding sites was

  10. Interface potential sensing from adsorption of human serum albumin (HSA) on carbon nanotube (CNT) monitored by zero current potentiometry for HSA determination.

    Science.gov (United States)

    Wang, Huan; Wu, Yi; Song, Jun-Feng

    2015-10-15

    In this work, the adsorption of human serum albumin (HSA) on the bare multiwall carbon nanotube (MWNT) was investigated by a new electrochemical method, termed as zero current potentiometry. For this, a MWNT strip was prepared by directly adhering MWNTs on the transparent adhesive tape surface. Moreover, when HSA adsorbed onto MWNT at the MWNT/solution interface, an interface potential Ψ yielded. The interface potential Ψ as the zero current potential Ezcp simply related to it was monitored by zero current potentiometry. The relationship between the zero current potential Ezcp, the HSA concentration and others was established in simple stoichiometric relation. Based on this, both the adsorption of HSA on MWNT and the HSA determination can be studied. For the HSA determination, the theoretic conclusion consisted with experimental results. The zero current potential Ezcp was proportional to the HSA concentration in the range of 2.8 × 10(-8) - 3.4 × 10(-7)M with the limit of detection 2 × 10(-8)M. The linear regression equation was Ezcp/V (vs, SCE) = (0.159 ± 0.01) + (0.358 ± 0.02) × 10(6)CHSA (µM). This determination was fast, high sensitive and good selective.

  11. A combined spectroscopic, docking and molecular dynamics simulation approach to probing binding of a Schiff base complex to human serum albumin.

    Science.gov (United States)

    Fani, N; Bordbar, A K; Ghayeb, Y

    2013-02-15

    The molecular mechanism of a Schiff base complex ((E)-((E)-2-(3-((E)-((E)-3(mercapto (methylthio) methylene)cyclopentylidene) amino) propylimino) cyclopentylidene) (methylthio) methanethiol) binding to Human Serum Albumin (HSA) was investigated by fluorescence quenching, absorption spectroscopy, molecular docking and molecular dynamics (MD) simulation procedures. The fluorescence emission of HSA was quenched by this Schiff base complex that has been analyzed for estimation of binding parameters. The titration of Schiff base solution by various amount of HSA was also followed by UV-Vis absorption spectroscopy and the corresponding data were analyzed by suitable models. The results revealed that this Schiff base has an ability to bind strongly to HSA and formed 1:1 complex. Energy transfer mechanism of quenching was discussed and the value of 5.45 ± 0.06 nm was calculated as the mean distance between the bound complex and the Trp residue. This is implying the high possibility of energy transfer from HSA to this Schiff base complex. Molecular docking results indicated that the main active binding site for this Schiff base complex is site III in subdomain IB. Moreover, MD simulation results suggested that this Schiff base complex can interact with HSA, without affecting the secondary structure of HSA but probably with a slight modification of its tertiary structure. MD simulations, molecular docking and experimental data reciprocally supported each other.

  12. Characterization of interactions between methoxatin disodium salt and human serum albumin by pressure-assisted capillary electrophoresis/frontal analysis and circular dichroism spectroscopy.

    Science.gov (United States)

    Zhao, Lijuan; Chen, Dongying

    2015-01-01

    Pressure-assisted capillary electrophoresis (PACE)/frontal analysis (FA) and circular dichroism spectroscopy were utilized to investigate the interactions between methoxatin disodium salt (PQQ-2Na) and human serum albumin (HSA). With the PACE/FA method, sodium phosphate buffer solution (67 mm, pH 7.4) was used as the background electrolyte. Hydrodynamic injection at 50 mbar for 50 s and external pressure of 50 mbar were applied. The binding constant and the number of primary binding sites to HSA were obtained under fixed concentration of PQQ-2Na (100 µm) and increasing HSA concentration (0~475 µm). The thermodynamic parameters characterized the main acting forces of hydrophobic and electrostatic interactions. The displacement experiments using phenylbutazone and flurbiprofen as ligand markers suggested that the binding site was the Sudlow site I of the HSA molecule. Circular dichroism spectroscopy was further employed to evaluate the conformation changes of HSA under the interaction of PQQ-2Na. This work provides comprehensive information for understanding the interactions between PQQ-2Na and HSA. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Effect of Common Buffers and Heterocyclic Ligands on the Binding of Cu(II at the Multimetal Binding Site in Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Magdalena Sokołowska

    2010-01-01

    Full Text Available Visible-range circular dichroism titrations were used to study Cu(II binding properties of Multimetal Binding Site (MBS of Human Serum Albumin (HSA. The formation of ternary MBS-Cu(II-Buffer complexes at pH 7.4 was positively verified for sodium phosphate, Tris, and Hepes, the three most common biochemical buffers. The phosphate > Hepes > Tris order of affinities, together with strong spectral changes induced specifically by Tris, indicates the presence of both Buffer-Cu(II and Buffer-HSA interactions. All complexes are strong enough to yield a nearly 100% ternary complex formation in 0.5 mM HSA dissolved in 100 mM solutions of respective buffers. The effects of warfarin and ibuprofen, specific ligands of hydrophobic pockets I and II in HSA on the Cu(II binding to MBS were also investigated. The effects of ibuprofen were negligible, but warfarin diminished the MBS affinity for Cu(II by a factor of 20, as a result of indirect conformational effects. These results indicate that metal binding properties of MBS can be modulated directly and indirectly by small molecules.

  14. Solution structure and stability against digestion of rproBnIb, a recombinant 2S albumin from rapeseed: relationship to its allergenic properties.

    Science.gov (United States)

    Pantoja-Uceda, David; Palomares, Oscar; Bruix, Marta; Villalba, Mayte; Rodríguez, Rosalía; Rico, Manuel; Santoro, Jorge

    2004-12-28

    NMR spectroscopy has been used to determine the solution structure of the precursor form of the recombinant napin BnIb, rproBnIb, a 2S albumin, 109-residue protein from the seeds of Brassica napus. More than 90% of the side-chain proton resonances were unambiguously assigned from the analysis of two-dimensional correlation (COSY), total correlation (TOCSY), and nuclear Overhauser effect (NOESY) spectra. The final structures were computed by using restrained molecular dynamics on the basis of 1316 upper-limit distance constraints derived from NOE cross-correlation intensities. The computed structures exhibited a root-mean-square deviation (RMSD) radius of 0.66 A for the backbone and 1.16 A for the side-chain heavy atoms of the structural core. The resulting structure consists of five amphipathic helices arranged in a right-handed super helix, a folding motif found in other proteins of the prolamin superfamily. As in the case of the mature protein, the recombinant precursor behaves as a plant food allergen. To trace out the origin and characteristics of its allergenic properties, rproBnIb was assayed against simulated gastric fluid and found to be very resistant to proteolysis. Also, heat treatment of the protein followed up to 85 degrees C by circular dichroism showed a very limited unfolding, which was recovered after cooling to 20 degrees C, indicating a high thermal stability. These results suggest that rproBnIb, as other 2S albumins, may be able to reach the gut immune system intact. A comparison of the putative epitopes against IgE antibodies of the three members of the prolamine family [2S albumins, nonspecific lipid transfer proteins (nsLTPs), and alpha-amylase/trypsin inhibitors] indicates that there are not common surfaces of interaction with IgE. Though the epitopes appear to be located in different regions of the proteins, they do comply with the requirements of being solvent-exposed and flexible.

  15. High-throughput 1,536-well fluorescence polarization assays for α(1-acid glycoprotein and human serum albumin binding.

    Directory of Open Access Journals (Sweden)

    Adam Yasgar

    Full Text Available Two major plasma proteins in humans are primarily responsible for drug binding, the α(1-acid-glycoprotein (AGP and human serum albumin (HSA. The availability of at least a semiquantitative high-throughput assay for assessment of protein binding is expected to aid in bridging the current gap between high-throughput screening and early lead discovery, where cell-based and biochemical assays are deployed routinely to test up to several million compounds rapidly, as opposed to the late-stage candidate drug profiling methods which test at most dozens of compounds at a time. Here, we describe the miniaturization of a pair of assays based on the binding- and displacement-induced changes in fluorescence polarization (FP of fluorescent small molecule probes known to specifically target the drug-binding sites of these two proteins. A robust and reproducible assay performance was achieved in ≤4 µL assay volume in 1,536-well format. The assays were tested against a validation set of 10 known protein binders, and the results compared favorably with data obtained using protein-coated beads with high-performance liquid chromatography analysis. The miniaturized assays were taken to a high-throughput level in a screen of the LOPAC(1280 collection of 1,280 pharmacologically active compounds. The adaptation of the AGP and HSA FP assays to a 1,536-well format should allow their use in early-stage profiling of large-size compound sets.

  16. Expression and bioactivity of recombinant human serum albumin and dTMP fusion proteins in CHO cells.

    Science.gov (United States)

    Ru, Yi; Zhi, Dejuan; Guo, Dingding; Wang, Yong; Li, Yang; Wang, Meizhu; Wei, Suzhen; Wang, Haiqing; Wang, Na; Che, Jingmin; Li, Hongyu

    2016-09-01

    The 14-amino acid (IEGPTLRQWLAARA) thrombopoietin mimetic peptide (TMP) shares no sequence homology with native thrombopoietin (TPO). When dimerized, it displays a high-binding affinity for the TPO receptor and has equipotent bioactivity with recombinant human TPO (rhTPO) in stimulating proliferation and maturation of megakaryocytes in vitro. However, TMP is limited for clinical usage because of its short half-life in vivo. In this study, fusion proteins that composed of tandem dimer of TMP (dTMP) genetically fused at the C- or N-terminus of human serum albumin (HSA) were separately expressed in Chinese hamster ovary (CHO) cells. In vitro bioactivity assays showed that purified fusion proteins promoted the proliferation of megakaryocytes in a dose-dependent manner and activated signal transducer and activator of transcription (STAT) pathway in TPO receptor-dependent manner. Following subcutaneous administration, both HSA-dTMP and dTMP-HSA significantly elevated peripheral platelet counts in normal mice in a dose-dependent manner. In addition, fusion with HSA successfully prolonged dTMP half-life in mice. However, when HSA was fused at the C-terminus of dTMP, the bioactivity of dTMP-HSA was about half of that of HSA-dTMP. In conclusion, these results suggested that HSA/dTMP fusion proteins might be potential drugs for thrombocytopenia and, when HSA was fused at the N-terminus of dTMP, the fusion protein had a higher activity.

  17. Extending the Serum Half-Life of G-CSF via Fusion with the Domain III of Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Shuqiang Zhao

    2013-01-01

    Full Text Available Protein fusion technology is one of the most commonly used methods to extend the half-life of therapeutic proteins. In this study, in order to prolong the half-life of Granulocyte colony stimulating factor (G-CSF, the domain III of human serum albumin (3DHSA was genetically fused to the N-terminal of G-CSF. The 3DHSA-G-CSF fusion gene was cloned into pPICZαA along with the open reading frame of the α-factor signal under the control of the AOX1 promoter. The recombinant expression vector was transformed into Pichia pastoris GS115, and the recombinant strains were screened by SDS-PAGE. As expected, the 3DHSA-G-CSF showed high binding affinity with HSA antibody and G-CSF antibody, and the natural N-terminal of 3DHSA was detected by N-terminal sequencing. The bioactivity and pharmacokinetic studies of 3DHSA-G-CSF were respectively determined using neutropenia model mice and human G-CSF ELISA kit. The results demonstrated that 3DHSA-G-CSF has the ability to increase the peripheral white blood cell (WBC counts of neutropenia model mice, and the half-life of 3DHSA-G-CSF is longer than that of native G-CSF. In conclusion, 3DHSA can be used to extend the half-life of G-CSF.

  18. Study of interaction of butyl p-hydroxybenzoate with human serum albumin by molecular modeling and multi-spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qin, E-mail: wqing07@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Zhang Yaheng, E-mail: zhangyah04@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Sun Huijun, E-mail: sun.hui.jun-04@163.co [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Hongli, E-mail: hlchen@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo, E-mail: chenxg@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-02-15

    Study of the interaction between butyl p-hydroxybenzoate (butoben) and human serum albumin (HSA) has been performed by molecular modeling and multi-spectroscopic method. The interaction mechanism was predicted through molecular modeling first, then the binding parameters were confirmed using a series of spectroscopic methods, including fluorescence spectroscopy, UV-visible absorbance spectroscopy, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The thermodynamic parameters of the reaction, standard enthalpy {Delta}H{sup 0} and entropy {Delta}S{sup 0}, have been calculated to be -29.52 kJ mol{sup -1} and -24.23 J mol{sup -1} K{sup -1}, respectively, according to the Van't Hoff equation, which suggests the van der Waals force and hydrogen bonds are the predominant intermolecular forces in stabilizing the butoben-HSA complex. Results obtained by spectroscopic methods are consistent with that of the molecular modeling study. In addition, alteration of secondary structure of HSA in the presence of butoben was evaluated using the data obtained from UV-visible absorbance, CD and FT-IR spectroscopies. - Research highlights: The interaction between butyl p-hydroxybenzoate with HSA has been investigated for the first time. Molecular modeling study can provide theoretical direction for experimental design. Multi-spectroscopic method can provide the binding parameters and thermodynamic parameters. These results are important for food safety and human health when using parabens as a preservative.

  19. Study on the molecular interaction of graphene quantum dots with human serum albumin: Combined spectroscopic and electrochemical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shan; Qiu, Hangna; Lu, Shuangyan; Zhu, Fawei [College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001 (China); Xiao, Qi, E-mail: qi.xiao@whu.edu.cn [College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001 (China); State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2015-03-21

    Highlights: • The interactions between GQDs and HSA were systematically investigated. • GQDs could quench the intrinsic fluorescence of HSA via static mode. • The binding site of GQDs was mainly located in site I of HSA. • The potential toxicity of GQDs resulted in the structural damage of HSA. - Abstract: Graphene quantum dots (GQDs) have attracted great attention in biological and biomedical applications due to their super properties, but their potential toxicity investigations are rarely involved. Since few studies have addressed whether GQDs could bind and alter the structure and function of human serum albumin (HSA), the molecular interaction between GQDs and HSA was systematically characterized by the combination of multispectroscopic and electrochemical approaches. GQDs could quench the intrinsic fluorescence of HSA via static mode. The competitive binding fluorescence assay revealed that the binding site of GQDs was site I of HSA. Some thermodynamic parameters suggested that GQDs interacted with HSA mainly through van der Waals interactions and hydrogen bonding interactions, and protonation might also participate in the process. As further revealed by FT-IR spectroscopy and circular dichroism technique, GQDs could cause the global and local conformational change of HSA, which illustrated the potential toxicity of GQDs that resulted in the structural damage of HSA. Electrochemical techniques demonstrated the complex formation between GQDs and HSA. Our results offered insights into the binding mechanism of GQDs with HSA and provided important information for possible toxicity risk of GQDs to human health.

  20. Photophysical behavior and photodynamic therapy activity of conjugates of zinc monocarboxyphenoxy phthalocyanine with human serum albumin and chitosan

    Science.gov (United States)

    Oluwole, David O.; Prinsloo, Earl; Nyokong, Tebello

    2017-02-01

    Zinc monocarboxyphenoxy phthalocyanine (ZnMCPPc) was linked to human serum albumin (HSA) and chitosan via amide bond formation. The photophysical behavior and photodynamic therapy (PDT) activity (against human breast adenocarcinoma cell line (MCF-7 cells) of ZnMCPPc alone and its conjugates were investigated. The conjugates showed improved fluorescence, triplet and singlet oxygen quantum yields when compared to ZnMCPPc alone. The in vitro dark cytotoxicity and PDT studies were carried out at a dose of 3.6 μg/mL to 57.1 μg/mL. The in vitro dark cytotoxicity studies of ZnMCPPc showed cell viability 50% in all their tested concentrations (3.6 to 57.1) μg/mL. Thus, conjugation of ZnMCPPc to HSA and chitosan improves its dark cytotoxicity, an important criteria for molecules meant for photodynamic therapy. Complex 1 showed the most efficacious PDT activity with cell viability < 50% at concentration range of (14.3 to 57.1) μg/mL in comparison to the conjugates which only showed < 50% cell viability at 28.6 μg/mL and 57.1 μg/mL for 1-HSA and 57.1 μg/mL for 1-Chitosan.

  1. Probing the interaction of a therapeutic flavonoid, pinostrobin with human serum albumin: multiple spectroscopic and molecular modeling investigations.

    Directory of Open Access Journals (Sweden)

    Shevin R Feroz

    Full Text Available Interaction of a pharmacologically important flavonoid, pinostrobin (PS with the major transport protein of human blood circulation, human serum albumin (HSA has been examined using a multitude of spectroscopic techniques and molecular docking studies. Analysis of the fluorescence quenching data showed a moderate binding affinity (1.03 × 10(5 M(-1 at 25°C between PS and HSA with a 1∶1 stoichiometry. Thermodynamic analysis of the binding data (ΔS = +44.06 J mol(-1 K(-1 and ΔH = -15.48 kJ mol(-1 and molecular simulation results suggested the involvement of hydrophobic and van der Waals forces, as well as hydrogen bonding in the complex formation. Both secondary and tertiary structural perturbations in HSA were observed upon PS binding, as revealed by intrinsic, synchronous, and three-dimensional fluorescence results. Far-UV circular dichroism data revealed increased thermal stability of the protein upon complexation with PS. Competitive drug displacement results suggested the binding site of PS on HSA as Sudlow's site I, located at subdomain IIA, and was well supported by the molecular modelling data.

  2. Intranasal Administration of Maleic Anhydride-Modified Human Serum Albumin for Pre-Exposure Prophylaxis of Respiratory Syncytial Virus Infection

    Directory of Open Access Journals (Sweden)

    Zhiwu Sun

    2015-02-01

    Full Text Available Respiratory syncytial virus (RSV is the leading cause of pediatric viral respiratory tract infections. Neither vaccine nor effective antiviral therapy is available to prevent and treat RSV infection. Palivizumab, a humanized monoclonal antibody, is the only product approved to prevent serious RSV infection, but its high cost is prohibitive in low-income countries. Here, we aimed to identify an effective, safe, and affordable antiviral agent for pre-exposure prophylaxis (PrEP of RSV infection in children at high risk. We found that maleic anhydride (ML-modified human serum albumin (HSA, designated ML-HSA, exhibited potent antiviral activity against RSV and that the percentages of the modified lysines and arginies in ML- are correlated with such anti-RSV activity. ML-HSA inhibited RSV entry and replication by interacting with viral G protein and blocking RSV attachment to the target cells, while ML-HAS neither bound to F protein, nor inhibited F protein-mediated membrane fusion. Intranasal administration of ML-HSA before RSV infection resulted in significant decrease of the viral titers in the lungs of mice. ML-HSA shows promise for further development into an effective, safe, affordable, and easy-to-use intranasal regimen for pre-exposure prophylaxis of RSV infection in children at high risk in both low- and high-income countries.

  3. Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view.

    Science.gov (United States)

    Masone, Diego; Chanforan, Céline

    2015-06-01

    Due to the high amount of artificial food colorants present in infants' diets, their adverse effects have been of major concern among the literature. Artificial food colorants have been suggested to affect children's behavior, being hyperactivity the most common disorder. In this study we compare binding affinities of a group of artificial colorants (sunset yellow, quinoline yellow, carmoisine, allura red and tartrazine) and their natural industrial equivalents (carminic acid, curcumin, peonidin-3-glucoside, cyanidin-3-glucoside) to human serum albumin (HSA) by a docking approach and further refinement through atomistic molecular dynamics simulations. Due to the protein-ligand conformational interface complexity, we used collective variable driven molecular dynamics to refine docking predictions and to score them according to a hydrogen-bond criterion. With this protocol, we were able to rank ligand affinities to HSA and to compare between the studied natural and artificial food additives. Our results show that the five artificial colorants studied bind better to HSA than their equivalent natural options, in terms of their H-bonding network, supporting the hypothesis of their potential risk to human health.

  4. Quantitation of species differences in albumin–ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: A test case with some Sudlow's site I ligands

    Energy Technology Data Exchange (ETDEWEB)

    Poór, Miklós [Institute of Laboratory Medicine, University of Pécs, Ifjúság u. 13, Pécs H-7624 (Hungary); Li, Yin; Matisz, Gergely [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, Pécs H-7624 (Hungary); Kiss, László [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); Kunsági-Máté, Sándor [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, Pécs H-7624 (Hungary); Kőszegi, Tamás, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pécs, Ifjúság u. 13, Pécs H-7624 (Hungary)

    2014-01-15

    Albumin, the most abundant plasma protein is an approximately 67 kDa sized water-soluble macromolecule. Since several drugs and xenobiotics circulate in the blood at least partially in albumin-bound form, albumin plays a key role in the pharmacokinetics/toxicokinetics of these chemicals. Most of the drugs and xenobiotics are Sudlow's site I ligands. In numerous studies, bovine serum albumin (BSA) is used for modeling albumin–ligand interactions and the results are extrapolated to human serum albumin (HSA). Furthermore, only limited information is available related to albumin–ligand interactions of different albumin species. Therefore, in our study, we have focused on the quantification of differences between bovine, human and rat serum albumin (RSA) using four Sudlow's site I ligands (luteolin, ochratoxin A, phenylbutazone and warfarin). Interactions were analyzed by fluorescence spectroscopy. Stability constants as well as competing capacities of the ligands were determined, and thermodynamic study was also performed. Our results highlight that there could be major differences between BSA, HSA and RSA in their ligand binding properties. Based on our observations we emphasize that in molecular aspects BSA behaves considerably differently from HSA or from albumins of other species therefore, it is strongly recommended to apply at least some confirmatory measurements when data obtained from other species are attempted to be extrapolated to HSA. -- Highlights: • Albumin–ligand interactions of human, bovine and rat albumins were studied. • Four Sudlow's site I ligands were tested by fluorescence spectroscopy. • Substantial differences were found in stability constants among albumin complexes. • Competing capacity of ligands showed major differences in the studied species. • Data obtained for BSA cannot be directly extrapolated to human albumin.

  5. Effect of heme structure on O(2)-binding properties of human serum albumin-heme hybrids: intramolecular histidine coordination provides a stable O(2)-adduct complex.

    Science.gov (United States)

    Komatsu, Teruyuki; Matsukawa, Yasuko; Tsuchida, Eishun

    2002-01-01

    5,10,15,20-Tetrakis[(alpha,alpha,alpha,alpha-o-pivaloylamino)phenyl]porphinatoiron(II) and 5,10,15,20-tetrakis([alpha,alpha,alpha,alpha-o-(1-methylcyclohexanoylamino)]phenyl)porphinatoiron(II) complexes bearing a covalently bound 8-(2-methyl-1-imidazolyl)octanoyloxymethyl or 4-(methyl-L-histidinamido)butanoyloxymethyl side-chain [FeRP(B) series: R = piv or cyc, B = Im or His] have been synthesized. The histidine-bound derivatives [FepivP(His), FecycP(His)] formed five N-coordinated high-spin iron(II) complexes in organic solvents under an N(2) atmosphere and showed large O(2)-binding affinities in comparison to those of the 2-methylimidazole-bound analogues [FepivP(Im), FecycP(Im)] due to the low O(2)-dissociation rate constants. On the contrary, the difference in the fence groups around the O(2)-coordination site (pivaloyl or 1-methylhexanoyl) did not significantly influence to the O(2)-binding parameters. These four porphinatoiron(II)s were efficiently incorporated into recombinant human serum albumin (rHSA), thus providing the synthetic hemoprotein, the albumin-heme hybrid [rHSA-FeRP(B)]. An rHSA host absorbs a maximum of eight FeRP(B) molecules in each case. The obtained rHSA-FeRP(B) can reversibly bind and release O(2) under physiological conditions (in aqueous media, pH 7.3, 37 degrees C) like hemoglobin and myoglobin. As in organic solutions, the difference in the fence groups did not affect their O(2)-binding parameters, but the axial histidine coordination significantly increased the O(2)-binding affinity, which is again ascribed to the low O(2)-dissociation rates. The most remarkable effect of the heme structure appeared in the half-life (tau(1/2)) of the O(2)-adduct complex. The dioxygenated rHSA-FecycP(His) showed an unusually long lifetime (tau(1/2): 25 h at 37 degrees C) which is ca. 13-fold longer than that of rHSA-FepivP(Im).

  6. pH Dependent Photoinduced Effects of Protoporphyrin IX to Human Serum Albumin

    Science.gov (United States)

    Rozinek, Sarah; Palos-Chavez, Jorge; Brancaleon, Lorenzo

    2011-03-01

    Irradiation of the non-covalent complex between protoporphyrin IX (PPIX) and β -lactoglobulin (Blg), causes a modest unfolding of the protein localized to Trp19. That binding site is affected by pH of the solution. At physiological pH, PPIX is known to bind HSA in hydrophobic binding sites. However, no evidence is presented for the binding behavior of PPIX to HSA in non-physological pH confirmations, nor on the effects of irradiation on the bound system at any pH. The combination of spectroscopic data and molecular simulations suggests that distinct PPIX-compatible binding sites become available at each confirmation of HSA at pH 7.4, and 9 while the pH 3 conformation is unfavorable for binding. Photoinduced mechanisms produce changes in the ligand as well as the protein but they do not appear to be dependent on the presence of O2 in solution. Therefore, the mechanism is not mediated by the formation of singlet oxygen and is likely the result of electron transfer between the porphyrin and amino acid residues.

  7. Energetic domains and conformational analysis of human serum albumin upon co-incubation with sodium benzoate and glucose.

    Science.gov (United States)

    Taghavi, F; Moosavi-Movahedi, A A; Bohlooli, M; Habibi-Rezaei, M; Hadi Alijanvand, H; Amanlou, M; Sheibani, N; Saboury, A A; Ahmad, F

    2014-01-01

    Sodium benzoate (SB), a powerful inhibitor of microbial growth, is one of the most commonly used food preservative. Here, we determined the effects of SB on human serum albumin (HSA) structure in the presence or absence of glucose after 35 days of incubation under physiological conditions. The biochemical, biophysical, and molecular approaches including free amine content assay (TNBSA assay), fluorescence, and circular dichroism spectroscopy (CD), differential scanning calorimetry (DSC), and molecular docking and LIGPLOT studies were utilized for structural studies. The TNBSA results indicated that SB has the ability to bind Lys residues in HSA through covalent bonds. The docking and LIGPLOT studies also determined another specific site via hydrophobic interactions. The CD results showed more structural helicity for HSA incubated with SB, while HSA incubated with glucose had the least, and HSA incubated with glucose + SB had medium helicity. Fluorescence spectrophotometry results demonstrated partial unfolding of HSA incubated with SB in the presence or absence of glucose, while maximum partial unfolding was observed in HSA incubated with glucose. These results were confirmed by DSC and its deconvoluted thermograms. The DSC results also showed significant changes in HSA energetic structural domains due to HSA incubation with SB in the presence or absence of glucose. Together, our studies showed the formation of three different intermediates and indicate that biomolecular investigation are effective in providing new insight into safety determinations especially in health-related conditions including diabetes.

  8. Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Liwei; Wang Kun [Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871 (China); Zhang Xinxiang [Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871 (China)], E-mail: zxx@pku.edu.cn

    2007-11-05

    The interactions between fluoroquinolones and human serum albumin (HSA) were investigated by affinity capillary electrophoresis (ACE) and fluorescence quenching technique. Based on the efficient separation of several fluoroquinolones using a simple phosphate buffer, the binding constants of fluoroquinolones with HSA were determined simultaneously during one set of electrophoresis by ACE method. The thermodynamic parameters were obtained from data at different temperatures, and the negative {delta}H and {delta}S values showed that both hydrogen bonds and van der Waals interaction played major roles in the binding of fluoroquinolones to HSA. The interactions were also studied by fluorescence quenching technique. The results of fluorescence titration revealed that fluoroquinolones had the strong ability to quenching the intrinsic fluorescence of HSA through the static quenching procedure. The binding site number n, apparent binding constant K{sub b} and the Stern-Volmer quenching constant K{sub sv} were determined. The thermodynamic parameters were also studied by fluorescence method, and the results were consonant with that of ACE.

  9. Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study

    Directory of Open Access Journals (Sweden)

    Pauline Maffre

    2014-11-01

    Full Text Available By using fluorescence correlation spectroscopy (FCS, we have studied the adsorption of human serum albumin (HSA onto Fe–Pt nanoparticles (NPs, 6 nm radius, CdSe/ZnS quantum dots (QDs, 5 nm radius and Au and Ag nanoclusters (1–4 nm radius, which are enshrouded by various water-solubilizing surface layers exposing different chemical functional groups (carboxyl, amino and both, thereby endowing the NPs with different surface charges. We have also measured the effects of modified surface functionalizations on the protein via succinylation and amination. A step-wise increase in hydrodynamic radius with protein concentration was always observed, revealing formation of protein monolayers coating the NPs, independent of their surface charge. The differences in the thickness of the protein corona were rationalized in terms of the different orientations in which HSA adsorbs onto the NPs. The midpoints of the binding transition, which quantifies the affinity of HSA toward the NP, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of specific Coulombic interactions between the proteins and the NP surfaces.

  10. Spectroscopic and molecular docking studies on the interaction of human serum albumin with copper(II) complexes

    Science.gov (United States)

    Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash

    2017-02-01

    Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.

  11. Interaction of meropenem with 'N' and 'B' isoforms of human serum albumin: a spectroscopic and molecular docking study.

    Science.gov (United States)

    Rehman, Md Tabish; Ahmed, Sarfraz; Khan, Asad U

    2016-09-01

    Carbapenems are used to control the outbreak of β-lactamases expressing bacteria. The effectiveness of drugs is influenced by its interaction with human serum albumin (HSA). Strong binding of carbapenems to HSA may lead to decreased bioavailability of the drug. The non-optimal drug dosage will provide a positive selection pressure on bacteria to develop resistance. Here, we investigated the interaction between meropenem and HSA at physiological pH 7.5 (N-isoform HSA) and non-physiological pH 9.2 (B-isoform HSA). Results showed that meropenem quenches the fluorescence of both 'N' and 'B' isoforms of HSA (ΔG < 0 and binding constant ~10(4) M(-1)). Electrostatic interactions and van der Waal interactions along with H-bonds stabilized the complex of meropenem with 'N' and 'B' isoforms of HSA, respectively. Molecular docking results revealed that meropenem binds to HSA near Sudlow's site II (subdomain IIIA) close to Trp-214 with a contribution of a few residues of subdomain IIA. CD spectroscopy showed a change in the conformation of both the isoforms of HSA upon meropenem binding. The catalytic efficiency of HSA (only N-isoform) on p-nitrophenyl acetate was increased primarily due to a decrease in Km and an increase in kcat values. This study provides an insight into the molecular basis of interaction between meropenem and HSA.

  12. Study on the interaction of a copper(II) complex containing the artificial sweetener aspartame with human serum albumin.

    Science.gov (United States)

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi

    2014-05-01

    A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame.

  13. Interaction between titanium dioxide nanoparticles and human serum albumin revealed by fluorescence spectroscopy in the absence of photoactivation

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wen [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Du Yingxiang, E-mail: du_yingxiang@126.co [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, Jiangsu 210009 (China) and Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Chen Jianqiu [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Kou Junping; Yu Boyang [Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 210009 (China)

    2009-08-15

    Titanium dioxide (TiO{sub 2}) nanoparticles (NPs) are widely used as an important kind of biomaterials. The interaction between TiO{sub 2} (P25) at 20 nm in diameter and human serum albumin (HSA) was studied by fluorescence spectroscopy in this work. Under the simulative physiological conditions, fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (K{sub a}) were 2.18+-0.04x10{sup 4}, 0.87+-0.05x10{sup 4}, 0.68+-0.06x10{sup 4} M{sup -1} at 298, 304 and 310 K, respectively. In addition, according to the Van't Hoff equation, the thermodynamic functions standard enthalpy (DELTAH{sup 0}) and standard entropy (DELTAS{sup 0}) for the reaction were calculated to be -75.18+-0.15 kJ mol{sup -1} and -170.11+-0.38 J mol{sup -1} K{sup -1}. These results indicated that TiO{sub 2} NPs bond to HSA mainly by van der Waals force and hydrogen bonding formation in low dielectric media, and the electrostatic interactions cannot be excluded. Furthermore, the effects of common ions on the binding constant of TiO{sub 2} NPs-HSA complex were discussed.

  14. Non-covalent attachment of silver nanoclusters onto single-walled carbon nanotubes with human serum albumin as linking molecule

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Galván, Andrés, E-mail: andres.rodriguez@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Instituto de Física, Dpto. Física Experimental, Universidad Nacional Autónoma de México, Coyoacán, México, DF 04510 (Mexico); Unidad de Investigación Biomédica en Cáncer INCan-UNAM, Instituto Nacional de Cancerología, México, DF 14080 (Mexico); Heredia, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Amelines-Sarria, Oscar; Rivera, Margarita [Instituto de Física, Dpto. Materia Condensada, Universidad Nacional Autónoma de México, Coyoacán, 04510 México D.F. (Mexico); and others

    2015-03-15

    The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT–AgNCs–HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV–vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications.

  15. Ultraviolet-circular dichroism spectroscopy and potentiometric study of the interaction between human serum albumin and sodium perfluorooctanoate.

    Science.gov (United States)

    Messina, Paula; Prieto, Gerardo; Dodero, Verónica; Ruso, Juan M; Schulz, Pablo; Sarmiento, Félix

    2005-12-15

    The interaction of a fluorinated surfactant, sodium perfluorooctanoate, with human serum albumin (HSA) has been investigated by a combination of ultraviolet-circular dichroism (UV-CD) spectroscopy and potentiometry (by a home-built ion-selective electrode) techniques to detect and characterize the conformational transitions of HSA. By using difference spectroscopy, the transition was followed as a function of temperature, and the data were analyzed to obtain the parameters characterizing the thermodynamics of unfolding. The results indicate that the presence of surfactant drastically changes the melting unfolding, acting as a structure stabilizer and delaying the unfolding process. Potentiometric measurements were used to determine the binding isotherms and binding capacity for this system. The isotherm shows a high affinity of surfactant molecules for HSA. The average number of surfactant molecules absorbed per protein molecule (at 28 mM of surfactant concentration) was found to be approximately 900, about 6 g of surfactant per gram of protein. The shape of the binding capacity curve and the relation between binding capacity and extend of cooperativity were examined. From these analysis, the values of g (number of ligand-binding sites), KH (Hill binding constant), and nH (Hill coefficient) were determined.

  16. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    Science.gov (United States)

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  17. The Effect of Human Serum Albumin and Hematocrit on the Cake Collapse Temperature of Lyophilized Red Blood Cells.

    Science.gov (United States)

    Runyon, Daniel E; Higgins, Adam Z

    2015-10-01

    Freeze-drying, or lyophilization, has shown great promise in addressing many of the logistical challenges of storing and preserving red blood cells (RBCs). A crucial part of any RBC lyophilization protocol is the primary drying temperature, which affects the sample drying rate and the dried cake's ability to form a stable glassy solid. Primary drying is most efficient just below the temperature at which the porous structure of the cake begins to collapse, known as the cake collapse temperature. In this short report, we utilize freeze-drying microscopy to examine the effects of human serum albumin (HSA) and hematocrit on the cake collapse temperature. Increasing the hematocrit from 0% to 20% significantly raised the cake collapse temperature from - 37.8°C to -34.8°C. Addition of 5% HSA to a 20% hematocrit RBC suspension further increased the cake collapse temperature to -20.4°C. These data provide a basis for future study of the relationship between cake collapse and overall cell survival, with the object of building a clinically-viable RBC lyophilization protocol.

  18. Safety assessment of genetically modified rice expressing human serum albumin from urine metabonomics and fecal bacterial profile.

    Science.gov (United States)

    Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2015-02-01

    The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future.

  19. Spectroscopic, docking and molecular dynamics simulation studies on the interaction of two Schiff base complexes with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Fani, N. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Bordbar, A.K., E-mail: bordbar@chem.ui.ac.ir [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Ghayeb, Y. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2013-09-15

    This study was designed to examine the interaction of two Schiff base complexes with human serum albumin (HSA), by different kinds of spectroscopic and molecular modeling techniques. Fluorescence quenching and absorption spectra were investigated in order to estimate the binding parameters. The analysis of absorption data at different temperatures were done in order to estimate the thermodynamics parameters of interactions between Schiff base complexes and HSA. The experimental data suggested that both complexes demonstrated a significant binding affinity to HSA and the process is enthalpy driven. Molecular docking study indicated that both Schiff base complexes bind to polar and apolar residues located in the subdomain IB of HSA. Molecular dynamics (MD) simulations were also performed with the GROMACS program package to study the characters of HSA in binding states. Molecular dynamics results suggested that both Schiff base complexes can interact with HSA, without affecting the secondary structure of HSA but probably with a slight modification of its tertiary structure. All the molecular docking and molecular dynamics results kept in good consistence with experimental data. -- Highlights: • The fluorescence of HSA quenched due to reacting with Schiff base complexes. • The absorbance of Schiff base complexes in the presence of HSA changed. • Binding parameters and the pose of the molecules in the binding site were estimated. • Both complexes can interact with HSA, without affecting the secondary structure. • Simulation results predicted slight compactness of tertiary structure for HSA.

  20. Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles.

    Science.gov (United States)

    Kouchakzadeh, Hasan; Shojaosadati, Seyed Abbas; Tahmasebi, Fathollah; Shokri, Fazel

    2013-04-15

    Human serum albumin (HSA) nanoparticles represent an attractive strategy for active targeting of therapeutics into tumor cells due to the presence of superficial functional groups. HER2 is highly expressed in a significant proportion of cancers and monoclonal antibodies (mAbs) directed against HER2 hold great promise for effective therapy. Herein, covalent coupling of a novel mAb (1F2) directed against the extracellular domain of HER2 to the surface of HSA nanoparticles was evaluated to obtain nanoparticles with highest cellular uptake. HER2 reactivity of 1F2-conjugated nanoparticles produced under different conditions was screened by an indirect ELISA and flow cytometry techniques. Monoclonal antibody thiolation with 100-fold molar excess of 2-iminothiolane and the ratio of 10:1 for the thiolated 1F2 (μg) to PEGylated nanoparticles (mg), were optimum for the attachment process. Under this condition, 23±4% of 1F2 was conjugated to nanoparticles. The flow cytometry results show that 1F2-modified nanoparticles interact with nearly all HER2 receptors on the surface of BT474 cells. In addition, no cellular uptake was observed on MCF7 cells. In vitro analyses showed no significant cytotoxicity of produced system against BT474 cells. Therefore, 1F2-attached HSA nanoparticles represent a potential delivery system for targeted transport of therapeutic agents into HER2-positive tumor cells.

  1. Biodegradable human serum albumin nanoparticles as contrast agents for the detection of hepatocellular carcinoma by magnetic resonance imaging.

    Science.gov (United States)

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Huebner, Frank; Zeuzem, Stefan; Korf, Hans W; Vogl, Thomas J; Rittmeyer, Claudia; Terfort, Andreas; Piiper, Albrecht; Gelperina, Svetlana; Kreuter, Jörg

    2014-05-01

    Tumor visualization by magnetic resonance imaging (MRI) and nanoparticle-based contrast agents may improve the imaging of solid tumors such as hepatocellular carcinoma (HCC). In particular, human serum albumin (HSA) nanoparticles appear to be a suitable carrier due to their safety and feasibility of functionalization. In the present study HSA nanoparticles were conjugated with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) using carbodiimide chemistry. The nanoparticles had a uniform spherical shape and a diameter of 235±19nm. For better optical visualization in vitro and in vivo, the HSA-Gd nanoparticles were additionally labeled with rhodamine 123. As shown by confocal microscopy and flow cytometry analysis, the fluorescent nanoparticles were readily taken up by Huh-7 hepatocellular carcinoma cells. After 24h incubation in blood serum, less than 5% of the Gd(III) was released from the particles, which suggests that this nanoparticulate system may be stable in vivo and, therefore, may serve as potentially safe T1 MRI contrast agent for MRI of hepatocellular carcinoma.

  2. Competitive binding of (-)-epigallocatechin-3-gallate and 5-fluorouracil to human serum albumin: A fluorescence and circular dichroism study

    Science.gov (United States)

    Yuan, Lixia; Liu, Min; Liu, Guiqin; Li, Dacheng; Wang, Zhengping; Wang, Bingquan; Han, Jun; Zhang, Min

    2017-02-01

    Combination therapy with more than one therapeutic agent can improve therapeutic efficiency and decrease drug resistance. In this study, the interactions of human serum albumin (HSA) with individual or combined anticancer drugs, (-)-epigallocatechin-3-gallate (EGCG) and 5-fluorouracil (FU), were investigated by fluorescence and circular dichroism (CD) spectroscopy. The results demonstrated that the interaction of EGCG or FU with HSA is a process of static quenching and EGCG formed a more stable complex. The competitive experiments of site markers suggested that both anti-carcinogens mainly bound to site I (subdomain IIA). The interaction forces which play important roles in the binding process were discussed based on enthalpy and entropy changes. Moreover, the competition binding model for a ternary system was proposed so as to precisely calculate the binding parameters. The results demonstrated that one drug decreased the binding affinity of another drug with HSA, resulting in the increasing free drug concentration at the action sites. CD studies indicated that there was an alteration in HSA secondary structure due to the binding of EGCG and FU. It can be concluded that the combination of EGCG with FU may enhance anticancer efficacy. This finding may provide a theoretical basis for clinical treatments.

  3. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands.

    Science.gov (United States)

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-02-08

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription-activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock.

  4. The interaction of 2-mercaptobenzimidazole with human serum albumin as determined by spectroscopy, atomic force microscopy and molecular modeling.

    Science.gov (United States)

    Li, Yuqin; Jia, Baoxiu; Wang, Hao; Li, Nana; Chen, Gaopan; Lin, Yuejuan; Gao, Wenhua

    2013-04-01

    The interaction of 2-mercaptobenzimidazole (MBI) with human serum albumin (HSA) was studied in vitro by equilibrium dialysis under normal physiological conditions. This study used fluorescence, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FT-IR), circular dichroism (CD) and Raman spectroscopy, atomic force microscopy (AFM) and molecular modeling techniques. Association constants, the number of binding sites and basic thermodynamic parameters were used to investigate the quenching mechanism. Based on the fluorescence resonance energy transfer, the distance between the HSA and MBI was 2.495 nm. The ΔG(0), ΔH(0), and ΔS(0) values across temperature indicated that the hydrophobic interaction was the predominant binding Force. The UV, FT-IR, CD and Raman spectra confirmed that the HSA secondary structure was altered in the presence of MBI. In addition, the molecular modeling showed that the MBI-HSA complex was stabilized by hydrophobic forces, which resulted from amino acid residues. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with MBI. Overall, this study suggested a method for characterizing the weak intermolecular interaction. In addition, this method is potentially useful for elucidating the toxigenicity of MBI when it is combined with the biomolecular function effect, transmembrane transport, toxicological testing and other experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Thermodynamic study of the effects of ethanol on the interaction of ochratoxin A with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yin [Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs (Hungary); János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs (Hungary); Czibulya, Zsuzsanna [Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs (Hungary); János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs (Hungary); Chimie et Biologie des Membranes et Nanoobjets, CNRS-Université de Bordeaux, UMR 52478, ENITAB, Pessac (France); Poór, Miklós [Institute of Laboratory Medicine, University of Pécs, Ifjúság 13, H-7624, Pécs (Hungary); Lecomte, Sophie [Chimie et Biologie des Membranes et Nanoobjets, CNRS-Université de Bordeaux, UMR 52478, ENITAB, Pessac (France); Kiss, László [Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs (Hungary); János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs (Hungary); and others

    2014-04-15

    Ethanol effect on the interaction of ochratoxin A (OTA) with human serum albumin (HSA) was investigated by using fluorescence spectroscopy and Raman spectroscopy. The Raman results showed that after the binding of OTA, the microenvironment of tryptophan residue on HSA became less hydrophobic. The fluorescence quenching observations revealed that the binding constant for the binding of OTA to HSA decreased as ethanol concentration increased. The thermodynamic studies showed that the binding process of OTA to HSA switched from being entropy-driven to enthalpy-driven in the presence of increasing concentrations (0.7–24.7%, vol/vol) of ethanol. Enthalpy–entropy compensation effect for the binding of OTA to HSA in the presence of different ethanol concentrations had been found. Based on the thermodynamic analyses, we concluded that the ethanol-induced variation of the shape of binding site of OTA on HSA and the solvent reorganization surrounding the OTA–HSA complex are the two dominant effects. -- Highlights: • The presence of ethanol can prohibit the binding of OTA to HSA. • Microenvironment of Trp214 on HSA becomes less hydrophobic after the binding of OTA. • Ethanol induces the interaction from being entropy-driven to enthalpy-driven. • Enthalpy–entropy compensation for the interaction was found.

  6. Investigation of the Interaction between Patulin and Human Serum Albumin by a Spectroscopic Method, Atomic Force Microscopy, and Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Li Yuqin

    2014-01-01

    Full Text Available The interaction of patulin with human serum albumin (HSA was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis, circular dichroism (CD, atomic force microscopy (AFM, and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K were 2.60 × 104, 4.59 × 104, and 7.01 × 104 M−1 at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG0, ΔH0, and ΔS0 values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments.

  7. Synthesis, characterization and the interaction of some new water-soluble metal Schiff base complexes with human serum albumin.

    Science.gov (United States)

    Asadi, Mozaffar; Asadi, Zahra; Sadi, Somaye Barzegar; Zarei, Leila; Baigi, Fatemeh Moosavi; Amirghofran, Zahra

    2014-03-25

    Some new water-soluble Schiff base complexes of Na2[M(L)(H2O)n]; (M=Zn, Cu, Ni, Mn) with a new water-soluble Schiff base ligand where L denotes an asymmetric N2O2 Schiff base ligands; N,N'-bis(5-sulfosalicyliden)-3,4-diaminobenzophenone (5-SO3-3,4-salbenz) were synthesized and characterized. The formation constants of the water soluble Schiff base complexes were calculated by Ketelaar's equation. The theoretical molecular structure for the complexes was computed by using the HF method and the 6-311G basis set. The mechanism of binding of Na2[M(L)(H2O)n] with human serum albumin (HSA) was studied by fluorescence spectroscopic technique. The results of fluorescence titration showed that the intrinsic fluorescence of HSA was quenched by the complexes; which was rationalized in terms of the dynamic quenching mechanism. The values of Stern-Volmer constants, quenching rate constants, binding constants, binding sites and average aggregation number of HSA have been determined. The thermodynamic parameters, were calculated by van't Hoff equation, indicate that the binding is entropy driven and enthalpically disfavored. Based on the Förster theory of non-radiation energy transfer, the efficiency of energy transfer and the distance between the donor (Trp residues) and the acceptor (complex) were obtained. Finally, the growth inhibitory effects of the complexes toward the K562 cancer cell line were measured.

  8. Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques

    Science.gov (United States)

    Shahabadi, Nahid; Khorshidi, Aref; Moghadam, Neda Hossinpour

    2013-10-01

    In the present investigation, an attempt has been made to study the interaction of zonisamide (ZNS) with the transport protein, human serum albumin (HSA) employing UV-Vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that binding of ZNS to HSA caused strong fluorescence quenching of HSA through static quenching mechanism, hydrogen bonds and van der Waals contacts are the major forces in the stability of protein ZNS complex and the process of the binding of ZNS with HSA was driven by enthalpy (ΔH = -193.442 kJ mol-1). The results of CD and UV-Vis spectroscopy showed that the binding of this drug to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking also indicated that zonisamide could strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and there were hydrogen bond interactions between this drug and HSA, also known as the warfarin binding site.

  9. A High Performance Theory for Thermodynamic Study on the Binding of Human Serum Albumin with Erbium Chloride

    Institute of Scientific and Technical Information of China (English)

    BEHBEHANI G Rezaei; DIVSALAR A; SABOURY A. A; FARIDBOD, F; GANJALI M R

    2009-01-01

    A thermodynamic study of the interaction between erbium(Ⅲ) chloride (Er3+) and human serum albumin (HAS) was studied at pH=7.0, 27 and 37℃ in phosphate buffer by isothermal titration calorimetry (ITC). The present study reports the thermodynamic parameters that govern HAS-Er3+ interactions. The extended solvation theory was used to reproduce the enthalpies of HAS-Er3+ interactions over the whole range of Er3+ concentrations. The bind-ing parameters recovered from the new model were attributed to the structural change of HAS and its biological ac-tivity. The results obtained indicate that there is a set of two identical binding sites for Er3+ ions with negative co-operativity. The enhancement of complex formation by Er3+ and concomitant increase in △S suggest that the metal ion plays a role in increasing the number of hydrophobic contacts. The binding parameters discovered from the ex-tended solvation model indicate that the stability of HAS molecule is increased as a result of its interaction with Er3+ ions.

  10. Probing the binding of 8-Acetyl-7-hydroxycoumarin to human serum albumin by spectroscopic methods and molecular modeling

    Science.gov (United States)

    Li, Daojin; Ji, Baoming; Sun, Hairui

    2009-07-01

    Interaction of 8-Acetyl-7-hydroxycoumarin with human serum albumin (HSA) at pH 7.40 has been investigated at 291, 301 and 310 K, respectively, employing the steady fluorescence, circular dichroism (CD) and molecular modeling methods. The quenching mechanism and binding constants were determined by the fluorescence quenching experiments. Thermodynamic data showed that 8-Acetyl-7-hydroxycoumarin was included in the hydrophobic cavity of HSA via hydrophobic interactions. The result of CD indicated that the binding of 8-Acetyl-7-hydroxycoumarin to HSA causes a slight conformational change of the protein. Furthermore, upon binding with HSA, the fluorescence spectra of the 8-Acetyl-7-hydroxycoumarin exhibits appreciable hypsochromic shift associated with an enhancement in the fluorescence intensity. The binding constant ( K) and the standard free energy change (Δ G0) have been also calculated according to the fluorescence data of the ligand, which is in good agreement with the values determined by fluorescence quenching data of HSA. Computational mapping of the possible binding sites of 8-Acetyl-7-hydroxycoumarin revealed that the molecule was bound in the large hydrophobic cavity of subdomain IIA mainly by the hydrophobic interaction and also by the hydrogen bonding interactions between 8-Acetyl-7-hydroxycoumarin and the residues His 242, Arg 222, and Arg 218.

  11. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): Application of spectroscopic techniques and molecular modeling methods.

    Science.gov (United States)

    Poureshghi, Fatemeh; Ghandforoushan, Parisa; Safarnejad, Azam; Soltani, Somaieh

    2017-01-01

    Lamotrigine (an epileptic drug) interaction with human serum albumin (HSA) was investigated by fluorescence, UV-Vis, FTIR, CD spectroscopic techniques, and molecular modeling methods. Binding constant (Kb) of 5.74×10(3) and number of binding site of 0.97 showed that there is a slight interaction between lamotrigine and HSA. Thermodynamic studies was constructed using the flourimetric titrations in three different temperatures and the resulted data used to calculate the parameters using Vant Hoff equation. Decreased Stern Volmer quenching constant by enhanced temperature revealed the static quenching mechanism. Negative standard enthalpy (ΔH) and standard entropy (ΔS) changes indicated that van der Waals interactions and hydrogen bonds were dominant forces which facilitate the binding of Lamotrigine to HSA, the results were confirmed by molecular docking studies which showed no hydrogen binding. The FRET studies showed that there is a possibility of energy transfer between Trp214 and lamotrigine. Also the binding of lamotrigine to HSA in the studied concentrations was not as much as many other drugs, but the secondary structure of the HSA was significantly changed following the interaction in a way that α-helix percentage was reduced from 67% to 57% after the addition of lamotrigine in the molar ratio of 4:1 to HSA. According to the docking studies, lamotrigine binds to IB site preferably.

  12. Reaction of the Anticancer Organometallic Ruthenium Compound, [(η6-p-CymeneRu(ATSCCl]PF6 with Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Floyd A. Beckford

    2010-01-01

    Full Text Available The reaction of [(η6-p-cymeneRu(ATSCCl]PF6 (ATSC =9-anthraldehyde thiosemicarbazone with human serum albumin was investigated at different temperatures using fluorescence and infrared spectrophotometry. The binding constant, K, for the reaction was determined using a number of different methods. Using a modified Stern-Volmer equation, K was determined to be 9.09×104,12.1×104, and 13.1×104 M−1 at 293 K, 298 K, and 308 K, respectively. A thermodynamic analysis showed that the reaction is spontaneous with ΔG being negative. The enthalpy of reaction ΔH=16.5 kJ mol−1 and the entropy of reaction ΔS=152 Jmol−1K−1. The values of ΔH and ΔS suggest that hydrophobic forces are dominant in the mode of interaction and that the process is mostly entropy driven.

  13. Molecular interaction investigation between three CdTe:Zn(2+) quantum dots and human serum albumin: A comparative study.

    Science.gov (United States)

    Huang, Shan; Qiu, Hangna; Liu, Yi; Huang, Chusheng; Sheng, Jiarong; Su, Wei; Xiao, Qi

    2015-12-01

    Water-soluble Zn-doped CdTe quantum dots (CdTe:Zn(2+) QDs) have attracted great attention in biological and biomedical applications. In particular, for any potential in vivo application, the interaction of CdTe:Zn(2+) QDs with human serum albumin (HSA) is of greatest importance. As a step toward the elucidation of the fate of CdTe:Zn(2+) QDs introduced to organism, the molecular interactions between CdTe:Zn(2+) QDs with three different sizes and HSA were systematically investigated by spectroscopic techniques. Three CdTe:Zn(2+) QDs with maximum emission of 514 nm (green QDs, GQDs), 578 nm (yellow QDs, YQDs), and 640 nm (red QDs, RQDs) were tested. The binding of CdTe:Zn(2+) QDs with HSA was a result of the formation of HSA-QDs complex and electrostatic interactions played major roles in stabilizing the complex. The Stern-Volmer quenching constant, associative binding constant, and corresponding thermodynamic parameters were calculated. The site-specific probe competitive experiments revealed that the binding location of CdTe:Zn(2+) QDs with HSA was around site I. The microenvironmental and conformational changes of HSA induced by CdTe:Zn(2+) QDs were analyzed. These results suggested that the conformational change of HSA was dramatically at secondary structure level and the biological activity of HSA was weakened in the present of CdTe:Zn(2+) QDs with bigger size.

  14. Competitive binding of fluoroquinolone antibiotics and some other drugs to human serum albumin: a luminescence spectroscopic study.

    Science.gov (United States)

    Seedher, Neelam; Agarwal, Pooja

    2013-01-01

    Co-administration of several drugs in multidrug therapy may alter the binding of each to human serum albumin (HSA) and hence their pharmacological activity. Thirty-two frequently prescribed drug combinations, consisting of four fluoroquinolone antibiotics and eight competing drugs, have been studied using fluorescence and circular dichroism spectroscopic techniques. Competitive binding studies on the drug combinations are not available in the literature. In most cases, the presence of competing drug decreased the binding affinity of fluoroquinolone, resulting in an increase in the concentration of free pharmacologically active drug. The competitive binding mechanism involved could be interpreted in terms of the site specificity of the binding and competing drugs. For levofloxacin, the change in the binding affinity was small because in the presence of site II-specific competing drugs, levofloxacin mainly occupied site I. A competitive interference mechanism was operative for sparfloxacin, whereas competitive interference as well as site-to-site displacement of competing drugs was observed in the case of ciprofloxacin hydrochloride. For enrofloxacin, a different behavior was observed for different combinations; site-to-site displacement and conformational changes as well as independent binding has been observed for various drug combinations. Circular dichroism spectral studies showed that competitive binding did not cause any major structural changes in the HSA molecule. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Inhibition of fluorescent advanced glycation end products (AGEs) of human serum albumin upon incubation with 3-β-hydroxybutyrate.

    Science.gov (United States)

    Bohlooli, M; Moosavi-Movahedi, A A; Taghavi, F; Saboury, A A; Maghami, P; Seyedarabi, A; Moosavi-Movahedi, F; Ahmad, F; Shockravi, A; Habibi-Rezaei, M

    2014-06-01

    Advanced glycation end products (AGEs), which are the final products of glycation, have a major role in diabetic complication and neurodegenerative disorders. The 3-β-hydroxybutyrate (3BHB), a ketone body which is produced by the liver, can be detected in increased concentrations in individuals post fasting and prolonged exercises and in diabetic (type I) patients. In this study, the inhibitory effect of 3BHB on AGEs formation by glucose from the human serum albumin (HSA) was studied at physiological conditions after 35 days of incubation, using physical techniques such as circular dichroism and fluorescence spectroscopy, as well as differential scanning calorimetry (DSC). The fluorescence intensity measurements of glycated HSA by glucose (GHSA) in the presence of 3BHB indicate a decrease in AGEs formation. The DSC deconvolution profile results also confirm the protective role of 3BHB on incubated with glucose by preventing the enthalpy reduction of the HSA tail segment, compared with the deconvolution profile seen for incubated with glucose alone. The concentration of 3BHB used in this study is in accordance with the concentration detected in the body of individuals post fasting and prolonged exercises.

  16. Structural alterations of human serum albumin caused by glycative and oxidative stressors revealed by circular dichroism analysis.

    Science.gov (United States)

    Monacelli, Fiammetta; Storace, Daniela; D'Arrigo, Cristina; Sanguineti, Roberta; Borghi, Roberta; Pacini, Davide; Furfaro, Anna L; Pronzato, Maria A; Odetti, Patrizio; Traverso, Nicola

    2013-01-01

    The aim of this work was to evaluate the ability of oxidative and glycative stressors to modify properties of human serum albumin (HSA) by analyzing markers of glycation (pentosidine) and oxidation (advanced oxidative protein products (AOPPs)) and assessing fluorescence and circular dichroism. HSA was incubated for up to 21 days with ribose, ascorbic acid (AA) and diethylenetriamine pentacetate (DTPA) in various combinations in order to evaluate influences of these substances on the structure of HSA. Ribose was included as a strong glycative molecule, AA as a modulator of oxidative stress, and DTPA as an inhibitor of metal-catalyzed oxidation. Ribose induced a significant increase in pentosidine levels. AA and DTPA prevented the accumulation of pentosidine, especially at later time points. Ribose induced a mild increase in AOPP formation, while AA was a strong inducer of AOPP formation. Ribose, in combination with AA, further increased the formation of AOPP. DTPA prevented the AA-induced generation of AOPP. Ribose was also a potent inducer of fluorescence at 335nm ex/385nm em, which is typical of pentosidine. AA and DTPA prevented this fluorescence. Circular dichroism showed complex results, in which AA and DTPA were strong modifiers of the percentages of the alpha-helical structure of HSA, while ribose affected the structure of HSA only at later time points.

  17. The adsorption of human serum albumin (HSA) on CO2 laser modified magnesia partially stabilised zirconia (MgO-PSZ).

    Science.gov (United States)

    Hao, L; Lawrence, J

    2004-03-15

    Magnesia partially stabilised zirconia (MgO-PSZ), a bioinert ceramic, exhibits high mechanical strength, excellent corrosion resistance and good biocompatibility, but it does not naturally form a direct bond with bone resulting in a lack of osteointegration. The surface properties and structure of a biomaterial play an essential role in protein adsorption. As such, changes in the surface properties and structure of biomaterials may in turn alter their bioactivity. So, the fundamental reactions at the interface of biomaterials and tissue should influence their integration and bone-bonding properties. To this end, CO2 laser radiation was used to modify the surface roughness, crystal size, phase and surface energy of the MgO-PSZ. The basic mechanisms active in improving the surface energy were analysed and found to be the phase change and augmented surface area. The adsorption of human serum albumin (HSA), which is a non-cell adhesive protein, was compared on the untreated and CO2 laser modified MgO-PSZ. It was observed that the thickness of the adsorbed HSA decreased as the polar surface energy of the MgO-PSZ increased, indicating that HSA adsorbed more effectively on the hydrophobic MgO-PSZ surface than the hydrophilic surface. The current study provided important information regarding protein-biomaterial interactions and possible mechanisms behind the cell interaction and in vivo behaviour.

  18. Crystals of Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    Science.gov (United States)

    Carter, Daniel C. (Inventor)

    1996-01-01

    Serum albumin crystal forms have been produced which exhibit superior x-ray diffraction quality. The crystals are produced from both recombinant and wild-type human serum albumin, canine, and baboon serum albumin and allow the performance of drug-binding studies as well as genetic engineering studies. The crystals are grown from solutions of polyethylene glycol or ammonium sulphate within prescribed limits during growth times from one to several weeks and include the following space groups: P2(sub 1), C2, P1.

  19. Evolutions and equilibrium parameters of foam films from individual solutions of Bovine serum albumin, n-dodecyl-β-D-maltoside and from their mixed solutions

    Science.gov (United States)

    Gerasimova, Anelia Tsvetanova; Angarska, Jana Krumova; Tachev, Krasimir Dimov

    2017-03-01

    The evolutions of thinning of films from individual solutions of BSA, C12G2 and from their mixed solutions with molar ratios 1:1, 1:7.5, 1:50 and 1:100 with pH = 4.9 were recorded by modified (with video camera) interferometric method. Based on them the stages through which the film goes from its formation to the equilibrium state were distinguished. It was shown that: (i) the difference between the kinetic of drainage of films stabilized by high and low molecular surfactants is drastic; (ii) only the change of the pH solution under or above isoelectric point strongly retards the film drainage; (iii) the transition of the kinetic of thinning of films from mixed solutions from a kinetic typical for high molecular substances towards a kinetic for low substances depends on the molar ratio between the components in the solution. From the picture of film corresponding to its equilibrium state the type of film was determined. From the analysis of this picture the equilibrium thickness and contact angle were calculated. It was found that the criterion for Newtonium black films (based on the values of film thickness and contact angle) is not directly applicable for films from protein solutions or mixed solutions with the participation of proteins.

  20. Evolutions and equilibrium parameters of foam films from individual solutions of Bovine serum albumin, n-dodecyl-β-D-maltoside and from their mixed solutions

    Directory of Open Access Journals (Sweden)

    Gerasimova Anelia Tsvetanova

    2017-03-01

    Full Text Available The evolutions of thinning of films from individual solutions of BSA, C12G2 and from their mixed solutions with molar ratios 1:1, 1:7.5, 1:50 and 1:100 with pH = 4.9 were recorded by modified (with video camera interferometric method. Based on them the stages through which the film goes from its formation to the equilibrium state were distinguished. It was shown that: (i the difference between the kinetic of drainage of films stabilized by high and low molecular surfactants is drastic; (ii only the change of the pH solution under or above isoelectric point strongly retards the film drainage; (iii the transition of the kinetic of thinning of films from mixed solutions from a kinetic typical for high molecular substances towards a kinetic for low substances depends on the molar ratio between the components in the solution. From the picture of film corresponding to its equilibrium state the type of film was determined. From the analysis of this picture the equilibrium thickness and contact angle were calculated. It was found that the criterion for Newtonium black films (based on the values of film thickness and contact angle is not directly applicable for films from protein solutions or mixed solutions with the participation of proteins.

  1. Palmitate and stearate binding to human serum albumin. Determination of relative binding constants

    DEFF Research Database (Denmark)

    Vorum, H; Fisker, K; Honoré, B

    1997-01-01

    . The experimental data were analysed by a computerised curve fitting procedure using equilibrium equations for multiple binding of ligands, containing relative binding constants, valid whether the ligands are truly insoluble or are slightly soluble and irrespective of aggregation in aqueous solution. A best-fit set...... of relative binding constants was found, and subsequently 30 sets of acceptable constants for each set of data in order to evaluate the variation. The data were first fitted by the relative Scatchard's equation, then by the relative, stoichiometric equation. Scatchard's equation is deduced on the presumption...... that cooperativity is absent while the stoichiometric equation is valid even when cooperativity is present. It was found with palmitate as well as with stearate that the two equations fitted the data equally well, and it was concluded that the observations were compatible with absence of cooperativity. The relative...

  2. pH Dependant Binding and Irradiation of Protoporphyrin IX to Human Serum Albumin

    Science.gov (United States)

    Rozinek, Sarah; Brancaleon, Lorenzo

    2010-10-01

    Irradiation of the non-covalent complex, protoporphyrin IX (PPIX) bound to β-lactoglobulin (β-lg), causes a modest unfolding of the protein localized to Trp19. PPIX binds to β-lg at a site affected by the pH of the solution. At physiological pH, PPIX is known to bind HSA in hydrophobic binding sites located in subdomain IIA and IIIA. However, no evidence is presented for the binding behavior of PPIX to HSA in non-physological pH confirmations, nor on the effects of irradiation on the bound system at any pH. The combination of spectroscopic data and molecular simulations suggests that distinct PPIX-compatible binding sites become available at each confirmation of HSA at pH 3, 7.4, and 9.

  3. Validation of the chloramine-T induced oxidation of human serum albumin as a model for oxidative damage in vivo.

    Science.gov (United States)

    Anraku, Makoto; Kragh-Hansen, Ulrich; Kawai, Keiichi; Maruyama, Toru; Yamasaki, Yasuomi; Takakura, Yoshinobu; Otagiri, Masaki

    2003-04-01

    The validity of using chloramine-T as a model compound for mimicing oxidative stress was examined using human serum albumin (HSA) as a model. Important sites of oxidation were studied by mild treatment with chloramine-T and by mutating 34Cys for a serine (C34S). High-performance liquid chromatography (HPLC) combined with fluorescence detection to confirm the validity of chloramine-T as an oxidizing agent was used. Oxidized amino acid residues were detected by reaction with 5,5'-dithiobis(2-nitro benzoic acid), digestion with cyanogen bromide, followed by capillary electrophoresis. Protein conformation was examined by spectroscopic techniques. From the HPLC analysis of human serum, the validity of using chloramine-T as an oxidizing agent was confirmed. At low chloramine-T concentrations (CT0.1-HSA, CT1-HSA), 34Cys and Met residues were oxidized, at medium concentrations (CT10-HSA), the tryptophan residue also appeared to be oxidized, and at the highest concentration (CT50-HSA), the net charge of Site II of HSA was found to be more negative. The two highest levels of oxidation of HSA (CT10-HSA, CT50-HSA) resulted in conformational changes with an increased exposure of hydrophobic regions, decreased high-affinity bindings of warfarin and ketoprofen and a reduced esterase-like activity. The latter protein also has a shorter plasma half-life and an increased liver clearance. We succeeded in imitating oxidative damage to HSA using chloramine-T and the findings show that Site II is more affected than Site I and 34Cys, when HSA is exposed to oxidative stress.

  4. Biophysical study on the interaction between two palladium(II) complexes and human serum albumin by Multispectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Saeidifar, Maryam, E-mail: saeidifar@merc.ac.ir [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Mansouri-Torshizi, Hassan [Department of Chemistry, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of); Akbar Saboury, Ali [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-11-15

    The interaction of [Pd(bpy)(n-pr-dtc)]Br (I) and ([Pd(phen)(n-pr-dtc)]Br (II) (bpy=2,2′-bipyridine, phen=1,10-phenanthroline and n-pr-dtc=n-propyldithiocarbamate) with human serum albumin (HSA) was investigated using fluorescence, UV–vis absorption and circular dichroism (CD) spectroscopy techniques under simulative physiological conditions (pH=7.4). It was observed that the two complexes interact with HSA via static fluorescence quenching. The thermodynamic parameters indicate that the binding process was spontaneous and that hydrogen bonds and van der Waals forces play a major role in the association of the HSA–Pd(II) complexes. The activation energy (E{sub a}), binding constant (K{sub b}) and number of binding sites (n) of the HSA–Pd(II) complexes were calculated from fluorescence data at 293 K, 303 K and 311 K. The conformational alternations of protein secondary structure in the presence of Pd(II) complexes were demonstrated using synchronous fluorescence, three-dimensional fluorescence spectra, UV–vis absorption and circular dichroism techniques. Furthermore, the apparent distance between donor (HSA) and acceptor (Pd(II) complexes) was determined using fluorescence resonance energy transfer (FRET). The binding studies between these complexes and HSA give us key insights into the transportation, distribution and toxicity of newly design antitumor Pd(II) complexes in human blood. - Highlights: • The HSA binding properties of two Palladium (II) complexes were studied. • Static quenching mechanism is effective in the interaction of HSA with Pd(II) complexes. • Hydrogen bonds and van der Waals forces were involved in the Pd(II) complexes–HSA interaction. • 3D fluorescence was used to study the interaction between two complexes and HSA.

  5. The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes.

    Science.gov (United States)

    Ali, Manjoor; Kumar, Amit; Kumar, Mukesh; Pandey, Badri N

    2016-04-01

    Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of β-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides.

  6. Human Serum Albumin Increases the Stability of Green Tea Catechins in Aqueous Physiological Conditions.

    Directory of Open Access Journals (Sweden)

    Angelo Zinellu

    Full Text Available Epicatechin (EC, epigallocatechin (EGC, epicatechingallate (ECG and epigallocatechingallate (EGCG are antioxidants present in the green tea, a widely used beverage whose health benefits are largely recognized. Nevertheless, major physicochemical limitations, such as the high instability of catechins, pose important questions concerning their potential pharmacological use. Recent studies indicate that binding of catechins with plasmatic proteins may modulate their plasma concentration, tissue delivery and biological activity. After 5 minutes of incubation with HSA both ECG and EGCG were fully bound to HSA, while after 48h incubation only 41% of EC and 70% of EGC resulted linked. HSA had a strong stabilizing effect on all catechins, which could be found in solution between 29 and 85% even after 48h of incubation. In the absence of HSA, EGC and EGCG disappeared in less than 24h, while ECG and EC were found after 48h at 5 and 50%, respectively. The stabilizing effect of HSA toward EGCG, obtained in aqueous physiological conditions, resulted stronger in comparison to cysteine and HCl, previously reported to stabilize this polyphenol. Because of the multitude of contradictory data concerning in vivo and in vitro antioxidant-based experimentations, we believe our work may shed some light on this debated field of research.

  7. Human Serum Albumin Increases the Stability of Green Tea Catechins in Aqueous Physiological Conditions.

    Science.gov (United States)

    Zinellu, Angelo; Sotgia, Salvatore; Scanu, Bastianina; Forteschi, Mauro; Giordo, Roberta; Cossu, Annalisa; Posadino, Anna Maria; Carru, Ciriaco; Pintus, Gianfranco

    2015-01-01

    Epicatechin (EC), epigallocatechin (EGC), epicatechingallate (ECG) and epigallocatechingallate (EGCG) are antioxidants present in the green tea, a widely used beverage whose health benefits are largely recognized. Nevertheless, major physicochemical limitations, such as the high instability of catechins, pose important questions concerning their potential pharmacological use. Recent studies indicate that binding of catechins with plasmatic proteins may modulate their plasma concentration, tissue delivery and biological activity. After 5 minutes of incubation with HSA both ECG and EGCG were fully bound to HSA, while after 48h incubation only 41% of EC and 70% of EGC resulted linked. HSA had a strong stabilizing effect on all catechins, which could be found in solution between 29 and 85% even after 48h of incubation. In the absence of HSA, EGC and EGCG disappeared in less than 24h, while ECG and EC were found after 48h at 5 and 50%, respectively. The stabilizing effect of HSA toward EGCG, obtained in aqueous physiological conditions, resulted stronger in comparison to cysteine and HCl, previously reported to stabilize this polyphenol. Because of the multitude of contradictory data concerning in vivo and in vitro antioxidant-based experimentations, we believe our work may shed some light on this debated field of research.

  8. Investigation on a Potential Targeting Drug Delivery System Consisting of Folate, Mitoxantrone and Human Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiu-Jua; BI Ya-Jing; XIANG Jun-Feng; TANG Ya-Lin; YANG Qian-Fan; XU Guang-Zhi

    2008-01-01

    A potential targeting drug delivery system consisting of folate (FA), the targeting molecule, human serum al- bumin (HSA), the carrier, and mitoxantrone (MTO), the medicine, has been designed. Data obtained by UV absorp-tion, fluorescence, and NMR techniques indicated the formation of ternary complexes and possible application to building a targeting drug delivery system by using FA, MTO and HSA. Furthermore, cytotoxicity assay indicated that the toxicity of the FA-HSA-MTO against PC-3 cell line was 79.95%, which was much higher than that of free MTO tested in totally the same conditions. About 30% increase of the toxicity should be owed to the targeting ef-fect of FA. Thus, the feasibility and validity of a novel targeting drug delivery system, FA-HSA-MTO, was con-firmed.

  9. Overproduction, purification and characterization of human interferon alpha2a-human serum albumin fusion protein produced in methilotropic yeast Pichia pastoris

    Science.gov (United States)

    Ningrum, R. A.; Santoso, A.; Herawati, N.

    2017-05-01

    Human interferon alpha2a (hIFNα2a) is a therapeutic protein that used in cancer and hepatitis B/C therapy. The main problem of using hIFNα-2a is its short elimination half life due to its low molecular weight. Development of higher molecular weight protein by albumin fusion technology is a rational strategy to solve the problem. In our previous research we constructed an open reading frame (ORF) encoding hIFNα2a-human serum albumin (HSA) fusion protein that expressed in Pichia pastoris (P. pastoris) protease deficient strain SMD1168. This research was performed to overproduce, purify and characterize the fusion protein. To overproduce the protein, cultivation was performed in buffered complex medium containing glyserol (BMGY) for 24 h and protein overproduction was applied in buffered complex medium containing methanol (BMMY) for 48 hours at 30°C. The fusion protein was purified by blue sepharose affinity chromatography. Molecular weight characterization by SDS PAGE corresponds with its theoretical size, 85 kDa. Western blot analysis demonstrated that the fusion protein was recognized by anti hIFNα2 and anti HSA monoclonal antibody as well. Amino acid sequence of the fusion protein was determined by LC MS/MS2 mass spectrometry with trypsin as proteolitic enzyme. There were three fragments that identified as hIFNα2a and seven fragments that identified as HSA. Total identified amino acids were 150 residues with 20% coverage from total residues. To conclude, hIFNα2a-HSA fusion protein was overproduced, purified and characterized. Characterization based on molecular weight, antibody recognition and amino acid sequence confirmed that the fusion protein has correct identity as theoretically thought.

  10. Avasimibe encapsulated in human serum albumin blocks cholesterol esterification for selective cancer treatment.

    Science.gov (United States)

    Lee, Steve Seung-Young; Li, Junjie; Tai, Jien Nee; Ratliff, Timothy L; Park, Kinam; Cheng, Ji-Xin

    2015-03-24

    Undesirable side effects remain a significant challenge in cancer chemotherapy. Here we report a strategy for cancer-selective chemotherapy by blocking acyl-CoA cholesterol acyltransferase-1 (ACAT-1)-mediated cholesterol esterification. To efficiently block cholesterol esterification in cancer in vivo, we developed a systemically injectable nanoformulation of avasimibe (a potent ACAT-1 inhibitor), called avasimin. In cell lines of human prostate, pancreatic, lung, and colon cancer, avasimin significantly reduced cholesteryl ester storage in lipid droplets and elevated intracellular free cholesterol levels, which led to apoptosis and suppression of proliferation. In xenograft models of prostate cancer and colon cancer, intravenous administration of avasimin caused the concentration of avasimibe in tumors to be 4-fold higher than the IC50 value. Systemic treatment of avasimin notably suppressed tumor growth in mice and extended the length of survival time. No adverse effects of avasimin to normal cells and organs were observed. Together, this study provides an effective approach for selective cancer chemotherapy by targeting altered cholesterol metabolism of cancer cells.

  11. Combined image guided monitoring the pharmacokinetics of rapamycin loaded human serum albumin nanoparticles with a split luciferase reporter

    Science.gov (United States)

    Wang, Fu; Yang, Kai; Wang, Zhe; Ma, Ying; Gutkind, J. Silvio; Hida, Naoki; Niu, Gang; Tian, Jie

    2016-02-01

    Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery carriers upon administration in the blood circulation, which complicates the interpretation of image findings. Herein we applied a genetically encoded luciferase reporter in conjunction with near infrared (NIR) fluorophores to investigate the respective PK profiles of a drug and its carrier in a biodegradable drug delivery system. In this system, a prototype hydrophobic agent, rapamycin (Rapa), was encapsulated into human serum albumin (HSA) to form HSA Rapa nanoparticles, which were then labeled with Cy5 fluorophore to facilitate the fluorescence imaging of HSA carrier. Meanwhile, we employed transgenetic HN12 cells that were modified with a split luciferase reporter, whose bioluminescence function is regulated by Rapa, to reflect the PK profile of the encapsulated agent. It was interesting to discover that there existed an obvious inconsistency of PK behaviors between HSA carrier and rapamycin in vitro and in vivo through near infrared fluorescence imaging (NIFRI) and bioluminescence imaging (BLI) after treatment with Cy5 labeled HSA Rapa. Nevertheless, HSA Rapa nanoparticles manifested favorable in vivo PK and tumor suppression efficacy in a follow-up therapeutic study. The developed strategy of combining a molecular reporter and a fluorophore in this study could be extended to other drug delivery systems to provide profound insights for non-invasive real-time evaluation of PK profiles of drug-loaded nanoparticles in pre-clinical studies.Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery

  12. Chromatographic analysis of the effects of fatty acids and glycation on binding by probes for Sudlow sites I and II to human serum albumin.

    Science.gov (United States)

    Anguizola, Jeanethe; Debolt, Erin; Suresh, D; Hage, David S

    2016-05-15

    The primary endogenous ligands of human serum albumin (HSA) are non-esterified fatty acids, with 0.1-2mol of fatty acids normally being bound to HSA. In type II diabetes, fatty acid levels in serum are often elevated, and the presence of high glucose results in an increase in the non-enzymatic glycation of HSA. High-performance affinity chromatography (HPAC) was used to examine the combined effects of glycation and the presence of long chain fatty acids on the binding of HSA with R-warfarin and l-tryptophan (i.e., probes for Sudlow sites I and II, the major sites for drugs on this protein). Zonal elution competition studies were used to examine the interactions of myristic acid, palmitic acid and stearic acid with these probes on HSA. It was found that all these fatty acids had direct competition with R-warfarin at Sudlow site I of normal HSA and glycated HSA, with the glycated HSA typically having stronger binding for the fatty acids at this site. At Sudlow site II, direct competition was observed for all the fatty acids with l-tryptophan when using normal HSA, while glycated HSA gave no competition or positive allosteric interactions between these fatty acids and l-tryptophan. These data indicated that glycation can alter the interactions of drugs and fatty acids at specific binding sites on HSA. The results of this study should lead to a better understanding of how these interactions may change during diabetes and demonstrate how HPAC can be used to examine drug/solute-protein interactions in complex systems.

  13. Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Emilio I.; Bueno-Alejo, Carlos J.; Noel, Christopher W.; Stamplecoskie, Kevin G. [Centre for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry (Canada); Pacioni, Natalia L. [Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, INFIQC, Departamento de Quimica Organica (Argentina); Poblete, Horacio [Center for Bioinformatics and Molecular Simulations, Universidad de Talca (Chile); Scaiano, J. C., E-mail: tito@photo.chem.uottawa.ca [Centre for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry (Canada)

    2013-01-15

    Thermally denatured human serum albumin interacts with {approx}3.0 nm spherical AgNP enhancing the fluorescence of Trp-214 at large protein/nanoparticle ratios. However, using native HSA, no changes in the emission were observed. The observation is likely due to differences between native and denatured protein packing resulting from protein corona formation. We have also found that NH{sub 2} blocking of the protein strongly affects the ability of the protein to protect AgNP from different salts/ions such as NaCl, PBS, Hank's buffer, Tris-HCl, MES, and DMEM. Additionally, AgNP can be readily prepared in aqueous solutions by a photochemical approach employing HSA as an in situ protecting agent. The role of the protein in this case is beyond that of protecting agent; thus, Ag{sup +} ions and I-2959 complexation within the protein structure also affects the efficiency of AgNP formation. Blocking NH{sub 2} in HSA modified the AgNP growth profile, surface plasmon band shape, and long-term stability suggesting that amine groups are directly involved in the formation and post-stabilization of AgNP. In particular, AgNP size and shape are extensively influenced by NH{sub 2} blocking, leading primarily to cubes and plates with sizes around 5-15 nm; in contrast, spherical monodisperse 4.0 nm AgNP are observed for native HSA. The nanoparticles prepared by this protocol are non-toxic in primary cells and have remarkable antibacterial properties. Finally, surface plasmon excitation of native HSA-AgNP promoted loss of protein conformation in just 5 min, suggesting that plasmon heating causes protein denaturation using continuous light sources such as commercial LED.

  14. Effects of the Infusion of 4% or 20% Human Serum Albumin on the Skeletal Muscle Microcirculation in Endotoxemic Rats.

    Directory of Open Access Journals (Sweden)

    Elisa Damiani

    Full Text Available Sepsis-induced microcirculatory alterations contribute to tissue hypoxia and organ dysfunction. In addition to its plasma volume expanding activity, human serum albumin (HSA has anti-oxidant and anti-inflammatory properties and may have a protective role in the microcirculation during sepsis. The concentration of HSA infused may influence these effects. We compared the microcirculatory effects of the infusion of 4% and 20% HSA in an experimental model of sepsis.Adult male Wistar rats were equipped with arterial and venous catheters and received an intravenous infusion of lipopolysaccharide (LPS, serotype O127:B8, 10 mg/kg over 30 minutes or vehicle (SHAM, n = 6. Two hours later, endotoxemic animals were randomized to receive 10 mL/kg of either 4% HSA (LPS+4%HSA, n = 6, 20% HSA (LPS+20%HSA, n = 6 or 0.9% NaCl (LPS+0.9%NaCl, n = 6. No fluids were given to an additional 6 animals (LPS. Vessel density and perfusion were assessed in the skeletal muscle microcirculation with sidestream dark field videomicroscopy at baseline (t0, 2 hours after LPS injection (t1, after HSA infusion (t2 and 1 hour later (t3. The mean arterial pressure (MAP and heart rate were recorded. Serum endothelin-1 was measured at t2.MAP was stable over time in all groups. The microcirculatory parameters were significantly altered in endotoxemic animals at t1. The infusion of both 4% and 20% HSA similarly increased the perfused vessel density and blood flow velocity and decreased the flow heterogeneity to control values. Microvascular perfusion was preserved in the LPS+20%HSA group at t3, whereas alterations reappeared in the LPS+4%HSA group.In a rat model of normotensive endotoxemia, the infusion of 4% or 20% HSA produced a similar acute improvement in the microvascular perfusion in otherwise unresuscitated animals.

  15. Perfusion lymphoscintigraphy using sup 99m Tc-human serum albumin in patients with treated uterine cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Masaaki; Hamada, Katsuyuki; Hamamoto, Ken; Takeda, Yasunari; Matsuura, Shumpei (Ehime Univ., Matsuyama (Japan). School of Medicine); Kawamura, Masashi

    1990-09-01

    Perfusion lymphoscintigraphy was performed by subcutaneous injection of 7.4 MBq (0.2mCi) {sup 99m}Tc-human serum albumin ({sup 99m}Tc-HSA) on 18 patients with uterine cancer treated by operation and/or irradiation. Radioactivity at the injection site was counted for 3 min at 10 min (a) and at 3 hr (b) after injection, and the clearance of {sup 99m}Tc-HSA was defined as (1-(b)/(a)) x 100(%) ((a) and (b) were corrected for decay of the isotope). The clearance in 6 legs with lymphedema was significantly more delayed than that in 16 legs without lymphedema in the patients treated with both surgery and irradiation (16.6 +- 7.7% vs 34.9 +- 9.3%: P< 0.01). The clearances in edematous legs in a case which had developed a venous occulusion after operation were 44.2% and 41.7%, which were almost the same as those in the non-edematous patients treated with surgery alone. The clearance in patients treated with both operation and irradiation was significantly more delayed than that in patients treated with the signle modality of operation or irradiation (29.7 +- 11.9% vs 41.1 +- 7.2%, 44.5 +- 7.7%, respectively: P< 0.01). These data suggest that perfusion lymphoscintigraphy using {sup 99m}Tc-HSA is useful for evaluating patients with lymphedema and for differentiating it from edema caused by other mechanisms. (author).

  16. Perfusion lymphoscintigraphy using sup 99m Tc-human serum albumin in patients with treated uterine cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Masaaki; Kawamura, Masashi; Nishiyama, Yasuyuki; Itoh, Hisao; Hamamoto, Ken; Hamada, Katsuyuki; Matsuura, Shumpei (Ehime Univ., Shigenobu (Japan). School of Medicine)

    1991-07-01

    Perfusion lymphoscintigraphy was performed by subcutaneous injection of 7.4 MBq (0.2 mCi) {sup 99m}Tc-human serum albumin ({sup 99m}Tc-HSA) in 25 patients with uterine cancer treated by operation and/or irradiation. Radioactivity at the injection site was counted for 3 min at 10 min (a) and at 3 hr (b) after injection, and the clearance of {sup 99m}Tc-HSA was defined as (1-(b)/(a))x100(%) ((a) and (b) were corrected for decay of the isotope). The clearance in legs with lymphedema was significantly more delayed than those in legs without lymphedema in patients treated with both operation and irradiation (16.6{+-}7.7% vs 34.9{+-}9.3%; p<0.01) and in patients treated with radiation therapy alone (33.1{+-}7.4 vs 48.0{+-}5.6; p<0.01). The clearances in edematous legs in a case which had developed venous occulusion after operation were 44.2% and 41.7%, which were almost the same as those in the non-edematous patients treated with operation alone. Clearance in patients treated with both operation and irradiation were significantly more delayed than those in patients treated with a single modality of operation or irradiation (30.1{+-}11.4% vs 41.9{+-}8.9%, 42.0{+-}9.7%, respectively; p<0.01). Radiation doses at points B were well correlated with clearance of {sup 99m}Tc-HSA (p<0.05). These data suggest that perfusion lymphoscintigraphy using {sup 99m}Tc-HSA is useful for evaluating the patients with lymphedema and for differentiating it from the edema caused by the other mechanisms. It is also suggested that radiation dose is one of factors in the occurrence of lymphedema. (author).

  17. Spectroscopic study of interaction between osthole and human serum albumin: Identification of possible binding site of the compound

    Energy Technology Data Exchange (ETDEWEB)

    Bijari, Nooshin [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Shokoohinia, Yalda [Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ashrafi-Kooshk, Mohammad Reza; Ranjbar, Samira; Parvaneh, Shahram [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Moieni-Arya, Maryam [Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Khodarahmi, Reza, E-mail: rkhodarahmi@mbrc.ac.ir [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2013-11-15

    The studies on the interaction between human serum albumin (HSA) and drugs have been an interesting research field in life science, chemistry and clinical medicine. Osthole possesses a variety of pharmacological activities including anti-tumor, anti-inflammation, anti-seizure, anti-hyperlipidemic and anti-osteoporosis effects. The interaction of osthole with HSA and its binding site in HSA by spectroscopic methods is the subject of this work. By monitoring the intrinsic fluorescence of the single Trp{sub 214} residue and performing site markers displacement measurements, the specific binding of osthole in the vicinity of Sudlow's site I of HSA has been clarified. The changes in the secondary structure of HSA after its complexation with ligand were studied with CD spectroscopy, which indicate that osthole induced only a slight decrease in the helix structural content of the protein. In addition, the mean distance between osthole and HSA fluorophores is estimated to be 4.96 nm using Föster's equation on the basis of the fluorescence energy transfer. Furthermore, the synchronous fluorescence spectra show that the microenvironment of the tryptophan residues does not have obvious changes. Osthole can quench the intrinsic fluorescence of HSA by dynamic quenching, and analysis of the thermodynamic parameters of binding showed that hydrophobic interactions play an important role in the stabilizing of the complex. Increase of protein surface hydrophobicity (PSH) was also observed upon the osthole binding. -- Highlights: • Hydrophobic interactions play an important role in osthole–HSA interaction. • Sudlow's I site is possible binding site of osthole. • Osthole inhibits esterase activity of HSA. • Osthole binding induces no gross protein structural changes.

  18. Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases.

    Directory of Open Access Journals (Sweden)

    Kohei Nagumo

    Full Text Available The degree of oxidized cysteine (Cys 34 in human serum albumin (HSA, as determined by high performance liquid chromatography (HPLC, is correlated with oxidative stress related pathological conditions. In order to further characterize the oxidation of Cys34-HSA at the molecular level and to develop a suitable analytical method for a rapid and sensitive clinical laboratory analysis, the use of electrospray ionization time-of-flight mass spectrometer (ESI-TOFMS was evaluated. A marked increase in the cysteinylation of Cys34 occurs in chronic liver and kidney diseases and diabetes mellitus. A significant positive correlation was observed between the Cys-Cys34-HSA fraction of plasma samples obtained from 229 patients, as determined by ESI-TOFMS, and the degree of oxidized Cys34-HSA determined by HPLC. The Cys-Cys34-HSA fraction was significantly increased with the progression of liver cirrhosis, and was reduced by branched chain amino acids (BCAA treatment. The changes in the Cys-Cys34-HSA fraction were significantly correlated with the alternations of the plasma levels of advanced oxidized protein products, an oxidative stress marker for proteins. The binding ability of endogenous substances (bilirubin and tryptophan and drugs (warfarin and diazepam to HSA purified from chronic liver disease patients were significantly suppressed but significantly improved by BCAA supplementation. Interestingly, the changes in this physiological function of HSA in chronic liver disease were correlated with the Cys-Cys34-HSA fraction. In conclusion, ESI-TOFMS is a suitable high throughput method for the rapid and sensitive quantification of Cys-Cys34-HSA in a large number of samples for evaluating oxidative stress related chronic disease progression or in response to a treatment.

  19. Stereo-Selectivity of Human Serum Albumin to Enantiomeric and Isoelectronic Pollutants Dissected by Spectroscopy, Calorimetry and Bioinformatics

    Science.gov (United States)

    Ahmad, Ejaz; Rabbani, Gulam; Zaidi, Nida; Singh, Saurabh; Rehan, Mohd; Khan, Mohd Moin; Rahman, Shah Kamranur; Quadri, Zainuddin; Shadab, Mohd.; Ashraf, Mohd Tashfeen; Subbarao, Naidu; Bhat, Rajiv; Khan, Rizwan Hasan

    2011-01-01

    1–naphthol (1N), 2–naphthol (2N) and 8–quinolinol (8H) are general water pollutants. 1N and 2N are the configurational enantiomers and 8H is isoelectronic to 1N and 2N. These pollutants when ingested are transported in the blood by proteins like human serum albumin (HSA). Binding of these pollutants to HSA has been explored to elucidate the specific selectivity of molecular recognition by this multiligand binding protein. The association constants (Kb) of these pollutants to HSA were moderate (104–105 M−1). The proximity of the ligands to HSA is also revealed by their average binding distance, r, which is estimated to be in the range of 4.39–5.37 nm. The binding free energy (ΔG) in each case remains effectively the same for each site because of enthalpy–entropy compensation (EEC). The difference observed between ΔCpexp and ΔCpcalc are suggested to be caused by binding–induced flexibility changes in the HSA. Efforts are also made to elaborate the differences observed in binding isotherms obtained through multiple approaches of calorimetry, spectroscopy and bioinformatics. We suggest that difference in dissociation constants of pollutants by calorimetry, spectroscopic and computational approaches could correspond to occurrence of different set of populations of pollutants having different molecular characteristics in ground state and excited state. Furthermore, our observation of enhanced binding of pollutants (2N and 8H) in the presence of hemin signifies that ligands like hemin may enhance the storage period of these pollutants in blood that may even facilitate the ill effects of these pollutants. PMID:22073150

  20. New insight into protein-nanomaterial interactions with UV-visible spectroscopy and chemometrics: human serum albumin and silver nanoparticles.

    Science.gov (United States)

    Wang, Yong; Ni, Yongnian

    2014-01-21

    In recent years, great efforts have focused on the exploration and fabrication of protein nanoconjugates due to potential applications in many fields including bioanalytical science, biosensors, biocatalysis, biofuel cells and bio-based nanodevices. An important aspect of our understanding of protein nanoconjugates is to quantitatively understand how proteins interact with nanomaterials. In this report, human serum albumin (HSA) and citrate-coated silver nanoparticles (AgNPs) are selected as a case study of protein-nanomaterial interactions. UV-visible spectroscopy together with multivariate curve resolution by alternating least squares (MCR-ALS) algorithm is first exploited for the detailed study of AgNPs-HSA interactions. Introduction of the chemometrics tool allows extracting the kinetic profiles, spectra and distribution diagrams of two major absorbing pure species (AgNPs and AgNPs-HSA conjugate). These resolved profiles are then analysed to give the thermodynamic, kinetic and structural information of HSA binding to AgNPs. Transmission electron microscopy, circular dichroism spectroscopy and Fourier transform infrared spectroscopy are used to further characterize the complex system. Moreover, a sensitive spectroscopic biosensor for HSA is fabricated with the MCR-ALS resolved concentration of absorbing pure species. It is found that the linear range for the HSA nanosensor was from 1.9 nM to 45.0 nM with a detection limit of 0.9 nM. It is believed that the proposed method will play an important role in the fabrication and optimization of a robust nanobiosensor or cross-reactive sensors array for the detection and identification of biocomponents.

  1. Cordycepin and N6-(2-hydroxyethyl-adenosine from Cordyceps pruinosa and their interaction with human serum albumin.

    Directory of Open Access Journals (Sweden)

    Zebin Meng

    Full Text Available Cordyceps pruinosa (CP is often used as Traditional Chinese Medicine, but the substance basis of its medicinal properties is unclear. In this study, two compounds were isolated from CP cultures by column chromatography, and identified as cordycepin and N6-(2-hydroxyethyl-adenosine (HEA by Nuclear Magnetic Resonance. In order to understand the efficacy of these two substances as potential therapeutic agents, it is necessary to explore their binding with proteins. The molecular mechanisms of interaction between cordycepin, HEA and human serum albumin (HSA were studied using UV and fluorescence spectroscopy. The bingding constants between HSA and cordycepin were 4.227, 3.573 and 3.076 × 10(3·at 17, 27 and 37°C respectively, and that of HSA and HEA were 27.102, 19.409 and 13.002 × 10(3·at the three tempretures respectively. Both cordycepin and HEA can quench the intrinsic fluorescence of HSA via static quenching, and they can bind with HSA to form complexes with a single binding site. The interaction forces between cordycepin and HSA were determined as electrostatic and hydrophobic, and those of HEA and HSA were hydrogen bonding and van der Waals forces. Using Foster's equation, the distance between fluorophores of cordycepin and HSA, and HEA and HSA are estimated to be 5.31 nm and 4.98 nm, respectively. In this study, cordycepin was isolated for the first time from CP, and will provide a new source of cordycepin and expand the use of this taxon. The interaction mechanisms between cordycepin and HSA was studied for the first time, which will provide a useful guide for the clinical application of cordycepin. The pharmacological importance of this study is to understand the interaction of HSA with cordycepin and HEA, which will be essential for the future designing of drugs based on the two compounds.

  2. Cordycepin and N6-(2-Hydroxyethyl)-Adenosine from Cordyceps pruinosa and Their Interaction with Human Serum Albumin

    Science.gov (United States)

    Meng, Zebin; Kang, Jichuan; Wen, Tingchi; Lei, Bangxing; Hyde, Kevin David

    2015-01-01

    Cordyceps pruinosa (CP) is often used as Traditional Chinese Medicine, but the substance basis of its medicinal properties is unclear. In this study, two compounds were isolated from CP cultures by column chromatography, and identified as cordycepin and N6-(2-hydroxyethyl)-adenosine (HEA) by Nuclear Magnetic Resonance. In order to understand the efficacy of these two substances as potential therapeutic agents, it is necessary to explore their binding with proteins. The molecular mechanisms of interaction between cordycepin, HEA and human serum albumin (HSA) were studied using UV and fluorescence spectroscopy. The bingding constants between HSA and cordycepin were 4.227, 3.573 and 3.076 × 103·at 17, 27 and 37°C respectively, and that of HSA and HEA were 27.102, 19.409 and 13.002 × 103·at the three tempretures respectively. Both cordycepin and HEA can quench the intrinsic fluorescence of HSA via static quenching, and they can bind with HSA to form complexes with a single binding site. The interaction forces between cordycepin and HSA were determined as electrostatic and hydrophobic, and those of HEA and HSA were hydrogen bonding and van der Waals forces. Using Foster's equation, the distance between fluorophores of cordycepin and HSA, and HEA and HSA are estimated to be 5.31 nm and 4.98 nm, respectively. In this study, cordycepin was isolated for the first time from CP, and will provide a new source of cordycepin and expand the use of this taxon. The interaction mechanisms between cordycepin and HSA was studied for the first time, which will provide a useful guide for the clinical application of cordycepin. The pharmacological importance of this study is to understand the interaction of HSA with cordycepin and HEA, which will be essential for the future designing of drugs based on the two compounds. PMID:25811172

  3. Study on the bindings of dichlorprop and diquat dibromide herbicides to human serum albumin by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Tunç, Sibel, E-mail: stunc@akdeniz.edu.tr; Duman, Osman, E-mail: osmanduman@akdeniz.edu.tr; Soylu, İnanç; Kancı Bozoğlan, Bahar

    2014-05-01

    Highlights: • The affinity of DCP to HSA is higher than DQ. • DCP and DQ have quenched the fluorescence emission spectrum of HSA by static quenching mechanism. • Electrostatic interactions are very important in HSA-DCP and HSA-DQ complexes. • Binding constants, numbers of binding sites and thermodynamic parameters have been calculated. • The binding of DQ changes the conformation of protein, on the contrary to DCP. - Abstract: The interactions of dichlorprop (DCP) and diquat dibromide (DQ) herbicides with human serum albumin (HSA) protein were studied by UV absorption, fluorescence, synchronous fluorescence and circular dichroism (CD) spectroscopy. Both DCP and DQ quenched the fluorescence emission spectrum of HSA through the static quenching mechanism. The Stern–Volmer quenching constant, binding constant, the number of binding sites and thermodynamic parameters were determined at 288 K, 298 K, 310 K and 318 K. In HSA-DCP and HSA-DQ systems, an increase in temperature led to a decrease in the Stern–Volmer quenching constant and binding constant. One binding site was obtained for DCP and DQ on HSA. It was found that DCP can bind to HSA with higher affinity than DQ. Negative ΔH and positive ΔS values were obtained for the binding processes between protein and herbicide molecules. This result displayed that electrostatic interactions play a major role in the formation of HSA-DCP and HSA-DQ complexes. The binding processes were exothermic reactions and spontaneous. In addition, synchronous fluorescence and CD spectra of HSA revealed that the binding of DCP to HSA did not cause a significant conformational change in protein, but the interaction of DQ with HSA led to an alteration in the protein structure.

  4. Probing the mechanism of interaction of metoprolol succinate with human serum albumin by spectroscopic and molecular docking analysis.

    Science.gov (United States)

    Pawar, Suma K; Jaldappagari, Seetharamappa

    2017-02-24

    In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra-red spectroscopy (FT-IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern-Volmer quenching constants and binding constants for the MS-HSA system at 293, 298 and 303 K were obtained from the Stern-Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS-HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three-dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS-HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied.

  5. Hypoxia and exercise increase the transpulmonary passage of 99mTc-labeled albumin particles in humans.

    Directory of Open Access Journals (Sweden)

    Melissa L Bates

    Full Text Available Intrapulmonary arteriovenous anastomoses (IPAVs are large diameter connections that allow blood to bypass the lung capillaries and may provide a route for right-to-left embolus transmission. These anastomoses are recruited by exercise and catecholamines and hypoxia. Yet, whether IPAVs are recruited via direct, oxygen sensitive regulatory mechanisms or indirect effects secondary to redistribution pulmonary blood flow is unknown. Here, we hypothesized that the addition of exercise to hypoxic gas breathing, which increases cardiac output, would augment IPAVs recruitment in healthy humans. To test this hypothesis, we measured the transpulmonary passage of 99mTc-macroaggregated albumin particles (99mTc-MAA in seven healthy volunteers, at rest and with exercise at 85% of volitional max, with normoxic (FIO2 = 0.21 and hypoxic (FIO2 = 0.10 gas breathing. We found increased 99mTc-MAA passage in both exercise conditions and resting hypoxia. However, contrary to our hypothesis, we found the greatest 99mTc-MAA passage with resting hypoxia. As an additional, secondary endpoint, we also noted that the transpulmonary passage of 99mTc-MAA was well-correlated with the alveolar-arterial oxygen difference (A-aDO2 during exercise. While increased cardiac output has been proposed as an important modulator of IPAVs recruitment, we provide evidence that the modulation of blood flow through these pathways is more complex and that increasing cardiac output does not necessarily increase IPAVs recruitment. As we discuss, our data suggest that the resistance downstream of IPAVs is an important determinant of their perfusion.

  6. Ligand binding to the FA3-FA4 cleft inhibits the esterase-like activity of human serum albumin.

    Directory of Open Access Journals (Sweden)

    Paolo Ascenzi

    Full Text Available The hydrolysis of 4-nitrophenyl esters of hexanoate (NphOHe and decanoate (NphODe by human serum albumin (HSA at Tyr411, located at the FA3-FA4 site, has been investigated between pH 5.8 and 9.5, at 22.0°C. Values of Ks, k+2, and k+2/Ks obtained at [HSA] ≥ 5×[NphOXx] and [NphOXx] ≥ 5×[HSA] (Xx is NphOHe or NphODe match very well each other; moreover, the deacylation step turns out to be the rate limiting step in catalysis (i.e., k+3 a-shift appears to be correlated to the length of the fatty acid tail of the substrate. The inhibition of the HSA-Tyr411-catalyzed hydrolysis of NphOHe, NphODe, and 4-nitrophenyl myristate (NphOMy by five inhibitors (i.e., diazepam, diflunisal, ibuprofen, 3-indoxyl-sulfate, and propofol has been investigated at pH 7.5 and 22.0°C, resulting competitive. The affinity of diazepam, diflunisal, ibuprofen, 3-indoxyl-sulfate, and propofol for HSA reflects the selectivity of the FA3-FA4 cleft. Under conditions where Tyr411 is not acylated, the molar fraction of diazepam, diflunisal, ibuprofen, and 3-indoxyl-sulfate bound to HSA is higher than 0.9 whereas the molar fraction of propofol bound to HSA is ca. 0.5.

  7. Probing of possible olanzapine binding site on human serum albumin: Combination of spectroscopic methods and molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shahlaei, Mohsen, E-mail: mohsenshahlaei@yahoo.com [Nano drug delivery research Center, Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Rahimi, Behnoosh [Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Student research committee, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ashrafi-Kooshk, Mohammad Reza [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Sadrjavadi, Komail [Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Khodarahmi, Reza, E-mail: rkhodarahmi@mbrc.ac.ir [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2015-02-15

    Human serum albumin (HSA)-drug binding affinity is one of the major factors that determine the pharmacokinetics, halftime and bioavailability of drugs in various tissues. In the present study, the interaction of olanzapine (OLZ), a thienobenzodiazepine drug, administered for the treatment of schizophrenia and bipolar disorder, with HSA has been studied using spectroscopic methods such as ultraviolet absorbance, fluorescence and FTIR combined with computational procedures. Analyzing of the Stern–Volmer quenching data showed only one primary binding site on HSA with a binding constant of 4.12×10{sup 4} M{sup −1} at 298 K. Thermodynamic analyses showed enthalpy change (ΔH°) and entropy change (ΔS°) were 28.03±3.42 kJ mol{sup −1} and −25.52±11.52 J mol{sup −1} K{sup −1}, respectively. Molecular docking results suggested the hydrophobic residues such as Val{sub 216}, Leu{sub 327}, Ala{sub 350} and polar residues such as Glu{sub 354} play an important role in the drug binding. Decrement in α-helix content of the protein upon OLZ binding was also confirmed by evidences provided by molecular dynamics simulation as well as FTIR spectroscopy. - Highlights: • Leu{sub 327}, Ala{sub 350} as well as hydrophilic residues of HSA play an important role in the binding reaction. • The drug has only one primary binding site on HSA with a binding constant of 4.12×10{sup 4} M{sup −1} at 298 K. • The drug binds near to site I.

  8. Biophysical and molecular docking insight into the interaction of cytosine β-D arabinofuranoside with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Parvez; Chaturvedi, Sumit Kumar [Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP (India); Anwar, Tamanna [Center of Bioinformatics Research and Technology, Aligarh 202002 (India); Siddiqi, Mohammad Khursheed; Ajmal, Mohd Rehan [Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP (India); Badr, Gamal [Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Mahmoud, Mohamed H. [Food Science and Nutrition Department, National Research Center, Dokki, Cairo (Egypt); Deanship of Scientific Research, King Saud University, Riyadh (Saudi Arabia); Hasan Khan, Rizwan, E-mail: rizwanhkhan@hotmail.com [Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP (India)

    2015-08-15

    Interaction of pharmacologically important anticancer drug cytosine β-D arabinofuranoside with human serum albumin (HSA) at physiological pH 7.4 has been studied by utilizing various spectroscopic and molecular docking strategies. Fluorescence results revealed that cytosine β-D arabinofuranoside interacts with HSA through static quenching mechanism with binding affinity of 2.4×10{sup 3} M{sup −1}. The average binding distance between drug and Trp{sup 214} of HSA was found to be 2.23 nm on the basis of the theory of Förster's energy transfer. Synchronous fluorescence data indicated that interaction of drug with HSA changed the microenvironment around the tryptophan residue. UV–visible spectroscopy and circular dichroism results deciphered the complex formation and conformational alterations in the HSA respectively. Dynamic light scattering was utilized to understand the topology of protein in absence and presence of drug. Thermodynamic parameters obtained from isothermal titration calorimetry (ΔH=−26.01 kJ mol{sup −1} and TΔS=6.5 kJ mol{sup −1}) suggested the involvement of van der Waal interaction and hydrogen bonding. Molecular docking and displacement study with site specific markers suggested that cytosine β-D arabinofuranoside binds to subdomain IB of HSA which is also known as the hemin binding site. This study will be helpful to understand the binding mechanism of cytosine β-D arabinofuranoside with HSA and associated alterations. - Highlights: • Comprehensive insight into the interaction of CBDA with HSA. • The interaction process is spontaneous and exothermic. • The main governing forces for stabilizing HSA–CBDA complex are van der Waal interaction and hydrogen bonding. • CBDA binds at subdomain IB on HSA.

  9. Evaluation of enantioselective binding of propanocaine to human serum albumin by ultrafiltration and electrokinetic chromatography under intermediate precision conditions.

    Science.gov (United States)

    Martínez-Gómez, María Amparo; Escuder-Gilabert, Laura; Villanueva-Camañas, Rosa María; Sagrado, Salvador; Medina-Hernández, María José

    2012-03-15

    Stereoselectivity in protein binding can have a significant effect on the pharmacokinetic and pharmacodynamic properties of chiral drugs. In this paper, the enantioselective binding of propanocaine (PRO) enantiomers to human serum albumin (HSA), the most relevant plasmatic protein in view of stereoselectivity, has been evaluated by incubation and ultrafiltration of racemic PRO-HSA mixtures and chiral analysis of the bound and unbound fractions by electrokinetic chromatography using HSA as chiral selector. Experimental conditions for the separation of PRO enantiomers using HSA as chiral selector and electrokinetic chromatography have been optimised. Affinity constants and protein binding in percentage (PB) were obtained for both enantiomers of PRO, as well as the enantioselectivity (ES) to HSA. Data were obtained in two independent working sessions (days). The influence of the session and fraction processed factors were examined. A univariate direct-estimation approach was used facilitating outliers' identification and statistical comparison. Non-linear fitting of data was used to verify the stoichiometry and affinity estimations obtained by the direct approach. Robust statistics were applied to obtain reliable estimations of uncertainty, accounting for the factors (day and processed fraction), thus representing intermediate precision conditions. Mimicking in vivo experimental conditions, information unapproachable by in vivo experiments was obtained for PRO enantiomers interacting with HSA. For the first (E1) and the second (E2) eluted PRO enantiomers the results were: 1:1 stoichiometry, medium affinity constants, logK(E1)=3.20±0.16 and log K(E2)=3.40±0.14, medium protein binding percentage, PB=48.7 and 60.1% for E1 and E2, respectively, and moderate but significant enantioselectivity, ES=K(E2)/K(E1)=1.5±0.3.

  10. Molecular interaction of 2,4-diacetylphloroglucinol (DAPG) with human serum albumin (HSA): The spectroscopic, calorimetric and computational investigation

    Science.gov (United States)

    Pragna Lakshmi, T.; Mondal, Moumita; Ramadas, Krishna; Natarajan, Sakthivel

    2017-08-01

    Drug molecule interaction with human serum albumin (HSA) affects the distribution and elimination of the drug. The compound, 2,4-diacetylphloroglucinol (DAPG) has been known for its antimicrobial, antiviral, antihelminthic and anticancer properties. However, its interaction with HSA is not yet reported. In this study, the interaction between HSA and DAPG was investigated through steady-state fluorescence, time-resolved fluorescence (TRF), circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, isothermal titration calorimetry (ITC), molecular docking and molecular dynamics simulation (MDS). Fluorescence spectroscopy results showed the strong quenching of intrinsic fluorescence of HSA due to interaction with DAPG, through dynamic quenching mechanism. The compound bound to HSA with reversible and moderate affinity which explained its easy diffusion from circulatory system to target tissue. The thermodynamic parameters from fluorescence spectroscopic data clearly revealed the contribution of hydrophobic forces but, the role of hydrogen bonds was not negligible according to the ITC studies. The interaction was exothermic and spontaneous in nature. Binding with DAPG reduced the helical content of protein suggesting the unfolding of HSA. Site marker fluorescence experiments revealed the change in binding constant of DAPG in the presence of site I (warfarin) but not site II marker (ibuprofen) which confirmed that the DAPG bound to site I. ITC experiments also supported this as site I marker could not bind to HSA-DAPG complex while site II marker was accommodated in the complex. In silico studies further showed the lowest binding affinity and more stability of DAPG in site I than in site II. Thus the data presented in this study confirms the binding of DAPG to the site I of HSA which may help in further understanding of pharmacokinetic properties of DAPG.

  11. Interactions between epinastine and human serum albumin: Investigation by fluorescence, UV-vis, FT-IR, CD, lifetime measurement and molecular docking

    Science.gov (United States)

    Ariga, Girish G.; Naik, Praveen N.; Chimatadar, Shivamurti A.; Nandibewoor, Sharanappa T.

    2017-06-01

    The fluorescence quenching of human serum albumin (HSA) by epinastine hydrochloride (EPN) at pH 7.4 buffer was studied using absorption, fluorescence quenching, time-resolved, circular-dichroism, synchronous and molecular docking studies have been employed in the system. The fluorescence quenching study revealed that the static quenching mechanism was involved in the interaction of EPN with human serum albumin. The value number of binding sites, n, is close to unity, EPN-HSA, indicated the presence of a single class of binding site for the drug in protein. The binding constant value of EPN_HSA was observed to be 2.72 × 104 M-1 at 298 K. The spectral results attest that the binding of EPN-HSA induced conformational changes in the HSA. The metal ions viz., Ca2+, Co2+, Cu2+, Ni2+ and Zn2+ were found to influence the binding of the EPN to HSA. Based on the Forster's theory of non-radiation energy transfer, the binding average distance, r, between the donor (HSA) and acceptor (EPN) was found to be 4.33 nm. The circular dichroism data revealed that the presence of EPN decreased the α-helix content of serum albumin, which indicated conformation changes in HSA upon interaction with EPN.

  12. Selective analysis of human serum albumin based on SEC-ICP-MS after labelling with iophenoxic acid

    DEFF Research Database (Denmark)

    Dersch, Julie Maria; Nguyen, Tam T. T. N.; Østergaard, Jesper;

    2015-01-01

    for quantification of HSA based on labelling the protein with iophenoxic acid (IPA) was developed. Samples were subjected to size exclusion chromatography (SEC) and detection by inductively coupled plasma mass spectrometry (ICP-MS) monitoring iodine and platinum. The iodine signal for the HSA-IPA complex showed...... was to develop a selective, quantitative method for determining albumin in plasma with the purpose of clarifying the fate of metal-based drugs in biological systems. The method can also be applied for determination of urine albumin, which is of relevance in diagnostics of kidney disease. A selective method...

  13. Investigation of binding mechanism of novel 8-substituted coumarin derivatives with human serum albumin and α-1-glycoprotein.

    Science.gov (United States)

    Yeggoni, Daniel Pushpa Raju; Manidhar, Darla Mark; Suresh Reddy, Cirandur; Subramanyam, Rajagopal

    2016-09-01

    Coumarin molecules have biological activities possessing lipid-controlling activity, anti-hepatitis C activity, anti-diabetic, anti-Parkinson activity, and anti-cancer activity. Here, we have presented an inclusive study on the interaction of 8-substituted-7-hydroxy coumarin derivatives (Umb-1/Umb-2) with α-1-glycoprotein (AGP) and human serum albumin (HSA) which are the major carrier proteins in the human blood plasma. Binding constants obtained from fluorescence emission data were found to be KUmb-1=3.1 ± .01 × 10(4) M(-1), KUmb-2 = 7 ± .01 × 10(4) M(-1), which corresponds to -6.1 and -6.5 kcal/mol of free energy for Umb-1 and Umb-2, respectively, suggesting that these derivatives bind strongly to HSA. Also these molecules bind to AGP with binding constants of KUmb-1-AGP=3.1 ± .01 × 10(3) M(-1) and KUmb-2-AGP = 4.6 ± .01 × 10(3) M(-1). Further, the distance, r between the donor (HSA) and acceptor (Umb-1/Umb-2) was calculated based on the Forster's theory of non-radiation energy transfer and the values were observed to be 1.14 and 1.29 nm in Umb-1-HSA and Umb-2-HSA system, respectively. The protein secondary structure of HSA was partially unfolded upon binding of Umb-1 and Umb-2. Furthermore, site displacement experiments with lidocaine, phenylbutazone (IIA), and ibuprofen (IIIA) proves that Umb derivatives significantly bind to subdomain IIIA of HSA which is further supported by docking studies. Furthermore, Umb-1 binds to LYS402 with one hydrogen bond distance of 2.8 Å and Umb-2 binds to GLU354 with one hydrogen bond at a distance of 2.0 Å. Moreover, these molecules are stabilized by hydrophobic interactions and hydrogen bond between the hydroxyl groups of carbon-3 of coumarin derivatives.

  14. Hyphenation of ionic liquid albumin glassy carbon biosensor or protein label-free sensor with differential pulse stripping voltammetry for interaction studies of human serum albumin with fenoprofen enantiomers.

    Science.gov (United States)

    Abd El-Hady, Deia; Youssef, Ahmed K

    2013-04-15

    A new biosensor or protein label-free sensor composed of 1-butyl-3-methylimidazolium hexafluorophosphates (BMIMPF6)-human serum albumin (HSA) film on glassy carbon electrode (GCE) was produced. Unfortunately, the native proteins themselves are often unstable in physiological conditions. Here, we introduced conjugation with ionic liquid (IL) such as BMIMPF6 which improved the stability and binding affinity of protein onto GCE. A rapid, simple and reliable method for the chiral discrimination and real time protein binding studies of fenoprofen enantiomers with HSA was developed by hyphenating ionic liquid albumin glassy carbon (ILAGC) biosensor with differential pulse cathodic stripping voltammetry under physiological conditions. The electrochemical behavior of chiral fenoprofen was monitored by cyclic voltammetry, from which large response was obtained from l-fenoprofen. The surface coverage of fenoprofen enantiomers was calculated by double potential-step chronocoulometry. The binding constants of chiral fenoprofen with HSA were estimated to be 3.2×10(5)±0.3 L mol(-1) and 0.8×10(4)±0.4 L mol(-1) for L- and D-fenoprofen, respectively giving acceptable precision (SD ≤ 0.4) and good agreement with the literature values. The competitive interactions of ibuprofen with fenoprofen enantiomers-HSA were studied giving a significant decreasing in the binding degrees of analytes to HSA. The reciprocal competitive experiments indicated that L-fenoprofen replaced D-fenoprofen from HSA. The proposed electrochemical biosensor holds great potential for chiral discrimination and real time binding studies of drugs with protein. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A novel quantification strategy of transferrin and albumin in human serum by species-unspecific isotope dilution laser ablation inductively coupled plasma mass spectrometry (ICP-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liuxing, E-mail: fenglx@nim.ac.cn; Zhang, Dan; Wang, Jun; Shen, Dairui; Li, Hongmei

    2015-07-16

    Highlights: • Species-unspecific ID-PAGE-LA-ICP-MS was used to quantify Alb and Tf in human serum. • Addition methods of species-unspecific {sup 34}S spike were evaluated. • Isotope change conditions were investigated to reach satisfactory “isotope equilibration”. • Human serum CRM (ERM-DA470k/IFCC) was used to validate the new arrangements. • The developed method offers potential for accurate quantification of protein by ID-PAGE-LA-ICP-MS. - Abstract: Species-specific (SS) isotope dilution analysis with gel electrophoresis (GE)-laser ablation (LA)-ICP-MS is a promising technique for the quantification of particular metal-binding proteins in biological samples. However, unavailable isotopically enriched spike and metal losses in GE separation are main limitations for SS-isotope dilution PAGE-LA-ICP-MS. In this study, we report for the first time the absolute quantification of transferrin (Tf) and albumin (Alb) in human serum by non-denaturing (native) GE combined with species-unspecific isotope dilution mass spectrometry (IDMS). In order to achieve a homogeneous distribution of both protein and isotope-enriched spike (simulated isotope equilibration), immersing the protein strips with {sup 34}S spike solution after gel electrophoresis was demonstrated to be an effective way of spike addition. Furthermore, effects of immersion time and {sup 34}S spike concentration were investigated to obtain optimal conditions of the post-electrophoresis isotope dilution method. The relative mass of spike and ablated sample (m{sub sp}/m{sub sam}) in IDMS equation was calculated by standard Tf and Alb proteins, which could be applied to the quantification of Tf and Alb in ERM-DA470k/IFCC for method confirmation. The results were in agreement with the certified value with good precision and small uncertainty (1.5–3%). In this method, species-specific spike protein is not necessary and the integrity of the heteroatom-protein could be maintained in sample preparation

  16. Flocculation of diatomite by methylated egg albumin.

    Science.gov (United States)

    Seki, Hideshi; Suzuki, Akira

    2003-07-01

    A common and inexpensive protein, egg albumin, was applied to the solid-liquid separation or flocculation of diatomite. Egg albumin was methylated in a 0.05 M HCl methyl alcohol solution at room temperature. About 90% of the carboxylic groups of egg albumin could be methylated within 24 h. The adsorption of egg albumin onto diatomite at pH 6.8 was remarkably enhanced by methylation. The adsorption constant of methylated egg albumin to diatomite at 30 degrees C was about 100-fold larger than that of native egg albumin; however, the adsorption constant of methylated egg albumin decreased to about 1/100 with temperature decreasing from 30 to 6 degrees C. The saturated adsorption amount of egg albumin was also increased by the methylation. The flocculating ability of methylated egg albumin was examined with a diatomite suspension at 6 and 30 degrees C in the pH range from pH 2 to 11. The diatomite suspension was effectively flocculated by the addition of small amounts of methylated egg albumin (only 0.5-1 wt% against diatomite) over a wide pH range from pH 3 to 10.

  17. An FCS study of unfolding and refolding of CPM-labeled human serum albumin: role of ionic liquid.

    Science.gov (United States)

    Sasmal, Dibyendu Kumar; Mondal, Tridib; Sen Mojumdar, Supratik; Choudhury, Aparajita; Banerjee, Rajat; Bhattacharyya, Kankan

    2011-11-10

    The effect of a room temperature ionic liquid (RTIL) on the conformational dynamics of a protein, human serum albumin (HSA), is studied by fluorescence correlation spectroscopy (FCS). For this, the protein was covalently labeled by a fluorophore, 7-dimethylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM). On addition of a RTIL ([pmim][Br]) to the native protein, the diffusion coefficient (D(t)) decreases and the hydrodynamic radius (R(h)) increases. This suggests that the RTIL ([pmim][Br]) acts as a denaturant when the protein is in the native state. However, addition of [pmim][Br] to a protein denatured by GdnHCl causes an increases in D(t) and decrease in R(h). This suggests that in the presence of GdnHCl addition of RTIL helps the protein to refold. In the native state, the conformational dynamics of protein is described by three distinct time constants: ~3.6 ± 0.7, ~29 ± 4.5, and 133 ± 23 μs. The faster components (~3.6 ± 0.7 and ~29 ± 4.5 μs) are ascribed to chain dynamics of the protein, while the slowest component (133 μs) is responsible for interchain interaction or concerted motion. On addition of [pmim][Br], the conformational dynamics of HSA becomes slower (~5.1 ± 1, ~43.5 ± 2.8, and ~311 ± 2.3 μs in the presence of 1.5 M [pmim][Br]). The time constants for the protein denatured by 6 M GdnHCl are 3.2 ± 0.4, 34 ± 6, and 207 ± 38 μs. When 1.5 M [pmim][Br] is added to the denatured protein (in 6 M GdnHCl), the time constants become ~5 ± 1, ~41 ± 10, and ~230 ± 45 μs. The lifetime histogram shows that, on addition of GdnHCl to HSA, the contribution of the shorter lifetime component decreases and vanishes at 6 M GdnHCl. The shorter lifetime component immediately reappears after addition of RTIL to unfolded HSA. This suggests recoiling of the unfolded protein by RTIL.

  18. Inactivation of Zika virus by solvent/detergent treatment of human plasma and other plasma-derived products and pasteurization of human serum albumin.

    Science.gov (United States)

    Kühnel, Denis; Müller, Sebastian; Pichotta, Alexander; Radomski, Kai Uwe; Volk, Andreas; Schmidt, Torben

    2017-03-01

    In 2016 the World Health Organization declared the mosquito-borne Zika virus (ZIKV) a "public health emergency of international concern." ZIKV is a blood-borne pathogen, which therefore causes concerns regarding the safety of human plasma-derived products due to potential contamination of the blood supply. This study investigated the effectiveness of viral inactivation steps used during the routine manufacturing of various plasma-derived products to reduce ZIKV infectivity. Human plasma and intermediates from the production of various plasma-derived products were spiked with ZIKV and subjected to virus inactivation using the identical techniques (either solvent/detergent [S/D] treatment or pasteurization) and conditions used for the actual production of the respective products. Samples were taken and the viral loads measured before and after inactivation. After S/D treatment of spiked intermediates of the plasma-derived products Octaplas(LG), Octagam, and Octanate, the viral loads were below the limit of detection in all cases. The mean log reduction factor (LRF) was at least 6.78 log for Octaplas(LG), at least 7.00 log for Octagam, and at least 6.18 log for Octanate after 60, 240, and 480 minutes of S/D treatment, respectively. For 25% human serum albumin (HSA), the mean LRF for ZIKV was at least 7.48 log after pasteurization at 60°C for 120 minutes. These results demonstrate that the commonly used virus inactivation processes utilized during the production of human plasma and plasma-derived products, namely, S/D treatment or pasteurization, are effective for inactivation of ZIKV. © 2016 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  19. Determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin

    Science.gov (United States)

    Ozbek, Nil; Baysal, Asli

    2017-04-01

    Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.

  20. RHEOLOGICAL ASPECTS OF MUCIN-CONTAINING SOLUTIONS AND SALIVA SUBSTITUTES

    NARCIS (Netherlands)

    HOLTERMAN, HJ; WATERMAN, HA; BLOM, C; SGRAVENMADE, FJ; Mellema, J.

    1992-01-01

    In this study rheological properties of aqueous solutions of mucin, albumin and mucin-albumin have been investigated in search for saliva substitutes. They were compared with commercially available saliva substitutes on the one hand and natural human saliva on the other hand. For the latter a few me

  1. Economic evaluation of human albumin use in patients with nephrotic syndrome in four Brazilian public hospitals: pharmacoeconomic study.

    Science.gov (United States)

    Toledo, Leonardo Augusto Kister de; Noblat, Antônio Carlos Beisl; Nascimento, Harrison Floriano do; Noblat, Lúcia de Araújo Costa Beisl

    2017-01-01

    In 2004, the Brazilian National Health Surveillance Agency (Agência Nacional de Vigilância Sanitária, ANVISA) published a resolution establishing guidelines for albumin use. Although the published data do not indicate any definitive conclusions about the benefits of albumin use in patients with nephrotic syndrome (NS), the guidelines recommend this procedure only in cases of edema that is refractory to use of diuretics. The aim here was to analyze albumin use among patients with nephrotic syndrome. Pharmacoeconomic study conducted in four large public referral hospitals for nephrology services in northeastern Brazil. Cost-effectiveness and cost-utility economic evaluations were performed on a concurrent cohort of patients with nephrotic syndrome, who were divided into two groups according to compliance or noncompliance with the guidelines. Quality-of-life data were obtained from the SF36 and CHQ-PF50 questionnaires. This study enrolled 109 patients (60% adults and 56% women); 41.3% were using albumin in accordance with the guidelines. The weight, diuresis and fluid balance parameters were more cost-effective for patients who adhered to the guidelines. Regarding days of hospitalization avoided, the incremental ratio showed a daily cost of R$ 55.33, and guideline-compliant patients were hospitalized for five days or fewer. The quality of life improved by 8%, and savings of R$ 3,458.13/QALY (quality-adjusted life year) for the healthcare system were generated through guideline compliance. The economic analyses of this study demonstrated that there were greater cost benefits for patients whose treatment followed the guidelines.

  2. SDS-binding assay based on tyrosine fluorescence as a tool to determine binding properties of human serum albumin in blood plasma

    Science.gov (United States)

    Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander

    2016-04-01

    Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.

  3. Spectroscopic interaction study of human serum albumin and human hemoglobin with Mersilea quadrifolia leaves extract mediated silver nanoparticles having antibacterial and anticancer activity

    Science.gov (United States)

    Maji, Anukul; Beg, Maidul; Mandal, Amit Kumar; Das, Somnath; Jha, Pradeep K.; Kumar, Anoop; Sarwar, Shamila; Hossain, Maidul; Chakrabarti, Pinak

    2017-08-01

    This study looks into a safe, proficient and low-cost way for the preparation of novel silver nanoparticles by using 5% aqueous leaves extract of a medicinal plant, Marsilea quadrifolia (family: Marsileaceae) without using any external reducing and stabilizing agents. The synthesized AgNPs showed maximum UV-Vis absorbance at 435 nm due to surface plasmon resonance (SPR). The average diameter (∼22.5 nm) of AgNPs was measured from TEM analysis and was also supported by FE-SEM. The existence of a silver signal in EDX spectra supported the AgNPs formation and negative zeta potential value (-18.7 mV) which suggested its stability. FT-IR spectroscopic analysis showed that the functional groups like sbnd Osbnd H, sbnd Nsbnd H and sbnd Cdbnd O were responsible for the synthesis of AgNPs. The antibacterial activity of the AgNPs was tested against E. coli ATCC 25922. The anticancer potential of AgNPs was also assessed using two different cell lines, such as MCF-7 and HeLa. The interaction study of AgNPs with human serum albumin (HSA) and human hemoglobin (Hb) was performed by means of UV-Vis, fluorescence spectroscopy, Circular dichroism (CD) and zeta potential measurement. More negative zeta potential values of AgNPs-HSA/Hb (-21.1/-19.5 mV) complexes than AgNPs (-18.7 mV) indicated corresponding stability of bio-conjugates. The basic structure of HSA/Hb remained unchanged and its secondary structure was slightly changed upon interaction with the AgNPs concluded from Circular dichroism. So, it can be predicted that this AgNPs may be applied in the medical field.

  4. Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy.

    Science.gov (United States)

    Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar

    2013-07-01

    The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins.

  5. Effect of surface modification of poly(lactic acid) by low-pressure ammonia plasma on adsorption of human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayuthaya Road, Bangkok 10400 (Thailand); Boonyawan, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayuthaya Road, Bangkok 10400 (Thailand); Chaiwong, C., E-mail: cchwng@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayuthaya Road, Bangkok 10400 (Thailand)

    2014-08-15

    Highlights: • Poly(lactic acid) (PLA) films were treated by low-pressure ammonia plasma. • Human serum albumin (HSA) attachment on the treated PLA was reduced. • The treated PLA films were characterized. • Hydrophilicity enhancement due to polar groups introduced was the reason. • Reduced HSA adhesion could promote cell attachment on PLA for biomedicine. - Abstract: The final goal of the study was to promote understanding of mechanisms involved in cell attachment on biomedical polymer poly(lactic acid) (PLA). As the cell attachment on the material surface was preceded by blood protein adsorption which would critically affect subsequent cell adhesion, for the clinic application purpose, human serum albumin (HSA) was used in the investigation on its adsorption on PLA, which was however treated by low-pressure ammonia (NH{sub 3}) plasma. The NH{sub 3}-plasma-treated PLA was found to adsorb less HSA than the untreated PLA. The PLA was characterized using various techniques such as atomic force microscopy, contact angle and surface energy analysis and x-ray photoelectron spectroscopy. All of the characterization results indicated that due to NH{sub 3}-plasma-induced polar groups the PLA enhanced its hydrophilicity which in turn inhibited the HSA adsorption. The decreased HSA adsorption would consequently increase the cell attachment because of the cell adhesion barrier reduced.

  6. Conformational changes in human serum albumin studied by fluorescence and absorption spectroscopy. Distance measurements as a function of pH and fatty acids

    DEFF Research Database (Denmark)

    Honoré, B; Pedersen, A O

    1989-01-01

    pH- and fatty acid-induced conformational changes in human serum albumin were investigated by fluorescence-energy transfer, determining the distance between Trp-214 and bound bilirubin at 25 degrees C. This distance changes significantly with the pH, being 2.52 +/- 0.01 nm at pH 6, 2.31 +/- 0.04 ...... chromophores. The contraction of the protein carrying long-chain saturated fatty acids is even more pronounced at pH 9. Udgivelsesdato: 1989-Feb-15......pH- and fatty acid-induced conformational changes in human serum albumin were investigated by fluorescence-energy transfer, determining the distance between Trp-214 and bound bilirubin at 25 degrees C. This distance changes significantly with the pH, being 2.52 +/- 0.01 nm at pH 6, 2.31 +/- 0.04 nm...... at pH 9, 2.13 +/- 0.07 nm at pH 11.0 and 2.77 nm at pH 11.9. The influence of different fatty acids on the distance was also determined. At pH 7.4 medium-chain fatty acids seem to increase this distance, whereas long-chain fatty acids, at low concentrations, decrease the distance between the two...

  7. Acetylcholinesterase Reactivators (HI-6, Obidoxime, Trimedoxime, K027, K075, K127, K203, K282: Structural Evaluation of Human Serum Albumin Binding and Absorption Kinetics

    Directory of Open Access Journals (Sweden)

    Filip Zemek

    2013-08-01

    Full Text Available Acetylcholinesterase (AChE reactivators (oximes are compounds predominantly targeting the active site of the enzyme. Toxic effects of organophosphates nerve agents (OPNAs are primarily related to their covalent binding to AChE and butyrylcholinesterase (BChE, critical detoxification enzymes in the blood and in the central nervous system (CNS. After exposure to OPNAs, accumulation of acetylcholine (ACh overstimulates receptors and blocks neuromuscular junction transmission resulting in CNS toxicity. Current efforts at treatments for OPNA exposure are focused on non-quaternary reactivators, monoisonitrosoacetone oximes (MINA, and diacylmonoxime reactivators (DAM. However, so far only quaternary oximes have been approved for use in cases of OPNA intoxication. Five acetylcholinesterase reactivator candidates (K027, K075, K127, K203, K282 are presented here, together with pharmacokinetic data (plasma concentration, human serum albumin binding potency. Pharmacokinetic curves based on intramuscular application of the tested compounds are given, with binding information and an evaluation of structural relationships. Human Serum Albumin (HSA binding studies have not yet been performed on any acetylcholinesterase reactivators, and correlations between structure, concentration curves and binding are vital for further development. HSA bindings of the tested compounds were 1% (HI-6, 7% (obidoxime, 6% (trimedoxime, and 5%, 10%, 4%, 15%, and 12% for K027, K075, K127, K203, and K282, respectively.

  8. Evaluation of the biointeraction of colorant flavazin with human serum albumin: insights from multiple spectroscopic studies, in silico docking and molecular dynamics simulation.

    Science.gov (United States)

    Peng, Wei; Ding, Fei; Jiang, Yu-Ting; Sun, Ying; Peng, Yu-Kui

    2014-06-01

    Azo compounds are the largest chemical class of agents frequently used as colorants in a variety of consumer goods and farm produce; therefore, they may become a hazard to public health, because numerous azo compounds and their metabolites are proven to be carcinogens and mutagens. Herein several qualitative and quantitative analytical techniques, including steady state and time-resolved fluorescence, circular dichroism (CD), computer-aided molecular docking as well as molecular dynamics simulation, were employed to ascertain the molecular recognition between the principal vehicle of ligands in human plasma, albumin and a model azo compound, flavazin. The results show that the albumin spatial structure was changed in the presence of flavazin with a decrease of α-helix suggesting partial protein destabilization/self-regulation, as derived from steady state fluorescence, far-UV CD and detailed analyses of three-dimensional fluorescence spectra. Time-resolved fluorescence further evinced that the recognition mechanism is related to albumin-flavazin adduct formation with an association intensity of 10(4) M(-1), and the driving forces were found to be chiefly π-π interactions, hydrophobic interactions and hydrogen bonds. The specific binding domain of flavazin in protein was defined from molecular docking; subdomain IIA (Sudlow's site I) was found to retain high affinity for the ligand flavazin. This finding corroborates the results of competitive ligand displacement experiments, a hydrophobic 8-anilino-1-naphthalenesulfonic acid probe study and protein denaturation results, placing flavazin at the warfarin-azapropazone site. Based on molecular dynamics simulation, it can be said with certainty that the results of molecular docking are credible, and the key amino acid residues participating in the molecular recognition of flavazin by protein are clearly Trp-214, Arg-222 and Lys-436. The outcomes presented here will help to further comprehend the molecular recognition

  9. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin.

    Science.gov (United States)

    Gill, Katherine L; Houston, J Brian; Galetin, Aleksandra

    2012-04-01

    Previous studies have shown the importance of the addition of albumin for characterization of hepatic glucuronidation in vitro; however, no reports exist on the effects of albumin on renal or intestinal microsomal glucuronidation assays. This study characterized glucuronidation clearance (CL(int, UGT)) in human kidney, liver, and intestinal microsomes in the presence and absence of bovine serum albumin (BSA) for seven drugs with differential UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B7 specificity, namely, diclofenac, ezetimibe, gemfibrozil, mycophenolic acid, naloxone, propofol, and telmisartan. The impact of renal CL(int, UGT) on accuracy of in vitro-in vivo extrapolation (IVIVE) of glucuronidation clearance was investigated. Inclusion of 1% BSA for acidic drugs and 2% for bases/neutral drugs in incubations was found to be suitable for characterization of CL(int, UGT) in different tissues. Although BSA increased CL(int, UGT) in all tissues, the extent was tissue- and drug-dependent. Scaled CL(int, UGT) in the presence of BSA ranged from 2.22 to 207, 0.439 to 24.4, and 0.292 to 23.8 ml · min(-1) · g tissue(-1) in liver, kidney, and intestinal microsomes. Renal CL(int, UGT) (per gram of tissue) was up to 2-fold higher in comparison with that for liver for UGT1A9 substrates; in contrast, CL(int, UGT) for UGT2B7 substrates represented approximately one-third of hepatic estimates. Scaled renal CL(int, UGT) (in the presence of BSA) was up to 30-fold higher than intestinal glucuronidation for the drugs investigated. Use of in vitro data obtained in the presence of BSA and inclusion of renal clearance improved the IVIVE of glucuronidation clearance, with 50% of drugs predicted within 2-fold of observed values. Characterization and consideration of kidney CL(int, UGT) is particularly important for UGT1A9 substrates.

  10. A combined spectroscopic and molecular docking study on site selective binding interaction of Toluidine blue O with Human and Bovine serum albumins

    Energy Technology Data Exchange (ETDEWEB)

    Selva Sharma, Arumugam [Department of Chemistry, Bharathiar University, Coimbatore 641046 (India); Anandakumar, Shanmugam [Department of Bioinformatics, Bharathiar University, Coimbatore 641046 (India); Ilanchelian, Malaichamy, E-mail: chelian73@yahoo.com [Department of Chemistry, Bharathiar University, Coimbatore 641046 (India)

    2014-07-01

    In the present investigation the interaction of a biologically active photodynamic therapeutic agent Toluidine blue O (TBO) with Serum albumins viz Human serum albumin (HSA) and Bovine serum albumin (BSA) was studied using absorption, emission, circular dichroism spectroscopy and molecular docking experiments. The emission titration experiments between HSA/BSA and TBO revealed the existence of strong interactions between TBO and the proteins. The site competitive experiment of HSA and BSA showed that the primary binding site of TBO is located in site I of HSA/BSA involving hydrophobic, hydrogen bonding and electrostatic interaction. To ascertain the results of site competitive experiments, molecular docking was utilized to characterize the binding models of TBO–HSA/BSA complexes. From the molecular docking studies, free energy calculations were undertaken to examine the energy contributions and the role of various amino acid residues of HSA/BSA in TBO binding. The existence of Forster Resonance Energy Transfer (FRET) between the ligand and the protein was utilized to calculate the donor–acceptor distance of TBO and protein. The TBO induced conformational changes of HSA/BSA was established using synchronous emission, three dimensional emission and circular dichroism studies. - Highlights: • Site selective binding interaction of TBO with HSA and BSA were investigated. • TBO quenches the intrinsic fluorescence of HSA/BSA by static quenching process. • Computational studies of TBO with HSA/BSA substantiate the experimental findings. • 3D and CD spectral studies of TBO–HSA/BSA revealed structural changes in protein. • The distance (r) between TBO and HSA/BSA were estimated from FRET theory.

  11. Crystallographic analysis of the ternary complex of octanoate and N-acetyl-l-methionine with human serum albumin reveals the mode of their stabilizing interactions.

    Science.gov (United States)

    Kawai, Akito; Chuang, Victor T G; Kouno, Yosuke; Yamasaki, Keishi; Miyamoto, Shuichi; Anraku, Makoto; Otagiri, Masaki

    2017