WorldWideScience

Sample records for human airways smooth

  1. Human eosinophil–airway smooth muscle cell interactions

    Directory of Open Access Journals (Sweden)

    J. Margaret Hughes

    2000-01-01

    Full Text Available Eosinophils are present throughout the airway wall of asthmatics. The nature of the interaction between human airway smooth muscle cells (ASMC and eosinophils was investigated in this study. We demonstrated, using light microscopy, that freshly isolated eosinophils from healthy donors rapidly attach to ASMC in vitro. Numbers of attached eosinophils were highest at 2 h, falling to 50% of maximum by 20 h. Eosinophil attachment at 2 h was reduced to 72% of control by anti-VCAM-1, and to 74% at 20 h by anti-ICAM-1. Pre-treatment of ASMC for 24 h with TNF-α, 10 nM, significantly increased eosinophil adhesion to 149 and 157% of control after 2 and 20 h. These results provide evidence that eosinophil interactions with ASMC involve VCAM-1 and ICAM-1 and are modulated by TNF-α.

  2. Mechanisms of Cigarette Smoke Effects on Human Airway Smooth Muscle.

    Directory of Open Access Journals (Sweden)

    Mark E Wylam

    Full Text Available Cigarette smoke contributes to or exacerbates airway diseases such as asthma and COPD, where airway hyperresponsiveness and airway smooth muscle (ASM proliferation are key features. While factors such as inflammation contribute to asthma in part by enhancing agonist-induced intracellular Ca(2+ ([Ca(2+]i responses of ASM, the mechanisms by which cigarette smoke affect ASM are still under investigation. In the present study, we tested the hypothesis that cigarette smoke enhances the expression and function of Ca(2+ regulatory proteins leading to increased store operated Ca(2+ entry (SOCE and cell proliferation. Using isolated human ASM (hASM cells, incubated in the presence and absence cigarette smoke extract (CSE we determined ([Ca(2+]i responses and expression of relevant proteins as well as ASM proliferation, reactive oxidant species (ROS and cytokine generation. CSE enhanced [Ca(2+]i responses to agonist and SOCE: effects mediated by increased expression of TRPC3, CD38, STIM1, and/or Orai1, evident by attenuation of CSE effects when siRNAs against these proteins were used, particularly Orai1. CSE also increased hASM ROS generation and cytokine secretion. In addition, we found in the airways of patients with long-term smoking history, TRPC3 and CD38 expression were significantly increased compared to life-long never-smokers, supporting the role of these proteins in smoking effects. Finally, CSE enhanced hASM proliferation, an effect confirmed by upregulation of PCNA and Cyclin E. These results support a critical role for Ca(2+ regulatory proteins and enhanced SOCE to alter airway structure and function in smoking-related airway disease.

  3. Regulation of human airway smooth muscle cell migration and relevance to asthma.

    Science.gov (United States)

    Salter, Brittany; Pray, Cara; Radford, Katherine; Martin, James G; Nair, Parameswaran

    2017-08-16

    Airway remodelling is an important feature of asthma pathogenesis. A key structural change inherent in airway remodelling is increased airway smooth muscle mass. There is emerging evidence to suggest that the migration of airway smooth muscle cells may contribute to cellular hyperplasia, and thus increased airway smooth muscle mass. The precise source of these cells remains unknown. Increased airway smooth muscle mass may be collectively due to airway infiltration of myofibroblasts, neighbouring airway smooth muscle cells in the bundle, or circulating hemopoietic progenitor cells. However, the relative contribution of each cell type is not well understood. In addition, although many studies have identified pro and anti-migratory agents of airway smooth muscle cells, whether these agents can impact airway remodelling in the context of human asthma, remains to be elucidated. As such, further research is required to determine the exact mechanism behind airway smooth muscle cell migration within the airways, how much this contributes to airway smooth muscle mass in asthma, and whether attenuating this migration may provide a therapeutic avenue for asthma. In this review article, we will discuss the current evidence with respect to the regulation of airway smooth muscle cell migration in asthma.

  4. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection

    NARCIS (Netherlands)

    Oliver, Brian G G; Johnston, Sebastian L; Baraket, Melissa; Burgess, Janette K; King, Nicholas J C; Roth, Michael; Lim, Sam; Black, Judith L

    2006-01-01

    BACKGROUND: Exacerbations of asthma are associated with viral respiratory tract infections, of which rhinoviruses (RV) are the predominant virus type. Airway smooth muscle is important in asthma pathogenesis, however little is known about the potential interaction of RV and human airway smooth muscl

  5. Cigarette Smoke and Estrogen Signaling in Human Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Venkatachalem Sathish

    2015-06-01

    Full Text Available Aims: Cigarette smoke (CS in active smokers and second-hand smoke exposure exacerbate respiratory disorders such as asthma and chronic bronchitis. While women are known to experience a more asthmatic response to CS than emphysema in men, there is limited information on the mechanisms of CS-induced airway dysfunction. We hypothesize that CS interferes with a normal (protective bronchodilatory role of estrogens, thus worsening airway contractility. Methods: We tested effects of cigarette smoke extract (CSE on 17β-estradiol (E2 signaling in enzymatically-dissociated bronchial airway smooth muscle (ASM obtained from lung samples of non-smoking female patients undergoing thoracic surgery. Results: In fura-2 loaded ASM cells, CSE increased intracellular calcium ([Ca2+]i responses to 10µM histamine. Acute exposure to physiological concentrations of E2 decreased [Ca2+]i responses. However, in 24h exposed CSE cells, although expression of estrogen receptors was increased, the effect of E2 on [Ca2+]i was blunted. Acute E2 exposure also decreased store-operated Ca2+ entry and inhibited stromal interaction molecule 1 (STIM1 phosphorylation: effects blunted by CSE. Acute exposure to E2 increased cAMP, but less so in 24h CSE-exposed cells. 24h CSE exposure increased S-nitrosylation of ERα. Furthermore, 24h CSE-exposed bronchial rings showed increased bronchoconstrictor agonist responses that were not reduced as effectively by E2 compared to non-CSE controls. Conclusion: These data suggest that CS induces dysregulation of estrogen signaling in ASM, which could contribute to increased airway contractility in women exposed to CS.

  6. Airway Epithelium Stimulates Smooth Muscle Proliferation

    OpenAIRE

    Malavia, Nikita K.; Raub, Christopher B.; Mahon, Sari B.; Brenner, Matthew; Reynold A Panettieri; George, Steven C.

    2009-01-01

    Communication between the airway epithelium and stroma is evident during embryogenesis, and both epithelial shedding and increased smooth muscle proliferation are features of airway remodeling. Hence, we hypothesized that after injury the airway epithelium could modulate airway smooth muscle proliferation. Fully differentiated primary normal human bronchial epithelial (NHBE) cells at an air–liquid interface were co-cultured with serum-deprived normal primary human airway smooth muscle cells (...

  7. TRPC3 Regulates Release of Brain-Derived Neurotrophic Factor From Human Airway Smooth Muscle

    OpenAIRE

    Vohra, Pawan K.; Thompson, Michael A.; Sathish, Venkatachalem; Kiel, Alexander; Jerde, Calvin; Pabelick, Christina M.; Singh, Brij B.; Prakash, Y. S.

    2013-01-01

    Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca2+ signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca2+ entry (SOCE; including in ASM) and secretion of factors suc...

  8. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration.

    Science.gov (United States)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping; Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (KATP) channels have been identified in ASMCs. Mount evidence has suggested that KATP channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K(+) channels triggers K(+) efflux, which leading to membrane hyperpolarization, preventing Ca(2+)entry through closing voltage-operated Ca(2+) channels. Intracellular Ca(2+) is the most important regulator of muscle contraction, cell proliferation and migration. K(+) efflux decreases Ca(2+) influx, which consequently influences ASMCs proliferation and migration. As a KATP channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2'-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca(2+)/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective KATP channel antagonist. These findings provide a strong evidence to support that Ipt antagonize the proliferating and migrating effects of PDGF-BB on

  9. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  10. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection

    Directory of Open Access Journals (Sweden)

    King Nicholas JC

    2006-05-01

    Full Text Available Abstract Background Exacerbations of asthma are associated with viral respiratory tract infections, of which rhinoviruses (RV are the predominant virus type. Airway smooth muscle is important in asthma pathogenesis, however little is known about the potential interaction of RV and human airway smooth muscle cells (HASM. We hypothesised that rhinovirus induction of inflammatory cytokine release from airway smooth muscle is augmented and differentially regulated in asthmatic compared to normal HASM cells. Methods HASM cells, isolated from either asthmatic or non-asthmatic subjects, were infected with rhinovirus. Cytokine production was assayed by ELISA, ICAM-1 cell surface expression was assessed by FACS, and the transcription regulation of IL-6 was measured by luciferase activity. Results RV-induced IL-6 release was significantly greater in HASM cells derived from asthmatic subjects compared to non-asthmatic subjects. This response was RV specific, as 5% serum- induced IL-6 release was not different in the two cell types. Whilst serum stimulated IL-8 production in cells from both subject groups, RV induced IL-8 production in only asthmatic derived HASM cells. The transcriptional induction of IL-6 was differentially regulated via C/EBP in the asthmatic and NF-κB + AP-1 in the non-asthmatic HASM cells. Conclusion This study demonstrates augmentation and differential transcriptional regulation of RV specific innate immune response in HASM cells derived from asthmatic and non-asthmatics, and may give valuable insight into the mechanisms of RV-induced asthma exacerbations.

  11. Smooth muscle in human bronchi is disposed to resist airway distension.

    Science.gov (United States)

    Gazzola, Morgan; Henry, Cyndi; Couture, Christian; Marsolais, David; King, Gregory G; Fredberg, Jeffrey J; Bossé, Ynuk

    2016-07-15

    Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation.

  12. GM-CSF production from human airway smooth muscle cells is potentiated by human serum

    Directory of Open Access Journals (Sweden)

    Maria B. Sukkar

    2000-01-01

    Full Text Available Recent evidence suggests that airway smooth muscle cells (ASMC actively participate in the airway inflammatory process in asthma. Interleukin–1β (IL–1β and tumour necrosis factor–α (TNF–α induce ASMC to release inflammatory mediators in vitro. ASMC mediator release in vivo, however, may be influenced by features of the allergic asthmatic phenotype. We determined whether; (1 allergic asthmatic serum (AAS modulates ASMC mediator release in response to IL–1β and TNF–α, and (2 IL–1β/TNF–α prime ASMC to release mediators in response to AAS. IL–5 and GMCSF were quantified by ELISA in culture supernatants of; (1 ASMC pre-incubated with either AAS, non-allergic non-asthmatic serum (NAS or MonomedTM (a serum substitute and subsequently stimulated with IL–1β and TNF–α and (2 ASMC stimulated with IL–1β/TNF–α and subsequently exposed to either AAS, NAS or MonomedTM. IL-1g and TNF–α induced GM-CSF release in ASMC pre-incubated with AAS was not greater than that in ASMC pre-incubated with NAS or MonomedTM. IL–1β and TNF–α, however, primed ASMC to release GM-CSF in response to human serum. GM-CSF production following IL–1β/TNF–α and serum exposure (AAS or NAS was significantly greater than that following IL–1β /TNF–α and MonomedTM exposure or IL–1β/TNF–α exposure only. Whilst the potentiating effects of human serum were not specific to allergic asthma, these findings suggest that the secretory capacity of ASMC may be up-regulated during exacerbations of asthma, where there is evidence of vascular leakage.

  13. Regulation of actin dynamics by wnt-5a : Implications for human airway smooth muscle contraction

    NARCIS (Netherlands)

    Koopmans, Tim; Kumawat, Kuldeep; Menzen, Mark; Halayko, Andrew; Gosens, Reinoud

    2016-01-01

    An important pathophysiological feature of asthma is airway hyperresponsiveness (AHR), characterized by exaggerated bronchoconstriction in which the airway smooth muscle (ASM) is fundamentally involved. How the ASM in asthmatics differs from that in non-asthmatics is a current focus for research. We

  14. Pharmacology of airway smooth muscle proliferation

    NARCIS (Netherlands)

    Gosens, Reinoud; Roscioni, Sara S.; Dekkers, Bart G. J.; Pera, Tonio; Schmidt, Martina; Schaafsma, Dedmer; Zaagsma, Johan; Meurs, Herman

    2008-01-01

    Airway smooth muscle thickening is a pathological feature that contributes significantly to airflow limitation and airway hyperresponsiveness in asthma. Ongoing research efforts aimed at identifying the mechanisms responsible for the increased airway smooth muscle mass have indicated that hyperplasi

  15. PAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasthmatic airway smooth muscle cells

    NARCIS (Netherlands)

    Chambers, Linda S.; Black, Judith L.; Ge, Qi; Carlin, Stephen M.; Au, Wendy W.; Poniris, Maree; Thompson, Joanne; Johnson, Peter R.; Burgess, Janette K.

    2003-01-01

    The protease-activated receptor-2 (PAR-2) is present on human airway smooth muscle (ASM) cells and can be activated by mast cell tryptase, trypsin, or an activating peptide (AP). Trypsin induced significant increases in PGE 2 release from human ASM cells after 6 and 24 h and also induced cyclooxygen

  16. PAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasthmatic airway smooth muscle cells

    NARCIS (Netherlands)

    Chambers, Linda S; Black, Judith L; Ge, Qi; Carlin, Stephen M; Au, Wendy W; Poniris, Maree; Thompson, Joanne; Johnson, Peter R; Burgess, Janette K

    2003-01-01

    The protease-activated receptor-2 (PAR-2) is present on human airway smooth muscle (ASM) cells and can be activated by mast cell tryptase, trypsin, or an activating peptide (AP). Trypsin induced significant increases in PGE2 release from human ASM cells after 6 and 24 h and also induced cyclooxygena

  17. Brain-derived neurotrophic factor enhances calcium regulatory mechanisms in human airway smooth muscle.

    Directory of Open Access Journals (Sweden)

    Amard J Abcejo

    Full Text Available Neurotrophins (NTs, which play an integral role in neuronal development and function, have been found in non-neuronal tissue (including lung, but their role is still under investigation. Recent reports show that NTs such as brain-derived neurotrophic factor (BDNF as well as NT receptors are expressed in human airway smooth muscle (ASM. However, their function is still under investigation. We hypothesized that NTs regulate ASM intracellular Ca(2+ ([Ca(2+](i by altered expression of Ca(2+ regulatory proteins. Human ASM cells isolated from lung samples incidental to patient surgery were incubated for 24 h (overnight in medium (control or 1 nM BDNF in the presence vs. absence of inhibitors of signaling cascades (MAP kinases; PI3/Akt; NFκB. Measurement of [Ca(2+](i responses to acetylcholine (ACh and histamine using the Ca(2+ indicator fluo-4 showed significantly greater responses following BDNF exposure: effects that were blunted by pathway inhibitors. Western analysis of whole cell lysates showed significantly higher expression of CD38, Orai1, STIM1, IP(3 and RyR receptors, and SERCA following BDNF exposure, effects inhibited by inhibitors of the above cascades. The functional significance of BDNF effects were verified by siRNA or pharmacological inhibition of proteins that were altered by this NT. Overall, these data demonstrate that NTs activate signaling pathways in human ASM that lead to enhanced [Ca(2+](i responses via increased regulatory protein expression, thus enhancing airway contractility.

  18. Olfactory receptors modulate physiological processes in human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Benjamin Kalbe

    2016-08-01

    Full Text Available Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases.

  19. Contribution of protein kinase C to passively sensitized human airway smooth muscle cells proliferation

    Institute of Scientific and Technical Information of China (English)

    许淑云; 徐永健; 张珍祥; 倪望; 陈士新

    2004-01-01

    Background Airway smooth muscle proliferation plays an important role in airway remodeling in asthma. But little is known about the intracellular signal pathway in the airway smooth muscle cell proliferation in asthma. The objective of this paper is to investigate the contribution of protein kinase C (PKC) and its alpha isoform to passively sensitized human airway smooth muscle cells (HASMCs) proliferation.Methods HASMCs in culture were passively sensitized with 10% serum from asthmatic patients, with non-asthmatic human serum treated HASMCs used as the control. The proliferation of HASMCs was examined by cell cycle analysis, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyltetrazoliumbromide (MTT) colorimetric assay and proliferating cell nuclear antigen (PCNA) immunofluorescence staining. The effect of PKC agonist phorbol 12-myristate 13-acetate (PMA) and PKC inhibitor Ro-31-8220 on the proliferation of HASMCs exposed to human asthmatic serum and non-asthmatic control serum was also examined by the same methods. The protein and mRNA expression of PKC-α in passively sensitized HASMCs were detected by immunofluorescence staining and reverse transcription-polymerase chain reaction.Results The percentage of S phase, absorbance (value A) and the positive percentage of PCNA protein expression in HASMCs passively sensitized with asthmatic serum were (16.30±2.68)%, 0.430±0.060 and (63.4±7.4)% respectively, which were significantly increased compared with HASMCs treated with control serum [(10.01±1.38)%, 0.328±0.034 and (37.2±4.8)%, respectively] (P<0.05). After HASMCs were passively sensitized with asthmatic serum, they were treated with PMA, the percentage of S phase, value A and the positive percentage of PCNA protein expression were (20.33±3.39)%, 0.542±0.065 and (76.0±8.7)% respectively, which were significantly increased compared with asthmatic serum sensitized HASMCs without PMA(P<0.05). After HASMCs passively sensitized with asthmatic serum were treated with

  20. TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle.

    Science.gov (United States)

    Vohra, Pawan K; Thompson, Michael A; Sathish, Venkatachalem; Kiel, Alexander; Jerde, Calvin; Pabelick, Christina M; Singh, Brij B; Prakash, Y S

    2013-12-01

    Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.

  1. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Mythili Dileepan

    Full Text Available Airway smooth muscle (ASM cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma.

  2. Endogenous laminin is required for human airway smooth muscle cell maturation

    Directory of Open Access Journals (Sweden)

    Tran Thai

    2006-09-01

    Full Text Available Abstract Background Airway smooth muscle (ASM contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. Methods Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. Results Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. Conclusion While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the

  3. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration.

    Science.gov (United States)

    Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P

    2006-01-01

    Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.

  4. PPARγ ligand ciglitazone inhibits TNFα-induced ICAM-1 in human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Chien-Da Huang

    2014-08-01

    Full Text Available Background: Modification of human airway smooth muscle (ASM function by proinflammatory cytokines has been regarded as a potential mechanism underlying bronchial hyperresponsiveness in asthma. Human ASM cells express intercellular adhesion molecule (ICAM-1 in response to cytokines. Synthetic ligands for peroxisome proliferator-activated receptor (PPARγ reportedly possess anti-inflammatory and immunomodulatory properties. In this study, we examined whether ciglitazone, a synthetic PPARγ ligand, can modulate the basal and tumor necrosis factor (TNFα-induced ICAM1 gene expression in human ASM cells. Methods: Human ASM cells were treated with TNFα. ICAM-1 expression was assessed by flow cytometry and reverse transcriptase-polymerase chain reaction (RT-PCR analysis. PPARγ activity was inhibited by target-specific small interfering (si RNA targeting PPARγ and GW9662, a PPARγ antagonist. Activity of nuclear factor (NF-κB was assessed by using immunoblot analysis, immune-confocal images, and electrophoretic mobility shift assay (EMSA. Results: By flow cytometry, ciglitazone alone had no effect on ICAM-1 expression in ASM cells, but inhibited ICAM-1 expression in response to TNFα (10 ng/ml in a dose-dependent manner (1-10 μM. It also inhibited TNFα-induced ICAM1 gene expression by RT-PCR analysis. Knockdown of PPARγ gene by target-specific siRNA targeting PPARγ enhanced ICAM-1 expression and the inhibitory effect of ciglitazone on TNFα-induced ICAM-1 expression was reversed by PPARγ siRNA and GW9662. SN-50 (10 μg/ml, an inhibitor for nuclear translocation of NF-κB, inhibited TNFα-induced ICAM-1 expression. Ciglitazone did not prevent TNFα-induced degradation of the cytosolic inhibitor of NF-κB (IκB, but inhibited the nuclear translocation of p65 induced by TNFα and suppressed the NF-κB/DNA binding activity. Conclusion: These findings suggest that ciglitazone inhibits TNFα-induced ICAM1 gene expression in human ASM cells through

  5. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma.

  6. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells.

    Science.gov (United States)

    Takahara, Norihiro; Ito, Satoru; Furuya, Kishio; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-12-01

    Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway.

  7. Eosinophils induce airway smooth muscle cell proliferation.

    Science.gov (United States)

    Halwani, Rabih; Vazquez-Tello, Alejandro; Sumi, Yuki; Pureza, Mary Angeline; Bahammam, Ahmed; Al-Jahdali, Hamdan; Soussi-Gounni, Abdelillah; Mahboub, Bassam; Al-Muhsen, Saleh; Hamid, Qutayba

    2013-04-01

    Asthma is characterized by eosinophilic airway inflammation and remodeling of the airway wall. Features of airway remodeling include increased airway smooth muscle (ASM) mass. However, little is known about the interaction between inflammatory eosinophils and ASM cells. In this study, we investigated the effect of eosinophils on ASM cell proliferation. Eosinophils were isolated from peripheral blood of mild asthmatics and non-asthmatic subjects and co-cultured with human primary ASM cells. ASM proliferation was estimated using Ki-67 expression assay. The expression of extracellular matrix (ECM) mRNA in ASM cells was measured using quantitative real-time PCR. The role of eosinophil derived Cysteinyl Leukotrienes (CysLTs) in enhancing ASM proliferation was estimated by measuring the release of leukotrienes from eosinophils upon their direct contact with ASM cells using ELISA. This role was confirmed either by blocking eosinophil-ASM contact or co-culturing them in the presence of leukotrienes antagonist. ASM cells co-cultured with eosinophils, isolated from asthmatics, but not non-asthmatics, had a significantly higher rate of proliferation compared to controls. This increase in ASM proliferation was independent of their release of ECM proteins but dependent upon eosinophils release of CysLTs. Eosinophil-ASM cell to cell contact was required for CysLTs release. Preventing eosinophil contact with ASM cells using anti-adhesion molecules antibodies, or blocking the activity of eosinophil derived CysLTs using montelukast inhibited ASM proliferation. Our results indicated that eosinophils contribute to airway remodeling during asthma by enhancing ASM cell proliferation and hence increasing ASM mass. Direct contact of eosinophils with ASM cells triggers their release of CysLTs which enhance ASM proliferation. Eosinophils, and their binding to ASM cells, constitute a potential therapeutic target to interfere with the series of biological events leading to airway remodeling

  8. Treating asthma means treating airway smooth muscle cells

    NARCIS (Netherlands)

    Zuyderduyn, S; Sukkar, M B; Fust, A; Dhaliwal, S; Burgess, J K

    2008-01-01

    Asthma is characterised by airway hyperresponsiveness, airway inflammation and airway remodelling. Airway smooth muscle cells are known to be the main effector cells of airway narrowing. In the present paper, studies will be discussed that have led to a novel view of the role of airway smooth muscle

  9. Salmeterol and cytokines modulate inositol-phosphate signalling in Human airway smooth muscle cells via regulation at the receptor locus

    Directory of Open Access Journals (Sweden)

    Swan Caroline

    2007-09-01

    Full Text Available Abstract Background Airway hyper-responsiveness (AHR is a key feature of asthma and a causal relationship between airway inflammation and AHR has been identified. The aim of the current study was to clarify the effect of proinflammatory cytokines and asthma medication on primary human airway smooth muscle (ASM inositol phosphate (IPx signalling and define the regulatory loci involved. Methods Primary Human ASM cells were isolated from explants of trachealis muscle from individuals with no history of respiratory disease. The effect of cytokine or asthma medication on histamine or bradykinin induced IPx signalling was assessed by [3H] inositol incorporation. Quantitative Real Time PCR was used to measure mRNA levels of receptors and downstream signalling components. Transcriptional mechanisms were explored using a combination of 5'Rapid Amplification of cDNA Ends (5'RACE and promoter-reporter techniques. Results Treatment of Human ASM cells with IL-13, IFNγ or salmeterol for 24 hours lead to a modest augmentation of histamine induced IPx responses (144.3 +/- 9.3, 126.4 +/- 7.5 and 117.7 +/- 5.2%, p i.e. H1 Histamine Receptor (HRH1, B2 Bradykinin Receptor (BDKRB2, Gαq/11 and PLC-β1 identified that a significant induction of receptor mRNA (>2 fold was a feature of these responses explaining the cytokine and spasmogen specificity. The HRH1 and BDKRB2 promoter regions were mapped in ASM and promoter-reporter analyses identified that salmeterol can induce HRH1 (>2 fold and BDKRB2 (2–5 fold transcription. The effect of cytokines on HRH1 and BDKRB2 promoter-reporter expression suggested a more complex regulation of mRNA expression involving additional loci to the core promoter. Conclusion Our results indicate that the spasmogen specific receptor locus may be a key site of regulation determining the magnitude of spasmogen mediated ASM IPx responses during airway inflammation or following asthma medication. These data provide further insight into the

  10. Prostaglandins but not leukotrienes alter extracellular matrix protein deposition and cytokine release in primary human airway smooth muscle cells and fibroblasts

    NARCIS (Netherlands)

    Van Ly, David; Burgess, Janette K.; Brock, Thomas G.; Lee, Tak H.; Black, Judith L.; Oliver, Brian G. G.

    2012-01-01

    Van Ly D, Burgess JK, Brock TG, Lee TH, Black JL, Oliver BG. Prostaglandins but not leukotrienes alter extracellular matrix protein deposition and cytokine release in primary human airway smooth muscle cells and fibroblasts. Am J Physiol Lung Cell Mol Physiol 303: L239-L250, 2012. First published Ma

  11. Effect of vascular endothelial growth factor and its receptor KDR on human airway smooth muscle cells proliferation

    Institute of Scientific and Technical Information of China (English)

    ZOU hui; XU Yong-jian; ZHANG Zhen-xiang

    2005-01-01

    @@ Airway remodeling with inflammatory cell infiltration, epithelial shedding, basement membrane thickening and increased mass of airway smooth muscle (ASM) is an important determinant of bronchial obstruction and hyperresponsiveness in asthma.1,2 Increased ASM mass is by far the most important abnormality responsible for excessive airway narrowing and compliance of the airway wall in asthma.1-3 ASM growth and proliferation in asthma is a complex phenomenon of which the underlying mechanisms are difficult to investigate in vivo. The increased amount of ASM in asthmatics is an indication of abnormal cell proliferation and growth, but little is known regarding the molecular mechanisms and factors that regulate ASM cell proliferation and growth in asthma.

  12. Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-α and dexamethasone

    Directory of Open Access Journals (Sweden)

    Walseth Timothy F

    2008-03-01

    Full Text Available Abstract Background CD38 is expressed in human airway smooth muscle (HASM cells, regulates intracellular calcium, and its expression is augmented by tumor necrosis factor alpha (TNF-α. CD38 has a role in airway hyperresponsiveness, a hallmark of asthma, since deficient mice develop attenuated airway hyperresponsiveness compared to wild-type mice following intranasal challenges with cytokines such as IL-13 and TNF-α. Regulation of CD38 expression in HASM cells involves the transcription factor NF-κB, and glucocorticoids inhibit this expression through NF-κB-dependent and -independent mechanisms. In this study, we determined whether the transcriptional regulation of CD38 expression in HASM cells involves response elements within the promoter region of this gene. Methods We cloned a putative 3 kb promoter fragment of the human cd38 gene into pGL3 basic vector in front of a luciferase reporter gene. Sequence analysis of the putative cd38 promoter region revealed one NF-κB and several AP-1 and glucocorticoid response element (GRE motifs. HASM cells were transfected with the 3 kb promoter, a 1.8 kb truncated promoter that lacks the NF-κB and some of the AP-1 sites, or the promoter with mutations of the NF-κB and/or AP-1 sites. Using the electrophoretic mobility shift assays, we determined the binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB, AP-1, and GRE sites, and the specificity of this binding was confirmed by gel supershift analysis with appropriate antibodies. Results TNF-α induced a two-fold activation of the 3 kb promoter following its transfection into HASM cells. In cells transfected with the 1.8 kb promoter or promoter constructs lacking NF-κB and/or AP-1 sites or in the presence of dexamethasone, there was no induction in the presence of TNF-α. The binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB site and some of the six AP-1 sites was increased by TNF-α, and to

  13. Defective Resensitization in Human Airway Smooth Muscle Cells Evokes β-Adrenergic Receptor Dysfunction in Severe Asthma.

    Directory of Open Access Journals (Sweden)

    Manveen K Gupta

    Full Text Available β2-adrenergic receptor (β2AR agonists (β2-agonist are the most commonly used therapy for acute relief in asthma, but chronic use of these bronchodilators paradoxically exacerbates airway hyper-responsiveness. Activation of βARs by β-agonist leads to desensitization (inactivation by phosphorylation through G-protein coupled receptor kinases (GRKs which mediate β-arrestin binding and βAR internalization. Resensitization occurs by dephosphorylation of the endosomal βARs which recycle back to the plasma membrane as agonist-ready receptors. To determine whether the loss in β-agonist response in asthma is due to altered βAR desensitization and/or resensitization, we used primary human airway smooth muscle cells (HASMCs isolated from the lungs of non-asthmatic and fatal-asthmatic subjects. Asthmatic HASMCs have diminished adenylyl cyclase activity and cAMP response to β-agonist as compared to non-asthmatic HASMCs. Confocal microscopy showed significant accumulation of phosphorylated β2ARs in asthmatic HASMCs. Systematic analysis of desensitization components including GRKs and β-arrestin showed no appreciable differences between asthmatic and non-asthmatic HASMCs. However, asthmatic HASMC showed significant increase in PI3Kγ activity and was associated with reduction in PP2A activity. Since reduction in PP2A activity could alter receptor resensitization, endosomal fractions were isolated to assess the agonist ready β2ARs as a measure of resensitization. Despite significant accumulation of β2ARs in the endosomes of asthmatic HASMCs, endosomal β2ARs cannot robustly activate adenylyl cyclase. Furthermore, endosomes from asthmatic HASMCs are associated with significant increase in PI3Kγ and reduced PP2A activity that inhibits β2AR resensitization. Our study shows that resensitization, a process considered to be a homeostasis maintaining passive process is inhibited in asthmatic HASMCs contributing to β2AR dysfunction which may underlie

  14. Airway smooth muscle growth in asthma: proliferation, hypertrophy, and migration.

    Science.gov (United States)

    Bentley, J Kelley; Hershenson, Marc B

    2008-01-01

    Increased airway smooth muscle mass is present in fatal and non-fatal asthma. However, little information is available regarding the cellular mechanism (i.e., hyperplasia vs. hypertrophy). Even less information exists regarding the functional consequences of airway smooth muscle remodeling. It would appear that increased airway smooth muscle mass would tend to increase airway narrowing and airflow obstruction. However, the precise effects of increased airway smooth muscle mass on airway narrowing are not known. This review will consider the evidence for airway smooth muscle cell proliferation and hypertrophy in asthma, potential functional effects, and biochemical mechanisms.

  15. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Halayko Andrew J

    2009-09-01

    Full Text Available Abstract Background Airway smooth muscle contributes to the pathogenesis of pulmonary diseases by secreting inflammatory mediators such as interleukin-8 (IL-8. IL-8 production is in part regulated via activation of Gq-and Gs-coupled receptors. Here we study the role of the cyclic AMP (cAMP effectors protein kinase A (PKA and exchange proteins directly activated by cAMP (Epac1 and Epac2 in the bradykinin-induced IL-8 release from a human airway smooth muscle cell line and the underlying molecular mechanisms of this response. Methods IL-8 release was assessed via ELISA under basal condition and after stimulation with bradykinin alone or in combination with fenoterol, the Epac activators 8-pCPT-2'-O-Me-cAMP and Sp-8-pCPT-2'-O-Me-cAMPS, the PKA activator 6-Bnz-cAMP and the cGMP analog 8-pCPT-2'-O-Me-cGMP. Where indicated, cells were pre-incubated with the pharmacological inhibitors Clostridium difficile toxin B-1470 (GTPases, U0126 (extracellular signal-regulated kinases ERK1/2 and Rp-8-CPT-cAMPS (PKA. The specificity of the cyclic nucleotide analogs was confirmed by measuring phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein. GTP-loading of Rap1 and Rap2 was evaluated via pull-down technique. Expression of Rap1, Rap2, Epac1 and Epac2 was assessed via western blot. Downregulation of Epac protein expression was achieved by siRNA. Unpaired or paired two-tailed Student's t test was used. Results The β2-agonist fenoterol augmented release of IL-8 by bradykinin. The PKA activator 6-Bnz-cAMP and the Epac activator 8-pCPT-2'-O-Me-cAMP significantly increased bradykinin-induced IL-8 release. The hydrolysis-resistant Epac activator Sp-8-pCPT-2'-O-Me-cAMPS mimicked the effects of 8-pCPT-2'-O-Me-cAMP, whereas the negative control 8-pCPT-2'-O-Me-cGMP did not. Fenoterol, forskolin and 6-Bnz-cAMP induced VASP phosphorylation, which was diminished by the PKA inhibitor Rp-8-CPT-cAMPS. 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP induced GTP

  16. IFN-γ, IL-4 and IL-13 modulate responsiveness of human airway smooth muscle cells to IL-13

    Directory of Open Access Journals (Sweden)

    Michoud Marie-Claire

    2008-12-01

    Full Text Available Abstract Background IL-13 is a critical mediator of allergic asthma and associated airway hyperresponsiveness. IL-13 acts through a receptor complex comprised of IL-13Rα1 and IL-4Rα subunits with subsequent activation of signal transducer and activator of transcription 6 (STAT6. The IL-13Rα2 receptor may act as a decoy receptor. In human airway smooth muscle (HASM cells, IL-13 enhances cellular proliferation, calcium responses to agonists and induces eotaxin production. We investigated the effects of pre-treatment with IL-4, IL-13 and IFN-γ on the responses of HASM cells to IL-13. Methods Cultured HASM were examined for expression of IL-13 receptor subunits using polymerase chain reaction, immunofluorescence microscopy and flow cytometry. Effects of cytokine pre-treatment on IL-13-induced cell responses were assessed by looking at STAT6 phosphorylation using Western blot, eotaxin secretion and calcium responses to histamine. Results IL-13Rα1, IL-4Rα and IL-13Rα2 subunits were expressed on HASM cells. IL-13 induced phosphorylation of STAT6 which reached a maximum by 30 minutes. Pre-treatment with IL-4, IL-13 and, to a lesser degree, IFN-γ reduced peak STAT6 phosphorylation in response to IL-13. IL-13, but not IFN-γ, pre-treatment abrogated IL-13-induced eotaxin secretion. Pre-treatment with IL-4 or IL-13 abrogated IL-13-induced augmentation of the calcium transient evoked by histamine. Cytokine pre-treatment did not affect expression of IL-13Rα1 and IL-4Rα but increased expression of IL-13Rα2. An anti-IL-13Rα2 neutralizing antibody did not prevent the cytokine pre-treatment effects on STAT6 phosphorylation. Cytokine pre-treatment increased SOCS-1, but not SOCS-3, mRNA expression which was not associated with significant increases in protein expression. Conclusion Pre-treatment with IL-4 and IL-13, but not IFN-γ, induced desensitization of the HASM cells to IL-13 as measured by eotaxin secretion and calcium transients to histamine

  17. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Shinichi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Ishizuka, Tamotsu, E-mail: tamotsui@showa.gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Komachi, Mayumi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi 371-8511 (Japan); Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Mori, Masatomo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  18. Effects of specific prostanoid EP receptor agonists on cell proliferation and intracellular Ca(2+) concentrations in human airway smooth muscle cells.

    Science.gov (United States)

    Mori, Akemi; Ito, Satoru; Morioka, Masataka; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2011-05-20

    Increased airway smooth muscle mass due to cell proliferation contributes to airway hyper-responsiveness and remodeling in patients with asthma. Prostaglandin E2 (PGE2) inhibits proliferation of airway smooth muscle cells, but the role of prostanoid EP receptor subtypes in mechanisms involved has not been fully elucidated yet. We investigated the effects of specific prostanoid EP receptor agonists on cell proliferation and intracellular Ca(2+) concentrations ([Ca(2+)]i) in human airway smooth muscle cells. Cell numbers were assessed by mitochondria-dependent reduction of 4-[3-(4-lodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1, 3-benzene disulfonate to formazan (WST-1 assay). RT-PCR data showed that human airway smooth muscle cells express EP2, EP3, and EP4 but not EP1 receptor mRNA. PGE2 (1nM-1μM) inhibited cell proliferation induced by 5% fetal bovine serum (FBS) in a concentration-dependent manner. (16S)-9-deoxy-9β-chloro-15-deoxy-16-hydroxy-17, 17-trimethylene-19, 20-didehydro PGE2 sodium salt (ONO-AE1-259-01; EP2 receptor agonist) and 16-(3-methoxymethyl)phenyl-ω-tetranor-3,7-dithia PGE2 (ONO-AE1-329; EP4 receptor agonist) inhibited the 5% FBS-induced cell proliferation. ONO-AE1-259-01 and ONO-AE1-329 also significantly increased the cytosolic cAMP levels. In contrast, 11,15-O-dimethyl PGE2 (ONO-AE-248; EP3 receptor agonist) elicited an oscillatory increase in [Ca(2+)]i but did not affect the cell growth or cAMP levels. [(17S)-2,5-ethano-6-oxo-17,20-dimethyl PGE1] (ONO-DI-004; EP1 receptor agonist) did not affect cell growth, cAMP levels, or [Ca(2+)]i. In conclusion, PGE2 inhibits FBS-induced cell proliferation mostly via EP2 and EP4 receptor activation and subsequent cAMP elevation. The EP3 receptor agonist causes an increase in [Ca(2+)]i without affecting cell growth. There is no functional expression of the EP1 receptor. Research on prostanoid EP receptors may lead to novel therapeutic strategies for treatment of asthma. Copyright © 2011 Elsevier B

  19. Cortex phellodendri Extract Relaxes Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Qiu-Ju Jiang

    2016-01-01

    Full Text Available Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM; however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component was prepared, which completely inhibits high K+- and acetylcholine- (ACH- induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm.

  20. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  1. Airway epithelium is a predominant source of endogenous airway GABA and contributes to relaxation of airway smooth muscle tone

    OpenAIRE

    Gallos, George; Townsend, Elizabeth; Yim, Peter; Virag, Laszlo; Zhang, Yi; Xu, Dingbang; Bacchetta, Matthew; Emala, Charles W.

    2012-01-01

    Chronic obstructive pulmonary disease and asthma are characterized by hyperreactive airway responses that predispose patients to episodes of acute airway constriction. Recent studies suggest a complex paradigm of GABAergic signaling in airways that involves GABA-mediated relaxation of airway smooth muscle. However, the cellular source of airway GABA and mechanisms regulating its release remain unknown. We questioned whether epithelium is a major source of GABA in the airway and whether the ab...

  2. Angiotensin II induces hypertrophy of human airway smooth muscle cells: expression of transcription factors and transforming growth factor-beta1

    NARCIS (Netherlands)

    S. McKay (Sue); J.C. de Jongste (Johan); P.R. Saxena (Pramod Ranjan); H.S. Sharma (Hari)

    1998-01-01

    textabstractIncreased smooth muscle mass due to hyperplasia and hypertrophy of airway smooth muscle (ASM) cells is a common feature in asthma. Angiotensin II (Ang II), a potent vasoconstrictor and mitogen for a wide variety of cells, has recently been implicated in bron

  3. Role of purinergic receptors in the activation of human airway smooth muscle cells by the antimicrobial peptide LL-37

    Directory of Open Access Journals (Sweden)

    Suzanne Zuyderduyn

    2006-12-01

    Full Text Available Inflammatory cells that infiltrate and surround the airway smooth muscle (ASM layer express antimicrobial peptides including the cathelicidin LL-37. LL-37 has been shown to activate epithelial cells by transactivation of the epidermal growth factor receptor (EGFR. Previously, we have shown that LL-37-induced IL-8 release by ASM cells was not dependent on either formyl peptide receptors or the EGFR (ATS 2005. In monocytes LL-37 induces processing of IL-1ß through activation of the purinergic P2X7 receptor. Therefore, the aim of our study was to evaluate the role of purinergic receptors in LL-37-induced activation of ASM cells, and to explore the involvement of several intracellular signalling pathways. ASM cells were cultured and serum-deprived 24 hours before stimulation with LL-37 (10 µg·ml–1. The purinergic receptor antagonist suramin and inhibitors of ERK1/2, p38, Src and PI3K were preincubated for one hour. ERK1/2 phosphorylation was assessed by Western Blot, and IL-8 release was determined in supernatants using a sandwich ELISA. RT-PCR was performed for P2X7 on untreated ASM cells. LL-37 induced ERK1/2 phosphorylation and IL-8 release; both were inhibited by suramin (IL-8: 86%. Inhibitors of ERK1/2, p38 and Src signalling also reduced LL-37-induced IL-8 release (by 67%, 63% and 76%, respectively, suggesting a role for these pathways. P2X7 mRNA was expressed in ASM cells. These data show that LL-37-induced IL-8 release is mediated via purinergic receptors, ERK1/2 activation, p38 and Src signalling. Our PCR data are in line with the hypothesis that also in ASM P2X7 is the purinergic receptor involved in LL-37 signalling, although this needs further investigation.

  4. Integrin αVβ5 Mediated TGF-β Activation by Airway Smooth Muscle Cells in Asthma

    OpenAIRE

    Tatler, Amanda L; John, Alison E.; Jolly, Lisa; Habgood, Anthony; Porte, Jo; Brightling, Chris; Knox, Alan J; Pang, Linhua; Sheppard, Dean; Huang, Xiaozhu; Jenkins, Gisli

    2011-01-01

    Severe asthma is associated with airway remodelling, characterised by structural changes including increased smooth muscle mass and matrix deposition in the airway, leading to deteriorating lung function. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine leading to increased synthesis of matrix molecules by human airway smooth muscle cells (HASMs) and is implicated in asthmatic airway remodelling. TGF-β is synthesised as a latent complex, sequestered in the extracellular matrix, ...

  5. Muscarinic M3 receptor stimulation increases cigarette smoke-induced IL-8 secretion by human airway smooth muscle cells

    NARCIS (Netherlands)

    Gosens, R.; Rieks, D.; Meurs, H.; Ninaber, D. K.; Rabe, K. F.; Nanninga, J.; Kolahian, S.; Halayko, A. J.; Hiemstra, P. S.; Zuyderduyn, S.

    2009-01-01

    Acetylcholine is the primary parasympathetic neurotransmitter in the airways and is known to cause bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine also regulates aspects of remodelling and inflammation through its action on muscarinic receptors. In the present

  6. Muscarinic M3 receptor stimulation increases cigarette smoke-induced IL-8 secretion by human airway smooth muscle cells

    NARCIS (Netherlands)

    Gosens, R.; Rieks, D.; Meurs, H.; Ninaber, D. K.; Rabe, K. F.; Nanninga, J.; Kolahian, S.; Halayko, A. J.; Hiemstra, P. S.; Zuyderduyn, S.

    2009-01-01

    Acetylcholine is the primary parasympathetic neurotransmitter in the airways and is known to cause bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine also regulates aspects of remodelling and inflammation through its action on muscarinic receptors. In the present stu

  7. Airway smooth muscle dynamics : a common pathway of airway obstruction in asthma

    NARCIS (Netherlands)

    An, S S; Bai, T R; Bates, J H T; Black, J L; Brown, R H; Brusasco, V; Chitano, P; Deng, L; Dowell, M; Eidelman, D H; Fabry, B; Fairbank, N J; Ford, L E; Fredberg, J J; Gerthoffer, W T; Gilbert, S H; Gosens, R; Gunst, S J; Halayko, A J; Ingram, R H; Irvin, C G; James, A L; Janssen, L J; King, G G; Knight, D A; Lauzon, A M; Lakser, O J; Ludwig, M S; Lutchen, K R; Maksym, G N; Martin, J G; Mauad, T; McParland, B E; Mijailovich, S M; Mitchell, H W; Mitchell, R W; Mitzner, W; Murphy, T M; Paré, P D; Pellegrino, R; Sanderson, M J; Schellenberg, R R; Seow, C Y; Silveira, P S P; Smith, P G; Solway, J; Stephens, N L; Sterk, P J; Stewart, A G; Tang, D D; Tepper, R S; Tran, T; Wang, L

    2007-01-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series o

  8. A novel small molecule target in human airway smooth muscle for potential treatment of obstructive lung diseases: a staged high-throughput biophysical screening

    Directory of Open Access Journals (Sweden)

    von Rechenberg Moritz

    2011-01-01

    Full Text Available Abstract Background A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20 and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma. Methods Using a high-throughput fluorescence polarization (FP assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM. Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds. Results Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell in vitro and attenuated active force development of intact tissue ex vivo. Conclusions This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.

  9. Airway smooth muscle and fibroblasts in the pathogenesis of asthma

    NARCIS (Netherlands)

    Johnson, Peter R A; Burgess, Janette K

    2004-01-01

    Asthma is a disease characterized by marked structural changes within the airway wall. These changes include deposition of extracellular matrix proteins and an increase in the numbers of airway smooth muscle cells and subepithelial fibroblasts. Both these cell types possess properties that would ena

  10. Distribution of phenotypically disparate myocyte subpopulations in airway smooth muscle.

    Science.gov (United States)

    Halayko, Andrew J; Stelmack, Gerald L; Yamasaki, Akira; McNeill, Karol; Unruh, Helmut; Rector, Edward

    2005-01-01

    Phenotype and functional heterogeneity of airway smooth muscle (ASM) cells in vitro is well known, but there is limited understanding of these features in vivo. We tested whether ASM is composed of myocyte subsets differing in contractile phenotype marker expression. We used flow cytometry to compare smooth muscle myosin heavy chain (smMHC) and smooth muscle-alpha-actin (sm-alpha-actin) abundance in myocytes dispersed from canine trachealis. Based on immunofluorescent intensity and light scatter characteristics (forward and 90 degrees side scatter), 2 subgroups were identified and isolated. Immunoblotting confirmed smMHC and sm-alpha-actin were 10- and 5-fold greater, respectively, in large, elongate myocytes that comprised approximately 60% of total cells. Immunohistochemistry revealed similar phenotype heterogeneity in human bronchial smooth muscle. Canine tracheal myocyte subpopulations isolated by flow cytometry were used to seed primary subcultures. Proliferation of subcultures established with myocytes exhibiting low levels of smMHC and sm-alpha-actin was approximately 2 x faster than subcultures established with ASM cells with a high marker protein content. These studies demonstrate broad phenotypic heterogeneity of myocytes in normal ASM tissue that is maintained in cell culture, as demonstrated by divergent proliferative capacity. The distinct roles of these subgroups could be a key determinant of normal and pathological lung development and biology.

  11. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hu

    Full Text Available Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4 activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM, as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.

  12. Microfibrillar-associated protein 4 modulates airway smooth muscle cell phenotype in experimental asthma

    DEFF Research Database (Denmark)

    Pilecki, Bartosz; Schlosser, Anders; Wulf-Johansson, Helle

    2015-01-01

    . In the current study we investigated the role of MFAP4 in experimental allergic asthma. METHODS: MFAP4-deficient mice were subjected to alum/ovalbumin and house dust mite induced models of allergic airway disease. In addition, human healthy and asthmatic primary bronchial smooth muscle cell cultures were used...... to evaluate MFAP4-dependent airway smooth muscle responses. RESULTS: MFAP4 deficiency attenuated classical hallmarks of asthma, such as eosinophilic inflammation, eotaxin production, airway remodelling and hyperresponsiveness. In wild-type mice, serum MFAP4 was increased after disease development...... and correlated with local eotaxin levels. MFAP4 was expressed in human bronchial smooth muscle cells and its expression was upregulated in asthmatic cells. Regarding the underlying mechanism, we showed that MFAP4 interacted with integrin αvβ5 and promoted asthmatic bronchial smooth muscle cell proliferation...

  13. Defining an olfactory receptor function in airway smooth muscle cells

    Science.gov (United States)

    Aisenberg, William H.; Huang, Jessie; Zhu, Wanqu; Rajkumar, Premraj; Cruz, Randy; Santhanam, Lakshmi; Natarajan, Niranjana; Yong, Hwan Mee; De Santiago, Breann; Oh, Jung Jin; Yoon, A-Rum; Panettieri, Reynold A.; Homann, Oliver; Sullivan, John K.; Liggett, Stephen B.; Pluznick, Jennifer L.; An, Steven S.

    2016-01-01

    Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (Golf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma. PMID:27905542

  14. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma.

    Science.gov (United States)

    An, S S; Bai, T R; Bates, J H T; Black, J L; Brown, R H; Brusasco, V; Chitano, P; Deng, L; Dowell, M; Eidelman, D H; Fabry, B; Fairbank, N J; Ford, L E; Fredberg, J J; Gerthoffer, W T; Gilbert, S H; Gosens, R; Gunst, S J; Halayko, A J; Ingram, R H; Irvin, C G; James, A L; Janssen, L J; King, G G; Knight, D A; Lauzon, A M; Lakser, O J; Ludwig, M S; Lutchen, K R; Maksym, G N; Martin, J G; Mauad, T; McParland, B E; Mijailovich, S M; Mitchell, H W; Mitchell, R W; Mitzner, W; Murphy, T M; Paré, P D; Pellegrino, R; Sanderson, M J; Schellenberg, R R; Seow, C Y; Silveira, P S P; Smith, P G; Solway, J; Stephens, N L; Sterk, P J; Stewart, A G; Tang, D D; Tepper, R S; Tran, T; Wang, L

    2007-05-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not "cure" asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored.

  15. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics

    Science.gov (United States)

    Blankman, Elizabeth; Jensen, Christopher C.; Krishnan, Ramaswamy; James, Alan L.; Elliot, John G.; Green, Francis H.; Liu, Jeffrey C.; Seow, Chun Y.; Park, Jin-Ah; Beckerle, Mary C.; Paré, Peter D.; Fredberg, Jeffrey J.; Smith, Mark A.

    2017-01-01

    Bronchospasm induced in non-asthmatic human subjects can be easily reversed by a deep inspiration (DI) whereas bronchospasm that occurs spontaneously in asthmatic subjects cannot. This physiological effect of a DI has been attributed to the manner in which a DI causes airway smooth muscle (ASM) cells to stretch, but underlying molecular mechanisms–and their failure in asthma–remain obscure. Using cells and tissues from wild type and zyxin-/- mice we report responses to a transient stretch of physiologic magnitude and duration. At the level of the cytoskeleton, zyxin facilitated repair at sites of stress fiber fragmentation. At the level of the isolated ASM cell, zyxin facilitated recovery of contractile force. Finally, at the level of the small airway embedded with a precision cut lung slice, zyxin slowed airway dilation. Thus, at each level zyxin stabilized ASM structure and contractile properties at current muscle length. Furthermore, when we examined tissue samples from humans who died as the result of an asthma attack, we found increased accumulation of zyxin compared with non-asthmatics and asthmatics who died of other causes. Together, these data suggest a biophysical role for zyxin in fatal asthma. PMID:28278518

  16. UROTENSIN II RECEPTOR IN THE RAT AIRWAY SMOOTH MUSCLE AND ITS EFFECT ON THE RAT AIRWAY SMOOTH MUSCLE CELLS PROLIFERATION

    Institute of Scientific and Technical Information of China (English)

    陈亚红; 赵鸣武; 刘秀华; 姚婉贞; 杨军; 张肇康; 唐朝枢

    2001-01-01

    Objective. To investigate the characteristics of urotensin II (U-II) receptor in the rat airway smooth muscleand the effect and signal transduction pathway of U-II on the proliferation of airway smooth muscle cells.Methods. Using 125-UII binding assay to measure the Bmax and Kd of U-II receptor. Using the 3H-TdRincorporation to deter mine the effect of U-II on the proliferation of airway smooth muscle cells and its signal transduc-tion pathway. Using Fura-2/AM to measure the effect of U-II on the cytosolic free calcium concentration.Results. 1. 125I-UⅡ binding increased with the time and reached saturation at 45min. The Bmax was(ll. 36 +0.37)fmol/mg pr and Kd was (4.46 +0.61)nmol/L. 2. U-II increased 3H-TdR incorporation of theairway smooth muscle cells in a dose-dependent manner. 3. H7, PDg8059 and nicardipine, inhibitors of PKC,MAPK, calcium cha.nnel, respectively, significantly inhibited U-II-stimulated 3H-TdR incorporation of airwaysmooth muscle cells. W7, inhibitor of CaM-PK, had no effect. 4. Cyclosporin A, inhibitor of CaN, inhibited3H-TdRincorporation ofthe airway smooth muscle cells induced by U-Ⅱl in a dose-dependent manner. 5. U-Ⅱlpromot-ed cy-tosolic free calcium concentration increase by 18%.Conclusions. 1. There was U-II receptor in the rat airway smooth muscle. 2. The effect of U-II-stimulated-3H-TdR incorporation of airway smooth muscle cells was mediated by such signal transduction pathway as Ca2 +.PKC, MAPK and Ca.N, etc.``

  17. The role of potassium channels in the nitric oxide-induced relaxation of human airway smooth muscle of passively sensitization by serum from allergic asthmatic patients

    Institute of Scientific and Technical Information of China (English)

    Tao Ye; Yongjian Xu; Zhenxiang Zhang; Xiansheng Liu; Zhao Yang; Baoan Gao

    2006-01-01

    Objective: To investigate the role of large Ca2+-activated, delayed-rectifier and ATP-sensitive potassium channel in regulating the relaxation induced by nitric oxide (NO) in normal and passively sensitized human airway smooth muscle (HASM) with serum from asthmatic patients. Methods: The effects of NO or/and potassium channel blockers on the tensions of normal and passively sensitized HASM were measured by using nitric oxide donor and potassium blockers, with the isometric tension recording technique. Results: Showed that (1)In the control group and passively sensitized group, Kv blocker (4-AP) cause concentration-dependent augmentation in the contraction induced by histamine (1 ×10-4 mol/L), (P < 0.05), but Glib (1 × 10-2 mol/L)and TEA (1×10-3 mol/L) have no significant effects on the contraction induced by histamine (1×10-4 mol/L). The maximum tension induced by histamine in passively sensitized group is higher than that in the control group (P < 0.05). (2) NO-donor Sodium Nitroprusside (SNP) bring about significant relaxation in normal and passively sensitized HASM rings (P < 0.05). Relaxations of passively sensitized airway rings [ (29.4 ± 3.3)% ] were significant less than those of normal HASM rings [ (44.1 ± 10.2)% ], (P <0.05).(3) Glib(1×10-2 mol/L)have no significant effect on the relaxations induced by SNP(1×10-4 mol/L). 4-AP(1×10-2 mol/L) inhibited relaxation induced by SNP (1×10-4 mol/L), (P < 0.01). TEA (1×10-3 mol/L) inhibited relaxation induced by SNP (1×10-4mol/L) (P < 0.05), and the inhibiting effect in passively sensitized HASM rings were significant less than in normal HASM, (P <0.05). Conclusion: It was concluded that SNP(NO-donor) relaxed the contraction of HASM partly via BKca channel opening. In passively sensitized HASM in vitro, the relaxation of SNP decreased compared with control group, which might be associated with the down-regulating activity of BKca in passively sensitized HASM.

  18. Innate immune receptors in human airway smooth muscle cells: activation by TLR1/2, TLR3, TLR4, TLR7 and NOD1 agonists.

    Directory of Open Access Journals (Sweden)

    Anne Månsson Kvarnhammar

    Full Text Available BACKGROUND: Pattern-recognition receptors (PRRs, including Toll-like receptors (TLRs, NOD-like receptors (NLRs and RIG-I-like receptors (RLRs, recognize microbial components and trigger a host defense response. Respiratory tract infections are common causes of asthma exacerbations, suggesting a role for PRRs in this process. The present study aimed to examine the expression and function of PRRs on human airway smooth muscle cells (HASMCs. METHODS: Expression of TLR, NLR and RLR mRNA and proteins was determined using real-time RT-PCR, flow cytometry and immunocytochemistry. The functional responses to ligand stimulation were investigated in terms of cytokine and chemokine release, cell surface marker expression, proliferation and proteins regulating the contractile state. RESULTS: HASMCs expressed functional TLR2, TLR3, TLR4, TLR7 and NOD1. Stimulation with the corresponding agonists Pam3CSK4, poly(I:C, LPS, R-837 and iE-DAP, respectively, induced IL-6, IL-8 and GM-CSF release and up-regulation of ICAM-1 and HLA-DR, while poly(I:C also affected the release of eotaxin and RANTES. The proliferative response was slightly increased by LPS. Stimulation, most prominently with poly(I:C, down-regulated myosin light chain kinase and cysteinyl leukotriene 1 receptor expression and up-regulated β2-adrenoceptor expression. No effects were seen for agonist to TLR2/6, TLR5, TLR8, TLR9, NOD2 or RIG-I/MDA-5. CONCLUSION: Activation of TLR2, TLR3, TLR4, TLR7 and NOD1 favors a synthetic phenotype, characterized by an increased ability to release inflammatory mediators, acquire immunomodulatory properties by recruiting and interacting with other cells, and reduce the contractile state. The PRRs might therefore be of therapeutic use in the management of asthma and infection-induced disease exacerbations.

  19. Real time analysis of β2-adrenoceptor-mediated signaling kinetics in Human Primary Airway Smooth Muscle Cells reveals both ligand and dose dependent differences

    Directory of Open Access Journals (Sweden)

    Hall Ian P

    2011-07-01

    Full Text Available Abstract Background β2-adrenoceptor agonists elicit bronchodilator responses by binding to β2-adrenoceptors on airway smooth muscle (ASM. In vivo, the time between drug administration and clinically relevant bronchodilation varies significantly depending on the agonist used. Our aim was to utilise a fluorescent cyclic AMP reporter probe to study the temporal profile of β2-adrenoceptor-mediated signaling induced by isoproterenol and a range of clinically relevant agonists in human primary ASM (hASM cells by using a modified Epac protein fused to CFP and a variant of YFP. Methods Cells were imaged in real time using a spinning disk confocal system which allowed rapid and direct quantification of emission ratio imaging following direct addition of β2-adrenoceptor agonists (isoproterenol, salbutamol, salmeterol, indacaterol and formoterol into the extracellular buffer. For pharmacological comparison a radiolabeling assay for whole cell cyclic AMP formation was used. Results Temporal analysis revealed that in hASM cells the β2-adrenoceptor agonists studied did not vary significantly in the onset of initiation. However, once a response was initiated, significant differences were observed in the rate of this response with indacaterol and isoproterenol inducing a significantly faster response than salmeterol. Contrary to expectation, reducing the concentration of isoproterenol resulted in a significantly faster initiation of response. Conclusions We conclude that confocal imaging of the Epac-based probe is a powerful tool to explore β2-adrenoceptor signaling in primary cells. The ability to analyse the kinetics of clinically used β2-adrenoceptor agonists in real time and at a single cell level gives an insight into their possible kinetics once they have reached ASM cells in vivo.

  20. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation

    Directory of Open Access Journals (Sweden)

    Capra Valérie

    2006-03-01

    Full Text Available Abstract Background Cysteine-containing leukotrienes (cysteinyl-LTs are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC proliferation. We used human ASMC (HASMC to identify the signal transduction pathway(s of the leukotriene D4 (LTD4-induced DNA synthesis. Methods Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS was estimated by measuring dichlorodihydrofluorescein (DCF oxidation. Results We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX and phosphoinositide 3-kinase (PI3K inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Conclusion Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF

  1. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation.

    Science.gov (United States)

    Ravasi, Saula; Citro, Simona; Viviani, Barbara; Capra, Valérie; Rovati, G Enrico

    2006-03-22

    Cysteine-containing leukotrienes (cysteinyl-LTs) are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC) proliferation. We used human ASMC (HASMC) to identify the signal transduction pathway(s) of the leukotriene D4 (LTD4)-induced DNA synthesis. Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R) and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS) was estimated by measuring dichlorodihydrofluorescein (DCF) oxidation. We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX) and phosphoinositide 3-kinase (PI3K) inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC) abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF-R through the intervention of PI3K and ROS. While PI3K

  2. Phenotype modulation of airway smooth muscle in asthma

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha; Ojo, Oluwaseun O.

    2013-01-01

    The biological responses of airway smooth muscle (ASM) are diverse, in part due to ASM phenotype plasticity. ASM phenotype plasticity refers to the ability of ASM cells to change the degree of a variety of functions, including contractility, proliferation, migration and secretion of inflammatory med

  3. Airway smooth muscle cell proliferation is increased in asthma

    NARCIS (Netherlands)

    Johnson, P R; Roth, Michael; Tamm, M; Hughes, J Margaret; Ge, Q; King, G; Burgess, J K; Black, J L

    2001-01-01

    UNLABELLED: Increased airway smooth muscle (ASM) within the bronchial wall of asthmatic patients has been well documented and is likely to be the result of increased muscle proliferation. We have for the first time been able to culture ASM cells from asthmatic patients and to compare their prolifera

  4. Phenotype modulation of airway smooth muscle in asthma

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha; Ojo, Oluwaseun O.

    2013-01-01

    The biological responses of airway smooth muscle (ASM) are diverse, in part due to ASM phenotype plasticity. ASM phenotype plasticity refers to the ability of ASM cells to change the degree of a variety of functions, including contractility, proliferation, migration and secretion of inflammatory med

  5. Airway smooth muscle - Its relationship to the extracellular matrix

    NARCIS (Netherlands)

    Black, Judith L.; Burgess, Janette K.; Johnson, Peter R.A.

    2003-01-01

    The airway smooth muscle cell has a variety of properties, which confer on it the ability to participate actively in the inflammatory process and the remodeling events, which accompany severe, persistent asthma. Among these properties is its relationship to the extracellular matrix (ECM) with which

  6. A Brief History of Airway Smooth Muscle’s Role in Airway Hyperresponsiveness

    Directory of Open Access Journals (Sweden)

    C. D. Pascoe

    2012-01-01

    Full Text Available A link between airway smooth muscle (ASM and airway hyperresponsiveness (AHR in asthma was first postulated in the midnineteenth century, and the suspected link has garnered ever increasing interest over the years. AHR is characterized by excessive narrowing of airways in response to nonspecific stimuli, and it is the ASM that drives this narrowing. The stimuli that can be used to demonstrate AHR vary widely, as do the potential mechanisms by which phenotypic changes in ASM or nonmuscle factors can contribute to AHR. In this paper, we review the history of research on airway smooth muscle’s role in airway hyperresponsiveness. This research has ranged from analyzing the quantity of ASM in the airways to testing for alterations in the plastic behavior of smooth muscle, which distinguishes it from skeletal and cardiac muscles. This long history of research and the continued interest in this topic mean that the precise role of ASM in airway responsiveness remains elusive, which makes it a pertinent topic for this collection of articles.

  7. Airway smooth muscle phenotype and function : interactions with current asthma therapies

    NARCIS (Netherlands)

    Halayko, A J; Tran, T; Ji, S Y; Yamasaki, A; Gosens, R

    2006-01-01

    Asthma incidence has climbed markedly in the past two decades despite an increased use of medications that suppress airway inflammation and repress contraction of smooth muscle that encircles the airways. Asthmatics exhibit episodes of airway inflammation that potentiates reversible airway smooth mu

  8. Accumulating evidence for increased velocity of airway smooth muscle shortening in asthmatic airway hyperresponsiveness.

    Science.gov (United States)

    Ijpma, Gijs; Matusovsky, Oleg; Lauzon, Anne-Marie

    2012-01-01

    It remains unclear whether airway smooth muscle (ASM) mechanics is altered in asthma. While efforts have originally focussed on contractile force, some evidence points to an increased velocity of shortening. A greater rate of airway renarrowing after a deep inspiration has been reported in asthmatics compared to controls, which could result from a shortening velocity increase. In addition, we have recently shown in rats that increased shortening velocity correlates with increased muscle shortening, without increasing muscle force. Nonetheless, establishing whether or not asthmatic ASM shortens faster than that of normal subjects remains problematic. Endobronchial biopsies provide excellent tissue samples because the patients are well characterized, but the size of the samples allows only cell level experiments. Whole human lungs from transplant programs suffer primarily from poor patient characterization, leading to high variability. ASM from several animal models of asthma has shown increased shortening velocity, but it is unclear whether this is representative of human asthma. Several candidates have been suggested as responsible for increased shortening velocity in asthma, such as alterations in contractile protein expression or changes in the contractile apparatus structure. There is no doubt that more remains to be learned about the role of shortening velocity in asthma.

  9. Caveolae and propofol effects on airway smooth muscle

    Science.gov (United States)

    Grim, K. J.; Abcejo, A. J.; Barnes, A.; Sathish, V.; Smelter, D. F.; Ford, G. C.; Thompson, M. A.; Prakash, Y. S.; Pabelick, C. M.

    2012-01-01

    Background The i.v. anaesthetic propofol produces bronchodilatation. Airway relaxation involves reduced intracellular Ca2+ ([Ca2+]i) in airway smooth muscle (ASM) and lipid rafts (caveolae), and constitutional caveolin proteins regulate [Ca2+]i. We postulated that propofol-induced bronchodilatation involves caveolar disruption. Methods Caveolar fractions of human ASM cells were tested for propofol content. [Ca2+]i responses of ASM cells loaded with fura-2 were performed in the presence of 10 µM histamine with and without clinically relevant concentrations of propofol (10 and 30 μM and intralipid control). Effects on sarcoplasmic reticulum (SR) Ca2+ release were evaluated in zero extracellular Ca2+ using the blockers Xestospongin C and ryanodine. Store-operated Ca2+ entry (SOCE) after SR depletion was evaluated using established techniques. The role of caveolin-1 in the effect of propofol was tested using small interference RNA (siRNA) suppression. Changes in intracellular signalling cascades relevant to [Ca2+]i and force regulation were also evaluated. Results Propofol was present in ASM caveolar fractions in substantial concentrations. Exposure to 10 or 30 µM propofol form decreased [Ca2+]i peak (but not plateau) responses to histamine by ∼40%, an effect persistent in zero extracellular Ca2+. Propofol effects were absent in caveolin-1 siRNA-transfected cells. Inhibition of ryanodine receptors prevented propofol effects on [Ca2+]i, while propofol blunted [Ca2+]i responses to caffeine. Propofol reduced SOCE, an effect also prevented by caveolin-1 siRNA. Propofol effects were associated with decreased caveolin-1 expression and extracellular signal-regulated kinase phosphorylation. Conclusions These novel data suggest a role for caveolae (specifically caveolin-1) in propofol-induced bronchodilatation. Due to its lipid nature, propofol may transiently disrupt caveolar regulation, thus altering ASM [Ca2+]i. PMID:22542538

  10. Effect of Cigarette Smoke Extract on the Role of Protein Kinase C in the Proliferation of Passively Sensitized Human Airway Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    LIN Junling; XU Yongjian; ZHANG Zhenxiang; NI Wang; CHEN Shixin

    2005-01-01

    Summary: To investigate the effect of cigarette smoke extract (CSE) on the role of protein kinase C (PKC) in the proliferation of passively sensitized human airway smooth muscle cells (HASMCs). After synchronization of cultured HASMCs, they were divided into a group A and Group B. The group A was treated with normal human serum and served as controls and the group B was treated with the serum of asthma patients. The group A was further divided into group of A1, A2 and A3 and the group B was sub-divided into the group of B1, B2, B3, B4 and B5. No other agents were added to the group A1 and B1. The cells of group A2 and B2 were stimulated with 5 % CSE for 24 h. HASMCs from group A3 and B3 were treated with PKC agonist PMA (10 nmol/L) and CSE (5 %) for 24 h. PKC inhibitor Ro-31-8220 (5 μmol/L) was added to the HASMCs of group B4 for 24 h. The cells from group B5 were stimulated with Ro-31-8220 (5 μmol/L) and CSE (5 %) for 24 h. The proliferation of HASMCs isolated from group A and B was examined by cell cycle analysis, MTT colorimetric assay and 3H-TdR incorporation test. The expression of PKC-α in each group was observed by Western blotting and RT-PCR, respectively. The results showed that the percentage of S phase, absorbance (A) value, the rate of 3H-TdR incorporation, the ratios of A value of PKC-α mRNA and the A value of PKC-α protein in HASMCs from group B1, B2 and B3 were significantly increased compared to those of group A1, A2 and A3 correspondingly and respectively (P<0.01). The proliferation of HASMCs of group A2 and B2 stimulated with CSE and group A3 and B3 stimulated with CSE and PMA were also significantly enhanced when group A1, A2 and A3 and group B1, B2 and B3 compared to each other (P<0.05, P<0.01, respectively). The percentage of S phase, absorbency (A) value, 3H-TdR incorporation rate, the ratios of A value of PKC-α mRNA and the A value of PKC-α protein in HASMCs from group B4 treated with Ro-31-8220 and group B5 treated with CSE and Ro-31

  11. Pharmacological studies of the mechanism and function of interleukin-1β-induced miRNA-146a expression in primary human airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Jiang Xiaoying

    2010-06-01

    Full Text Available Abstract Background Despite the widespread induction of miR-146a during the innate immune response little is known regarding its biogenesis, function and mechanism. We have therefore examined the role of miR-146a during the interleukin (IL-1β-stimulated IL-6 and IL-8 release and proliferation in primary human airway smooth muscle (HASM cells. Methods HASM cells were isolated from human lung re-section, cultured to a maximum of 3 - 6 passages and then exposed to IL-1β. miR-146a expression were determined by qRT-PCR, IL-6 and IL-8 release by ELISA and proliferation using bromodeoxyuridine incorporation. The role of NF-κB and the MAP kinase pathways was assessed using pharmacological inhibitors of IKK2 (TPCA-1, JNK (SP600125, p38 MAP kinase (SB203580 and MEK-1/2 (PD98059. miR-146a function was determined following transfection of HASM with inhibitors and mimics using Amaxa electroporation. Results IL-1β induced a time-dependent and prolonged 100-fold induction in miR-146a expression, which correlated with release of IL-6 and IL-8. Exposure to IL-1β had no effect upon HASM proliferation. Pharmacological studies showed that expression of primary miR-146a was regulated at the transcriptional levels by NF-κB whilst post-transcriptional processing to mature miR-146a was regulated by MEK-1/2 and JNK-1/2. Functional studies indicated that IL-1β-induced miR-146a expression does not negatively regulate IL-6 and IL-8 release or basal proliferation. However, inhibition of IL-1β-induced IL-6 and IL-8 release was observed at the super-maximal intracellular miR-146a levels obtained by transfection with miR-146a mimics and indicates that studies using miRNA mimics can produce false positive results. Mechanistic studies showed that in the presence of super-maximal levels, the action of miR-146a mimics was mediated at a step following IL-6 and IL-8 mRNA transcription and not through down-regulation of IL-1 receptor associated kinase 1 (IRAK-1 and TNF

  12. HSP20 phosphorylation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Mariam Ba

    2009-06-01

    Full Text Available Mariam Ba1, Cherie A Singer1, Manoj Tyagi2, Colleen Brophy3, Josh E Baker4, Christine Cremo4, Andrew Halayko5, William T Gerthoffer21Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA; 2Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA; 3Harrington Department of Biochemistry, Arizona State University, Tempe, AZ, USA; 4Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA; 5Departments of Physiology and Internal Medicine, University of Manitoba, Winnipeg, MB, CanadaAbstract: HSP20 (HSPB6 is a small heat shock protein expressed in smooth muscles that is hypothesized to inhibit contraction when phosphorylated by cAMP-dependent protein kinase. To investigate this hypothesis in airway smooth muscle (ASM we showed that HSP20 was constitutively expressed as well as being inducible in cultured hASM cells by treatment with 1 µM isoproterenol or 10 µM salmeterol. In contrast, a mixture of proinflammatory mediators (interleukin-1β, tumor necrosis factor α, and interferon γ inhibited expression of HSP20 by about 50% in 48 hours. To determine whether phosphorylation of HSP20 is sufficient to induce relaxation, canine tracheal smooth muscle was treated with a cell permeant phosphopeptide that mimics the phosphorylation of HSP20. The HSP20 phosphopeptide antagonized carbacholinduced contraction by 60% with no change in myosin light chain phosphorylation. Recombinant full length HSP20 inhibited skeletal actin binding to smooth muscle myosin subfragment 1 (S1, and recombinant cell permeant TAT-HSP20 S16D mutant reduced F-actin filaments in cultured hASM cells. Carbachol stimulation of canine tracheal smooth muscle tissue caused redistribution of HSP20 from large macromolecular complexes (200–500 kDa to smaller complexes (<60 kDa. The results are consistent with HSP20 expression and macromolecular structure being dynamically regulated in airway

  13. Gene expression in asthmatic airway smooth muscle: a mixed bag.

    Science.gov (United States)

    Pascoe, Christopher D; Swyngedouw, Nicholas E; Seow, Chun Y; Paré, Peter D

    2015-02-01

    It has long been known that airway smooth muscle (ASM) contraction contributes significantly to the reversible airflow obstruction that defines asthma. It has also been postulated that phenotypic changes in ASM contribute to the airway hyper-responsiveness (AHR) that is a characteristic feature of asthma. Although there is agreement that the mass of ASM surrounding the airways is significantly increased in asthmatic compared with non-asthmatic airways, it is still uncertain whether there are quantitative or qualitative changes in the level of expression of the genes and proteins involved in the canonical contractile pathway in ASM that could account for AHR. This review will summarize past attempts at quantifying gene expression changes in the ASM of asthmatic lungs as well as non-asthmatic ASM cells stimulated with various inflammatory cytokines. The lack of consistent findings in asthmatic samples coupled with the relative concordance of results from stimulated ASM cells suggests that changes to the contractility of ASM tissues in asthma may be dependent on the presence of an inflammatory environment surrounding the ASM layer. Removal of the ASM from this environment could explain why hypercontractility is rarely seen ex vivo.

  14. Device for Investigation of Mechanical Tension of Isolated Smooth Muscle Vessels and Airway Segments of Animals

    Science.gov (United States)

    Aleinik, A.; Karpovich, N.; Turgunova, N.; Nosarev, A.

    2016-11-01

    For the purpose of testing and the search for new drug compounds, designed to heal many human diseases, it is necessary to investigate the deformation of experimental tissue samples under influence of these drugs. For this task a precision force sensor for measuring the mechanical tension, produced by isolated ring segments of blood vessels and airways was created. The hardware and software systems for the study of changes in contractile responses of the airway smooth muscles and blood vessels of experimental animals was developed.

  15. A Phosphorylatable Sphingosine Analog Induces Airway Smooth Muscle Cytostasis and Reverses Airway Hyperresponsiveness in Experimental Asthma

    Science.gov (United States)

    Gendron, David R.; Lecours, Pascale B.; Lemay, Anne-Marie; Beaulieu, Marie-Josée; Huppé, Carole-Ann; Lee-Gosselin, Audrey; Flamand, Nicolas; Don, Anthony S.; Bissonnette, Élyse; Blanchet, Marie-Renée; Laplante, Mathieu; Bourgoin, Sylvain G.; Bossé, Ynuk; Marsolais, David

    2017-01-01

    In asthma, excessive bronchial narrowing associated with thickening of the airway smooth muscle (ASM) causes respiratory distress. Numerous pharmacological agents prevent experimental airway hyperresponsiveness (AHR) when delivered prophylactically. However, most fail to resolve this feature after disease is instated. Although sphingosine analogs are primarily perceived as immune modulators with the ability to prevent experimental asthma, they also influence processes associated with tissue atrophy, supporting the hypothesis that they could interfere with mechanisms sustaining pre-established AHR. We thus assessed the ability of a sphingosine analog (AAL-R) to reverse AHR in a chronic model of asthma. We dissected the pharmacological mechanism of this class of agents using the non-phosphorylatable chiral isomer AAL-S and the pre-phosphorylated form of AAL-R (AFD-R) in vivo and in human ASM cells. We found that a therapeutic course of AAL-R reversed experimental AHR in the methacholine challenge test, which was not replicated by dexamethasone or the non-phosphorylatable isomer AAL-S. AAL-R efficiently interfered with ASM cell proliferation in vitro, supporting the concept that immunomodulation is not necessary to interfere with cellular mechanisms sustaining AHR. Moreover, the sphingosine-1-phosphate lyase inhibitor SM4 and the sphingosine-1-phosphate receptor antagonist VPC23019 failed to inhibit proliferation, indicating that intracellular accumulation of sphingosine-1-phosphate or interference with cell surface S1P1/S1P3 activation, are not sufficient to induce cytostasis. Potent AAL-R-induced cytostasis specifically related to its ability to induce intracellular AFD-R accumulation. Thus, a sphingosine analog that possesses the ability to be phosphorylated in situ interferes with cellular mechanisms that beget AHR.

  16. Membrane Currents in Airway Smooth Muscle: Mechanisms and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Luke J Janssen

    1997-01-01

    Full Text Available Electrophysiological and pharmacological techniques were used to characterize the membrane conductance changes underlying spasmogen-evoked depolarization in airway smooth muscle (ASM. Changes included a transient activation of chloride ion channels and prolonged suppression of potassium ion channels; both changes are triggered by release of internally sequestered calcium ion and in turn cause opening of voltage-dependent calcium channels. The resultant influx of calcium ions contributes to contraction as well as to refilling of the internal calcium ion pool. Bronchodilators, on the other hand, act in part through activation of potassium channels, with consequent closure of calcium channels. The tools used to study ion channels in ASM are described, and the investigations of the roles of ion channels in ASM physiology (autacoid-evoked depolarization and hyperpolarization and pathophysiology (airway hyperresponsiveness are summarized. Finally, how the relationship between ion channels and ASM function/dysfunction may relate to the treatment of asthma and related breathing disorders is discussed.

  17. Focal adhesion kinase regulates collagen I-induced airway smooth muscle phenotype switching

    NARCIS (Netherlands)

    Dekkers, Bart G J; Spanjer, Anita I R; van der Schuyt, Robert D; Kuik, Willem Jan; Zaagsma, Johan; Meurs, Herman

    2013-01-01

    Increased extracellular matrix (ECM) deposition and airway smooth muscle (ASM) mass are major contributors to airway remodeling in asthma. Recently, we demonstrated that the ECM protein collagen I, which is increased surrounding asthmatic ASM, induces a proliferative, hypocontractile ASM phenotype.

  18. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    Science.gov (United States)

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  19. Inhibition of angiotensin II-induced contraction of human airway smooth muscle cells by angiotensin-(1-7) via downregulation of the RhoA/ROCK2 signaling pathway.

    Science.gov (United States)

    Li, Ning; Cai, Ruijun; Niu, Yi; Shen, Bin; Xu, Jian; Cheng, Yuanxiong

    2012-10-01

    Sustained renin-angiotensin system (RAS) activation in asthmatic patients plays a crucial role in airway hyperresponsiveness and airflow limitation. Angiotensin II (Ang II), as a key peptide of RAS, contributes to the contraction of human airway smooth muscle by activating the RhoA/Rho-associated coiled-coil containing protein kinase 2 (ROCK2) signaling pathway. Angiotensin-(1-7) [Ang-(1-7)], is a component of the angiotensin I converting enzyme 2 (ACE2)-Ang-(1-7)-Mas axis which counteracts the detrimental effects of the ACE- Ang II-angiotensin type 1 receptor (AT1R) axis in vivo; however, whether Ang-(1-7) can inhibit the effect of Ang II in the contraction of human airway smooth muscle cells (HASMCs) is unknown. In our study, collagen gel lattices and immunofluorescence were used to evaluate the contraction of HASMCs induced by Ang II. Real-time PCR and western blot analysis were performed to confirm the regulatory mechanism and the participating signaling pathway. Ang II caused the contraction of HASMCs; this effect was reversed by Ang‑(1‑7). In addition, irbesartan and A779, which are inhibitors of AT1R and Mas, respectively, attenuated the effect of Ang II and Ang-(1-7). Furthermore, Y-27632, an inhibitor of ROCK2, attenuated the Ang II-induced contraction of HASMCs by blocking the RhoA/ROCK2 signaling pathway which is involved in this contraction, and thus may be a major regulator involved in the basal maintenance of contractility in HASMCs. These data demonstrate that Ang II induces the contraction of HASMCs and that this effect can be reversed by Ang-(1-7), partially through the downregulation of of the RhoA/ROCK2 signaling pathway.

  20. Length-Dependent Modulation of Cytoskeletal Remodeling and Mechanical Energetics in Airway Smooth Muscle

    OpenAIRE

    Kim, Hak Rim; Liu, Katrina; Roberts, Thomas J.; Hai, Chi-Ming

    2010-01-01

    Actin cytoskeletal remodeling is an important mechanism of airway smooth muscle (ASM) contraction. We tested the hypothesis that mechanical strain modulates the cholinergic receptor–mediated cytoskeletal recruitment of actin-binding and integrin-binding proteins in intact airway smooth muscle, thereby regulating the mechanical energetics of airway smooth muscle. We found that the carbachol-stimulated cytoskeletal recruitment of actin-related protein-3 (Arp3), metavinculin, and talin were up-r...

  1. A study of airway smooth muscle in asthmatic and non-asthmatic airways using PS-OCT (Conference Presentation)

    Science.gov (United States)

    Adams, David C.; Holz, Jasmin A.; Szabari, Margit V.; Hariri, Lida P.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    Present understanding of the pathophysiological mechanisms of asthma has been severely limited by the lack of an imaging modality capable of assessing airway conditions of asthma patients in vivo. Of particular interest is the role that airway smooth muscle (ASM) plays in the development of asthma and asthma related symptoms. With standard Optical Coherence Tomography (OCT), imaging ASM is often not possible due to poor structural contrast between the muscle and surrounding tissues. A potential solution to this problem is to utilize additional optical contrast factors intrinsic to the tissue, such as birefringence. Due to its highly ordered structure, ASM is strongly birefringent. Previously, we demonstrated that Polarization Sensitive OCT(PS-OCT) has the potential to be used to visualize ASM as well as easily segment it from the surrounding (weakly) birefringent tissue by exploiting a property which allows it to discriminate the orientation of birefringent fibers. We have already validated our technology with a substantial set of histological comparisons made against data obtained ex vivo. In this work we present a comprehensive comparison of ASM distributions in asthmatic and non-asthmatic human volunteers. By isolating the ASM we parameterize its distribution in terms of both thickness and band width, calculated volumetrically over centimeters of airway. Using this data we perform analyses of the asthmatic and non-asthmatic airways using a broad number and variety and subjects.

  2. 组织贴块法建立人气道平滑肌细胞体外培养模型的研究%Construction of Model of Human Airway Smooth Muscle in Vitro by Attachment-block Culture

    Institute of Scientific and Technical Information of China (English)

    刘媛; 黄茂; 李涛; 刘红

    2011-01-01

    背景:人气道平滑肌已被证实参与气道重塑,气道平滑肌的重塑已成为慢性呼吸道疾病的主要病理改变之一.人气道平滑肌细胞的培养对慢性呼吸道疾病的研究有重要意义.组织贴块法培养人气道平滑肌细胞是原代培养人气遭平滑肌细胞的基本方法之一.目的:采用组织贴块法建立人气道平滑肌体外培养模型.方法:采集人气道组织,用组织贴块法进行人气道平滑肌细胞的原代培养,获得的细胞经形态学和免疫细胞化学染色鉴定.结果:培养的细胞呈典型的"谷峰"状生长,胞浆内特异性的平滑肌肌动蛋白阳性表达,符合平滑肌细胞的形态学特征和生物学特性.结论:组织贴块法易操作,结果可信,并可培养出高纯度活性好的人气道平滑肌细胞,成功建立了体外人气道平滑肌细胞增殖模型,提供了研究慢性呼吸道疾病的细胞培养模型.%Objective: To establish the model of human airway smooth muscle in vitro by attachment-block culture. Methods: The human airway wall was separated from lung resection carefully and cut into small pieces about 1 mm3, and then these pieces were attached on the wall of culture bottle. After 3 hours, those tissue pieces were cultivated in DMEM with 20 % calf serum. Results: Cells had grown on the bottom of culture bottle like peak-valley in shape. All cells almost were smooth muscle cells identified through An- tiα-actin immunohistochemistry stain. Conclusion: Attachment-block culture of human airway smooth muscle cells is simple to operate, reliable in result, high in purity and useful as a cellular model for study of respiratory diseases.

  3. TNFα and IFNγ synergistically enhance transcriptional activation of CXCL10 in human airway smooth muscle cells via STAT-1, NF-κB, and the transcriptional coactivator CREB-binding protein.

    Science.gov (United States)

    Clarke, Deborah L; Clifford, Rachel L; Jindarat, Sarawut; Proud, David; Pang, Linhua; Belvisi, Maria; Knox, Alan J

    2010-09-17

    Asthmatic airway smooth muscle (ASM) expresses interferon-γ-inducible protein-10 (CXCL10), a chemokine known to mediate mast cell migration into ASM bundles that has been reported in the airways of asthmatic patients. CXCL10 is elevated in patients suffering from viral exacerbations of asthma and in patients with chronic obstructive pulmonary disease (COPD), diseases in which corticosteroids are largely ineffective. IFNγ and TNFα synergistically induce CXCL10 release from human ASM cells in a steroid-insensitive manner, via an as yet undefined mechanism. We report that TNFα activates the classical NF-κB (nuclear factor κB) pathway, whereas IFNγ activates JAK2/STAT-1α and that inhibition of the JAK/STAT pathway is more effective in abrogating CXCL10 release than the steroid fluticasone. The synergy observed with TNFα and IFNγ together, however, did not lie at the level of NF-κB activation, STAT-1α phosphorylation, or in vivo binding of these transcription factors to the CXCL10 promoter. Stimulation of human ASM cells with TNFα and IFNγ induced histone H4 but not histone H3 acetylation at the CXCL10 promoter, although no synergism was observed when both cytokines were combined. We show, however, that TNFα and IFNγ exert a synergistic effect on the recruitment of CREB-binding protein (CBP) to the CXCL10, which is accompanied by increased RNA polymerase II. Our results provide evidence that synergism between TNFα and IFNγ lies at the level of coactivator recruitment in human ASM and suggest that inhibition of JAK/STAT signaling may be of therapeutic benefit in steroid-resistant airway disease.

  4. Pentraxin 3 (PTX3 expression in allergic asthmatic airways: role in airway smooth muscle migration and chemokine production.

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    Full Text Available BACKGROUND: Pentraxin 3 (PTX3 is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 is produced by immune and structural cells. However, very little is known about the expression of PTX3 and its role in allergic asthma. OBJECTIVES AND METHODS: We sought to determine the PTX3 expression in asthmatic airways and its function in human airway smooth muscle cells (HASMC. In vivo PTX3 expression in bronchial biopsies of mild, moderate and severe asthmatics was analyzed by immunohistochemistry. PTX3 mRNA and protein were measured by real-time RT-PCR and ELISA, respectively. Proliferation and migration were examined using (3H-thymidine incorporation, cell count and Boyden chamber assays. RESULTS: PTX3 immunoreactivity was increased in bronchial tissues of allergic asthmatics compared to healthy controls, and mainly localized in the smooth muscle bundle. PTX3 protein was expressed constitutively by HASMC and was significantly up-regulated by TNF, and IL-1β but not by Th2 (IL-4, IL-9, IL-13, Th1 (IFN-γ, or Th-17 (IL-17 cytokines. In vitro, HASMC released significantly higher levels of PTX3 at the baseline and upon TNF stimulation compared to airway epithelial cells (EC. Moreover, PTX3 induced CCL11/eotaxin-1 release whilst inhibited the fibroblast growth factor-2 (FGF-2-driven HASMC chemotactic activity. CONCLUSIONS: Our data provide the first evidence that PTX3 expression is increased in asthmatic airways. HASMC can both produce and respond to PTX3. PTX3 is a potent inhibitor of HASMC migration induced by FGF-2 and can upregulate CCL11/eotaxin-1 release. These results raise the possibility that PTX3 may play a dual role in allergic asthma.

  5. Glucocorticosteroids and beta(2)-Adrenoceptor Agonists Synergize to Inhibit Airway Smooth Muscle Remodeling

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Pehlic, Adnan; Mariani, Raissa; Bos, I. Sophie T.; Meurs, Herman; Zaagsma, Johan

    2012-01-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to increased airway narrowing in asthma. Increased ASM mass may be caused by exposure to mitogens, including platelet-derived growth factor (PDGF) and collagen type I, which induce a proliferative,

  6. Insulin-Induced Laminin Expression Promotes a Hypercontractile Airway Smooth Muscle Phenotype

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Schaafsma, Dedmer; Tran, Thai; Zaagsma, Johan; Meurs, Herman

    2009-01-01

    Airway smooth muscle (ASM) plays a key role in the development of airway hyperresponsiveness and remodeling in asthma, which may involve maturation of ASM cells to a hypercontractile phenotype. In vitro studies have indicated that long-term exposure of bovine tracheal smooth muscle (BTSM) to insulin

  7. Anti-CTGF single-chain variable fragment dimers inhibit human airway smooth muscle (ASM) cell proliferation by down-regulating p-Akt and p-mTOR levels.

    Science.gov (United States)

    Gao, Wei; Cai, Liting; Xu, Xudong; Fan, Juxiang; Xue, Xiulei; Yan, Xuejiao; Qu, Qinrong; Wang, Xihua; Zhang, Chen; Wu, Guoqiu

    2014-01-01

    Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma.

  8. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation.

    Science.gov (United States)

    Townsend, Elizabeth A; Siviski, Matthew E; Zhang, Yi; Xu, Carrie; Hoonjan, Bhupinder; Emala, Charles W

    2013-02-01

    The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting β-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca(2+)](i)) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100-300 μM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 μM), blunted subsequent Ca(2+) responses to bradykinin (10 μM) and S-(-)-Bay K 8644 (10 μM). In A/J mice, the nebulization of [8]-gingerol (100 μM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca(2+)](i) regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including β(2)-agonists, in airway diseases such as asthma.

  9. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction

    Science.gov (United States)

    Huang, Fen; Zhang, Hongkang; Wu, Meng; Yang, Huanghe; Kudo, Makoto; Peters, Christian J.; Woodruff, Prescott G.; Solberg, Owen D.; Donne, Matthew L.; Huang, Xiaozhu; Sheppard, Dean; Fahy, John V.; Wolters, Paul J.; Hogan, Brigid L. M.; Finkbeiner, Walter E.; Li, Min; Jan, Yuh-Nung; Jan, Lily Yeh; Rock, Jason R.

    2012-01-01

    Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms. PMID:22988107

  10. Could an increase in airway smooth muscle shortening velocity cause airway hyperresponsiveness?

    Science.gov (United States)

    Bullimore, Sharon R; Siddiqui, Sana; Donovan, Graham M; Martin, James G; Sneyd, James; Bates, Jason H T; Lauzon, Anne-Marie

    2011-01-01

    Airway hyperresponsiveness (AHR) is a characteristic feature of asthma. It has been proposed that an increase in the shortening velocity of airway smooth muscle (ASM) could contribute to AHR. To address this possibility, we tested whether an increase in the isotonic shortening velocity of ASM is associated with an increase in the rate and total amount of shortening when ASM is subjected to an oscillating load, as occurs during breathing. Experiments were performed in vitro using 27 rat tracheal ASM strips supramaximally stimulated with methacholine. Isotonic velocity at 20% isometric force (Fiso) was measured, and then the load on the muscle was varied sinusoidally (0.33 ± 0.25 Fiso, 1.2 Hz) for 20 min, while muscle length was measured. A large amplitude oscillation was applied every 4 min to simulate a deep breath. We found that: 1) ASM strips with a higher isotonic velocity shortened more quickly during the force oscillations, both initially (P shortening during the force oscillation protocol (P shortening with increased isotonic velocity could be explained by a change in either the cycling rate of phosphorylated cross bridges or the rate of myosin light chain phosphorylation. We conclude that, if asthma involves an increase in ASM velocity, this could be an important factor in the associated AHR.

  11. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    Full Text Available BACKGROUND: The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. CONCLUSION/SIGNIFICANCE: The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of

  12. Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism

    NARCIS (Netherlands)

    Johnson, Peter R A; Burgess, Janette K; Underwood, P Anne; Au, Wendy; Poniris, Maree H; Tamm, Michael; Ge, Qi; Roth, Michael; Black, Judith L

    2004-01-01

    BACKGROUND: Airway remodeling is a key feature of persistent asthma and includes alterations in the extracellular matrix protein profile around the airway smooth muscle (ASM) and hyperplasia of the ASM. We have previously shown that nonasthmatic ASM cells in culture produce a range of extracellular

  13. The effect of asthma therapeutics on signalling and transcriptional regulation of airway smooth muscle function

    NARCIS (Netherlands)

    Ammit, Alaina J; Burgess, Janette K; Hirst, Stuart J; Hughes, J Margaret; Kaur, Manminder; Lau, Justine Y; Zuyderduyn, Suzanne

    2009-01-01

    SCOPE OF THE REVIEW: Our knowledge of the multifunctional nature of airway smooth muscle (ASM) has expanded rapidly in the last decade, but the underlying molecular mechanisms and how current therapies for obstructive airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD),

  14. Protective effects of tiotropium bromide in the progression of airway smooth muscle remodeling

    NARCIS (Netherlands)

    Gosens, Reinout; Bos, I.S.; Zaagsma, Hans; Meurs, Herman

    2005-01-01

    Rationale: Recent findings have demonstrated that muscarinic M-3 receptor stimulation enhances airway smooth muscle proliferation to peptide growth factors in vitro. Because both peptide growth factor expression and acetylcholine release are known to be augmented in allergic airway inflammation, it

  15. A key role for STIM1 in store operated calcium channel activation in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Peel Samantha E

    2006-09-01

    Full Text Available Abstract Background Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca2+ stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca2+ in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC or receptor operated channels (ROC. Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca2+ stores. The mechanism underlying SOC activation following depletion of intracellular Ca2+ stores in smooth muscle has not been identified. Methods To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. Results Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70% of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca2+ influx in response to store depletion by cyclopiazonic acid (60% or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. Conclusion Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca2+ store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model.

  16. Studying airway smooth muscle in vivo with PS-OCT (Conference Presentation)

    Science.gov (United States)

    Adams, David C.; Hariri, Lida P.; Miller, Alyssa J.; Villiger, Martin; Holz, Jasmin; Szabari, Margit V.; Bouma, Brett E.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    Present understanding of the pathophysiological mechanisms of asthma has been severely limited by the lack of an imaging modality capable of assessing airway conditions of asthma patients in vivo. Of particular interest is the role that airway smooth muscle (ASM) plays in the development of asthma and asthma related symptoms. We have developed novel techniques that we applied to Polarization Sensitive OCT (PS-OCT) in order to assess ASM, and validated our results with a substantial number of histological matches. In this work we employ our system in the study of ASM distributions in both asthmatic and non-asthmatic airways with data obtained in vivo from human volunteers. By isolating the ASM and performing volumetric analysis we obtain a variety of informative metrics such as ASM thickness and band width, and compare these quantities between subject types. Furthermore, we demonstrate that the degree of birefringence of the ASM can be associated with contractility, allowing us to estimate pressure exerted by ASM during contraction. We apply this technique to in vivo datasets from human volunteers as well.

  17. Cooling-induced contraction in ovine airways smooth muscle.

    Science.gov (United States)

    Mustafa, S M; Pilcher, C W; Williams, K I

    1999-02-01

    The mechanism of cold-induced bronchoconstriction is poorly understood. This prompted the present study whose aim was to determine the step-wise direct effect of cooling on smooth muscle of isolated ovine airways and analyse the role of calcium in the mechanisms involved. Isolated tracheal strips and bronchial segments were suspended in organ baths containing Krebs' solution for isometric tension recording. Tissue responses during stepwise cooling from 37 to 5 degrees C were examined. Cooling induced a rapid and reproducible contraction proportional to cooling temperature in ovine tracheal and bronchial preparations which was epithelium-independent. On readjustment to 37 degrees C the tone returned rapidly to basal level. Maximum contraction was achieved at a temperature of 5 degrees C for trachea and 15 degrees C for bronchiole. Cooling-induced contractions (CIC) was resistant to tetrodotoxin (1; 10 micrometer), and not affected by the muscarinic antagonist atropine (1 micrometer) or the alpha-adrenergic antagonist phentolamine (1 micrometer), or the histamine H1-antagonist mepyramine (1 micrometer) or indomethacin (1 micrometer). Ca2+ antagonists (nifedipine and verapamil) and Mn2+ raised tracheal but not bronchiolar tone and augmented CIC. Incubation in Ca2+-free, EGTA-containing Krebs' solution for 5 min had no effect on CIC, although it significantly reduced KCl-induced contraction by up to 75%. Cooling inhibited Ca2+ influx measured using 45Ca2+ uptake. Caffeine (100 micrometer) significantly inhibited CIC. The results show that cooling-induced contractions do not appear to involve activation of nerve endings, all surface reception systems or Ca2+ influx. However, CIC is mainly dependent on release of intracellular Ca2+.

  18. [Influence of nanosize particles of cobalt ferrite on contractile responses of smooth muscle segment of airways].

    Science.gov (United States)

    Kapilevich, L V; Zaĭtseva, T N; Nosarev, A V; D'iakova, E Iu; Petlina, Z R; Ogorodova, L M; Ageev, B G; Magaeva, A A; Itin, V I; Terekhova, O G; Medvedev, M A

    2012-02-01

    Contractile responses of airways segments of porpoises inhaling nanopowder CoFe2O4 were stidued by means of a mechanographic method. Inhalation of the nanosize particles of CoFe2O4 in vivo and in vitro testing the nanomaterial on isolated smooth muscles led to potentiation histaminergic, cholinergic contractile activity in airways of porpoises and to strengthening of adrenergic relaxing answers. Nanosize particles vary amplitude of hyperpotassium reductions in smooth muscle segments of airways similarly to the effect of depolymerizing drug colchicine.

  19. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle.

    Science.gov (United States)

    Calkovska, A; Uhliarova, B; Joskova, M; Franova, S; Kolomaznik, M; Calkovsky, V; Smolarova, S

    2015-04-01

    Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction.

  20. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

    Science.gov (United States)

    Pan, Shi; Sharma, Pawan; Shah, Sushrut D; Deshpande, Deepak A

    2017-07-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases. Copyright © 2017 the American Physiological

  1. Mast cell numbers in airway smooth muscle and PC(20)AMP in asthma and COPD

    NARCIS (Netherlands)

    Liesker, J. J. W.; ten Hacken, N. H. T.; Rutgers, S. R.; Zeinstra-Smith, M.; Postma, D. S.; Timens, W.

    2007-01-01

    Introduction: Most patients with asthma and many patients with COPD show bronchial hyperresponsiveness to adenosine (BHRAMP). BHRAMP may be caused by release of mast cell histamine, which induces smooth muscle contraction. Aim of the study: To evaluate whether mast cell numbers in airway smooth musc

  2. CD40 and OX40 ligand are increased on stimulated asthmatic airway smooth muscle

    NARCIS (Netherlands)

    Burgess, Janette K; Blake, Anita E; Boustany, Sarah; Johnson, Peter R A; Armour, Carol L; Black, Judith L; Hunt, Nicholas H; Hughes, J Margaret

    2005-01-01

    BACKGROUND: Severe, persistent asthma is characterized by airway smooth muscle hyperplasia, inflammatory cell infiltration into the smooth muscle, and increased expression of many cytokines, including IL-4, IL-13, IL-1beta, and TNF-alpha. These cytokines have the potential to alter the expression of

  3. Simvastatin inhibits human airway smooth muscle cells proliferation by oxidative stress%辛伐他汀通过氧化应激抑制人气道平滑肌细胞增殖

    Institute of Scientific and Technical Information of China (English)

    沈奕; 查王健; 钱艳; 李娟; 黄茂

    2013-01-01

    目的 探讨辛伐他汀(simvastatin,Sim)对血小板活化因子(platelet activating factor,PAF)诱导的人气道平滑肌细胞(human airway smooth muscle cells,HASMCs)中活性氧(reactive oxidant stress,ROS)的生成及对细胞增殖的影响.方法 用CCK-8法检测细胞增殖,2′,7′-二氯荧光乙酰乙酸(DCFH-DA)染色,用荧光显微镜成像观察细胞荧光强弱,流式细胞术检测细胞内ROS水平.结果 PAF(10-6 mol/L,24 h)的增殖率是对照组的(1.77±0.51)倍,Sim(10-5 mol/L)(0.67±0.18)可抑制PAF促增殖作用(P<0.01).PAF 10-6 mol/L组平均荧光强度(mean fluorescence intensity,MFI)(98.89±1.28)较阴性对照组(76.79±6.05)明显增强,PAF 10-6 mol/L + Sim 10-5 mol/L组(66.40±2.87)较PAF 10-6组减弱(P<0.01).结论 Sim可抑制PAF诱导的HASMCs增殖,可能是通过减少ROS的生成起作用.

  4. Growth factor-induced contraction of human bronchial smooth muscle is Rho-kinase-dependent

    NARCIS (Netherlands)

    Gosens, Reinout; Schaafsma, D.; Grootte Bromhaar, M.M; Vrugt, B.; Zaagsma, Hans; Meurs, Herman; Nelemans, Herman

    2004-01-01

    Growth factors have been implicated in the pathophysiology of asthma. However, the putative effects of these growth factors on human airway smooth muscle tone are still largely unknown. We performed contraction experiments using human bronchial smooth muscle ring preparations. The growth factor

  5. Prostaglandin E2 induces expression of MAPK phosphatase 1 (MKP-1) in airway smooth muscle cells.

    Science.gov (United States)

    Rumzhum, Nowshin N; Ammit, Alaina J

    2016-07-05

    Prostaglandin E2 (PGE2) is a prostanoid with diverse actions in health and disease. In chronic respiratory diseases driven by inflammation, PGE2 has both positive and negative effects. An enhanced understanding of the receptor-mediated cellular signalling pathways induced by PGE2 may help us separate the beneficial properties from unwanted actions of this important prostaglandin. PGE2 is known to exert anti-inflammatory and bronchoprotective actions in human airways. To date however, whether PGE2 increases production of the anti-inflammatory protein MAPK phosphatase 1 (MKP-1) was unknown. We address this herein and use primary cultures of human airway smooth muscle (ASM) cells to show that PGE2 increases MKP-1 mRNA and protein upregulation in a concentration-dependent manner. We explore the signalling pathways responsible and show that PGE2-induces CREB phosphorylation, not p38 MAPK activation, in ASM cells. Moreover, we utilize selective antagonists of EP2 (PF-04418948) and EP4 receptors (GW 627368X) to begin to identify EP-mediated functional outcomes in ASM cells in vitro. Taken together with earlier studies, our data suggest that PGE2 increases production of the anti-inflammatory protein MKP-1 via cAMP/CREB-mediated cellular signalling in ASM cells and demonstrates that EP2 may, in part, be involved. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Insulin induces a hypercontractile airway smooth muscle phenotype

    NARCIS (Netherlands)

    Gosens, R; Nelemans, SA; Bromhaar, MMG; Meurs, H; Zaagsma, J

    2003-01-01

    This study aims to investigate the effects of insulin on bovine tracheal smooth muscle phenotype in vitro. Contractility of muscle strips and DNA-synthesis ([3 H]thymidine incorporation) of isolated cells were used as parameters for smooth muscle phenotyping. Insulin (1 muM) was mitogenic for bovine

  7. Signaling and regulation of G protein-coupled receptors in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Penn Raymond B

    2003-03-01

    Full Text Available Abstract Signaling through G protein-coupled receptors (GPCRs mediates numerous airway smooth muscle (ASM functions including contraction, growth, and "synthetic" functions that orchestrate airway inflammation and promote remodeling of airway architecture. In this review we provide a comprehensive overview of the GPCRs that have been identified in ASM cells, and discuss the extent to which signaling via these GPCRs has been characterized and linked to distinct ASM functions. In addition, we examine the role of GPCR signaling and its regulation in asthma and asthma treatment, and suggest an integrative model whereby an imbalance of GPCR-derived signals in ASM cells contributes to the asthmatic state.

  8. Increased Expression of RhoA in Epithelium and Smooth Muscle of Obese Mouse Models: Implications for Isoprenoid Control of Airway Smooth Muscle and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Kristie R. Ross

    2013-01-01

    Full Text Available The simultaneous rise in the prevalence of asthma and obesity has prompted epidemiologic studies that establish obesity as a risk factor for asthma. The alterations in cell signaling that explain this link are not well understood and warrant investigation so that therapies that target this asthma phenotype can be developed. We identified a significant increase in expression of the small GTPase RhoA in nasal epithelial cells and tracheal smooth muscle cells from leptin-deficient (ob/ob mice compared to their wild-type counterparts. Since RhoA function is dependent on isoprenoid modification, we sought to determine the role of isoprenoid-mediated signaling in regulating the viability and proliferation of human airway smooth muscle cells (ASM and normal human lung fibroblasts (NHLF. Inhibiting isoprenoid signaling with mevastatin significantly decreased the viability of ASM and NHLF. This inhibition was reversed by geranylgeranyl pyrophosphate (GGPP, but not farnesyl pyrophosphate (FPP, suggesting specificity to the Rho GTPases. Conversely, increasing isoprenoid synthesis significantly increased ASM proliferation and RhoA protein expression. RhoA expression is inherently increased in airway tissue from ob/ob mice, and obesity-entrained alterations in this pathway may make it a novel therapeutic target for treating airway disease in the obese population.

  9. Airway smooth muscle cell tone amplifies contractile function in the presence of chronic cyclic strain.

    Science.gov (United States)

    Fairbank, Nigel J; Connolly, Sarah C; Mackinnon, James D; Wehry, Kathrin; Deng, Linhong; Maksym, Geoffrey N

    2008-09-01

    Chronic contractile activation, or tone, in asthma coupled with continuous stretching due to breathing may be involved in altering the contractile function of airway smooth muscle (ASM). Previously, we (11) showed that cytoskeletal remodeling and stiffening responses to acute (2 h) localized stresses were modulated by the level of contractile activation of ASM. Here, we investigated if altered contractility in response to chronic mechanical strain was dependent on repeated modulation of contractile tone. Cultured human ASM cells received 5% cyclic (0.3 Hz), predominantly uniaxial strain for 5 days, with once-daily dosing of either sham, forskolin, carbachol, or histamine to alter tone. Stiffness, contractility (KCl), and "relaxability" (forskolin) were then measured as was cell alignment, myosin light-chain phosphorylation (pMLC), and myosin light-chain kinase (MLCK) content. Cells became aligned and baseline stiffness increased with strain, but repeated lowering of tone inhibited both effects (P negative tone-modulation dependence of MLCK, observed in static conditions in agreement with previous reports, with strain and tone together increasing both MLCK and pMLC. Furthermore, contractility increased 176% (SE 59) with repeated tone elevation. These findings indicate that with strain, and not without, repeated tone elevation promoted contractile function through changes in cytoskeletal organization and increased contractile protein. The ability of repeated contractile activation to increase contractility, but only with mechanical stretching, suggests a novel mechanism for increased ASM contractility in asthma and for the role of continuous bronchodilator and corticosteroid therapy in reversing airway hyperresponsiveness.

  10. cAMP-mediated secretion of brain-derived neurotrophic factor in developing airway smooth muscle.

    Science.gov (United States)

    Thompson, Michael A; Britt, Rodney D; Kuipers, Ine; Stewart, Alecia; Thu, James; Pandya, Hitesh C; MacFarlane, Peter; Pabelick, Christina M; Martin, Richard J; Prakash, Y S

    2015-10-01

    Moderate hyperoxic exposure in preterm infants contributes to subsequent airway dysfunction and to risk of developing recurrent wheeze and asthma. The regulatory mechanisms that can contribute to hyperoxia-induced airway dysfunction are still under investigation. Recent studies in mice show that hyperoxia increases brain-derived neurotrophic factor (BDNF), a growth factor that increases airway smooth muscle (ASM) proliferation and contractility. We assessed the mechanisms underlying effects of moderate hyperoxia (50% O2) on BDNF expression and secretion in developing human ASM. Hyperoxia increased BDNF secretion, but did not alter endogenous BDNF mRNA or intracellular protein levels. Exposure to hyperoxia significantly increased [Ca2+]i responses to histamine, an effect blunted by the BDNF chelator TrkB-Fc. Hyperoxia also increased ASM cAMP levels, associated with reduced PDE4 activity, but did not alter protein kinase A (PKA) activity or adenylyl cyclase mRNA levels. However, 50% O2 increased expression of Epac2, which is activated by cAMP and can regulate protein secretion. Silencing RNA studies indicated that Epac2, but not Epac1, is important for hyperoxia-induced BDNF secretion, while PKA inhibition did not influence BDNF secretion. In turn, BDNF had autocrine effects of enhancing ASM cAMP levels, an effect inhibited by TrkB and BDNF siRNAs. Together, these novel studies suggest that hyperoxia can modulate BDNF secretion, via cAMP-mediated Epac2 activation in ASM, resulting in a positive feedback effect of BDNF-mediated elevation in cAMP levels. The potential functional role of this pathway is to sustain BDNF secretion following hyperoxic stimulus, leading to enhanced ASM contractility and proliferation.

  11. c-Myc regulates proliferation and Fgf10 expression in airway smooth muscle after airway epithelial injury in mouse.

    Directory of Open Access Journals (Sweden)

    Thomas Volckaert

    Full Text Available During lung development, Fibroblast growth factor 10 (Fgf10, which is expressed in the distal mesenchyme and regulated by Wnt signaling, acts on the distal epithelial progenitors to maintain them and prevent them from differentiating into proximal (airway epithelial cells. Fgf10-expressing cells in the distal mesenchyme are progenitors for parabronchial smooth muscle cells (PSMCs. After naphthalene, ozone or bleomycin-induced airway epithelial injury, surviving epithelial cells secrete Wnt7b which then activates the PSMC niche to induce Fgf10 expression. This Fgf10 secreted by the niche then acts on a subset of Clara stem cells to break quiescence, induce proliferation and initiate epithelial repair. Here we show that conditional deletion of the Wnt target gene c-Myc from the lung mesenchyme during development does not affect proper epithelial or mesenchymal differentiation. However, in the adult lung we show that after naphthalene-mediated airway epithelial injury c-Myc is important for the activation of the PSMC niche and as such induces proliferation and Fgf10 expression in PSMCs. Our data indicate that conditional deletion of c-Myc from PSMCs inhibits airway epithelial repair, whereas c-Myc ablation from Clara cells has no effect on airway epithelial regeneration. These findings may have important implications for understanding the misregulation of lung repair in asthma and COPD.

  12. Connective tissue growth factor and vascular endothelial growth factor from airway smooth muscle interact with the extracellular matrix

    NARCIS (Netherlands)

    Burgess, Janette K; Ge, Qi; Poniris, Maree H; Boustany, Sarah; Twigg, Stephen M; Black, Judith L; Johnson, Peter R A

    2006-01-01

    Airway remodeling describes the structural changes that occur in the asthmatic airway that include airway smooth muscle hyperplasia, increases in vascularity due to angiogenesis, and thickening of the basement membrane. Our aim in this study was to examine the effect of transforming growth factor-be

  13. TAK1 plays a major role in growth factor-induced phenotypic modulation of airway smooth muscle

    NARCIS (Netherlands)

    Pera, Tonio; Sami, Riham; Zaagsma, Johan; Meurs, Herman

    2011-01-01

    Pera T, Sami R, Zaagsma J, Meurs H. TAK1 plays a major role in growth factor-induced phenotypic modulation of airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 301: L822-L828, 2011. First published August 26, 2011; doi:10.1152/ajplung.00017.2011.-Increased airway smooth muscle (ASM) mass is a

  14. Length-dependent modulation of cytoskeletal remodeling and mechanical energetics in airway smooth muscle.

    Science.gov (United States)

    Kim, Hak Rim; Liu, Katrina; Roberts, Thomas J; Hai, Chi-Ming

    2011-06-01

    Actin cytoskeletal remodeling is an important mechanism of airway smooth muscle (ASM) contraction. We tested the hypothesis that mechanical strain modulates the cholinergic receptor-mediated cytoskeletal recruitment of actin-binding and integrin-binding proteins in intact airway smooth muscle, thereby regulating the mechanical energetics of airway smooth muscle. We found that the carbachol-stimulated cytoskeletal recruitment of actin-related protein-3 (Arp3), metavinculin, and talin were up-regulated at short muscle lengths and down-regulated at long muscle lengths, suggesting that the actin cytoskeleton--integrin complex becomes enriched in cross-linked and branched actin filaments in shortened ASM. The mechanical energy output/input ratio during sinusoidal length oscillation was dependent on muscle length, oscillatory amplitude, and cholinergic activation. The enhancing effect of cholinergic stimulation on mechanical energy output/input ratio at short and long muscle lengths may be explained by the length-dependent modulation of cytoskeletal recruitment and crossbridge cycling, respectively. We postulate that ASM functions as a hybrid biomaterial, capable of switching between operating as a cytoskeleton-based mechanical energy store at short muscle lengths to operating as an actomyosin-powered mechanical energy generator at long muscle lengths. This postulate predicts that targeting the signaling molecules involved in cytoskeletal recruitment may provide a novel approach to dilating collapsed airways in obstructive airway disease.

  15. Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)

    Science.gov (United States)

    Adams, David C.; Hariri, Lida P.; Holz, Jasmin A.; Szabari, Margit V.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.

  16. Extracellular matrix regulates enhanced eotaxin expression in asthmatic airway smooth muscle cells

    NARCIS (Netherlands)

    Chan, Vivien; Burgess, Janette K; Ratoff, Jonathan C; O'connor, Brian J; Greenough, Anne; Lee, Tak H; Hirst, Stuart J

    2006-01-01

    RATIONALE: Altered airway smooth muscle (ASM) function and enrichment of the extracellular matrix (ECM) with fibronectin and collagen are key features of asthma. Previously, we have reported these ECM proteins enhance ASM synthetic function. OBJECTIVE: We compared ASM cultured from endobronchial bio

  17. CD40 and OX40 ligand are differentially regulated on asthmatic airway smooth muscle

    NARCIS (Netherlands)

    Krimmer, D I; Loseli, M; Hughes, J M; Oliver, B G G; Moir, L M; Hunt, N H; Black, J L; Burgess, J K

    2009-01-01

    BACKGROUND: CD40 and OX40 Ligand (OX40L) are cell-surface molecules expressed on airway smooth muscle (ASM) that can enhance inflammatory cell activation and survival. The aim of this study was to examine the effect of tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) on ASM

  18. Connective tissue growth factor induces extracellular matrix in asthmatic airway smooth muscle

    NARCIS (Netherlands)

    Johnson, Peter R A; Burgess, Janette K; Ge, Qi; Poniris, Maree; Boustany, Sarah; Twigg, Stephen M; Black, Judith L

    2006-01-01

    Transforming growth factor (TGF)-beta and connective tissue growth factor may be implicated in extracellular matrix protein deposition in asthma. We have recently reported that TGF-beta increased connective tissue growth factor expression in airway smooth muscle cells isolated from patients with ast

  19. Allergic sensitization enhances the contribution of Rho-kinase to airway smooth muscle contraction

    NARCIS (Netherlands)

    Schaafsma, D.; Gosens, Reinout; Bos, I.S.T.; Meurs, Herman; Zaagsma, Hans; Nelemans, Herman

    2004-01-01

    1 Repeated allergen challenge has been shown to increase the role of Rho-kinase in airway smooth muscle (ASM) contraction. We considered the possibility that active allergic sensitization by itself, that is, without subsequent allergen exposure, could be sufficient to enhance Rho-kinase-mediated ASM

  20. Dual ERK and phosphatidylinositol 3-kinase pathways control airway smooth muscle proliferation : differences in asthma

    NARCIS (Netherlands)

    Burgess, Janette K; Lee, Jin Hee; Ge, Qi; Ramsay, Emma E; Poniris, Maree H; Parmentier, Johannes; Roth, Michael; Johnson, Peter R A; Hunt, Nicholas H; Black, Judith L; Ammit, Alaina J

    2008-01-01

    Hyperplasia of airway smooth muscle (ASM) within the bronchial wall of asthmatic patients has been well documented and is likely due to increased muscle proliferation. We have shown that ASM cells obtained from asthmatic patients proliferate faster than those obtained from non-asthmatic patients. In

  1. Comparison of gel contraction mediated by airway smooth muscle cells from patients with and without asthma

    NARCIS (Netherlands)

    Matsumoto, Hisako; Moir, Lyn M; Oliver, Brian G G; Burgess, Janette K; Roth, Michael; Black, Judith L; McParland, Brent E

    2007-01-01

    BACKGROUND: Exaggerated bronchial constriction is the most significant and life threatening response of patients with asthma to inhaled stimuli. However, few studies have investigated the contractility of airway smooth muscle (ASM) from these patients. The purpose of this study was to establish a me

  2. Airway hyperresponsiveness; smooth muscle as the principal actor [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Anne-Marie Lauzon

    2016-03-01

    Full Text Available Airway hyperresponsiveness (AHR is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway.

  3. Effect of airway acidosis and alkalosis on airway vascular smooth muscle responsiveness to albuterol.

    Science.gov (United States)

    Cancado, Jose E; Mendes, Eliana S; Arana, Johana; Horvath, Gabor; Monzon, Maria E; Salathe, Matthias; Wanner, Adam

    2015-04-02

    In vitro and animal experiments have shown that the transport and signaling of β2-adrenergic agonists are pH-sensitive. Inhaled albuterol, a hydrophilic β2-adrenergic agonist, is widely used for the treatment of obstructive airway diseases. Acute exacerbations of obstructive airway diseases can be associated with changes in ventilation leading to either respiratory acidosis or alkalosis thereby affecting albuterol responsiveness in the airway. The purpose of this study was to determine if airway pH has an effect on albuterol-induced vasodilation in the airway. Ten healthy volunteers performed the following respiratory maneuvers: quiet breathing, hypocapnic hyperventilation, hypercapnic hyperventilation, and eucapnic hyperventilation (to dissociate the effect of pH from the effect of ventilation). During these breathing maneuvers, exhaled breath condensate (EBC) pH and airway blood flow response to inhaled albuterol (ΔQ̇aw) were assessed. Mean ± SE EBC pH (units) and ΔQ̇aw (μl.min(-1).mL(-1)) were 6.4 ± 0.1 and 16.8 ± 1.9 during quiet breathing, 6.3 ± 0.1 and 14.5 ± 2.4 during eucapnic hyperventilation, 6.6 ± 0.2 and -0.2 ± 1.8 during hypocapnic hyperventilation (p = 0.02 and <0.01 vs. quiet breathing), and 5.9 ± 0.1 and 2.0 ± 1.5 during hypercapnic hyperventilation (p = 0.02 and <0.02 vs quiet breathing). Albuterol responsiveness in the airway as assessed by ΔQ̇aw is pH sensitive. The breathing maneuver associated with decreased and increased EBC pH both resulted in a decreased responsiveness independent of the level of ventilation. These findings suggest an attenuated response to hydrophilic β2-adrenergic agonists during airway disease exacerbations associated with changes in pH. Registered at clinicaltrials.gov: NCT01216748 .

  4. Protective effect of high-dose montelukast on salbutamol-induced homologous desensitisation in airway smooth muscle.

    Science.gov (United States)

    Fogli, Stefano; Stefanelli, Fabio; Martelli, Alma; Daniele, Simona; Testai, Lara; Calderone, Vincenzo; Trincavelli, Maria Letizia; Martini, Claudia; Breschi, Maria Cristina

    2013-12-01

    Montelukast (MK) is a potent cysteinyl-leukotriene receptor antagonist that causes dose-related improvements in chronic asthma. We sought to determine whether MK was able to prevent salbutamol-induced tolerance in airway smooth muscle. Homologous β2-adrenoceptor desensitisation models were established in guinea-pigs and in human bronchial smooth muscle cells (BSMC) by chronic salbutamol administration. Characterisation tools included measurement of the response of tracheal smooth muscle tissues to salbutamol, analysis of gene expression and receptor trafficking, evaluation of intracellular cAMP levels and phosphodiesterase (PDE) activity in human bronchial smooth muscle cells. Salbutamol-induced β2-adrenoceptor desensitisation was characterised by β2-agonist hyporesponsiveness (-30%, p salbutamol. Prolonged salbutamol treatment significantly decreased cAMP synthesis, induced a complete removal of the β2-adrenoceptor from plasma membrane with a parallel increase in the cytosol and increased PDE4D5 gene transcription and PDE activity in human bronchial smooth muscle cells. In homologously desensitised BSMC, MK 30 μM for 24 h was able to prevent salbutamol subsensitivity and such an effect was associated with inhibition of salbutamol-induced PDE4 activity and restoration of membrane β2-adrenoceptor expression and function. These findings suggest the presence of a favourable interaction between MK and β2-adrenoceptor agonists that might improve the therapeutic index of bronchodilators in patients with chronic respiratory diseases.

  5. Airway Smooth Muscle as a Target in Asthma and the Beneficial Effects of Bronchial Thermoplasty

    Directory of Open Access Journals (Sweden)

    Luke J. Janssen

    2012-01-01

    Full Text Available Airflow within the airways is determined directly by the lumenal area of that airway. In this paper, we consider several factors which can reduce airway lumenal area, including thickening and/or active constriction of the airway smooth muscle (ASM. The latter cell type can also contribute in part to inflammation, another feature of asthma, through its ability to take on a synthetic/secretory phenotype. The ASM therefore becomes a strategically important target in the treatment of asthma, given these key contributions to the pathophysiology of that disease. Pharmacological approaches have been developed to elicit relaxation of the ASM, but these are not always effective in all patients, nor do they address the long-term structural changes which impinge on the airway lumen. The recent discovery that thermal energy can be used to ablate smooth muscle has led to the development of a novel physical intervention—bronchial thermoplasty—in the treatment of asthma. Here, we review the evolution of this novel approach, consider some of the possible mechanisms that account for its salutary effects, and pose new questions which may lead to even better therapies for asthma.

  6. Research Upregulation of CD23 (FcεRII Expression in Human Airway Smooth Muscle Cells (huASMC in Response to IL-4, GM-CSF, and IL-4/GM-CSF

    Directory of Open Access Journals (Sweden)

    Lew D Betty

    2005-05-01

    Full Text Available Abstract Background Airway smooth muscle cells play a key role in remodeling that contributes to airway hyperreactivity. Airway smooth muscle remodeling includes hypertrophy and hyperplasia. It has been previously shown that the expression of CD23 on ASMC in rabbits can be induced by the IgE component of the atopic serum. We examined if other components of atopic serum are capable of inducing CD23 expression independent of IgE. Methods Serum starved huASMC were stimulated with either IL-4, GM-CSF, IL-13, IL-5, PGD2, LTD4, tryptase or a combination of IL-4, IL-5, IL-13 each with GM-CSF for a period of 24 h. CD23 expression was analyzed by flow cytometry, western blot, and indirect immunofluorescence. Results The CD23 protein expression was upregulated in huASMC in response to IL-4, GM-CSF, and IL-4/GM-CSF. The percentage of cells with increased fluorescence intensity above the control was 25.1 ± 4.2% (IL-4, 15.6 ± 2.7% (GM-CSF and 32.9 ± 13.9% (IL-4/GMCSF combination(n = 3. The protein content of IL-4/GMCSF stimulated cells was significantly elevated. Expression of CD23 in response to IL-4, GM-CSF, IL-4/GM-CSF was accompanied by changes in cell morphology including depolymerization of isoactin fibers, cell spreading, and membrane ruffling. Western blot revealed abundant expression of the IL-4Rα and a low level expression of IL-2Rγc in huASMC. Stimulation with IL-4 resulted in the phosphorylation of STAT-6 and an increase in the expression of the IL-2Rγc. Conclusion CD23 on huASMC is upregulated by IL-4, GM-CSF, and IL-4/GM-CSF. The expression of CD23 is accompanied by an increase in cell volume and an increase in protein content per cell, suggesting hypertrophy. Upregulation of CD23 by IL-4/GM-CSF results in phenotypic changes in huASMC that could play a role in cell migration or a change in the synthetic function of the cells. Upregulation of CD23 in huASMC by IL-4 and GM-CSF can contribute to changes in huASMC and may provide an avenue

  7. 沙丁胺醇在诱导培养人气管平滑肌 细胞凋亡中的作用%Role of salbutamol in inducing apoptosis of cultured human airway smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    罗雅玲; 赖文岩; 徐健; 袁勇; 张荣华

    2001-01-01

    目的研究沙丁胺醇(商品名:舒喘灵)对于诱导培养人气管平滑肌细胞凋亡的作用。方法分离人气管平滑肌细胞并且在含有10%胎牛血清的达尔伯克改良伊格尔(DMEM)培养基中培养,4~6代的细胞用于实验。细胞用沙丁胺醇或色满卡林(cromakalim)或8-溴-环磷酸腺苷(Br-Camp)培养24 h或48 h,光镜和电镜观察形态学改变。琼脂糖电泳分析DNA碎片。链亲和素-过氧化物酶(SP)免疫组化染色监测p53、Bcl-2和Bax基因表达的改变。通过破碎DNA的原位末端标记技术(TUNEL)检测凋亡细胞的百分数。结果(1)沙丁胺醇或8-Br-cAMP降低存活细胞的数目。在48 h、300 μmol/L的浓度,存活的细胞数量最低;(2)人气管平滑肌细胞用沙丁胺醇(100 μmol/L、 300 μmol/L)孵化48 h显示出凋亡的形态学特征(细胞皱缩、染色质浓聚);(3)琼脂糖电泳显示,核酸DNA断裂片呈典型的梯状条带(大约180~200 bp);(4)沙丁胺醇或8-Br-cAMP组p53或Bax基因表达显著高于对照组,但BCl-2组基因表达低于对照组;(5)TUNEL显示,人气管平滑肌细胞的凋亡阳性率用100、300 μmol沙丁胺醇或100 μmol 8-Br-cAMP处理组与对照组比较差异有显著性(q分别为24.04、58.47、27.28,P均<0.000 1)。但cromakalim组和先用普萘洛尔(商品名:心得安)后与沙丁胺醇组与对照组比较,差异无显著性(q分别为0.12、0.52;P分别为0.932、0.717),不影响凋亡细胞的基本水平。结论(1)在体外,沙丁胺醇以时间和浓度依赖的方式诱导人气管平滑肌细胞凋亡。(2)cAMP蛋白激酶A通路对于沙丁胺醇诱导的凋亡是必须的和充分的。%Objective To study the effect of salbutamol on inducing apoptosis of cultured human airway smooth muscle cells (ASMCs). Methods Human ASMCs were isolated and cultured in DMEM containing 10% fetal bovine serum.Cells of

  8. The Oligo Fucoidan Inhibits Platelet-Derived Growth Factor-Stimulated Proliferation of Airway Smooth Muscle Cells.

    Science.gov (United States)

    Yang, Chao-Huei; Tsao, Chiung-Fang; Ko, Wang-Sheng; Chiou, Ya-Ling

    2016-01-09

    In the pathogenesis of asthma, the proliferation of airway smooth muscle cells (ASMCs) is a key factor in airway remodeling and causes airway narrowing. In addition, ASMCs are also the effector cells of airway inflammation. Fucoidan extracted from marine brown algae polysaccharides has antiviral, antioxidant, antimicrobial, anticlotting, and anticancer properties; however, its effectiveness for asthma has not been elucidated thus far. Platelet-derived growth factor (PDGF)-treated primary ASMCs were cultured with or without oligo-fucoidan (100, 500, or 1000 µg/mL) to evaluate its effects on cell proliferation, cell cycle, apoptosis, and Akt, ERK1/2 signaling pathway. We found that PDGF (40 ng/mL) increased the proliferation of ASMCs by 2.5-fold after 48 h (p fucoidan reduced the proliferation of PDGF-stimulated ASMCs by 75%-99% after 48 h (p fucoidan supplementation reduced PDGF-stimulated extracellular signal-regulated kinase (ERK1/2), Akt, and nuclear factor (NF)-κB phosphorylation. Taken together, oligo-fucoidan supplementation might reduce proliferation of PDGF-treated ASMCs through the suppression of ERK1/2 and Akt phosphorylation and NF-κB activation. The results provide basis for future animal experiments and human trials.

  9. The Oligo Fucoidan Inhibits Platelet-Derived Growth Factor-Stimulated Proliferation of Airway Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Chao-Huei Yang

    2016-01-01

    Full Text Available In the pathogenesis of asthma, the proliferation of airway smooth muscle cells (ASMCs is a key factor in airway remodeling and causes airway narrowing. In addition, ASMCs are also the effector cells of airway inflammation. Fucoidan extracted from marine brown algae polysaccharides has antiviral, antioxidant, antimicrobial, anticlotting, and anticancer properties; however, its effectiveness for asthma has not been elucidated thus far. Platelet-derived growth factor (PDGF-treated primary ASMCs were cultured with or without oligo-fucoidan (100, 500, or 1000 µg/mL to evaluate its effects on cell proliferation, cell cycle, apoptosis, and Akt, ERK1/2 signaling pathway. We found that PDGF (40 ng/mL increased the proliferation of ASMCs by 2.5-fold after 48 h (p < 0.05. Oligo-fucoidan reduced the proliferation of PDGF-stimulated ASMCs by 75%–99% after 48 h (p < 0.05 and induced G1/G0 cell cycle arrest, but did not induce apoptosis. Further, oligo-fucoidan supplementation reduced PDGF-stimulated extracellular signal-regulated kinase (ERK1/2, Akt, and nuclear factor (NF-κB phosphorylation. Taken together, oligo-fucoidan supplementation might reduce proliferation of PDGF-treated ASMCs through the suppression of ERK1/2 and Akt phosphorylation and NF-κB activation. The results provide basis for future animal experiments and human trials.

  10. Effects of Tumor Suppressor Gene PTEN on Migration and Proliferation of Human Airway Smooth Muscle Cells%肿瘤抑制基因 PTEN对人气道平滑肌细胞迁移和增殖的影响

    Institute of Scientific and Technical Information of China (English)

    蓝海兵; 罗雅玲; 赖文岩; 龚园其

    2015-01-01

    ABSTRACT:Objective To investigate the mechanism for the effect of tumor suppressor gene PTEN on migration and proliferation of human airway smooth muscle cells (HASMCs).Methods HASMCs were transfected with recombinant adenoviruses encoding human wild-type PTEN cDNA (Ad-PTEN group),GFP-labeled adenovirus vectors (Ad-GFP group)and mock adenoviru-ses (MOCK group),respectively.Cell proliferation was assessed by MTS assay.Cell migration was analyzed using Transwell chamber apparatus.The rearrangement of cell actin cytoskeleton was observed by laser scanning confocal microscope.The protein expression of PTEN,p-Akt, Akt,p-FAK and FAK were measured by Western blotting.Results Compared with Ad-GFP group or MOCK group,the absorbance value,number of migrated cells per unit area and levels of p-Akt and p-FAK protein significantly decreased in Ad-PTEN group (P 0.05).In addition,Ad-PTEN transfection diminished cell outline and reduced the pseudopodium and stress fibers.However,cells in Ad-GFP group and MOCK group had a small amount of short and thin stress fibers with few filiform pseudopodia.Conclusion The overex-pression of PTEN gene inhibits the migration and proliferation of HASMCs through down-regu-lating the expression of p-Akt and p-FAK.Therefore,PTEN may be involved in the regulation of airway remodeling in asthma.%目的:观察肿瘤抑制基因 PTEN 对人气道平滑肌细胞(HASMCs)迁移和增殖的影响机制。方法用重组PTEN 腺病毒转染体外培养的 HASMCs(Ad-PTEN 组),并与携带绿色荧光蛋白(GFP)的腺病毒空载体(Ad-GFP组)和空白对照(MOCK)组对比,采用 MTS 测定细胞增殖、Transwell 法观察细胞迁移、共聚焦显微镜观测细胞骨架的变化、免疫印迹法检测 PTEN、p-Akt、Akt、p-FAK、FAK 蛋白的表达。结果Ad-PTEN 组的吸光度(A)值和每单位面积迁移的细胞数显著低于 Ad-GFP 及 MOCK 组(均 P <0.05),Ad-GFP 和 MOCK 两对照组间

  11. HB-EGF-Promoted Airway Smooth Muscle Cells and Their Progenitor Migration Contribute to Airway Smooth Muscle Remodeling in Asthmatic Mouse.

    Science.gov (United States)

    Wang, Qing; Li, Hequan; Yao, Yinan; Lu, Guohua; Wang, Yuehong; Xia, Dajing; Zhou, Jianying

    2016-03-01

    The airway smooth muscle (ASM) cells' proliferation, migration, and their progenitor's migration are currently regarded as causative factors for ASM remodeling in asthma. Heparin-binding epidermal growth factor (HB-EGF), a potent mitogen and chemotactic factor, could promote ASM cell proliferation through MAPK pathways. In this study, we obtained primary ASM cells and their progenitors from C57BL/6 mice and went on to explore the role of HB-EGF in these cells migration and the underlying mechanisms. We found that recombinant HB-EGF (rHB-EGF) intratracheal instillation accelerated ASM layer thickening in an OVA-induced asthmatic mouse. Modified Boyden chamber assay revealed that rHB-EGF facilitate ASM cell migration in a dose-dependent manner and ASM cells from asthmatic mice had a greater migration ability than that from normal counterparts. rHB-EGF could stimulate the phosphorylation of ERK1/2 and p38 in ASM cells but further migration assay showed that only epidermal growth factor receptor inhibitor (AG1478) or p38 inhibitor (SB203580), but not ERK1/2 inhibitor (PD98059), could inhibit rHB-EGF-mediated ASM cells migration. Actin cytoskeleton experiments exhibited that rHB-EGF could cause actin stress fibers disassembly and focal adhesions formation of ASM cells through the activation of p38. Finally, airway instillation of rHB-EGF promoted the recruitment of bone marrow-derived smooth muscle progenitor cells, which were transferred via caudal vein, migrating into the airway from the circulation. These observations demonstrated that ASM remodeling in asthma might have resulted from HB-EGF-mediated ASM cells and their progenitor cells migration, via p38 MAPK-dependent actin cytoskeleton remodeling.

  12. Airway Responsiveness: Role of Inflammation, Epithelium Damage and Smooth Muscle Tension

    Directory of Open Access Journals (Sweden)

    K. I. Gourgoulianis

    1999-01-01

    Full Text Available The purpose of this study was the effect of epithelium damage on mechanical responses of airway smooth muscles under different resting tension. We performed acetylcholine (ACh (10-5M-induced contraction on tracheal strips from 30 rabbits in five groups (0.5, 1, 1.5, 2 and 2.5 g before and after epithelium removal. At low resting tension (0.5-1.5g, the epithelium removal decreased the ACh-induced contractions. At 2g resting tension, the epithelium removal increased the ACh-induced contractions of airways with intact epithelium about 20%. At 2.5 g resting tension, the elevation of contraction is about 25% (p<0.01. Consequently, after epithelium loss, the resting tension determines the airway smooth muscles responsiveness. In asthma, mediators such as ACh act on already contracted inflammatory airways, which results in additional increase of contraction. In contrast, low resting tension, a condition that simulates normal tidal breathing, protects from bronchoconstriction even when the epithelium is damaged.

  13. Non-selective cation channels mediate chloroquine-induced relaxation in precontracted mouse airway smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available Bitter tastants can induce relaxation in precontracted airway smooth muscle by activating big-conductance potassium channels (BKs or by inactivating voltage-dependent L-type Ca2+ channels (VDLCCs. In this study, a new pathway for bitter tastant-induced relaxation was defined and investigated. We found nifedipine-insensitive and bitter tastant chloroquine-sensitive relaxation in epithelium-denuded mouse tracheal rings (TRs precontracted with acetylcholine (ACH. In the presence of nifedipine (10 µM, ACH induced cytosolic Ca2+ elevation and cell shortening in single airway smooth muscle cells (ASMCs, and these changes were inhibited by chloroquine. In TRs, ACH triggered a transient contraction under Ca2+-free conditions, and, following a restoration of Ca2+, a strong contraction occurred, which was inhibited by chloroquine. Moreover, the ACH-activated whole-cell and single channel currents of non-selective cation channels (NSCCs were blocked by chloroquine. Pyrazole 3 (Pyr3, an inhibitor of transient receptor potential C3 (TRPC3 channels, partially inhibited ACH-induced contraction, intracellular Ca2+ elevation, and NSCC currents. These results demonstrate that NSCCs play a role in bitter tastant-induced relaxation in precontracted airway smooth muscle.

  14. The signal transduction pathway in the proliferation of airway smooth muscle cells induced by urotensin Ⅱ

    Institute of Scientific and Technical Information of China (English)

    陈亚红; 赵鸣武; 姚婉贞; 庞永政; 唐朝枢

    2004-01-01

    Background Human urotensin Ⅱ (UⅡ) is the most potent mammalian vasoconstrictor identified so far. Our previous study showed that UⅡ is a potent mitogen of airway smooth muscle cells (ASMC) inducing ASMC proliferation in a dose-dependent manner. The signal transduction pathway of UⅡ mitogenic effect remains to be clarified. This study was conducted to investigate the signal transduction pathway in the proliferation of ASMC induced by UⅡ.Methods In primary cultures of rat ASMCs, activities of protein kinase C (PKC), mitogen-activated protein kinase (MAPK) and calcineurin (CaN) induced by UⅡ were measured. The effect of CaN on PKC and MAPK was studied by adding cyclosporin A (CsA), a specific inhibitor of CaN. Using H7 and PD98059, inhibitors of PKC and MAPK, respectively, to study the effect of PKC and MAPK on CaN. The cytosolic free calcium concentration induced by UⅡ was measured using Fura-2/AM. Results UⅡ 10-7 mol/L stimulated ASMC PKC and MAPK activities by 44% and 24% (P0.05). CsA 10-6 mol/L inhibited UⅡ-stimulated PKC activity by 14% (P0.05).Conclusions UⅡ increases cytosolic free calcium concentration and activates PKC, MAPK and CaN. The signal transduction pathway between PKC and CaN has cross-talk.

  15. CD4+ T cells enhance the unloaded shortening velocity of airway smooth muscle by altering the contractile protein expression.

    Science.gov (United States)

    Matusovsky, Oleg S; Nakada, Emily M; Kachmar, Linda; Fixman, Elizabeth D; Lauzon, Anne-Marie

    2014-07-15

    Abundant data indicate that pathogenesis in allergic airways disease is orchestrated by an aberrant T-helper 2 (Th2) inflammatory response. CD4(+) T cells have been localized to airway smooth muscle (ASM) in both human asthmatics and in rodent models of allergic airways disease, where they have been implicated in proliferative responses of ASM. Whether CD4(+) T cells also alter ASM contractility has not been addressed. We established an in vitro system to assess the ability of antigen-stimulated CD4(+) T cells to modify contractile responses of the Brown Norway rat trachealis muscle. Our data demonstrated that the unloaded velocity of shortening (Vmax) of ASM was significantly increased upon 24 h co-incubation with antigen-stimulated CD4(+) T cells, while stress did not change. Enhanced Vmax was dependent upon contact between the CD4(+) T cells and the ASM and correlated with increased levels of the fast (+)insert smooth muscle myosin heavy chain isoform. The levels of myosin light chain kinase and myosin light chain phosphorylation were also increased within the muscle. The alterations in mechanics and in the levels of contractile proteins were transient, both declining to control levels after 48 h of co-incubation. More permanent alterations in muscle phenotype might be attainable when several inflammatory cells and mediators interact together or after repeated antigenic challenges. Further studies will await new tissue culture methodologies that preserve the muscle properties over longer periods of time. In conclusion, our data suggest that inflammatory cells promote ASM hypercontractility in airway hyper-responsiveness and asthma.

  16. p42/p44 MAP kinase activation is localized to caveolae-free membrane domains in airway smooth muscle

    NARCIS (Netherlands)

    Gosens, Reinoud; Dueck, Gordon; Gerthoffer, William T; Unruh, Helmut; Zaagsma, Johan; Meurs, Herman; Halayko, Andrew J

    2007-01-01

    Caveolae are abundant plasma membrane invaginations in airway smooth muscle that may function as preorganized signalosomes by sequestering and regulating proteins that control cell proliferation, including receptor tyrosine kinases (RTKs) and their signaling effectors. We previously demonstrated, ho

  17. Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells.

    Science.gov (United States)

    Shkumatov, Artem; Thompson, Michael; Choi, Kyoung M; Sicard, Delphine; Baek, Kwanghyun; Kim, Dong Hyun; Tschumperlin, Daniel J; Prakash, Y S; Kong, Hyunjoon

    2015-06-01

    Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-β1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs.

  18. β2-Agonist induced cAMP is decreased in asthmatic airway smooth muscle due to increased PDE4D

    NARCIS (Netherlands)

    Trian, Thomas; Burgess, Janette K; Niimi, Kyoko; Moir, Lyn M; Ge, Qi; Berger, Patrick; Liggett, Stephen B; Black, Judith L; Oliver, Brian G

    2011-01-01

    BACKGROUND AND OBJECTIVE: Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known. OBJECTIVE:

  19. Selective targeting of CBP/β-catenin inhibits growth of and extracellular matrix remodelling by airway smooth muscle

    NARCIS (Netherlands)

    Koopmans, Tim; Crutzen, Stijn; Menzen, Mark H; Halayko, Andrew J; Hackett, Tillie-Louise; Knight, Darryl A; Gosens, Reinoud

    2016-01-01

    BACKGROUND AND PURPOSE: Asthma is a heterogeneous chronic inflammatory disease, characterized by the development of structural changes (airway remodelling). β-catenin, a transcriptional co-activator is fundamentally involved in airway smooth muscle growth, and may be a potential target in the

  20. Steroids and antihistamines synergize to inhibit rat's airway smooth muscle contractility.

    Science.gov (United States)

    Liu, Shao-Cheng; Chu, Yueng-Hsiang; Kao, Chuan-Hsiang; Wu, Chi-Chung; Wang, Hsing-Won

    2015-06-01

    Both glucocorticoids and H1-antihistamines were widely used on patients with allergic rhinitis (AR) and obstructive airway diseases. However, their direct effects on airway smooth muscle were not fully explored. In this study, we tested the effectiveness of prednisolone (Kidsolone) and levocetirizine (Xyzal) on isolated rat trachea submersed in Kreb's solution in a muscle bath. Changes in tracheal contractility in response to the application of parasympathetic mimetic agents were measured. The following assessments of the drug were performed: (1) effect on tracheal smooth muscle resting tension; (2) effect on contraction caused by 10(-6) M methacholine; (3) effect of the drug on electrical field stimulation (EFS) induced tracheal smooth muscle contractions. The result revealed sole use of Kidsolone or Xyzal elicited no significant effect or only a little relaxation response on tracheal tension after methacholine treatment. The tension was 90.5 ± 7.5 and 99.5 ± 0.8 % at 10(-4) M for Xyzal and 10(-5) M for Kidsolone, respectively. However, a dramatically spasmolytic effect was observed after co-administration of Kidsolone and Xyzal and the tension dropped to 67.5 ± 13.6 %, with statistical significance (p antihistamines to dramatically relax the trachea smooth muscle within minutes. Therefore, for AR patients with acute asthma attack, combined use of those two drugs is recommended.

  1. Water permeability in human airway epithelium

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Procida, Kristina; Larsen, Per Leganger;

    2005-01-01

    Osmotic water permeability (P(f)) was studied in spheroid-shaped human airway epithelia explants derived from nasal polyps by the use of a new improved tissue collection and isolation procedure. The fluid-filled spheroids were lined with a single cell layer with the ciliated apical cell membrane...

  2. Effect of basic fibroblast growth factor on the proliferation, migration and phenotypic modulation of airway smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    ZOU Hui; NIE Xiu-hong; ZHANG Yi; HU Mu; ZHANG Yu Alex

    2008-01-01

    Background Proliferation,cell migration and phenotypic modulation of airway smooth muscle cells(ASMCs)are important features of airway remodelling in asthma.The precise cellular and molecular mechanisms that regulate ASMCs proliferation,migration and phenotypic modulation in the lung remain unknown.Basic fibroblast growth factor(bFGF),a highly specific chemotactic and mitogenic factor for many cell types,appears to be involved in the development of airway remodelling.Our study assessed whether bFGF directly stimulates the proliferation,migration and phenotypic modulation of ASMCs.Methods Confluent and growth arrested human ASMCs were treated with human recombinant FGF.Proliferation was measured by BrdU incorporation and cell counting.Migration was examined using Boyden chamber apparatus.Expressions of smooth muscle(sm)-α-actin and sm-myosin heavy chain(MHC)isoform 1 were determined by RT-PCR and Western blot analysis.Results It was found that hrbFGF(10 ng/ml),when added to ASMCs,induced a significant increase in BrdU uptake and cell number by ASMCS as compared to controls and a significant increase in ASMCs migration with respect to controls.The mRNA and protein expressions of sm-α-actin and sm-MHC in ASMCs that were stimulated with hrbFGF decreased with respect to controls.Conclusion It appears that bFGF can directly stimulate proliferation and migration of ASMCs.however,the expressions of cells'contractive phenotype decreased.

  3. Neutrophil-Derived Exosomes: A New Mechanism Contributing to Airway Smooth Muscle Remodeling.

    Science.gov (United States)

    Vargas, Amandine; Roux-Dalvai, Florence; Droit, Arnaud; Lavoie, Jean-Pierre

    2016-09-01

    Neutrophils infiltrate the airways of patients with asthma of all severities, yet their role in the pathogenesis of asthma and their contribution to airway remodeling is largely unknown. We hypothesized that neutrophils modulate airway smooth muscle (ASM) proliferation in asthma by releasing bioactive exosomes. These newly discovered nano-sized vesicles have the capacity to modulate immune responses, cell migration, cell differentiation, and other aspects of cell-to-cell communication. The aim of the study is to determine whether bioactive exosomes are released by neutrophils, and, if so, characterize their proteomic profile and evaluate their capacity to modulate ASM cell proliferation. Exosomes were isolated from equine neutrophil supernatants by differential centrifugation and filtration methods, followed by size-exclusion chromatography. Nanovesicles were characterized using electron microscopy, particle size determination, and proteomic analyses. Exosomes were cocultured with ASM cells and analyzed for exosome internalization by confocal microscopy. ASM proliferation was measured using an impedance-based system. Neutrophils release exosomes that have characteristic size, morphology, and exosomal markers. We identified 271 proteins in exosomes from both LPS and unstimulated neutrophils, and 16 proteins that were differentially expressed, which carried proteins associated with immune response and positive regulation of cell communication. Furthermore, neutrophil-derived exosomes were rapidly internalized by ASM cells and altered their proliferative properties. Upon stimulation of LPS, neutrophil-derived exosomes can enhance the proliferation of ASM cells and could therefore play an important role in the progression of asthma and promoting airway remodeling in severe and corticosteroid-insensitive patients with asthma.

  4. The effects of cannabidiol on the antigen-induced contraction of airways smooth muscle in the guinea-pig.

    Science.gov (United States)

    Dudášová, A; Keir, S D; Parsons, M E; Molleman, A; Page, C P

    2013-06-01

    (-)-Δ(9)-Tetrahydrocannabinol has been demonstrated to have beneficial effects in the airways, but its psychoactive effects preclude its therapeutic use for the treatment of airways diseases. In the present study we have investigated the effects of (-)-cannabidiol, a non-psychoactive component of cannabis for its actions on bronchial smooth muscle in vitro and in vivo. Guinea-pig bronchial smooth muscle contractions induced by exogenously applied spasmogens were measured isometrically. In addition, contractile responses of bronchial smooth muscle from ovalbumin-sensitized guinea-pigs were investigated in the absence or presence of (-)-cannabidiol. Furthermore, the effect of (-)-cannabidiol against ovalbumin-induced airway obstruction was investigated in vivo in ovalbumin-sensitized guinea-pigs. (-)-Cannabidiol did not influence the bronchial smooth muscle contraction induced by carbachol, histamine or neurokinin A. In contrast, (-)-cannabidiol inhibited anandamide- and virodhamine-induced responses of isolated bronchi. A fatty acid amide hydrolase inhibitor, phenylmethanesulfonyl fluoride reversed the inhibitory effect of (-)-cannabidiol on anandamide-induced contractions. In addition, (-)-cannabidiol inhibited the contractile response of bronchi obtained from allergic guinea-pigs induced by ovalbumin. In vivo, (-)-cannabidiol reduced ovalbumin-induced airway obstruction. In conclusion, our results suggest that cannabidiol can influence antigen-induced airway smooth muscle tone suggesting that this molecule may have beneficial effects in the treatment of obstructive airway disorders.

  5. Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma

    Science.gov (United States)

    Januskevicius, Andrius; Gosens, Reinoud; Sakalauskas, Raimundas; Vaitkiene, Simona; Janulaityte, Ieva; Halayko, Andrew J.; Hoppenot, Deimante; Malakauskas, Kestutis

    2017-01-01

    Background: Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact through integrin–ligand interactions. Eosinophils express several types of outer membrane integrin, which are responsible for cell–cell and cell–extracellular matrix interactions. In our previous study we demonstrated that asthmatic eosinophils show increased adhesion to ASM cells and it may be important factor contributing to ASM remodeling in asthma. According to these findings, in the present study we investigated the effects of suppression of eosinophil integrin on eosinophil-induced ASM remodeling in asthma. Materials and Methods: Individual combined cell cultures of immortalized human ASM cells and eosinophils from peripheral blood of 22 asthmatic patients and 17 healthy controls were prepared. Eosinophil adhesion was evaluated using eosinophil peroxidase activity assay. Genes expression levels in ASM cells and eosinophils were measured using quantitative real-time PCR. ASM cell proliferation was measured using alamarBlue® solution. Eosinophil integrins were blocked by incubating with Arg-Gly-Asp-Ser peptide. Results: Eosinophils from the asthma group showed increased outer membrane α4β1 and αMβ2 integrin expression, increased adhesion to ASM cells, and overexpression of TGF-β1 compared with eosinophils from the healthy control group. Blockade of eosinophil RGD-binding integrins by Arg-Gly-Asp-Ser peptide significantly reduced adhesion of eosinophils to ASM cells in both groups. Integrin-blocking decreased the effects of eosinophils on TGF-β1, WNT-5a, and extracellular matrix protein gene expression in ASM cells and ASM cell proliferation in both groups. These effects were more pronounced in the asthma group compared with the control group. Conclusion

  6. In vivo role of platelet-derived growth factor-BB in airway smooth muscle proliferation in mouse lung.

    Science.gov (United States)

    Hirota, Jeremy A; Ask, Kjetil; Farkas, Laszlo; Smith, Jane Ann; Ellis, Russ; Rodriguez-Lecompte, Juan Carlos; Kolb, Martin; Inman, Mark D

    2011-09-01

    Airway smooth muscle (ASM) hyperplasia in asthma likely contributes considerably to functional changes. Investigating the mechanisms behind proliferation of these cells may lead to therapeutic benefit. Platelet-derived growth factor (PDGF)-BB is a well known ASM mitogen in vitro but has yet to be directly explored using in vivo mouse models in the context of ASM proliferation and airway responsiveness. To determine the in vivo influence of PDGF-BB on gene transcripts encoding contractile proteins, ASM proliferation, and airway physiology, we used an adenovirus overexpression system and a model of chronic allergen exposure. We used adenovirus technology to selectively overexpress PDGF-BB in the airway epithelium of mice. Outcome measurements, including airway physiology, real time RT-PCR measurements, proliferating cell nuclear antigen staining, and airway smooth muscle quantification, were performed 7 days after exposure. The same outcome measurements were performed 24 hours and 4 weeks after a chronic allergen exposure model. PDGF-BB overexpression resulted in airway hyperresponsiveness, decreased lung compliance, increased airway smooth muscle cell numbers, positive proliferating cell nuclear antigen-stained airway smooth muscle cells, and a reduction in genes encoding contractile proteins. Chronic allergen exposure resulted in elevations in lung lavage PDGF-BB, which were observed in conjunction with changes in gene transcript expression encoding contractile proteins and ASM proliferation. We demonstrate for the first time in vivo that PDGF-BB induces ASM hyperplasia and changes in lung mechanics in mice and that, during periods of allergen exposure changes in lung, PDGF-BB are associated with changes in airway structure and function.

  7. Molecular cloning of magnesium-independent type 2 phosphatidic acid phosphatases from airway smooth muscle.

    Science.gov (United States)

    Tate, R J; Tolan, D; Pyne, S

    1999-07-01

    Members of the type 2 phosphatidic acid phosphatase (PAP2) family catalyse the dephosphorylation of phosphatidic acid (PA), lysophosphatidate and sphingosine 1-phosphate. Here, we demonstrate the presence of a Mg(2+)-independent and N-ethymaleimide-insensitive PAP2 activity in cultured guinea-pig airway smooth muscle (ASM) cells. Two PAP2 cDNAs of 923 and 926 base pairs were identified and subsequently cloned from these cells. The ORF of the 923 base pair cDNA encoded a protein of 285 amino acids (Mr = 32.1 kDa), which had 94% homology with human PAP2a (hPAP2a) and which probably represents a guinea-pig specific PAP2a (gpPAP2a1). The ORF of the 926 base pair cDNA encoded a protein of 286 amino acids (Mr = 32.1 kDa) which had 84% and 91% homology with hPAP2a and gpPAP2a1, respectively. This protein, termed gpPAP2a2, has two regions (aa 21-33 and 51-74) of marked divergence and altered hydrophobicity compared with hPAP2a and gpPAP2a1. This occurs in the predicted first and second transmembrane domains and at the extremes of the first outer loop. Other significant differences between gpPAP2a1/2 and hPAP2a, hPAP2b and hPAP2c occur at the cytoplasmic C-terminal. Transient expression of gpPAP2a2 in Cos-7 cells resulted in an approx. 4-fold increase in Mg(2+)-independent PAP activity, thereby confirming that gpPAP2a2 is another catalytically active member of an extended PAP2 family.

  8. Mechanism regulating proasthmatic effects of prolonged homologous β2-adrenergic receptor desensitization in airway smooth muscle

    Science.gov (United States)

    Nino, Gustavo; Hu, Aihua; Grunstein, Michael M.

    2009-01-01

    Use of long-acting β2-adrenergic receptor (β2AR) agonists to treat asthma incurs an increased risk of asthma morbidity with impaired bronchodilation and heightened bronchoconstriction, reflecting the adverse effects of prolonged homologous β2AR desensitization on airway smooth muscle (ASM) function. Since phosphodiesterase 4 (PDE4) regulates ASM relaxation and contractility, we examined whether the changes in ASM function induced by prolonged homologous β2AR desensitization are attributed to altered expression and action of PDE4. Cultured human ASM cells and isolated rabbit ASM tissues exposed for 24 h to the long-acting β2AR agonist salmeterol exhibited impaired acute β2AR-mediated cAMP accumulation and relaxation, respectively, together with ASM constrictor hyperresponsiveness. These proasthmatic-like changes in ASM function were associated with upregulated PDE4 activity due to enhanced expression of the PDE4D5 isoform and were prevented by pretreating the ASM preparations with the PDE4 inhibitor rolipram or with inhibitors of either PKA or ERK1/2 signaling. Extended studies using gene silencing and pharmacological approaches demonstrated that: 1) the mechanism underlying upregulated PDE4D5 expression following prolonged β2AR agonist exposure involves PKA-dependent activation of Gi protein signaling via its βγ-subunits, which elicits downstream activation of ERK1/2 and its induction of PDE4D5 transcription; and 2) the induction of PDE4 activity and consequent changes in ASM responsiveness are prevented by pretreating the β2AR agonist-exposed ASM preparations with inhibitors of Gi-βγ signaling. Collectively, these findings identify that the proasthmatic changes in ASM function resulting from prolonged homologous β2AR desensitization are attributed to upregulated PDE4 expression induced by Gi-βγ-mediated cross-talk between the PKA and ERK1/2 signaling pathways. PMID:19666775

  9. Effects of pinacidil on proliferation of cultured rabbit airway smooth muscle cells induced by endothelin-1

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; XIE Wei-ping; QI Xu; ZHANG Xi-long

    2005-01-01

    @@ It has been found that the potassium channel dysfunction of the membrane of airway smooth muscle cells (ASMCs) is closely associated with proliferation of ASMCs.1 Preliminary research has demonstrated that pinacidil, an ATP sensitive potassium channel (KATP) opener, could play a remarkable role in the prevention and treatment of antigen induced bronchial asthma in guinea pigs.2 This study was designed to investigate further the role and molecular mechanism of the proliferation of ASMCs: a chief pathological change of the nonacute phase of bronchial asthmatic episodes.

  10. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Zhang, Wei [Department of Geratology, the Second People' s Hospital of Shenzhen, Shenzhen 518000 (China); Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Jiang, Shanping, E-mail: shanpingjiang@126.com [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China)

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  11. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    Science.gov (United States)

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  12. Airway vascular reactivity and vascularisation in human chronic airway disease

    NARCIS (Netherlands)

    Bailey, Simon R; Boustany, Sarah; Burgess, Janette K; Hirst, Stuart J; Sharma, Hari S; Simcock, David E; Suravaram, Padmini R; Weckmann, Markus

    2009-01-01

    Altered bronchial vascular reactivity and remodelling including angiogenesis are documented features of asthma and other chronic inflammatory airway diseases. Expansion of the bronchial vasculature under these conditions involves both functional (vasodilation, hyperperfusion, increased microvascular

  13. Dynamic Properties of Human Bronchial Airway Tissues

    CERN Document Server

    Wang, Jau-Yi; Pallai, Prathap; Corrigan, Chris J; Lee, Tak H

    2011-01-01

    Young's Modulus and dynamic force moduli were measured on human bronchial airway tissues by compression. A simple and low-cost system for measuring the tensile-strengh of soft bio-materials has been built for this study. The force-distance measurements were undertaken on the dissected bronchial airway walls, cartilages and mucosa from the surgery-removed lungs donated by lung cancer patients with COPD. Young's modulus is estimated from the initial slope of unloading force-displacement curve and the dynamic force moduli (storage and loss) are measured at low frequency (from 3 to 45 Hz). All the samples were preserved in the PBS solution at room temperature and the measurements were perfomed within 4 hours after surgery. Young's modulus of the human bronchial airway walls are fond ranged between 0.17 and 1.65 MPa, ranged between 0.25 to 1.96 MPa for cartilages, and between 0.02 to 0.28 MPa for mucosa. The storage modulus are found varying 0.10 MPa with frequency while the loss modulus are found increasing from ...

  14. An imbalance in C/EBPs and increased mitochondrial activity in asthmatic airway smooth muscle cells: novel targets in asthma therapy?

    Science.gov (United States)

    Roth, Michael; Black, Judith L

    2009-06-01

    The asthma prevalence was increasing over the past two decades worldwide. Allergic asthma, caused by inhaled allergens of different origin or by food, is mediated by inflammatory mechanisms. The action of non-allergic asthma, induced by cold air, humidity, temperature or exercise, is not well understood. Asthma affects up to 15% of the population and is treated with anti-inflammatory and muscle relaxing drugs which allow symptom control. Asthma was first defined as a malfunction of the airway smooth muscle, later as an imbalanced immune response of the lung. Recent studies placed the airway smooth muscle again into the focus. Here we summarize the molecular biological basis of the deregulated function of the human airway smooth muscle cell as a cause or important contributor to the pathology of asthma. In the asthmatic human airway smooth muscle cells, there is: (i) a deregulation of cell differentiation due to low levels of maturation-regulating transcription factors such as CCAAT/enhancer binding proteins and peroxisome proliferator-activated receptors, thereby reducing the cells threshold to proliferate and to secrete pro-inflammatory cytokines under certain conditions; (ii) a higher basal energy turnover that is due to increased number and activity of mitochondria; and (iii) a modified feedback mechanism between cells and the extracellular matrix they are embedded in. All these cellular pathologies are linked to each other and to the innate immune response of the lung, but the sequence of events is unclear and needs further investigation. However, these findings may present the basis for the development of novel curative asthma drugs.

  15. Development of a realistic human airway model.

    Science.gov (United States)

    Lizal, Frantisek; Elcner, Jakub; Hopke, Philip K; Jedelsky, Jan; Jicha, Miroslav

    2012-03-01

    Numerous models of human lungs with various levels of idealization have been reported in the literature; consequently, results acquired using these models are difficult to compare to in vivo measurements. We have developed a set of model components based on realistic geometries, which permits the analysis of the effects of subsequent model simplification. A realistic digital upper airway geometry except for the lack of an oral cavity has been created which proved suitable both for computational fluid dynamics (CFD) simulations and for the fabrication of physical models. Subsequently, an oral cavity was added to the tracheobronchial geometry. The airway geometry including the oral cavity was adjusted to enable fabrication of a semi-realistic model. Five physical models were created based on these three digital geometries. Two optically transparent models, one with and one without the oral cavity, were constructed for flow velocity measurements, two realistic segmented models, one with and one without the oral cavity, were constructed for particle deposition measurements, and a semi-realistic model with glass cylindrical airways was developed for optical measurements of flow velocity and in situ particle size measurements. One-dimensional phase doppler anemometry measurements were made and compared to the CFD calculations for this model and good agreement was obtained.

  16. The high affinity IgE receptor (FcεRI) expression and function in airway smooth muscle.

    Science.gov (United States)

    Redhu, Naresh Singh; Gounni, Abdelilah S

    2013-02-01

    The airway smooth muscle (ASM) is no longer considered as merely a contractile apparatus and passive recipient of growth factors, neurotransmitters and inflammatory mediators signal but a critical player in the perpetuation and modulation of airway inflammation and remodeling. In recent years, a molecular link between ASM and IgE has been established through Fc epsilon receptors (FcεRs) in modulating the phenotype and function of these cells. Particularly, the expression of high affinity IgE receptor (FcεRI) has been noted in primary human ASM cells in vitro and in vivo within bronchial biopsies of allergic asthmatic subjects. The activation of FcεRI on ASM cells suggests a critical yet almost completely ignored network which may modulate ASM cell function in allergic asthma. This review is intended to provide a historical perspective of IgE effects on ASM and highlights the recent updates in the expression and function of FcεRI, and to present future perspectives of activation of this pathway in ASM cells.

  17. Expression and activation of the oxytocin receptor in airway smooth muscle cells: Regulation by TNFα and IL-13

    Directory of Open Access Journals (Sweden)

    Siddiqui Salman

    2010-07-01

    Full Text Available Abstract Background During pregnancy asthma may remain stable, improve or worsen. The factors underlying the deleterious effect of pregnancy on asthma remain unknown. Oxytocin is a neurohypophyseal protein that regulates a number of central and peripheral responses such as uterine contractions and milk ejection. Additional evidence suggests that oxytocin regulates inflammatory processes in other tissues given the ubiquitous expression of the oxytocin receptor. The purpose of this study was to define the role of oxytocin in modulating human airway smooth muscle (HASMCs function in the presence and absence of IL-13 and TNFα, cytokines known to be important in asthma. Method Expression of oxytocin receptor in cultured HASMCs was performed by real time PCR and flow cytomery assays. Responses to oxytocin was assessed by fluorimetry to detect calcium signals while isolated tracheal rings and precision cut lung slices (PCLS were used to measure contractile responses. Finally, ELISA was used to compare oxytocin levels in the bronchoalveloar lavage (BAL samples from healthy subjects and those with asthma. Results PCR analysis demonstrates that OXTR is expressed in HASMCs under basal conditions and that both interleukin (IL-13 and tumor necrosis factor (TNFα stimulate a time-dependent increase in OXTR expression at 6 and 18 hr. Additionally, oxytocin increases cytosolic calcium levels in fura-2-loaded HASMCs that were enhanced in cells treated for 24 hr with IL-13. Interestingly, TNFα had little effect on oxytocin-induced calcium response despite increasing receptor expression. Using isolated murine tracheal rings and PCLS, oxytocin also promoted force generation and airway narrowing. Further, oxytocin levels are detectable in bronchoalveolar lavage (BAL fluid derived from healthy subjects as well as from those with asthma. Conclusion Taken together, we show that cytokines modulate the expression of functional oxytocin receptors in HASMCs suggesting a

  18. The laminin beta 1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of allergic asthma

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Bos, I. Sophie T.; Halayko, Andrew J.; Zaagsma, Johan; Meurs, Herman

    2010-01-01

    Background: Fibroproliferative airway remodelling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. In vitro studies have shown that maturation of ASM cells to a (hyper)contractile phenotype is dependent on laminin, which can

  19. Active components of ginger potentiate β-agonist-induced relaxation of airway smooth muscle by modulating cytoskeletal regulatory proteins.

    Science.gov (United States)

    Townsend, Elizabeth A; Zhang, Yi; Xu, Carrie; Wakita, Ryo; Emala, Charles W

    2014-01-01

    β-Agonists are the first-line therapy to alleviate asthma symptoms by acutely relaxing the airway. Purified components of ginger relax airway smooth muscle (ASM), but the mechanisms are unclear. By elucidating these mechanisms, we can explore the use of phytotherapeutics in combination with traditional asthma therapies. The objectives of this study were to: (1) determine if 6-gingerol, 8-gingerol, or 6-shogaol potentiate β-agonist-induced ASM relaxation; and (2) define the mechanism(s) of action responsible for this potentiation. Human ASM was contracted in organ baths. Tissues were relaxed dose dependently with β-agonist, isoproterenol, in the presence of vehicle, 6-gingerol, 8-gingerol, or 6-shogaol (100 μM). Primary human ASM cells were used for cellular experiments. Purified phosphodiesterase (PDE) 4D or phospholipase C β enzyme was used to assess inhibitory activity of ginger components using fluorescent assays. A G-LISA assay was used to determine the effects of ginger constituents on Ras homolog gene family member A activation. Significant potentiation of isoproterenol-induced relaxation was observed with each of the ginger constituents. 6-Shogaol showed the largest shift in isoproterenol half-maximal effective concentration. 6-Gingerol, 8-gingerol, or 6-shogaol significantly inhibited PDE4D, whereas 8-gingerol and 6-shogaol also inhibited phospholipase C β activity. 6-Shogaol alone inhibited Ras homolog gene family member A activation. In human ASM cells, these constituents decreased phosphorylation of 17-kD protein kinase C-potentiated inhibitory protein of type 1 protein phosphatase and 8-gingerol decreased myosin light chain phosphorylation. Isolated components of ginger potentiate β-agonist-induced relaxation in human ASM. This potentiation involves PDE4D inhibition and cytoskeletal regulatory proteins. Together with β-agonists, 6-gingerol, 8-gingerol, or 6-shogaol may augment existing asthma therapy, resulting in relief of symptoms through

  20. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Svensson Holm, Ann-Charlotte B., E-mail: ann-charlotte.svensson@liu.se [Division of Drug Research/Pharmacology, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping University, SE-581 85 Linkoeping (Sweden); Experimental Pathology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Bengtsson, Torbjoern [Department of Biomedicine, School of Health and Medical Sciences, Oerebro University, SE-70182 Oerebro (Sweden); Grenegard, Magnus; Lindstroem, Eva G. [Division of Drug Research/Pharmacology, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping University, SE-581 85 Linkoeping (Sweden)

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.

  1. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

    Science.gov (United States)

    Deng, Linhong; Bosse, Ynuk; Brown, Nathan; Chin, Leslie Y M; Connolly, Sarah C; Fairbank, Nigel J; King, Greg G; Maksym, Geoffrey N; Paré, Peter D; Seow, Chun Y; Stephen, Newman L

    2009-10-01

    Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.

  2. Role of dystrophin in airway smooth muscle phenotype, contraction and lung function.

    Directory of Open Access Journals (Sweden)

    Pawan Sharma

    Full Text Available Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh when compared to genetic control BL10ScSnJ mice (wild-type. In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.

  3. Ca(2+) handling and sensitivity in airway smooth muscle : Emerging concepts for mechanistic understanding and therapeutic targeting

    NARCIS (Netherlands)

    Koopmans, T; Anaparti, V; Castro-Piedras, I; Yarova, P; Irechukwu, N; Nelson, C; Perez-Zoghbi, J; Tan, X; Ward, J P T; Wright, D B

    2014-01-01

    Free calcium ions within the cytosol serve as a key secondary messenger system for a diverse range of cellular processes. Dysregulation of cytosolic Ca(2+) handling in airway smooth muscle (ASM) has been implicated in asthma, and it has been hypothesised that this leads, at least in part, to associa

  4. Novel non-canonical TGF-beta signaling networks : Emerging roles in airway smooth muscle phenotype and function

    NARCIS (Netherlands)

    Yeganeh, Behzad; Mukherjee, Subhendu; Moir, Lyn M.; Kumawat, Kuldeep; Kashani, Hessam H.; Bagchi, Rushita A.; Baarsma, Hoeke A.; Gosens, Reinoud; Ghavami, Saeid

    2013-01-01

    The airway smooth muscle (ASM) plays an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease (COPD). ASM cells express a wide range of receptors involved in contraction, growth, matrix protein production and the secretion of cytokines and chemokines. Transforming

  5. beta-Catenin signaling is required for TGF-beta(1)-induced extracellular matrix production by airway smooth muscle cells

    NARCIS (Netherlands)

    Baarsma, Hoeke A.; Menzen, Mark H.; Halayko, Andrew J.; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud

    2011-01-01

    Baarsma HA, Menzen MH, Halayko AJ, Meurs H, Kerstjens HA, Gosens R. beta-Catenin signaling is required for TGF-beta(1)-induced extracellular matrix production by airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 301: L956-L965, 2011. First published September 9, 2011; doi: 10.1152/ajplu

  6. [Response mechanisms of the airway smooth muscle tissue in experimental bronchial spasm].

    Science.gov (United States)

    Zashikhin, A L; Agafonov, Iu V; Barmina, A O

    2009-01-01

    This investigation was aimed at the complex evaluation of the reactivity mechanisms of bronchial smooth muscle tissue (SMT) in experimental bronchial spasm. Morphometric, cytospectrophotometric and electron microscopical analysis demonstrated the presence of three types of smooth muscle cells (SMC) within the bronchial SMT (small, medium, large), that differed in their linear and metabolic parameters. The findings of this study indicate that under the conditions of experimental bronchial spasm development, the ratios of SMC in bronchial SMT are changed with the increase in proportion of small SMC and the elimination of large SMC. In the dynamics of experimental bronchial spasm development, the activation of cytoplasmic synthesis as well as of DNA synthesis was detected mainly in group of small SMC. The reactive-dystrophic changes were marked at the subcellular level, that were most often identified in large SMC resulting in their elimination from population in the dynamics of an experiment. The data obtained suggest that one of the important mechanisms of airway SMT adaptation to the bronchial spasm development is a dynamic reorganization of SMC population.

  7. Extra-cellular matrix proteins induce matrix metalloproteinase-1 (MMP-1 activity and increase airway smooth muscle contraction in asthma.

    Directory of Open Access Journals (Sweden)

    Natasha K Rogers

    Full Text Available Airway remodelling describes the histopathological changes leading to fixed airway obstruction in patients with asthma and includes extra-cellular matrix (ECM deposition. Matrix metalloproteinase-1 (MMP-1 is present in remodelled airways but its relationship with ECM proteins and the resulting functional consequences are unknown. We used airway smooth muscle cells (ASM and bronchial biopsies from control donors and patients with asthma to examine the regulation of MMP-1 by ECM in ASM cells and the effect of MMP-1 on ASM contraction. Collagen-I and tenascin-C induced MMP-1 protein expression, which for tenascin-C, was greater in asthma derived ASM cells. Tenascin-C induced MMP-1 expression was dependent on ERK1/2, JNK and p38 MAPK activation and attenuated by function blocking antibodies against the β1 and β3 integrin subunits. Tenascin-C and MMP-1 were not expressed in normal airways but co-localised in the ASM bundles and reticular basement membrane of patients with asthma. Further, ECM from asthma derived ASM cells stimulated MMP-1 expression to a greater degree than ECM from normal ASM. Bradykinin induced contraction of ASM cells seeded in 3D collagen gels was reduced by the MMP inhibitor ilomastat and by siRNA knockdown of MMP-1. In summary, the induction of MMP-1 in ASM cells by tenascin-C occurs in part via integrin mediated MAPK signalling. MMP-1 and tenascin-C are co-localised in the smooth muscle bundles of patients with asthma where this interaction may contribute to enhanced airway contraction. Our findings suggest that ECM changes in airway remodelling via MMP-1 could contribute to an environment promoting greater airway narrowing in response to broncho-constrictor stimuli and worsening asthma symptoms.

  8. On the terminology for describing the length-force relationship and its changes in airway smooth muscle.

    Science.gov (United States)

    Bai, Tony R; Bates, Jason H T; Brusasco, Vito; Camoretti-Mercado, Blanca; Chitano, Pasquale; Deng, Lin Hong; Dowell, Maria; Fabry, Ben; Ford, Lincoln E; Fredberg, Jeffrey J; Gerthoffer, William T; Gilbert, Susan H; Gunst, Susan J; Hai, Chi-Ming; Halayko, Andrew J; Hirst, Stuart J; James, Alan L; Janssen, Luke J; Jones, Keith A; King, Greg G; Lakser, Oren J; Lambert, Rodney K; Lauzon, Anne-Marie; Lutchen, Kenneth R; Maksym, Geoffrey N; Meiss, Richard A; Mijailovich, Srboljub M; Mitchell, Howard W; Mitchell, Richard W; Mitzner, Wayne; Murphy, Thomas M; Paré, Peter D; Schellenberg, R Robert; Seow, Chun Y; Sieck, Gary C; Smith, Paul G; Smolensky, Alex V; Solway, Julian; Stephens, Newman L; Stewart, Alastair G; Tang, Dale D; Wang, Lu

    2004-12-01

    The observation that the length-force relationship in airway smooth muscle can be shifted along the length axis by accommodating the muscle at different lengths has stimulated great interest. In light of the recent understanding of the dynamic nature of length-force relationship, many of our concepts regarding smooth muscle mechanical properties, including the notion that the muscle possesses a unique optimal length that correlates to maximal force generation, are likely to be incorrect. To facilitate accurate and efficient communication among scientists interested in the function of airway smooth muscle, a revised and collectively accepted nomenclature describing the adaptive and dynamic nature of the length-force relationship will be invaluable. Setting aside the issue of underlying mechanism, the purpose of this article is to define terminology that will aid investigators in describing observed phenomena. In particular, we recommend that the term "optimal length" (or any other term implying a unique length that correlates with maximal force generation) for airway smooth muscle be avoided. Instead, the in situ length or an arbitrary but clearly defined reference length should be used. We propose the usage of "length adaptation" to describe the phenomenon whereby the length-force curve of a muscle shifts along the length axis due to accommodation of the muscle at different lengths. We also discuss frequently used terms that do not have commonly accepted definitions that should be used cautiously.

  9. Deposition of graphene nanomaterial aerosols in human upper airways.

    Science.gov (United States)

    Su, Wei-Chung; Ku, Bon Ki; Kulkarni, Pramod; Cheng, Yung Sung

    2016-01-01

    Graphene nanomaterials have attracted wide attention in recent years on their application to state-of-the-art technology due to their outstanding physical properties. On the other hand, the nanotoxicity of graphene materials also has rapidly become a serious concern especially in occupational health. Graphene naomaterials inevitably could become airborne in the workplace during manufacturing processes. The inhalation and subsequent deposition of graphene nanomaterial aerosols in the human respiratory tract could potentially result in adverse health effects to exposed workers. Therefore, investigating the deposition of graphene nanomaterial aerosols in the human airways is an indispensable component of an integral approach to graphene occupational health. For this reason, this study carried out a series of airway replica deposition experiments to obtain original experimental data for graphene aerosol airway deposition. In this study, graphene aerosols were generated, size classified, and delivered into human airway replicas (nasal and oral-to-lung airways). The deposition fraction and deposition efficiency of graphene aerosol in the airway replicas were obtained by a novel experimental approach. The experimental results acquired showed that the fractional deposition of graphene aerosols in airway sections studied were all less than 4%, and the deposition efficiency in each airway section was generally lower than 0.03. These results indicate that the majority of the graphene nanomaterial aerosols inhaled into the human respiratory tract could easily penetrate through the head airways as well as the upper part of the tracheobronchial airways and then transit down to the lower lung airways, where undesired biological responses might be induced.

  10. Caveolin-1: Functional Insights into Its Role in Muscarine- and Serotonin-Induced Smooth Muscle Constriction in Murine Airways

    Directory of Open Access Journals (Sweden)

    Maryam Keshavarz

    2017-05-01

    Full Text Available An increased bronchoconstrictor response is a hallmark in the progression of obstructive airway diseases. Acetylcholine and 5-hydroxytryptamine (5-HT, serotonin are the major bronchoconstrictors. There is evidence that both cholinergic and serotonergic signaling in airway smooth muscle (ASM involve caveolae. We hypothesized that caveolin-1 (cav-1, a structural protein of caveolae, plays an important regulatory role in ASM contraction. We analyzed airway contraction in different tracheal segments and extra- and intrapulmonary bronchi in cav-1 deficient (cav-1−/− and wild-type mice using organ bath recordings and videomorphometry of methyl-beta-cyclodextrin (MCD treated and non-treated precision-cut lung slices (PCLS. The presence of caveolae was investigated by electron microscopy. Receptor subtypes driving 5-HT-responses were studied by RT-PCR and videomorphometry after pharmacological inhibition with ketanserin. Cav-1 was present in tracheal epithelium and ASM. Muscarine induced a dose dependent contraction in all airway segments. A significantly higher Emax was observed in the caudal trachea. Although, caveolae abundancy was largely reduced in cav-1−/− mice, muscarine-induced airway contraction was maintained, albeit at diminished potency in the middle trachea, in the caudal trachea and in the bronchus without changes in the maximum efficacy. MCD-treatment of PLCS from cav-1−/− mice reduced cholinergic constriction by about 50%, indicating that cholesterol-rich plasma domains account for a substantial portion of the muscarine-induced bronchoconstriction. Notably, cav-1-deficiency fully abrogated 5-HT-induced contraction of extrapulmonary airways. In contrast, 5-HT-induced bronchoconstriction was fully maintained in cav-1-deficient intrapulmonary bronchi, but desensitization upon repetitive stimulation was enhanced. RT-PCR analysis revealed 5-HT1B, 5-HT2A, 5-HT6, and 5-HT7 receptors as the most prevalent subtypes in the airways. The

  11. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  12. In vivo models of human airway epithelium repair and regeneration

    Directory of Open Access Journals (Sweden)

    C. Coraux

    2005-12-01

    Full Text Available Despite an efficient defence system, the airway surface epithelium, in permanent contact with the external milieu, is frequently injured by inhaled pollutants, microorganisms and viruses. The response of the airway surface epithelium to an acute injury includes a succession of cellular events varying from the loss of the surface epithelium integrity to partial shedding of the epithelium or even to complete denudation of the basement membrane. The epithelium has then to repair and regenerate to restore its functions. The in vivo study of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to reconstitute a functional respiratory epithelium after several weeks. Humanised tracheal xenograft models have been developed in immunodeficient nude and severe combined immunodeficient (SCID mice in order to mimic the natural regeneration process of the human airway epithelium and to analyse the cellular and molecular events involved during the different steps of airway epithelial reconstitution. These models represent very powerful tools for analysing the modulation of the biological functions of the epithelium during its regeneration. They are also very useful for identifying stem/progenitor cells of the human airway epithelium. A better knowledge of the mechanisms involved in airway epithelium regeneration, as well as the characterisation of the epithelial stem and progenitor cells, may pave the way to regenerative therapeutics, allowing the reconstitution of a functional airway epithelium in numerous respiratory diseases, such as asthma, chronic obstructive pulmonary diseases, cystic fibrosis and bronchiolitis.

  13. TRPC3-mediated Ca(2+) entry contributes to mouse airway smooth muscle cell proliferation induced by lipopolysaccharide.

    Science.gov (United States)

    Chen, Xiao-Xu; Zhang, Jia-Hua; Pan, Bin-Hua; Ren, Hui-Li; Feng, Xiu-Ling; Wang, Jia-Ling; Xiao, Jun-Hua

    2016-10-01

    Airway remodeling is a histopathological hallmark of chronic respiratory diseases that includes airway smooth muscle cell (ASMC) proliferation. Canonical transient receptor potential channel-3 (TRPC3)-encoded nonselective cation channels (NSCCs) are important native constitutively active channels that play significant roles in physiological and pathological conditions in ASMCs. Lipopolysaccharides (LPSs), known as lipoglycans and endotoxin, have been proven to be inducers of airway remodeling, though the mechanisms remain unclear. We hypothesized that TRPC3 is important in LPS-induced airway remodeling by regulating ASMC proliferation. To test this hypothesis, mouse ASMCs were cultured with or without LPS for 48h. Cell viability, TRPC3 protein expression, NSCC currents and changes in intracellular calcium concentration ([Ca(2+)]i) were then analyzed using an MTT assay, western blotting, whole-cell patch clamp and calcium imaging, respectively. The results showed that LPS treatment significantly induced ASMC proliferation, up-regulation of TRPC3 protein expression and enhancement of NSCC currents, resting [Ca(2+)]i and ACh-elicited changes in [Ca(2+)]i. TRPC3 blocker Gd(3+), TRPC3 blocking antibody or TRPC3 gene silencing by siRNA significantly inhibited LPS-induced up-regulation of TRPC3 protein, enhancement of NSCC currents, resting [Ca(2+)]i and ACh-elicited changes in [Ca(2+)]i, eventually inhibiting LPS-induced ASMCproliferation. These results demonstrated that TRPC3-mediated Ca(2+) entry contributed to LPS-induced ASMC proliferation and identified TRPC3 as a possible key target in airway remodeling intervention.

  14. cAMP inhibits modulation of airway smooth muscle phenotype via the exchange protein activated by cAMP (Epac) and protein kinase A

    NARCIS (Netherlands)

    Roscioni, Sara S.; Dekkers, Bart G. J.; Prins, Alwin G.; Menzen, Mark H.; Meurs, Herman; Schmidt, Martina; Maarsingh, Harm

    BACKGROUND AND PURPOSE Changes in airway smooth muscle (ASM) phenotype may contribute to the pathogenesis of airway disease. Platelet-derived growth factor (PDGF) switches ASM from a contractile to a proliferative, hypo-contractile phenotype, a process requiring activation of extracellular

  15. Recombinant human DNase in children with airway malacia and lower respiratory tract infection.

    NARCIS (Netherlands)

    Boogaard, R.; Jongste, J.C. de; Vaessen-Verberne, A.A.; Hop, W.C.J.; Merkus, P.J.F.M.

    2009-01-01

    BACKGROUND: Children with airway malacia often have protracted courses of airway infections, because dynamic airway collapse during coughing results in impaired mucociliary clearance. The aim of this study was to determine the effect of the mucolytic drug recombinant human deoxyribonuclease

  16. The laminin β1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Zaagsma Johan

    2010-12-01

    Full Text Available Abstract Background Fibroproliferative airway remodelling, including increased airway smooth muscle (ASM mass and contractility, contributes to airway hyperresponsiveness in asthma. In vitro studies have shown that maturation of ASM cells to a (hypercontractile phenotype is dependent on laminin, which can be inhibited by the laminin-competing peptide Tyr-Ile-Gly-Ser-Arg (YIGSR. The role of laminins in ASM remodelling in chronic asthma in vivo, however, has not yet been established. Methods Using an established guinea pig model of allergic asthma, we investigated the effects of topical treatment of the airways with YIGSR on features of airway remodelling induced by repeated allergen challenge, including ASM hyperplasia and hypercontractility, inflammation and fibrosis. Human ASM cells were used to investigate the direct effects of YIGSR on ASM proliferation in vitro. Results Topical administration of YIGSR attenuated allergen-induced ASM hyperplasia and pulmonary expression of the proliferative marker proliferating cell nuclear antigen (PCNA. Treatment with YIGSR also increased both the expression of sm-MHC and ASM contractility in saline- and allergen-challenged animals; this suggests that treatment with the laminin-competing peptide YIGSR mimics rather than inhibits laminin function in vivo. In addition, treatment with YIGSR increased allergen-induced fibrosis and submucosal eosinophilia. Immobilized YIGSR concentration-dependently reduced PDGF-induced proliferation of cultured ASM to a similar extent as laminin-coated culture plates. Notably, the effects of both immobilized YIGSR and laminin were antagonized by soluble YIGSR. Conclusion These results indicate that the laminin-competing peptide YIGSR promotes a contractile, hypoproliferative ASM phenotype in vivo, an effect that appears to be linked to the microenvironment in which the cells are exposed to the peptide.

  17. Characterising the mechanism of airway smooth muscle β2 adrenoceptor desensitization by rhinovirus infected bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    David Van Ly

    Full Text Available Rhinovirus (RV infections account for approximately two thirds of all virus-induced asthma exacerbations and often result in an impaired response to β2 agonist therapy. Using an in vitro model of RV infection, we investigated the mechanisms underlying RV-induced β2 adrenoceptor desensitization in primary human airway smooth muscle cells (ASMC. RV infection of primary human bronchial epithelial cells (HBEC for 24 hours produced conditioned medium that caused β2 adrenoceptor desensitization on ASMCs without an effect on ASMCs viability. Less than 3 kDa size fractionation together with trypsin digestion of RV-induced conditioned medium did not prevent β2 adrenoceptor desensitization, suggesting it could potentially be mediated by a small peptide or lipid. RV infection of BECs, ASMCs and fibroblasts produced prostaglandins, of which PGE2, PGF2α and PGI2 had the ability to cause β2 adrenoceptor desensitization on ASMCs. RV-induced conditioned medium from HBECs depleted of PGE2 did not prevent ASMC β2 adrenoceptor desensitization; however this medium induced PGE2 from ASMCs, suggesting that autocrine prostaglandin production may be responsible. Using inhibitors of cyclooxygenase and prostaglandin receptor antagonists, we found that β2 adrenoceptor desensitization was mediated through ASMC derived COX-2 induced prostaglandins. Since ASMC prostaglandin production is unlikely to be caused by RV-induced epithelial derived proteins or lipids we next investigated activation of toll-like receptors (TLR by viral RNA. The combination of TLR agonists poly I:C and imiquimod induced PGE2 and β2 adrenoceptor desensitization on ASMC as did the RNA extracted from RV-induced conditioned medium. Viral RNA but not epithelial RNA caused β2 adrenoceptor desensitization confirming that viral RNA and not endogenous human RNA was responsible. It was deduced that the mechanism by which β2 adrenoceptor desensitization occurs was by pattern recognition receptor

  18. Characterising the mechanism of airway smooth muscle β2 adrenoceptor desensitization by rhinovirus infected bronchial epithelial cells.

    Science.gov (United States)

    Van Ly, David; Faiz, Alen; Jenkins, Christine; Crossett, Ben; Black, Judith L; McParland, Brent; Burgess, Janette K; Oliver, Brian G G

    2013-01-01

    Rhinovirus (RV) infections account for approximately two thirds of all virus-induced asthma exacerbations and often result in an impaired response to β2 agonist therapy. Using an in vitro model of RV infection, we investigated the mechanisms underlying RV-induced β2 adrenoceptor desensitization in primary human airway smooth muscle cells (ASMC). RV infection of primary human bronchial epithelial cells (HBEC) for 24 hours produced conditioned medium that caused β2 adrenoceptor desensitization on ASMCs without an effect on ASMCs viability. Less than 3 kDa size fractionation together with trypsin digestion of RV-induced conditioned medium did not prevent β2 adrenoceptor desensitization, suggesting it could potentially be mediated by a small peptide or lipid. RV infection of BECs, ASMCs and fibroblasts produced prostaglandins, of which PGE2, PGF2α and PGI2 had the ability to cause β2 adrenoceptor desensitization on ASMCs. RV-induced conditioned medium from HBECs depleted of PGE2 did not prevent ASMC β2 adrenoceptor desensitization; however this medium induced PGE2 from ASMCs, suggesting that autocrine prostaglandin production may be responsible. Using inhibitors of cyclooxygenase and prostaglandin receptor antagonists, we found that β2 adrenoceptor desensitization was mediated through ASMC derived COX-2 induced prostaglandins. Since ASMC prostaglandin production is unlikely to be caused by RV-induced epithelial derived proteins or lipids we next investigated activation of toll-like receptors (TLR) by viral RNA. The combination of TLR agonists poly I:C and imiquimod induced PGE2 and β2 adrenoceptor desensitization on ASMC as did the RNA extracted from RV-induced conditioned medium. Viral RNA but not epithelial RNA caused β2 adrenoceptor desensitization confirming that viral RNA and not endogenous human RNA was responsible. It was deduced that the mechanism by which β2 adrenoceptor desensitization occurs was by pattern recognition receptor activation of COX-2

  19. Vitamin D Modulates Expression of the Airway Smooth Muscle Transcriptome in Fatal Asthma.

    Directory of Open Access Journals (Sweden)

    Blanca E Himes

    Full Text Available Globally, asthma is a chronic inflammatory respiratory disease affecting over 300 million people. Some asthma patients remain poorly controlled by conventional therapies and experience more life-threatening exacerbations. Vitamin D, as an adjunct therapy, may improve disease control in severe asthma patients since vitamin D enhances glucocorticoid responsiveness and mitigates airway smooth muscle (ASM hyperplasia. We sought to characterize differences in transcriptome responsiveness to vitamin D between fatal asthma- and non-asthma-derived ASM by using RNA-Seq to measure ASM transcript expression in five donors with fatal asthma and ten non-asthma-derived donors at baseline and with vitamin D treatment. Based on a Benjamini-Hochberg corrected p-value <0.05, 838 genes were differentially expressed in fatal asthma vs. non-asthma-derived ASM at baseline, and vitamin D treatment compared to baseline conditions induced differential expression of 711 and 867 genes in fatal asthma- and non-asthma-derived ASM, respectively. Functional gene categories that were highly represented in all groups included extracellular matrix, and responses to steroid hormone stimuli and wounding. Genes differentially expressed by vitamin D also included cytokine and chemokine activity categories. Follow-up qPCR and individual analyte ELISA experiments were conducted for four cytokines (i.e. CCL2, CCL13, CXCL12, IL8 to measure TNFα-induced changes by asthma status and vitamin D treatment. Vitamin D inhibited TNFα-induced IL8 protein secretion levels to a comparable degree in fatal asthma- and non-asthma-derived ASM even though IL8 had significantly higher baseline levels in fatal asthma-derived ASM. Our findings identify vitamin D-specific gene targets and provide transcriptomic data to explore differences in the ASM of fatal asthma- and non-asthma-derived donors.

  20. Numerical analysis of respiratory flow patterns within human upper airway

    Science.gov (United States)

    Wang, Ying; Liu, Yingxi; Sun, Xiuzhen; Yu, Shen; Gao, Fei

    2009-12-01

    A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trachea to triple bifurcation is built based on the CT images of a healthy volunteer and the Weibel model. The flow characteristics of the whole upper airway are quantitatively described at any time level of respiratory cycle. Simulation results of respiratory flow show good agreement with the clinical measures, experimental and computational results in the literature. The air mainly passes through the floor of the nasal cavity in the common, middle and inferior nasal meatus. The higher airway resistance and wall shear stresses are distributed on the posterior nasal valve. Although the airways of pharynx, larynx and bronchi experience low shear stresses, it is notable that relatively high shear stresses are distributed on the wall of epiglottis and bronchial bifurcations. Besides, two-dimensional fluid-structure interaction models of normal and abnormal airways are built to discuss the flow-induced deformation in various anatomy models. The result shows that the wall deformation in normal airway is relatively small.

  1. In vivo adenosine A(2B) receptor desensitization in guinea-pig airway smooth muscle: implications for asthma.

    Science.gov (United States)

    Breschi, Maria Cristina; Blandizzi, Corrado; Fogli, Stefano; Martinelli, Cinzia; Adinolfi, Barbara; Calderone, Vincenzo; Camici, Marcella; Martinotti, Enrica; Nieri, Paola

    2007-12-01

    This study was aimed at characterizing the role of adenosine receptor subtypes in the contractility modulation of guinea-pig airway smooth muscle in normal and pathological settings. In vitro and in vivo experiments were performed by testing selective agonists and antagonists on isolated tracheal smooth muscle preparations and pulmonary inflation pressure, respectively, under normal conditions or following ovalbumin-induced allergic sensitization. In normal and sensitized animals, the adenosine A(2A)/A(2B) receptor agonist, NECA, evoked relaxing responses of isolated tracheal preparations precontracted with histamine, and such an effect was reversed by the adenosine A(2B) antagonist, MRS 1706, in the presence or in the absence of epithelium. The expression of mRNA coding for adenosine A(2B) receptors was demonstrated in tracheal specimens. In vitro desensitization with 100 microM NECA markedly reduced the relaxing effect of the agonist. In vivo NECA or adenosine administration to normal animals inhibited histamine-mediated bronchoconstriction, while these inhibitory effects no longer occurred in sensitized guinea-pigs. Adenosine plasma levels were significantly higher in sensitized than normal animals. In conclusion, our data demonstrate that: (i) adenosine A(2B) receptors are responsible for the relaxing effects of adenosine on guinea-pig airways; (ii) these receptors can undergo rapid adaptive changes that may affect airway smooth muscle responsiveness to adenosine; (iii) ovalbumin-induced sensitization promotes a reversible inactivation of adenosine A(2B) receptors which can be ascribed to homologous desensitization. These findings can be relevant to better understand adenosine functions in airways as well as mechanisms of action of asthma therapies targeting the adenosine system.

  2. Angiotensin Ⅱ induces collagen Ⅰ synthesis in human passively sensitized airway smooth-muscle cells in vitro%血管紧张素Ⅱ诱导被动致敏人气道平滑肌细胞合成Ⅰ型胶原

    Institute of Scientific and Technical Information of China (English)

    沈彬; 程远雄; 李宁; 牛毅; 谢浩俊; 霍雅婷

    2013-01-01

    目的 探讨血管紧张素Ⅱ(AngⅡ)及其Ⅰ型受体(Angiotensin Type 1 Receptor,AT1R)拮抗剂洛沙坦(Losartan)对被动致敏人气道平滑肌细胞(human airway smooth muscle cells,HASMCs)合成Ⅰ型胶原的影响.方法 体外培养HASMCs,按处理因素将细胞分为4组:①被动致敏组(10%哮喘血清);②被动致敏+AngⅡ组(10%哮喘血清+10-7mol/LAngⅡ);③被动致敏+ Losartan组(10%哮喘血清+10-6mol/L Losartan);④被动致敏+AngⅡ+Losartan组(10%哮喘血清+ 10-7mol/L AngⅡ+10-6mol/L Losartan).免疫荧光染色法鉴定HASMCs,荧光定量PCR检测Ⅰ型胶原mRNA表达,ELISA检测Ⅰ型胶原蛋白分泌.结果 10-7 mol/l AngⅡ作用于被动致敏的HASMCs 24 h后,Ⅰ型胶原mRNA及蛋白的表达较被动致敏组明显增加(P<0.01).在Losartan存在的情况下,AngⅡ对被动致敏HASMCs Ⅰ型胶原mRNA及蛋白表达的促进作用明显受到抑制(P<0.01).结论 AngⅡ能促进被动致敏的HASMCs分泌Ⅰ型胶原,可能是通过与AT1R结合而实现的.

  3. Reverse mode Na+/Ca2+ exchange mediated by STIM1 contributes to Ca2+ influx in airway smooth muscle following agonist stimulation

    Directory of Open Access Journals (Sweden)

    Fox Jane

    2010-12-01

    Full Text Available Abstract Background Agonist stimulation of airway smooth muscle (ASM results in IP3 mediated Ca2+ release from the sarcoplasmic reticulum followed by the activation of store operated and receptor operated non-selective cation channels. Activation of these non-selective channels also results in a Na+ influx. This localised increase in Na+ levels can potentially switch the Na+/Ca2+ exchanger into reverse mode and so result in a further influx of Ca2+. The aim of this study was to characterise the expression and physiological function of the Na+/Ca2+ exchanger in cultured human bronchial smooth muscle cells and determine its contribution to agonist induced Ca2+ influx into these cells. Methods The expression profile of NCX (which encodes the Na+/Ca2+ exchanger homologues in cultured human bronchial smooth muscle cells was determined by reverse transcriptase PCR. The functional activity of reverse mode NCX was investigated using a combination of whole cell patch clamp, intracellular Ca2+ measurements and porcine airway contractile analyses. KB-R7943 (an antagonist for reverse mode NCX and target specific siRNA were utilised as tools to inhibit NCX function. Results NCX1 protein was detected in cultured human bronchial smooth muscle cells (HBSMC cells and NCX1.3 was the only mRNA transcript variant detected. A combination of intracellular Na+ loading and addition of extracellular Ca2+ induced an outwardly rectifying current which was augmented following stimulation with histamine. This outwardly rectifying current was inhibited by 10 μM KB-R7943 (an antagonist of reverse mode NCX1 and was reduced in cells incubated with siRNA against NCX1. Interestingly, this outwardly rectifying current was also inhibited following knockdown of STIM1, suggesting for the first time a link between store operated cation entry and NCX1 activation. In addition, 10 μM KB-R7943 inhibited agonist induced changes in cytosolic Ca2+ and induced relaxation of porcine

  4. Robust system for human airway-tree segmentation

    Science.gov (United States)

    Graham, Michael W.; Gibbs, Jason D.; Higgins, William E.

    2008-03-01

    Robust and accurate segmentation of the human airway tree from multi-detector computed-tomography (MDCT) chest scans is vital for many pulmonary-imaging applications. As modern MDCT scanners can detect hundreds of airway tree branches, manual segmentation and semi-automatic segmentation requiring significant user intervention are impractical for producing a full global segmentation. Fully-automated methods, however, may fail to extract small peripheral airways. We propose an automatic algorithm that searches the entire lung volume for airway branches and poses segmentation as a global graph-theoretic optimization problem. The algorithm has shown strong performance on 23 human MDCT chest scans acquired by a variety of scanners and reconstruction kernels. Visual comparisons with adaptive region-growing results and quantitative comparisons with manually-defined trees indicate a high sensitivity to peripheral airways and a low false-positive rate. In addition, we propose a suite of interactive segmentation tools for cleaning and extending critical areas of the automatically segmented result. These interactive tools have potential application for image-based guidance of bronchoscopy to the periphery, where small, terminal branches can be important visual landmarks. Together, the automatic segmentation algorithm and interactive tool suite comprise a robust system for human airway-tree segmentation.

  5. The Diacetyl-Exposed Human Airway Epithelial Secretome: New Insights into Flavoring-Induced Airways Disease.

    Science.gov (United States)

    Brass, David M; Gwinn, William M; Valente, Ashlee M; Kelly, Francine L; Brinkley, Christie D; Nagler, Andrew E; Moseley, M Arthur; Morgan, Daniel L; Palmer, Scott M; Foster, Matthew W

    2017-06-01

    Bronchiolitis obliterans (BO) is an increasingly important lung disease characterized by fibroproliferative airway lesions and decrements in lung function. Occupational exposure to the artificial food flavoring ingredient diacetyl, commonly used to impart a buttery flavor to microwave popcorn, has been associated with BO development. In the occupational setting, diacetyl vapor is first encountered by the airway epithelium. To better understand the effects of diacetyl vapor on the airway epithelium, we used an unbiased proteomic approach to characterize both the apical and basolateral secretomes of air-liquid interface cultures of primary human airway epithelial cells from four unique donors after exposure to an occupationally relevant concentration (∼1,100 ppm) of diacetyl vapor or phosphate-buffered saline as a control on alternating days. Basolateral and apical supernatants collected 48 h after the third exposure were analyzed using one-dimensional liquid chromatography tandem mass spectrometry. Paired t tests adjusted for multiple comparisons were used to assess differential expression between diacetyl and phosphate-buffered saline exposure. Of the significantly differentially expressed proteins identified, 61 were unique to the apical secretome, 81 were unique to the basolateral secretome, and 11 were present in both. Pathway enrichment analysis using publicly available databases revealed that proteins associated with matrix remodeling, including degradation, assembly, and new matrix organization, were overrepresented in the data sets. Similarly, protein modifiers of epidermal growth factor receptor signaling were significantly altered. The ordered changes in protein expression suggest that the airway epithelial response to diacetyl may contribute to BO pathogenesis.

  6. Mechanics of airflow in the human nasal airways.

    Science.gov (United States)

    Doorly, D J; Taylor, D J; Schroter, R C

    2008-11-30

    The mechanics of airflow in the human nasal airways is reviewed, drawing on the findings of experimental and computational model studies. Modelling inevitably requires simplifications and assumptions, particularly given the complexity of the nasal airways. The processes entailed in modelling the nasal airways (from defining the model, to its production and, finally, validating the results) is critically examined, both for physical models and for computational simulations. Uncertainty still surrounds the appropriateness of the various assumptions made in modelling, particularly with regard to the nature of flow. New results are presented in which high-speed particle image velocimetry (PIV) and direct numerical simulation are applied to investigate the development of flow instability in the nasal cavity. These illustrate some of the improved capabilities afforded by technological developments for future model studies. The need for further improvements in characterising airway geometry and flow together with promising new methods are briefly discussed.

  7. Relaxation of soman-induced contracture of airway smooth muscle in vitro. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Filbert, M.G.; Moore, D.H.; Adler, M.

    1992-12-31

    A possible role for beta-adrenergic agonists in the management of bronchoconstriction resulting from exposure to anticholinesterase compounds was investigated in vitro in canine tracheal smooth muscle. Norepinephrine, salbutamol and isoproterenol produced partial relaxation of soman-induced contractures. However, the relaxation induced was not sustained; muscle tensions returned to pretreatment levels within minutes despite the continued presence of beta-agonists. Increasing cAMP levels with the non beta-agonist bronchodilators such as thoophylline, a phosphodiesterase inhibitor, or forskolin, a specific stimulator of adenylate cyclase, resulted in more complete and longer lasting relaxation, suggesting that beta-adrenoceptor desensitization may contribute to the failure by beta-agonists to produce sustained relaxation. Nerve agents, Soman, Toxicity, Airway smooth muscle, In vitro, Physiology, Effects.

  8. Biomechanism of airway smooth muscle growth in bronchial asthma%支气管哮喘气道平滑肌生长的生化机制

    Institute of Scientific and Technical Information of China (English)

    刘庆华; 宋泽庆

    2010-01-01

    Airway smooth muscle growth lies in bronchial asthma and leads to narrowing and airflow obstruction of the airway,whose molecular mechanism and functional effeCt of remodeling of airway remains unclear.This review will discuss airway smooth muscle hyperplasia,hypertrophy and biomechanism of them.%支气管哮喘都有气道平滑肌的生长,并引起气道的狭窄和气流阻塞.其分子机制和气道重塑而发生的功能改变仍然不清楚.这篇综述将讨论气道平滑肌增生、肥大以及功能的改变和发生的生化机制.

  9. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng; Zhu, Liang; Hou, Li-Na; Qi, Hong; Chen, Hong-Zhuan, E-mail: hongzhuan_chen@hotmail.com; Cui, Yong-Yao, E-mail: yongyaocui@yahoo.com.cn

    2012-07-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclin D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.

  10. DMF inhibits PDGF-BB induced airway smooth muscle cell proliferation through induction of heme-oxygenase-1

    Directory of Open Access Journals (Sweden)

    Tamm Michael

    2010-10-01

    Full Text Available Abstract Background Airway wall remodelling is an important pathology of asthma. Growth factor induced airway smooth muscle cell (ASMC proliferation is thought to be the major cause of airway wall thickening in asthma. Earlier we reported that Dimethylfumarate (DMF inhibits platelet-derived growth factor (PDGF-BB induced mitogen and stress activated kinase (MSK-1 and CREB activity as well as IL-6 secretion by ASMC. In addition, DMF altered intracellular glutathione levels and thereby reduced proliferation of other cell types. Methods We investigated the effect of DMF on PDGF-BB induced ASMC proliferation, on mitogen activated protein kinase (MAPK activation; and on heme oxygenase (HO-1 expression. ASMC were pre-incubated for 1 hour with DMF and/or glutathione ethylester (GSH-OEt, SB203580, hemin, cobalt-protoporphyrin (CoPP, or siRNA specific to HO-1 before stimulation with PDGF-BB (10 ng/ml. Results PDGF-BB induced ASMC proliferation was inhibited in a dose-dependant manner by DMF. PDGF-BB induced the phosphorylation of ERK1/2 and p38 MAPK, but not of JNK. DMF enhanced the PDGF-BB induced phosphorylation of p38 MAPK and there by up-regulated the expression of HO-1. HO-1 induction inhibited the proliferative effect of PDGF-BB. HO-1 expression was reversed by GSH-OEt, or p38 MAPK inhibition, or HO-1 siRNA, which all reversed the anti-proliferative effect of DMF. Conclusion Our data indicate that DMF inhibits ASMC proliferation by reducing the intracellular GSH level with subsequent activation of p38 MAPK and induction of HO-1. Thus, DMF might reduce ASMC and airway remodelling processes in asthma.

  11. Regional aerosol deposition in human upper airways. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swift, D.L.

    1997-11-01

    During the award period, a number of studies have been carried out related to the overall objective of the project which is to elucidate important factors which influence the upper airway deposition and dose of particles in the size range 0.5 nm - 10 {mu}m, such as particle size, breathing conditions, age, airway geometry, and mode of breathing. These studies are listed below. (1) A high voltage electrospray system was constructed to generate polydispersed 1-10 {mu}m diameter di-ethylhexyl sebacate aerosol for particle deposition studies in nasal casts and in human subjects. (2) The effect of nostril dimensions, nasal passage geometry, and nasal resistance on particle deposition efficiency in forty healthy, nonsmoking adults at a constant flowrate were studied. (3) The effect of nostril dimensions, nasal passage dimensions and nasal resistance on the percentage of particle deposition in the anterior 3 cm of the nasal passage of spontaneously breathing humans were studied. (4) The region of deposition of monodispersed aerosols were studied using replicate casts. (5) Ultrafine aerosol deposition using simulated breath holding path and natural path was compared. (6) An experimental technique was proposed and tested to measure the oral deposition of inhaled ultrafine particles. (7) We have calculated the total deposition fraction of ultrafine aerosols from 5 to 200 n in the extrathoracic airways and in the lung. (8) The deposition fraction of radon progeny in the head airways was studied using several head airway models.

  12. Rhinovirus infection induces extracellular matrix protein deposition in asthmatic and nonasthmatic airway smooth muscle cells

    NARCIS (Netherlands)

    Kuo, Curtis; Lim, Sam; King, Nicholas J C; Johnston, Sebastian L; Burgess, Janette K; Black, Judith L; Oliver, Brian G

    2011-01-01

    Airway remodeling, which includes increases in the extracellular matrix (ECM), is a characteristic feature of asthma and is correlated to disease severity. Rhinovirus (RV) infections are associated with increased risk of asthma development in young children and are the most common cause of asthma ex

  13. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    Science.gov (United States)

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  14. Contraction of human airways by oxidative stress protection by N-acetylcysteine.

    Science.gov (United States)

    Cortijo, J; Martí-Cabrera, M; de la Asuncíon, J G; Pallardó, F V; Esteras, A; Bruseghini, L; Viña, J; Morcillo, E J

    1999-08-01

    We examined the in vitro effects of tert-butylhydroperoxide (tBu-OOH) in human bronchial muscle. tert-Butylhydroperoxide produced concentration-dependent contractions of bronchial rings (maximum effect was 56.5 +/- 9.6% of contraction by 1 mM acetylcholine; effective concentration 50% was approximately 100 microM). tert-Butylhydroperoxide (0.5 mM)-induced contraction was enhanced by epithelial removal but abolished by indomethacin (cyclooxygenase inhibitor) and zileuton (lipoxygenase inhibitor). tert-Butylhydroperoxide produced a transient rise in intracellular calcium in human cultured airway smooth muscle cells (HCASMC). The bronchial reactivity to acetylcholine and histamine was not altered by tBu-OOH. In HCASMC, tBu-OOH (0.5 mM, 30 min) increased malondialdehyde levels (MDA; from 7.80 +/- 0.83 to 26.82 +/- 1.49 nmol mg(-1) protein), accompanied by a decrease of reduced glutathione (GSH; from 16.7 +/- 2.6 to 6.9 +/- 1.9 nmol mg(-1) protein) and an increase of oxidized glutathione (from 0.09 +/- 0.03 to 0.18 +/- 0.03 nmol mg(-1) protein). N-acetylcysteine (0.3 mM) inhibited by approximately 60% the bronchial contraction resulting from tBu-OOH (0.5 mM) and protected cultured cells exposed to tBu-OOH (MDA was lowered to 19.51 +/- 1.19 nmol mg(-1) protein, and GSH content was replenished). In summary, tBu-OOH caused contraction of human bronchial muscle mediated by release of cyclo-oxygenase and lipoxygenase products without producing airways hyperreactivity. N-acetylcysteine decreases tBu-OOH-induced contraction and protects human cultured airway smooth muscle cells exposed to tBu-OOH.

  15. Apigenin inhibits TGF-β1-induced proliferation and migration of airway smooth muscle cells.

    Science.gov (United States)

    Li, Li-Hua; Lu, Bin; Wu, Hong-Ke; Zhang, Hao; Yao, Fei-Fei

    2015-01-01

    It is well known that the proliferation and migration of ASM cells (ASMCs) plays an important role in the pathogenesis of airway remodeling in asthma. Previous studies reported that apigenin can inhibit airway remodeling in a mouse asthma model. However, its effects on the proliferation and migration of ASMCs in asthma remain unknown. Therefore, the aim of our present study was to investigate the effects of apigenin on ASMC proliferation and migration, and explore the possible molecular mechanism. We found that apigenin inhibited transforming growth factor-β1 (TGF-β1)-induced ASMC proliferation. The cell cycle was blocked at G1/S-interphase by apigenin. It also suppressed TGF-β1-induced ASMCs migration. Furthermore, apigenin inhibited TGF-β1-induced Smad 2 and Smad 3 phosphorylation in ASMCs. Taken together, these results suggested that apigenin inhibited the proliferation and migration of TGF-β1-stimulated ASMCs by inhibiting Smad signaling pathway. These data might provide useful information for treating asthma and show that apigenin has potential for attenuating airway remodeling.

  16. Dexamethasone and N-acetyl-cysteine attenuate Pseudomonas aeruginosa-induced mucus expression in human airways.

    Science.gov (United States)

    Sprenger, Lisa; Goldmann, Torsten; Vollmer, Ekkehard; Steffen, Armin; Wollenberg, Barbara; Zabel, Peter; Hauber, Hans-Peter

    2011-04-01

    Infection with Pseudomonas aeruginosa (PA) induces mucus hypersecretion in airways. Therapeutic options to attenuate excessive mucus expression are sparse. To investigate the effect of steroids and N-acetyl-cysteine (NAC) on PA-induced mucus expression. Calu-3 cells and explanted human mucosa from the upper airways were stimulated with either PA, lipopolysaccharide from alginate producing PA (smooth, sPA-LPS) or non-alginate producing PA (rough, rPA-LPS). Dexamethasone (DEX) and NAC were added in different concentrations. Expression of mucin (MUC5AC) gene and mucin protein expression was quantified using PAS (periodic acids Schiff) staining and real time PCR. PA, sPA-LPS or rPA-LPS significantly induced mucin protein and MUC5AC gene expression in Calu-3 cells and explanted mucosal tissue (P NAC significantly decreased PA-, sPA-LPS- and rPA-LPS-induced mucin protein expression both in vitro and ex vivo (P 0.05). Our data show that both an anti-inflammatory drug (DEX) and an anti-oxidative agent (NAC) can attenuate PA-induced mucus expression in human airways. These results support the use of steroids and NAC in clinical practice to treat PA-induced mucus hypersecretion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. On locating the obstruction in the human upper airway

    Science.gov (United States)

    Wang, Yong; Elghobashi, S.

    2013-11-01

    The fluid dynamical properties of the air flow in the human upper airway (UA) are not fully understood at present due to the three-dimensional, patient-specific complex geometry of the airway, flow transition from laminar to turbulent and flow-structure interaction during the breathing cycle. One of the major challenges to surgeons is determining the location of the UA obstruction before performing corrective surgeries. It is quite difficult at present to experimentally measure the instantaneous velocity and pressure at specific points in the human airway. On the other hand, direct numerical simulation (DNS) can predict all the flow properties and resolve all its relevant length- and time-scales. We developed a DNS solver with lattice Boltzmann method (LBM), and used it to investigate the flow in two patient-specific UAs reconstructed from CT scan data. Inspiration and expiration flows through these two airways are studied and compared. Pressure gradient-time signals at different locations in the UAs are used to determine the location of the obstruction. This work was supported by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH).

  18. Airway smooth muscle hyperplasia and hypertrophy correlate with glycogen synthase kinase-3(beta) phosphorylation in a mouse model of asthma.

    Science.gov (United States)

    Bentley, J Kelley; Deng, Huan; Linn, Marisa J; Lei, Jing; Dokshin, Gregoriy A; Fingar, Diane C; Bitar, Khalil N; Henderson, William R; Hershenson, Marc B

    2009-02-01

    Increased airway smooth muscle (ASM) mass, a characteristic finding in asthma, may be caused by hyperplasia or hypertrophy. Cell growth requires increased translation of contractile apparatus mRNA, which is controlled, in part, by glycogen synthase kinase (GSK)-3beta, a constitutively active kinase that inhibits eukaryotic initiation factor-2 activity and binding of methionyl tRNA to the ribosome. Phosphorylation of GSK-3beta inactivates it, enhancing translation. We sought to quantify the contributions of hyperplasia and hypertrophy to increased ASM mass in ovalbumin (OVA)-sensitized and -challenged BALB/c mice and the role of GSK-3beta in this process. Immunofluorescent probes, confocal microscopy, and stereological methods were used to analyze the number and volume of cells expressing alpha-smooth muscle actin and phospho-Ser(9) GSK-3beta (pGSK). OVA treatment caused a 3-fold increase in ASM fractional unit volume or volume density (Vv) (PBS, 0.006 +/- 0.0003; OVA, 0.014 +/- 0.001), a 1.5-fold increase in ASM number per unit volume (Nv), and a 59% increase in volume per cell (Vv/Nv) (PBS, 824 +/- 76 microm(3); OVA, 1,310 +/- 183 mum(3)). In OVA-treated mice, there was a 12-fold increase in the Vv of pGSK (+) ASM, a 5-fold increase in the Nv of pGSK (+) ASM, and a 1.6-fold increase in Vv/Nv. Lung homogenates from OVA-treated mice showed increased GSK-3beta phosphorylation and lower GSK-3beta activity. Both hyperplasia and hypertrophy are responsible for increased ASM mass in OVA-treated mice. Phosphorylation and inactivation of GSK-3beta are associated with ASM hypertrophy, suggesting that this kinase may play a role in asthmatic airway remodeling.

  19. Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation.

    Science.gov (United States)

    Nesmith, Alexander Peyton; Agarwal, Ashutosh; McCain, Megan Laura; Parker, Kevin Kit

    2014-10-21

    Many potential new asthma therapies that show promise in the pre-clinical stage of drug development do not demonstrate efficacy during clinical trials. One factor contributing to this problem is the lack of human-relevant models of the airway that recapitulate the tissue-level structural and functional phenotypes of asthma. Hence, we sought to build a model of a human airway musculature on a chip that simulates healthy and asthmatic bronchoconstriction and bronchodilation in vitro by engineering anisotropic, laminar bronchial smooth muscle tissue on elastomeric thin films. In response to a cholinergic agonist, the muscle layer contracts and induces thin film bending, which serves as an in vitro analogue for bronchoconstriction. To mimic asthmatic inflammation, we exposed the engineered tissues to interleukin-13, which resulted in hypercontractility and altered relaxation in response to cholinergic challenge, similar to responses observed clinically in asthmatic patients as well as in studies with animal tissue. Moreover, we reversed asthmatic hypercontraction using a muscarinic antagonist and a β-agonist which are used clinically to relax constricted airways. Importantly, we demonstrated that targeting RhoA-mediated contraction using HA1077 decreased basal tone, prevented hypercontraction, and improved relaxation of the engineered tissues exposed to IL-13. These data suggest that we can recapitulate the structural and functional hallmarks of human asthmatic musculature on a chip, including responses to drug treatments for evaluation of safety and efficacy of new drugs. Further, our airway musculature on a chip provides an important tool for enabling mechanism-based search for new therapeutic targets through the ability to evaluate engineered muscle at the levels of protein expression, tissue structure, and tissue function.

  20. Potent airway smooth muscle relaxant effect of cynatratoside B, a steroidal glycoside isolated from Cynanchum stauntonii.

    Science.gov (United States)

    Yue, Grace Gar-Lee; Chan, Kar-Man; To, Ming-Ho; Cheng, Ling; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara Bik-San

    2014-04-25

    The dried roots of Cynanchum stauntonii in having cough-relieving efficacy are commonly included in traditional antitussive formulas. The active components in a C. stauntonii root extract responsible for airway relaxation were isolated using an ex vivo bioassay-guided fractionation method, in which subfractions were evaluated for their inhibitory effects on the contraction of isolated rat tracheal rings by isometric tension measurements. A steroidal glycoside, cynatratoside B (1), identified by LC-MS and NMR spectroscopic analysis, was shown to have potent inhibition on acetylcholine- and carbachol-induced tracheal contractions. The present data provide scientific evidence to support the traditional use of C. stauntonii as an antitussive herbal medicine.

  1. Croton sonderianus essential oil samples distinctly affect rat airway smooth muscle.

    Science.gov (United States)

    Pinho-da-Silva, L; Mendes-Maia, P V; do Nascimento Garcia, T M; Cruz, J S; de Morais, S M; Coelho-de-Souza, A N; Lahlou, S; Leal-Cardoso, J H

    2010-08-01

    Plants of the genus Croton have been used extensively in the northeast of Brazil for treating various clinical conditions. Previous studies have demonstrated that the essential oil of some specimens of Croton sp. have a relaxing effect on tracheal smooth muscle. Our study aimed to characterize the effects of Croton sonderianus essential oil samples, collected at 1:00 pm (EO-13) and 9:00 pm (EO-21), on rat tracheal smooth muscle. The two samples were submitted to gas chromatography (GC) and mass spectrometry (MS) analysis to identify their components. Rat tracheal smooth muscle strips were used to assess the biological activity. The major constituents of EO-21 were: spathulenol (18.32%), beta-caryophyllene (14.58%) and caryophyllene oxide (8.54%) and the major constituents of EO-13 were bicyclogermacrene (16.29%), beta-phellandrene (15.42%) and beta-caryophyllene (13.82%). These samples showed an antispasmodic effect on tracheal smooth muscle strips pre-contracted with high K+ concentration (80 mM) or with acetylcholine. EO-21 increased baseline tonus while EO-13 provoked a decrease. These results demonstrated that EO-13 and EO-21 have different chemical composition and showed myorelaxant activity. In conclusion, EO-13 and EO-21 may have potential therapeutic use in the treatment of bronchospasm.

  2. Time course of isotonic shortening and the underlying contraction mechanism in airway smooth muscle.

    Science.gov (United States)

    Syyong, Harley T; Raqeeb, Abdul; Paré, Peter D; Seow, Chun Y

    2011-09-01

    Although the structure of the contractile unit in smooth muscle is poorly understood, some of the mechanical properties of the muscle suggest that a sliding-filament mechanism, similar to that in striated muscle, is also operative in smooth muscle. To test the applicability of this mechanism to smooth muscle function, we have constructed a mathematical model based on a hypothetical structure of the smooth muscle contractile unit: a side-polar myosin filament sandwiched by actin filaments, each attached to the equivalent of a Z disk. Model prediction of isotonic shortening as a function of time was compared with data from experiments using ovine tracheal smooth muscle. After equilibration and establishment of in situ length, the muscle was stimulated with ACh (100 μM) until force reached a plateau. The muscle was then allowed to shorten isotonically against various loads. From the experimental records, length-force and force-velocity relationships were obtained. Integration of the hyperbolic force-velocity relationship and the linear length-force relationship yielded an exponential function that approximated the time course of isotonic shortening generated by the modeled sliding-filament mechanism. However, to obtain an accurate fit, it was necessary to incorporate a viscoelastic element in series with the sliding-filament mechanism. The results suggest that a large portion of the shortening is due to filament sliding associated with muscle activation and that a small portion is due to continued deformation associated with an element that shows viscoelastic or power-law creep after a step change in force.

  3. 气道平滑肌细胞在哮喘气道重塑中的作用%The effect of airway smooth muscle cell on asthma airway remodeling

    Institute of Scientific and Technical Information of China (English)

    李淼

    2010-01-01

    气道重塑是气道慢性炎症的结果,包括气道壁增厚和基质沉积、胶原沉积、上皮下纤维化、平滑肌增生和肥大、肌成纤维细胞增殖及黏液腺、杯状细胞化生及增生、上皮下网状层增厚、微血管生成等病理改变.在这些病理变化中,气道平滑肌的改变被认为是导致气道高反应性和哮喘加重的重要因素.有很多因素导致气道平滑肌增生及肥大,如炎症介质、生长因子、细胞因子、细胞外基质蛋白和遗传因子等.最近的研究揭示气道平滑肌也是炎症介质的重要来源.建议在哮喘发病早期应用激素吸入治疗.%Airway remodeling is the result of chronic inflammation, which including airway wall thickening, matrix and collagen deposition, epithelial hyperplasia and fibrosis, smooth proliferation and hypertrophy,fibroblast proliferation, and mucus glands and goblet cell proliferation, micrangium generation and other pathological changes. Airway smooth muscle change is known as the reason of airway hyper - responsiveness and asthma aggravating. There are many factors which can induce airway smooth muscle hypertrophy and proliferation, such as inflammation, cytokines,extracellular matrix and genetic factors. In addition, recent researches reveal the airway smooth muscle is also an important source of inflammation. In this paper the latest opinion of the role of asthma airway smooth muscle in the airway remodeling were elaborated,and inhale hormone earlier was suggested.

  4. Human Lung Small Airway-on-a-Chip Protocol.

    Science.gov (United States)

    Benam, Kambez H; Mazur, Marc; Choe, Youngjae; Ferrante, Thomas C; Novak, Richard; Ingber, Donald E

    2017-01-01

    Organs-on-chips are microfluidic cell culture devices created using microchip manufacturing techniques that contain hollow microchannels lined by living cells, which recreate specialized tissue-tissue interfaces, physical microenvironments, and vascular perfusion necessary to recapitulate organ-level physiology in vitro. Here we describe a protocol for fabrication, culture, and operation of a human lung "small airway-on-a-chip," which contains a differentiated, mucociliary bronchiolar epithelium exposed to air and an underlying microvascular endothelium that experiences fluid flow. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin rigid porous membrane; this requires less than 1 day to complete. Next, primary human airway bronchiolar epithelial cells isolated from healthy normal donors or patients with respiratory disease are cultured on the porous membrane within one microchannel while lung microvascular endothelial cells are cultured on the opposite side of the same membrane in the second channel to create a mucociliated epithelium-endothelium interface; this process take about 4-6 weeks to complete. Finally, culture medium containing neutrophils isolated from fresh whole human blood are flowed through the microvascular channel of the device to enable real-time analysis of capture and recruitment of circulating leukocytes by endothelium under physiological shear; this step requires less than 1 day to complete. The small airway-on-a-chip represents a new microfluidic tool to model complex and dynamic inflammatory responses of healthy and diseased lungs in vitro.

  5. Transport and deposition of cohesive pharmaceutical powders in human airway

    Science.gov (United States)

    Wang, Yuan; Chu, Kaiwei; Yu, Aibing

    2017-06-01

    Pharmaceutical powders used in inhalation therapy are in the size range of 1-5 microns and are usually cohesive. Understanding the cohesive behaviour of pharmaceutical powders during their transportation in human airway is significant in optimising aerosol drug delivery and targeting. In this study, the transport and deposition of cohesive pharmaceutical powders in a human airway model is simulated by a well-established numerical model which combines computational fluid dynamics (CFD) and discrete element method (DEM). The van der Waals force, as the dominant cohesive force, is simulated and its influence on particle transport and deposition behaviour is discussed. It is observed that even for dilute particle flow, the local particle concentration in the oral to trachea region can be high and particle aggregation happens due to the van der Waals force of attraction. It is concluded that the deposition mechanism for cohesive pharmaceutical powders, on one hand, is dominated by particle inertial impaction, as proven by previous studies; on the other hand, is significantly affected by particle aggregation induced by van der Waals force. To maximum respiratory drug delivery efficiency, efforts should be made to avoid pharmaceutical powder aggregation in human oral-to-trachea airway.

  6. Inhibition of 1,25-(OH)2D3 on passively sensitized human airway smooth muscle cells%1,25-二羟维生素D3对被动致敏人气道平滑肌细胞的抑制作用

    Institute of Scientific and Technical Information of China (English)

    宋颖芳; 赖国祥; 戚好文; 吴昌归

    2011-01-01

    目的 检测1,25-二羟维生素D3[1,25-(OH)2D3]对被动致敏的人气道平滑肌细胞(HASMC)的增殖及其表达基质金属蛋白酶-9(MMP-9)和解整合素-金属蛋白酶33(ADAM33)的影响,探讨其调节支气管哮喘(简称哮喘)患者气道重塑的可能机制.方法用10%哮喘患者血清被动致敏HASMC,以10%非哮喘患者血清为对照.四甲基偶氮唑盐(MTT)法检测不同浓度1,25-(OH)2D3对HASMC细胞增殖活力的变化并确定其有效作用浓度.然后以有效作用浓度的1,25-(OH)2D3预处理HASMC,MTT法测定细胞增殖活力,流式细胞仪测定细胞周期,实时荧光定量PCR及蛋白免疫印迹法分别检测细胞中MMP-9及ADAM33的表达情况.结果 (1)1,25-(OH)2D3在(10-9~10-7)mol/L浓度下能浓度依赖性地抑制被动致敏的HASMC增殖(P<0.05);(2)10-7 mol/L的1,25-(OH)2D3能时间依赖性地抑制被动致敏的HASMC增殖并特异性抑制细胞周期中G1/S的转化;(3)VD组MMP-9及ADAM33蛋白表达较哮喘组分别下降了(63.4±3.6)%和(50.9±2.9)%,但仍显著高于对照组(P<0.01);(4)VD组MMP-9及ADAM33 mRNA表达较哮喘组分别下降了(52.2±2.5)%和(67.8±3.2)%,但仍显著高于对照组(P<0.01).结论 1,25-(OH)2D3能从多个层面抑制被动致敏的HASMC的功能,这可能是其调节哮喘气道重塑的作用机制之一.%Objective To investigate the effects of 1,25-(OH)2D3 on the proliferation of passively sensitized human airway smooth muscle cells(HASMCs) and their expressions of MMP-9 and a disintegrin and metalloprotease 33(ADAM33). Methods HASMCs were passively sensitized with 10% serum from asthmatic patients. MTT colorimetri assay was used to examine the effect of 1,25-(OH)2D3 on cell proliferation at different concentrations(10-10 mol/L, 10-9 mol/L, 10-8 mol/L, 10-7 mol/L).By this way, its optimal inhibitory concentration was determined. And then the effects of 1,25-(OH)2D3 at the optimal concentration on cell proliferation was examined by the same MTT assay and cell

  7. Lead Acetate Induces Epithelium-Dependent Contraction of Airway Smooth Muscle

    OpenAIRE

    , Ramadan B. Sopi; , Kemajl Bislimi; , Fetah Halili; , Mentor Sopjani; , Burim Neziri; , Muharrem Jakupi

    2016-01-01

    The effect of lead acetate on tracheal smooth muscle (TSM) of dog pups was investigated in this study. In addition we studied the role of epithelium and involvement of nitric oxide (NO) in counteracting the effects of lead acetate on TSM as well as the modifying effects of lead acetate on contractile responses of TSM to acetylcholine (ACh) . Tracheal rings were excised and placed in in vitro organ baths. In vitro administration of lead acetate in increasing concentrations(10-7–10-3 M) induced...

  8. The role of inflammation resolution speed in airway smooth muscle mass accumulation in asthma: insight from a theoretical model.

    Directory of Open Access Journals (Sweden)

    Igor L Chernyavsky

    Full Text Available Despite a large amount of in vitro data, the dynamics of airway smooth muscle (ASM mass increase in the airways of patients with asthma is not well understood. Here, we present a novel mathematical model that describes qualitatively the growth dynamics of ASM cells over short and long terms in the normal and inflammatory environments typically observed in asthma. The degree of ASM accumulation can be explained by an increase in the rate at which ASM cells switch between non-proliferative and proliferative states, driven by episodic inflammatory events. Our model explores the idea that remodelling due to ASM hyperplasia increases with the frequency and magnitude of these inflammatory events, relative to certain sensitivity thresholds. It highlights the importance of inflammation resolution speed by showing that when resolution is slow, even a series of small exacerbation events can result in significant remodelling, which persists after the inflammatory episodes. In addition, we demonstrate how the uncertainty in long-term outcome may be quantified and used to design an optimal low-risk individual anti-proliferative treatment strategy. The model shows that the rate of clearance of ASM proliferation and recruitment factors after an acute inflammatory event is a potentially important, and hitherto unrecognised, target for anti-remodelling therapy in asthma. It also suggests new ways of quantifying inflammation severity that could improve prediction of the extent of ASM accumulation. This ASM growth model should prove useful for designing new experiments or as a building block of more detailed multi-cellular tissue-level models.

  9. Thiazolidinediones inhibit airway smooth muscle release of the chemokine CXCL10: in vitro comparison with current asthma therapies

    Directory of Open Access Journals (Sweden)

    Seidel Petra

    2012-10-01

    Full Text Available Abstract Background Activated mast cells are present within airway smooth muscle (ASM bundles in eosinophilic asthma. ASM production of the chemokine CXCL10 plays a role in their recruitment. Thus the effects of glucocorticoids (fluticasone, budesonide, long-acting β2-agonists (salmeterol, formoterol and thiazolidinediones (ciglitazone, rosiglitazone on CXCL10 production by ASM cells (ASMC from people with and without asthma were investigated in vitro. Methods Confluent serum-deprived cells were treated with the agents before and during cytokine stimulation for 0-24 h. CXCL10 protein/mRNA, IκB-α levels and p65 activity were measured using ELISA, RT PCR, immunoblotting and p65 activity assays respectively. Data were analysed using ANOVA followed by Fisher’s post-hoc test. Results Fluticasone and/or salmeterol at 1 and 100 nM inhibited CXCL10 release induced by IL-1β and TNF-α, but not IFNγ or all three cytokines (cytomix. The latter was also not affected by budesonide and formoterol. In asthmatic ASMC low salmeterol, but not formoterol, concentrations increased cytomix-induced CXCL10 release and at 0.01 nM enhanced NF-κB activity. Salmeterol 0.1nM together with fluticasone 0.1 and 10 nM still increased CXCL10 release. The thiazolidinediones ciglitazone and rosiglitazone (at 25 and 100 μM inhibited cytomix-induced CXCL10 release but these inhibitory effects were not prevented by the PPAR-g antagonist GW9662. Ciglitazone did not affect early NF-κB activity and CXCL10 mRNA production. Conclusions Thus the thiazolidinediones inhibited asthmatic ASMC CXCL10 release under conditions when common asthma therapies were ineffective or enhanced it. They may provide an alternative strategy to reduce mast cell-ASM interactions and restore normal airway physiology in asthma.

  10. Thiazolidinediones inhibit airway smooth muscle release of the chemokine CXCL10: in vitro comparison with current asthma therapies.

    Science.gov (United States)

    Seidel, Petra; Alkhouri, Hatem; Lalor, Daniel J; Burgess, Janette K; Armour, Carol L; Hughes, J Margaret

    2012-10-04

    Activated mast cells are present within airway smooth muscle (ASM) bundles in eosinophilic asthma. ASM production of the chemokine CXCL10 plays a role in their recruitment. Thus the effects of glucocorticoids (fluticasone, budesonide), long-acting β2-agonists (salmeterol, formoterol) and thiazolidinediones (ciglitazone, rosiglitazone) on CXCL10 production by ASM cells (ASMC) from people with and without asthma were investigated in vitro. Confluent serum-deprived cells were treated with the agents before and during cytokine stimulation for 0-24 h. CXCL10 protein/mRNA, IκB-α levels and p65 activity were measured using ELISA, RT PCR, immunoblotting and p65 activity assays respectively. Data were analysed using ANOVA followed by Fisher's post-hoc test. Fluticasone and/or salmeterol at 1 and 100 nM inhibited CXCL10 release induced by IL-1β and TNF-α, but not IFNγ or all three cytokines (cytomix). The latter was also not affected by budesonide and formoterol. In asthmatic ASMC low salmeterol, but not formoterol, concentrations increased cytomix-induced CXCL10 release and at 0.01 nM enhanced NF-κB activity. Salmeterol 0.1 nM together with fluticasone 0.1 and 10 nM still increased CXCL10 release. The thiazolidinediones ciglitazone and rosiglitazone (at 25 and 100 μM) inhibited cytomix-induced CXCL10 release but these inhibitory effects were not prevented by the PPAR-g antagonist GW9662. Ciglitazone did not affect early NF-κB activity and CXCL10 mRNA production. Thus the thiazolidinediones inhibited asthmatic ASMC CXCL10 release under conditions when common asthma therapies were ineffective or enhanced it. They may provide an alternative strategy to reduce mast cell-ASM interactions and restore normal airway physiology in asthma.

  11. Distinct PKA and Epac compartmentalization in airway function and plasticity

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Racke, Kurt; Schmidt, Martina

    2013-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases characterized by airway obstruction, airway inflammation and airway remodelling. Next to inflammatory cells and airway epithelial cells, airway mesenchymal cells, including airway smooth muscle cells and (myo)fibro

  12. Regional aerosol deposition in human upper airways

    Energy Technology Data Exchange (ETDEWEB)

    Swift, D.L.

    1991-11-01

    During the current report experimental studies of upper respiratory deposition of radon progeny aerosols and stimulant aerosols were carried out in replicate casts of nasal and oral passages of adults and children. Additionally, preliminary studies of nasal passage deposition of unattached Po{sup 218} particles was carried out in four human subjects. Data on nasal inspiratory deposition in replicate models of adults and infants from three collaborating laboratories were compared and a best-fit curve of deposition efficiency for both attached and unattached particles was obtained, showing excellent inter-laboratory agreement. This curve demonstrates that nasal inspiratory deposition of radon progeny is weakly dependent upon flow rate over physiologically realistic ranges of flow, does not show a significant age effect, and is relatively independent of nasal passage dimensions for a given age range. Improved replicate models of the human adult oral passage extending to the mid-trachea were constructed for medium and higher flow mouth breathing states; these models were used to assess the deposition of unattached Po{sup 218} particles during oronasal breathing in the oral passage and demonstrated lower deposition efficiency than the nasal passage. Measurements of both Po{sup 218} particle and attached fraction particle size deposition were performed in replicate nasal passage of a four week old infant. 5 refs., 1 fig.

  13. Activation of protein kinase C accelerates contraction kinetics of airway smooth muscle.

    Science.gov (United States)

    Peiper, U; Knipp, S C; Thies, B; Henke, R

    1996-01-01

    Contraction kinetics of isolated rat tracheal smooth muscle were studied by analysing the increase of force subsequent to force-inhibiting passive length changes lasting 1 s (100 Hz, sinus, 5% of muscle length). Compared with carbachol activation, phorboldibutyrate (PDBu)-induced stimulation of protein kinase C (PKC) demonstrated no significant difference in the extent of force development in the polarized preparation [mean peak force 9.16 +/- 0.37 mN (carbachol) vs. 9.12 +/- 0.37 mN (PDBu)]. However, the time constant calculated for the slow component of post-vibration force recovery was 6.40 +/- 0.29 s after addition of PDBu vs. 22.39 +/- 1.40 s during carbachol activation, indicating a significant phorbol ester-induced acceleration of the cross-bridge cycling rate. In the K-depolarized preparation, treatment with 26.4 microM indolactam (IL) to activate PKC produced muscle relaxation (9.94 +/- 0.16 mN measured 0-30 min after the onset of depolarization vs. 4.13 +/- 0.05 mN measured during 30-60 min of IL treatment). Again, even in the presence of high sarcoplasmic Ca2+ resulting from tonic depolarization, PKC activation was associated with a distinct diminution of the time constant (25.99 +/- 0.79 s during the first 30 min of depolarization vs. 10.32 +/- 0.21 s during 30-60 min of IL treatment). In contrast, addition of 0.035 microM verapamil, 1.5 microM isoproterenol, and 32 microM dibutyryl-cAMP to the bathing medium induced relaxation without affecting the rate of post-vibration force recovery. The results suggest that the calcium-dependent signal cascade (agonist receptor/inositol trisphosphate/ Ca(2+)-calmodulin/myosin light chain kinase) hardly affects the regulation of contraction kinetics in the tonically activated intact smooth muscle preparation. PKC stimulation, however, accelerates actin/myosin interaction kinetics, possibly by inhibition of phosphatase(s).

  14. Adenylyl cyclase 2 selectively couples to E prostanoid type 2 receptors, whereas adenylyl cyclase 3 is not receptor-regulated in airway smooth muscle.

    Science.gov (United States)

    Bogard, Amy S; Adris, Piyatilake; Ostrom, Rennolds S

    2012-08-01

    Adenylyl cyclases (ACs) are important regulators of airway smooth muscle function, because β-adrenergic receptor (βAR) agonists stimulate AC activity and cAMP production. We have previously shown in a number of cell types that AC6 selectively couples to βAR and these proteins are coexpressed in lipid rafts. We overexpressed AC2, AC3, and AC6 in mouse bronchial smooth muscle cells (mBSMCs) and human embryonic kidney (HEK)-293 cells by using recombinant adenoviruses and assessed their localization and regulation by various G protein-coupled receptors (GPCRs). AC3 and AC6 were expressed primarily in caveolin-rich fractions, whereas AC2 expression was excluded from these domains. AC6 expression enhanced cAMP production in response to isoproterenol but did not increase responses to butaprost, reflecting the colocalization of AC6 with β(2)AR but not E prostanoid type 2 receptor (EP(2)R) in lipid raft fractions. AC2 expression enhanced butaprost-stimulated cAMP production but had no effect on the β(2)AR-mediated response. AC3 did not couple to any GPCR tested. Forskolin-induced arborization of mBSMCs was assessed as a functional readout of cAMP signaling. Arborization was enhanced by overexpression of AC6 and AC3, but AC2 had no effect. GPCR-stimulated arborization mirrored the selective coupling observed for cAMP production. With the addition of the phosphodiesterase 4 (PDE4) inhibitor rolipram AC2 accelerated forskolin-stimulated arborization. Thus, AC2 selectively couples to EP(2)R, but signals from this complex are limited by PDE4 activity. AC3 does not seem to couple to GPCR in either mBSMCs or HEK-293 cells, so it probably exists in a distinct signaling domain in these cells.

  15. CT based computerized identification and analysis of human airways: a review.

    Science.gov (United States)

    Pu, Jiantao; Gu, Suicheng; Liu, Shusen; Zhu, Shaocheng; Wilson, David; Siegfried, Jill M; Gur, David

    2012-05-01

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  16. CT based computerized identification and analysis of human airways: A review

    Energy Technology Data Exchange (ETDEWEB)

    Pu Jiantao; Gu Suicheng; Liu Shusen; Zhu Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David [Imaging Research Center, Department of Radiology, University of Pittsburgh, 3362 Fifth Avenue, Pittsburgh, Pennsylvania 15213 (United States); School of Computing, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Radiology, Henan Provincial People' s Hospital, Zhengzhou 450003 (China); Department of Medicine, University of Pittsburgh, 580 S. Aiken Avenue, Suite 400, Pittsburgh, Pennsylvania 15232 (United States); Department of Pharmacology and Chemical Biology, Hillman Cancer Center, Pittsburgh, Pennsylvania 15213 (United States); Imaging Research Center, Department of Radiology, University of Pittsburgh, 3362 Fifth Avenue, Pittsburgh, PA 15213 (United States)

    2012-05-15

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  17. Montelukast prevents microparticle-induced inflammatory and functional alterations in human bronchial smooth muscle cells.

    Science.gov (United States)

    Fogli, Stefano; Stefanelli, Fabio; Neri, Tommaso; Bardelli, Claudio; Amoruso, Angela; Brunelleschi, Sandra; Celi, Alessandro; Breschi, Maria Cristina

    2013-10-01

    Microparticles (MPs) are membrane fragments that may play a role in the pathogenesis of chronic respiratory diseases. We aimed to investigate whether human monocytes/macrophage-derived MPs could induce a pro-inflammatory phenotype in human bronchial smooth muscle cells (BSMC) and the effect of montelukast in this setting. Experimental methods included isolation of human monocytes/macrophages and generation of monocyte-derived MPs, RT-PCR analysis of gene expression, immunoenzymatic determination of pro-inflammatory factor release, bioluminescent assay of intracellular cAMP levels and electromobility shift assay analysis of NF-κB nuclear translocation. Stimulation of human BSMC with monocyte-derived MPs induced a pro-inflammatory switch in human BSMC by inducing gene expression (COX-2 and IL-8), protein release in the supernatant (PGE2 and IL-8), and heterologous β2-adrenoceptor desensitization. The latter effect was most likely related to autocrine PGE2 since pre-treatment with COX inhibitors restored the ability of salbutamol to induce cAMP synthesis in desensitized cells. Challenge with MPs induced nuclear translocation of NF-κB and selective NF-κB inhibition decreased MP-induced cytokine release in the supernatant. Montelukast treatment prevented IL-8 release and heterologous β2-adrenoceptor desensitization in human BSMC exposed to monocyte-derived MPs by blocking NF-κB nuclear translocation. These findings provide evidence on the role of human monocyte-derived MPs in the airway smooth muscle phenotype switch as a novel potential mechanism in the progression of chronic respiratory diseases and on the protective effects by montelukast in this setting.

  18. Basal Secretion of Lysozyme from Human Airways in Vitro

    Directory of Open Access Journals (Sweden)

    Patricia Roger

    1999-01-01

    Full Text Available The aim of this study was to examine the basal release of lysozyme from isolated human lung tissues. Measurements of lysozyme in the fluids derived from lung preparations were performed using a rate-of-lysis assay subsequent to acidification of the biological samples. Lysozyme released from bronchial preparations into fluids was greater than that observed for parenchymal tissues. The lysozyme quantities detected in bronchial fluids were not modified by removal of the surface epithelium. Furthermore, the quantities of lysozyme in bronchial fluids was correlated with the size of the bronchial preparations. These results suggest that the lysozyme was principally secreted by the human bronchi (submucosal layer rather than by parenchyma tissues and that a greater release was observed in the proximal airways.

  19. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion.

  20. Interleukin-13–Induced Mucous Metaplasia Increases Susceptibility of Human Airway Epithelium to Rhinovirus Infection

    OpenAIRE

    2010-01-01

    Infection of airway epithelium by rhinovirus is the most common cause of asthma exacerbations. Even in mild asthma, airway epithelium exhibits mucous metaplasia, which increases with increasing severity of the disease. We previously showed that squamous cultures of human airway epithelium manifest rhinoviral infection at levels many times higher than in well-differentiated cultures of a mucociliary phenotype. Here we tested the hypothesis that mucous metaplasia is also associated with increas...

  1. Nitric oxide and vasoactive intestinal peptide as co-transmitters of airway smooth-muscle relaxation: analysis in neuronal nitric oxide synthase knockout mice.

    Science.gov (United States)

    Hasaneen, Nadia A; Foda, Hussein D; Said, Sami I

    2003-09-01

    Both vasoactive intestinal peptide (VIP) and nitric oxide (NO) relax airway smooth muscle and are potential co-transmitters of neurogenic airway relaxation. The availability of neuronal NO synthase (nNOS) knockout mice (nNOS-/-) provides a unique opportunity for evaluating NO. To evaluate the relative importance of NO, especially that generated by nNOS, and VIP as transmitters of the inhibitory nonadrenergic, noncholinergic (NANC) system. In this study, we compared the neurogenic (tetrodotoxin-sensitive) NANC relaxation of tracheal segments from nNOS-/- mice and control wild-type mice (nNOS(+/+)), induced by electrical field stimulation (EFS). We also examined the tracheal contractile response to methacholine and its relaxant response to VIP. EFS (at 60 V for 2 ms, at 10, 15, or 20 Hz) dose-dependently reduced tracheal tension, and the relaxations were consistently smaller (approximately 40%) in trachea from nNOS-/- mice than from control wild-type mice (p 0.05). Our data suggest that, in mouse trachea, NO is probably responsible for mediating a large (approximately 60%) component of neurogenic NANC relaxation, and a similar (approximately 50%) component of the relaxant effect of VIP. The results imply that NO contributes significantly to neurogenic relaxation of mouse airway smooth muscle, whether due to neurogenic stimulation or to the neuropeptide VIP.

  2. An unclassified microorganism: novel pathogen candidate lurking in human airways.

    Directory of Open Access Journals (Sweden)

    Kazumasa Fukuda

    Full Text Available During the assessments of the correlation of the diseases and the microbiota of various clinical specimens, unique 16S ribosomal RNA (rRNA gene sequences (less than 80% similarity to known bacterial type strains were predominantly detected in a bronchoalveolar lavage fluid (BALF specimen from a patient with chronic lower respiratory tract infection. The origin of this unique sequence is suspected to be the causative agent of the infection. We temporarily named the owner organism of this sequence "IOLA" (Infectious Organism Lurking in Airways. In order to evaluate the significance of IOLA in human lung disorders, we performed several experiments. IOLA-16S rRNA genes were detected in 6 of 386 clone libraries constructed from clinical specimens of patients with respiratory diseases (in our study series. The gene sequences (1,427 bp are identical, and no significantly similar sequence was found in public databases (using NCBI blastn except for the 8 shorter sequences detected from patients with respiratory diseases in other studies from 2 other countries. Phylogenetic analyses revealed that the 16S rRNA gene of IOLA is more closely related to eukaryotic mitochondria than bacteria. However, the size and shape of IOLA seen by fluorescent in-situ hybridization are similar to small bacteria (approximately 1 µm with a spherical shape. Furthermore, features of both bacteria and mitochondria were observed in the genomic fragment (about 19 kb of IOLA, and the GC ratio of the sequence was extremely low (20.5%. Two main conclusions were reached: (1 IOLA is a novel bacteria-like microorganism that, interestingly, possesses features of eukaryotic mitochondria. (2 IOLA is a novel pathogen candidate, and it may be the causative agent of human lung or airway disease. IOLA exists in BALF specimens from patients with remarkable symptoms; this information is an important piece for helping solve the elusive etiology of chronic respiratory disorders.

  3. Substance P stimulation of cultured human smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuhashi, M.; Payan, D.G.

    1986-03-01

    Substance P (SP) has been shown to be mitogenic for cells active in the inflammatory response, such as lymphocytes and macrophages, and demonstrates vasodilatory and bronchoconstrictor properties, implicating SP receptor-mediated responses on smooth muscle cells. The effects of SP on cultured human vascular smooth muscle cell (HSMC) proliferative responses and protein synthesis were assessed by measuring the incorporation of (/sup 3/H)thymidine into DNA and (/sup 3/H)leucine into intracellular proteins, respectively. SP at concentrations of 10/sup -6/ to 10/sup -5/M stimulated a 40-50% increase in the incorporation of (/sup 3/H)thymidine in HMSC. In addition, the uptake of (/sup 3/H)leucine into HSMC proteins was increased significantly by SP over the concentration range 10/sup -11/ to 10/sup -6/M. Moreover, an enhancement of protein synthesis in HSMC by 10/sup -9/M SP was demonstrated by an increased incorporation of (/sup 35/S)methionine into cellular proteins of MW 40-30,000 daltons as assessed by autoradiographic analysis of HSMC lysates analyzed by SDS-PAGE. Furthermore, the uptake of (/sup 3/H)inositol into HSMC membrane phospholipid was increased significantly by SP in a dose-dependent manner over the concentration range 10/sup -11/ to 10/sup -6/M. Peptides such as SP which stimulate smooth muscle contraction, also demonstrate mitogenic properties on HSMC, suggesting that these cellular response shares common pathways of activation.

  4. Human bronchial smooth muscle cells express adenylyl cyclase isoforms 2, 4, and 6 in distinct membrane microdomains.

    Science.gov (United States)

    Bogard, Amy S; Xu, Congfeng; Ostrom, Rennolds S

    2011-04-01

    Adenylyl cyclases (AC) are important regulators of airway smooth muscle function, because β-adrenergic receptor (AR) agonists stimulate AC activity and increase airway diameter. We assessed expression of AC isoforms in human bronchial smooth muscle cells (hBSMC). Reverse transcriptase-polymerase chain reaction and immunoblot analyses detected expression of AC2, AC4, and AC6. Forskolin-stimulated AC activity in membranes from hBSMC displayed Ca(2+)-inhibited and G(βγ)-stimulated AC activity, consistent with expression of AC6, AC2, and AC4. Isoproterenol-stimulated AC activity was inhibited by Ca(2+) but unaltered by G(βγ), whereas butaprost-stimulated AC activity was stimulated by G(βγ) but unaffected by Ca(2+) addition. Using sucrose density centrifugation to isolate lipid raft fractions, we found that only AC6 localized in lipid raft fractions, whereas AC2 and AC4 localized in nonraft fractions. Immunoisolation of caveolae using caveolin-1 antibodies yielded Ca(2+)-inhibited AC activity (consistent with AC6 expression), whereas the nonprecipitated material displayed G(βγ)-stimulated AC activity (consistent with expression of AC2 and/or AC4). Overexpression of AC6 enhanced cAMP production in response to isoproterenol and beraprost but did not increase responses to prostaglandin E(2) or butaprost. β(2)AR, but not prostanoid EP(2) or EP(4) receptors, colocalized with AC5/6 in lipid raft fractions. Thus, particular G protein-coupled receptors couple to discreet AC isoforms based, in part, on their colocalization in membrane microdomains. These different cAMP signaling compartments in airway smooth muscle cells are responsive to different hormones and neurotransmitters and can be regulated by different coincident signals such as Ca(2+) and G(βγ).

  5. CORRELATES BETWEEN HUMAN LUNG INJURY AFTER PARTICLE EXPOSURE AND RECURRENT AIRWAY OBSTRUCTION IN THE HORSE

    Science.gov (United States)

    Characteristics of the clinical presentation, physiologic changes, and pathology of the human response to particulate matter (PM) are comparable to inflammatory airway disease (lAD) and recurrent airway obstruction (RAO)lheaves in the horse. Both present with symptoms of cough,...

  6. CORRELATES BETWEEN HUMAN LUNG INJURY AFTER PARTICLE EXPOSURE AND RECURRENT AIRWAY OBSTRUCTION IN THE HORSE

    Science.gov (United States)

    Characteristics of the clinical presentation, physiologic changes, and pathology of the human response to particulate matter (PM) are comparable to inflammatory airway disease (lAD) and recurrent airway obstruction (RAO)lheaves in the horse. Both present with symptoms of cough,...

  7. Influence of horse stable environment on human airways

    Directory of Open Access Journals (Sweden)

    Pringle John

    2009-05-01

    Full Text Available Abstract Background Many people spend considerable amount of time each day in equine stable environments either as employees in the care and training of horses or in leisure activity. However, there are few studies available on how the stable environment affects human airways. This study examined in one horse stable qualitative differences in indoor air during winter and late summer conditions and assessed whether air quality was associated with clinically detectable respiratory signs or alterations to selected biomarkers of inflammation and lung function in stable personnel. Methods The horse stable environment and stable-workers (n = 13 in one stable were investigated three times; first in the winter, second in the interjacent late summer and the third time in the following winter stabling period. The stable measurements included levels of ammonia, hydrogen sulphide, total and respirable dust, airborne horse allergen, microorganisms, endotoxin and glucan. The stable-workers completed a questionnaire on respiratory symptoms, underwent nasal lavage with subsequent analysis of inflammation markers, and performed repeated measurements of pulmonary function. Results Measurements in the horse stable showed low organic dust levels and high horse allergen levels. Increased viable level of fungi in the air indicated a growing source in the stable. Air particle load as well as 1,3-β-glucan was higher at the two winter time-points, whereas endotoxin levels were higher at the summer time-point. Two stable-workers showed signs of bronchial obstruction with increased PEF-variability, increased inflammation biomarkers relating to reported allergy, cold or smoking and reported partly work-related symptoms. Furthermore, two other stable-workers reported work-related airway symptoms, of which one had doctor's diagnosed asthma which was well treated. Conclusion Biomarkers involved in the development of airway diseases have been studied in relation to

  8. Effects of lubiprostone on human uterine smooth muscle cells.

    Science.gov (United States)

    Cuppoletti, John; Malinowska, Danuta H; Chakrabarti, Jayati; Ueno, Ryuji

    2008-06-01

    Lubiprostone, a bicyclic fatty acid derivative and member of a new class of compounds called prostones, locally activates ClC-2 Cl(-) channels without activation of prostaglandin receptors. The present study was specifically designed to test and compare lubiprostone and prostaglandin effects at the cellular level using human uterine smooth muscle cells. Effects on [Ca(2+)](i), membrane potential and [cAMP](i) in human uterine smooth muscle cells were measured. 10 nM lubiprostone significantly decreased [Ca(2+)](i) from 188 to 27 nM, which was unaffected by 100 nM SC-51322, a prostaglandin EP receptor antagonist. In contrast 10nM PGE(2) and PGE(1) both increased [Ca(2+)](i) 3-5-fold which was blocked by SC-51322. Similarly, lubiprostone and prostaglandins had opposite/different effects on membrane potential and [cAMP](i). Lubiprostone caused SC-51322-insensitive membrane hyperpolarization and no effect on [cAMP](i). PGE(2) and PGE(1) both caused SC-51322-sensitive membrane depolarization and increased [cAMP](i). Lubiprostone has fundamentally different cellular effects from prostaglandins that are not mediated by EP receptors.

  9. Airway smooth muscle relaxation results from a reduction in the frequency of Ca2+ oscillations induced by a cAMP-mediated inhibition of the IP3 receptor

    Directory of Open Access Journals (Sweden)

    Sanderson Michael J

    2006-02-01

    Full Text Available Abstract Background It has been shown that the contractile state of airway smooth muscle cells (SMCs in response to agonists is determined by the frequency of Ca2+ oscillations occurring within the SMCs. Therefore, we hypothesized that the relaxation of airway SMCs induced by agents that increase cAMP results from the down-regulation or slowing of the frequency of the Ca2+ oscillations. Methods The effects of isoproterenol (ISO, forskolin (FSK and 8-bromo-cAMP on the relaxation and Ca2+ signaling of airway SMCs contracted with methacholine (MCh was investigated in murine lung slices with phase-contrast and laser scanning microscopy. Results All three cAMP-elevating agents simultaneously induced a reduction in the frequency of Ca2+ oscillations within the SMCs and the relaxation of contracted airways. The decrease in the Ca2+ oscillation frequency correlated with the extent of airway relaxation and was concentration-dependent. The mechanism by which cAMP reduced the frequency of the Ca2+ oscillations was investigated. Elevated cAMP did not affect the re-filling rate of the internal Ca2+ stores after emptying by repetitive exposure to 20 mM caffeine. Neither did elevated cAMP limit the Ca2+ available to stimulate contraction because an elevation of intracellular Ca2+ concentration induced by exposure to a Ca2+ ionophore (ionomycin or by photolysis of caged-Ca2+ did not reverse the effect of cAMP. Similar results were obtained with iberiotoxin, a blocker of Ca2+-activated K+ channels, which would be expected to increase Ca2+ influx and contraction. By contrast, the photolysis of caged-IP3 in the presence of agonist, to further elevate the intracellular IP3 concentration, reversed the slowing of the frequency of the Ca2+ oscillations and relaxation of the airway induced by FSK. This result implied that the sensitivity of the IP3R to IP3 was reduced by FSK and this was supported by the reduced ability of IP3 to release Ca2+ in SMCs in the presence of

  10. Directed differentiation of airway epithelial cells of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Li, Jian-Dong

    2016-11-01

    The ability to generate lung and airway epithelial cells from human bone marrow mesenchymal stem cells (hBMSCs) would have applications in regenerative medicine, modeling of lung disease, drug screening, and studies of human lung development. In this research, hBMSCs were cultured in specialized airway epithelial cell growth media for differentiation of airway epithelial cells, including keratinocyte growth factor transferrin, bovine pituitary extract, epinephrine, triiodothyronine and retinoic acid. The surfactant protein C, a specific marker of type II pneumocytes, and its corresponding protein were demonstrated by immunofluorescence and western blotting after differentiation of airway epithelial cells, respectively. These cells were then transferred into an induced acute lung injury model. The results showed that the hBMSCs could induce differentiation in airway epithelial cells under the special conditions of the medium, the result for surfactant protein C was positive in differentiated airway epithelial cells using immunofluorescence and western blotting, and these cells were successfully colonized in the injured lung airway. In conclusion, our research shows that a population of airway epithelial cells can be specifically generated from hBMSCs and that induced cells may be allowed to participate in tissue repair.

  11. Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2+ sparklets stimulate airway smooth muscle cell proliferation.

    Science.gov (United States)

    Zhao, Limin; Sullivan, Michelle N; Chase, Marlee; Gonzales, Albert L; Earley, Scott

    2014-06-01

    Proliferation of airway smooth muscle cells (ASMCs) contributes to the remodeling and irreversible obstruction of airways during severe asthma, but the mechanisms underlying this disease process are poorly understood. Here we tested the hypothesis that Ca(2+) influx through the vanilliod transient receptor potential channel (TRPV) 4 stimulates ASMC proliferation. We found that synthetic and endogenous TRPV4 agonists increase proliferation of primary ASMCs. Furthermore, we demonstrate that Ca(2+) influx through individual TRPV4 channels produces Ca(2+) microdomains in ASMCs, called "TRPV4 Ca(2+) sparklets." We also show that TRPV4 channels colocalize with the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin in ASMCs. Activated calcineurin dephosphorylates nuclear factor of activated T cells (NFAT) transcription factors cytosolic (c) to allow nuclear translocation and activation of synthetic transcriptional pathways. We show that ASMC proliferation in response to TRPV4 activity is associated with calcineurin-dependent nuclear translocation of the NFATc3 isoform tagged with green florescent protein. Our findings suggest that Ca(2+) microdomains created by TRPV4 Ca(2+) sparklets activate calcineurin to stimulate nuclear translocation of NFAT and ASMC proliferation. These findings further suggest that inhibition of TRPV4 could diminish asthma-induced airway remodeling.

  12. Nicotine Elevated Intracellular Ca2+ in Rat Airway Smooth Muscle Cells via Activating and Up-Regulating α7-Nicotinic Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Yongliang Jiang

    2014-02-01

    Full Text Available Background: Chronic obstructive pulmonary disease (COPD is characterized by airway remodeling with airway smooth muscle (ASM hypertrophy and hyperplasia. Since tobacco use is the key risk factor for the development of COPD and intracellular Ca2+ concentration ([Ca2+]i plays a major role in both cell proliferation and differentiation, we hypothesized that nicotinic acetylcholine receptor (nAChR activation plays a role in the elevation of [Ca2+]i in airway smooth muscle cells (ASMCs. Methods: We examined the expression of nAChR and characterized the functions of α7-nAChR in ASMCs. Results: RT-PCR analysis showed that α2-7, β2, and β3-nAChR subunits are expressed in rat ASMCs, with α7 being one of the most abundantly expressed subtypes. Chronic nicotine exposure increased α7-nAChR mRNA and protein expression, and elevated resting [Ca2+]i in cultured rat ASMCs. Acute application of nicotine evoked a rapid increase in [Ca2+]i in a concentration-dependent manner, and the response was significantly enhanced in ASMCs cultured with 1 µM nicotine for 48 hours. Nicotine-induced Ca2+ response was reversibly blocked by the α7-nAChR nicotinic antagonists, methyllycaconitine and α-bungarotoxin. Small interfering RNA suppression of α7-nAChR also substantially blunted the Ca2+ responses induced by nicotine. Conclusion: These observations suggest that nicotine elevates [Ca2+]i in ASMCs through α7-nAChR-mediated signals pathways, and highlight the possibility that α7-nAChR can be considered as a potential target for the treatment of airway remodeling.that nicotine elevates [Ca2+]i in ASMCs through α7-nAChR-mediated signals pathways, and highlight the possibility that α7-nAChR can be considered as a potential target for the treatment of airway remodeling.

  13. An automatic generation of non-uniform mesh for CFD analyses of image-based multiscale human airway models

    Science.gov (United States)

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-11-01

    The authors have developed a method to automatically generate non-uniform CFD mesh for image-based human airway models. The sizes of generated tetrahedral elements vary in both radial and longitudinal directions to account for boundary layer and multiscale nature of pulmonary airflow. The proposed method takes advantage of our previously developed centerline-based geometry reconstruction method. In order to generate the mesh branch by branch in parallel, we used the open-source programs Gmsh and TetGen for surface and volume meshes, respectively. Both programs can specify element sizes by means of background mesh. The size of an arbitrary element in the domain is a function of wall distance, element size on the wall, and element size at the center of airway lumen. The element sizes on the wall are computed based on local flow rate and airway diameter. The total number of elements in the non-uniform mesh (10 M) was about half of that in the uniform mesh, although the computational time for the non-uniform mesh was about twice longer (170 min). The proposed method generates CFD meshes with fine elements near the wall and smooth variation of element size in longitudinal direction, which are required, e.g., for simulations with high flow rate. NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421. Computer time provided by XSEDE.

  14. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    Science.gov (United States)

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  15. Th1 cytokine-induced syndecan-4 shedding by airway smooth muscle cells is dependent on mitogen-activated protein kinases.

    Science.gov (United States)

    Tan, Xiahui; Khalil, Najwa; Tesarik, Candice; Vanapalli, Karunasri; Yaputra, Viki; Alkhouri, Hatem; Oliver, Brian G G; Armour, Carol L; Hughes, J Margaret

    2012-04-01

    In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.

  16. Neurophysiology and Neuroanatomy of Smooth Pursuit in Humans

    Science.gov (United States)

    Lencer, Rebekka; Trillenberg, Peter

    2008-01-01

    Smooth pursuit eye movements enable us to focus our eyes on moving objects by utilizing well-established mechanisms of visual motion processing, sensorimotor transformation and cognition. Novel smooth pursuit tasks and quantitative measurement techniques can help unravel the different smooth pursuit components and complex neural systems involved…

  17. Regional deposition of radon decay products in human airways

    Energy Technology Data Exchange (ETDEWEB)

    Falk, R.; Moere, H.; Nyblom, L.; Oestergren, I. (Swedish Radiation Protection Inst., Stockholm (Sweden))

    1992-01-01

    Experimental studies of the uptake and deposition pattern in the human airways of inhaled radon decay products have been carried out using two different techniques. The deposition in the nasal, bronchial and lung regions was assessed by external gamma measurements on the subject. The exposure of the subject was performed in a 'walk-in' radon chamber with controlled conditions. Results from exposure with high and low aerosol concentrations show that no rapid clearance occurred for the deposited decay products. About 20% of the attached inhaled decay products are retained and deposited in the lungs when mouth breathing during resting conditions, while nasal breathing gave about 26% retention, of which 5% was deposited in the nasal region and about 21% in the lungs. Exposure at low aerosol concentration with unattached fraction of about 80% shows a total retention of about 90% indicating a 100% retention of the unattached fraction. Only about 20% of the unattached fraction is found to penetrate the nasal cavity and it seems to be deposited in the bronchial region. (author).

  18. Effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on contractile receptor function in airway smooth muscle

    NARCIS (Netherlands)

    de Vries, B; Roffel, AF; Zaagsma, J; Meurs, H

    2001-01-01

    In the present study, we investigated the effect of fenoterol-induced constitutive beta (2)-adrenoceptor activity on muscarinic receptor agonist- and histamine-induced bovine tracheal smooth muscle contractions. Bovine tracheal smooth muscle strips were incubated with 10 muM fenoterol or vehicle for

  19. Airway skills training using a human patient simulator

    African Journals Online (AJOL)

    Thesegan Moodley

    2016-04-11

    Apr 11, 2016 ... We incorporated the METI® HPS (Medical Education Technology,. Sarasota, USA) ... developed an airway care skills training programme using. METI's® HPS ..... analyse the cost-effectiveness of the simulator, on its own, or.

  20. Coupling of Airway Smooth Muscle Bitter Taste Receptors to Intracellular Signaling and Relaxation Is via Gαi1,2,3.

    Science.gov (United States)

    Kim, Donghwa; Woo, Jung A; Geffken, Ezekiel; An, Steven S; Liggett, Stephen B

    2017-06-01

    Bitter taste receptors (TAS2Rs) are expressed on human airway smooth muscle (HASM) and evoke marked relaxation. Agonist interaction with TAS2Rs activates phospholipase C and increases compartmentalized intracellular Ca(2+) ([Ca(2+)]i) via inositol 1,4,5 triphosphate. In taste cells, the G protein gustducin couples TAS2R to phospholipase C; however, we find very low levels of Gαgust mRNA or protein in HASM. We hypothesized that another G protein in HASM transmits TAS2R function. TAS2R signaling to [Ca(2+)]i, extracellular signal-regulated kinase (ERK) 1/2, and physiologic relaxation was sensitive to pertussis toxin, confirming a role for a member of the Gi family. α subunit expression in HASM was Gαi2 > Gαi1 = Gαi3 > Gαtrans1 ≈ Gαtrans2, with Gαgust and Gαo at the limits of detection (>100-fold lower than Gαi2). Small interfering RNA knockdowns in HASM showed losses of [Ca(2+)]i and ERK1/2 signaling when Gαi1, Gαi2, or Gαi3 were reduced. Gαtrans1 and Gαtrans2 knockdowns had no effect on [Ca(2+)]i and a minimal, transient effect on ERK1/2 phosphorylation. Furthermore, Gαgust and Gαo knockdowns did not affect any TAS2R signaling. In overexpression experiments in human embryonic kidney-293T cells, we confirmed an agonist-dependent physical interaction between TAS2R14 and Gαi2. ASM cells from transgenic mice expressing a peptide inhibitor of Gαi2 had attenuated relaxation to TAS2R agonist. These data indicate that, unlike in taste cells, TAS2Rs couple to the prevalent G proteins, Gαi1, Gαi2, and Gαi3, with no evidence for functional coupling to Gαgust. This absence of function for the "canonical" TAS2R G protein in HASM may be due to the very low expression of Gαgust, indicating that TAS2Rs can optionally couple to several G proteins in a cell type-dependent manner contingent upon G protein expression.

  1. Characterisation of urokinase plasminogen activator receptor variants in human airway and peripheral cells

    Directory of Open Access Journals (Sweden)

    Sayers Ian

    2009-07-01

    Full Text Available Abstract Background Expression of the urokinase plasminogen activator receptor (UPAR has been shown to have clinical relevance in various cancers. We have recently identified UPAR as an asthma susceptibility gene and there is evidence to suggest that uPAR may be upregulated in lung diseases such as COPD and asthma. uPAR is a key receptor involved in the formation of the serine protease plasmin by interacting with uPA and has been implicated in many physiological processes including proliferation and migration. The current aim was to determine key regulatory regions and splice variants of UPAR and quantify its expression in primary human tissues and cells (including lung, bronchial epithelium (HBEC, airway smooth muscle (HASM and peripheral cells. Results Using Rapid Amplification of cDNA Ends (RACE a conserved transcription start site (-42 to -77 relative to ATG was identified and multiple transcription factor binding sites predicted. Seven major splice variants were identified (>5% total expression, including multiple exon deletions and an alternative exon 7b (encoding a truncated, soluble, 229aa protein. Variants were differentially expressed, with a high proportion of E7b usage in lung tissue and structural cells (55–87% of transcripts, whereas classical exon 7 (encoding the GPI-linked protein was preferentially expressed in peripheral cells (~80% of transcripts, often with exon 6 or 5+6 deletions. Real-time PCR confirmed expression of uPAR mRNA in lung, as well as airway and peripheral cell types with ~50–100 fold greater expression in peripheral cells versus airway cells and confirmed RACE data. Protein analysis confirmed expression of multiple different forms of uPAR in the same cells as well as expression of soluble uPAR in cell supernatants. The pattern of expression did not directly reflect that seen at the mRNA level, indicating that post-translational mechanisms of regulation may also play an important role. Conclusion We have

  2. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.

    2016-09-30

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.

  3. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells.

    Science.gov (United States)

    Huff, Ryan D; Hsu, Alan C-Y; Nichol, Kristy S; Jones, Bernadette; Knight, Darryl A; Wark, Peter A B; Hansbro, Philip M; Hirota, Jeremy A

    2017-01-01

    The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines.

  4. Indirect airway challenges

    NARCIS (Netherlands)

    Joos, GF; O'Connor, B; Anderson, SD; Chung, F; Cockcroft, DW; Dahlen, B; DiMaria, G; Foresi, A; Hargreave, FE; Holgate, ST; Inman, M; Lotvall, J; Magnussen, H; Polosa, R; Postma, DS; Riedler, J

    2003-01-01

    Indirect challenges act by causing the release of endogenous mediators that cause the airway smooth muscle to contract. This is in contrast to the direct challenges where agonists such as methacholine or histamine cause airflow limitation predominantly via a direct effect on airway smooth muscle. Di

  5. Heparin inhibits human coronary artery smooth muscle cell migration.

    Science.gov (United States)

    Kohno, M; Yokokawa, K; Yasunari, K; Minami, M; Kano, H; Mandal, A K; Yoshikawa, J

    1998-09-01

    Heparin, an anticoagulant, has been shown to reduce neointimal proliferation and restenosis following vascular injury in experimental studies, but the clinical trials of heparin in coronary balloon angioplasty have been negative. The current study, therefore, examined the effect of heparin on basal or stimulated migration by serum and platelet-derived growth factor (PDGF)-BB in cultured human coronary artery smooth muscle cells (SMCs) by Boyden's chamber method. In addition, the reversibility of the heparin effect on human coronary artery SMC migration was examined. Fetal calf serum (FCS) and PDGF-BB stimulated SMC migration in a concentration-dependent manner. Heparin in moderate to high concentration (10 to 100 U/mL) exhibited concentration-related inhibition of FCS- and PDGF-BB-stimulated SMC migration; however, a low concentration (1 U/mL) of heparin had no inhibitory effects. Heparin also had weak inhibitory effects on nonstimulated SMC migration. The SMCs that were exposed to a high concentration (100 U/mL) of heparin for 6 hours were capable of migrating after a short lag period of removal of heparin from the culture medium. These SMCs also showed recovery of responses to FCS and PDGF-BB by migrating significantly greater than the nonstimulated level. Furthermore, heparin-containing medium did not contain detached cells. These results indicate that heparin inhibits human coronary artery SMC migration, especially when stimulated by FCS or PDGF-BB, and that this inhibitory effect of heparin is reversible and not simply a function of killing cells.

  6. 维生素D调节支气管哮喘气道平滑肌的研究进展%The effects of Vitamin D on airway smooth muscle in bronchial asthma

    Institute of Scientific and Technical Information of China (English)

    刘亚南; 黄茂

    2014-01-01

    气道平滑肌的过度增生、肥大及功能异常,可能是支气管哮喘(简称哮喘)的发病机制之一.新近研究发现,除了对骨骼和钙代谢有明确的作用,维生素D还可调节气道平滑肌的增殖、收缩,并在哮喘的免疫调节方面起着重要的调控作用,从而影响气道炎症、气道重塑等哮喘的病理生理过程.本文就维生素D调节哮喘气道平滑肌的研究进展作一综述.%Excessive hyperplasia,hypertrophy and dysfunction of airway smooth muscle may be one of the pathogenesis of bronchial asthma (asthma).In addition to the distinct role of Vitamin D in bone and calcium metabolism,Vitamin D may regulate the proliferation and contraction of airway smooth muscle.Besides,Vitamin D plays a pivotal role in immunoregulation of asthma.Those may influence the pathophysiological process of asthma,including airway inflammation,airway remodeling and so on.This review summarizes the effects of Vitamin D on airway smooth muscle in asthma.

  7. Zinc sulfate inhibited inflammation of Der p2-induced airway smooth muscle cells by suppressing ERK1/2 and NF-κB phosphorylation.

    Science.gov (United States)

    Shih, Chia-Ju; Chiou, Ya-Ling

    2013-06-01

    Inflammation of airway smooth muscle cells (ASMCs) is believed to be important in causing airway hyperresponsiveness. However, zinc has been reported to be implicated in many kinds of cell inflammation. Little is known about the effect of zinc treatment on Der p2 (group II Dermatophagoides pteronyssinus)-induced inflammation from ASMCs. This study investigated effects and mechanisms of zinc in Der p2-treated ASMCs. Der p2-treated primary ASMCs were cultured with various concentrations of zinc sulfate (ZnSO₄) 6 μM, 12 μM, 24 μM, and 96 μM. The proteins and mRNAs of cytokines in ASMCs were examined by ELISA and real-time PCR. Intracellular zinc was stained with Zinquin fluorescence. The cell signaling protein expression was detected by Western blot. Der p2 was used to induce interleukin (IL)-6, IL-8, IL-1, and monocyte chemotactic protein-1 production of ASMCs. However, we found that 24 μM ZnSO₄ reduced these inflammatory mediators production of Der p2-treated primary ASMCs. Der p2-induced extracellular signal-regulated kinases (ERK) and nuclear factor-kappa B (NF-κB) phosphorylation were suppressed by supplementation of 24 μM ZnSO₄. Zinc is an anti-inflammatory agent that reduces inflammation of Der p2-treated ASMCs through the suppression of the ERK and NF-κB pathway. The results may be helpful for the development of effective treatments.

  8. Ion transport in epithelial spheroids derived from human airway cells

    DEFF Research Database (Denmark)

    Pedersen, P S; Frederiksen, O; Holstein-Rathlou, N H

    1999-01-01

    In the present study, we describe a novel three-dimensional airway epithelial explant preparation and demonstrate its use for ion transport studies by electrophysiological technique. Suspension cultures of sheets of epithelial cells released by protease treatment from cystic fibrosis (CF) and non...

  9. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Carson, J. P.; Colby, S. M.; Saunders, J. H.; Hines, S. A.; Teeguarden, J. G.; Straub, T. M.; Moe, M.; Taft, S. C.; Corley, R. A.

    2016-09-01

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.

  10. Human airway organoid engineering as a step toward lung regeneration and disease modeling.

    Science.gov (United States)

    Tan, Qi; Choi, Kyoung Moo; Sicard, Delphine; Tschumperlin, Daniel J

    2017-01-01

    Organoids represent both a potentially powerful tool for the study cell-cell interactions within tissue-like environments, and a platform for tissue regenerative approaches. The development of lung tissue-like organoids from human adult-derived cells has not previously been reported. Here we combined human adult primary bronchial epithelial cells, lung fibroblasts, and lung microvascular endothelial cells in supportive 3D culture conditions to generate airway organoids. We demonstrate that randomly-seeded mixed cell populations undergo rapid condensation and self-organization into discrete epithelial and endothelial structures that are mechanically robust and stable during long term culture. After condensation airway organoids generate invasive multicellular tubular structures that recapitulate limited aspects of branching morphogenesis, and require actomyosin-mediated force generation and YAP/TAZ activation. Despite the proximal source of primary epithelium used in the airway organoids, discrete areas of both proximal and distal epithelial markers were observed over time in culture, demonstrating remarkable epithelial plasticity within the context of organoid cultures. Airway organoids also exhibited complex multicellular responses to a prototypical fibrogenic stimulus (TGF-β1) in culture, and limited capacity to undergo continued maturation and engraftment after ectopic implantation under the murine kidney capsule. These results demonstrate that the airway organoid system developed here represents a novel tool for the study of disease-relevant cell-cell interactions, and establishes this platform as a first step toward cell-based therapy for chronic lung diseases based on de novo engineering of implantable airway tissues.

  11. Bradykinin augments EGF-induced airway smooth muscle proliferation by activation of conventional protein kinase C isoenzymes

    NARCIS (Netherlands)

    Gosens, R; Bromhaar, MMG; Maarsingh, H; ten Damme, A; Meurs, H; Zaagsma, J; Nelemans, SA

    2006-01-01

    This study aims to investigate the effects of bradykinin, alone and in combination with growth factors on proliferation of cultured bovine tracheal smooth muscle cells. Bradykinin did not induce mitogenic responses by itself, but concentration-dependently augmented growth factor-induced [H-3]thymidi

  12. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP and CCL11/eotaxin-1 in human asthmatic airways.

    Directory of Open Access Journals (Sweden)

    Gustavo Nino

    Full Text Available BACKGROUND: Thymic stromal lymphoproetin (TSLP is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. METHODS: Primary human bronchial epithelial cells (HBEC from control (n = 3 and asthmatic (n = 3 donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI conditions and treated apically with dsRNA (viral surrogate or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC from normal (n = 3 and asthmatic (n = 3 donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20 vs. non-asthmatic uninfected controls (n = 20. Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. RESULTS: Our data demonstrate that: 1 Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2 TSLP exposure induces unidirectional (apical secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3 Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. CONCLUSIONS: There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.

  13. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  14. Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Davis, C.W.; Boucher, R.C.

    1994-01-01

    exposure (10 min) to 430 mosM luminal solution elicited no regulation of any parameter. Optical measurements revealed a reduction in the thickness of preparations only in response to luminal hypertonic solutions. We conclude that (a) airway epithelial cells exhibit asymmetric water transport properties......- secretion; and (d) cell volume loss increases the resistance of the paracellular path. We speculate that these properties configure human nasal epithelium to behave as an osmotic sensor, transducing information about luminal solutions to the airway wall....

  15. Involvement of large-conductance Ca2+-activated K+ channels in chloroquine-induced force alterations in pre-contracted airway smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ming-Yu Wei

    Full Text Available The participation of large-conductance Ca2+ activated K+ channels (BKs in chloroquine (chloro-induced relaxation of precontracted airway smooth muscle (ASM is currently undefined. In this study we found that iberiotoxin (IbTx, a selective inhibitor of BKs and chloro both completely blocked spontaneous transient outward currents (STOCs in single mouse tracheal smooth muscle cells, which suggests that chloro might block BKs. We further found that chloro inhibited Ca2+ sparks and caffeine-induced global Ca2+ increases. Moreover, chloro can directly block single BK currents completely from the intracellular side and partially from the extracellular side. All these data indicate that the chloro-induced inhibition of STOCs is due to the blockade of chloro on both BKs and ryanodine receptors (RyRs. We also found that low concentrations of chloro resulted in additional contractions in tracheal rings that were precontracted by acetylcholine (ACH. Increases in chloro concentration reversed the contractile actions to relaxations. In the presence of IbTx or paxilline (pax, BK blockers, chloro-induced contractions were inhibited, although the high concentrations of chloro-induced relaxations were not affected. Taken together, our results indicate that chloro blocks BKs and RyRs, resulting in abolishment of STOCs and occurrence of contraction, the latter will counteract the relaxations induced by high concentrations of chloro.

  16. Sexual Dimorphism in the Regulation of Estrogen, Progesterone, and Androgen Receptors by Sex Steroids in the Rat Airway Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Abraham Zarazúa

    2016-01-01

    Full Text Available The role of sex hormones in lung is known. The three main sex steroid receptors, estrogen, progesterone, and androgen, have not been sufficiently studied in airway smooth muscle cells (ASMC, and the sex hormone regulation on these receptors is unknown. We examined the presence and regulation of sex hormone receptors in female and male rat ASMC by Western blotting and flow cytometry. Gonadectomized rats were treated with 17β-estradiol, progesterone, 17β-estradiol + progesterone, or testosterone. ASMC were enzymatically isolated from tracheas and bronchi. The experiments were performed with double staining flow cytometry (anti-α-actin smooth muscle and antibodies to each hormone receptor. ERα, ERβ, tPR, and AR were detected in females or males. ERα was upregulated by E2 and T and downregulated by P4 in females; in males, ERα was downregulated by P4, E + P, and T. ERβ was downregulated by each treatment in females, and only by E + P and T in males. tPR was downregulated by P4, E + P, and T in females. No hormonal regulation was observed in male receptors. AR was downregulated in males treated with E + P and T. We have shown the occurrence of sex hormone receptors in ASMC and their regulation by the sex hormones in female and male rats.

  17. Sexual Dimorphism in the Regulation of Estrogen, Progesterone, and Androgen Receptors by Sex Steroids in the Rat Airway Smooth Muscle Cells

    Science.gov (United States)

    Zarazúa, Abraham; González-Arenas, Aliesha; Ramírez-Vélez, Gabriela; Bazán-Perkins, Blanca; Guerra-Araiza, Christian; Campos-Lara, María G.

    2016-01-01

    The role of sex hormones in lung is known. The three main sex steroid receptors, estrogen, progesterone, and androgen, have not been sufficiently studied in airway smooth muscle cells (ASMC), and the sex hormone regulation on these receptors is unknown. We examined the presence and regulation of sex hormone receptors in female and male rat ASMC by Western blotting and flow cytometry. Gonadectomized rats were treated with 17β-estradiol, progesterone, 17β-estradiol + progesterone, or testosterone. ASMC were enzymatically isolated from tracheas and bronchi. The experiments were performed with double staining flow cytometry (anti-α-actin smooth muscle and antibodies to each hormone receptor). ERα, ERβ, tPR, and AR were detected in females or males. ERα was upregulated by E2 and T and downregulated by P4 in females; in males, ERα was downregulated by P4, E + P, and T. ERβ was downregulated by each treatment in females, and only by E + P and T in males. tPR was downregulated by P4, E + P, and T in females. No hormonal regulation was observed in male receptors. AR was downregulated in males treated with E + P and T. We have shown the occurrence of sex hormone receptors in ASMC and their regulation by the sex hormones in female and male rats. PMID:27110242

  18. Multi-Scale Computational Analyses of JP-8 Fuel Droplets and Vapors in Human Respiratory Airway Models

    Science.gov (United States)

    2007-10-31

    Deposition Clearance and Effects in the Lung 20, 294-309. Kleinstreuer, C., Zhang, Z., 2003. Laminar-to-turbulent fluid-particle flows in a human airway ...FA9550-04-1-0422 Vapors in Human Respiratory Airway Models 5b. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Kleinstreuer...tracheobronchial airway models, transient 3- D as well as equivalent steady-state solutions have been obtained for the transport and deposition of

  19. Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Braunstein, Thomas Hartig; Jørgensen, Anders;

    2006-01-01

    Osmotic water permeability (P(f )) was measured in spheroid-shaped human nasal airway epithelial explants pre-exposed to increasing levels of hyperosmotic stress. The fluid-filled spheroids, derived from nasal polyps, were lined by a single cell layer with the ciliated apical cell membrane facing......-CF spheroids and were not significantly influenced by hyperosmotic stress. The results suggest that hyperosmotic stress is an important activator of AQP-5 in human airway epithelium, leading to significantly increased transepithelial water permeability.......Osmotic water permeability (P(f )) was measured in spheroid-shaped human nasal airway epithelial explants pre-exposed to increasing levels of hyperosmotic stress. The fluid-filled spheroids, derived from nasal polyps, were lined by a single cell layer with the ciliated apical cell membrane facing...

  20. Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus.

    Directory of Open Access Journals (Sweden)

    Jianwu Bai

    Full Text Available Human airway epithelial cells are the principal target of human rhinovirus (HRV, a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1 to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2 to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model.Air-liquid interface (ALI human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively.ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3, and novel ones that were identified for the first time in this study (e.g. CCRL1.ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.

  1. Activation of muscarinic receptors in porcine airway smooth muscle elicits a transient increase in phospholipase D activity.

    Science.gov (United States)

    Mamoon, A M; Smith, J; Baker, R C; Farley, J M

    1999-01-01

    Phospholipase D (PLD) is a phosphodiesterase that catalyses hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. In the presence of ethanol, PLD also catalyses the formation of phosphatidylethanol, which is a unique characteristic of this enzyme. Muscarinic receptor-induced changes in the activity of PLD were investigated in porcine tracheal smooth muscle by measuring the formation of [3H]phosphatidic acid ([3H]PA) and [3H]phosphatidylethanol ([3H]PEth) after labeling the muscle strips with [3H]palmitic acid. The cholinergic receptor agonist acetylcholine (Ach) significantly but transiently increased formation of both [3H]PA and [3H]PEth in a concentration-dependent manner (>105-400% vs. controls in the presence of 10(-6) to 10(-4) M Ach) when pretreated with 100 mM ethanol. The Ach receptor-mediated increase in PLD activity was inhibited by atropine (10(-6) M), indicating that activation of PLD occurred via muscarinic receptors. Activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate (PMA) increased PLD activity that was effectively blocked by the PKC inhibitors calphostin C (10(-8) to 10(-6) M) and GFX (10(-8) to 10(-6) M). Ach-induced increases in PLD activity were also significantly, but incompletely, inhibited by both GFX and calphostin C. From the present data, we conclude that in tracheal smooth muscle, muscarinic acetylcholine receptor-induced PLD activation is transient in nature and coupled to these receptors via PKC. However, PKC activation is not solely responsible for Ach-induced activation of PLD in porcine tracheal smooth muscle.

  2. Region-based geometric modelling of human airways and arterial vessels.

    Science.gov (United States)

    Ding, Songlin; Ye, Yong; Tu, Jiyuan; Subic, Aleksandar

    2010-03-01

    Anatomically precise geometric models of human airways and arterial vessels play a critical role in the analysis of air and blood flows in human bodies. The established geometric modelling methods become invalid when the model consists of bronchioles or small vessels. This paper presents a new method for reconstructing the entire airway tree and carotid vessels from point clouds obtained from CT or MR images. A novel layer-by-layer searching algorithm has been developed to recognize branches of the airway tree and arterial vessels from the point clouds. Instead of applying uniform accuracy to all branches regardless of the number of available points, the surface patches on each branch are constructed adaptively based on the number of available elemental points, which leads to the elimination of distortions occurring at small bronchi and vessels.

  3. Dissociation of FK506-binding protein 12.6 kD from ryanodine receptor in bronchial smooth muscle cells in airway hyperresponsiveness in asthma.

    Science.gov (United States)

    Du, Ying; Zhao, Jianhong; Li, Xi; Jin, Si; Ma, Wan-Li; Mu, Qing; Xu, Shuxiang; Yang, Jie; Rao, Shanshan; Zhu, Liping; Xin, Jianbao; Cai, Peng-Cheng; Su, Yunchao; Ye, Hong

    2014-02-01

    Airway hyperresponsiveness (AHR) in asthma is predominantly caused by increased sensitivity of bronchial smooth muscle cells (BSMCs) to stimuli. The sarcoplasmic reticulum (SR)-Ca(2+) release channel, known as ryanodine receptor (RyR), mediates the contractive response of BSMCs to stimuli. FK506-binding protein 12.6 kD (FKBP12.6) stabilizes the RyR2 channel in a closed state. However, the interaction of FKBP12.6 with RyR2 in AHR remains unknown. This study examined the interaction of FKBP12.6 with RyR2 in BSMCs in AHR of asthma. The interaction of FKBP12.6 with RyR2 and FKBP12.6 expression was determined in a rat asthma model and in BSMCs treated with inflammatory cytokines. The calcium responses to contractile agonists were determined in BSMCs with overexpression and knockdown of FKBP12.6. Asthmatic serum, IL-5, IL-13, and TNF-α enhance the calcium response of BSMCs to contractile agonists and cause dissociation of FKBP12.6 from RyR2 and a decrease in FKBP12.6 gene expression in BSMCs in culture and in ovalbumin (OVA)-sensitized and -challenged rats. Knockdown of FKBP12.6 in BSMCs causes a decrease in the association of RyR2 with FKBP12.6 and an increase in the calcium response of BSMCs. Overexpression of FKBP12.6 increases the association of FKBP12.6 with RyR2, decreases the calcium response of BSMCs, and normalizes airway responsiveness in OVA-sensitized and -challenged rats. Dissociation of FKBP12.6 from RyR2 in BSMCs is responsible for the increased calcium response contributing to AHR in asthma. Manipulating the interaction of FKBP12.6 with RyR2 might be a novel and useful treatment for asthma.

  4. TGF-β1 inhibits connexin-43 expression in cultured smooth muscle cells of human bladder

    Institute of Scientific and Technical Information of China (English)

    Chi Qiang; Zhou Fenghai; Wang Yangmin

    2009-01-01

    Objective: In this research, we studied the TGF-β1 effects on connexin-43 expression in cultured human bladder smooth muscle cells. Methods: Human bladder smooth muscle cells primary cultures, with bladder tissue obtained from patients undergoing cystectomy, were intervened by recombinant human TGF-β1. Connexin-43 expression in human bladder smooth muscle cells was then examined by Western blotting and immunocytochemistry. Results: Stimulation with TGF-β1 led to significant reduction of cormexin-43 immunoreactivity and coupling (P<0.0001). Connexin-43 protein expression was significantly downregnlated (P<0.05). Simultaneously, low phosphorylation species of connexin-43 were particularly affected. Conclusion: Our experiments demonstrated a significant downregulation of connexin-43 by TGF-β1 in cultured human bladder smooth muscle cells. These findings support the view that TGF-β1 is involved in the pathophysiology of urinary bladder dysfunction.

  5. Precision cut lung slices: A novel in vitro model to demonstrate that bronchoconstriction is a key player in airway remodelling

    NARCIS (Netherlands)

    Oenema, Tjitske; Maarsingh, Harm; Bos, Sophie; Smit, Marieke; Groothuis, Geny; Meurs, Herman; Gosens, Reinoud

    2014-01-01

    Bronchoconstriction has been proposed to underlie airway remodelling. However, the mechanisms involved are still poorly understood. An important contributor to airway remodelling, in particular airway smooth muscle remodelling is the multifunctional cytokine TGF-β, which can facilitate airway smooth

  6. Staphylococcus aureus Infection Reduces Nutrition Uptake and Nucleotide Biosynthesis in a Human Airway Epithelial Cell Line

    Directory of Open Access Journals (Sweden)

    Philipp Gierok

    2016-11-01

    Full Text Available The Gram positive opportunistic human pathogen Staphylococcus aureus induces a variety of diseases including pneumonia. S. aureus is the second most isolated pathogen in cystic fibrosis patients and accounts for a large proportion of nosocomial pneumonia. Inside the lung, the human airway epithelium is the first line in defence with regard to microbial recognition and clearance as well as regulation of the immune response. The metabolic host response is, however, yet unknown. To address the question of whether the infection alters the metabolome and metabolic activity of airway epithelial cells, we used a metabolomics approach. The nutrition uptake by the human airway epithelial cell line A549 was monitored over time by proton magnetic resonance spectroscopy (1H-NMR and the intracellular metabolic fingerprints were investigated by gas chromatography and high performance liquid chromatography (GC-MS and (HPLC-MS. To test the metabolic activity of the host cells, glutamine analogues and labelled precursors were applied after the infection. We found that A549 cells restrict uptake of essential nutrients from the medium after S. aureus infection. Moreover, the infection led to a shutdown of the purine and pyrimidine synthesis in the A549 host cell, whereas other metabolic routes such as the hexosamine biosynthesis pathway remained active. In summary, our data show that the infection with S. aureus negatively affects growth, alters the metabolic composition and specifically impacts the de novo nucleotide biosynthesis in this human airway epithelial cell model.

  7. Human neutrophil defensins and secretory leukocyte proteinase inhibitor in squamous metaplastic epithelium of bronchial airways.

    NARCIS (Netherlands)

    Aarbiou, J.; Schadewijk, A. van; Stolk, J.; Sont, J.K.; Boer, W.I.; Rabe, K.F.; Krieken, J.H.J.M. van; Mauad, T.; Hiemstra, P.S.

    2004-01-01

    OBJECTIVE: The aim of this study was to analyze a possible contribution of human neutrophil defensins and secretory leukocyte proteinase inhibitor (SLPI) to the induction of airway epithelial changes such as squamous cell metaplasia. MATERIALS AND METHODS: The presence of these molecules and the num

  8. Trehalose-mediated autophagy impairs the anti-viral function of human primary airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qun Wu

    Full Text Available Human rhinovirus (HRV is the most common cause of acute exacerbations of chronic lung diseases including asthma. Impaired anti-viral IFN-λ1 production and increased HRV replication in human asthmatic airway epithelial cells may be one of the underlying mechanisms leading to asthma exacerbations. Increased autophagy has been shown in asthmatic airway epithelium, but the role of autophagy in anti-HRV response remains uncertain. Trehalose, a natural glucose disaccharide, has been recognized as an effective autophagy inducer in mammalian cells. In the current study, we used trehalose to induce autophagy in normal human primary airway epithelial cells in order to determine if autophagy directly regulates the anti-viral response against HRV. We found that trehalose-induced autophagy significantly impaired IFN-λ1 expression and increased HRV-16 load. Inhibition of autophagy via knockdown of autophagy-related gene 5 (ATG5 effectively rescued the impaired IFN-λ1 expression by trehalose and subsequently reduced HRV-16 load. Mechanistically, ATG5 protein interacted with retinoic acid-inducible gene I (RIG-I and IFN-β promoter stimulator 1 (IPS-1, two critical molecules involved in the expression of anti-viral interferons. Our results suggest that induction of autophagy in human primary airway epithelial cells inhibits the anti-viral IFN-λ1 expression and facilitates HRV infection. Intervention of excessive autophagy in chronic lung diseases may provide a novel approach to attenuate viral infections and associated disease exacerbations.

  9. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    Science.gov (United States)

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  10. In vivo deposition of ultrafine aerosols in human nasal and oral airways

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsu-Chi; Swift, D.L. [John Hopkins Univ., Baltimore, MD (United States); Simpson, S.Q. [Univ. of New Mexico, Albuquerque, NM (United States)] [and others

    1995-12-01

    The extrathoracic airways, including the nasal passage, oral passage, pharynx, and larynx, are the first targets for inhaled particles and provide an important defense for the lung. Understanding the deposition efficiency of the nasal and oral passages is therefore crucial for assessing doses of inhaled particles to the extrathoracic airways and the lung. Significant inter-subject variability in nasal deposition has been shown in recent studies by Rasmussen, T.R. et al, using 2.6 {mu}m particles in 10 human subjects and in our preliminary studies using 0.004-0.15 {mu}m particles in four adult volunteers. No oral deposition was reported in either of these studies. Reasons for the intersubject variations have been frequently attributed to the geometry of the nasal passages. The aims of the present study were to measure in vivo the nasal airway dimensions and the deposition of ultrafine aerosols in both the nasal and oral passages, and to determine the relationship between nasal airway dimensions and aerosol deposition. A statistical procedure incorporated with the diffusion theory was used to model the dimensional features of the nasal airways which may be responsible for the biological variability in particle deposition. In summary, we have correlated deposition of particles in the size range of 0.004 to 0.15 {mu}m with the nasal dimensions of each subject.

  11. Premature infants have impaired airway antiviral IFNγ responses to human metapneumovirus compared to respiratory syncytial virus

    Science.gov (United States)

    Pancham, Krishna; Perez, Geovanny F.; Huseni, Shehlanoor; Jain, Amisha; Kurdi, Bassem; Rodriguez-Martinez, Carlos E.; Preciado, Diego; Rose, Mary C.; Nino, Gustavo

    2017-01-01

    BACKGROUND It is unknown why human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) cause severe respiratory infection in children, particularly in premature infants. Our aim was to investigate if there are defective airway antiviral responses to these viruses in young children with history of prematurity. METHODS Nasal airway secretions were collected from 140 children ≤3 y old without detectable virus (n = 80) or with PCR-confirmed HMPV or RSV infection (n = 60). Nasal protein levels of IFNγ, CCL5/RANTES, IL-10, IL-4, and IL-17 were determined using a multiplex magnetic bead immunoassay. RESULTS Full-term children with HMPV and RSV infection had increased levels of nasal airway IFNγ, CCL5, and IL-10 along with an elevation in Th1 (IFNγ)/Th2 (IL-4) ratios, which is expected during antiviral responses. In contrast, HMPV-infected premature children (< 32 wk gestation) did not exhibit increased Th1/Th2 ratios or elevated nasal airway secretion of IFNγ, CCL5, and IL-10 relative to uninfected controls. CONCLUSION Our study is the first to demonstrate that premature infants have defective IFNγ, CCL5/RANTES, and IL-10 airway responses during HMPV infection and provides novel insights about the potential reason why HMPV causes severe respiratory disease in children with history of prematurity. PMID:26086642

  12. The effects of TSH on human vascular endothelial cells and smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    田利民

    2014-01-01

    Objective To study the effect of thyroid-stimulating hormone(TSH)on human vascular endothelial cells and smooth muscle cells and to explore the roles of TSH in the development of atherosclerosis.Methods Human vascular endothelial cells and smooth muscle cells were cultured in vitro.MTT method was used to assay the effect of TSH on cell viability.Real-time PCR was used

  13. Apical Localization of Zinc Transporter ZnT4 in Human Airway Epithelial Cells and Its Loss in a Murine Model of Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Chiara Murgia

    2011-10-01

    Full Text Available The apical cytoplasm of airway epithelium (AE contains abundant labile zinc (Zn ions that are involved in the protection of AE from oxidants and inhaled noxious substances. A major question is how dietary Zn traffics to this compartment. In rat airways, in vivo selenite autometallographic (Se-AMG-electron microscopy revealed labile Zn-selenium nanocrystals in structures resembling secretory vesicles in the apical cytoplasm. This observation was consistent with the starry-sky Zinquin fluorescence staining of labile Zn ions confined to the same region. The vesicular Zn transporter ZnT4 was likewise prominent in both the apical and basal parts of the epithelium both in rodent and human AE, although the apical pools were more obvious. Expression of ZnT4 mRNA was unaffected by changes in the extracellular Zn concentration. However, levels increased 3-fold during growth of cells in air liquid interface cultures and decreased sharply in the presence of retinoic acid. When comparing nasal versus bronchial human AE cells, there were significant positive correlations between levels of ZnT4 from the same subject, suggesting that nasal brushings may allow monitoring of airway Zn transporter expression. Finally, there were marked losses of both basally-located ZnT4 protein and labile Zn in the bronchial epithelium of mice with allergic airway inflammation. This study is the first to describe co-localization of zinc vesicles with the specific zinc transporter ZnT4 in airway epithelium and loss of ZnT4 protein in inflamed airways. Direct evidence that ZnT4 regulates Zn levels in the epithelium still needs to be provided. We speculate that ZnT4 is an important regulator of zinc ion accumulation in secretory apical vesicles and that the loss of labile Zn and ZnT4 in airway inflammation contributes to AE vulnerability in diseases such as asthma.

  14. Dexamethasone inhibits repair of human airway epithelial cells mediated by glucocorticoid-induced leucine zipper (GILZ.

    Directory of Open Access Journals (Sweden)

    Jingyue Liu

    Full Text Available BACKGROUND: Glucocorticoids (GCs are a first-line treatment for asthma for their anti-inflammatory effects, but they also hinder the repair of airway epithelial injury. The anti-inflammatory protein GC-induced leucine zipper (GILZ is reported to inhibit the activation of the mitogen-activated protein kinase (MAPK-extracellular-signal-regulated kinase (ERK signaling pathway, which promotes the repair of airway epithelial cells around the damaged areas. We investigated whether the inhibition of airway epithelial repair imposed by the GC dexamethasone (DEX is mediated by GILZ. METHODS: We tested the effect of DEX on the expressions of GILZ mRNA and GILZ protein and the MAPK-ERK signaling pathway in human airway epithelial cells, via RT-PCR and Western blot. We further evaluated the role of GILZ in mediating the effect of DEX on the MAPK-ERK signaling pathway and in airway epithelium repair by utilizing small-interfering RNAs, MTT, CFSE labeling, wound-healing and cell migration assays. RESULTS: DEX increased GILZ mRNA and GILZ protein levels in a human airway epithelial cell line. Furthermore, DEX inhibited the phosphorylation of Raf-1, Mek1/2, Erk1/2 (components of the MAPK-ERK signaling pathway, proliferation and migration. However, the inhibitory effect of DEX was mitigated in cells when the GILZ gene was silenced. CONCLUSIONS: The inhibition of epithelial injury repair by DEX is mediated in part by activation of GILZ, which suppressed activation of the MAPK-ERK signaling pathway, proliferation and migration. Our study implicates the involvement of DEX in this process, and furthers our understanding of the dual role of GCs.

  15. Evaluation of pharmacological relaxation effect of the natural product naringin on in vitro cultured airway smooth muscle cells and in vivo ovalbumin-induced asthma Balb/c mice

    Science.gov (United States)

    Wang, Yue; Lu, Yun; Luo, Mingzhi; Shi, Xiaohao; Pan, Yan; Zeng, Huilong; Deng, Linhong

    2016-01-01

    Asthma has become a common chronic respiratory disease worldwide and its prevalence is predicted to continue increasing in the next decade, particularly in developing countries. A key component in asthma therapy is to alleviate the excessive bronchial airway narrowing ultimately due to airway smooth muscle contraction, which is often facilitated by a smooth muscle relaxant, such as the β2-adrenergic agonists. Recently, bitter taste receptor (TAS2R) agonists, including saccharin and chloroquine, have been found to potently relax the airway smooth muscle cells (ASMCs) via intracellular Ca2+ signaling. This inspires a great interest in screening the vast resource of natural bitter substances for potential bronchodilatory drugs. In the present study, the relaxation effect of naringin, a compound extracted from common grapefruit, on ASMCs cultured in vitro or bronchial airways of Balb/c mice in vivo was evaluated. The results demonstrated that, when exposed to increasing doses of naringin (0.125, 0.25, 0.5 and 1.0 mM), the traction force generated by the cultured ASMCs decreased progressively, while the intracellular calcium flux signaling in the ASMCs increased. When inhaled at increasing doses (15, 30 and 60 µg), naringin also dose-dependently reduced the bronchial airway resistance of the normal and ovalbumin-induced asthma Balb/c mice in response to challenge with methacholine. In conclusion, these findings indicate that naringin was able to effectively relax murine ASMCs in vitro and in vivo, thus suggesting that it is a promising drug agent to be further investigated in the development of novel bronchodilators for the treatment of asthma. PMID:28101344

  16. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways.

    Science.gov (United States)

    Laan, M; Cui, Z H; Hoshino, H; Lötvall, J; Sjöstrand, M; Gruenert, D C; Skoogh, B E; Lindén, A

    1999-02-15

    IL-17 is a recently discovered cytokine that can be released from activated human CD4+ T lymphocytes. This study assessed the proinflammatory effects of human (h) IL-17 in the airways. In vitro, hIL-17 increased the release of IL-8 in human bronchial epithelial and venous endothelial cells, in a time- and concentration-dependent fashion. This effect of hIL-17 was inhibited by cotreatment with an anti-hIL-17 Ab and was potentiated by hTNF-alpha. In addition, hIL-17 increased the expression of hIL-8 mRNA in bronchial epithelial cells. Conditioned medium from hIL-17-treated bronchial epithelial cells increased human neutrophil migration in vitro. This effect was blocked by an anti-hIL-8 Ab. In vivo, intratracheal instillation of hIL-17 selectively recruited neutrophils into rat airways. This recruitment of neutrophils into the airways was inhibited by an anti-hIL-17 Ab and accompanied by increased levels of rat macrophage inflammatory protein-2 (rMIP-2) in bronchoalveolar lavage (BAL) fluid. The BAL neutrophilia was also blocked by an anti-rMIP-2 Ab. The effect of hIL-17 on the release of hIL-8 and rMIP-2 was also inhibited by glucocorticoids, in vitro and in vivo, respectively. These data demonstrate that hIL-17 can specifically and selectively recruit neutrophils into the airways via the release of C-X-C chemokines from bronchial epithelial cells and suggest a novel mechanism linking the activation of T-lymphocytes to recruitment of neutrophils into the airways.

  17. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy.

    Directory of Open Access Journals (Sweden)

    Andrew E Williams

    Full Text Available BACKGROUND: Asthma is a common disease characterised by reversible airflow obstruction, bronchial hyperresponsiveness and chronic inflammation, which is commonly treated using corticosteroids such as budesonide. MicroRNAs (miRNAs are a recently identified family of non-protein encoding genes that regulate protein translation by a mechanism entitled RNA interference. Previous studies have shown lung-specific miRNA expression profiles, although their importance in regulating gene expression is unresolved. We determined whether miRNA expression was differentially expressed in mild asthma and the effect of corticosteroid treatment. METHODOLOGY/PRINCIPAL FINDINGS: We have examined changes in miRNA using a highly sensitive RT-PCR based approach to measure the expression of 227 miRNAs in airway biopsies obtained from normal and mild asthmatic patients. We have also determined whether the anti-inflammatory action of corticosteroids are mediated through miRNAs by determining the profile of miRNA expression in mild asthmatics, before and following 1 month twice daily treatment with inhaled budesonide. Furthermore, we have analysed the expression of miRNAs from individual cell populations from the airway and lung. We found no significant difference in the expression of 227 miRNAs in the airway biopsies obtained from normal and mild asthmatic patients. In addition, despite improved lung function, we found no significant difference in the miRNA expression following one month treatment with the corticosteroid, budesonide. However, analysis of bronchial and alveolar epithelial cells, airway smooth muscle cells, alveolar macrophages and lung fibroblasts demonstrate a miRNA expression profile that is specific to individual cell types and demonstrates the complex cellular heterogeneity within whole tissue samples. CONCLUSIONS: Changes in miRNA expression do not appear to be involved in the development of a mild asthmatic phenotype or in the anti

  18. 转化生长因子β在支气管哮喘气道平滑肌重塑中的作用%Role of transforming growth factor-β in bronchial asthma airway smooth muscle remodeling

    Institute of Scientific and Technical Information of China (English)

    李涛; 黄茂

    2010-01-01

    支气管哮喘(简称哮喘)是一种气道慢性炎症,持续的气道炎症导致气道重塑、不完全可逆的气流受限和进行性的肺功能受损.平滑肌细胞的增殖(包括增生和肥大)是哮喘气道重塑的特征性改变,是哮喘气道反应性和严重程度相关的重要因素之一.转化生长因子β(TGF-β)能够诱导分化、炎症、增生以及凋亡等多种细胞反应,促进平滑肌细胞的增生、肥大和迁移,在气道重塑中发挥重要作用.减少TGF-β的产生以及控制TGF-β的效应有利于对慢性哮喘气道重塑的干预治疗.%Bronchial asthma(asthma)is a chronic inflammatory disease.Persistent inflammation in airway tissues may lead to airway remodeling,not fully reversible airway obstruction and progressive loss of lung function.Airway smooth muscle proliferation(including hyperplasia and hypertrophy)is the most prominent feature of airway remodeling in asthma,and it also is one of most important factors related to asthma airway responsiveness and the severity of asthma.Transforming growth factor-beta(TGF-β)plays important roles in asthma airway remodeling.Multiple cellular responses including differentiation,apoptosis and proliferation can be induced by TGF-β.TGF-β can,induce airway smooth muscle hyperplasia,hypertrophy and migration.Reduction of TGF-β and inhibition of TGF-β activity would he beneficial for the development of therapeutic intervention in chronic asthma airway remodeling.

  19. Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering.

    Science.gov (United States)

    Butler, Colin R; Hynds, Robert E; Gowers, Kate H C; Lee, Dani Do Hyang; Brown, James M; Crowley, Claire; Teixeira, Vitor H; Smith, Claire M; Urbani, Luca; Hamilton, Nicholas J; Thakrar, Ricky M; Booth, Helen L; Birchall, Martin A; De Coppi, Paolo; Giangreco, Adam; O'Callaghan, Christopher; Janes, Sam M

    2016-07-15

    Stem cell-based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell-seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts. To define a scalable cell culture system to deliver airway epithelium to clinical grafts. Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T3+Y). Cells were analyzed by immunofluorescence, quantitative polymerase chain reaction, and flow cytometry to assess airway stem cell marker expression. Karyotyping and multiplex ligation-dependent probe amplification were performed to assess cell safety. Differentiation capacity was tested in three-dimensional tracheospheres, organotypic cultures, air-liquid interface cultures, and an in vivo tracheal xenograft model. Ciliary function was assessed in air-liquid interface cultures. 3T3-J2 feeder cells and ROCK inhibition allowed rapid expansion of airway basal cells. These cells were capable of multipotent differentiation in vitro, generating both ciliated and goblet cell lineages. Cilia were functional with normal beat frequency and pattern. Cultured cells repopulated tracheal scaffolds in a heterotopic transplantation xenograft model. Our method generates large numbers of functional airway basal epithelial cells with the efficiency demanded by clinical transplantation, suggesting its suitability for use in tracheal reconstruction.

  20. ß2-adrenoceptor agonist-induced upregulation of tachykinin NK2 receptor expression and function in airway smooth muscle

    NARCIS (Netherlands)

    Katsunuma, T; Roffel, A.F; Elzinga, C.R S; Zaagsma, Hans; Barnes, P.J; Mak, J.CW

    Neurokinin A (NKA) induces bronchoconstriction mediated by tachykinin NK2 receptors in animals and humans, and may be increased in asthma. Because beta(2)-adrenoceptor agonists are the most widely used bronchodilators in asthma, we investigated the effects of the beta(2)-adrenoceptor agonist

  1. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qun Wu

    Full Text Available The use of electronic cigarettes (e-cigarettes is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV infection.We examined the effects of e-cigarette liquid (e-liquid on pro-inflammatory cytokine (e.g., IL-6 production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1 in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  2. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Science.gov (United States)

    Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei

    2014-01-01

    The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  3. [Recombination and identification of sense and antisence CyclinD1 eukaryotic expression vectors and the effects of the vectors on the proliferation of airway smooth muscle cell in asthmatic rats].

    Science.gov (United States)

    Qiao, Li-Fen; Xu, Yong-Jian; Liu, Xian-Sheng; Xie, Jun-Gang; Du, Chun-Ling; Zhang, Jian; Ni, Wang; Chen, Shi-Xin

    2008-03-01

    This study is to investigate the expression of CyclinD1 in asthmatic rats and construct expression plasmids of sense and antisense CyclinD1 gene and transfect them to asthmatic airway smooth muscle cell to study the effects of CyclinD1 on the proliferation of airway smooth muscle cells in asthmatic rats. CyclinD1 cDNA was obtained by RT-PCR of total RNA extracted from the airway smooth muscle in asthmatic rats. The sequence was inserted into eukaryotic expression vector pcDNA3.1 (+) to recombinate the sense and antisense pcDNA3.1-CyclinD1 eukaryotic expression vector. The two recombinations and vector were then separately transfected into airway smooth muscle cell in asthmatic rats by using liposome. The expression level of CyclinD1 was certificated by Western blotting analysis. The proliferations of ASMCs isolated from asthmatic rats were examined with cell cycle analysis, MTT colorimetric assay and proliferating cell nuclear antigen (PCNA) immunocytochemical staining. Results showed (1) Compared with control group, the content of CyclinD1 was significantly increased; (2) It was comformed by restriction endonucleasa digestion and DNA sequence analysis that the expression plasmid of sense and antisense CyclinD1 were successfully recombinated. There was significant change of CyclinD1 expression between vector and sense CyclinD1 transfected cells, and the expression level of CyclinD1 in ASMC transfected with antisense CyclinD1 was lower than that in vector transfected cells (P <0.01); (3) In the asthmatic groups, compared with the vecter group, the percentage of S + G2M phase, absorbance A value of MTT and the expression rate of PCNA protein in ASMC transfected with pcDNA3. 1-CyclinD1 vector significantly increased. The values decreased remarkably in the pcDNA3,1-as CyclinD1 group. Statistical analysis revealed that there were significant differences in these indicators of cell proliferation in three groups (P <0.01). In the normal groups, statistical analysis

  4. Ciliary beating recovery in deficient human airway epithelial cells after lentivirus ex vivo gene therapy.

    Directory of Open Access Journals (Sweden)

    Brigitte Chhin

    2009-03-01

    Full Text Available Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1 gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1-deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT-PCR and western blot, respectively. Human airway epithelial cells that were DNAI1-deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease.

  5. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection.

    Directory of Open Access Journals (Sweden)

    Matthew J Kesic

    Full Text Available Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs human airway trypsin-like protease (HAT and transmembrane protease, serine 2 (TMPRSS2, whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI. Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.

  6. Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human airway epithelia.

    Directory of Open Access Journals (Sweden)

    Katherine J D A Excoffon

    Full Text Available Adenovirus is an important respiratory pathogen. Adenovirus fiber from most serotypes co-opts the Coxsackie-Adenovirus Receptor (CAR to bind and enter cells. However, CAR is a cell adhesion molecule localized on the basolateral membrane of polarized epithelia. Separation from the lumen of the airways by tight junctions renders airway epithelia resistant to inhaled adenovirus infection. Although a role for CAR in viral spread and egress has been established, the mechanism of initial respiratory infection remains controversial. CAR exists in several protein isoforms including two transmembrane isoforms that differ only at the carboxy-terminus (CAR(Ex7 and CAR(Ex8. We found low-level expression of the CAR(Ex8 isoform in well-differentiated human airway epithelia. Surprisingly, in contrast to CAR(Ex7, CAR(Ex8 localizes to the apical membrane of epithelia where it augments adenovirus infection. Interestingly, despite sharing a similar class of PDZ-binding domain with CAR(Ex7, CAR(Ex8 differentially interacts with PICK1, PSD-95, and MAGI-1b. MAGI-1b appears to stoichiometrically regulate the degradation of CAR(Ex8 providing a potential mechanism for the apical localization of CAR(Ex8 in airway epithelial. In summary, apical localization of CAR(Ex8 may be responsible for initiation of respiratory adenoviral infections and this localization appears to be regulated by interactions with PDZ-domain containing proteins.

  7. Interleukin-13-induced mucous metaplasia increases susceptibility of human airway epithelium to rhinovirus infection.

    Science.gov (United States)

    Lachowicz-Scroggins, Marrah E; Boushey, Homer A; Finkbeiner, Walter E; Widdicombe, Jonathan H

    2010-12-01

    Infection of airway epithelium by rhinovirus is the most common cause of asthma exacerbations. Even in mild asthma, airway epithelium exhibits mucous metaplasia, which increases with increasing severity of the disease. We previously showed that squamous cultures of human airway epithelium manifest rhinoviral infection at levels many times higher than in well-differentiated cultures of a mucociliary phenotype. Here we tested the hypothesis that mucous metaplasia is also associated with increased levels of rhinoviral infection. Mucous metaplasia was induced with IL-13, which doubled the numbers of goblet cells. In both control (mucociliary) and IL-13- treated (mucous metaplastic) cultures, goblet cells were preferentially infected by rhinovirus. IL-13 doubled the numbers of infected cells by increasing the numbers of infected goblet cells. Furthermore, IL-13 increased both the maturity of goblet cells and the probability that a goblet cell would be infected. The infection of cells other than goblet cells was unaltered by IL-13. Treatment with IL-13 did not alter the levels of rhinovirus receptor ICAM-1, nor did the proliferative effects of IL-13 enhance infection, because rhinovirus did not colocalize with dividing cells. However, the induction of mucous metaplasia caused changes in the apical membrane structure, notably a marked decrease in overall ciliation, and an increase in the overall flatness of the apical surface. We conclude that mucous metaplasia in asthma increases the susceptibility of airway epithelium to infection by rhinovirus because of changes in the overall architecture of the apical surface.

  8. Schisandrin B inhibits the proliferation of airway smooth muscle cells via microRNA-135a suppressing the expression of transient receptor potential channel 1.

    Science.gov (United States)

    Zhang, Xiao-Yu; Zhang, Luo-Xian; Guo, Ya-Li; Zhao, Li-Min; Tang, Xue-Yi; Tian, Cui-Jie; Cheng, Dong-Jun; Chen, Xian-Liang; Ma, Li-Jun; Chen, Zhuo-Chang

    2016-07-01

    Airway smooth muscle cell (ASMC) was known to involve in the pathophysiology of asthma. Schisandrin B was reported to have anti-asthmatic effects in a murine asthma model. However, the molecular mechanism involving in the effect of Schisandrin B on ASMCs remains poorly understood. Sprague-Dawley rats were divided into three groups: rats as the control (Group 1), sensitized rats (Group 2), sensitized rats and intragastric-administrated Schisandrin B (Group 3). The expression of miR-135a and TRPC1 was detected in the rats from three groups. Platelet-derived growth factor (PDGF)-BB was used to induce the proliferation of isolated ASMCs, and the expression of miR-135a and TRPC1 was detected in PDGF-BB-treated ASMCs. Cell viability was examined in ASMCs transfected with miR-135a inhibitor or si-TRPC1. The expression of TRPC1 was examined in A10 cells pretreated with miR-135a inhibitor or miR-135a mimic. In this study, we found that Schisandrin B attenuated the inspiratory and expiratory resistances in sensitized rats. Schisandrin B upregulated the mRNA level of miR-135a and decreased the expression of TRPC1 in sensitized rats. In addition, Schisandrin B reversed the expression of miR-135a and TRPC1 in PDGF-BB-induced ASMCs. Si-TRPC1 abrogated the increasing proliferation of ASMCs induced by miR-135a inhibitor. We also found that miR-135a regulated the expression of TRPC1 in the A10 cells. These results demonstrate that Schisandrin B inhibits the proliferation of ASMCs via miR-135a suppressing the expression of TRPC1.

  9. Tumor Necrosis Factor Alpha Inhibits L-Type Ca2+ Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway

    Directory of Open Access Journals (Sweden)

    Jorge Reyes-García

    2016-01-01

    Full Text Available Tumor necrosis factor alpha (TNF-α is a potent proinflammatory cytokine that plays a significant role in the pathogenesis of asthma by inducing hyperresponsiveness and airway remodeling. TNF-α diminishes the L-type voltage dependent Ca2+ channel (L-VDCC current in cardiac myocytes, an observation that seems paradoxical. In guinea pig sensitized tracheas KCl responses were lower than in control tissues. Serum from sensitized animals (Ser-S induced the same phenomenon. In tracheal myocytes from nonsensitized (NS and sensitized (S guinea pigs, an L-VDCC current (ICa was observed and diminished by Ser-S. The same decrease was detected in NS myocytes incubated with TNF-α, pointing out that this cytokine might be present in Ser-S. We observed that a small-molecule inhibitor of TNF-α (SMI-TNF and a TNF-α receptor 1 (TNFR1 antagonist (WP9QY reversed ICa decrease induced by Ser-S in NS myocytes, confirming the former hypothesis. U0126 (a blocker of ERK 1/2 kinase also reverted the decrease in ICa. Neither cycloheximide (a protein synthesis inhibitor nor actinomycin D (a transcription inhibitor showed any effect on the TNF-α-induced ICa reduction. We found that CaV1.2 and CaV1.3 mRNA and proteins were expressed in tracheal myocytes and that sensitization did not modify them. In cardiac myocytes, ERK 1/2 phosphorylates two sites of the L-VDCC, augmenting or decreasing ICa; we postulate that, in guinea pig tracheal smooth muscle, TNF-α diminishes ICa probably by phosphorylating the L-VDCC site that reduces its activity through the ERK1/2 MAP kinase pathway.

  10. Tumor Necrosis Factor Alpha Inhibits L-Type Ca(2+) Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway.

    Science.gov (United States)

    Reyes-García, Jorge; Flores-Soto, Edgar; Solís-Chagoyán, Héctor; Sommer, Bettina; Díaz-Hernández, Verónica; García-Hernández, Luz María; Montaño, Luis M

    2016-01-01

    Tumor necrosis factor alpha (TNF-α) is a potent proinflammatory cytokine that plays a significant role in the pathogenesis of asthma by inducing hyperresponsiveness and airway remodeling. TNF-α diminishes the L-type voltage dependent Ca(2+) channel (L-VDCC) current in cardiac myocytes, an observation that seems paradoxical. In guinea pig sensitized tracheas KCl responses were lower than in control tissues. Serum from sensitized animals (Ser-S) induced the same phenomenon. In tracheal myocytes from nonsensitized (NS) and sensitized (S) guinea pigs, an L-VDCC current (ICa) was observed and diminished by Ser-S. The same decrease was detected in NS myocytes incubated with TNF-α, pointing out that this cytokine might be present in Ser-S. We observed that a small-molecule inhibitor of TNF-α (SMI-TNF) and a TNF-α receptor 1 (TNFR1) antagonist (WP9QY) reversed ICa decrease induced by Ser-S in NS myocytes, confirming the former hypothesis. U0126 (a blocker of ERK 1/2 kinase) also reverted the decrease in ICa. Neither cycloheximide (a protein synthesis inhibitor) nor actinomycin D (a transcription inhibitor) showed any effect on the TNF-α-induced ICa reduction. We found that CaV1.2 and CaV1.3 mRNA and proteins were expressed in tracheal myocytes and that sensitization did not modify them. In cardiac myocytes, ERK 1/2 phosphorylates two sites of the L-VDCC, augmenting or decreasing ICa; we postulate that, in guinea pig tracheal smooth muscle, TNF-α diminishes ICa probably by phosphorylating the L-VDCC site that reduces its activity through the ERK1/2 MAP kinase pathway.

  11. SREBP inhibits VEGF expression in human smooth muscle cells.

    Science.gov (United States)

    Motoyama, Koka; Fukumoto, Shinya; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  12. Comparative analysis of realistic CT-scan and simplified human airway models in airflow simulation.

    Science.gov (United States)

    Johari, Nasrul Hadi; Osman, Kahar; Helmi, Nor Harris N; Abdul Kadir, Mohammed A Rafiq

    2015-01-01

    Efforts to model the human upper respiratory system have undergone many phases. Geometrical proximity to the realistic shape has been the subject of many research projects. In this study, three different geometries of the trachea and main bronchus were modelled, which were reconstructed from computed tomography (CT) scan images. The geometrical variations were named realistic, simplified and oversimplified. Realistic refers to the lifelike image taken from digital imaging and communications in medicine format CT scan images, simplified refers to the reconstructed image based on natural images without realistic details pertaining to the rough surfaces, and oversimplified describes the straight wall geometry of the airway. The characteristics of steady state flows with different flow rates were investigated, simulating three varied physical activities and passing through each model. The results agree with previous studies where simplified models are sufficient for providing comparable results for airflow in human airways. This work further suggests that, under most exercise conditions, the idealised oversimplified model is not favourable for simulating either airflow regimes or airflow with particle depositions. However, in terms of immediate analysis for the prediction of abnormalities of various dimensions of human airways, the oversimplified techniques may be used.

  13. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    Science.gov (United States)

    Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi

    2007-08-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  14. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    Institute of Scientific and Technical Information of China (English)

    Xiuzhen Sun; Chi Yu; Yuefang Wang; Yingxi Liu

    2007-01-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate move-ment attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper air-way cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original config-uration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  15. Action of N-acylated ambroxol derivatives on secretion of chloride ions in human airway epithelia.

    Science.gov (United States)

    Yamada, Takahiro; Takemura, Yoshizumi; Niisato, Naomi; Mitsuyama, Etsuko; Iwasaki, Yoshinobu; Marunaka, Yoshinori

    2009-03-13

    We report the effects of new N-acylated ambroxol derivatives (TEI-588a, TEI-588b, TEI-589a, TEI-589b, TEI-602a and TEI-602b: a, aromatic amine-acylated derivative; b, aliphatic amine-acylated derivative) induced from ambroxol (a mucolytic agent to treat human lung diseases) on Cl(-) secretion in human submucosal serous Calu-3 cells under a Na(+)/K(+)/2Cl(-) cotransporter-1 (NKCC1)-mediated hyper-secreting condition. TEI-589a, TEI-589b and TEI-602a diminished hyper-secretion of Cl(-) by diminishing the activity of NKCC1 without blockade of apical Cl(-) channel (TEI-589a>TEI-602a>TEI-589b), while any other tested compounds including ambroxol had no effects on Cl(-) secretion. These indicate that the inhibitory action of an aromatic amine-acylated derivative on Cl(-) secretion is stronger that that of an aliphatic amine-acylated derivative, and that 3-(2,5-dimethyl)furoyl group has a strong action in inhibition of Cl(-) secretion than cyclopropanoyl group. We here indicate that TEI-589a, TEI-589b and TEI-602a reduce hyper-secretion to an appropriate level in the airway, providing a possibility that the compound can be an effective drug in airway obstructive diseases including COPD by reducing the airway resistance under a hyper-secreting condition.

  16. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tapparel, Caroline, E-mail: Caroline.Tapparel@hcuge.ch [Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14 (Switzerland); Sobo, Komla [Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14 (Switzerland); Constant, Samuel; Huang, Song [Epithelix sárl, 14 Chemin des Aulx, 1228 Plan les Ouates, Geneva (Switzerland); Van Belle, Sandra; Kaiser, Laurent [Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14 (Switzerland)

    2013-11-15

    New molecular diagnostic tools have recently allowed the discovery of human rhinovirus species C (HRV-C) that may be overrepresented in children with lower respiratory tract complications. Unlike HRV-A and HRV-B, HRV-C cannot be propagated in conventional immortalized cell lines and their biological properties have been difficult to study. Recent studies have described the successful amplification of HRV-C15, HRV-C11, and HRV-C41 in sinus mucosal organ cultures and in fully differentiated human airway epithelial cells. Consistent with these studies, we report that a panel of clinical HRV-C specimens including HRV-C2, HRV-C7, HRV-C12, HRV-C15, and HRV-C29 types were all capable of mediating productive infection in reconstituted 3D human primary upper airway epithelial tissues and that the virions enter and exit preferentially through the apical surface. Similar to HRV-A and HRV-B, our data support the acid sensitivity of HRV-C. We observed also that the optimum temperature requirement during HRV-C growth may be type-dependent. - Highlights: • A 3D human upper airway epithelia reconstituted in vitro supports HRV-C growth. • HRV-Cs enter and exit preferentially at the apical side of this ALI culture system. • HRV-Cs are acid sensitive. • Temperature sensitivity may be type-dependent for HRV-Cs.

  17. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Satoshi Konishi

    2016-01-01

    Full Text Available Multi-ciliated airway cells (MCACs play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM as a surface marker of NKX2-1+-ventralized anterior foregut endoderm cells (VAFECs, we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM+ VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a “9 + 2” microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine.

  18. Nitric oxide gas phase release in human small airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Suresh Vinod

    2009-01-01

    Full Text Available Abstract Background Asthma is a chronic airway inflammatory disease characterized by an imbalance in both Th1 and Th2 cytokines. Exhaled nitric oxide (NO is elevated in asthma, and is a potentially useful non-invasive marker of airway inflammation. However, the origin and underlying mechanisms of intersubject variability of exhaled NO are not yet fully understood. We have previously described NO gas phase release from normal human bronchial epithelial cells (NHBEs, tracheal origin. However, smaller airways are the major site of morbidity in asthma. We hypothesized that IL-13 or cytomix (IL-1β, TNF-α, and IFN-γ stimulation of differentiated small airway epithelial cells (SAECs, generation 10–12 and A549 cells (model cell line of alveolar type II cells in culture would enhance NO gas phase release. Methods Confluent monolayers of SAECs and A549 cells were cultured in Transwell plates and SAECs were allowed to differentiate into ciliated and mucus producing cells at an air-liquid interface. The cells were then stimulated with IL-13 (10 ng/mL or cytomix (10 ng/mL for each cytokine. Gas phase NO release in the headspace air over the cells was measured for 48 hours using a chemiluminescence analyzer. Results In contrast to our previous result in NHBE, baseline NO release from SAECs and A549 is negligible. However, NO release is significantly increased by cytomix (0.51 ± 0.18 and 0.29 ± 0.20 pl.s-1.cm-2, respectively reaching a peak at approximately 10 hours. iNOS protein expression increases in a consistent pattern both temporally and in magnitude. In contrast, IL-13 only modestly increases NO release in SAECs reaching a peak (0.06 ± 0.03 pl.s-1.cm-2 more slowly (30 to 48 hours, and does not alter NO release in A549 cells. Conclusion We conclude that the airway epithelium is a probable source of NO in the exhaled breath, and intersubject variability may be due, in part, to variability in the type (Th1 vs Th2 and location (large vs small airway

  19. Computational model of soft tissues in the human upper airway.

    Science.gov (United States)

    Pelteret, J-P V; Reddy, B D

    2012-01-01

    This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus.

  20. Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium

    OpenAIRE

    Li, Wuping; Zhang, Liqun; Johnson, Jarrod S; Zhijian, Wu; Grieger, Joshua C; Ping-Jie, Xiao; Drouin, Lauren M; Agbandje-McKenna, Mavis; Pickles, Raymond J.; Samulski, R. Jude

    2009-01-01

    Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an...

  1. Bone morphogenetic proteins regulate osteoprotegerin and its ligands in human vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Knudsen, Kirsten Quyen Nguyen; Olesen, Ping; Ledet, Thomas

    2007-01-01

    in the transformation of human vascular smooth muscle cells (HVSMC) to osteoblast-like cells. In this study, we evaluated the effect of BMP-2, BMP-7 and transforming growth factor beta (TGF-beta1) on the secretion and mRNA expression of OPG and its ligands receptor activator of nuclear factor-kappabeta ligand (RANKL...

  2. Characterization of cyclic AMP accumulation in cultured human corpus cavernosum smooth muscle cells.

    Science.gov (United States)

    Palmer, L S; Valcic, M; Melman, A; Giraldi, A; Wagner, G; Christ, G J

    1994-10-01

    Intracavernous pharmacotherapy relies heavily on the use of vasoactive agents which act by increasing intracellular cAMP levels in human corpus cavernosum smooth muscle. Yet little is known about the cAMP generating system in this tissue, and how it may affect observed patient variability. Thus, the goal of these studies was to better characterize the biochemistry of cAMP formation in human corpus cavernosum smooth muscle, and thus provide more insight into the mechanisms of corporal smooth muscle relaxation in vivo. We studied both receptor and nonreceptor mediated increases in cAMP formation in short-term cultures of human corpus cavernosum smooth muscle cells. Both isoproterenol (ISO) and prostaglandin E1 (PGE1) produced concentration-dependent increases in cAMP, but histamine, serotonin and vasoactive intestinal polypeptide did not. Forskolin, a relatively specific activator of adenylate cyclase, was also a potent stimulant of cAMP formation in these cells. Moreover, there was a direct correlation between the degree of forskolin-induced cAMP accumulation in cultured corporal smooth muscle cells and the magnitude of the forskolin-induced relaxation response of precontracted isolated corporal smooth muscle strips. Prostaglandin E1 and ISO concentration response curves (CRCs) were then assayed in the absence and presence of subthreshold forskolin (0.1 microM.). In the presence of forskolin, the calculated maximal PGE1-induced cAMP accumulation (Emax) was significantly greater than that elicited by PGE1 alone, ISO alone, or ISO + forskolin (p protocol was used to demonstrate that both 80:20 and 70:30 FMRs (but not 95:5 or 90:10), were associated with significantly greater cAMP Emax values than that observed for PGE1 alone (p < or = 0.01). These data provide direct evidence that the degree of cAMP formation in cultured corporal smooth muscle cells is strongly correlated with the magnitude of relaxation of isolated corporal smooth muscle strips. In addition, since

  3. A Numerical Study of Water Loss Rate Distributions in MDCT-Based Human Airway Models.

    Science.gov (United States)

    Wu, Dan; Miyawaki, Shinjiro; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2015-11-01

    Both three-dimensional (3D) and one-dimensional (1D) computational fluid dynamics methods are applied to study regional water loss in three multi-detector row computed-tomography-based human airway models at the minute ventilations of 6, 15 and 30 L/min. The overall water losses predicted by both 3D and 1D models in the entire respiratory tract agree with available experimental measurements. However, 3D and 1D models reveal different regional water loss rate distributions due to the 3D secondary flows formed at bifurcations. The secondary flows cause local skewed temperature and humidity distributions on inspiration acting to elevate the local water loss rate; and the secondary flow at the carina tends to distribute more cold air to the lower lobes. As a result, the 3D model predicts that the water loss rate first increases with increasing airway generation, and then decreases as the air approaches saturation, while the 1D model predicts a monotonic decrease of water loss rate with increasing airway generation. Moreover, the 3D (or 1D) model predicts relatively higher water loss rates in lower (or upper) lobes. The regional water loss rate can be related to the non-dimensional wall shear stress (τ (*)) by the non-dimensional mass transfer coefficient (h 0 (*) ) as [Formula: see text].

  4. Flow in the human upper airway: work of breathing and the compliant soft palate and tongue

    Science.gov (United States)

    Jermy, Mark; Adams, Cletus; Aplin, Jonathan; Buchajczyk, Marcin; van Hove, Sibylle; Kabaliuk, Natalia; Geoghegan, Patrick; Cater, John

    2016-11-01

    The human upper airway (nasal cavity, pharynx and trachea) filters, heats and humidifies inspired air. Its pressure drop affects the work of breathing (WOB, energy expended to inspire and expire) to a degree which varies from person to person, and which is altered by breathing therapy devices. We report experimental studies using 3D printed models of the upper airway based on CT scans of single individuals (adult and paediatric), and average geometries based on PCA analysis of 150 individuals. Particle Image Velocimetry (PIV), gas concentration and pressure measurements, coupled with CFD simulation. These reveal the details of the washout of CO2 rich exhaled gas, the direction-dependent time-varying pressure drop, and the effect of high-flow nasal therapy (HFNT) on these phenomena. A 1D multi-compartment model is used to estimate the work of breathing. For the first time, soft (compliant) elements have been included in the model airways and show that the assumption of rigid tissue is acceptable for unassisted breathing, but unrealistic for therapy-assisted flows.

  5. A numerical study of heat and water vapor transfer in MDCT-based human airway models.

    Science.gov (United States)

    Wu, Dan; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2014-10-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography-based human airways with minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditions for the 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: [Formula: see text] and [Formula: see text], where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, D a is the airway equivalent diameter, and [Formula: see text] is the tracheal equivalent diameter.

  6. Convective dispersion during steady flow in the conducting airways of the human lung.

    Science.gov (United States)

    Fresconi, Frank E; Prasad, Ajay K

    2008-02-01

    The adverse health effects of inhaled particulate matter from the environment depend on its dispersion, transport, and deposition in the human airways. Similarly, precise targeting of deposition sites by pulmonary drug delivery systems also relies on characterizing the dispersion and transport of therapeutic aerosols in the respiratory tract. A variety of mechanisms may contribute to convective dispersion in the lung; simple axial streaming, augmented dispersion, and steady streaming are investigated in this effort. Flow visualization of a bolus during inhalation and exhalation, and dispersion measurements were conducted during steady flow in a three-generational, anatomically accurate in vitro model of the conducting airways to support this goal. Control variables included Reynolds number, flow direction, generation, and branch. Experiments illustrate transport patterns in the lumen cross section and map their relation to dispersion metrics. These results indicate that simple axial streaming, rather than augmented dispersion, is the dominant steady convective dispersion mechanism in symmetric Weibel generations 7-13 during normal respiration. Experimental evidence supports the branching nature of the airways as a possible contributor to steady streaming in the lung.

  7. Airways, vasculature, and interstitial tissue: anatomically informed computational modeling of human lungs for virtual clinical trials

    Science.gov (United States)

    Abadi, Ehsan; Sturgeon, Gregory M.; Agasthya, Greeshma; Harrawood, Brian; Hoeschen, Christoph; Kapadia, Anuj; Segars, W. P.; Samei, Ehsan

    2017-03-01

    This study aimed to model virtual human lung phantoms including both non-parenchymal and parenchymal structures. Initial branches of the non-parenchymal structures (airways, arteries, and veins) were segmented from anatomical data in each lobe separately. A volume-filling branching algorithm was utilized to grow the higher generations of the airways and vessels to the level of terminal branches. The diameters of the airways and vessels were estimated using established relationships between flow rates and diameters. The parenchyma was modeled based on secondary pulmonary lobule units. Polyhedral shapes with variable sizes were modeled, and the borders were assigned to interlobular septa. A heterogeneous background was added inside these units using a non-parametric texture synthesis algorithm which was informed by a high-resolution CT lung specimen dataset. A voxelized based CT simulator was developed to create synthetic helical CT images of the phantom with different pitch values. Results showed the progressive degradation in depiction of lung details with increased pitch. Overall, the enhanced lung models combined with the XCAT phantoms prove to provide a powerful toolset to perform virtual clinical trials in the context of thoracic imaging. Such trials, not practical using clinical datasets or simplistic phantoms, can quantitatively evaluate and optimize advanced imaging techniques towards patient-based care.

  8. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  9. Quality control in microarray assessment of gene expression in human airway epithelium

    Directory of Open Access Journals (Sweden)

    Attiyeh Marc A

    2009-10-01

    Full Text Available Abstract Background Microarray technology provides a powerful tool for defining gene expression profiles of airway epithelium that lend insight into the pathogenesis of human airway disorders. The focus of this study was to establish rigorous quality control parameters to ensure that microarray assessment of the airway epithelium is not confounded by experimental artifact. Samples (total n = 223 of trachea, large and small airway epithelium were collected by fiberoptic bronchoscopy of 144 individuals and hybridized to Affymetrix microarrays. The pre- and post-chip quality control (QC criteria established, included: (1 RNA quality, assessed by RNA Integrity Number (RIN ≥ 7.0; (2 cRNA transcript integrity, assessed by signal intensity ratio of GAPDH 3' to 5' probe sets ≤ 3.0; and (3 the multi-chip normalization scaling factor ≤ 10.0. Results Of the 223 samples, all three criteria were assessed in 191; of these 184 (96.3% passed all three criteria. For the remaining 32 samples, the RIN was not available, and only the other two criteria were used; of these 29 (90.6% passed these two criteria. Correlation coefficients for pairwise comparisons of expression levels for 100 maintenance genes in which at least one array failed the QC criteria (average Pearson r = 0.90 ± 0.04 were significantly lower (p Conclusion Based on the aberrant maintenance gene data generated from samples failing the established QC criteria, we propose that the QC criteria outlined in this study can accurately distinguish high quality from low quality data, and can be used to delete poor quality microarray samples before proceeding to higher-order biological analyses and interpretation.

  10. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model.

    Science.gov (United States)

    Rivera-Burgos, Dinelia; Sarkar, Ujjal; Lever, Amanda R; Avram, Michael J; Coppeta, Jonathan R; Wishnok, John S; Borenstein, Jeffrey T; Tannenbaum, Steven R

    2016-02-01

    The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-β hydroxysteroid dehydrogenase 2 (11βHSD2) over 11βHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior.

  11. Differential effects of formoterol on thrombin- and PDGF-induced proliferation of human pulmonary arterial vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Goncharova Elena A

    2012-11-01

    Full Text Available Abstract Background Increased pulmonary arterial vascular smooth muscle (PAVSM cell proliferation is a key pathophysiological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PH. The long-acting β2-adrenergic receptor (β2AR agonist formoterol, a racemate comprised of (R,R- and (S,S-enantiomers, is commonly used as a vasodilator in chronic obstructive pulmonary disease (COPD. PH, a common complication of COPD, increases patients’ morbidity and reduces survival. Recent studies demonstrate that formoterol has anti-proliferative effects on airway smooth muscle cells and bronchial fibroblasts. The effects of formoterol and its enantiomers on PAVSM cell proliferation are not determined. The goals of this study were to examine effects of racemic formoterol and its enantiomers on PAVSM cell proliferation as it relates to COPD-associated PH. Methods Basal, thrombin-, PDGF- and chronic hypoxia-induced proliferation of primary human PAVSM cells was examined by DNA synthesis analysis using BrdU incorporation assay. ERK1/2, mTORC1 and mTORC2 activation were determined by phosphorylation levels of ERK1/2, ribosomal protein S6 and S473-Akt using immunoblot analysis. Results We found that (R,R and racemic formoterol inhibited basal, thrombin- and chronic hypoxia-induced proliferation of human PAVSM cells while (S,S formoterol had lesser inhibitory effect. The β2AR blocker propranolol abrogated the growth inhibitory effect of formoterol. (R,R, but not (S,S formoterol attenuated basal, thrombin- and chronic hypoxia-induced ERK1/2 phosphorylation, but had little effect on Akt and S6 phosphorylation levels. Formoterol and its enantiomers did not significantly affect PDGF-induced DNA synthesis and PDGF-dependent ERK1/2, S473-Akt and S6 phosphorylation in human PAVSM cells. Conclusions Formoterol inhibits basal, thrombin-, and chronic hypoxia-, but not PDGF-induced human PAVSM cell proliferation and ERK1/2, but has little effect on

  12. Model emulates human smooth pursuit system producing zero-latency target tracking.

    Science.gov (United States)

    Bahill, A T; McDonald, J D

    1983-01-01

    Humans can overcome the 150 ms time delay of the smooth pursuit eye movement system and track smoothly moving visual targets with zero-latency. Our target-selective adaptive control model can also overcome an inherent time delay and produce zero-latency tracking. No other model or man-made system can do this. Our model is physically realizable and physiologically realistic. The technique used in our model should be useful for analyzing other time-delay systems, such as man-machine systems and robots.

  13. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation.

    Directory of Open Access Journals (Sweden)

    Romina Nassini

    Full Text Available BACKGROUND: The transient receptor potential ankyrin 1 (TRPA1 channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1. METHODOLOGY/PRINCIPAL FINDINGS: By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells and fibroblasts, acrolein and CS extract evoked IL-8 release, a response selectively reduced by TRPA1 antagonists. Capsaicin, agonist of the transient receptor potential vanilloid 1 (TRPV1, a channel co-expressed with TRPA1 by airway sensory nerves, and acrolein or CS (TRPA1 agonists, or the neuropeptide substance P (SP, which is released from sensory nerve terminals by capsaicin, acrolein or CS, produced neurogenic inflammation in mouse airways. However, only acrolein and CS, but not capsaicin or SP, released the keratinocyte chemoattractant (CXCL-1/KC, IL-8 analogue in bronchoalveolar lavage (BAL fluid of wild-type mice. This effect of TRPA1 agonists was attenuated by TRPA1 antagonism or in TRPA1-deficient mice, but not by pharmacological ablation of sensory nerves. CONCLUSIONS: Our results demonstrate that, although either TRPV1 or TRPA1 activation causes airway neurogenic inflammation, solely TRPA1 activation orchestrates an additional inflammatory response which is not neurogenic. This finding suggests

  14. Do cell junction protein mutations cause an airway phenotype in mice or humans?

    Science.gov (United States)

    Chang, Eugene H; Pezzulo, Alejandro A; Zabner, Joseph

    2011-08-01

    Cell junction proteins connect epithelial cells to each other and to the basement membrane. Genetic mutations of these proteins can cause alterations in some epithelia leading to varied phenotypes such as deafness, renal disease, skin disorders, and cancer. This review examines if genetic mutations in these proteins affect the function of lung airway epithelia. We review cell junction proteins with examples of disease mutation phenotypes in humans and in mouse knockout models. We also review which of these genes are expressed in airway epithelium by microarray expression profiling and immunocytochemistry. Last, we present a comprehensive literature review to find the lung phenotype when cell junction and adhesion genes are mutated or subject to targeted deletion. We found that in murine models, targeted deletion of cell junction and adhesion genes rarely result in a lung phenotype. Moreover, mutations in these genes in humans have no obvious lung phenotype. Our research suggests that simply because a cell junction or adhesion protein is expressed in an organ does not imply that it will exhibit a drastic phenotype when mutated. One explanation is that because a functioning lung is critical to survival, redundancy in the system is expected. Therefore mutations in a single gene might be compensated by a related function of a similar gene product. Further studies in human and animal models will help us understand the overlap in the function of cell junction gene products. Finally, it is possible that the human lung phenotype is subtle and has not yet been described.

  15. Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge

    DEFF Research Database (Denmark)

    Koullapis, P. G.; Kassinos, S. C.; Bivolarova, Mariya Petrova

    2016-01-01

    Understanding the multitude of factors that control pulmonary deposition is important in assessing the therapeutic or toxic effects of inhaled particles. The use of increasingly sophisticated in silico models has improved our overall understanding, but model realism remains elusive. In this work......, we use Large Eddy Simulations (LES) to investigate the deposition of inhaled aerosol particles with diameters of dp=0.1,0.5,1,2.5,5dp=0.1,0.5,1,2.5,5 and 10μm (particle density of 1200 kg/m3). We use a reconstructed geometry of the human airways obtained via computed tomography and assess the effects....... Nevertheless, flow field differences due to the inlet conditions are largely smoothed out just a short distance downstream of the mouth inlet as a result of the complex geometry. Increasing the inhalation flowrate from sedentary to activity conditions left the mean flowfield structures largely unaffected...

  16. Genotypic and phenotypic diversity of the noncapsulated Haemophilus influenzae: adaptation and pathogenesis in the human airways.

    Science.gov (United States)

    Garmendia, Junkal; Martí-Lliteras, Pau; Moleres, Javier; Puig, Carmen; Bengoechea, José A

    2012-12-01

    The human respiratory tract contains a highly adapted microbiota including commensal and opportunistic pathogens. Noncapsulated or nontypable Haemophilus influenzae (NTHi) is a human-restricted member of the normal airway microbiota in healthy carriers and an opportunistic pathogen in immunocompromised individuals. The duality of NTHi as a colonizer and as a symptomatic infectious agent is closely related to its adaptation to the host, which in turn greatly relies on the genetic plasticity of the bacterium and is facilitated by its condition as a natural competent. The variable genotype of NTHi accounts for its heterogeneous gene expression and variable phenotype, leading to differential host-pathogen interplay among isolates. Here we review our current knowledge of NTHi diversity in terms of genotype, gene expression, antigenic variation, and the phenotypes associated with colonization and pathogenesis. The potential benefits of NTHi diversity studies discussed herein include the unraveling of pathogenicity clues, the generation of tools to predict virulence from genomic data, and the exploitation of a unique natural system for the continuous monitoring of long-term bacterial evolution in human airways exposed to noxious agents. Finally, we highlight the challenge of monitoring both the pathogen and the host in longitudinal studies, and of applying comparative genomics to clarify the meaning of the vast NTHi genetic diversity and its translation to virulence phenotypes.

  17. Human leukocyte antigen-G expression in differentiated human airway epithelial cells: lack of modulation by Th2-associated cytokines

    Directory of Open Access Journals (Sweden)

    White Steven R

    2013-01-01

    Full Text Available Abstract Background Human leukocyte antigen (HLA-G is a nonclassical class I antigen with immunomodulatory roles including up-regulation of suppressor T regulatory lymphocytes. HLA-G was recently identified as an asthma susceptibility gene, and expression of a soluble isoform, HLA-G5, has been demonstrated in human airway epithelium. Increased presence of HLA-G5 has been demonstrated in bronchoalveolar lavage fluid recovered from patients with mild asthma; this suggests a role for this isoform in modulating airway inflammation though the mechanisms by which this occurs is unclear. Airway inflammation associated with Th2 cytokines such as IL-4 and IL-13 is a principal feature of asthma, but whether these cytokines elicit expression of HLA-G is not known. Methods We examined gene and protein expression of both soluble (G5 and membrane-bound (G1 HLA-G isoforms in primary differentiated human airway epithelial cells collected from normal lungs and grown in air-liquid interface culture. Cells were treated with up to 10 ng/ml of either IL-4, IL-5, or IL-13, or 100 ng/ml of the immunomodulatory cytokine IL-10, or 10,000 U/ml of the Th1-associated cytokine interferon-beta, for 24 hr, after which RNA was isolated for evaluation by quantitative PCR and protein was collected for Western blot analysis. Results HLA-G5 but not G1 was present in dAEC as demonstrated by quantitative PCR, western blot and confocal microscopy. Neither G5 nor G1 expression was increased by the Th2-associated cytokines IL-4, IL-5 or IL-13 over 24 hr, nor after treatment with IL-10, but was increased 4.5 ± 1.4 fold after treatment with 10,000 U/ml interferon-beta. Conclusions These data demonstrate the constitutive expression of a T lymphocyte regulatory molecule in differentiated human airway epithelial cells that is not modulated by Th2-associated cytokines.

  18. Rapid effects of phytoestrogens on human colonic smooth muscle are mediated by oestrogen receptor beta.

    LENUS (Irish Health Repository)

    Hogan, A M

    2012-02-01

    Epidemiological studies have correlated consumption of dietary phytoestrogens with beneficial effects on colon, breast and prostate cancers. Genomic and non-genomic mechanisms are responsible for anti-carcinogenic effects but, until now, the effect on human colon was assumed to be passive and remote. No direct effect on human colonic smooth muscle has previously been described. Institutional research board approval was granted. Histologically normal colon was obtained from the proximal resection margin of colorectal carcinoma specimens. Circular smooth muscle strips were microdissected and suspended under 1g of tension in organ baths containing oxygenated Krebs solution at 37 degrees C. After an equilibration period, tissues were exposed to diarylpropionitrile (DPN) (ER beta agonist) and 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) (ER alpha agonist) or to the synthetic phytoestrogen compounds genistein (n=8), daidzein (n=8), fisetin (n=8) and quercetin (n=8) in the presence or absence of fulvestrant (oestrogen receptor antagonist). Mechanism of action was investigated by inhibition of downstream pathways. The cholinergic agonist carbachol was used to induce contractile activity. Tension was recorded isometrically. Phytoestrogens inhibit carbachol-induced colonic contractility. In keeping with a non-genomic, rapid onset direct action, the effect was within minutes, reversible and similar to previously described actions of 17 beta oestradiol. No effect was seen in the presence of fulvestrant indicating receptor modulation. While the DPN exerted inhibitory effects, PPT did not. The effect appears to be reliant on a p38\\/mitogen activated protein kinase mediated induction of nitric oxide production in colonic smooth muscle. The present data set provides the first description of a direct effect of genistein, daidzein, fisetin and quercetin on human colonic smooth muscle. The presence of ER in colonic smooth muscle has been functionally proven and the beta

  19. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    Directory of Open Access Journals (Sweden)

    Ming-Wei Chang

    2013-12-01

    Full Text Available The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM, with coarse particles (2.5–10 μm having higher endotoxin levels than did fine particles (0.5–2.5 μm. After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL-6 release and activated epidermal growth factor receptor (EGFR, transforming growth factor (TGF-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1 gene expression, but not of matrix metallopeptidase (MMP-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  20. Role of airway smooth muscle abnormalities in bronchial asthma%气道平滑肌异常在支气管哮喘病理生理中的作用

    Institute of Scientific and Technical Information of China (English)

    胥武剑; 李强

    2010-01-01

    Airway smooth muscle cells underwent hyperplasia, hypertrophy, hypoapoptosis and abnormal migration, phenotype switch and mechanical contraction in the process of asthma. Such abnormalities eventually resulted in high airway resistance and airway hyperreactivity. It is important to figure out the mechanisms underlining these abnormalities and to identify more reasonable and effective target for future therapeutic usage.%支气管哮喘(简称哮喘)的发病过程中,气道平滑肌细胞在哮喘相关的炎症介质的作用下,出现肥大、增殖活性增强、凋亡减少、迁移、表型转变及动力学异常等改变.此种气道平滑肌的异常最终导致了气道阻力增加和气道高反应性.因此,深入了解导致气道平滑肌异常的表现及机制,寻找更加合理有效的治疗靶点,将是未来哮喘治疗的新方向.

  1. LMTK2-mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells.

    Science.gov (United States)

    Luz, Simão; Cihil, Kristine M; Brautigan, David L; Amaral, Margarida D; Farinha, Carlos M; Swiatecka-Urban, Agnieszka

    2014-05-23

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-)-selective ion channel expressed in fluid-transporting epithelia. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein with serine and threonine but not tyrosine kinase activity. Previous work identified CFTR as an in vitro substrate of LMTK2, suggesting a functional link. Here we demonstrate that LMTK2 co-immunoprecipitates with CFTR and phosphorylates CFTR-Ser(737) in human airway epithelial cells. LMTK2 knockdown or expression of inactive LMTK2 kinase domain increases cell surface density of CFTR by attenuating its endocytosis in human airway epithelial cells. Moreover, LMTK2 knockdown increases Cl(-) secretion mediated by the wild-type and rescued ΔF508-CFTR. Compared with the wild-type CFTR, the phosphorylation-deficient mutant CFTR-S737A shows increased cell surface density and decreased endocytosis. These results demonstrate a novel mechanism of the phospho-dependent inhibitory effect of CFTR-Ser(737) mediated by LMTK2 via endocytosis and inhibition of the cell surface density of CFTR Cl(-) channels. These data indicate that targeting LMTK2 may increase the cell surface density of CFTR Cl(-) channels and improve stability of pharmacologically rescued ΔF508-CFTR in patients with cystic fibrosis.

  2. T cell subsets in human airways prior to and following endobronchial administration of endotoxin

    DEFF Research Database (Denmark)

    Ronit, Andreas; Plovsing, Ronni R; Gaardbo, Julie C

    2015-01-01

    BACKGROUND AND OBJECTIVES: Bronchial instillation of lipopolysaccharide (LPS) provides a reversible model of lung inflammation that may resemble early stages of acute respiratory distress syndrome (ARDS). We investigated the distributions of T-cell subsets in the human airways and sought to deter......BACKGROUND AND OBJECTIVES: Bronchial instillation of lipopolysaccharide (LPS) provides a reversible model of lung inflammation that may resemble early stages of acute respiratory distress syndrome (ARDS). We investigated the distributions of T-cell subsets in the human airways and sought...... to determine whether pro- and anti-inflammatory T cells are involved in the local immune response to lung inflammation. METHODS: Bronchoalveolar lavage (BAL) was performed in 15 healthy volunteers, after which Escherichia coli LPS (4 ng/kg) was administered. BAL was repeated at 2, 4, 6, 8 or 24 h after...... instillation of LPS. RESULTS: BALF CD4+ and CD8+ T cells were characterized by expression of activation markers (HLA-DR+CD38+), the proportion of cells expressing naïve markers (CD45RA+CD27+CCR7+) was lower, and that of cells expressing effector memory markers (CD45RA-CD27+CCR7-) was higher, compared...

  3. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium.

    Science.gov (United States)

    Böttcher-Friebertshäuser, Eva; Klenk, Hans-Dieter; Garten, Wolfgang

    2013-11-01

    Influenza is an acute infection of the respiratory tract, which affects each year millions of people. Influenza virus infection is initiated by the surface glycoprotein hemagglutinin (HA) through receptor binding and fusion of viral and endosomal membranes. HA is synthesized as a precursor protein and requires cleavage by host cell proteases to gain its fusion capacity. Although cleavage of HA is crucial for virus infectivity, little was known about relevant proteases in the human airways for a long time. Recent progress in the identification and characterization of HA-activating host cell proteases has been considerable however and supports the idea of targeting HA cleavage as a novel approach for influenza treatment. Interestingly, certain bacteria have been demonstrated to support HA activation either by secreting proteases that cleave HA or due to activation of cellular proteases and thereby may contribute to virus spread and enhanced pathogenicity. In this review, we give an overview on activation of influenza viruses by proteases from host cells and bacteria with the main focus on recent progress on HA cleavage by proteases HAT and TMPRSS2 in the human airway epithelium. In addition, we outline investigations of HA-activating proteases as potential drug targets for influenza treatment. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Neurally mediated airway constriction in human and other species: a comparative study using precision-cut lung slices (PCLS.

    Directory of Open Access Journals (Sweden)

    Marco Schlepütz

    Full Text Available The peripheral airway innervation of the lower respiratory tract of mammals is not completely functionally characterized. Recently, we have shown in rats that precision-cut lung slices (PCLS respond to electric field stimulation (EFS and provide a useful model to study neural airway responses in distal airways. Since airway responses are known to exhibit considerable species differences, here we examined the neural responses of PCLS prepared from mice, rats, guinea pigs, sheep, marmosets and humans. Peripheral neurons were activated either by EFS or by capsaicin. Bronchoconstriction in response to identical EFS conditions varied between species in magnitude. Frequency response curves did reveal further species-dependent differences of nerve activation in PCLS. Atropine antagonized the EFS-induced bronchoconstriction in human, guinea pig, sheep, rat and marmoset PCLS, showing cholinergic responses. Capsaicin (10 µM caused bronchoconstriction in human (4 from 7 and guinea pig lungs only, indicating excitatory non-adrenergic non-cholinergic responses (eNANC. However, this effect was notably smaller in human responder (30 ± 7.1% than in guinea pig (79 ± 5.1% PCLS. The transient receptor potential (TRP channel blockers SKF96365 and ruthenium red antagonized airway contractions after exposure to EFS or capsaicin in guinea pigs. In conclusion, the different species show distinct patterns of nerve-mediated bronchoconstriction. In the most common experimental animals, i.e. in mice and rats, these responses differ considerably from those in humans. On the other hand, guinea pig and marmoset monkey mimic human responses well and may thus serve as clinically relevant models to study neural airway responses.

  5. Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium.

    Science.gov (United States)

    Li, Wuping; Zhang, Liqun; Johnson, Jarrod S; Zhijian, Wu; Grieger, Joshua C; Ping-Jie, Xiao; Drouin, Lauren M; Agbandje-McKenna, Mavis; Pickles, Raymond J; Samulski, R Jude

    2009-12-01

    Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease.

  6. Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium

    Science.gov (United States)

    Li, Wuping; Zhang, Liqun; Johnson, Jarrod S; Zhijian, Wu; Grieger, Joshua C; Ping-Jie, Xiao; Drouin, Lauren M; Agbandje-McKenna, Mavis; Pickles, Raymond J; Samulski, R Jude

    2009-01-01

    Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease. PMID:19603002

  7. Chlamydophila spp. infection in horses with recurrent airway obstruction: similarities to human chronic obstructive disease

    Directory of Open Access Journals (Sweden)

    Hotzel Helmut

    2008-01-01

    Full Text Available Abstract Background Recurrent airway obstruction (RAO in horses is a naturally occurring dust-induced disease mainly characterized by bronchiolitis which shows histological and pathophysiological similarities to human chronic obstructive pulmonary disease (COPD. In human COPD previous investigations indicated an association with Chlamydophila psittaci infection. The present study was designed (1 to clarify a possible role of this infectious agent in RAO and (2 to investigate the suitability of this equine disorder as a model for human COPD. Methods Clinico-pathological parameters of a total of 45 horses (25 horses with clinical signs of RAO and 20 clinically healthy controls were compared to histological findings in lung tissue samples and infection by Chlamydiaceae using light microscopy, immunohistochemistry, and PCR. Results Horses with clinical signs of RAO vs. controls revealed more inflammatory changes in histology (p = 0.01, and a higher detection rate of Chlamydia psittaci antigens in all cells (p OmpA sequencing identified Chlamydophila psittaci (n = 9 and Chlamydophila abortus (n = 13 in both groups with no significant differences. Within the group of clinically healthy horses subgroups with no changes (n = 15 and slight inflammation of the small airways (n = 5 were identified. Also in the group of animals with RAO subgroups with slight (n = 16 and severe (n = 9 bronchiolitis could be formed. These four subgroups can be separated in parts by the number of cells positive for Chlamydia psittaci antigens. Conclusion Chlamydophila psittaci or abortus were present in the lung of both clinically healthy horses and those with RAO. Immunohistochemistry revealed acute chlamydial infections with inflammation in RAO horses, whereas in clinically healthy animals mostly persistent chlamydial infection and no inflammatory reactions were seen. Stable dust as the known fundamental abiotic factor in RAO is comparable to smoking in human disease. These

  8. Prediction of localized aerosol deposition in a realistic replica of human airways using experimental data and numerical simulation

    Science.gov (United States)

    Lizal, Frantisek; Elcner, Jakub; Belka, Miloslav; Jedelsky, Jan; Jicha, Miroslav

    2016-11-01

    The presence of aerosol deposition hot-spots in human airways presumably contributes to development of various diseases. The overall aerosol deposition in human lungs can be predicted with sufficient accuracy nowadays. However, the prediction of localized aerosol deposition poses arduous challenge, namely in diseased lungs. Numerical simulation is considered to be a promising tool for the successful prediction. Yet, the validation of such simulations is difficult to perform, as not enough experimental data acquired using realistic airway replicas is available. This paper presents a first comparison of localized deposition measurement and simulation performed on the identical realistic geometry. The analysis indicates that both approaches yield similar results for low Reynolds number flows.

  9. Sustained calcium entry through P2X nucleotide receptor channels in human airway epithelial cells.

    Science.gov (United States)

    Zsembery, Akos; Boyce, Amanda T; Liang, Lihua; Peti-Peterdi, János; Bell, P Darwin; Schwiebert, Erik M

    2003-04-11

    Purinergic receptor stimulation has potential therapeutic effects for cystic fibrosis (CF). Thus, we explored roles for P2Y and P2X receptors in stably increasing [Ca(2+)](i) in human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Cytosolic Ca(2+) was measured by fluorospectrometry using the fluorescent dye Fura-2/AM. Expression of P2X receptor (P2XR) subtypes was assessed by immunoblotting and biotinylation. In IB3-1 cells, ATP and other P2Y agonists caused only a transient increase in [Ca(2+)](i) derived from intracellular stores in a Na(+)-rich environment. In contrast, ATP induced an increase in [Ca(2+)](i) that had transient and sustained components in a Na(+)-free medium; the sustained plateau was potentiated by zinc or increasing extracellular pH. Benzoyl-benzoyl-ATP, a P2XR-selective agonist, increased [Ca(2+)](i) only in Na(+)-free medium, suggesting competition between Na(+) and Ca(2+) through P2XRs. Biochemical evidence showed that the P2X(4) receptor is the major subtype shared by these airway epithelial cells. A role for store-operated Ca(2+) channels, voltage-dependent Ca(2+) channels, or Na(+)/Ca(2+) exchanger in the ATP-induced sustained Ca(2+) signal was ruled out. In conclusion, these data show that epithelial P2X(4) receptors serve as ATP-gated calcium entry channels that induce a sustained increase in [Ca(2+)](i). In airway epithelia, a P2XR-mediated Ca(2+) signal may have therapeutic benefit for CF.

  10. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells.

    Science.gov (United States)

    Yadav, Umesh C S; Ramana, K V; Srivastava, Satish K

    2013-12-01

    Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5-10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells.

  11. Test of the Starling resistor model in the human upper airway during sleep.

    Science.gov (United States)

    Wellman, Andrew; Genta, Pedro R; Owens, Robert L; Edwards, Bradley A; Sands, Scott A; Loring, Stephen H; White, David P; Jackson, Andrew C; Pedersen, Ole F; Butler, James P

    2014-12-15

    The human pharyngeal airway during sleep is conventionally modeled as a Starling resistor. However, inspiratory flow often decreases with increasing effort (negative effort dependence, NED) rather than remaining fixed as predicted by the Starling resistor model. In this study, we tested a major prediction of the Starling resistor model--that the resistance of the airway upstream from the site of collapse remains fixed during flow limitation. During flow limitation in 24 patients with sleep apnea, resistance at several points along the pharyngeal airway was measured using a pressure catheter with multiple sensors. Resistance between the nose and the site of collapse (the upstream segment) was measured before and after the onset of flow limitation to determine whether the upstream dimensions remained fixed (as predicted by the Starling resistor model) or narrowed (a violation of the Starling resistor model). The upstream resistance from early to mid inspiration increased considerably during flow limitation (by 35 ± 41 cmH2O · liter(-1) · s(-1), P < 0.001). However, there was a wide range of variability between patients, and the increase in upstream resistance was strongly correlated with the amount of NED (r = 0.75, P < 0.001). Therefore, patients with little NED exhibited little upstream narrowing (consistent with the Starling model), and patients with large NED exhibited large upstream narrowing (inconsistent with the Starling model). These findings support the idea that there is not a single model of pharyngeal collapse, but rather that different mechanisms may dominate in different patients. These differences could potentially be exploited for treatment selection. Copyright © 2014 the American Physiological Society.

  12. Ozonolysis products of membrane fatty acids activate eicosanoid metabolism in human airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Leikauf, G.D.; Zhao, Q.; Zhou, S.; Santrock, J. (Univ. of Cincinnati Medical Center, OH (United States))

    1993-12-01

    When inhaled, ozone reacts at the airway luminal surface with unsaturated fatty acids contained in the extracellular fluid and plasma membrane to form an aldehyde and hydroxyhydroperoxide. The resulting hydroxyhydroperoxide degrades in aqueous systems to yield a second aldehyde and hydrogen peroxide (H2O2). Previously, we demonstrated that ozone can augment eicosanoid metabolism in bovine airway epithelial cells. To examine structure-activity relationships of ozone-fatty acid degradation products on eicosanoid metabolism in human airway epithelial cells, 3-, 6-, and 9-carbon saturated aldehydes and hydroxyhydroperoxides were synthesized and purified. Eicosanoid metabolism was evaluated by determination of total 3H-activity release from confluent cells previously incubated with [3H]arachidonic acid and by identification of specific metabolites with high performance liquid chromatography and radioimmunoassay. The major metabolites detected were prostaglandin E2, prostaglandin F2 alpha, and 15-hydroxyeicosatetraenoic acid. The 9-carbon aldehyde, nonanal, in contrast to 3- or 6-carbon aldehydes, stimulated release at concentrations > or = 100 microM, suggesting that the stimulatory effect increases with increasing chain length. When tested under identical conditions, the 3-, 6-, and 9-carbon hydroxyhydroperoxides were more potent than the corresponding aldehydes. Again, a greater effect was noted when the chain length was increased. One possible explanation for the increased potency of the hydroxyhydroperoxides over the aldehydes could be due to degradation of the hydroxyhydroperoxide into H2O2 and aldehyde. We consider this an unlikely explanation because responses varied with chain length (although each hydroxyhydroperoxide would produce an equivalent amount of H2O2) and because exposure to H2O2 alone or H2O2 plus hexanal produced a response dissimilar to 1-hydroxy-1-hexanehydroperoxide.

  13. Detection of histidine decarboxylase mRNA in human vascular smooth muscle and endothelial cells.

    Science.gov (United States)

    Tippens, A S; Gruetter, C A

    2004-06-01

    The objective of this study was to investigate histamine synthesis capability of human vascular smooth muscle and endothelial cells by detecting histidine decarboxylase (HDC) mRNA. HDC catalyzes exclusively the formation of histamine in mammalian cells. Experiments utilizing nested reverse transcription-polymerase chain reaction (nRT-PCR) were conducted to detect the presence of HDC mRNA. Human aortic smooth muscle cells (HAoSMC) and human aortic endothelial cells (HAEC) were cultured and RNA was extracted and amplified using two sets of HDC-specific primers. Rat liver and kidney RNA were isolated and amplified to serve as positive and negative controls, respectively. Gel electrophoresis of HAoSMC, HAEC and liver mRNA revealed bands coinciding with an expected product size of 440 base pairs. Sequence analysis revealed that the observed bands were the appropriate HDC amplicons. These findings are the first to indicate the presence of HDC mRNA in vascular smooth muscle cells and confirm the presence of HDC mRNA in endothelial cells which is consistent with an ability of these cell types to synthesize histamine in the vascular wall.

  14. 小鼠胚胎气道平滑肌发育的形态学观察%Morphological observation on the development of the airway smooth muscle in mouse embryos

    Institute of Scientific and Technical Information of China (English)

    曹锡梅; 杨艳萍; 李海荣; 景雅

    2012-01-01

    Objective To investigate the developmental pattern of the airway smooth muscle in mice and the expression characteristics of different muscle-specific proteins. Methods Serial sections of mouse embryos from embryonic day 10 (ED10) to embryonic day 18 (ED18) were stained with monoclonal antibodies against α-SMA, α-SCA and Desmin. Results With the foregut gradually separating into trachea and esophagus, α-SMA positive cells were detected in the posterior wall of the initial segment of the trachea at ED12 and the expression intensity was tapered off towards the caudal segment. A few a-SMA and a-SCA positive cells were observed in the mesenchyme surrounding the developing pulmonary vein. At ED13, the expression intensity of α-SMA in the posterior wall of the trachea became stronger, while the very weaker expression of α-SCA and Desmin was only initiated. At ED14, strong α-SMA expression showed C-shaped patterns in the wall of the left and right bronchi. However, staining intensity of a-SCA and Desmin at the same segment was weaker than that of α-SMA. In addition, the muscle cells of the pulmonary vein showed strong expression of α-SMA. At ED15 , α-SMA positive cells were found in the wall of small bronchioles. Between ED17 and ED18, with progression towards the terminal bronchioles, expression intensity of a-SCA and Desmin became weaker in trie airway smooth muscle while the expression of a-SMA became stronger. Conclusion The development of the airway smooth muscle begins from the upper segment of the trachea at ED12 and gradually extends distally. At ED18 , airway smooth muscle cells have extended to the terminal bronchioles. The expression of Desmin marks the formation of smooth muscle cytoskeleton structures and implies the further maturation of the airway smooth muscle. Besides, it may help airway smooth muscle to improve peristaltic contraction function with the slow shortening speed. The appearance of the airway smooth muscle precedes the pulmonary vein

  15. Tracing molecular and structural changes upon mucolysis with N-acetyl cysteine in human airway mucus.

    Science.gov (United States)

    Vukosavljevic, Branko; Murgia, Xabier; Schwarzkopf, Konrad; Schaefer, Ulrich F; Lehr, Claus-Michael; Windbergs, Maike

    2017-07-11

    The conducting airways of the human lungs are lined by mucus, which lubricates the lung epithelium and provides a first-line protection against airborne threats. As a novel approach for visualization of the human mucus microstructure, we applied confocal Raman microscopy as a label-free and chemically selective technique. We were successfully able to chemically resolve the pulmonary surfactant from the mucus matrix and show its spatial distribution, as well as to visualize the structural changes within the freeze-dried mucus mesh upon chemical mucolysis. Subsequently, we performed rheological measurements before and after mucolysis and correlated morphology and chemical structure of the mucus with its rheological characteristics. These results do not only enrich the knowledge about the mucus microstructure, but can also, significantly contribute to rational development of future lung therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties...... differences in DC stimulating properties of bacteria associated with the airway microbiota....... of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella...

  17. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    Science.gov (United States)

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  18. 七氟烷对卵白蛋白致敏的高反应气道平滑肌张力的影响%Effect of sevflurane on the airway smooth muscle tension in the ovalbumin-sensitized hyperresponsiveness airways

    Institute of Scientific and Technical Information of China (English)

    周静; 张丽娟; 董有静

    2015-01-01

    Objective To investigate the effects of sevoflurane on the airway smooth muscle tension in a model of ovalbumin-sensitized guinea pigs with airway hyperresponsiveness.Methods Forty male guinea pigs were randomly divided into 5 groups:normal group,sensitized group,sensitized control group,sensitized 2% sevoflurane group and sensitized 4% sevoflurane group,8 in each group.The lung resisitance was recorded and the dose-response curves for acetylcholine of lung resistance were used to evaluate the sensitized airway model.The airway smooth muscle tension was measured to evaluate the brochodilator effect of sevoflurane.Results The dose-response curves for acetylcholine of lung resistance were elevated significantly in the sensitized group compared to the normal group.With an increase of carbacholine concentration,the airway smooth muscle tension were lower in sensitized 2% sevoflurane group and sensi-tized 4% sevoflurane group than those in sensitized control group.Conclusion The use of sevoflurane can decrease the airway smooth muscle tension of sensitized guinea pigs,which suggests that sevoflurane has a brochodilator effect in sensitized airways.%目的:观察七氟烷对卵白蛋白致敏的豚鼠的高反应气道平滑肌张力的影响。方法40只雄性豚鼠随机分为5组:正常组、致敏组、致敏对照组、致敏2%七氟烷组和致敏4%七氟烷组,每组8只。通过应用卵白蛋白和测量肺阻力变化曲线建立并评价豚鼠的致敏气道模型;根据致敏豚鼠气道平滑肌对不同剂量卡巴胆碱刺激的张力变化评价七氟烷对高反应致敏气道的扩张作用。结果与正常组相比,致敏组能显著升高豚鼠的肺阻力变化曲线;与致敏对照组相比,致敏2%七氟烷组和致敏4%七氟烷组的气道平滑肌张力明显下降。结论七氟烷能够降低卵白蛋致敏的豚鼠的气道平滑肌张力,对高反应致敏气道具有一定的扩张作用。

  19. The Effects of High Frequency Oscillatory Flow on Particles' Deposition in Upper Human Lung Airways

    Science.gov (United States)

    Bonifacio, Jeremy; Rahai, Hamid; Taherian, Shahab

    2016-11-01

    The effects of oscillatory inspiration on particles' deposition in upper airways of a human lung during inhalation/exhalation have been numerically investigated and results of flow characteristics, and particles' deposition pattern have been compared with the corresponding results without oscillation. The objective of the investigation was to develop an improved method for drug delivery for Asthma and COPD patients. Previous clinical investigations of using oral airway oscillations have shown enhanced expectoration in cystic fibrosis (CF) patients, when the frequency of oscillation was at 8 Hz with 9:1 inspiratory/expiratory (I:E) ratio. Other investigations on oscillatory ventilation had frequency range of 0.5 Hz to 2.5 Hz. In the present investigations, the frequency of oscillation was changed between 2 Hz to 10 Hz. The particles were injected at the inlet and particle velocity was equal to the inlet air velocity. One-way coupling of air and particles was assumed. Lagrangian phase model was used for transport and depositions of solid 2.5 micron diameter round particles with 1200 kg/m3 density. Preliminary results have shown enhanced PM deposition with oscillatory flow with lower frequency having a higher deposition rate Graduate Assistant.

  20. In vitro assessment of human airway toxicity from major aldehydes in automotive emissions

    Energy Technology Data Exchange (ETDEWEB)

    Grafstroem, R.C. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1997-09-01

    Automotive exhausts can significantly contribute to the levels of reactive aldehydes, including formaldehyde, acetaldehyde and acrolein, in urban air. The use of alcohols as an alternative fuel for gasoline or diesel may further increase these emissions. Since it is unclear if aldehyde inhalation may induce pathological states, including cancer, in human airways, the toxic properties of the above-mentioned aldehydes were studied in cultured target cell types. Each aldehyde modified vital cellular functions in a dose-dependent manner, and invariably inhibited growth and induced abnormal terminal differentiation. Decreases of cellular thiols and increases of intracellular Ca{sup 2+} were observed, and moreover, variable types and amounts of short-lived or persistent genetic damage were induced. The concentrations required for specified levels of a particular type of injury varied up to 10000-fold among the aldehydes. Overall, distinctive patterns of cytopathological activity were observed, which differed both qualitatively and quantitatively among the aldehydes. Finally, aldehydes inhibited DNA repair processes and increased cytotoxicity and mutagenesis in synergy with other known toxicants, indicating that aldehydes may also enhance damage by other constituents in automotive exhausts. In summary, the aldehydes, notably {sup m}u{sup M}-mM formaldehyde, caused pathological effects and induced mechanisms that relate to acute toxicity and cancer development in airway epithelial cells. Since `no-effect` levels may not exist for carcinogenic agents, the overall results support a need for elimination of aldehydes in automotive exhausts. 41 refs

  1. Proteomic analysis of pure human airway gland mucus reveals a large component of protective proteins.

    Directory of Open Access Journals (Sweden)

    Nam Soo Joo

    Full Text Available Airway submucosal glands contribute to innate immunity and protect the lungs by secreting mucus, which is required for mucociliary clearance and which also contains antimicrobial, anti-inflammatory, anti-proteolytic and anti-oxidant proteins. We stimulated glands in tracheal trimmings from three lung donors and collected droplets of uncontaminated mucus as they formed at the gland orifices under an oil layer. We analyzed the mucus using liquid chromatography-tandem mass spectrometry (LC-MS/MS. Analysis identified 5486 peptides and 441 proteins from across the 3 samples (269-319 proteins per subject. We focused on 269 proteins common to at least 2 0f 3 subjects, of which 102 (38% had protective or innate immunity functions. While many of these have long been known to play such roles, for many others their cellular protective functions have only recently been appreciated in addition to their well-studied biologic functions (e.g. annexins, apolipoproteins, gelsolin, hemoglobin, histones, keratins, and lumican. A minority of the identified proteins are known to be secreted via conventional exocytosis, suggesting that glandular secretion occurs via multiple mechanisms. Two of the observed protective proteins, major vault protein and prohibitin, have not been observed in fluid from human epithelial cultures or in fluid from nasal or bronchoalveolar lavage. Further proteomic analysis of pure gland mucus may help clarify how healthy airways maintain a sterile environment.

  2. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro.

    Science.gov (United States)

    Tapparel, Caroline; Sobo, Komla; Constant, Samuel; Huang, Song; Van Belle, Sandra; Kaiser, Laurent

    2013-11-01

    New molecular diagnostic tools have recently allowed the discovery of human rhinovirus species C (HRV-C) that may be overrepresented in children with lower respiratory tract complications. Unlike HRV-A and HRV-B, HRV-C cannot be propagated in conventional immortalized cell lines and their biological properties have been difficult to study. Recent studies have described the successful amplification of HRV-C15, HRV-C11, and HRV-C41 in sinus mucosal organ cultures and in fully differentiated human airway epithelial cells. Consistent with these studies, we report that a panel of clinical HRV-C specimens including HRV-C2, HRV-C7, HRV-C12, HRV-C15, and HRV-C29 types were all capable of mediating productive infection in reconstituted 3D human primary upper airway epithelial tissues and that the virions enter and exit preferentially through the apical surface. Similar to HRV-A and HRV-B, our data support the acid sensitivity of HRV-C. We observed also that the optimum temperature requirement during HRV-C growth may be type-dependent.

  3. Otilonium bromide inhibits calcium entry through L-type calcium channels in human intestinal smooth muscle.

    Science.gov (United States)

    Strege, P R; Evangelista, S; Lyford, G L; Sarr, M G; Farrugia, G

    2004-04-01

    Otilonium bromide (OB) is used as an intestinal antispasmodic. The mechanism of action of OB is not completely understood. As Ca(2+) entry into intestinal smooth muscle is required to trigger contractile activity, our hypothesis was that OB blocked Ca(2+) entry through L-type Ca(2+) channels. Our aim was to determine the effects of OB on Ca(2+), Na(+) and K(+) ion channels in human jejunal circular smooth muscle cells and on L-type Ca(2+) channels expressed heterologously in HEK293 cells. Whole cell currents were recorded using standard patch clamp techniques. Otilonium bromide (0.09-9 micromol L(-1)) was used as this reproduced clinical intracellular concentrations. In human circular smooth muscle cells, OB inhibited L-type Ca(2+) current by 25% at 0.9 micromol L(-1) and 90% at 9 micromol L(-1). Otilonium bromide had no effect on Na(+) or K(+) currents. In HEK293 cells, 1 micromol L(-1) OB significantly inhibited the expressed L-type Ca(2+) channels. Truncation of the alpha(1C) subunit C and N termini did not block the inhibitory effects of OB. Otilonium bromide inhibited Ca(2+) entry through L-type Ca(2+) at concentrations similar to intestinal tissue levels. This effect may underlie the observed muscle relaxant effects of the drug.

  4. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  5. Premature birth is associated with not fully differentiated contractile smooth muscle cells in human umbilical artery.

    Science.gov (United States)

    Roffino, S; Lamy, E; Foucault-Bertaud, A; Risso, F; Reboul, R; Tellier, E; Chareyre, C; Dignat-George, F; Simeoni, U; Charpiot, P

    2012-06-01

    Smooth muscle cells (SMCs) participate to the regulation of peripheral arterial resistance and blood pressure. To assume their function, SMCs differentiate throughout the normal vascular development from a synthetic phenotype towards a fully differentiated contractile phenotype by acquiring a repertoire of proteins involved in contraction. In human fetal muscular arteries and umbilical arteries (UAs), no data are available regarding the differentiation of SMCs during the last trimester of gestation. The objective of this study was to characterize the phenotype of SMCs during this gestation period in human UAs. We investigated the phenotype of SMCs in human UAs from very preterm (28-31 weeks of gestation), late preterm (32-35 weeks) and term (37-41 weeks) newborns using biochemical and immunohistochemical detection of α-actin, smooth muscle myosin heavy chain, smoothelin, and non-muscle myosin heavy chain. We found that the number of SMCs positive for smoothelin in UAs increased with gestational age. Western blot analysis revealed a higher content of smoothelin in term compared to very preterm UAs. These results show that SMCs in human UAs gradually acquire a fully differentiated contractile phenotype during the last trimester of gestation and thus that premature birth is associated with not fully differentiated contractile SMCs in human UAs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Research of transport and deposition of aerosol in human airway replica

    Directory of Open Access Journals (Sweden)

    Mravec Filip

    2012-04-01

    Full Text Available Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA. The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.

  7. Altered Expression of Human Smooth Muscle Myosin Phosphatase Targeting (MYPT) Isovariants with Pregnancy and Labor.

    Science.gov (United States)

    Lartey, Jon; Taggart, Julie; Robson, Stephen; Taggart, Michael

    2016-01-01

    Myosin light-chain phosphatase is a trimeric protein that hydrolyses phosphorylated myosin II light chains (MYLII) to cause relaxation in smooth muscle cells including those of the uterus. A major component of the phosphatase is the myosin targeting subunit (MYPT), which directs a catalytic subunit to dephosphorylate MYLII. There are 5 main MYPT family members (MYPT1 (PPP1R12A), MYPT2 (PPP1R12B), MYPT3 (PPP1R16A), myosin binding subunit 85 MBS85 (PPP1R12C) and TIMAP (TGF-beta-inhibited membrane-associated protein (PPP1R16B)). Nitric oxide (NO)-mediated smooth muscle relaxation has in part been attributed to activation of the phosphatase by PKG binding to a leucine zipper (LZ) dimerization domain located at the carboxyl-terminus of PPP1R12A. In animal studies, alternative splicing of PPP1R12A can lead to the inclusion of a 31-nucleotide exonic segment that generates a LZ negative (LZ-) isovariant rendering the phosphatase less sensitive to NO vasodilators and alterations in PPP1R12ALZ- and LZ+ expression have been linked to phenotypic changes in smooth muscle function. Moreover, PPP1R12B and PPP1R12C, but not PPP1R16A or PPP1R16B, have the potential for LZ+/LZ- alternative splicing. Yet, by comparison to animal studies, the information on human MYPT genomic sequences/mRNA expressions is scant. As uterine smooth muscle undergoes substantial remodeling during pregnancy we were interested in establishing the patterns of expression of human MYPT isovariants during this process and also following labor onset as this could have important implications for determining successful pregnancy outcome. We used cross-species genome alignment, to infer putative human sequences not available in the public domain, and isovariant-specific quantitative PCR, to analyse the expression of mRNA encoding putative LZ+ and LZ- forms of PPP1R12A, PPP1R12B and PPP1R12C as well as canonical PPP1R16A and PPP1R16B genes in human uterine smooth muscle from non-pregnant, pregnant and in

  8. Smooth Muscle Precursor Cells Derived from Human Pluripotent Stem Cells for Treatment of Stress Urinary Incontinence

    Science.gov (United States)

    Wang, Zhe; Li, Yan Hui; Wei, Yi; Green, Morgaine; Wani, Prachi; Zhang, Pengbo; Pera, Renee Reijo; Chen, Bertha

    2016-01-01

    There is great interest in using stem cells (SC) to regenerate a deficient urethral sphincter in patients with urinary incontinence. The smooth muscle component of the sphincter is a significant contributor to sphincter function. However, current translational efforts for sphincter muscle restoration focus only on skeletal muscle regeneration because they rely on adult mesenchymal SC as cell source. These adult SC do not yield sufficient smooth muscle cells (SMCs) for transplantation. We may be able to overcome this limitation by using pluripotent stem cell (PSC) to derive SMCs. Hence, we sought to investigate whether smooth muscle precursor cells (pSMCs) derived from human PSCs can restore urethral function in an animal model generated by surgical urethrolysis and ovariectomy. Rats were divided into four groups: control (no intervention), sham saline (surgery + saline injection), bladder SMC (surgery + human bladder SMC injection), and treatment (surgery + pSMC injection, which includes human embryonic stem cell (hESC) H9-derived pSMC, episomal reprogrammed induced pluripotent stem cells (iPSCs)-derived pSMC, or viral reprogrammed iPSC-derived pSMC). pSMCs (2 × 106 cells/rat) were injected periurethrally 3 weeks postsurgery. Leak point pressure (LPP) and baseline external urethral sphincter electromyography were measured 5 weeks postinjection. Both iPSC-derived pSMC treatment groups showed significantly higher LPP compared to the sham saline group, consistent with restoration of urethral sphincter function. While the difference between the H9-derived pSMC treatment and sham saline group was not significant, it did show a trend toward restoration of the LPP to the level of intact controls. Our data indicate that pSMCs derived from human PSCs (hESC and iPSC) can restore sphincter function. PMID:26785911

  9. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Berman R

    2016-06-01

    Full Text Available Reena Berman, Di Jiang, Qun Wu, Hong Wei Chu Department of Medicine, National Jewish Health, Denver, CO, USA Abstract: Human rhinovirus (HRV infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air–liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS with or without HRV-16 (5×104 50% Tissue Culture Infective Dose [TCID50]/transwell infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection. Keywords: α1-antitrypsin, rhinovirus, COPD, cigarette smoke, ICAM-1

  10. Serelaxin improves the therapeutic efficacy of RXFP1-expressing human amnion epithelial cells in experimental allergic airway disease.

    Science.gov (United States)

    Royce, Simon G; Tominaga, Anna M; Shen, Matthew; Patel, Krupesh P; Huuskes, Brooke M; Lim, Rebecca; Ricardo, Sharon D; Samuel, Chrishan S

    2016-12-01

    Current asthma therapies primarily target airway inflammation (AI) and suppress episodes of airway hyperresponsiveness (AHR) but fail to treat airway remodelling (AWR), which can develop independently of AI and contribute to irreversible airway obstruction. The present study compared the anti-remodelling and therapeutic efficacy of human bone marrow-derived mesenchymal stem cells (MSCs) to that of human amnion epithelial stem cells (AECs) in the setting of chronic allergic airways disease (AAD), in the absence or presence of an anti-fibrotic (serelaxin; RLX). Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA)-induced chronic AAD, were either vehicle-treated (OVA alone) or treated with MSCs or AECs alone [intranasally (i.n.)-administered with 1×10(6) cells once weekly], RLX alone (i.n.-administered with 0.8 mg/ml daily) or a combination of MSCs or AECs and RLX from weeks 9-11 (n=6/group). Measures of AI, AWR and AHR were then assessed. OVA alone exacerbated AI, epithelial damage/thickness, sub-epithelial extracellular matrix (ECM) and total collagen deposition, markers of collagen turnover and AHR compared with that in saline-treated counterparts (all P<0.01 compared with saline-treated controls). RLX or AECs (but not MSCs) alone normalized epithelial thickness and partially diminished the OVA-induced fibrosis and AHR by ∼40-50% (all P<0.05 compared with OVA alone). Furthermore, the combination treatments normalized epithelial thickness, measures of fibrosis and AHR to that in normal mice, and significantly decreased AI. Although AECs alone demonstrated greater protection against the AAD-induced AI, AWR and AHR, compared with that of MSCs alone, combining RLX with MSCs or AECs reversed airway fibrosis and AHR to an even greater extent. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  11. Regenerative potential of human airway stem cells in lung epithelial engineering.

    Science.gov (United States)

    Gilpin, Sarah E; Charest, Jonathan M; Ren, Xi; Tapias, Luis F; Wu, Tong; Evangelista-Leite, Daniele; Mathisen, Douglas J; Ott, Harald C

    2016-11-01

    Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair.

  12. Tedizolid inhibits MUC5AC production induced by methicillin-resistant Staphylococcus aureus in human airway epithelial cells.

    Science.gov (United States)

    Takeda, Kazuaki; Kaku, Norihito; Morinaga, Yoshitomo; Kosai, Kosuke; Uno, Naoki; Imamura, Yoshifumi; Hasegawa, Hiroo; Miyazaki, Taiga; Izumikawa, Koichi; Mukae, Hiroshi; Yanagihara, Katsunori

    2017-09-01

    The innate immune system plays an important role in early immunity against respiratory tract infection. Although airway epithelial cells produce mucus to eliminate pathogens and irritants, hypersecretion of mucus is harmful for the host as it may cause airway obstruction and inhibit influx of antimicrobial agents. It has been reported that several antimicrobial agents have an immunomodulatory effect in vitro and in vivo, but little is known about whether tedizolid, a novel oxazolidinone, can modulate immune responses. In this study, we evaluated whether tedizolid can suppress MUC5AC production in human airway epithelial cells stimulated by methicillin-resistant Staphylococcus aureus (MRSA). Compared with the control, tedizolid significantly inhibited MUC5AC protein production and mRNA overexpression at concentrations of both 2 and 10 μg/mL (representative of trough and peak concentrations in human epithelial lining fluid). Among the mitogen-activated protein kinase inhibitors tested, only extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation was inhibited by tedizolid as indicated by western blot analysis. These results indicate that tedizolid inhibits the overproduction of MUC5AC protein by inhibiting phosphorylation of ERK1/2. This study revealed that tedizolid suppresses excessive mucin production in human airway epithelial cells. The immunomodulatory effect of tedizolid may improve outcomes in patients with severe respiratory infectious diseases caused by MRSA. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs.

    Science.gov (United States)

    Hieber, Simone E; Walther, Jens H; Koumoutsakos, Petros

    2004-01-01

    In computer aided surgery the accurate simulation of the mechanical behavior of human organs is essential for the development of surgical simulators. In this paper we introduce particle based simulations of two different human organ materials modeled as linear viscoelastic solids. The constitutive equations for the material behavior are discretized using a particle approach based on the Smoothed Particle Hydrodynamics (SPH) method while the body surface is tracked using level sets. A key aspect of this approach is its flexibility which allows the simulation of complex time varying topologies with large deformations. The accuracy of the original formulation is significantly enhanced by using a particle reinitialization technique resulting in remeshed Smoothed Particle Hydrodynamics (rSPH). The mechanical parameters of the systems used in the simulations are derived from experimental measurements on human cadaver organs. We compare the mechanical behavior of liver- and kidney-like materials based on the dynamic simulations of a tensile test case. Moreover, we present a particle based reconstruction of the liver topology and its strain distribution under a small local load. Finally, we demonstrate a unified formulation of fluid structure interaction based on particle methods.

  14. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    NARCIS (Netherlands)

    Larsen, J.M.; Steen-Jensen, D.B.; Laursen, J.M.; Sondergaard, J.N.; Musavian, H.S.; Butt, T.M.; Brix, S.

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties o

  15. Noise analysis and single-channel observations of 4 pS chloride channels in human airway epithelia.

    OpenAIRE

    Duszyk, M; French, A S; Man, S F

    1992-01-01

    Apical membranes of human airway epithelial cells have significant chloride permeability, which is reduced in cystic fibrosis (CF), causing abnormal electrochemistry and impaired mucociliary clearance. At least four types of chloride channels have been identified in these cells, but their relative roles in total permeability and CF are unclear. Noise analysis was used to measure the conductance of chloride channels in human nasal epithelial cells. The data indicate that channels with a mean c...

  16. Effect of guaifenesin on mucin production, rheology, and mucociliary transport in differentiated human airway epithelial cells.

    Science.gov (United States)

    Seagrave, JeanClare; Albrecht, Helmut; Park, Yong Sung; Rubin, Bruce; Solomon, Gail; Kim, K Chul

    2011-12-01

    Guaifenesin is widely used to alleviate symptoms of excessive mucus accumulation in the respiratory tract. However, its mechanism of action is poorly understood. The authors hypothesized that guaifenesin improves mucociliary clearance in humans by reducing mucin release, by decreasing mucus viscoelasticity, and by increasing mucociliary transport. To test these hypotheses, human differentiated airway epithelial cells, cultured at an air-liquid interface, were treated with clinically relevant concentrations of guaifenesin by addition to the basolateral medium. To evaluate the effect on mucin secretion, the authors used an anzyme-linked immunosorbent assay (ELISA) to measure the amounts of MUC5AC protein in apical surface fluid and cell lysates. To measure mucociliary transportability, additional cultures were treated for 1 or 6 hours with guaifenesin, and the movement of cell debris was measured from video data. Further, the authors measured mucus dynamic viscoelasticity using a micro cone and plate rheometer with nondestructive creep transformation. Guaifenesin suppressed mucin production in a dose-dependent manner at clinically relevant concentrations. The reduced mucin production was associated with increased mucociliary transport and decreased viscoelasticity of the mucus. Viability of the cultures was not significantly affected. These results suggest that guaifenesin could improve mucociliary clearance in humans by reducing the release and/or production of mucins, thereby altering mucus rheology.

  17. Feasibility of a 3D human airway epithelial model to study respiratory absorption.

    Science.gov (United States)

    Reus, Astrid A; Maas, Wilfred J M; Jansen, Harm T; Constant, Samuel; Staal, Yvonne C M; van Triel, Jos J; Kuper, C Frieke

    2014-03-01

    The respiratory route is an important portal for human exposure to a large variety of substances. Consequently, there is an urgent need for realistic in vitro strategies for evaluation of the absorption of airborne substances with regard to safety and efficacy assessment. The present study investigated feasibility of a 3D human airway epithelial model to study respiratory absorption, in particular to differentiate between low and high absorption of substances. Bronchial epithelial models (MucilAir™), cultured at the air-liquid interface, were exposed to eight radiolabeled model substances via the apical epithelial surface. Absorption was evaluated by measuring radioactivity in the apical compartment, the epithelial cells and the basolateral culture medium. Antipyrine, caffeine, naproxen and propranolol were highly transported across the epithelial cell layer (>5%), whereas atenolol, mannitol, PEG-400 and insulin were limitedly transported (absorption. The intra-experimental reproducibility of the results was considered adequate based on an average coefficient of variation (CV) of 15%. The inter-experimental reproducibility of highly absorbed compounds was in a similar range (CV of 15%), but this value was considerably higher for those compounds that were limitedly absorbed. No statistical significant differences between different donors and experiments were observed. The present study provides a simple method transposable in any lab, which can be used to rank the absorption of chemicals and pharmaceuticals, and is ready for further validation with respect to reproducibility and capacity of the method to predict respiratory transport in humans.

  18. Dung biomass smoke activates inflammatory signaling pathways in human small airway epithelial cells.

    Science.gov (United States)

    McCarthy, Claire E; Duffney, Parker F; Gelein, Robert; Thatcher, Thomas H; Elder, Alison; Phipps, Richard P; Sime, Patricia J

    2016-12-01

    Animal dung is a biomass fuel burned by vulnerable populations who cannot afford cleaner sources of energy, such as wood and gas, for cooking and heating their homes. Exposure to biomass smoke is the leading environmental risk for mortality, with over 4,000,000 deaths each year worldwide attributed to indoor air pollution from biomass smoke. Biomass smoke inhalation is epidemiologically associated with pulmonary diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and respiratory infections, especially in low and middle-income countries. Yet, few studies have examined the mechanisms of dung biomass smoke-induced inflammatory responses in human lung cells. Here, we tested the hypothesis that dung biomass smoke causes inflammatory responses in human lung cells through signaling pathways involved in acute and chronic lung inflammation. Primary human small airway epithelial cells (SAECs) were exposed to dung smoke at the air-liquid interface using a newly developed, automated, and reproducible dung biomass smoke generation system. The examination of inflammatory signaling showed that dung biomass smoke increased the production of several proinflammatory cytokines and enzymes in SAECs through activation of the activator protein (AP)-1 and arylhydrocarbon receptor (AhR) but not nuclear factor-κB (NF-κB) pathways. We propose that the inflammatory responses of lung cells exposed to dung biomass smoke contribute to the development of respiratory diseases.

  19. Effect of Nateglinide and Glibenclamide on Endothelial Cells and Smooth Muscle Cells from Human Coronary Arteries

    Directory of Open Access Journals (Sweden)

    Seeger H

    2004-01-01

    Full Text Available In the present work the effect of nateglinide and glibenclamide, two different substances used for therapy of diabetes mellitus type 2, were investigated on the synthesis of markers of endothelial function and on the proliferation of smooth muscle cells in vitro. As cell models endothelial and smooth muscle cells from human coronary arteries were used. Both substances were tested at concentrations of 0.1, 1 and 10 mmol/l. As markers of endothelial function prostacyclin, endothelin and plasminogen-activator-inhibitor-1 (PAI-1 were tested. Nateglinide and glibenclamide were similarly able to inhibit endothelial endothelin and PAI-1 synthesis, but only at the highest concentration tested. Endothelial prostacyclin synthesis and proliferation of smooth muscle cells were not significantly changed by both substances. These results indicate that both nateglinide and glibenclamide may have potential in reducing negative long-term effects of diabetes such as atherogenesis. Kurzfassung: Effekt von Nateglinid und Glibenclamid auf Endothel- und Muskelzellen humaner Koronararterien. In der vorliegenden Arbeit wurde die Wirkung von Nateglinid und Glibenclamid, zweier unterschiedlicher Substanzen zur Behandlung des Diabetes mellitus Typ 2, auf die Synthese von Markern der Endothelfunktion und auf die Proliferation glatter Muskelzellen untersucht. Als Zellmodell dienten Endothelzellen und glatte Muskelzellen menschlicher Koronararterien. Beide Substanzen wurden in den Konzentrationen 0,1, 1 und 10 mmol/l getestet. Als Marker der Endothelfunktion dienten Prostazyklin, Endothelin und Plasminogen-Aktivator-Inhibitor-1 (PAI-1. Sowohl Nateglinid als auch Glibenclamid konnten die endotheliale Endothelin- und PAI-1-Produktion in ähnlichem Ausmaß senken, allerdings nur in der höchsten Konzentration. Die Prostazyklinsynthese und die Muskelzellproliferation wurden nicht signifikant beeinflußt. Diese Ergebnisse deuten daraufhin, daß sowohl Nateglinid als auch

  20. Focal adhesion kinase antisense oligodeoxynucleotides inhibit human pulmonary artery smooth muscle cells proliferation and promote human pulmonary artery smooth muscle cells apoptosis

    Institute of Scientific and Technical Information of China (English)

    LIN Chun-long; ZHANG Zhen-xiang; XU Yong-jian; NI Wang; CHEN Shi-xin

    2005-01-01

    Background Pulmonary artery smooth muscle cell (PASMC) proliferation plays an important role in pulmonary vessel structural remodelling. At present, the mechanisms related to proliferation of PASMCs are not clear. Focal adhesion kinase (FAK) is a widely expressed nonreceptor protein tyrosine kinase. Recent research indicates that FAK is implicated in signalling pathways which regulate cytoskeletal organization, adhesion, migration, survival and proliferation of cells. Furthermore, there are no reports about the role of FAK in human pulmonary artery smooth muscle cells (HPASMCs). We investigated whether FAK takes part in the intracellular signalling pathway involved in HPASMCs proliferation and apoptosis, by using antisense oligodeoxynucleotides (ODNs) to selectively suppress the expression of FAK protein.Methods Cultured HPASMCs stimulated by fibronectin (40 μg/ml) were passively transfected with ODNs, sense FAK, mismatch sense and antisense-FAK respectively. Expression of FAK, Jun NH2-terminal kinase (JNK), cyclin-dependent kinase 2 (CDK 2) and caspase-3 proteins were detected by immunoprecipitation and Western blots. Cell cycle and cell apoptosis were analysed by flow cytometry. In addition, cytoplasmic FAK expression was detected by immunocytochemical staining.Results When compared with mismatch sense group, the protein expressions of FAK, JNK and CDK 2 in HPASMCs decreased in antisense-FAK ODNs group and increased in sense-FAK ODNs group significantly. Caspase-3 expression upregulated in HPASMCs when treated with antisense ODNs and downregulated when treated with sense ODNs. When compared with mismatch sense ODNs group, the proportion of cells at G1 phase decreased significantly in sense ODNs group, while the proportion of cells at S phase increased significantly. In contrast, compared with mismatch sense ODNs group, the proportion of cells at G1 phase was increased significantly in antisense-FAK ODNs group. The level of cell apoptosis in antisense-FAK group

  1. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    Science.gov (United States)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (Pmuscle cells is likely due to transient membrane disruption on initiation of flow.

  2. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    Science.gov (United States)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (Pmuscle cells is likely due to transient membrane disruption on initiation of flow.

  3. A Computational Study of the Respiratory Airflow Characteristics in Normal and Obstructed Human Airways

    Science.gov (United States)

    2014-01-01

    21 (1994) 119–136. [26] J.C. Hogg , P.T. Macklem, W.M. Thurlbeck, Site and nature of airway obstruction in chronic obstructive lung disease, N. Engl...Mayo, S.C. Lam, J.D. Cooper, J.C. Hogg , Small- airway obstruction and emphysema in chronic obstructive pulmonary disease, N. Engl. J. Med. 365 (2011

  4. The effect of inhaled menthol on upper airway resistance in humans: A randomized controlled crossover study

    Directory of Open Access Journals (Sweden)

    Effie J Pereira

    2013-01-01

    Full Text Available BACKGROUND: Menthol (l-menthol is a naturally-occurring cold receptor agonist commonly used to provide symptomatic relief for upper airway congestion. Menthol can also reduce the sensation of dyspnea. It is unclear whether the physiological action of menthol in dyspnea reduction is through its cold receptor agonist effect or whether associated mechanical changes occur in the upper airway.

  5. Effect of TGF-β1 on proliferation of airway smooth muscle cells in asthma rats%TGF-β1对哮喘大鼠气道平滑肌细胞增殖的影响研究

    Institute of Scientific and Technical Information of China (English)

    吴立琴; 戴元荣; 李凤琴; 王瑞丽; 曾潍贤

    2014-01-01

    Objective To investigate the effect of TGF- β1 on the proliferation of airway smooth muscle cells (ASMCs) in asthma rats. Methods Chronic asthma model was induced in rats and airway smooth muscle cells were isolated and cultured in vitro. The cultured ASMCs were divided into normal group, asthma group, TGF- β1 group and TGF- β1+PD- 98059 group. The cellproliferation was determined with CCK- 8 method and the expression of caveolin- 1 and p- ERK1/2 protein was detected with Western blot. Results The expression of p- ERK1/2 increased significantly in TGF- β1 group compared with other 3 groups (P<0.05), while the expression in TGF- β1+PD- 98059 group was higher than that in asthma group (P<0.05). The expression of caveolin- 1 in TGF- β1 group was lower than that in the normal group and asthma group as wel as in TGF- β1+PD- 98059 group (P<0.05). Conclusion TGF- β1 can down- regulate the expression of protein caveolin- 1 to activate the ERK pathway, thereby to promote the proliferation of airway smooth muscle cells, which final y causes airway remodeling.%目的:探究TGF-β1对哮喘大鼠气道平滑肌细胞(ASMC)增殖的影响,进一步揭示哮喘的发病机制。方法建立大鼠慢性哮喘模型,原代分离培养大鼠ASMC,将细胞分为正常组、哮喘组、TGF-β1组和TGF-β1+PD-98059组,以CCK-8法检测细胞增殖,Western blot法检测caveolin-1和p- ERK1/2蛋白表达。结果 TGF-β1组细胞增殖较正常组和哮喘组明显(均P<0.01);TGF-β1+PD-98059组细胞增殖较TGF-β1组减低,但较哮喘组仍明显(均P<0.05)。TGF-β1组p- ERK1/2表达量较正常组和哮喘组增加;TGF-β1+PD-98059组p- ERK1/2表达量较TGF-β1组减少,但较哮喘组表达量仍有所增加(均P<0.05)。TGF-β1组caveolin-1表达量较正常组和哮喘组减少(均P<0.05);TGF-β1+PD-98059组caveolin-1表达量较TGF-β1组增加(P<0.05)。结论 TGF-β1可以下调caveolin-1蛋白的表达量,

  6. Oxidative modification of high density lipoprotein induced by cultured human arterial smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    江渝; 刘红; 彭家和; 叶治家; 何凤田; 董燕麟; 刘秉文

    2003-01-01

    Objective: To observe the oxidative modification of high density lipoprotein (HDL) induced by cultured human arterial smooth muscle cells (SMCs). Methods: HDL cocultured with SMCs at 37℃ in 48 h was subjected, and native HDL (N-HDL) served as control. Oxidative modification of HDL was identified by using agarose gel electrophoresis. Absorbances of conjugated diene (CD) and lipid hydroperoxide (LOOH) were measured with ultraviolet spectrophotometry at 234 and 560 nm respectively, and fluorescence intensity of thiobarbuturic acid reaction substance (TBARS) with fluorescence spectrophotometry at 550 nm emission wavelength with excitation at 515 nm. Results: In comparison with N-HDL, the electrophoretic mobility of SMCs-cocultured HDL was increased, and the contents of CD, LOOH and TBARS HDL were very significantly higher than those of the control HDL (P<0.01). Conclusion: Oxidative modification of HDL can be induced by human arterial SMCs.

  7. Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application.

    Science.gov (United States)

    Sinha, Sanjay; Iyer, Dharini; Granata, Alessandra

    2014-06-01

    Vascular smooth muscle cells (SMCs) arise from multiple origins during development, raising the possibility that differences in embryological origins between SMCs could contribute to site-specific localization of vascular diseases. In this review, we first examine the developmental pathways and embryological origins of vascular SMCs and then discuss in vitro strategies for deriving SMCs from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We then review in detail the potential for vascular disease modeling using iPSC-derived SMCs and consider the pathological implications of heterogeneous embryonic origins. Finally, we touch upon the role of human ESC-derived SMCs in therapeutic revascularization and the challenges remaining before regenerative medicine using ESC- or iPSC-derived cells comes of age.

  8. Effect of the bifurcation angle on the flow within a synthetic model of lower human airways

    Science.gov (United States)

    Espinosa Moreno, Andres Santiago; Duque Daza, Carlos Alberto

    2016-11-01

    The effect of the bifurcation angle on the flow pattern developed during respiratory inhalation and exhalation processes was explored numerically using a synthetic model of lower human airways featuring three generations of a dichotomous morphology as described by a Weibel model. Laminar flow simulations were performed for six bifurcation angles and four Reynolds numbers relevant to human respiratory flow. Numerical results of the inhalation process showed a peak displacement trend of the velocity profile towards the inner walls of the model. This displacement exhibited correlation with Dean-type secondary flow patterns, as well as with the onset and location of vortices. High wall shear stress regions on the inner walls were observed for a range of bifurcation angles. Noteworthy, specific bifurcation angles produced higher values of pressure drop, compared to the average behavior, as well as changes in the volumetric flow through the branches. Results of the simulations for exhalation process showed a different picture, mainly the appearance of symmetrical velocity profiles and the change of location of the regions of high wall shear stress. The use of this modelling methodology for biomedical applications is discussed considering the validity of the obtained results. Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  9. Mometasone Furoate Suppresses PMA-Induced MUC-5AC and MUC-2 Production in Human Airway Epithelial Cells

    Science.gov (United States)

    Koontongkaew, Sittichai; Monthanapisut, Paopanga; Pattanacharoenchai, Napaporn

    2017-01-01

    Background Mucus hypersecretion from airway epithelium is a characteristic feature of airway inflammatory diseases. Tumor necrosis factor α (TNF-α) regulates mucin synthesis. Glucocorticoids including mometasone fuorate (MF) have been used to attenuate airway inflammation. However, effects of MF on mucin production have not been reported. Methods Effects of MF and budesonide (BUD) on the phorbol-12-myristate-13-acetate (PMA)–induction of mucin and TNF-α in human airway epithelial cells (NCI-H292) were investigated in the present study. Confluent NCI-H292 cells were pretreated with PMA (200 nM) for 2 hours. Subsequently, the cells were stimulated with MF (1–500 ng/mL) or BUD (21.5 ng/mL) for 8 hours. Dexamethasone (1 µg/mL) was used as the positive control. Real-time polymerase chain reaction was used to determine MUC2 and MUC5AC mRNA levels. The level of total mucin, MUC2, MUC5AC, and TNF-α in culture supernatants were measured using enzyme-linked immunosorbent assay. Results MF and BUD significantly suppressed MUC2 and MUC5AC gene expression in PMA-stimulated NCI-H292 cells. The inhibitory effects of the two steroid drugs were also observed in the production of total mucin, MUC2 and MUC5AC proteins, and TNF-α. Conclusion Our findings demonstrated that MF and BUD attenuated mucin and TNF-α production in PMA-induced human airway epithelial cells.

  10. Intracellular Ca(2+) remodeling during the phenotypic journey of human coronary smooth muscle cells.

    Science.gov (United States)

    Muñoz, Eva; Hernández-Morales, Miriam; Sobradillo, Diego; Rocher, Asunción; Núñez, Lucía; Villalobos, Carlos

    2013-11-01

    Vascular smooth muscle cells undergo phenotypic switches after damage which may contribute to proliferative disorders of the vessel wall. This process has been related to remodeling of Ca(2+) channels. We have tested the ability of cultured human coronary artery smooth muscle cells (hCASMCs) to return from a proliferative to a quiescent behavior and the contribution of intracellular Ca(2+) remodeling to the process. We found that cultured, early passage hCASMCs showed a high proliferation rate, sustained increases in cytosolic [Ca(2+)] in response to angiotensin II, residual voltage-operated Ca(2+) entry, increased Stim1 and enhanced store-operated currents. Non-steroidal anti-inflammatory drugs inhibited store-operated Ca(2+) entry and abolished cell proliferation in a mitochondria-dependent manner. After a few passages, hCASMCs turned to a quiescent phenotype characterized by lack of proliferation, oscillatory Ca(2+) response to angiotensin II, increased Ca(2+) store content, enhanced voltage-operated Ca(2+) entry and Cav1.2 expression, and decreases in Stim1, store-operated current and store-operated Ca(2+) entry. We conclude that proliferating hCASMCs return to quiescence and this switch is associated to a remodeling of Ca(2+) channels and their control by subcellular organelles, thus providing a window of opportunity for targeting phenotype-specific Ca(2+) channels involved in proliferation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Alpha-smooth muscle actin expression and structure integrity in chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Hung, Shih-Chieh; Kuo, Pei-Yin; Chang, Ching-Fang; Chen, Tain-Hsiung; Ho, Larry Low-Tone

    2006-06-01

    The expression of alpha-smooth muscle actin (SMA) by human mesenchymal stem cells (hMSCs) during chondrogenesis was investigated by the use of pellet culture. Undifferentiated hMSCs expressed low but detectable amounts of SMA and the addition of transforming growth factor beta1 (TGF-beta1) to the culture medium increased SMA expression in a dose-dependent manner. Differentiation in pellet culture was rapidly induced in the presence of TGF-beta1 and was accompanied by the development of annular layers at the surface of the pellet. These peripheral layers lacked expression of glycosaminoglycan and type II collagen during early differentiation. Progress in differentiation increased the synthesis of glycosaminoglycan and type II collagen and the expression of SMA in these layers. Double-staining for type II collagen and SMA by immunofluorescence demonstrated the differentiation of hMSCs into cells positive for these two proteins. The addition of cytochalasin D, a potent inhibitor of the polymerization of actin microfilaments, caused damage to the structural integrity and surface smoothness of the chondrogenic pellets. The SMA-positive cells in the peripheral layers of the chondrogenic pellets mimic those within the superficial layer of articular cartilage and are speculated to play a major role in cartilage development and maintenance.

  12. beta. -Adrenoceptors in human tracheal smooth muscle: characteristics of binding and relaxation

    Energy Technology Data Exchange (ETDEWEB)

    van Koppen, C.J.; Hermanussen, M.W.; Verrijp, K.N.; Rodrigues de Miranda, J.F.; Beld, A.J.; Lammers, J.W.J.; van Ginneken, C.A.M.

    1987-06-29

    Specific binding of (/sup 125/I)-(-)-cyanopindolol to human tracheal smooth muscle membranes was saturable, stereo-selective and of high affinity (K/sub d/ = 5.3 +/- 0.9 pmol/l and R/sub T/ = 78 +/- 7 fmol/g tissue). The ..beta../sub 1/-selective antagonists atenolol and LK 203-030 inhibited specific (/sup 125/I)-(-)-cyanopindolol binding according to a one binding site model with low affinity in nearly all subjects, pointing to a homogeneous BETA/sub 2/-adrenoceptor population. In one subject using LK 203-030 a small ..beta../sub 1/-adrenoceptor subpopulation could be demonstrated. The beta-mimetics isoprenaline, fenoterol, salbutamol and terbutaline recognized high and low affinity agonist binding sites. Isoprenaline's pK/sub H/- and pK/sub L/-values for the high and low affinity sites were 8.0 +/- 0.2 and 5.9 +/- 0.3 respectively. In functional experiments isoprenaline relaxed tracheal smooth muscle strips having intrinsic tone with a pD/sub 2/-value of 6.63 +/- 0.19. 32 references, 4 figures, 2 tables.

  13. Co-cultivation of human aortic smooth muscle cells with epicardial adipocytes affects their proliferation rate.

    Science.gov (United States)

    Ždychová, J; Čejková, S; Králová Lesná, I; Králová, A; Malušková, J; Janoušek, L; Kazdová, L

    2014-01-01

    The abnormal proliferation of vascular smooth muscle cells (VSMC) is thought to play a role in the pathogenesis of atherosclerosis. Adipocytes produce several bioactive paracrine substances that can affect the growth and migration of VSMCs. Our study focuses on the direct effect of the bioactive substances in conditioned media (CM) that was obtained by incubation with primary adipocyte-derived cell lines, including cell lines derived from both preadipocytes and from more mature cells, on the proliferation rate of human aortic smooth muscle cells (HAoSMCs). We used a Luminex assay to measure the adipokine content of the CM and showed that there was a higher concentration of monocyte chemoattractant protein-1 in renal preadipocyte-CM compared with the HAoSMC control (p<0.5). The addition of both renal preadipocyte- and epicardial adipocyte- CM resulted in the elevated production of vascular endothelial growth factor compared with the control HASoSMC CM (p<0.001). The adiponectin content in renal adipocyte-CM was increased compared to all the remaining adipocyte-CM (p<0.01). Moreover, the results showed a higher proliferation rate of HAoSMCs after co-culture with epicardial adipocyte-CM compared to the HAoSMC control (p<0.05). These results suggest that bioactive substances produced by adipocytes have a stimulatory effect on the proliferation of VSMCs.

  14. 感觉神经肽P物质对气道平滑肌细胞收缩幅度的影响%The effect of neuropeptide substance P on airway smooth muscle cell contraction amplitude

    Institute of Scientific and Technical Information of China (English)

    李淼; 尚云晓

    2016-01-01

    Objective To investigate the effect of neuropeptide substance P on airway smooth muscle cell contraction amplitude.Methods According to random method, 10 Wistar rats were divided into normal group and asthmatic group.By inhaled OVA to make asthmatic rat model;primary culture ASMC;confocal microscopy were used to observe the morphological changes and measure the length before and after different intervention.The percent of contraction length come from different group ASMC were used for statistical analysis.Results The ASMCs volume in acetylcholine intervented group and substance P intervented group decreased significantly,cell diameters shorten, cytoplasm reduction and cell arranged densely.The ASMCs volume in substance P receptor antagonist intervented group and nimodipine intervented group are about the same size as the ones in normal control group, were spindle-shaped, abundant cytoplasm and arrangement regularly.The contraction length percent of Ach intervened group is the biggest(19.60 ± 3.47) %, contraction length percent of nimodiping intervented group is the shortest(3.25 ± 1.14)% ,the contraction length percent in substance Precepter antagonist intervented group is bigger than the one in control group (3.54 ± 1.26) %, but less than the one in Ach intervented group, asthmatic (14.36 ± 2.37) % and substance P intervened group (17.79 ± 3.19) %.Conclusion Substance P can increase the amplitude of airway smooth muscle cell contraction, but the effect less than Ach;substance P receptor antagonists can inhibit smooth muscle cell contractility, but the effect less than nimodipine.Substance P participates in acute attack of asthma, increases airway reactivity by increasing airway smooth muscle contraction intensity.%目的 探讨感觉神经肽P物质对气道平滑肌细胞(airway smooth muscle cell,ASMC)收缩幅度的影响.方法 将10只Wistar大鼠按照随机分组原则分成正常对照组及哮喘模型组,卵蛋白吸入法制作哮喘大

  15. Prostaglandin E2 inhibits mast cell-dependent bronchoconstriction in human small airways through the E prostanoid subtype 2 receptor.

    Science.gov (United States)

    Säfholm, Jesper; Manson, Martijn L; Bood, Johan; Delin, Ingrid; Orre, Ann-Charlotte; Bergman, Per; Al-Ameri, Mamdoh; Dahlén, Sven-Erik; Adner, Mikael

    2015-11-01

    Inhaled prostaglandin (PG) E2 might inhibit asthmatic responses, but the mechanisms involved remain undefined. We sought to characterize the direct and indirect effects of PGE2 on human small airways with particular reference to the receptors mediating the responses. Contraction and relaxation were studied in isolated human bronchi with an inner diameter of 1 mm or less. Low concentrations of PGE2 (0.01-1 μmol/L) relaxed the bronchi precontracted by histamine. The bronchodilator response was inhibited by the E prostanoid (EP) subtype 4 receptor antagonist ONO-AE3-208 but unaffected by the EP2 receptor antagonist PF-04418948. Higher concentrations of PGE2 (10-100 μmol/L) contracted the small airways. However, the TP receptor agonists U-46,619, PGF2α, and PGD2 were more potent than PGE2. Moreover, the bronchoconstrictor responses to PGE2 and all other tested prostanoids, including the EP1/EP3 receptor agonist 17-phenyl trinor PGE2 and the partial FP receptor agonist AL-8810, were uniformly abolished by the TP receptor antagonist SQ-29,548. In the presence of TP and EP4 antagonists, PGE2 inhibited the mast cell-mediated bronchoconstriction resulting from anti-IgE challenge. Measurement of the release of histamine and cysteinyl leukotrienes documented that this bronchoprotective action of PGE2 was mediated by the EP2 receptor, unrelated to bronchodilation, and increased with time of exposure. The pharmacology of PGE2 in isolated human small airways was different from its profile in animal models. This first demonstration of powerful EP2 receptor-mediated inhibition of IgE-dependent contractions in human airways introduces a new selective target for the treatment of asthma. This EP2 control of mast cell-mediated bronchoconstriction is presumably exaggerated in patients with aspirin-exacerbated respiratory disease. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    Science.gov (United States)

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  17. Pleiotropic effects of statins in distal human pulmonary artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Butrous Ghazwan S

    2011-10-01

    Full Text Available Abstract Background Recent clinical data suggest statins have transient but significant effects in patients with pulmonary arterial hypertension. In this study we explored the molecular effects of statins on distal human pulmonary artery smooth muscle cells (PASMCs and their relevance to proliferation and apoptosis in pulmonary arterial hypertension. Methods Primary distal human PASMCs from patients and controls were treated with lipophilic (simvastatin, atorvastatin, mevastatin and fluvastatin, lipophobic (pravastatin and nitric-oxide releasing statins and studied in terms of their DNA synthesis, proliferation, apoptosis, matrix metalloproteinase-9 and endothelin-1 release. Results Treatment of human PASMCs with selected statins inhibited DNA synthesis, proliferation and matrix metalloproteinase-9 production in a concentration-dependent manner. Statins differed in their effectiveness, the rank order of anti-mitogenic potency being simvastatin > atorvastatin > > pravastatin. Nevertheless, a novel nitric oxide-releasing derivative of pravastatin (NCX 6550 was effective. Lipophilic statins, such as simvastatin, also enhanced the anti-proliferative effects of iloprost and sildenafil, promoted apoptosis and inhibited the release of the mitogen and survival factor endothelin-1. These effects were reversed by mevalonate and the isoprenoid intermediate geranylgeranylpyrophosphate and were mimicked by inhibitors of the Rho and Rho-kinase. Conclusions Lipophilic statins exert direct effects on distal human PASMCs and are likely to involve inhibition of Rho GTPase signalling. These findings compliment some of the recently documented effects in patients with pulmonary arterial hypertension.

  18. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Juliane Brun

    Full Text Available The use of mesenchymal stromal cells (MSCs differentiated toward a smooth muscle cell (SMC phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2, transgelin (TAGLN, calponin (CNN1, and smooth muscle myosin heavy chain (SM-MHC; MYH11 according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion

  19. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells

    Science.gov (United States)

    Brun, Juliane; Lutz, Katrin A.; Neumayer, Katharina M. H.; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K.; Hart, Melanie L.

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1–2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  20. Modeling the bifurcating flow in a CT-scanned human lung airway.

    Science.gov (United States)

    Luo, H Y; Liu, Y

    2008-08-28

    The inspiratory flow characteristics in a CT-scanned human lung model were numerically investigated using low Reynolds number (LRN) kappa-omega turbulent model. The five-generation airway is extracted from the trachea to segmental bronchi of a 60-year-old Chinese male patient. Computations were carried out in the Reynolds number range of 900-2100, corresponding to mouth-air breathing rates of 190-440 ml/s. Flow patterns on the Re=2100 and flow rate distribution were presented. In this model, the flow pattern is very complex. To count the effect of laryngeal jet on trachea inlet, the trachea was extended and modified to simulate the larynx, consequently the inlet velocity profile is biased towards the rear wall. In the inferior lobar bronchi, there are two stems in which the axial velocity is stronger but secondary velocity is weaker. Secondary flow in the lateral bronchi is stronger than the medial ones. With increasing Re, the air flow increases in the middle, inferior lobes and left main bronchus, i.e., flow biases to left and downward.

  1. Response of Differentiated Human Airway Epithelia to Alcohol Exposure and Klebsiella pneumoniae Challenge

    Directory of Open Access Journals (Sweden)

    Sammeta V. Raju

    2013-07-01

    Full Text Available Alcohol abuse has been associated with increased susceptibility to pulmonary infection. It is not fully defined how alcohol contributes to the host defense compromise. Here primary human airway epithelial cells were cultured at an air-liquid interface to form a differentiated and polarized epithelium. This unique culture model allowed us to closely mimic lung infection in the context of alcohol abuse by basolateral alcohol exposure and apical live bacterial challenge. Application of clinically relevant concentrations of alcohol for 24 h did not significantly alter epithelial integrity or barrier function. When apically challenged with viable Klebsiella pneumoniae, the cultured epithelia had an enhanced tightness which was unaffected by alcohol. Further, alcohol enhanced apical bacterial growth, but not bacterial binding to the cells. The cultured epithelium in the absence of any treatment or stimulation had a base-level IL-6 and IL-8 secretion. Apical bacterial challenge significantly elevated the basolateral secretion of inflammatory cytokines including IL-2, IL-4, IL-6, IL-8, IFN-γ, GM-CSF, and TNF-α. However, alcohol suppressed the observed cytokine burst in response to infection. Addition of adenosine receptor agonists negated the suppression of IL-6 and TNF-α. Thus, acute alcohol alters the epithelial cytokine response to infection, which can be partially mitigated by adenosine receptor agonists.

  2. Establishment and transformation of telomerase-immortalized human small airway epithelial cells by heavy ions

    Science.gov (United States)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.

  3. Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells.

    Science.gov (United States)

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N; Davis, Ian C; Knoell, Daren L; Parinandi, Narasimham L; Cormet-Boyaka, Estelle

    2010-07-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function.

  4. Numerical Investigation of Flow Characteristics in the Obstructed Realistic Human Upper Airway

    Directory of Open Access Journals (Sweden)

    Xingli Liu

    2016-01-01

    Full Text Available The flow characteristics in the realistic human upper airway (HUA with obstruction that resulted from pharyngeal collapse were numerically investigated. The 3D anatomically accurate HUA model was reconstructed from CT-scan images of a Chinese male patient (38 years, BMI 25.7. The computational fluid dynamics (CFD with the large eddy simulation (LES method was applied to simulate the airflow dynamics within the HUA model in both inspiration and expiration processes. The laser Doppler anemometry (LDA technique was simultaneously adopted to measure the airflow fields in the HUA model for the purpose of testifying the reliability of LES approach. In the simulations, the representative respiration intensities of 16.8 L/min (slight breathing, 30 L/min (moderate breathing, and 60 L/min (severe breathing were conducted under continuous inspiration and expiration conditions. The airflow velocity field and static pressure field were obtained and discussed in detail. The results indicated the airflow experiences unsteady transitional/turbulent flow in the HUA model under low Reynolds number. The airflow fields cause occurrence of forceful injection phenomenon due to the narrowing of pharynx caused by the respiratory illness in inspiration and expiration. There also exist strong flow separation and back flow inside obstructed HUA owing to the vigorous jet flow effect in the pharynx. The present results would provide theoretical guidance for the treatment of obstructive respiratory disease.

  5. Human Airway Primary Epithelial Cells Show Distinct Architectures on Membrane Supports Under Different Culture Conditions.

    Science.gov (United States)

    Min, Kyoung Ah; Rosania, Gus R; Shin, Meong Cheol

    2016-06-01

    To facilitate drug development for lung delivery, it is highly demanding to establish appropriate airway epithelial cell models as transport barriers to evaluate pharmacokinetic profiles of drug molecules. Besides the cancer-derived cell lines, as the primary cell model, normal human bronchial epithelial (NHBE) cells have been used for drug screenings because of physiological relevance to in vivo. Therefore, to accurately interpret drug transport data in NHBE measured by different laboratories, it is important to know biophysical characteristics of NHBE grown on membranes in different culture conditions. In this study, NHBE was grown on the polyester membrane in a different medium and its transport barrier properties as well as cell architectures were fully characterized by functional assays and confocal imaging throughout the days of cultures. Moreover, NHBE cells on inserts in a different medium were subject to either of air-interfaced culture (AIC) or liquid-covered culture (LCC) condition. Cells in the AIC condition were cultivated on the membrane with medium in the basolateral side only, whereas cells with medium in apical and basolateral sides under the LCC condition. Quantitative microscopic imaging with biophysical examination revealed distinct multilayered architectures of differentiated NHBE cells, suggesting NHBE as functional cell barriers for the lung-targeting drug transport.

  6. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells.

    Science.gov (United States)

    Ghio, Andrew J; Dailey, Lisa A; Richards, Judy H; Jang, Myoseon

    2009-07-01

    Numerous industrial applications for man-made nanoparticles have been proposed. Interactions of nanoparticles with agents in the atmosphere may impact human health. We tested the postulate that in vitro exposures of respiratory epithelial cells to airborne magnetic nanoparticles (MNP; Fe(3)O(4)) with and without a secondary organic aerosol (SOA) and an inorganic acid could affect iron homeostasis, oxidative stress, and interleukin (IL)-8 release. Cell iron concentrations were increased after exposures to MNP and values were further elevated with co-exposures to either SOA or inorganic acid. Increased expression of ferritin and elevated levels of RNA for DMT1, proteins for iron storage and transport respectively, followed MNP exposures, but values were significant for only those with co-exposures to inorganic acid and organic aerosols. Cell iron concentration corresponded to a measure of oxidative stress in the airway epithelial cells; MNP with co-exposures to SOA and inorganic acid increased both available metal and indices of oxidant generation. Finally, the release of a proinflammatory cytokine (i.e. IL-8) by the exposed cells similarly increased with cell iron concentration. We conclude that MNP can interact with a SOA and an inorganic acid to present metal in a catalytically reactive state to cultured respiratory cells. This produces an oxidative stress to affect a release of IL-8.

  7. The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway.

    Science.gov (United States)

    Owens, Robert L; Edwards, Bradley A; Sands, Scott A; Butler, James P; Eckert, Danny J; White, David P; Malhotra, Atul; Wellman, Andrew

    2014-04-15

    The upper airway is often modeled as a classical Starling resistor, featuring a constant inspiratory airflow, or plateau, over a range of downstream pressures. However, airflow tracings from clinical sleep studies often show an initial peak before the plateau. To conform to the Starling model, the initial peak must be of small magnitude or dismissed as a transient. We developed a method to simulate fast or slow inspirations through the human upper airway, to test the hypothesis that this initial peak is a transient. Eight subjects [4 obstructive sleep apnea (OSA), 4 controls] slept in an "iron lung" and wore a nasal mask connected to a continuous/bilevel positive airway pressure machine. Downstream pressure was measured using an epiglottic catheter. During non-rapid eye movement (NREM) sleep, subjects were hyperventilated to produce a central apnea, then extrathoracic pressure was decreased slowly (∼2-4 s) or abruptly (<0.5 s) to lower downstream pressure and create inspiratory airflow. Pressure-flow curves were constructed for flow-limited breaths, and slow vs. fast reductions in downstream pressure were compared. All subjects exhibited an initial peak and then a decrease in flow with more negative pressures, demonstrating negative effort dependence (NED). The rate of change in downstream pressure did not affect the peak to plateau airflow ratio: %NED 22 ± 13% (slow) vs. 20 ± 5% (fast), P = not significant. We conclude that the initial peak in inspiratory airflow is not a transient but rather a distinct mechanical property of the upper airway. In contrast to the classical Starling resistor model, the upper airway exhibits marked NED in some subjects.

  8. Smooth-muscle-like cells derived from human embryonic stem cells support and augment cord-like structures in vitro.

    Science.gov (United States)

    Vo, Elaine; Hanjaya-Putra, Donny; Zha, Yuanting; Kusuma, Sravanti; Gerecht, Sharon

    2010-06-01

    Engineering vascularized tissue is crucial for its successful implantation, survival, and integration with the host tissue. Vascular smooth muscle cells (v-SMCs) provide physical support to the vasculature and aid in maintaining endothelial viability. In this study, we show an efficient derivation of v-SMCs from human embryonic stem cells (hESCs), and demonstrate their functionality and ability to support the vasculature in vitro. Human ESCs were differentiated in monolayers and supplemented with platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-beta 1 (TGF-beta1). Human ESC-derived smooth-muscle-like cells (SMLCs) were found to highly express specific smooth muscle cell (SMC) markers--including alpha-smooth muscle actin, calponin, SM22, and smooth muscle myosin heavy chain--to produce and secrete fibronectin and collagen, and to contract in response to carbachol. In vitro tubulogenesis assays revealed that these hESC-derived SMLCs interacted with human endothelial progenitor cell (EPCs) to form longer and thicker cord-like structures in vitro. We have demonstrated a simple protocol for the efficient derivation of highly purified SMLCs from hESCs. These in vitro functional SMLCs interacted with EPCs to support and augment capillary-like structures (CLSs), demonstrating the potential of hESCs as a cell source for therapeutic vascular tissue engineering.

  9. ATP induced MUC5AC release from human airways in vitro

    Directory of Open Access Journals (Sweden)

    Patricia Roger

    2000-01-01

    Full Text Available Background: Chronic airway diseases are often associated with marked mucus production, however, little is known about the regulation of secretory activity by locally released endogenous mediators.

  10. [mRNA-binding protein Human-antigen R regulates α-SMA expression in human bronchia smooth muscle cells].

    Science.gov (United States)

    Yan, Di; Gu, Xianmin; Jiang, Shujuan; Wang, Yuhong

    2015-10-13

    To investigate the role of mRNA binding protein Human-antigen R (HuR) in the over-expression of α-Smooth muscle actin (α-SMA) stimulated by Platelet-derived Growth Factor (PDGF) in cultured human bronchia smooth muscle cells. Human bronchia smooth muscle cells cultured in vitro were divided into 0, 6, 12 and 24 h groups according to the time of PDGF treatment. Total HuR protein and total α-SMA protein expression were detected by Western blot. Total HuR mRNA and total α-SMA mRNA level were determined by quantitative real time-polymerase chain reaction. RNA interference technology was used to down-regulate HuR protein level to study the protective effect of HuR in PDGF-stimulated α-SMA protein expression. PDGF up-regulated the expression of HuR in a time-dependent manner. The relative expression levels of whole-cell HuR protein and mRNA in 0, 6, 12, 24 h groups were 0.23±0.09, 0.42±0.11, 0.93±0.21, 1.37±0.28; 1.00±0.00, 1.09±0.03, 1.16±0.03, 1.27±0.02 (all PSMA protein and mRNA in 0, 6, 12, 24 h group also showed an increase trend marked in a time-dependent manner (1.03±0.08, 1.20±0.09, 1.39±0.11, 1.58±0.10; 1.00±0.00, 1.17±0.02, 1.23±0.02, 1.45±0.03; all PSMA protein expression. PDGF stimulation can increase the expression of HuR and α-SMA in the smooth muscle cells, and HuR protein is involved in the expression of α-SMA protein stimulated by PDGF.

  11. Oxidized low density lipoprotein (LDL) affects hyaluronan synthesis in human aortic smooth muscle cells.

    Science.gov (United States)

    Viola, Manuela; Bartolini, Barbara; Vigetti, Davide; Karousou, Evgenia; Moretto, Paola; Deleonibus, Sara; Sawamura, Tatsuya; Wight, Thomas N; Hascall, Vincent C; De Luca, Giancarlo; Passi, Alberto

    2013-10-11

    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20-50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL.

  12. Effects of menthol on circular smooth muscle of human colon: analysis of the mechanism of action.

    Science.gov (United States)

    Amato, Antonella; Liotta, Rosa; Mulè, Flavia

    2014-10-05

    Menthol is the major constituent of peppermint oil, an herbal preparation commonly used to treat nausea, spasms during colonoscopy and irritable bowel disease. The mechanism responsible for its spasmolytic action remains unclear. The aims of this study were to investigate the effects induced by menthol on the human distal colon mechanical activity in vitro and to analyze the mechanism of action. The spontaneous or evoked-contractions of the circular smooth muscle were recorded using vertical organ bath. Menthol (0.1 mM-30 mM) reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions without affecting the frequency and the resting basal tone. The inhibitory effect was not affected by 5-benzyloxytryptamine (1 μM), a transient receptor potential-melastatin8 channel antagonist, or tetrodotoxin (1 μM), a neural blocker, or 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (10 µM), inhibitor of nitric oxide (NO)-sensitive soluble guanylyl cyclase, or tetraethylammonium (10 mM), a blocker of potassium (K+)-channels. On the contrary, nifedipine (3 nM), a voltage-activated L-type Ca2+ channel blocker, significantly reduced the inhibitory menthol actions. Menthol also reduced in a concentration-dependent manner the contractile responses caused by exogenous application of Ca2+ (75-375 μM) in a Ca2+-free solution, or induced by potassium chloride (KCl; 40 mM). Moreover menthol (1-3 mM) strongly reduced the electrical field stimulation (EFS)-evoked atropine-sensitive contractions and the carbachol-contractile responses. The present results suggest that menthol induces spasmolytic effects in human colon circular muscle inhibiting directly the gastrointestinal smooth muscle contractility, through the block of Ca2+ influx through sarcolemma L-type Ca2+ channels.

  13. Effect of dexamethasone on voltage-gated Na+ channel in cultured human bronchial smooth muscle cells.

    Science.gov (United States)

    Nakajima, Toshiaki; Jo, Taisuke; Meguro, Kentaro; Oonuma, Hitoshi; Ma, Ji; Kubota, Nami; Imuta, Hiroyuki; Takano, Haruhito; Iida, Haruko; Nagase, Takahide; Nagata, Taiji

    2008-06-06

    Voltage-gated Na(+) channel (I(Na)) encoded by SCN9A mRNA is expressed in cultured human bronchial smooth muscle cells. We investigated the effects of dexamethasone on I(Na), by using whole-cell voltage clamp techniques, reverse transcriptase/polymerase chain reaction (RT-PCR), and quantitative real-time RT-PCR. Acute application of dexamethasone (10(-6) M) did not affect I(Na). However, the percentage of the cells with I(Na) was significantly less in cells pretreated with dexamethasone for 48 h, and the current-density of I(Na) adjusted by cell capacitance in cells with I(Na) was also decreased in cells treated with dexamethasone. RT-PCR analysis showed that alpha and beta subunits mRNA of I(Na) mainly consisted of SCN9A and SCN1beta, respectively. Treatment with dexamethasone for 24-48 h inhibited the expression of SCN9A mRNA. The inhibitory effect of dexamethasone was concentration-dependent, and was observed at a concentration higher than 0.1 nM. The effect of dexamethasone on SCN9A mRNA was not blocked by spironolactone, but inhibited by mifepristone. The inhibitory effects of dexamethasone on SCN9A mRNA could not be explained by the changes of the stabilization of mRNA measured by using actinomycin D. These results suggest that dexamethasone inhibited I(Na) encoded by SCN9A mRNA in cultured human bronchial smooth muscle cells by inhibiting the transcription via the glucocorticoid receptor.

  14. TGF-β-activated kinase 1 (TAK1 signaling regulates TGF-β-induced WNT-5A expression in airway smooth muscle cells via Sp1 and β-catenin.

    Directory of Open Access Journals (Sweden)

    Kuldeep Kumawat

    Full Text Available WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth muscle cells and demonstrated its function as a mediator of airway remodeling. Here, we investigated the molecular mechanisms underlying TGF-β-induced WNT-5A expression. We show that TGF-β-activated kinase 1 (TAK1 is a critical mediator of WNT-5A expression as its pharmacological inhibition or siRNA-mediated silencing reduced TGF-β induction of WNT-5A. Furthermore, we show that TAK1 engages p38 and c-Jun N-terminal kinase (JNK signaling which redundantly participates in WNT-5A induction as only simultaneous, but not individual, inhibition of p38 and JNK suppressed TGF-β-induced WNT-5A expression. Remarkably, we demonstrate a central role of β-catenin in TGF-β-induced WNT-5A expression. Regulated by TAK1, β-catenin is required for WNT-5A induction as its silencing repressed WNT-5A expression whereas a constitutively active mutant augmented basal WNT-5A abundance. Furthermore, we identify Sp1 as the transcription factor for WNT-5A and demonstrate its interaction with β-catenin. We discover that Sp1 is recruited to the WNT-5A promoter in a TGF-β-induced and TAK1-regulated manner. Collectively, our findings describe a TAK1-dependent, β-catenin- and Sp1-mediated signaling cascade activated downstream of TGF-β which regulates WNT-5A induction.

  15. LES of Laminar-to-Turbulent Particle-Fluid Dynamics in Human and Nonhuman Primate Airways: Applications to Aerosolized Drug Delivery Animal Testing

    Science.gov (United States)

    Geisler, Taylor; Padhy, Sourav; Shaqfeh, Eric; Iaccarino, Gianluca

    2016-11-01

    Both the human health benefit and risk from the inhalation of aerosolized medications is often predicted by extrapolating experimental data taken using nonhuman primates to human inhalation. In this study, we employ Large Eddy Simulation to simulate particle-fluid dynamics in realistic upper airway models of both humans and rhesus monkeys. We report laminar-to-turbulent flow transitions triggered by constrictions in the upper trachea and the persistence of unsteadiness into the low Reynolds number bifurcating lower airway. Micro-particle deposition fraction and locations are shown to depend significantly on particle size. In particular, particle filtration in the nasal airways is shown to approach unity for large aerosols (8 microns) or high-rate breathing. We validate the accuracy of LES mean flow predictions using MRV imaging results. Additionally, particle deposition fractions are validated against experiments in 3 model airways.

  16. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases

    Directory of Open Access Journals (Sweden)

    Adil Aldhahrani

    2017-03-01

    Full Text Available Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B. The immortalised human bronchial epithelial cell line (BEAS-2B was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL-8, IL-6 and granulocyte−macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L−1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L−1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo. This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury.

  17. A confocal microscopic study of solitary pulmonary neuroendocrine cells in human airway epithelium

    Directory of Open Access Journals (Sweden)

    Sparrow Malcolm P

    2005-10-01

    Full Text Available Abstract Background Pulmonary neuroendocrine cells (PNEC are specialized epithelial cells that are thought to play important roles in lung development and airway function. PNEC occur either singly or in clusters called neuroepithelial bodies. Our aim was to characterize the three dimensional morphology of PNEC, their distribution, and their relationship to the epithelial nerves in whole mounts of adult human bronchi using confocal microscopy. Methods Bronchi were resected from non-diseased portions of a lobe of human lung obtained from 8 thoracotomy patients (Table 1 undergoing surgery for the removal of lung tumors. Whole mounts were stained with antibodies to reveal all nerves (PGP 9.5, sensory nerves (calcitonin gene related peptide, CGRP, and PNEC (PGP 9.5, CGRP and gastrin releasing peptide, GRP. The analysis and rendition of the resulting three-dimensional data sets, including side-projections, was performed using NIH-Image software. Images were colorized and super-imposed using Adobe Photoshop. Results PNEC were abundant but not homogenously distributed within the epithelium, with densities ranging from 65/mm2 to denser patches of 250/mm2, depending on the individual wholemount. Rotation of 3-D images revealed a complex morphology; flask-like with the cell body near the basement membrane and a thick stem extending to the lumen. Long processes issued laterally from its base, some lumenal and others with feet-like processes. Calcitonin gene-related peptide (CGRP was present in about 20% of PNEC, mainly in the processes. CGRP-positive nerves were sparse, with some associated with the apical part of the PNEC. Conclusion Our 3D-data demonstrates that PNEC are numerous and exhibit a heterogeneous peptide content suggesting an active and diverse PNEC population.

  18. Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.

    Science.gov (United States)

    Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V

    2012-06-01

    The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.

  19. Phosphodiesterase type 4 expression and anti-proliferative effects in human pulmonary artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Afzal Saliha

    2006-01-01

    Full Text Available Abstract Background Pulmonary arterial hypertension is a proliferative vascular disease, characterized by aberrant regulation of smooth muscle cell proliferation and apoptosis in distal pulmonary arteries. Prostacyclin (PGI2 analogues have anti-proliferative effects on distal human pulmonary artery smooth muscle cells (PASMCs, which are dependent on intracellular cAMP stimulation. We therefore sought to investigate the involvement of the main cAMP-specific enzymes, phosphodiesterase type 4 (PDE4, responsible for cAMP hydrolysis. Methods Distal human PASMCs were derived from pulmonary arteries by explant culture (n = 14, passage 3–12. Responses to platelet-derived growth factor-BB (5–10 ng/ml, serum, PGI2 analogues (cicaprost, iloprost and PDE4 inhibitors (roflumilast, rolipram, cilomilast were determined by measuring cAMP phosphodiesterase activity, intracellular cAMP levels, DNA synthesis, apoptosis (as measured by DNA fragmentation and nuclear condensation and matrix metalloproteinase-2 and -9 (MMP-2, MMP-9 production. Results Expression of all four PDE4A-D genes was detected in PASMC isolates. PDE4 contributed to the main proportion (35.9 ± 2.3%, n = 5 of cAMP-specific hydrolytic activity demonstrated in PASMCs, compared to PDE3 (21.5 ± 2.5%, PDE2 (15.8 ± 3.4% or PDE1 activity (14.5 ± 4.2%. Intracellular cAMP levels were increased by PGI2 analogues and further elevated in cells co-treated with roflumilast, rolipram and cilomilast. DNA synthesis was attenuated by 1 μM roflumilast (49 ± 6% inhibition, rolipram (37 ± 6% and cilomilast (30 ± 4% and, in the presence of 5 nM cicaprost, these compounds exhibited EC50 values of 4.4 (2.6–6.1 nM (Mean and 95% confidence interval, 59 (36–83 nM and 97 (66–130 nM respectively. Roflumilast attenuated cell proliferation and gelatinase (MMP-2 and MMP-9 production and promoted the anti-proliferative effects of PGI2 analogues. The cAMP activators iloprost and forskolin also induced apoptosis

  20. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor)

    Energy Technology Data Exchange (ETDEWEB)

    Winkles, J.A.; Friesel, R.; Burgess, W.H.; Howk, R.; Mehlman, T.; Weinstein, R.; Maciag, T.

    1987-10-01

    The control of vascular endothelial and muscle cell proliferation is important in such processes as tumor angiogenesis, wound healing, and the pathogenesis of atherosclerosis. Class I heparin-binding growth factor (HBGF-I) is a potent mitogen and chemoattractant for human endothelial cells in vitro and will induce angiogenesis in vivo. RNA gel blot hybridization experiments demonstrate that cultured human vascular smooth muscle cells, but not human umbilical cells also synthesize an HBGF-I mRNA. Smooth muscle cells also synthesize an HBGF-I-like polypeptide since (i) extract prepared from smooth muscle cells will compete with /sup 125/I-labeled HBGF-I for binding to the HBGF-I cell surface receptor, and (ii) the competing ligand is eluted from heparin-Sepharose affinity resin at a NaCl concentration similar to that required by purified bovine brain HBGF-I and stimulates endothelial cell proliferation in vitro. Furthermore, like endothelial cells, smooth muscle cells possess cell-surface-associated HBGF-I receptors and respond to HBGF-I as a mitogen. These results indicate the potential for an additional autocrine component of vascular smooth muscle cell growth control and establish a vessel wall source of HBGF-I for endothelial cell division in vivo.

  1. Proteomic analysis of the effect of iptakalim on human pulmonary arterial smooth muscle cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Mingxia YANG; Zhengxia LIU; Shu ZHANG; Yu JING; Shijiang ZHANG; Weiping XIE; Lei MA; Changliang ZHU; Hong WANG

    2009-01-01

    Aim:To investigate the anti-proliferative effect of iptakalim (Ipt),a newly selective KATP channel opener,in endothelin-1 (ET-1)-induced human pulmonary arterial smooth muscle cells (PASMCs) using proteomic analysis.Methods: Human PASMCs were incubated with ET-1 (10-8 mol/L) and ETA (10-8 mol/L) plus iptaklim (10-5 mol/L) for 24 h.Analysis via 2-DE gel electrophoresis and MALDI-TOF-MS was employed to display the different protein profiles of whole-cell protein from cultures of control,ET-1 treatment alone,and treatment with ET-1 and iptaklim combined.Real time RT-PCR and Western blot analysis were used to confirm the proteomic analysis.Results: When iptakalim inhibited the proliferative effect of ET-1 in human PASMCs by opening the KATP channels,the expression of different groups of cellular proteins was changed,including cytoskeleton-associated proteins,plasma mem-brane proteins and receptors,chaperone proteins,ion transport-associated proteins,and glycolytic and metabolism-associ-ated proteins.We found that iptakalim could inhibit the proliferation of human PASMCs partly by affecting the expression of Hsp60,vimentin,nucleoporin P54 (NUP54) and Bcl-XL by opening the KATP channel.Conclusion: The data suggest that a wide range of signaling pathways may be involved in abolishing ET-1-induced prolif-eration of human PASMCs following iptakalim treatment.

  2. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin

    DEFF Research Database (Denmark)

    Olesen, Ping; Knudsen, Kirsten Quyen Nguyen; Wogensen, Lise

    2007-01-01

    Arterial medial calcifications occur often in diabetic individuals as part of the diabetic macroangiopathy. The pathogenesis is unknown, but the presence of calcifications predicts risk of cardiovascular events. We examined the effects of insulin on calcifying smooth muscle cells in vitro...... and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with beta-glycerophosphate. The influence of insulin (200 microU/ml or 1,000 microU/ml) on calcification...... calcification in human smooth muscle cells from a series of donors after variable time in culture. Decreased OPG amounts were observed from the cells during the accelerated calcification phase. High dose of insulin (1,000 microU/ml) accelerated the calcification, whereas lower concentrations (200 microU/ml) did...

  3. Smad Molecules Expression Pattern in Human Bronchial Airway Induced by Sulfur Mustard

    Directory of Open Access Journals (Sweden)

    Maryam Adelipour

    2011-09-01

    Full Text Available Airway remodelling is characterized by the thickening and reorganization of the airways seen in mustard  lung patients. Mustard lung is the  general description  for  the  chronic obstructive  pulmonary  disease induced  by  sulfur  mustard(SM. Pulmonary  disease was diagnosed as the most important  disorder in individuals that had been exposed to sulfur mustard. Sulfur mustard is a chemical warfare agent developed during Wars. Iraqi forces frequently used it against Iranian during Iran –Iraq in the 1980–1988. Peribronchial fibrosis result  from  airway remodeling  that  include  excess  of  collagen of  extracellular matrix deposition  in  the  airway wall. Some of  Smads families in  association with TGF-β  are involved in airway remodeling due to lung fibrosis. In the present study we compared the mRNA expression of Smad2, Smad3, and Smad4 and Smad7 genes in airway wall biopsies of chemical-injured patients with non-injured patients as control.We used airway wall biopsies of ten unexposed patients and fifteen SM-induced patients. Smads expression was evaluated by RT-PCR followed by bands densitometry.Expression levels of Smad3 and Smad4 in SM exposed patients were upregulated but Smad2 and Smad7 was not significantly altered.Our results revealed that Smad3, and 4 may be involved in airway remodeling process in SM induced  patients  by  activation of  TGF-β.  Smad pathway is  the  most  represented signaling mechanism for  airway remodeling and  peribronchial fibrosis. The  complex of Smads in the nucleus affects a series of genes that results in peribronchial fibrosis in SM- induced patients.

  4. Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model.

    Science.gov (United States)

    Kusch, Angelika; Tkachuk, Sergey; Lutter, Steffen; Haller, Hermann; Dietz, Rainer; Lipp, Martin; Dumler, Inna

    2002-01-01

    Interactions of vascular smooth muscle cells (VSMC) with monocytes recruited to the arterial wall at a site of injury, with resultant modulation of VSMC growth and migration, are central to the development of vascular intimal thickening. Urokinase-type plasminogen activator (uPA) expressed by monocytes is a potent chemotactic factor for VSMC and might serve for the acceleration of vascular remodeling. In this report, we demonstrate that coculture of human VSMC with freshly isolated peripheral blood-derived human monocytes results in significant VSMC migration that increases during the coculture period. Accordingly, VSMC adhesion was inhibited with similar kinetics. VSMC proliferation, however, was not affected and remained at the same basal level during the whole period of coculture. The increase of VSMC migration in coculture was equivalent to the uPA-induced migration of monocultured VSMC and was blocked by addition into coculture of soluble uPAR (suPAR). Analysis of uPA and uPAR expression in cocultured cells demonstrated that monocytes are a major source of uPA, whose expression increases in coculture five-fold, whereas VSMC display an increased expression of cell surface-associated uPAR. These findings indicate that upregulated uPA production by monocytes following vascular injury acts most likely as an endogenous activator of VSMC migration contributing to the remodeling of vessel walls.

  5. Interaction between human monocytes and vascular smooth muscle cells induces vascular endothelial growth factor expression.

    Science.gov (United States)

    Hojo, Y; Ikeda, U; Maeda, Y; Takahashi, M; Takizawa, T; Okada, M; Funayama, H; Shimada, K

    2000-05-01

    The objective of this study was to investigate whether synthesis of vascular endothelial growth factor (VEGF), a major mitogen for vascular endothelial cells, was induced by a cell-to-cell interaction between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cell) were cocultured. VEGF levels in the coculture medium were determined by enzyme-linked immunosorbent assay. Northern blot analysis of VEGF mRNA was performed using a specific cDNA probe. Immunohistochemistry was performed to determine which types of cell produce VEGF. Adding THP-1 cells to VSMCs for 24 h increased VEGF levels of the culture media, 8- and 10-fold relative to those of THP-1 cells and VSMCs alone, respectively. Northern blot analysis showed that VEGF mRNA expression was induced in the cocultured cells and peaked after 12 h. Immunohistochemistry disclosed that both types of cell in the coculture produced VEGF. Separate coculture experiments revealed that both direct contact and a soluble factor(s) contributed to VEGF production. Neutralizing anti-interleukin (IL)-6 antibody inhibited VEGF production by the coculture of THP-1 cells and VSMCs. A cell-to-cell interaction between monocytes and VSMCs induced VEGF synthesis in both types of cell. An IL-6 mediated mechanism is at least partially involved in VEGF production by the cocultures. Local VEGF production induced by a monocyte-VSMC interaction may play an important role in atherosclerosis and vascular remodeling.

  6. Effects of valsartan on angiotensin II-induced migration of human coronary artery smooth muscle cells.

    Science.gov (United States)

    Kohno, M; Ohmori, K; Nozaki, S; Mizushige, K; Yasunari, K; Kano, H; Minami, M; Yoshikawa, J

    2000-11-01

    The migration as well as proliferation of coronary artery medial smooth muscle cells (SMC) into the intima is proposed to be an important process of intimal thickening in coronary atherosclerosis. In the current study, we examined the effects of the angiotensin type 1 receptor antagonist valsartan on angiotensin II (Ang II)-induced migration of cultured human coronary artery SMC using Boyden's chamber methods. Ang II significantly stimulated human coronary artery SMC migration in a concentration-dependent manner between 10(-6) and 10(-8) mol/l when cells of passage 4 to 6 were used. However, the migration response to Ang II was moderately decreased in cells of passage 10 to 12, and was markedly decreased in cells of passage 15 to 17, compared to that of passage 4 to 6. Ang II-induced migration was blocked by the Ang II type 1 (AT1) receptor antagonist valsartan in a concentration-dependent manner. By contrast, the Ang II type 2 (AT2) receptor antagonist PD 123319 did not affect Ang II-induced migration. Ang II modestly increased the cell number of human coronary artery SMC after a 24-h incubation. This increase in cell numbers was also clearly blocked by valsartan, but not by PD 123319. These results indicate that Ang II stimulates migration as well as proliferation via AT1 receptors in human coronary artery SMC when cells of passage 4 to 6 are used. Valsartan may prevent the progression of coronary atherosclerosis through an inhibition of Ang II-induced migration and proliferation in these cells, although in vivo evidence is lacking.

  7. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures

    Science.gov (United States)

    Cholon, Deborah M.; O'Neal, Wanda K.; Randell, Scott H.; Riordan, John R.

    2010-01-01

    CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled the apical pool of CFTR and subsequently visualized the protein in intracellular compartments. CFTR moved from the apical surface to endosomes and then efficiently recycled back to the surface. CFTR endocytosis occurred more slowly in polarized than in nonpolarized HAE cells or in a polarized epithelial cell line. The most common mutation in CF, ΔF508 CFTR, was rescued from endoplasmic reticulum retention by low-temperature incubation but transited from the apical membrane to endocytic compartments more rapidly and recycled less efficiently than wild-type CFTR. Incubation with small-molecule correctors resulted in ΔF508 CFTR at the apical membrane but did not restore apical stability. To stabilize the mutant protein at the apical membrane, we found that the dynamin inhibitor Dynasore and the cholesterol-extracting agent cyclodextrin dramatically reduced internalization of ΔF508, whereas the proteasomal inhibitor MG-132 completely blocked endocytosis of ΔF508. On examination of intrinsic properties of CFTR that may affect its apical stability, we found that N-linked oligosaccharides were not necessary for transport to the apical membrane but were required for efficient apical recycling and, therefore, influenced the turnover of surface CFTR. Thus apical stability of CFTR in its native environment is affected by properties of the protein and modulation of endocytic trafficking. PMID:20008117

  8. Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures.

    Science.gov (United States)

    Essaidi-Laziosi, Manel; Brito, Francisco; Benaoudia, Sacha; Royston, Léna; Cagno, Valeria; Fernandes-Rocha, Mélanie; Piuz, Isabelle; Zdobnov, Evgeny; Huang, Song; Constant, Samuel; Boldi, Marc-Olivier; Kaiser, Laurent; Tapparel, Caroline

    2017-08-07

    Leading etiologies of acute illnesses, respiratory viruses typically cause self-limited diseases, though severe complications can occur in fragile patients. Rhinoviruses, respiratory enteroviruses, influenza virus, respiratory syncytial viruses and coronaviruses are highly prevalent respiratory pathogens, but due to the lack of reliable animal models, their differential pathogenesis remains poorly characterized. To compare infections by respiratory viruses isolated from clinical specimens using reconstituted human airway epithelia. Tissues were infected with rhinoviruses RV-A55, RV-A49, RV-B48, RV-C8 and RV-C15, respiratory enterovirus EV-D68, influenza virus H3N2, respiratory syncytial virus RSV-B and coronavirus HCoV-OC43. Replication kinetics, cell tropism, impact on tissue integrity and cytokine secretion were compared. Virus adaptation and tissue response were assessed through RNA-sequencing. Rhinoviruses, RSV-B and HCoV-OC43 infected ciliated cells and caused no major cell death while H3N2 and EV-D68 induced ciliated cell loss and tissue integrity disruption. H3N2 was also detected in rare goblet and basal cells. All viruses except RV-B48 and HCoV-OC43 altered cilia beating and MCC. H3N2 was the strongest cytokine-inducer and HCoV-OC43 the weakest. Persistent infection was observed in all cases. RNA-sequencing highlighted perturbation of tissue metabolism and induction of a transient but important immune response at 4-days post-infection. No majority mutations emerged in the viral population. Our results highlight the differential in vitro pathogenesis of respiratory viruses during the acute infection-phase and their ability to persist under immune tolerance. These data help to appreciate the range of disease severity observed in vivo and the occurrence of chronic respiratory infections in immunocompromised hosts. Copyright © 2017. Published by Elsevier Inc.

  9. Involvement of Ca2+ Signaling in the Synergistic Effects between Muscarinic Receptor Antagonists and β2-Adrenoceptor Agonists in Airway Smooth Muscle

    Science.gov (United States)

    Fukunaga, Kentaro; Kume, Hiroaki; Oguma, Tetsuya; Shigemori, Wataru; Tohda, Yuji; Ogawa, Emiko; Nakano, Yasutaka

    2016-01-01

    Long-acting muscarinic antagonists (LAMAs) and short-acting β2-adrenoceptor agonists (SABAs) play important roles in remedy for COPD. To propel a translational research for development of bronchodilator therapy, synergistic effects between SABAs with LAMAs were examined focused on Ca2+ signaling using simultaneous records of isometric tension and F340/F380 in fura-2-loaded tracheal smooth muscle. Glycopyrronium (3 nM), a LAMA, modestly reduced methacholine (1 μM)-induced contraction. When procaterol, salbutamol and SABAs were applied in the presence of glycopyrronium, relaxant effects of these SABAs are markedly enhanced, and percent inhibition of tension was much greater than the sum of those for each agent and those expected from the BI theory. In contrast, percent inhibition of F340/F380 was not greater than those values. Bisindolylmaleimide, an inhibitor of protein kinase C (PKC), significantly increased the relaxant effect of LAMA without reducing F340/F380. Iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa) channels, significantly suppressed the effects of these combined agents with reducing F340/F380. In conclusion, combination of SABAs with LAMAs synergistically enhances inhibition of muscarinic contraction via decreasing both Ca2+ sensitization mediated by PKC and Ca2+ dynamics mediated by KCa channels. PKC and KCa channels may be molecular targets for cross talk between β2-adrenoceptors and muscarinic receptors. PMID:27657061

  10. Involvement of Ca2+ Signaling in the Synergistic Effects between Muscarinic Receptor Antagonists and β2-Adrenoceptor Agonists in Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Kentaro Fukunaga

    2016-09-01

    Full Text Available Long-acting muscarinic antagonists (LAMAs and short-acting β2-adrenoceptor agonists (SABAs play important roles in remedy for COPD. To propel a translational research for development of bronchodilator therapy, synergistic effects between SABAs with LAMAs were examined focused on Ca2+ signaling using simultaneous records of isometric tension and F340/F380 in fura-2-loaded tracheal smooth muscle. Glycopyrronium (3 nM, a LAMA, modestly reduced methacholine (1 μM-induced contraction. When procaterol, salbutamol and SABAs were applied in the presence of glycopyrronium, relaxant effects of these SABAs are markedly enhanced, and percent inhibition of tension was much greater than the sum of those for each agent and those expected from the BI theory. In contrast, percent inhibition of F340/F380 was not greater than those values. Bisindolylmaleimide, an inhibitor of protein kinase C (PKC, significantly increased the relaxant effect of LAMA without reducing F340/F380. Iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa channels, significantly suppressed the effects of these combined agents with reducing F340/F380. In conclusion, combination of SABAs with LAMAs synergistically enhances inhibition of muscarinic contraction via decreasing both Ca2+ sensitization mediated by PKC and Ca2+ dynamics mediated by KCa channels. PKC and KCa channels may be molecular targets for cross talk between β2-adrenoceptors and muscarinic receptors.

  11. Arsenic alters ATP-dependent Ca²+ signaling in human airway epithelial cell wound response.

    Science.gov (United States)

    Sherwood, Cara L; Lantz, R Clark; Burgess, Jefferey L; Boitano, Scott

    2011-05-01

    Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca²+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease.

  12. Proliferation and extracellular matrix synthesis of smooth muscle cells cultured from human coronary atherosclerotic and restenotic lesions

    NARCIS (Netherlands)

    D.C. MacLeod (Donald); B.H. Strauss (Bradley); J. Escaned (Javier); V.A.W.M. Umans (Victor); R-J. van Suylen (Robert-Jan); A. Verkerk (Anton); P.J. de Feyter (Pim); P.W.J.C. Serruys (Patrick); M. de Jong (Marcel)

    1994-01-01

    textabstractOBJECTIVES. The purpose of this study was to examine the proliferative capacity and extracellular matrix synthesis of human coronary plaque cells in vitro. BACKGROUND. Common to both primary atherosclerosis and restenosis are vascular smooth muscle cell proliferation and production of ex

  13. Effect of calcium phosphate crystals induced by uremic serum on calcification of human aortic smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    刘曜蓉

    2013-01-01

    Objective To investigate the impact of calcium phosphate crystals induced by uremic serum on calcification of human aortic smooth muscle cells (HASMCs) .Methods Uremic serum was incubated at 37℃for 3days.Calcium phosphate crystals and uremic supernatant were isolated from uremic serum by ultracentrifugation.

  14. Effects of Atractylodes Macrocephala on the Cytomembrane Ca2+-activated K+ Currents in Cells of Human Pregnant Myometrial Smooth Muscles

    Institute of Scientific and Technical Information of China (English)

    Xiaoli ZHANG; Lin WANG; Long XU; Li ZOU

    2008-01-01

    The study examined the inhibitory effect of Atractylodes macrocephala (AM) on the uterine contraction during premature delivery and explored its electrophysiological mechanism by studying the effects of AM on the Ca2+-activated K+ currents of pregnant human myometrial smooth muscle cells with or without the treatment with interleukin-6. Single cells were acutely isolated from pregnant human myometrial smooth muscles. Whole-cell Ca2+-activated K+ currents were recorded by using an Axopatchl-D amplifier. The cells were divided into three groups: group A in which AM was added into perfusate, group B, in which intefleukin-6 was added into perfusate) and group C in which AM was added into perfusate after addition of interleukin-6. IL-6 10 ng/mL inhibited Bkca by 36.9%±13.7% as compared with control (P<0.01). AM at 2 mg/mL raised Bkca by 36.7%±22.6% or 45.2%±13.7% with or without the treatment of IL-6, respectively (P<0.01). It is concluded that AM was able to enhance the Bkca of pregnant human myometrial smooth muscle cells treated or un- treated with interleukin-6 and its effect on the Bkca IL-treated cells was stronger that its effect on Bkca of untreated cells. Our results suggested that AM can help to maintain the membrane potentials and the resting status of pregnant human myometrial smooth muscle cells.

  15. 平滑肌层增生对气道管壁内应力分布影响的数值模拟研究%Numerical Simulation of the Effect of Smooth Muscle Layer on the Stress Distribution in the Airway Wall

    Institute of Scientific and Technical Information of China (English)

    石晓灏; 陈建; 周圣叶; 邓林红

    2016-01-01

    许多慢性呼吸道疾病都伴随着气道管壁组织重塑,其中平滑肌肥大和增生直接影响气道的力学特性,进而因为气道内应力的分布不均,导致内壁出现局部应力刺激增加等现象。本研究基于气道的解剖结构,将其简化成为具有内壁、平滑肌层和外膜等三层结构的中空管状结构,构建具有层结构的气道有限元模型,并用来分析在生理和病理情况下平滑肌增生对气道力学行为的影响。结果表明,在气道外膜层出现应力最小值;平滑肌层增厚和局部平滑肌的增生都会导致气道平滑肌层受到的应力值增加,同时在增生面积相同的情况下,平滑肌层的应力值随增生的数目增加而增加;平滑肌层增生的分布对气道力学性能有较大的影响,增生越集中,气道所受到的应力值越大。%Many chronic respiratory diseases are associated with airway remodeling.It is well known hyperplasia and hypertrophy of smooth muscle directly affect the mechanical properties of the airway.This can cause uneven distribution of stress in the airway,leading to local stress stimulation increase in the inner layer.In present work,we built a finite element model which simplified the anatomical structure of airway into a three -layers structure:inner wall,smooth muscle layer and the adventitia layer.This model was further used to analyze the mechanical properties variation of airway smooth muscle layer under physiological and pathological situations.It was ob-served that the minimum stress occurr in the adventitia layer.While smooth muscle layer thickening and local smooth muscle hyperplasia can lead to the stress increase of airway smooth muscle layer.With the same hyperplasia area,the stress of the smooth muscle layer in-crease along with the increasing numbers of hyperplasia.In addition,the distribution of hyperplasia in smooth muscle layer has a great in-fluence on airway mechanical properties

  16. Large-eddy Simulation of Heat and Water Vapor Transfer in CT-Based Human Airway Models

    Science.gov (United States)

    Wu, Dan; Tawhai, Merryn; Hoffman, Eric; Lin, Ching-Long

    2014-11-01

    We propose a novel imaging-based thermodynamic model to study local heat and mass transfers in the human airways. Both 3D and 1D CFD models are developed and validated. Large-eddy simulation (LES) is adopted to solve 3D incompressible Navier-Stokes equations with Boussinesq approximation along with temperature and water vapor transport equations and energy-flux based wall boundary condition. The 1D model provides initial and boundary conditions to the 3D model. The computed tomography (CT) lung images of three healthy subjects with sinusoidal waveforms and minute ventilations of 6, 15 and 30 L/min are considered. Between 1D and 3D models and between subjects, the average temperature and water vapor distributions are similar, but their regional distributions are significantly different. In particular, unlike the 1D model, the heat and water vapor transfers in the 3D model are elevated at the bifurcations during inspiration. Moreover, the correlations of Nusselt number (Nu) and Sherwood number (Sh) with local Reynolds number and airway diameter are proposed. In conclusion, use of the subject-specific lung model is essential for accurate prediction of local thermal impacts on airway epithelium. Supported in part by NIH grants R01-HL094315, U01-HL114494 and S10-RR022421.

  17. Effect of the endothelin family of peptides on human coronary artery smooth-muscle cell migration.

    Science.gov (United States)

    Kohno, M; Yokokawa, K; Yasunari, K; Kano, H; Minami, M; Yoshikawa, J

    1998-01-01

    The migration of coronary artery medial smooth-muscle cells (SMCs) is one of the key events in the process of intimal thickening in coronary atherosclerotic lesions. The objectives of the present study were to determine whether any of the three isoforms of endothelin (ET), ET-1, ET-2, and ET-3, or an intermediate form of ET, big ET-1, induces migration of human coronary artery SMCs, and to investigate the possible interaction of ET peptides and well-known migration-stimulatory factors, platelet-derived growth factor (PDGF)-BB and angiotensin II (Ang II), on SMC migration by the Boyden's chamber method. None of the ET peptides alone induced SMC migration between 10(-9) and 10(-7) mol/L. In contrast, ET-1 and ET-2 significantly induced SMC migration in the presence of low concentrations of PDGF-BB (0.5 ng/mL) or Ang II (10(-9) mol/L), although ET-3 was less active (ET-1 = ET-2 > ET-3). In contrast, big ET-1 was without significant activity on PDGF-BB-or Ang II-induced SMC migration. The potentiation of SMC migration by ET peptides was clearly inhibited by the ETA receptor antagonist BG-123 in a concentration-dependent manner. These results suggest that the ET family of peptides, especially ET-1 and ET-2, can induce human coronary artery SMC migration in combination with PDGF-BB or Ang II, probably via ETA receptors. Taken together with the finding that the concentrations of ET, PDGF-BB and Ang II are locally increased at sites of endothelial injury, this indicates that ET may be an initial stimulus for human coronary artery medial SMC recruitment during coronary atherosclerosis, possibly in combination with PDGF-BB or Ang II.

  18. (Endo)cannabinoid signaling in human bronchial epithelial and smooth muscle cells

    NARCIS (Netherlands)

    Gkoumassi, Effimia

    2007-01-01

    We investigated the pathways used by various (endo)cannabinoids in regulating intracellular calcium homeostasis, adenylyl cyclase and ERK signaling, in bronchial epithelial cells as well as smooth muscle cells. In DDT1 MF2 smooth muscle cells the synthetic cannabinoid CP55,940 increases [Ca2+]i by a

  19. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells.

    OpenAIRE

    Cushing, S D; Berliner, J A; Valente, A. J.; Territo, M C; Navab, M; Parhami, F; Gerrity, R; Schwartz, C J; Fogelman, A M

    1990-01-01

    After exposure to low density lipoprotein (LDL) that had been minimally modified by oxidation (MM-LDL), human endothelial cells (EC) and smooth muscle cells (SMC) cultured separately or together produced 2- to 3-fold more monocyte chemotactic activity than did control cells or cells exposed to freshly isolated LDL. This increase in monocyte chemotactic activity was paralleled by increases in mRNA levels for a monocyte chemotactic protein 1 (MCP-1) that is constitutively produced by the human ...

  20. Increased apoptosis and decreased density of medial smooth muscle cells in human abdominal aortic aneurysms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian张健; Jan Schmidt; Eduard Ryschich; Hardy Schumacher; Jens R Allenberg

    2003-01-01

    Objective To determine the increase of apoptosis and the decrease of smooth muscle cells (SMCs) density in human abdominal aortic aneurysms (AAA). Methods In situ terminal transferase-mediated dUTP nick end labeling (TUNEL) was employed to detect apoptosis of SMCs in patients with AAA (n=25) and normal abdominal aortae (n=10). Positive cells were identified by specific cell marker in combination with immunohistochemistry. Meanwhile SMC counting was performed by anti-α-actin immunohistostaining to compare the SMC density. Results TUNEL staining revealed that there was significantly increased apoptosis in AAAs (average 8.6%) compared with normal abdominal aortae (average 0.95%, P<0.01). Double staining showed that most of these cells were SMCs. Counting of α-actin positive SMCs revealed that medial SMC density of AAAs (37.5±7.6 SMCs /HPF) was reduced by 79.1% in comparison with that of normal abdominal aortae (179.2±16.1 SMCs /HPF, P<0.01). Conclusions Significantly increased SMCs of AAA bear apoptotic markers initiating cell death. Elevated apoptosis may result in a decreased density of SMCs in AAA, which may profoundly influence the development of AAA.

  1. Human Coronary Artery Smooth Muscle Cell Responses to Bioactive Polyelectrolyte Multilayer Interfaces

    Directory of Open Access Journals (Sweden)

    Robert G. Newcomer

    2011-01-01

    Full Text Available Under normal physiological conditions, mature human coronary artery smooth muscle cells (hCASMCs exhibit a “contractile” phenotype marked by low rates of proliferation and protein synthesis, but these cells possess the remarkable ability to dedifferentiate into a “synthetic” phenotype when stimulated by conditions of pathologic stress. A variety of polyelectrolyte multilayer (PEMU films are shown here to exhibit bioactive properties that induce distinct responses from cultured hCASMCs. Surfaces terminated with Nafion or poly(styrenesulfonic acid (PSS induce changes in the expression and organization of intracellular proteins, while a hydrophilic, zwitterionic copolymer of acrylic acid and 3-[2-(acrylamido-ethyl dimethylammonio] propane sulfonate (PAA-co-PAEDAPS is resistant to cell attachment and suppresses the formation of key cytoskeletal components. Differential expression of heat shock protein 90 and actin is observed, in terms of both their magnitude and cellular localization, and distinct cytoplasmic patterns of vimentin are seen. The ionophore A23187 induces contraction in confluent hCASMC cultures on Nafion-terminated surfaces. These results demonstrate that PEMU coatings exert direct effects on the cytoskeletal organization of attaching hCASMCs, impeding growth in some cases, inducing changes consistent with phenotypic modulation in others, and suggesting potential utility for PEMU surfaces as a coating for coronary artery stents and other implantable medical devices.

  2. Coherent anti-Stokes Raman scattering microscopy of human smooth muscle cells in bioengineered tissue scaffolds

    Science.gov (United States)

    Brackmann, Christian; Esguerra, Maricris; Olausson, Daniel; Delbro, Dick; Krettek, Alexandra; Gatenholm, Paul; Enejder, Annika

    2011-02-01

    The integration of living, human smooth muscle cells in biosynthesized cellulose scaffolds was monitored by nonlinear microscopy toward contractile artificial blood vessels. Combined coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy was applied for studies of the cell interaction with the biopolymer network. CARS microscopy probing CH2-groups at 2845 cm-1 permitted three-dimensional imaging of the cells with high contrast for lipid-rich intracellular structures. SHG microscopy visualized the fibers of the cellulose scaffold, together with a small signal obtained from the cytoplasmic myosin of the muscle cells. From the overlay images we conclude a close interaction between cells and cellulose fibers. We followed the cell migration into the three-dimensional structure, illustrating that while the cells submerge into the scaffold they extrude filopodia on top of the surface. A comparison between compact and porous scaffolds reveals a migration depth of porous type shows cells further submerged into the cellulose. Thus, the scaffold architecture determines the degree of cell integration. We conclude that the unique ability of nonlinear microscopy to visualize the three-dimensional composition of living, soft matter makes it an ideal instrument within tissue engineering.

  3. Puerarin induces mitochondria-dependent apoptosis in hypoxic human pulmonary arterial smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Chan Chen

    Full Text Available BACKGROUND: Pulmonary vascular medial hypertrophy in hypoxic pulmonary arterial hypertension (PAH is caused in part by decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs. Puerarin, an isoflavone purified from the Chinese medicinal herb kudzu, ameliorates chronic hypoxic PAH in animal models. Here we investigated the effects of puerarin on apoptosis of hypoxic human PASMCs (HPASMCs, and to determine the possible underlying mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: HPASMCs were cultured for 24 h in normoxia or hypoxia (5% O₂ conditions with and without puerarin. Cell number and viability were determined with a hemacytometer or a cell counting kit. Apoptosis was detected with a TUNEL test, rhodamine-123 (R-123 fluorescence, a colorimetric assay, western blots, immunohistochemical staining and RT-PCR. Hypoxia inhibited mitochondria-dependent apoptosis and promoted HPASMC growth. In contrast, after puerarin (50 µM or more intervention, cell growth was inhibited and apoptosis was observed. Puerarin-induced apoptosis in hypoxic HPASMCs was accompanied by reduced mitochondrial membrane potential, cytochrome c release from the mitochondria, caspase-9 activation, and Bcl-2 down-regulation with concurrent Bax up-regulation. CONCLUSIONS/SIGNIFICANCE: Puerarin promoted apoptosis in hypoxic HPASMCs by acting on the mitochondria-dependent pathway. These results suggest a new mechanism of puerarin relevant to the management of clinical hypoxic pulmonary hypertension.

  4. Puerarin Induces Mitochondria-Dependent Apoptosis in Hypoxic Human Pulmonary Arterial Smooth Muscle Cells

    Science.gov (United States)

    Chen, Chan; Chen, Chun; Wang, Zhiyi; Wang, Liangxing; Yang, Lehe; Ding, Minjiao; Ding, Cheng; Sun, Yu; Lin, Quan; Huang, Xiaoying; Du, Xiaohong; Zhao, Xiaowei; Wang, Chuangyi

    2012-01-01

    Background Pulmonary vascular medial hypertrophy in hypoxic pulmonary arterial hypertension (PAH) is caused in part by decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs). Puerarin, an isoflavone purified from the Chinese medicinal herb kudzu, ameliorates chronic hypoxic PAH in animal models. Here we investigated the effects of puerarin on apoptosis of hypoxic human PASMCs (HPASMCs), and to determine the possible underlying mechanisms. Methodology/Principal Findings HPASMCs were cultured for 24 h in normoxia or hypoxia (5% O2) conditions with and without puerarin. Cell number and viability were determined with a hemacytometer or a cell counting kit. Apoptosis was detected with a TUNEL test, rhodamine-123 (R-123) fluorescence, a colorimetric assay, western blots, immunohistochemical staining and RT-PCR. Hypoxia inhibited mitochondria-dependent apoptosis and promoted HPASMC growth. In contrast, after puerarin (50 µM or more) intervention, cell growth was inhibited and apoptosis was observed. Puerarin-induced apoptosis in hypoxic HPASMCs was accompanied by reduced mitochondrial membrane potential, cytochrome c release from the mitochondria, caspase-9 activation, and Bcl-2 down-regulation with concurrent Bax up-regulation. Conclusions/Significance Puerarin promoted apoptosis in hypoxic HPASMCs by acting on the mitochondria-dependent pathway. These results suggest a new mechanism of puerarin relevant to the management of clinical hypoxic pulmonary hypertension. PMID:22457823

  5. Calcium Phosphate Crystals from Uremic Serum Promote Osteogenic Differentiation in Human Aortic Smooth Muscle Cells.

    Science.gov (United States)

    Liu, Yaorong; Zhang, Lin; Ni, Zhaohui; Qian, Jiaqi; Fang, Wei

    2016-11-01

    Recent study demonstrated that calcium phosphate (CaP) crystals isolated from high phosphate medium were a key contributor to arterial calcification. The present study further investigated the effects of CaP crystals induced by uremic serum on calcification of human aortic smooth muscle cells. This may provide a new insight for the development of uremic cardiovascular calcification. We tested the effects of uremic serum or normal serum on cell calcification. Calcification was visualized by staining and calcium deposition quantified. Expression of various bone-calcifying genes was detected by real-time PCR, and protein levels were quantified by western blotting or enzyme-linked immunosorbent assays. Pyrophosphate was used to investigate the effects of CaP crystals' inhibition. Finally, CaP crystals were separated from uremic serum to determine its specific pro-calcification effects. Uremic serum incubation resulted in progressively increased calcification staining and increased calcium deposition in HASMCs after 4, 8 and 12 days (P vs 0 day crystals with pyrophosphate incubation prevented calcium deposition and bone-calcifying gene over-expression increased by uremic serum. CaP crystals, rather than the rest of uremic serum, were responsible for these effects. Uremic serum accelerates arterial calcification by mediating osteogenic differentiation. This effect might be mainly attributed to the CaP crystal content.

  6. Differential response of human fetal smooth muscle cells from arterial duct to retinoid acid

    Institute of Scientific and Technical Information of China (English)

    Li-hui WU; Shao-jun XU; Jian-ying TENG; Wei WU; Du-yun YE; Xing-zhong WU

    2008-01-01

    Aim:The aim of the present study was to understand the role of retinoic acid (RA) in the development of isolated patent ductus arteriosus and the features of arterial duct-derived vascular smooth muscle cells (VSMC). Methods:The VSMC were isolated, and the biological characteristics and the response to RA were investi-gated in the arterial duct, aorta, and pulmonary artery VSMC from 6 human embry-onic samples. Western blotting, immunostaining, and cell-based ELISA were em-ployed to analyze the proliferation regulation of VSMC. Results:The VSMC from the arterial duct expressed proliferating cell nuclear antigen (PCNA) at a signifi-cantly lower rate than those from the aorta and pulmonary artery, but expressed a higher level of Bax and Bcl-2. The expression level of PCNA or Bcl-2 was associ-ated with the embryonic age. The effects of RA on the VSMC from the arterial duct were quite different from those from the aorta and pulmonary artery. In arterial duct VSMC, RA stimulated PCNA expression, but such stimulation could be sup-pressed by CD2366, an antagonist of nuclear retinoid receptor activation. In aorta or pulmonary artery VSMC, the expression response of PCNA to RA was insignificant. The ratio of Bax/Bcl-2 decreased in arterial duct VSMC after RA treatment due to the significant inhibition of Bax expression. Conclusion:The VSMC from the arterial duct possessed distinct biological behaviors. RA might be important in the development of ductus arteriosus VSMC.

  7. Modeling the human development index and the percentage of poor people using quantile smoothing splines

    Science.gov (United States)

    Mulyani, Sri; Andriyana, Yudhie; Sudartianto

    2017-03-01

    Mean regression is a statistical method to explain the relationship between the response variable and the predictor variable based on the central tendency of the data (mean) of the response variable. The parameter estimation in mean regression (with Ordinary Least Square or OLS) generates a problem if we apply it to the data with a symmetric, fat-tailed, or containing outlier. Hence, an alternative method is necessary to be used to that kind of data, for example quantile regression method. The quantile regression is a robust technique to the outlier. This model can explain the relationship between the response variable and the predictor variable, not only on the central tendency of the data (median) but also on various quantile, in order to obtain complete information about that relationship. In this study, a quantile regression is developed with a nonparametric approach such as smoothing spline. Nonparametric approach is used if the prespecification model is difficult to determine, the relation between two variables follow the unknown function. We will apply that proposed method to poverty data. Here, we want to estimate the Percentage of Poor People as the response variable involving the Human Development Index (HDI) as the predictor variable.

  8. Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers

    DEFF Research Database (Denmark)

    Rumessen, J J; Thuneberg, L

    1991-01-01

    studied. Freshly resected intestine was examined by light and electron microscopy. The interstitial cells of Cajal resembled modified smooth muscle cells. They had caveolae and dense bodies, an incomplete basal lamina, a very well-developed smooth endoplasmic reticulum, and abundant intermediate (10 nm......) filaments. Myosin filaments were not seen. Fibroblast-like cells were distinguished by their lack of caveolae and dense bodies, the relative scarcity of smooth cisternae and intermediate filaments, and the abundant granular endoplasmic reticulum. Interstitial cells of Cajal were arranged in networks......Previous morphological and electrophysiological studies have supported the hypothesis that interstitial cells of Cajal have important regulatory (pacemaker) functions in the gut. In the current study, interstitial cells of Cajal associated with Auerbach's plexus in human small intestine were...

  9. Human apolipoprotein E genotypes differentially modify house dust mite-induced airway disease in mice

    DEFF Research Database (Denmark)

    Yao, Xianglan; Dai, Cuilian; Fredriksson, Karin

    2012-01-01

    with reductions in lung mRNA levels of Th2 and Th17 cytokines, as well as chemokines (CCL7, CCL11, CCL24). huApoE4 mice had an intermediate phenotype, with attenuated AHR and IgE production, compared with muApoE mice, whereas airway inflammation and mucous cell metaplasia were not reduced. In contrast, HDM...

  10. Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells

    NARCIS (Netherlands)

    Kistemaker, Loes E. M.; Hiemstra, Pieter S.; Bos, I. Sophie T.; Bouwman, Susanne; van den Berge, Maarten; Hylkema, Machteld N.; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud

    2015-01-01

    BACKGROUND: It has been shown that acetylcholine is both a neurotransmitter and acts as a local mediator, produced by airway cells including epithelial cells. In vivo studies have demonstrated an indirect role for acetylcholine in epithelial cell differentiation. Here, we aimed to investigate direct

  11. A bottom-up approach for labeling of human airway trees

    DEFF Research Database (Denmark)

    2011-01-01

    In this paper, an airway labeling algorithm that allows for gaps between the labeled branches is introduced. A bottom-up approach for arriving to an optimal set of branches and their associated labels is used in the proposed method. A K nearest neighbor based appearance model is used...

  12. Effect of acute metabolic acid/base shifts on the human airway calibre.

    NARCIS (Netherlands)

    Brijker, F.; Elshout, F.J.J. van den; Heijdra, Y.F.; Bosch, F.H.; Folgering, H.T.M.

    2001-01-01

    Acute metabolic alkalosis (NaHCO(3)), acidosis (NH(4)Cl), and placebo (NaCl) were induced in 15 healthy volunteers (12 females, median age 34 (range 24-56) years) in a double blind, placebo controlled study to evaluate the presence of the effects on airway calibre. Acid-base shifts were determined b

  13. Arsenic Alters ATP-Dependent Ca2+ Signaling in Human Airway Epithelial Cell Wound Response

    Science.gov (United States)

    Sherwood, Cara L.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2011-01-01

    Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca2+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., arsenic reduces purinergic Ca2+ signaling in a dose-dependent manner and results in a reshaping of the Ca2+ signaling response to localized wounds. We next examined arsenic effects on two purinergic receptor types: the metabotropic P2Y and ionotropic P2X receptors. Arsenic inhibited both P2Y- and P2X-mediated Ca2+ signaling responses to ATP. Both inhaled and ingested arsenic can rapidly reach the airway epithelium where purinergic signaling is essential in innate immune functions (e.g., ciliary beat, salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease. PMID:21357385

  14. The human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor.

    Science.gov (United States)

    Ulrich, Craig; Quilici, David R; Schlauch, Karen A; Buxton, Iain L O

    2013-10-15

    Molecular mechanisms involved in uterine quiescence during gestation and those responsible for induction of labor at term are incompletely known. More than 10% of babies born worldwide are premature and 1,000,000 die annually. Preterm labor results in preterm delivery in 50% of cases in the United States explaining 75% of fetal morbidity and mortality. There is no Food and Drug Administration-approved treatment to prevent preterm delivery. Nitric oxide-mediated relaxation of human uterine smooth muscle is independent of global elevation of cGMP following activation of soluble guanylyl cyclase. S-nitrosation is a likely mechanism to explain cGMP-independent relaxation to nitric oxide and may reveal S-nitrosated proteins as new therapeutic targets for the treatment of preterm labor. Employing S-nitrosoglutathione as an nitric oxide donor, we identified 110 proteins that are S-nitrosated in 1 or more states of human pregnancy. Using area under the curve of extracted ion chromatograms as well as normalized spectral counts to quantify relative expression levels for 62 of these proteins, we show that 26 proteins demonstrate statistically significant S-nitrosation differences in myometrium from spontaneously laboring preterm patients compared with nonlaboring patients. We identified proteins that were up-S-nitrosated as well as proteins that were down-S-nitrosated in preterm laboring tissues. Identification and relative quantification of the S-nitrosoproteome provide a fingerprint of proteins that can form the basis of hypothesis-directed efforts to understand the regulation of uterine contraction-relaxation and the development of new treatment for preterm labor.

  15. Human rhinovirus induced cytokine/chemokine responses in human airway epithelial and immune cells.

    Directory of Open Access Journals (Sweden)

    Devi Rajan

    Full Text Available Infections with human rhinovirus (HRV are commonly associated with acute upper and lower respiratory tract disease and asthma exacerbations. The role that HRVs play in these diseases suggests it is important to understand host-specific or virus-specific factors that contribute to pathogenesis. Since species A HRVs are often associated with more serious HRV disease than species B HRVs, differences in immune responses they induce should inform disease pathogenesis. To identify species differences in induced responses, we evaluated 3 species A viruses, HRV 25, 31 and 36 and 3 species B viruses, HRV 4, 35 and 48 by exposing human PBMCs to HRV infected Calu-3 cells. To evaluate the potential effect of memory induced by previous HRV infection on study responses, we tested cord blood mononuclear cells that should be HRV naïve. There were HRV-associated increases (significant increase compared to mock-infected cells for one or more HRVs for IP-10 and IL-15 that was unaffected by addition of PBMCs, for MIP-1α, MIP-1β, IFN-α, and HGF only with addition of PBMCs, and for ENA-78 only without addition of PBMCs. All three species B HRVs induced higher levels, compared to A HRVs, of MIP-1α and MIP-1β with PBMCs and ENA-78 without PBMCs. In contrast, addition of CBMCs had less effect and did not induce MIP-1α, MIP-1β, or IFN-α nor block ENA-78 production. Addition of CBMCs did, however, increase IP-10 levels for HRV 35 and HRV 36 infection. The presence of an effect with PBMCs and no effect with CBMCs for some responses suggest differences between the two types of cells possibly because of the presence of HRV memory responses in PBMCs and not CBMCs or limited response capacity for the immature CBMCs relative to PBMCs. Thus, our results indicate that different HRV strains can induce different patterns of cytokines and chemokines; some of these differences may be due to differences in memory responses induced by past HRV infections, and other differences

  16. Force-EMG changes during sustained contractions of a human upper airway muscle.

    Science.gov (United States)

    Schmitt, Kori; DelloRusso, Christiana; Fregosi, Ralph F

    2009-02-01

    Human upper airway and facial muscles support breathing, swallowing, speech, mastication, and facial expression, but their endurance performance in sustained contractions is poorly understood. The muscular fatigue typically associated with task failure during sustained contractions has both central and intramuscular causes, with the contribution of each believed to be task dependent. Previously we failed to show central fatigue in the nasal dilator muscles of subjects that performed intermittent maximal voluntary contractions (MVCs). Here we test the hypothesis that central mechanisms contribute to the fatigue of submaximal, sustained contractions in nasal dilator muscles. Nasal dilator muscle force and EMG activities were recorded in 11 subjects that performed submaximal contractions (20, 35, and 65% MVC) until force dropped to or=3 s, which we defined as task failure. MVC and twitch forces (the latter obtained by applying supramaximal shocks to the facial nerve) were recorded before the trial and at several time points over the first 10 min of recovery. The time to task failure was inversely related to contraction intensity. MVC force was depressed by roughly 30% at task failure in all three trials, but recovered within 2 min. Twitch force fell by 30-44% depending on contraction intensity and remained depressed after 10 min of recovery, consistent with low-frequency fatigue. Average EMG activity increased with time, but never exceeded 75% of the maximal, pretrial level despite task failure. EMG mean power frequency declined by 20-25% in all trials, suggesting reduced action potential conduction velocity at task failure. In contrast, the maximal evoked potential did not change significantly in any of the tasks, indicating that the EMG deficit at task failure was due largely to mechanisms proximal to the neuromuscular junction. Additional experiments using the interpolated twitch technique suggest that subjects can produce about 92% of the maximal evocable force

  17. Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip.

    Science.gov (United States)

    Benam, Kambez H; Novak, Richard; Nawroth, Janna; Hirano-Kobayashi, Mariko; Ferrante, Thomas C; Choe, Youngjae; Prantil-Baun, Rachelle; Weaver, James C; Bahinski, Anthony; Parker, Kevin K; Ingber, Donald E

    2016-11-23

    Smoking represents a major risk factor for chronic obstructive pulmonary disease (COPD), but it is difficult to characterize smoke-induced injury responses under physiological breathing conditions in humans due to patient-to-patient variability. Here, we show that a small airway-on-a-chip device lined by living human bronchiolar epithelium from normal or COPD patients can be connected to an instrument that "breathes" whole cigarette smoke in and out of the chips to study smoke-induced pathophysiology in vitro. This technology enables true matched comparisons of biological responses by culturing cells from the same individual with or without smoke exposure. These studies led to identification of ciliary micropathologies, COPD-specific molecular signatures, and epithelial responses to smoke generated by electronic cigarettes. The smoking airway-on-a-chip represents a tool to study normal and disease-specific responses of the human lung to inhaled smoke across molecular, cellular and tissue-level responses in an organ-relevant context. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Smooth Muscle Progenitor Cells Derived From Human Pluripotent Stem Cells Induce Histologic Changes in Injured Urethral Sphincter.

    Science.gov (United States)

    Li, Yanhui; Wen, Yan; Wang, Zhe; Wei, Yi; Wani, Prachi; Green, Morgaine; Swaminathan, Ganesh; Ramamurthi, Anand; Pera, Renee Reijo; Chen, Bertha

    2016-12-01

    : Data suggest that myoblasts from various sources, including bone marrow, skeletal muscle, and adipose tissue, can restore muscle function in patients with urinary incontinence. Animal data have indicated that these progenitor cells exert mostly a paracrine effect on the native tissues rather than cell regeneration. Limited knowledge is available on the in vivo effect of human stem cells or muscle progenitors on injured muscles. We examined in vivo integration of smooth muscle progenitor cells (pSMCs) derived from human pluripotent stem cells (hPSCs). pSMCs were derived from a human embryonic stem cell line (H9-ESCs) and two induced pluripotent stem cell (iPSC) lines. pSMCs were injected periurethrally into urethral injury rat models (2 × 10(6) cells per rat) or intramuscularly into severe combined immunodeficiency mice. Histologic and quantitative image analysis revealed that the urethras in pSMC-treated rats contained abundant elastic fibers and thicker muscle layers compared with the control rats. Western blot confirmed increased elastin/collagen III content in the urethra and bladder of the H9-pSMC-treated rats compared with controls. iPSC-pSMC treatment also showed similar trends in elastin and collagen III. Human elastin gene expression was not detectable in rodent tissues, suggesting that the extracellular matrix synthesis resulted from the native rodent tissues rather than from the implanted human cells. Immunofluorescence staining and in vivo bioluminescence imaging confirmed long-term engraftment of pSMCs into the host urethra and the persistence of the smooth muscle phenotype. Taken together, the data suggest that hPSC-derived pSMCs facilitate restoration of urethral sphincter function by direct smooth muscle cell regeneration and by inducing native tissue elastin/collagen III remodeling. The present study provides evidence that a pure population of human smooth muscle progenitor cells (pSMCs) derived from human pluripotent stem cells (hPSCs) (human

  19. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Rotoli, Bianca Maria; Bussolati, Ovidio [University of Parma, Department of Experimental Medicine (Italy); Costa, Anna Luisa; Blosi, Magda [National Research Council, Institute of Science and Technology for Ceramics (Italy); Di Cristo, Luisana [University of Parma, Department of Pharmacological, Biological and Applied Chemical Sciences (Italy); Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana [University of Parma, Department of Experimental Medicine (Italy); Bergamaschi, Enrico, E-mail: enrico.bergamaschi@unipr.it [University of Parma, Unit of Occupational Medicine, Department of Clinical Medicine, Nephrology and Health Sciences (Italy)

    2012-09-15

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO{sub 2} NPs (size range 4-33 nm), two preparations of CeO{sub 2} NPs (9-36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15-240 {mu}g/cm{sup 2} of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 {mu}g/cm{sup 2} of CuO NPs, compared to untreated control, and was abolished at doses {>=}80 {mu}g/cm{sup 2}, in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO{sub 2} and CeO{sub 2} NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway

  20. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    Science.gov (United States)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-09-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO2 NPs (size range 4-33 nm), two preparations of CeO2 NPs (9-36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15-240 μg/cm2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm2, in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO2 and CeO2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured nanomaterials.

  1. Study of cyclic and steady particle motion in a realistic human airway model using phase-Doppler anemometry

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Transport and deposition of particles in human airways has been of research interest for many years. Various experimental methods such as constant temperature anemometry, particle image velocimetry and laser-Doppler based techniques were employed for study of aerosol transport in the past. We use Phase-Doppler Particle Analyser (P/DPA for time resolved size and velocity measurement of liquid aerosol particles in a size range 1 to 8 μm. The di-2ethylhexyl sabacate (DEHS particles were produced by condensation monodisperse aerosol generator. A thin-wall transparent model of human airways with non-symmetric bifurcations and non-planar geometry containing parts from throat to 3rd-4th generation of bronchi was fabricated for the study. Several cyclic (sinusoidal breathing regimes were simulated using pneumatic breathing mechanism. Analogous steady-flow regimes were also investigated and used for comparison. An analysis of the particle velocity data was performed with aim to gain deeper understanding of the transport phenomena in the realistic bifurcating airway system. Flows of particles of different sizes in range 1 – 10 μm was found to slightly differ for extremely high Stokes numbers. Differences in steady and cyclic turbulence intensities were documented in the paper. Systematically higher turbulence intensity was found for cyclic flows and mainly in the expiration breathing phase. Negligible differences were found for behaviour of different particle size classes in the inspected range 1 to 8 μm. Possibility of velocity spectra estimation of air flow using the P/DPA data is discussed.

  2. A novel role of protein tyrosine kinase2 in mediating chloride secretion in human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lihua Liang

    Full Text Available Ca(2+ activated Cl(- channels (CaCC are up-regulated in cystic fibrosis (CF airway surface epithelia. The presence and functional properties of CaCC make it a possible therapeutic target to compensate for the deficiency of Cl(- secretion in CF epithelia. CaCC is activated by an increase in cytosolic Ca(2+, which not only activates epithelial CaCCs, but also inhibits epithelial Na(+ hyperabsorption, which may also be beneficial in CF. Our previous study has shown that spiperone, a known antipsychotic drug, activates CaCCs and stimulates Cl(- secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro, and in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR knockout mice in vivo. Spiperone activates CaCC not by acting in its well-known role as an antagonist of either 5-HT2 or D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Moreover, spiperone independently activates CFTR through a novel mechanism. Herein, we performed a mass spectrometry analysis and identified the signaling molecule that mediates the spiperone effect in activating chloride secretion through CaCC and CFTR. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor protein tyrosine kinase, which belongs to the focal adhesion kinase family. The inhibition of PYK2 notably reduced the ability of spiperone to increase intracellular Ca(2+ and Cl(- secretion. In conclusion, we have identified the tyrosine kinase, PYK2, as the modulator, which plays a crucial role in the activation of CaCC and CFTR by spiperone. The identification of this novel role of PYK2 reveals a new signaling pathway in human airway epithelial cells.

  3. Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Edvinsson Lars

    2009-07-01

    Full Text Available Abstract Background Endothelin-1 (ET-1 is a potent vasoactive peptide, which induces vasoconstriction and proliferation in vascular smooth muscle cells (VSMCs through activation of endothelin type A (ETA and type B (ETB receptors. The extracellular signal-regulated kinase 1 and 2 (ERK1/2 mitogen-activated protein kinases (MAPK are involved in ET-1-induced VSMC contraction and proliferation. This study was designed to investigate the ETA and ETB receptor intracellular signaling in human VSMCs and used phosphorylation (activation of ERK1/2 as a functional signal molecule for endothelin receptor activity. Results Subconfluent human VSMCs were stimulated by ET-1 at different concentrations (1 nM-1 μM. The activation of ERK1/2 was examined by immunofluorescence, Western blot and phosphoELISA using specific antibody against phosphorylated ERK1/2 protein. ET-1 induced a concentration- and time- dependent activation of ERK1/2 with a maximal effect at 10 min. It declined to baseline level at 30 min. The ET-1-induced activation of ERK1/2 was completely abolished by MEK1/2 inhibitors U0126 and SL327, and partially inhibited by the MEK1 inhibitor PD98059. A dual endothelin receptor antagonist bosentan or the ETA antagonist BQ123 blocked the ET-1 effect, while the ETB antagonist BQ788 had no significant effect. However, a selective ETB receptor agonist, Sarafotoxin 6c (S6c caused a time-dependent ERK1/2 activation with a maximal effect by less than 20% of the ET-1-induced activation of ERK1/2. Increase in bosentan concentration up to 10 μM further inhibited ET-1-induced activation of ERK1/2 and had a stronger inhibitory effect than BQ123 or the combined use of BQ123 and BQ788. To further explore ET-1 intracellular signaling, PKC inhibitors (staurosporin and GF109203X, PKC-delta inhibitor (rottlerin, PKA inhibitor (H-89, and phosphatidylinositol 3-kinase (PI3K inhibitor (wortmannin were applied. The inhibitors showed significant inhibitory effects on ET-1

  4. Airway remodeling: Effect of current and future asthma therapies

    NARCIS (Netherlands)

    Burgess, Janette K.; Moir, Lyn M.

    2007-01-01

    Airway remodeling (the structural changes which occur in the airways) is one of the characteristic features of severe persistent asthma. These changes include thickening of the laminar reticularis, an increase in the bulk of the airway smooth muscle, thickening of the basement membrane and alteratio

  5. Role of transforming growth factor alpha on proliferation of airway smooth muscle cells and mechanism%转化生长因子α对小鼠气道平滑肌细胞的促增殖作用

    Institute of Scientific and Technical Information of China (English)

    曹卫军; 李强; 刘忠令

    2008-01-01

    目的 探讨转化生长因子α(transforming growth factog alphg,TGF-α)对小鼠气道平滑肌细胞(airway smooth muscle cells,ASMC)促增殖作用及其机制.方法 用四唑盐(MTT)比色法和3H-TdR掺人法测定加入TGF-α后小鼠ASMC的增殖情况.本实验采用3H-TdR掺入法和MTT比色法观察选择性表皮生长因子受体(epidermal growth factor receptor,EGFR)酪氨酸激酶抑制剂(AG1478)、EGFR中和抗体225(225mAb)、MEK抑制剂(U0126)、PI-3K抑制剂(Wonmannin)对加入TGF-α后促ASMC增殖的影响.通过Western Blot方法测定加入TGF-α及加用AG1478、225mAb后ASMC磷酸化EGFR蛋白表达.结果 用MTT比色法和3H-TdR掺入法测定ASMC培养液中加入TGF-α后ASMC增殖情况比对照组明显增加.加入AG1478、225mAb、U0126、Wortmannin可抑制TGF-α促ASMC增殖作用(P<0.01).经Western Blot检测,TGF-α引起ASMC磷酸化EGFR蛋白表达增高.AG1478、225mAb抑制TGF-α所致ASMC磷酸化EGFR蛋白表达的增加(P<0.01).结论 TGF-α激活EGFR为磷酸化EGFR,从而通过:①ras-raf-MEK-erk/MAPK途径;②PI3K-PKC-IKK途径;促进体外培养的小鼠ASMC的增殖.%Objective To study the role of transforming growth factor alpha (TGF-α) on the proliferation of airway smooth muscle cells (AMSC) and the mechanism. Methods MTT and 3H-TdR incorporation assays were used to evaluate the proliferation of AMSC after TGF-α were added. The effect of AG1478,22SmAb, U0126 and Wortmannin on TGF-α inducing proliferation of ASMC were assessed by MTT assay and 3H-TdR incorporation assays. Phospho-EGF receptor protein in ASMC was detected by Western blot analysis with TGF-α,AG1478 or 225mAb. Results The OD value of MTT assay and the CPM value of 3H-TdR incorporation assay of ASMC stimulated with TGF-α were significantly higher than those of control group (P<0.01). AG1478, 225mAb, U0126 and Wortmannin inhibited TGF-α inducing proliferation of ASMC (P<0.01). By Western blot analysis, the expression of phospho

  6. Systems Biology Investigations of Pseudomonas aeruginosa Evolution in Association with Human Airway Infections

    DEFF Research Database (Denmark)

    Pedersen, Søren Damkiær

    Most knowledge about evolutionary adaptation has been gained from experimental evolution studies, in which organisms have been allowed to evolve under simple, well-defined conditions in the laboratory. While these studies have provided novel insight into the fundamental processes of evolutionary...... environments. The model system used for these investigations has been long-term chronic airway infections in Cystic fibrosis (CF) patients caused by the opportunistic pathogen Pseudomonas aeruginosa. Using a systems biology approach, we have monitored the adaptive development of the clinically important P....... aeruginosa DK2 clone lineage during 200,000 generations of evolution in the CF airways from its entrance in the clinic in the 1970’ies until the end of 2010. Genetic analysis showed that the DK2 lineage between 1973 and 2007 accumulated mutations in a near-linear manner with an overall genomic signature...

  7. Regional differences of energetics, mechanics, and kinetics of myosin cross-bridge in human ureter smooth muscle.

    Science.gov (United States)

    Vargiu, Romina; Perinu, Anna; Tintrup, Frank; Broccia, Francesca; Lisa, Antonello De

    2015-01-01

    This study provides information about baseline mechanical properties of the entire muscle and the molecular contractile mechanism in human ureter smooth muscle and proposed to investigate if changes in mechanical motor performance in different regions of isolated human ureter are attributable to differences in myosin crossbridge interactions. Classic mechanical, contraction and energetic parameters derived from the tension-velocity relationship were studied in ureteral smooth muscle strips oriented longitudinally and circularly from abdominal and pelvic human ureter parts. By applying of Huxley's mathematical model we calculated the total working crossbridge number per mm(2) (Ψ), elementary force per single crossbridge (Π0), duration of maximum rate constant of crossbridge attachment 1/f1 and detachment 1/g2 and peak mechanical efficiency (Eff.max). Abdominal longitudinal smooth muscle strips exhibited significantly higher maximum isometric tension and faster maximum unloaded shortening velocity compared to pelvic ones. Contractile differences were associated with significantly higher crossbridge number per mm(2). Abdominal longitudinal muscle strips showed a lower duration of maximum rate constant of crossbridge attachment and detachment and higher peak mechanical efficiency than pelvic ones. Such data suggest that the abdominal human ureter showed better mechanical motor performance mainly related to a higher crossbridge number and crossbridge kinetics differences. Such results were more evident in the longitudinal rather than in the circular layer.

  8. Microarray Analysis of Human Vascular Smooth Muscle Cell Responses to Bacterial Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Joe Minta

    2007-01-01

    Full Text Available Accumulating evidence suggest a causal role of bacterial and viral infections in atherogenesis. Bacterial lipopolysaccharide (LPS has been shown to stimulate resting vascular smooth muscle cells (SMC with the production of inflammatory cytokines and modulation of quiescent cells to the proliferative and synthetic phenotype. To comprehensively identify biologically important genes associated with LPS-induced SMC phenotype modulation, we compared the transcriptomes of quiescent human coronary artery SMC and cells treated with LPS for 4 and 22 h. The SMCs responded robustly to LPS treatment by the differential regulation of several genes involved in chromatin remodeling, transcription regulation, translation, signal transduction, metabolism, host defense, cell proliferation, apoptosis, matrix formation, adhesion and motility and suggest that the induction of clusters of genes involved in cell proliferation, migration and ECM production may be the main force that drives the LPS-induced phenotypic modulation of SMC rather than the differential expression of a single gene or a few genes. An interesting observation was the early and dramatic induction of four tightly clustered interferon-induced genes with tetratricopeptide repeats (IFIT1, 2, 4, 5. siRNA knock-down of IFIT1 in SMC was found to be associated with a remarkable up-regulation of TP53, CDKN1A and FOS, suggesting that IFIT1 may play a role in cell proliferation. Our data provide a comprehensive list of genes involved in LPS biology and underscore the important role of LPS in SMC activation and phenotype modulation which is a pivotal event in the onset of atherogenesis.

  9. Stimulatory interactions between human coronary smooth muscle cells and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Sara Paccosi

    Full Text Available Despite inflammatory and immune mechanisms participating to atherogenesis and dendritic cells (DCs driving immune and non-immune tissue injury response, the interactions between DCs and vascular smooth muscle cells (VSMCs possibly relevant to vascular pathology including atherogenesis are still unclear. To address this issue, immature DCs (iDCs generated from CD14+ cells isolated from healthy donors were matured either with cytokines (mDCs, or co-cultured (ccDCs with human coronary artery VSMCs (CASMCs using transwell chambers. Co-culture induced DC immunophenotypical and functional maturation similar to cytokines, as demonstrated by flow cytometry and mixed lymphocyte reaction. In turn, factors from mDCs and ccDCs induced CASMC migration. MCP-1 and TNFα, secreted from DCs, and IL-6 and MCP-1, secreted from CASMCs, were primarily involved. mDCs adhesion to CASMCs was enhanced by CASMC pre-treatment with IFNγ and TNFα ICAM-1 and VCAM-1 were involved, since the expression of specific mRNAs for these molecules increased and adhesion was inhibited by neutralizing antibodies to the counter-receptors CD11c and CD18. Adhesion was also inhibited by CASMC pre-treatment with the HMG-CoA-reductase inhibitor atorvastatin and the PPARγ agonist rosiglitazone, which suggests a further mechanism for the anti-inflammatory action of these drugs. Adhesion of DCs to VSMCs was shown also in vivo in rat carotid 7 to 21 days after crush and incision injury. The findings indicate that DCs and VSMCs can interact with reciprocal stimulation, possibly leading to perpetuate inflammation and vascular wall remodelling, and that the interaction is enhanced by a cytokine-rich inflammatory environment and down-regulated by HMGCoA-reductase inhibitors and PPARγ agonists.

  10. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways

    Directory of Open Access Journals (Sweden)

    Jinxiang Xi

    2014-01-01

    Full Text Available Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was