WorldWideScience

Sample records for human adipose derived

  1. Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues.

    Science.gov (United States)

    Toyoda, Mito; Matsubara, Yoshinori; Lin, Konghua; Sugimachi, Keizou; Furue, Masutaka

    2009-10-01

    Different fat depots contribute differently to disease and function. These differences may be due to the regional variation in cell types and inherent properties of fat cell progenitors. To address the differences of cell types in the adipose tissue from different depots, the phenotypes of freshly isolated adipose tissue-derived cells (ATDCs) from subcutaneous (SC) and omental (OM) adipose tissues were compared using flow cytometry. Our results showed that CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(+) population, containing vascular smooth muscle cells and pericytes, was specifically defined in the SC adipose tissue while no such population was observed in OM adipose tissue. On the other hand, CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(-) population, which is an undefined cell population, were found solely in OM adipose tissue. Overall, the SC adipose tissue contained more ATDCs than OM adipose tissue, while OM adipose tissue contained more blood-derived cells. Regarding to the inherent properties of fat cell progenitors from the two depots, adipose-derived stem cells (ADSCs) from SC had higher capacity to differentiate into both adipogenic and osteogenic lineages than those from OM, regardless of that the proliferation rates of ADSCs from both depots were similar. The higher differentiation capacity of ADSCs from SC adipose tissue suggests that SC tissue is more suitable cell source for regenerative medicine than OM adipose tissue.

  2. Generation of Neurospheres from Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Erfang Yang

    2015-01-01

    Full Text Available Transplantation of neural stem cells (NSCs to treat neurodegenerative disease shows promise; however, the clinical application of NSCs is limited by the invasive procurement and ethical concerns. Adipose-derived stem cells (ADSCs are a source of multipotent stem cells that can self-renew and differentiate into various kinds of cells; this study intends to generate neurospheres from human ADSCs by culturing ADSCs on uncoated culture flasks in serum-free neurobasal medium supplemented with B27, basic fibroblast growth factor (bFGF, and epidermal growth factor (EGF; the ADSCs-derived neurospheres were terminally differentiated after growth factor withdrawal. Expression of Nestin, NeuN, MAP2, and GFAP in ADSCs and terminally differentiated neurospheres was shown by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, western blotting, and immunocytochemistry; cell proliferation in neurospheres was evaluated by cell cycle analyses, immunostaining, and flow cytometry. These data strongly support the conclusion that human ADSCs can successfully differentiate into neurospheres efficiently on uncoated culture flasks, which present similar molecular marker pattern and proliferative ability with NSCs derived from embryonic and adult brain tissues. Therefore, human ADSCs may be an ideal alternative source of stem cells for the treatment of neurodegenerative diseases.

  3. Nanomechanics of human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Jungmann, Pia M; Mehlhorn, Alexander T; Schmal, Hagen

    2012-01-01

    OBJECTIVES: Human adipose-derived stem cells (ASCs) show gene expression of chondrogenic markers after three-dimensional cultivation. However, hypertrophy and osteogenic transdifferentiation are still limiting clinical applications. The aim of this study was to investigate the impact of small...... stem cells by single-cell elasticity measurements using atomic force microscopy. Results were matched with single-cell size measurements (diameter and volume) and quantitative real time-polymerase chain reaction for osteogenic and hypertrophic (alkaline phosphatase [ALP], collagen type X) as well...... a significantly lower deformability than chondrocytes (Young's modulus: 294.4 vs. 225.1 Pa; ANOVA: pstem cell elasticity to chondrocyte values (221.7 Pa). All other chondrogenic differentiated ASCs presented intermediate elasticity (BMP-2 stimulation: 269.1 Pa...

  4. Natural Killer Cells Differentiate Human Adipose-Derived Stem Cells and Modulate Their Adipogenic Potential.

    Science.gov (United States)

    Rezzadeh, Kameron S; Hokugo, Akishige; Jewett, Anahid; Kozlowska, Anna; Segovia, Luis Andres; Zuk, Patricia; Jarrahy, Reza

    2015-09-01

    Natural killer cells are thought to represent more than 30 percent of all lymphocytes within the stromal vascular fraction of lipoaspirates. However, their physiologic interaction with adipocytes and their precursors has never been specifically examined. The authors hypothesized that natural killer cells, by means of cytokine secretion, are capable of promoting the differentiation of adipose-derived stem cells. Human natural killer cells purified from healthy donors' peripheral blood mononuclear cells were activated with a combination of interleukin-2 and anti-CD16 monoclonal antibody; natural killer cell supernatant was collected. Adipose-derived stem cells isolated from raw human lipoaspirates from healthy patients were treated with growth media, growth media with natural killer cell supernatant, adipogenic media, and adipogenic media with natural killer cells supernatant. Flow cytometric analysis was performed on cells using antibodies against B7H1, CD36, CD44, CD34, CD29, and MHC-1. Adipogenic-related gene expression (PPAR-γ, LPL, GPD-1, and aP2) was assessed. Oil Red O staining was performed as a functional assay of adipocyte differentiation and adipogenesis. Adipose-derived stem cells maintained in growth media with natural killer cell supernatant lost markers of "stemness," including CD44, CD34, and CD29; and expressed markers of differentiation, including B7H1 and MHC-1. Adipose-derived stem cells treated with natural killer cell supernatant accumulated small amounts of lipid after 10 days of natural killer cell supernatant treatment. Adipose-derived stem cells treated with natural killer cell supernatant showed altered expression of adipogenesis-associated genes compared with cells maintained in growth media. Adipose-derived stem cells maintained in adipogenic media with natural killer cell supernatant accumulated less lipid than those cells in adipogenic media alone. The authors demonstrate that, through secreted factors, natural killer cells are capable

  5. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes

    DEFF Research Database (Denmark)

    Elabd, Christian; Chiellini, Chiara; Carmona, Mamen

    2009-01-01

    adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta......In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent......-agonists and atrial natriuretic peptide, and release of adiponectin and leptin. Herein, we show that, upon chronic exposure to a specific PPARgamma but not to a PPARbeta/delta or a PPARalpha agonist, hMADS cell-derived white adipocytes are able to switch to a brown phenotype by expressing both uncoupling protein one...

  6. In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds

    Directory of Open Access Journals (Sweden)

    Hyeon Joo Kim

    2012-12-01

    Full Text Available Human adipose-derived stem cells have shown chondrogenic differentiation potential in cartilage tissue engineering in combination with natural and synthetic biomaterials. In the present study, we hypothesized that porous aqueous-derived silk protein scaffolds would be suitable for chondrogenic differentiation of human adipose-derived stem cells. Human adipose-derived stem cells were cultured up to 6 weeks, and cell proliferation and chondrogenic differentiation were investigated and compared with those in conventional micromass culture. Cell proliferation, glycosaminoglycan, and collagen levels in aqueous-derived silk scaffolds were significantly higher than in micromass culture. Transcript levels of SOX9 and type II collagen were also upregulated in the cell–silk constructs at 6 weeks. Histological examination revealed that the pores of the silk scaffolds were filled with cells uniformly distributed. In addition, chondrocyte-specific lacunae formation was evident and distributed in the both groups. The results suggest the biodegradable and biocompatible three-dimensional aqueous-derived silk scaffolds provided an improved environment for chondrogenic differentiation compared to micromass culture.

  7. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Directory of Open Access Journals (Sweden)

    Ana Carolina Irioda

    2016-01-01

    Full Text Available Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d, colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d, cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  8. Ultrastructural features of human adipose-derived multipotent mesenchymal stromal cells.

    Science.gov (United States)

    Manea, Claudiu Marius; Rusu, Mugurel Constantin; Constantin, Daniel; Mănoiu, Valentina Mariana; Moldovan, Lucia; Jianu, Adelina Maria

    2014-01-01

    Multipotent mesenchymal stromal cells (MMSCs) are plastic-adherent cells with a well-established phenotype. Equine, but not human, adipose MMSCs have been characterized ultrastructurally. The purpose of our study was to evaluate ultrastructurally the adipose-derived human MMSCs. Cell cultures were prepared from human lipoaspirate. The flow cytometry evaluation of surface markers of cultured cells confirmed the expected profile of MMSCs, that were positive for CD73, CD90 and CD105, and negative for CD34 and CD45. We examined these human adipose-derived MMSCs in transmission electron microscopy (TEM) by Epon en-face embedding the fixed MMSCs. The main ultrastructural features of MMSCs were the extremely rich content of endosomal/vesicular elements, long mitochondria, dilated RER (rough endoplasmic reticulum) cisternae, and abundant intermediate filaments and microtubules. We found two types of MMSCS prolongations: (a) thick processes, with opposite, vesicular and filaments-rich, sides and (b) slender processes (pseudopodes and filopodes), with occasional proximal dilated segments housing mitochondria, vesicles and secretory granules. These TEM features of MMSCs characterized an in vitro cell population and could use to distinguish between different cell types in culture.

  9. Wnt5a Regulates the Assembly of Human Adipose Derived Stromal Vascular Fraction-Derived Microvasculatures.

    Directory of Open Access Journals (Sweden)

    Venkat M Ramakrishnan

    Full Text Available Human adipose-derived stromal vascular fraction (hSVF cells are an easily accessible, heterogeneous cell system that can spontaneously self-assemble into functional microvasculatures in vivo. However, the mechanisms underlying vascular self-assembly and maturation are poorly understood, therefore we utilized an in vitro model to identify potential in vivo regulatory mechanisms. We utilized passage one (P1 hSVF because of the rapid UEA1+ endothelium (EC loss at even P2 culture. We exposed hSVF cells to a battery of angiogenesis inhibitors and found that the pan-Wnt inhibitor IWP2 produced the most significant hSVF-EC networking decrease (~25%. To determine which Wnt isoform(s and receptor(s may be involved, hSVF was screened by PCR for isoforms associated with angiogenesis, with only WNT5A and its receptor, FZD4, being expressed for all time points observed. Immunocytochemistry confirmed Wnt5a protein expression by hSVF. To see if Wnt5a alone could restore IWP2-induced EC network inhibition, recombinant human Wnt5a (0-150 ng/ml was added to IWP2-treated cultures. The addition of rhWnt5a significantly increased EC network area and significantly decreased the ratio of total EC network length to EC network area compared to untreated controls. To determine if Wnt5a mediates in vivo microvascular self-assembly, 3D hSVF constructs containing an IgG isotype control, anti-Wnt5a neutralizing antibody or rhWnt5a were implanted subcutaneously for 2w in immune compromised mice. Compared to IgG controls, anti-Wnt5a treatment significantly reduced vessel length density by ~41%, while rhWnt5a significantly increased vessel length density by ~62%. However, anti-Wnt5a or rhWnt5a did not significantly affect the density of segments and nodes, both of which measure vascular complexity. Taken together, this data demonstrates that endogenous Wnt5a produced by hSVF plays a regulatory role in microvascular self-assembly in vivo. These findings also suggest that

  10. The therapeutic effects of human adipose-derived stem cells in Alzheimer's disease mouse models.

    Science.gov (United States)

    Chang, Keun-A; Kim, Hee Jin; Joo, Yuyoung; Ha, Sungji; Suh, Yoo-Hun

    2014-01-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease, still lacking proper clinical treatment. Therefore, many researchers have focused on the possibility of therapeutic use of stem cells for AD. Adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency and their ability to differentiate into multiple tissue types and have immune modulatory properties similar to those of MSCs from other origins. Because of their biological properties, ASCs can be considered for cell therapy and neuroregeneration. Our recent results clearly showed the therapeutic potential of these cells after transplantation into Tg2576 mice (an AD mouse model). Intravenously or intracerebrally transplanted human ASCs (hASCs) greatly improved the memory impairment and the neuropathology, suggesting that hASCs have a high therapeutic potential for AD.

  11. [Nuclear heterogeneity and proliferative capacity of human adipose derived MSC-like cells].

    Science.gov (United States)

    Lavrov, A V; Smirnichina, S A

    2010-01-01

    Adipose derived stem cells (ADSCs) are MSC-like cells which could be easily used for regenerative medicine. Here, the morphology and proliferative capacity of human ADSCs is discribed. ADSCs were analyzed after one month of cultivation at a density of 10 cells/cm2. 21 colonies were counted. Few atypical cells (huge nuclei and cytoplasm) were found in 9 out of 17 colonies analyzed. ANOVA demonstrated that colonies also differed (P = 0.0025) in nuclei dimensions and scatter in the dimensions in each colony. Nuclei dimensions and cell density logarithms correlated in reverse proportion (-0.7; P = 0.002). Thus, ADSCs were heterogeneous and represented two types of cells: small highly proliferative and large low proliferative cells. Cell heterogeneity observed in some colonies might be due to cells registered at different cell cycle phases. Stable and typical morphology, colony-formation capability and high proliferative capacity of cells indicate visceral adipose tissue as a rich source of ADSCs.

  12. Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Pasarica, Magdalena; Mashtalir, Nazar; McAllister, Emily J

    2008-01-01

    , the effect of the virus on commitment, differentiation, and lipid accumulation was investigated in vitro in primary human adipose-derived stem/stromal cells (hASC). Ad-36 infected hASC in a time- and dose-dependent manner. Even in the presence of osteogenic media, Ad-36-infected hASC showed significantly...... and the accumulation of its extracellular fraction. hASC from subjects harboring Ad-36 DNA in their adipose tissue due to natural infection had significantly greater ability to differentiate compared with Ad-36 DNA-negative counterparts, which offers a proof of concept. Thus, Ad-36 has the potential to induce...

  13. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation

    Directory of Open Access Journals (Sweden)

    Adila A Hamid

    2012-01-01

    Full Text Available OBJECTIVES: Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. MATERIALS AND METHODS: Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. RESULTS: Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. CONCLUSION: Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adiposederived stem cells was most prominent after one week of chondrogenic induction.

  14. Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Escobar, Carlos Hugo; Chaparro, Orlando

    2016-03-01

    Molecules of animal or bacterial origin, which pose a risk for zoonoses or immune rejection, are commonly used for extraction, culture, and cryopreservation of mesenchymal stem cells. There is no sequential and orderly protocol for producing human adipose-derived stem cells (hASCs) under xeno-free conditions. After standardizing a human platelet lysate (hPL) production protocol, four human adipose tissue samples were processed through explants with fetal bovine serum (FBS)-supplemented or hPL-supplemented media for extracting the adipose-derived stem cells. The cells were cultivated in cell culture medium + hPL (5%) or FBS (10%). The cellular replication rate, immunophenotype, and differentiation potential were evaluated at fourth passage. Cellular viability was evaluated before and after cryopreservation of the cells, with an hPL-based solution compared with an FBS-based solution. The explants cultured in hPL-supplemented media showed earlier and faster hASC proliferation than did those supplemented with FBS. Likewise, cells grown in hPL-supplemented media showed a greater proliferation rate, without losing the immunophenotype. Osteogenic differentiation of xeno-free hASC was higher than the hASC produced in standard conditions. However, adipogenic differentiation was reduced in xeno-free hASC. Finally, the cells cryopreserved in an hPL-based solution showed a higher cellular viability than the cells cryopreserved in an FBS-based. In conclusion, we have developed a complete xeno-free protocol for extracting, culturing, and cryopreserving hASCs that can be safely implemented in clinical studies.

  15. Effects of platelet-rich plasma, adipose-derived stem cells, and stromal vascular fraction on the survival of human transplanted adipose tissue.

    Science.gov (United States)

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-11-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back of nude mice, and evaluated at 4, 8, and 12 weeks. Human adipocytes were grossly maintained in the ASCs and SVF mixtures. Survival of the adipose tissues with PRP was observed at 4 weeks and with SVF at 8 and 12 weeks. At 12 weeks, volume reduction in the ASCs and SVF mixtures were 36.9% and 32.1%, respectively, which were significantly different from that of the control group without adjuvant treatment, 51.0%. Neovascular structures were rarely observed in any of the groups. Our results suggest that the technique of adding ASCs or SVF to transplanted adipose tissue might be more effective than the conventional grafting method. An autologous adipose tissue graft in combination with ASCs or SVF may potentially contribute to stabilization of engraftment.

  16. miRNA expression profile during osteogenic differentiation of human adipose-derived stem cells.

    Science.gov (United States)

    Zhang, Zi-ji; Zhang, Hao; Kang, Yan; Sheng, Pu-yi; Ma, Yuan-chen; Yang, Zi-bo; Zhang, Zhi-qi; Fu, Ming; He, Ai-shan; Liao, Wei-ming

    2012-03-01

    Human adipose-derived stem cells (hADSC) are capable of differentiating into an osteogenic lineage. It is believed that microRNAs (miRNAs) play important roles in regulating this osteogenic differentiation of human adipose-derived cells, although its molecular mechanism remains unclear. We investigated the miRNA expression profile during osteogenic differentiation of hADSCs, and assessed the roles of involved miRNAs during the osteogenic differentiation. We obtained and cultured human adipose-derived stems cells from donors who underwent elective liposuction or other abdominal surgery at our institution. miRNA expression profiles pre- and post-osteogenic induction were obtained using microarray essay, and differently expressed miRNAs were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The expression of osteogenic proteins was detected using an enzyme-linked immunosorbent assay. Putative targets of the miRNAs were predicted using online software MiRanda, TargetScan, and miRBase. Eight miRNAs were found differently expressed pre- and post-osteogenic induction, among which four miRNAs (miR-17, miR-20a, miR-20b, and miR-106a) were up-regulated and four miRNAs (miR-31, miR-125a-5p, miR-125b, and miR-193a) were down-regulated. qRT-PCR analysis further confirmed the results. Predicted target genes of the differentially expressed miRNAs based on the overlap from three public prediction algorithms: MiRanda, TargetScan, and miRBase Target have the known functions of regulating stem cell osteogenic differentiation, self-renewal, signal transduction, and cell cycle control. We identified a group of miRNAs that may play important roles in regulating hADSC cell differentiation toward an osteoblast lineage. Further study of these miRNAs may elucidate the mechanism of hADSC differentiation into adipose tissue, and thus provide basis for tissue engineering. © 2011 Wiley Periodicals, Inc.

  17. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells.

    Science.gov (United States)

    Katz, Adam J; Tholpady, Ashok; Tholpady, Sunil S; Shang, Hulan; Ogle, Roy C

    2005-03-01

    Adult human subcutaneous adipose tissue contains cells with intriguing multilineage developmental plasticity, much like marrow-derived mesenchymal stem cells. Putative stem or progenitor cells from fat have been given many different names in the literature, reflecting an early and evolving consensus regarding their phenotypic characterization. The study reported here used microarrays to evaluate over 170 genes relating to angiogenesis and extracellular matrix in undifferentiated, early-passage human adipose-derived adherent stromal (hADAS) cells isolated from three separate donors. The hADAS populations unanimously transcribed 66% of the screened genes, and 83% were transcribed by at least two of the three populations. The most highly transcribed genes relate to functional groupings such as cell adhesion, matrix proteins, growth factors and receptors, and proteases. The transcriptome of hADAS cells demonstrated by this work reveals many similarities to published profiles of bone marrow mesenchymal stem cells (MSCs). In addition, flow analysis of over 24 hADAS cell surface proteins (n = 7 donors) both confirms and expands on the existing literature and reveals strong intergroup correlation, despite an inconsistent nomenclature and the lack of standardized protocols for cell isolation and culture. Finally, based on flow analysis and reverse transcription polymerase chain reaction studies, our results suggest that hADAS cells do not express several proteins that are implicated as markers of "stemness" in other stem cell populations, including telomerase, CD133, and the membrane transporter ABCG2.

  18. Effects of GSK3 inhibitors on in vitro expansion and differentiation of human adipose-derived stem cells into adipocytes

    Directory of Open Access Journals (Sweden)

    Peraldi Pascal

    2008-02-01

    Full Text Available Abstract Background Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue. Results Our results showed that GSK3 inhibitors inhibited proliferation and clonogenicity of human stem cells, strongly suggesting that GSK3 inhibitors could be potent regulators of the pool of adipocyte precursors in adipose tissue. The impact of GSK3 inhibition on differentiation of hMADS cells was also investigated. Adipogenic and osteogenic differentiations were inhibited upon hMADS treatment with BIO. Whereas a chronic treatment was required to inhibit osteogenesis, a treatment that was strictly restricted to the early step of differentiation was sufficient to inhibit adipogenesis. Conclusion These results demonstrated the feasibility of a pharmacological approach to regulate adipose-derived stem cell function and that GSK3 could represent a potential target for controlling adipocyte precursor pool under conditions where fat tissue formation is impaired.

  19. Comparison of Characteristics of Human Amniotic Membrane and Human Adipose Tissue Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Dizaji Asl, Khadijeh; Shafaei, Hajar; Soleimani Rad, Jafar; Nozad, Hojjat Ollah

    2017-01-01

    BACKGROUND Mesenchymal stem cells (MSCs) are ideal candidates for treatment of diseases. Amniotic membranes are an inexpensive source of MSCs (AM-MSC) without any donor site morbidity in cell therapy. Adipose tissue derived stem cells (ASCs) are also suitable cells for cell therapy. There is discrepancy in CD271 expression among MSCs from different sources. In this study, the characteristics of AM-MSC and ASCs and CD271 expression were compared. METHODS Adult adipose tissue samples were obtained from patients undergoing elective surgical procedure, and samples of amniotic membrane were collected immediately after caesarean operation. After isolation and expansion of MSCs, the proliferation rate and viability of cells were evaluated through calculating DT and MTT assay. Expression of routine mesenchymal specific surface antigens of MSCs and CD271 was evaluated by flow cytometry for both types of cells. RESULTS The growth rate and viability of the MSCs from the amniotic membrane was significantly higher compared with the ASCs. The low expression of CD14 and CD45 indicated that AM-MSC and ASCs are non hematopoietic cells, and both cell types expressed high percentages of CD44, CD105. The results revealed that AM-MSC and ASCs expressed no CD271 on their surfaces. CONCLUSION This study showed that amniotic membrane is a suitable cell source for cell therapy, and CD271 is a negative marker for MSCs identification from amniotic membrane and adipose tissue.

  20. Differentiation of human adipose-derived stem cells into neuron-like cells by Radix Angelicae Sinensis

    Institute of Scientific and Technical Information of China (English)

    Qiaozhi Wang; Lile Zhou; Yong Guo; Guangyi Liu; Jiyan Cheng; Hong Yu

    2013-01-01

    Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigate the use of Radix Angelicae Sinensis as an inducer of neuronal differentiation. Primary human adipose-derived stem cells were obtained from adult subcutaneous fatty tissue, then pre-induced with 10%Radix Angelicae Sinensis injection for 24 hours, and incubated in serum-free Dulbecco’s modified Eagle’s medium/Nutrient Mixture F-12 containing 40% Radix Angelicae Si-nensis to induce its differentiation into neuron-like cells. Butylated hydroxyanisole, a common in-ducer for neuronal differentiation, was used as the control. After human adipose-derived stem cells differentiated into neuron-like cells under the induction of Radix Angelicae Sinensis for 24 hours, the positive expression of neuron-specific enolase was lower than that of the butylated hydroxyani-sole-induced group, and the expression of glial fibril ary acidic protein was negative. After they were induced for 48 hours, the positive expression of neuron specific enolase in human adipose-derived stem cells was significantly higher than that of the butylated hydroxyanisole-induced group. Our experimental findings indicate that Radix Angelicae Sinensis can induce human adipose-derived stem celldifferentiation into neuron-like cells and produce less cytotoxicity.

  1. [Induction of hepatic specification of human adipose-derived stem cells (hADSCs) in vitro].

    Science.gov (United States)

    Wang, Min; Pei, Hai-yun; Guan, Li-dong; Nan, Xue; Bai, Ci-xian; Liu, Hui; Li, Bao-wei; Wang, Yun-fang; Pei, Xue-tao

    2009-07-01

    To induce hepatic differentiation of human adipose-derived stem cells (hADSCs) in vitro. hADSCs were isolated from human adipose tissue and treated with improved hepatic medium containing HGF, bFGF and FGF4. After 7 days of culture, OSM was added to the culture media. Cell growth during hepatic differentiation was evaluated by CCK8 assay. Morphology of differentiation was examined under light microscope. Liver specific genes and proteins were detected by RT-PCR analysis and immunohistochemical staining, respectively. And functional characteristics of hepatocytes were also examined. The number of hADSCs cultured in the improved hepatic media was increased significantly in comparison to hADSCs cultured in control media from 5 days to 21 days (t=6.59, 8.69, 15.94 and 24.64, respectively, Pspecific activities, such as uptake and excretion of indocyanine green, glycogen storage and albumin production. hADSCs can be induced into hepatocyte-like cells in this differentiation system. And this differentiation system promoted the growth of hADSCs.

  2. Differentiation of human adipose-derived stem cells into brite (brown-in-white adipocytes

    Directory of Open Access Journals (Sweden)

    Didier F Pisani

    2011-11-01

    Full Text Available It is well established now that adult humans possess active brown adipose tissue which represents a potential pharmacological target to combat obesity and associated diseases. We had shown previously that human multipotent adipose-derived stem (hMADS cells are able to differentiate into cells which exhibit the key properties of human white adipocytes, and to convert into functional brown adipocytes upon PPARγ activation that could explain UCP1-expressing cells within islets surrounded by white adipocytes. Herein we further characterize hMADS cells differentiation into brown adipocytes that behave like mouse brite adipocytes previously described. We analyzed the expression of gene markers known to be associated with mouse white and brown adipocytes. When shifting from a white to a brown fat cell phenotype, the striking enhancement of uncoupling activity appears mainly due, if not all, to an increase in UCP1 expression whereas induction of UCP2 is weak and UCP3 expression is unchanged. Conversion of white hMADS adipocytes is dependent on PPARγ activation with rosiglitazone as the most potent agonist and is inhibited by a PPARγ antagonist. Furthermore our data show that, in contrast to mouse cellular models, hMADS cells conversion into brown adipocytes is not induced by BMP7 treatment and not modulated by activation of the Hedgehog pathway. No primary or clonal precursor cells of human brown adipocytes have been obtained so far that can be used as a tool to develop therapeutic drugs and to gain further insights into the molecular mechanisms of brown adipogenesis in humans. Thus hMADS cells represent a suitable cell model to delineate the formation and/or the uncoupling capacity of human brown/brite adipocytes that could help to dissipate caloric excess intake among individuals.

  3. Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum.

    Science.gov (United States)

    Wystrychowski, Wojciech; Patlolla, Bhagat; Zhuge, Yan; Neofytou, Evgenios; Robbins, Robert C; Beygui, Ramin E

    2016-06-13

    Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential. The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation. The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven

  4. Characterization of Human Knee and Chin Adipose-Derived Stromal Cells

    Directory of Open Access Journals (Sweden)

    Magali Kouidhi

    2015-01-01

    Full Text Available Animal study findings have revealed that individual fat depots are not functionally equivalent and have different embryonic origins depending on the anatomic location. Mouse bone regeneration studies have also shown that it is essential to match the Hox code of transplanted cells and host tissues to achieve correct repair. However, subcutaneous fat depots from any donor site are often used in autologous fat grafting. Our study was thus carried out to determine the embryonic origins of human facial (chin and limb (knee fat depots and whether they had similar features and molecular matching patterns. Paired chin and knee fat depots were harvested from 11 subjects and gene expression profiles were determined by DNA microarray analyses. Adipose-derived stromal cells (ASCs from both sites were isolated and analyzed for their capacity to proliferate, form clones, and differentiate. Chin and knee fat depots expressed a different HOX code and could have different embryonic origins. ASCs displayed a different phenotype, with chin-ASCs having the potential to differentiate into brown-like adipocytes, whereas knee-ASCs differentiated into white adipocytes. These results highlighted different features for these two fat sites and indicated that donor site selection might be an important factor to be considered when applying adipose tissue in cell-based therapies.

  5. Induction of chondrogenic differentiation of human adipose-derived stem cells by low frequency electric field

    Science.gov (United States)

    Mardani, Mohammad; Roshankhah, Shiva; Hashemibeni, Batool; Salahshoor, Mohammadreza; Naghsh, Erfan; Esfandiari, Ebrahim

    2016-01-01

    Background: Since when the cartilage damage (e.g., with the osteoarthritis) it could not be repaired in the body, hence for its reconstruction needs cell therapy. For this purpose, adipose-derived stem cells (ADSCs) is one of the best cell sources because by the tissue engineering techniques it can be differentiated into chondrocytes. Chemical and physical inducers is required order to stem cells to chondrocytes differentiating. We have decided to define the role of electric field (EF) in inducing chondrogenesis process. Materials and Methods: A low frequency EF applied the ADSCs as a physical inducer for chondrogenesis in a 3D micromass culture system which ADSCs were extracted from subcutaneous abdominal adipose tissue. Also enzyme-linked immunosorbent assay, methyl thiazolyl tetrazolium, real time polymerase chain reaction and flowcytometry techniques were used for this study. Results: We found that the 20 minutes application of 1 kHz, 20 mv/cm EF leads to chondrogenesis in ADSCs. Although our results suggest that application of physical (EF) and chemical (transforming growth factor-β3) inducers at the same time, have best results in expression of collagen type II and SOX9 genes. It is also seen EF makes significant decreased expression of collagens type I and X genes. Conclusion: The low frequency EF can be a good motivator to promote chondrogenic differentiation of human ADSCs. PMID:27308269

  6. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications.

    Science.gov (United States)

    Choi, Jane Ru; Yong, Kar Wey; Wan Safwani, Wan Kamarul Zaman

    2017-02-21

    Human adipose-derived mesenchymal stem cells (hASCs) are an ideal cell source for regenerative medicine due to their capabilities of multipotency and the readily accessibility of adipose tissue. They have been found residing in a relatively low oxygen tension microenvironment in the body, but the physiological condition has been overlooked in most studies. In light of the escalating need for culturing hASCs under their physiological condition, this review summarizes the most recent advances in the hypoxia effect on hASCs. We first highlight the advantages of using hASCs in regenerative medicine and discuss the influence of hypoxia on the phenotype and functionality of hASCs in terms of viability, stemness, proliferation, differentiation, soluble factor secretion, and biosafety. We provide a glimpse of the possible cellular mechanism that involved under hypoxia and discuss the potential clinical applications. We then highlight the existing challenges and discuss the future perspective on the use of hypoxic-treated hASCs.

  7. Layer-shaped alginate hydrogels enhance the biological performance of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Galateanu Bianca

    2012-06-01

    Full Text Available Abstract Background The reconstruction of adipose tissue defects is often challenged by the complications that may occur following plastic and reconstructive surgery, including donor-site morbidity, implant migration and foreign body reaction. To overcome these problems, adipose tissue engineering (ATE using stem cell-based regeneration strategies has been widely explored in the last years. Mounting evidence has shown that adipose-derived stem cells (ADSCs represent a promising cell source for ATE. In the context of a small number of reports concerning adipose tissue regeneration using three-dimensional (3-D systems, the present study was designed to evaluate the biological performance of a novel alginate matrix that incorporates human ADSCs (hADSCs. Results Culture-expanded cells isolated from the stromal vascular fraction (SVF, corresponding to the third passage which showed the expression of mesenchymal stem cell (MSC markers, were used in the 3-D culture systems. The latter represented a calcium alginate hydrogel, obtained by the diffusion of calcium gluconate (CGH matrix, and shaped as discoid-thin layer. For comparative purposes, a similar hADSC-laden alginate hydrogel cross-linked with calcium chloride was considered as reference hydrogel (RH matrix. Both hydrogels showed a porous structure under scanning electron microscopy (SEM and the hADSCs embedded displayed normal spherical morphologies, some of them showing signs of mitosis. More than 85% of the entrapped cells survived throughout the incubation period of 7 days. The percentage of viable cells was significantly higher within CGH matrix at 2 days post-seeding, and approximately similar within both hydrogels after 7 days of culture. Moreover, both alginate-based hydrogels stimulated cell proliferation. The number of hADSC within hydrogels has increased during the incubation period of 7 days and was higher in the case of CGH matrix. Cells grown under adipogenic conditions for

  8. Paroxetine Can Enhance Neurogenesis during Neurogenic Differentiation of Human Adipose-derived Stem Cells

    Science.gov (United States)

    Jahromi, Maliheh; Razavi, Shahnaz; Amirpour, Nushin; Khosravizadeh, Zahra

    2016-01-01

    Background: Some antidepressant drugs can promote neuronal cell proliferation in vitro as well as hippocampal neurogenesis in human and animal models. Furthermore, adipose tissue is an available source of adult stem cells with the ability to differentiate in to multiple lineages. Therefore, human Adipose-Derived Stem Cells (hAD-SCs) may be a suitable source for regenerative medical applications. Since there is no evidence for the effect of Paroxetine as the most commonly prescribed antidepressant drug for neurogenic potential of hADSCs, an attempt was made to determine the effect of Paroxetine on proliferation and neural differentiation of hADSCs. Methods: ADSCs were isolated from human abdominal fat. These cells differentiated to neuron-like cells and were treated with Paroxetine. 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and immunofluorescence technique were used for assessment of cell proliferation and neurogenic differentiation potential of induced cells, respectively. Results: MTT assay analysis showed that Paroxetine significantly increased the proliferation rate of induced hADSCs (p<0.05), while immunofluorescent staining indicated that Paroxetine treatment during neurogenic differentiation could enhance the mean percentage of Nestin and MAP2 (Microtubule-associated protein-2) positive cells but the mean percentage of GFAP (Glial acidic fibrillary protein) positive cells significantly decreased relative to control group (p<0.05). Conclusion: Our results provide evidence that Paroxetine can promote proliferation and differentiation rate during neurogenic differentiation of hADSCs. Moreover, Paroxetine can reduce gliogenesis of induced hADSCs during neurogenic differentiation. PMID:27920882

  9. Effects of heterodimeric bone morphogenetic protein-2/7 on osteogenesis of human adipose-derived stem cells

    NARCIS (Netherlands)

    Zhang, X.; Guo, J.; Wu, G.; Zhou, Y.

    2015-01-01

    Objective Roles of bone morphogenetic proteins (BMPs) on osteogenesis of human adipose-derived stem cells (hASCs) remain ambiguous. In this study, we evaluated in vitro and in vivo functional characteristics of BMPs of different dimerization types, with the aim of determining osteoinductive efficien

  10. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  11. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells.

    Science.gov (United States)

    Guilak, Farshid; Lott, Kristen E; Awad, Hani A; Cao, Qiongfang; Hicok, Kevin C; Fermor, Beverley; Gimble, Jeffrey M

    2006-01-01

    Pools of human adipose-derived adult stem (hADAS) cells can exhibit multiple differentiated phenotypes under appropriate in vitro culture conditions. Because adipose tissue is abundant and easily accessible, hADAS cells offer a promising source of cells for tissue engineering and other cell-based therapies. However, it is unclear whether individual hADAS cells can give rise to multiple differentiated phenotypes or whether each phenotype arises from a subset of committed progenitor cells that exists within a heterogeneous population. The goal of this study was to test the hypothesis that single hADAS are multipotent at a clonal level. hADAS cells were isolated from liposuction waste, and ring cloning was performed to select cells derived from a single progenitor cell. Forty-five clones were expanded through four passages and then induced for adipogenesis, osteogenesis, chondrogenesis, and neurogenesis using lineage-specific differentiation media. Quantitative differentiation criteria for each lineage were determined using histological and biochemical analyses. Eighty one percent of the hADAS cell clones differentiated into at least one of the lineages. In addition, 52% of the hADAS cell clones differentiated into two or more of the lineages. More clones expressed phenotypes of osteoblasts (48%), chondrocytes (43%), and neuron-like cells (52%) than of adipocytes (12%), possibly due to the loss of adipogenic ability after repeated subcultures. The findings are consistent with the hypothesis that hADAS cells are a type of multipotent adult stem cell and not solely a mixed population of unipotent progenitor cells. However, it is important to exercise caution in interpreting these results until they are validated using functional in vivo assays.

  12. The Effect of Secretory Factors of Adipose-Derived Stem Cells on Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Soo-Wan Nam

    2012-01-01

    Full Text Available The beneficial effects of adipose-derived stem cell conditioned medium (ADSC-CM on skin regeneration have been reported. Although the mechanism of how ADSC-CM promotes skin regeneration is unclear, ADSC-CM contained various growth factors and it is an excellent raw material for skin treatment. ADSC-CM produced in a hypoxia condition of ADSC—in other words, Advanced Adipose-Derived Stem cell Protein Extract (AAPE—has great merits for skin regeneration. In this study, human primary keratinocytes (HKs, which play fundamental roles in skin tissue, was used to examine how AAPE affects HK. HK proliferation was significantly higher in the experimental group (1.22 μg/mL than in the control group. DNA gene chip demonstrated that AAPE in keratinocytes (p < 0.05 notably affected expression of 290 identified transcripts, which were associated with cell proliferation, cycle and migration. More keratinocyte wound healing and migration was shown in the experimental group (1.22 μg/mL. AAPE treatment significantly stimulated stress fiber formation, which was linked to the RhoA-ROCK pathway. We identified 48 protein spots in 2-D gel analysis and selected proteins were divided into 64% collagen components and 30% non-collagen components as shown by the MALDI-TOF analysis. Antibody array results contained growth factor/cytokine such as HGF, FGF-1, G-CSF, GM-CSF, IL-6, VEGF, and TGF-β3 differing from that shown by 2-D analysis. Conclusion: AAPE activates HK proliferation and migration. These results highlight the potential of the topical application of AAPE in the treatment of skin regeneration.

  13. Xenotransplantation of human adipose-derived stem cells in the regeneration of a rabbit peripheral nerve.

    Science.gov (United States)

    Lasso, J M; Pérez Cano, R; Castro, Y; Arenas, L; García, J; Fernández-Santos, M E

    2015-12-01

    Adipose tissue-derived mesenchymal stem cells (AdMSCs) are useful in the regeneration of neural tissues. Furthermore, xenotransplantation of human adipose tissue-derived mesenchymal stem cells (hAdMSCs) into animal models has already been tested and the results encouraged us to study peripheral nerve regeneration in rabbits, in order to test the feasibility of a xenotransplantation of hAdMSCs. To promote end-to-end nerve fiber contacts of a 4-cm gap in the peroneal nerve of white New Zealand rabbits, an autologous vein conduit was used and three groups of animals were evaluated. In Group I, the gap was repaired with a vein conduit refilled with fibrin. Group II was similar, but the animals were treated with cyclosporine A. In Group III, a fibrin scaffold with hAdMSCs was placed inside the autologous vein conduit, and animals were treated with cyclosporine A. Neurofilament immunohistochemistry results showed 100% nerve regeneration at the vein guidance channel 90 days after the surgery in the hAdMSC-transplanted group but lesser neural regeneration in the neurofilaments of groups I and II. The analysis of variance (ANOVA) test showed statistically significant differences among all groups (p nerve regeneration through a vein conduit that connected a 4-cm gap created at the peroneal nerve of rabbits. Animals treated with hAdMSCs presented negative inflammatory response at the regenerated nerve gaps, but it was demonstrated that hAdMSCs were incorporated to the new nerve creating neural tissue and endothelial cells. However, hAdMSCs required immunosuppression with cyclosporine A to achieve axonal regeneration. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro

    Science.gov (United States)

    Razavi, Shahnaz; Razavi, Mohamad Reza; Ahmadi, Nafiseh; Kazemi, Mohammad

    2015-01-01

    Objective(s): Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction medium containing neurobasal medium, N2 and B27 with or without 17β-estradiol (E2) treatment. Proliferation rate and neural differentiation of human ADSCs were assessed using MTT assay, immunostaining and real time RT- PCR analysis, respectively. Results: Analysis of data show that estradiol treatment can significantly increase proliferation rate of differentiated cells (P<0.05). Immunocytochemical and real time RT-PCR analysis revealed that the expression of precursor and mature neuronal markers (nestin and MAP2) was significantly higher in the E2 treated cell cultures when compared to the untreated cell cultures (P<0.05). Conclusion: According to our findings, estrogen can promote proliferation and neuronal differentiation of human ADSCs. PMID:26557969

  15. Neocartilage formation from predifferentiated human adipose derived stem cells in vivo

    Institute of Scientific and Technical Information of China (English)

    Xiao-bing JIN; Yong-sheng SUN; Ke ZHANG; Jing WANG; Xiao-dong JU; Si-quan LOU

    2007-01-01

    Aim: To examine the chondrogenic potential of human adipose derived stem cells (hASC) induced by human transforming growth factor beta2 (hTGF beta2) in vitro, and to investigate if predifferentiated hASC can produce neocartilage in vivo. Methods: hASC were isolated from subcutaneous adipose tissue and cul-tured in pellets with the addition of hTGF beta2. Chondrogenic differentiation was assayed by RT-PCR, Western blotting, toluidine blue staining, and immuno-histochemistry staining for collagen type Ⅱ. For the in vivo study, intact induced cell pellets or the released cells embedded in alginate gel with different concentra-tions were implanted subcutaneously in nude mice. Specimens were harvested at different time points and carried with histological and immunohistochemistry ex-amination to evaluate the cartilage formation. Results: RT-PCR analysis revealed that hASC produced aggrecan and collagen type Ⅱ after 7 d of induction and continued throughout the culture period. This was also demonstrated by the Western blot analysis, positive staining of toluidine blue, and immunohistochem-istry for collagen type Ⅱ. After reseeding in the monolayer, the cells isolated from the pellets displayed a polygonal morphology compared with the primary spindle shape, hASC were released from the induced cell pellets when embedded in alginate gel (implanted cell concentration=5x106/mL or higher). They produced neocartilage after 12 weeks in vivo culture; however, intact induced cell pellets implanted subcutaneously rapidly lost their differentiated phenotype. Conclusion:Chondrogenesis of hASC in vitro can be induced by combining pellet culture and hTGF beta2 treatment. Predifferentiated hASC embedded in alginate gel have the ability of producing neocartilage in vivo.

  16. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    Science.gov (United States)

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPARγ and C/EBPα compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Human adipose-derived mesenchymal stem cells: a better cell source for nervous system regeneration

    Institute of Scientific and Technical Information of China (English)

    Han Chao; Zhang Liang; Song Lin; Liu Yang; Zou Wei; Piao Hua; Liu Jing

    2014-01-01

    Background In order to suggest an ideal source of adult stem cells for the treatment of nervous system diseases,MSCs from human adipose tissue and bone marrow were isolated and studied to explore the differences with regard to cell morphology,surface markers,neuronal differentiation capacity,especially the synapse structure formation and the secretion of neurotrophic factors.Methods The neuronal differentiation capacity of human mesenchymal stem cells from adipose tissue (hADSCs) and bone marrow (hBMSCs) was determined based on nissl body and synapse structure formation,and neural factor secretion function.hADSCs and hBMSCs were isolated and differentiated into neuron-like cells with rat brain-conditioned medium,a potentially rich source of neuronal differentiation promoting signals.Specific neuronal proteins and neural factors were detected by immunohistochemistry and enzyme-linked immunosorbent assay analysis,respectively.Results Flow cytometric analysis showed that both cell types had similar phenotypes.Cell growth curves showed that hADSCs proliferated more quickly than hBMSCs.Both kinds of cells were capable of osteogenic and adipogenic differentiation.The morphology of hADSCs and hBMSCs changed during neuronal differentiation and displayed neuronlike cell appearance after 14 days' differentiation.Both hADSCs and hBMSCs were able to differentiate into neuron-like cells based on their production of neuron specific proteins including β-tubulin-Ⅲ,neuron-specific enolase (NSE),nissl bodies,and their ability to secrete brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF).Assessment of synaptop hysin and growth-associated protein-43 (GAP-43) suggested synapse structure formation in differentiated hADSCs and hBMSCs.Conclusions Our results demonstrate that hADSCs have neuronal differentiation potential similar to hBMSC,but with a higher proliferation capacity than hBMSC.Adipose tissue is abundant,easily available and would be a potential ideal

  18. Human Adipose-Derived Mesenchymal Progenitor Cells Engraft into Rabbit Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2015-05-01

    Full Text Available Mesenchymal stem cells (MSCs are known to have the potential for articular cartilage regeneration, and are suggested for the treatment of osteoarthritis (OA. Here, we investigated whether intra-articular injection of xenogeneic human adipose-derived mesenchymal progenitor cells (haMPCs promoted articular cartilage repair in rabbit OA model and engrafted into rabbit articular cartilage. The haMPCs were cultured in vitro, and phenotypes and differentiation characteristics of cells were evaluated. OA was induced surgically by anterior cruciate ligament transection (ACLT and medical meniscectomy of knee joints. At six weeks following surgery, hyaluronic acid (HA or haMPCs was injected into the knee joints, the contralateral knee served as normal control. All animals were sacrificed at the 16th week post-surgery. Assessments were carried out by macroscopic examination, hematoxylin/eosin (HE and Safranin-O/Fast green stainings and immunohistochemistry. The data showed that haMPC treatment promoted cartilage repair. Signals of human mitochondrial can be directly detected in haMPC treated cartilage. The haMPCs expressed human leukocyte antigen I (HLA-I but not HLA-II-DR in vivo. These results suggest that intra-articular injection of haMPCs promotes regeneration of articular cartilage in rabbit OA model, and support the notion that MPCs are transplantable between HLA-incompatible individuals.

  19. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf. Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.

  20. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    Science.gov (United States)

    Li, Jin; Zeng, Guofang; Qi, Yawei; Tang, Xudong; Zhang, Jingjing; Wu, Zeyong; Liang, Jie; Shi, Lei; Liu, Hongwei; Zhang, Peihua

    2015-01-01

    Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs) after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP) reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf). Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.

  1. From bench to bedside: use of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Feisst V

    2015-11-01

    Full Text Available Vaughan Feisst,1 Sarah Meidinger,1 Michelle B Locke2 1Dunbar Laboratory, School of Biological Sciences, 2Department of Surgery, Faculty of Medicine and Health Sciences, The University of Auckland, Auckland, New Zealand Abstract: Since the discovery of adipose-derived stem cells (ASC in human adipose tissue nearly 15 years ago, significant advances have been made in progressing this promising cell therapy tool from the laboratory bench to bedside usage. Standardization of nomenclature around the different cell types used is finally being adopted, which facilitates comparison of results between research groups. In vitro studies have assessed the ability of ASC to undergo mesenchymal differentiation as well as differentiation along alternate lineages (transdifferentiation. Recently, focus has shifted to the immune modulatory and paracrine effects of transplanted ASC, with growing interest in the ASC secretome as a source of clinical effect. Bedside use of ASC is advancing alongside basic research. An increasing number of safety-focused Phase I and Phase IIb trials have been published without identifying any significant risks or adverse events in the short term. Phase III trials to assess efficacy are currently underway. In many countries, regulatory frameworks are being developed to monitor their use and assure their safety. As many trials rely on ASC injected at a distant site from the area of clinical need, strategies to improve the homing and efficacy of transplanted cells are also being explored. This review highlights each of these aspects of the bench-to-bedside use of ASC and summarizes their clinical utility across a variety of medical specialties. Keywords: standardization, bystander effect, stromal cells, mesenchymal stem cells, stromal vascular fraction

  2. Therapeutic potential of human adipose-derived stem cells in neurological disorders.

    Science.gov (United States)

    Chang, Keun-A; Lee, Jun-Ho; Suh, Yoo-Hun

    2014-01-01

    Stem cell therapy has been noted as a novel strategy to various diseases including neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and Huntington's disease that have no effective treatment available to date. The adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency with the ability to differentiate into various types of cells and immuno-modulatory property. These biological features make ASCs a promising source for regenerative cell therapy in neurological disorders. Here we discuss the recent progress of regenerative therapies in various neurological disorders utilizing ASCs.

  3. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  4. In vitro differentiation of human adipose-derived mesenchymal stem cells into endothelial-like cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Lidong; SHI Shuangshuang; PEI Xuetao; LI Shaoqing; WANG Yunfang; YUE Huimin; LIU Daqing; HE Lijuan; BAI Cixian; YAN Fang; NAN Xue

    2006-01-01

    The neovascularization of ischemic tissue is a crucial initial step for the functional rehabilitation and wound healing. However, the short of seed cell candidate for the foundation of vascular network is still a big issue. Human adipose tissue derived mesenchymal stem cells (hADSCs), which possess multilineage potential, are capable of adipogenic, osteogenic, and chondrogenic differentiation. We examined whether this kind of stem cells could differentiate into endothelial-like cells and participate in blood vessel formation, and whether they could be used as an ideal cell source for therapeutic angiogenesis in ischemic diseases or vascularization of tissue constructs. The results showed that hADSCs, grown under appropriately induced conditions, displayed characteristics similar to those of vessel endothelium. The differentiated cells expressed endothelial cell markers CD34 and vWF, and had high metabolism of acetylated low-density lipoprotein and prostacyclin. In addition, the induced cells were able to form tube-like structures when cultured on matrigel. Our data indicated that induced hADSCs could exhibit characteristics of endothelial cells. Therefore, these cells, as a source of human endothelial cells, may find many applications in such realms as engineering blood vessels, endothelial cell transplantation for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  5. Promotion of human adipose-derived stem cell proliferation mediated by exogenous nucleosides.

    Science.gov (United States)

    Rodríguez-Serrano, Fernando; Alvarez, Pablo; Caba, Octavio; Picón, Manuel; Marchal, Juan A; Perán, Macarena; Prados, José; Melguizo, Consolación; Rama, Ana R; Boulaiz, Houria; Aránega, Antonia

    2010-09-01

    Adult stem cells are becoming the best option for regenerative medicine because they have low tumourigenic potential and permit autologous transplantation, even without in vitro culture. Our objectives were to evaluate the effects of exogenous nucleosides on the proliferation of hASCs (human adipose-derived stem cells), with or without co-treatment with 5-aza (5-azacytidine), and to analyse the expression of lamin A/C during cardiomyocyte differentiation of these cells. We isolated hASCs from human lipoaspirates that were positive for mesenchymal stem cell markers. We found that 5-aza induces a dose-dependent inhibition of hASC proliferation [IC50 (inhibitory concentration 50): 5.37 microM], whereas exogenous nucleosides significantly promote the proliferation of hASCs and partially revert the antiproliferative effect of the drug. Multipotentiality of isolated hASCs was confirmed by adipogenic, osteogenic and cardiomyogenic induction. 5-Aza-induced cells expressed cardiac troponins I and T and myosin light chain 2, myocardial markers that were directly correlated with lamin A/C expression. Our results support the importance of the nucleoside supplementation of media to improve conditions for the expansion and maintenance of hASCs in culture. In addition, the quantification of lamin A/C expression appears to be a good marker for the characterization of cardiomyocyte differentiation of stem cells that has rarely been used.

  6. Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Ingrid R. Cordeiro

    2015-09-01

    Full Text Available Human adipose-derived stromal cells (hADSC are a heterogeneous cell population that contains adult multipotent stem cells. Although it is well established that hADSC have skeletal potential in vivo in adult organisms, in vitro assays suggest further differentiation capacity, such as into glia. Thus, we propose that grafting hADSC into the embryo can provide them with a much more instructive microenvironment, allowing the human cells to adopt diverse fates or niches. Here, hADSC spheroids were grafted into either the presumptive presomitic mesoderm or the first branchial arch (BA1 regions of chick embryos. Cells were identified without previous manipulations via human-specific Alu probes, which allows efficient long-term tracing of heterogeneous primary cultures. When grafted into the trunk, in contrast to previous studies, hADSC were not found in chondrogenic or osteogenic territories up to E8. Surprisingly, 82.5% of the hADSC were associated with HNK1+ tissues, such as peripheral nerves. Human skin fibroblasts showed a smaller tropism for nerves. In line with other studies, hADSC also adopted perivascular locations. When grafted into the presumptive BA1, 74.6% of the cells were in the outflow tract, the final goal of cardiac neural crest cells, and were also associated with peripheral nerves. This is the first study showing that hADSC could adopt a perineural niche in vivo and were able to recognize cues for neural crest cell migration of the host. Therefore, we propose that xenografts of human cells into chick embryos can reveal novel behaviors of heterogeneous cell populations, such as response to migration cues.

  7. Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome.

    Science.gov (United States)

    Clark, Kaitlin C; Fierro, Fernando A; Ko, Emily Mills; Walker, Naomi J; Arzi, Boaz; Tepper, Clifford G; Dahlenburg, Heather; Cicchetto, Andrew; Kol, Amir; Marsh, Lyndsey; Murphy, William J; Fazel, Nasim; Borjesson, Dori L

    2017-03-20

    Adipose-derived mesenchymal stem cells (ASCs) are a promising cell therapy to treat inflammatory and immune-mediated diseases. Development of appropriate pre-clinical animal models is critical to determine safety and attain early efficacy data for the most promising therapeutic candidates. Naturally occurring diseases in cats already serve as valuable models to inform human clinical trials in oncologic, cardiovascular, and genetic diseases. The objective of this study was to complete a comprehensive side-by-side comparison of human and feline ASCs, with an emphasis on their immunomodulatory capacity and transcriptome. Human and feline ASCs were evaluated for phenotype, immunomodulatory profile, and transcriptome. Additionally, transwells were used to determine the role of cell-cell contact in ASC-mediated inhibition of lymphocyte proliferation in both humans and cats. Similar to human ASCs, feline ASCs were highly proliferative at low passages and fit the minimal criteria of multipotent stem cells including a compatible surface protein phenotype, osteogenic capacity, and normal karyotype. Like ASCs from all species, feline ASCs inhibited mitogen-activated lymphocyte proliferation in vitro, with or without direct ASC-lymphocyte contact. Feline ASCs mimic human ASCs in their mediator secretion pattern, including prostaglandin E2, indoleamine 2,3 dioxygenase, transforming growth factor beta, and interleukin-6, all augmented by interferon gamma secretion by lymphocytes. The transcriptome of three unactivated feline ASC lines were highly similar. Functional analysis of the most highly expressed genes highlighted processes including: 1) the regulation of apoptosis; 2) cell adhesion; 3) response to oxidative stress; and 4) regulation of cell differentiation. Finally, feline ASCs had a similar gene expression profile to noninduced human ASCs. Findings suggest that feline ASCs modulate lymphocyte proliferation using soluble mediators that mirror the human ASC secretion

  8. Changes of neural markers expression during late neurogenic differentiation of human adipose-derived stem cells

    Science.gov (United States)

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Background: Different studies have been done to obtain sufficient number of neural cells for treatment of neurodegenerative diseases, spinal cord, and traumatic brain injury because neural stem cells are limited in central nerves system. Recently, several studies have shown that adipose-derived stem cells (ADSCs) are the appropriate source of multipotent stem cells. Furthermore, these cells are found in large quantities. The aim of this study was an assessment of proliferation and potential of neurogenic differentiation of ADSCs with passing time. Materials and Methods: Neurosphere formation was used for neural induction in isolated human ADSCs (hADSCs). The rate of proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and potential of neural differentiation of induced hADSCs was evaluated by immunocytochemical and real-time reverse transcription polymerase chain reaction analysis after 10 and 14 days post-induction. Results: The rate of proliferation of induced hADSCs increased after 14 days while the expression of nestin, glial fibrillary acidic protein, and microtubule-associated protein 2 was decreased with passing time during neurogenic differentiation. Conclusion: These findings showed that the proliferation of induced cells increased with passing time, but in early neurogenic differentiation of hADSCs, neural expression was higher than late of differentiation. Thus, using of induced cells in early differentiation may be suggested for in vivo application. PMID:26605238

  9. Surface modification by allylamine plasma polymerization promotes osteogenic differentiation of human adipose-derived stem cells.

    Science.gov (United States)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2014-06-25

    Tuning the material properties in order to control the cellular behavior is an important issue in tissue engineering. It is now well-established that the surface chemistry can affect cell adhesion, proliferation, and differentiation. In this study, plasma polymerization, which is an appealing method for surface modification, was employed to generate surfaces with different chemical compositions. Allylamine (AAm), acrylic acid (AAc), 1,7-octadiene (OD), and ethanol (ET) were used as precursors for plasma polymerization in order to generate thin films rich in amine (-NH2), carboxyl (-COOH), methyl (-CH3), and hydroxyl (-OH) functional groups, respectively. The surface chemistry was characterized by X-ray photoelectron spectroscopy (XPS), the wettability was determined by measuring the water contact angles (WCA) and the surface topography was imaged by atomic force microscopy (AFM). The effects of surface chemical compositions on the behavior of human adipose-derive stem cells (hASCs) were evaluated in vitro: Cell Count Kit-8 (CCK-8) analysis for cell proliferation, F-actin staining for cell morphology, alkaline phosphatase (ALP) activity analysis, and Alizarin Red S staining for osteogenic differentiation. The results show that AAm-based plasma-polymerized coatings can promote the attachment, spreading, and, in turn, proliferation of hASCs, as well as promote the osteogenic differentiation of hASCs, suggesting that plasma polymerization is an appealing method for the surface modification of scaffolds used in bone tissue engineering.

  10. Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh.

    Science.gov (United States)

    Deng, Meng; Gu, Yunpeng; Liu, Zhenjun; Qi, Yue; Ma, Gui E; Kang, Ning

    2015-01-01

    Adipose-derived stem cell (ADSC) is considered as a cell source potentially useful for angiogenesis in tissue engineering and regenerative medicine. This study investigated the growth and endothelial differentiation of human ADSCs on polyglycolic acid/polylactic acid (PGA/PLA) mesh compared to 2D plastic. Cell adhesion, viability, and distribution of hADSCs on PGA/PLA mesh were observed by CM-Dil labeling, live/dead staining, and SEM examination while endothelial differentiation was evaluated by flow cytometry, Ac-LDL/UEA-1 uptake assay, immunofluorescence stainings, and gene expression analysis of endothelial related markers. Results showed hADSCs gained a mature endothelial phenotype with a positive ratio of 21.4 ± 3.7% for CD31+/CD34- when induced in 3D mesh after 21 days, which was further verified by the expressions of a comprehensive range of endothelial related markers, whereas hADSCs in 2D induced and 2D/3D noninduced groups all failed to differentiate into endothelial cells. Moreover, compared to 2D groups, the expression for α-SMA was markedly suppressed in 3D cultured hADSCs. This study first demonstrated the endothelial differentiation of hADSCs on the PGA/PLA mesh and pointed out the synergistic effect of PGA/PLA 3D culture and growth factors on the acquisition of mature characteristic endothelial phenotype. We believed this study would be the initial step towards the generation of prevascularized tissue engineered constructs.

  11. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Bo Kyung Sun

    2015-07-01

    Full Text Available Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA, significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

  12. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Sun, Bo Kyung; Kim, Ji Hye; Choi, Joon-Seok; Hwang, Sung-Joo; Sung, Jong-Hyuk

    2015-07-22

    Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs) or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA), significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

  13. In vivo imaging of human adipose-derived stem cells in Alzheimer's disease animal model

    Science.gov (United States)

    Ha, Sungji; Ahn, Sangzin; Kim, Saeromi; Joo, Yuyoung; Chong, Young Hae; Suh, Yoo-Hun; Chang, Keun-A.

    2014-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions, including neurodegenerative diseases such as Alzheimer's disease (AD). To understand transplanted stem cell biology, in vivo imaging is necessary. Nanomaterial has great potential for in vivo imaging and several noninvasive methods are used, such as magnetic resonance imaging, positron emission tomography, fluorescence imaging (FI) and near-infrared FI. However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose-derived stem cells (hASCs) that were labeled with a multimodal nanoparticle, LEO-LIVE™-Magnoxide 675 or 797 (BITERIALS, Seoul, Korea), into Tg2576 mice, an AD mouse model. After sequential in vivo tracking using Maestro Imaging System, we found fluorescence signals up to 10 days after injection. We also found strong signals in the brains extracted from hASC-transplanted Tg2576 mice up to 12 days after injection. With these results, we suggest that in vivo imaging with this multimodal nanoparticle may provide a useful tool for stem cell tracking and understanding stem cell biology in other neurodegenerative diseases.

  14. Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease.

    Science.gov (United States)

    Choi, Hee Soon; Kim, Hee Jin; Oh, Jin-Hwan; Park, Hyeong-Geun; Ra, Jeong Chan; Chang, Keun-A; Suh, Yoo-Hun

    2015-10-01

    The treatment of Parkinson's disease (PD) using stem cells has long been the focus of many researchers, but the ideal therapeutic strategy has not yet been developed. The consistency and high reliability of the experimental results confirmed by animal models are considered to be a critical factor in the stability of stem cell transplantation for PD. Therefore, the aim of this study was to investigate the preventive and therapeutic potential of human adipose-derived stem cells (hASC) for PD and was to identify the related factors to this therapeutic effect. The hASC were intravenously injected into the tail vein of a PD mouse model induced by 6-hydroxydopamine. Consequently, the behavioral performances were significantly improved at 3 weeks after the injection of hASC. Additionally, dopaminergic neurons were rescued, the number of structure-modified mitochondria was decreased, and mitochondrial complex I activity was restored in the brains of the hASC-injected PD mouse model. Overall, this study underscores that intravenously transplanted hASC may have therapeutic potential for PD by recovering mitochondrial functions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Mechanisms of Edible Bird's Nest Extract-Induced Proliferation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Kyung-Baeg Roh

    2012-01-01

    Full Text Available Although edible bird's nest (EBN has been shown to potentiate mitogenic responses, scientific evidence of its efficacy is still limited. In addition, human adipose-derived stem cells (hADSCs are increasingly accepted as a source for stem cell therapy. Therefore, the aim of this study was to investigate the effects of the EBN extract (EBNE on the proliferation of hADSCs and its action mechanisms. We found that EBNE strongly promoted the proliferation of hADSCs. In addition, EBNE-induced proliferation was found to be mediated through the production of IL-6 and VEGF, which was induced by activation of AP-1 and NF-κB. Specially, we found that production of IL-6 and VEGF was induced by EBNE. In addition, EBNE-induced production of IL-6 and VEGF was inhibited by PD98059 (a p44/42 MAPK inhibitor, SB203580 (a p38 MAPK inhibitor, and PDTC (a NF-κB inhibitor, but not SP600125 (a JNK inhibitor. Similarly, EBNE-induced proliferation of hADSCs was also attenuated by PD98059, SB203580, and PDTC but not SP600125. Taken together, these findings suggest that the EBNE-induced proliferation of hADSCs primarily occurs through increased expression of IL-6 and VEGF genes, which is mediated by the activation of NF-κB and AP-1 through p44/42 MAPK and p38 MAPK.

  16. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces

    Directory of Open Access Journals (Sweden)

    Hyun Hee Ahn

    2014-01-01

    Full Text Available Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs. We prepared wettable and rough gradient polyethylene (PE surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90° to ~50° and rough (80 to ~120 nm surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness.

  17. [Human brown adipose tissue].

    Science.gov (United States)

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  18. Clinical Grade Human Adipose Tissue-Derived Mesenchymal Stem Cell Banking

    Directory of Open Access Journals (Sweden)

    Bagher Larijani

    2015-10-01

    Full Text Available In this study, our aim was to produce a generation of GMP-grade adipose tissue-derived mesenchymal stem cells for clinical applications. According to our results, we fulfill to establish consistent and also reproducible current good manufacturing practice (cGMP compliant adipose tissue-derived mesenchymal stem cells from five female donors. The isolated cells were cultured in DMEM supplemented with 10% fetal bovine serum and characterized by standard methods. Moreover, karyotyping was performed to evaluate chromosomal stability. Mean of donors’ age was 47.6 ± 8.29 year, mean of cell viability was 95.6 ± 1.51%, and cell count was between 9×106 and 14×106 per microliter with the mean of 12.2×106 ± 2863564.21 per microliter. The main aim of this project was demonstrating the feasibility of cGMP-compliant and clinical grade adipose tissue-derived mesenchymal stem cells preparation and banking for clinical cell transplantation trials.

  19. The role of SDF-1 in homing of human adipose-derived stem cells.

    Science.gov (United States)

    Stuermer, Ewa K; Lipenksy, Alexandra; Thamm, Oliver; Neugebauer, Edmund; Schaefer, Nadine; Fuchs, Paul; Bouillon, Bertil; Koenen, Paola

    2015-01-01

    One of the putative pathophysiological mechanisms of chronic wounds is a disturbed homing of stem cells. In this project, the stromal cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor (CXCR) 4 and SDF-1/CXCR7 pathway were focused in human adipose-derived stem cells (ASCs). ASCs were incubated with acute (AWF) or chronic wound fluid (CWF) to analyze their effects by quantitative real-time polymerase chain reaction (SDF-1, CXCR4, CXCR7, TIMP3), enzyme-linked immunosorbent assay (SDF-1 in WFs and supernatant), and transwell migration assay with/without antagonization. Whereas SDF-1 amounted 73.5 pg/mL in AWF, it could not be detected in CWF. Incubation with AWF led to a significant enhancement (129.7 pg/mL vs. 95.5 pg/mL), whereas CWF resulted in a significant reduction (30 pg/mL vs. 95.5 pg/mL) of SDF-1 in ASC supernatant. The SDF-1 receptor CXCR7 was detected on ASCs. AWF but not CWF significantly induced ASC migration, which was inhibited by CXCR4 and CXCR7 antagonists. Expressions of SDF-1, CXCR4, and CXCR7 were significantly stimulated by AWF while TIMP3 expression was reduced. In conclusion, an uncontrolled inflammation in the chronic wound environment, indicated by a reduced SDF-1 expression, resulted in a decreased ASC migration. A disturbed SDF-1/CXCR4 as well as SDF-1/CXCR7 pathway seems to play an important role in the impaired healing of chronic wounds.

  20. Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an In Vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture

    Science.gov (United States)

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2017-01-01

    The application of stem cells for cell therapy has been extensively studied in recent years. Among the various types of stem cells, human adipose tissue-derived stem cells (ASCs) can be obtained in large quantities with relatively few passages, and they possess a stable quality. ASCs can differentiate into a number of cell types, such as adipose cells and ectodermal cells. We therefore focused on the in vitro microenvironment required for such differentiation and attempted to induce the differentiation of human stem cells into microtissues using a microelectromechanical system. We first evaluated the adipogenic differentiation of human ASC spheroids in a three-dimensional (3D) culture. We then created the in vitro microenvironment using a 3D combinatorial TASCL device and attempted to induce the adipogenic differentiation of human ASCs. The differentiation of human ASC spheroids cultured in maintenance medium and those cultured in adipocyte differentiation medium was evaluated via Oil red O staining using lipid droplets based on the quantity of accumulated triglycerides. The differentiation was confirmed in both media, but the human ASCs in the 3D cultures contained higher amounts of triglycerides than those in the 2D cultures. In the short culture period, greater adipogenic differentiation was observed in the 3D cultures than in the 2D cultures. The 3D culture using the TASCL device with adipogenic differentiation medium promoted greater differentiation of human ASCs into adipogenic lineages than either a 2D culture or a culture using a maintenance medium. In summary, the TASCL device created a hospitable in vitro microenvironment and may therefore be a useful tool for the induction of differentiation in 3D culture. The resultant human ASC spheroids were “adipose-like microtissues” that formed spherical aggregation perfectly and are expected to be applicable in regenerative medicine as well as cell transplantation.

  1. Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an In Vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture.

    Science.gov (United States)

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2017-01-08

    The application of stem cells for cell therapy has been extensively studied in recent years. Among the various types of stem cells, human adipose tissue-derived stem cells (ASCs) can be obtained in large quantities with relatively few passages, and they possess a stable quality. ASCs can differentiate into a number of cell types, such as adipose cells and ectodermal cells. We therefore focused on the in vitro microenvironment required for such differentiation and attempted to induce the differentiation of human stem cells into microtissues using a microelectromechanical system. We first evaluated the adipogenic differentiation of human ASC spheroids in a three-dimensional (3D) culture. We then created the in vitro microenvironment using a 3D combinatorial TASCL device and attempted to induce the adipogenic differentiation of human ASCs. The differentiation of human ASC spheroids cultured in maintenance medium and those cultured in adipocyte differentiation medium was evaluated via Oil red O staining using lipid droplets based on the quantity of accumulated triglycerides. The differentiation was confirmed in both media, but the human ASCs in the 3D cultures contained higher amounts of triglycerides than those in the 2D cultures. In the short culture period, greater adipogenic differentiation was observed in the 3D cultures than in the 2D cultures. The 3D culture using the TASCL device with adipogenic differentiation medium promoted greater differentiation of human ASCs into adipogenic lineages than either a 2D culture or a culture using a maintenance medium. In summary, the TASCL device created a hospitable in vitro microenvironment and may therefore be a useful tool for the induction of differentiation in 3D culture. The resultant human ASC spheroids were "adipose-like microtissues" that formed spherical aggregation perfectly and are expected to be applicable in regenerative medicine as well as cell transplantation.

  2. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis.

    Science.gov (United States)

    Cheng, Nai-Chen; Estes, Bradley T; Young, Tai-Horng; Guilak, Farshid

    2013-02-01

    Autologous cell-based tissue engineering using three-dimensional scaffolds holds much promise for the repair of cartilage defects. Previously, we reported on the development of a porous scaffold derived solely from native articular cartilage, which can induce human adipose-derived stem cells (ASCs) to differentiate into a chondrogenic phenotype without exogenous growth factors. However, this ASC-seeded cartilage-derived matrix (CDM) contracts over time in culture, which may limit certain clinical applications. The present study aimed to investigate the ability of chemical crosslinking using a natural biologic crosslinker, genipin, to prevent scaffold contraction while preserving the chondrogenic potential of CDM. CDM scaffolds were crosslinked in various genipin concentrations, seeded with ASCs, and then cultured for 4 weeks to evaluate the influence of chemical crosslinking on scaffold contraction and ASC chondrogenesis. At the highest crosslinking degree of 89%, most cells failed to attach to the scaffolds and resulted in poor formation of a new extracellular matrix. Scaffolds with a low crosslinking density of 4% experienced cell-mediated contraction similar to our original report on noncrosslinked CDM. Using a 0.05% genipin solution, a crosslinking degree of 50% was achieved, and the ASC-seeded constructs exhibited no significant contraction during the culture period. Moreover, expression of cartilage-specific genes, synthesis, and accumulation of cartilage-related macromolecules and the development of mechanical properties were comparable to the original CDM. These findings support the potential use of a moderately (i.e., approximately one-half of the available lysine or hydroxylysine residues being crosslinked) crosslinked CDM as a contraction-free biomaterial for cartilage tissue engineering.

  3. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-08-01

    Full Text Available This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs and homogenized extracellular matrix (ECM in the form of adipose stromal vascular fraction (SVF, along with hyaluronic acid (HA and platelet-rich plasma (PRP activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI data, functional rating index, range of motion (ROM, and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees.

  4. Effect of varied ionic calcium on human adipose-derived stem cell mineralization.

    Science.gov (United States)

    McCullen, Seth D; Zhan, Jackie; Onorato, Maureen L; Bernacki, Susan H; Loboa, Elizabeth G

    2010-06-01

    Human adipose-derived stem cells (hASCs) are a relatively abundant and accessible stem cell source with multilineage differentiation capability and have great potential for bone tissue engineering applications. The success of bone tissue engineering is intimately linked with the production of a mineralized matrix that mimics the natural mineral present within native bone. In this study, we examined the effects of ionic calcium levels of 1.8 (normal concentration in cell culture medium), 8, and 16 mM on hASCs seeded in both two-dimensional monolayer and three-dimensional electrospun scaffolds and cultured in either complete growth medium (CGM) or osteogenic differentiation medium (ODM). The impact of calcium supplementation on hASC viability, proliferation, and mineral deposition was determined. hASCs remained viable for all experimental treatments. hASC proliferation increased with the addition of 8 mM Ca(2+) CGM, but decreased for the 16 mM Ca(2+) CGM treatment. Materials deposited by hASCs were analyzed using four techniques: (1) histological staining with Alizarin Red S, (2) calcium quantification, (3) Fourier transform infrared spectroscopy, and (4) wide-angle X-ray diffraction. Mineral deposition was significantly enhanced under both growth and osteogenic medium conditions by increasing extracellular Ca(2+). The greatest mineral deposition occurred in the ODM 8 mM Ca(2+) treatment group. Fourier transform infrared spectroscopy analysis indicated that elevated calcium concentrations of 8 mM Ca(2+) significantly increased both PO(4) amount and PO(4) to protein ratio for ODM. X-ray diffraction indicated that mineral produced with elevated Ca(2+) in both CGM and ODM had a crystalline structure characteristic of hydroxyapatite. Ionic calcium should be considered a potent regulator in hASC mineralization and could serve as a potential treatment for inducing prompt ossification of hASC-seeded scaffolds for bone tissue engineering prior to implantation.

  5. Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh

    Directory of Open Access Journals (Sweden)

    Meng Deng

    2015-01-01

    Full Text Available Adipose-derived stem cell (ADSC is considered as a cell source potentially useful for angiogenesis in tissue engineering and regenerative medicine. This study investigated the growth and endothelial differentiation of human ADSCs on polyglycolic acid/polylactic acid (PGA/PLA mesh compared to 2D plastic. Cell adhesion, viability, and distribution of hADSCs on PGA/PLA mesh were observed by CM-Dil labeling, live/dead staining, and SEM examination while endothelial differentiation was evaluated by flow cytometry, Ac-LDL/UEA-1 uptake assay, immunofluorescence stainings, and gene expression analysis of endothelial related markers. Results showed hADSCs gained a mature endothelial phenotype with a positive ratio of 21.4 ± 3.7% for CD31+/CD34− when induced in 3D mesh after 21 days, which was further verified by the expressions of a comprehensive range of endothelial related markers, whereas hADSCs in 2D induced and 2D/3D noninduced groups all failed to differentiate into endothelial cells. Moreover, compared to 2D groups, the expression for α-SMA was markedly suppressed in 3D cultured hADSCs. This study first demonstrated the endothelial differentiation of hADSCs on the PGA/PLA mesh and pointed out the synergistic effect of PGA/PLA 3D culture and growth factors on the acquisition of mature characteristic endothelial phenotype. We believed this study would be the initial step towards the generation of prevascularized tissue engineered constructs.

  6. Cytotoxic and Genotoxic effects of Arsenic and Lead on Human Adipose Derived Mesenchymal Stem Cells (AMSCs).

    Science.gov (United States)

    Shakoori, Ar; Ahmad, A

    2013-01-01

    Arsenic and lead, known to have genotoxic and mutagenic effects, are ubiquitously distributed in the environment. The presence of arsenic in drinking water has been a serious health problem in many countries. Human exposure to these metals has also increased due to rapid industrialization and their use in formulation of many products. Liposuction material is a rich source of stem cells. In the present study cytotoxic and genotoxic effects of these metals were tested on adipose derived mesenchymal stem cells (AMSCs). Cells were exposed to 1-10 μg/ml and 10-100 μg/ml concentration of arsenic and lead, respectively, for 6, 12, 24 and 48 h. The cytotoxic effects were measured by neutral red uptake assay, while the genotoxic effects were tested by comet assay. The growth of cells decreased with increasing concentration and the duration of exposure to arsenic. Even the morphology of cells was changed; they became round at 10 μg /ml of arsenic. The cell growth was also decreased after exposure to lead, though it proved to be less toxic when cells were exposed for longer duration. The cell morphology remained unchanged. DNA damage was observed in the metal treated cells. Different parameters of comet assay were investigated for control and treated cells which indicated more DNA damage in arsenic treated cells compared to that of lead. Intact nuclei were observed in control cells. Present study clearly demonstrates that both arsenic and lead have cytotoxic and genotoxic effects on AMSCs, though arsenic compared to lead has more deleterious effects on AMSCs.

  7. Cytotoxic and Genotoxic Effects of Arsenic and Lead on Human Adipose Derived Mesenchymal Stem Cells (AMSCs

    Directory of Open Access Journals (Sweden)

    Shakoori A

    2013-10-01

    Full Text Available Arsenic and lead, known to have genotoxic and mutagenic effects, are ubiquitously distributed in the environment. The presence of arsenic in drinking water has been a serious health problem in many countries. Human exposure to these metals has also increased due to rapid industrialization and their use in formulation of many products. Liposuction material is a rich source of stem cells. In the present study cytotoxic and genotoxic effects of these metals were tested on adipose derived mesenchymal stem cells (AMSCs. Cells were exposed to 1-10 µg/ml and 10-100 µg/ml concentration of arsenic and lead, respectively, for 6, 12, 24 and 48 h. The cytotoxic effects were measured by neutral red uptake assay, while the genotoxic effects were tested by comet assay. The growth of cells decreased with increasing concentration and the duration of exposure to arsenic. Even the morphology of cells was changed; they became round at 10 µg /ml of arsenic. The cell growth was also decreased after exposure to lead, though it proved to be less toxic when cells were exposed for longer duration. The cell morphology remained unchanged. DNA damage was observed in the metal treated cells. Different parameters of comet assay were investigated for control and treated cells which indicated more DNA damage in arsenic treated cells compared to that of lead. Intact nuclei were observed in control cells. Present study clearly demonstrates that both arsenic and lead have cytotoxic and genotoxic effects on AMSCs, though arsenic compared to lead has more deleterious effects on AMSCs.

  8. Transcriptomic comparisons between cultured human adipose tissue-derived pericytes and mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Lindolfo da Silva Meirelles

    2016-03-01

    Full Text Available Mesenchymal stromal cells (MSCs, sometimes called mesenchymal stem cells, are cultured cells able to give rise to mature mesenchymal cells such as adipocytes, osteoblasts, and chondrocytes, and to secrete a wide range of trophic and immunomodulatory molecules. Evidence indicates that pericytes, cells that surround and maintain physical connections with endothelial cells in blood vessels, can give rise to MSCs (da Silva Meirelles et al., 2008 [1]; Caplan and Correa, 2011 [2]. We have compared the transcriptomes of highly purified, human adipose tissue pericytes subjected to culture-expansion in pericyte medium or MSC medium, with that of human adipose tissue MSCs isolated with traditional methods to test the hypothesis that their transcriptomes are similar (da Silva Meirelles et al., 2015 [3]. Here, we provide further information and analyses of microarray data from three pericyte populations cultured in pericyte medium, three pericyte populations cultured in MSC medium, and three adipose tissue MSC populations deposited in the Gene Expression Omnibus under accession number GSE67747.

  9. Potential application of extracellular vesicles of human adipose tissue-derived mesenchymal stem cells in Alzheimer's disease therapeutics.

    Science.gov (United States)

    Katsuda, Takeshi; Oki, Katsuyuki; Ochiya, Takahiro

    2015-01-01

    In the last 20 years, extracellular vesicles (EVs) have attracted attention as a versatile cell-cell communication mediator. The biological significance of EVs remains to be fully elucidated, but many reports have suggested that the functions of EVs mirror, at least in part, those of the cells from which they originate. Mesenchymal stem cells (MSCs) are a type of adult stem cell that can be isolated from connective tissue including bone marrow and adipose tissue and have emerged as an attractive candidate for cell therapy applications. Accordingly, an increasing number of reports have shown that EVs derived from MSCs have therapeutic potential in multiple diseases. We recently reported a novel therapeutic potential of EVs secreted from human adipose tissue-derived MSCs (hADSCs) (also known as adipose tissue-derived stem cells; ASCs) against Alzheimer's disease (AD). We found that hADSCs secrete exosomes carrying enzymatically active neprilysin, the most important β-amyloid peptide (Aβ)-degrading enzyme in the brain. In this chapter, we describe a method by which to evaluate the therapeutic potential of hADSC-derived EVs against AD from the point of view of their Aβ-degrading capacity.

  10. Evaluation of human platelet lysate and dimethyl sulfoxide as cryoprotectants for the cryopreservation of human adipose-derived stem cells.

    Science.gov (United States)

    Wang, Chuan; Xiao, Ran; Cao, Yi-Lin; Yin, Hong-Yu

    2017-09-09

    Cryopreservation provides an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs). Dimethylsulfoxide (DMSO) and fetal bovine serum (FBS) are frequently used as cryoprotectants for this purpose. However, the use of DMSO can result in adverse effects and toxic reactions and FBS can introduce risks of viral, prion, zoonose contaminations and evoke immune responses after injection. It is therefore crucial to reduce DMSO concentrations and use serum-free solution in the cryopreservation process. Human platelet lysate (PL) is a promising candidate for use as an alternative to DMSO and FBS. Therefore, in this study, with an aim to identify a cryoprotective agent for ASC cryopreservation, we determined the viability, proliferation potential, phenotype, and differentiation potential of fresh ASCs and ASCs cryopreserved using different combinations of three cryoprotective agents: fetal bovine serum (FBS), dimethylsulfoxide (DMSO), and human platelet lysate (PL). The viability of the ASCs cryopreserved with 90% FBS and 10% DMSO, 95% FBS and 5% DMSO, and 97% PL and 3% DMSO was >80%, and the proliferation potentials, cell phenotypes, and differentiation potentials of these groups were similar to those of fresh ASCs. Together, our findings suggest that a combination of 97% PL and 3% DMSO is an ideal cryoprotective agent for the efficient cryopreservation of human ASCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis.

    Directory of Open Access Journals (Sweden)

    Josephine C Bodle

    Full Text Available Adipose-derived stem cells (ASC are multipotent stem cells that show great potential as a cell source for osteogenic tissue replacements and it is critical to understand the underlying mechanisms of lineage specification. Here we explore the role of primary cilia in human ASC (hASC differentiation. This study focuses on the chemosensitivity of the primary cilium and the action of its associated proteins: polycystin-1 (PC1, polycystin-2 (PC2 and intraflagellar transport protein-88 (IFT88, in hASC osteogenesis. To elucidate cilia-mediated mechanisms of hASC differentiation, siRNA knockdown of PC1, PC2 and IFT88 was performed to disrupt cilia-associated protein function. Immunostaining of the primary cilium structure indicated phenotypic-dependent changes in cilia morphology. hASC cultured in osteogenic differentiation media yielded cilia of a more elongated conformation than those cultured in expansion media, indicating cilia-sensitivity to the chemical environment and a relationship between the cilium structure and phenotypic determination. Abrogation of PC1, PC2 and IFT88 effected changes in both hASC proliferation and differentiation activity, as measured through proliferative activity, expression of osteogenic gene markers, calcium accretion and endogenous alkaline phosphatase activity. Results indicated that IFT88 may be an early mediator of the hASC differentiation process with its knockdown increasing hASC proliferation and decreasing Runx2, alkaline phosphatase and BMP-2 mRNA expression. PC1 and PC2 knockdown affected later osteogenic gene and end-product expression. PC1 knockdown resulted in downregulation of alkaline phosphatase and osteocalcin gene expression, diminished calcium accretion and reduced alkaline phosphatase enzymatic activity. Taken together our results indicate that the structure of the primary cilium is intimately associated with the process of hASC osteogenic differentiation and that its associated proteins are critical

  12. Human Adipose-Derived Stem Cells Labeled with Plasmonic Gold Nanostars for Cellular Tracking and Photothermal Cancer Cell Ablation.

    Science.gov (United States)

    Shammas, Ronnie L; Fales, Andrew M; Crawford, Bridget M; Wisdom, Amy J; Devi, Gayathri R; Brown, David A; Vo-Dinh, Tuan; Hollenbeck, Scott T

    2017-04-01

    Gold nanostars are unique nanoplatforms that can be imaged in real time and transform light energy into heat to ablate cells. Adipose-derived stem cells migrate toward tumor niches in response to chemokines. The ability of adipose-derived stem cells to migrate and integrate into tumors makes them ideal vehicles for the targeted delivery of cancer nanotherapeutics. To test the labeling efficiency of gold nanostars, undifferentiated adipose-derived stem cells were incubated with gold nanostars and a commercially available nanoparticle (Qtracker), then imaged using two-photon photoluminescence microscopy. The effects of gold nanostars on cell phenotype, proliferation, and viability were assessed with flow cytometry, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide metabolic assay, and trypan blue, respectively. Trilineage differentiation of gold nanostar-labeled adipose-derived stem cells was induced with the appropriate media. Photothermolysis was performed on adipose-derived stem cells cultured alone or in co-culture with SKBR3 cancer cells. Efficient uptake of gold nanostars occurred in adipose-derived stem cells, with persistence of the luminescent signal over 4 days. Labeling efficiency and signal quality were greater than with Qtracker. Gold nanostars did not affect cell phenotype, viability, or proliferation, and exhibited stronger luminescence than Qtracker throughout differentiation. Zones of complete ablation surrounding the gold nanostar-labeled adipose-derived stem cells were observed following photothermolysis in both monoculture and co-culture models. Gold nanostars effectively label adipose-derived stem cells without altering cell phenotype. Once labeled, photoactivation of gold nanostar-labeled adipose-derived stem cells ablates neighboring cancer cells, demonstrating the potential of adipose-derived stem cells as a vehicle for the delivery of site-specific cancer therapy.

  13. Manual isolation of adipose-derived stem cells from human lipoaspirates.

    Science.gov (United States)

    Zhu, Min; Heydarkhan-Hagvall, Sepideh; Hedrick, Marc; Benhaim, Prosper; Zuk, Patricia

    2013-09-26

    In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue that they initially termed Processed Lipoaspirate Cells or PLA cells. Since then, these stem cells have been renamed as Adipose-derived Stem Cells or ASCs and have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. Thousands of articles now describe the use of ASCs in a variety of regenerative animal models, including bone regeneration, peripheral nerve repair and cardiovascular engineering. Recent articles have begun to describe the myriad of uses for ASCs in the clinic. The protocol shown in this article outlines the basic procedure for manually and enzymatically isolating ASCs from large amounts of lipoaspirates obtained from cosmetic procedures. This protocol can easily be scaled up or down to accommodate the volume of lipoaspirate and can be adapted to isolate ASCs from fat tissue obtained through abdominoplasties and other similar procedures.

  14. Adipose-derived stems cells and their role in human cancer development, growth, progression, and metastasis: a systematic review.

    Science.gov (United States)

    Freese, Kyle E; Kokai, Lauren; Edwards, Robert P; Philips, Brian J; Sheikh, M Aamir; Kelley, Joseph; Comerci, John; Marra, Kacey G; Rubin, J Peter; Linkov, Faina

    2015-04-01

    Obesity is a well recognized risk factor for several types of cancers, many of which occur solely or disproportionately in women. Adipose tissue is a rich source of adipose-derived stem cells (ASC), which have received attention for their role in cancer behavior. The purpose of this systematic review is to present the existing literature on the role of ASCs in the growth, development, progression, and metastasis of cancer, with an emphasis on malignancies that primarily affect women. To accomplish this goal, the bibliographic database PubMed was systematically searched for articles published between 2001 and 2014 that address ASCs' relationship to human cancer. Thirty-seven articles on ASCs' role in human cancer were reviewed. Literature suggests that ASCs exhibit cancer-promoting properties, influence/are influenced by the tumor microenvironment, promote angiogenesis, and may be associated with pathogenic processes through a variety of mechanisms, such as playing a role in hypoxic tumor microenvironment. ASCs appear to be important contributors to tumor behavior, but research in areas specific to women's cancers, specifically endometrial cancer, is scarce. Also, because obesity continues to be a major health concern, it is important to continue research in this area to improve understanding of the impact adiposity has on cancer incidence.

  15. Alignment and Elongation of Human Adipose-Derived Stem Cells in Response to Direct-Current Electrical Stimulation

    OpenAIRE

    Tandon, Nina; Goh, Brian; Marsano, Anna; Chao, Pen-Hsiu Grace; Montouri-Sorrentino, Chrystina; Gimble, Jeffrey; Vunjak-Novakovic, Gordana

    2009-01-01

    In vivo, direct current electric fields are present during embryonic development and wound healing. In vitro, direct current (DC) electric fields induce directional cell migration and elongation. For the first time, we demonstrate that cultured human adipose tissue-derived stem cells (hASCs) respond to the presence of direct-current electric fields. Cells were stimulated for 2–4 hours with DC electric fields of 6 V/cm that were similar to those encountered in vivo post-injury. Upon stimulatio...

  16. Mitochondrial functional changes characterization in young and senescent human adipose derived MSCs

    Directory of Open Access Journals (Sweden)

    Bernd Robert Stab II

    2016-12-01

    Full Text Available Mitochondria are highly dynamic organelles that in response to the cell’s bio-energetic state continuously undergo structural remodeling fission and fusion processes. This mitochondrial dynamic activity has been implicated in cell cycle, autophagy and age-related diseases. Adult tissue-derived mesenchymal stromal/stem cells present a therapeutic potential. However, to obtain an adequate mesenchymal stromal/stem cell number for clinical use, extensive in vitro expansion is required. Unfortunately, these cells undergo replicative senescence rapidly by mechanisms that are not well understood. Senescence has been associated with metabolic changes in the oxidative state of the cell, a process that has been also linked to mitochondrial fission and fusion events, suggesting an association between mitochondrial dynamic and senescence. In the present work, we studied the mitochondrial structural remodeling process of mesenchymal stromal/stem cells isolated from adipose tissue in vitro to determine if mitochondrial phenotypic changes are associated with mesenchymal stromal/stem cell senescence. For this purpose, mitochondrial dynamics and oxidative state of stromal/stem cell were compared between young and old cells. With increased cell passage, we observed a significant change in cell morphology that is associated with an increase in β-galactosidase activity. In addition, old cells (population doubling seven also showed increased mitochondrial mass, augmented superoxide production, and decreased mitochondrial membrane potential. These changes in morphology were related to slightly levels increases in mitochondrial fusion proteins, Mitofusion 1 (MFN1 and Dynamin-realted GTPase (OPA1. Collectively, our results showed that adipose tissue-derived MSCs at population doubling seven develop a senescent phenotype that is characterized by metabolic cell changes that can lead to mitochondrial fusion.

  17. Human adipose-derived mesenchymal stem cells as a new model of spinal and bulbar muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Marta Dossena

    Full Text Available Spinal and bulbar muscular atrophy (SBMA or Kennedy's disease is an X-linked CAG/polyglutamine expansion motoneuron disease, in which an elongated polyglutamine tract (polyQ in the N-terminal androgen receptor (ARpolyQ confers toxicity to this protein. Typical markers of SBMA disease are ARpolyQ intranuclear inclusions. These are generated after the ARpolyQ binds to its endogenous ligands, which promotes AR release from chaperones, activation and nuclear translocation, but also cell toxicity. The SBMA mouse models developed so far, and used in preclinical studies, all contain an expanded CAG repeat significantly longer than that of SBMA patients. Here, we propose the use of SBMA patients adipose-derived mesenchymal stem cells (MSCs as a new human in vitro model to study ARpolyQ toxicity. These cells have the advantage to express only ARpolyQ, and not the wild type AR allele. Therefore, we isolated and characterized adipose-derived MSCs from three SBMA patients (ADSC from Kennedy's patients, ADSCK and three control volunteers (ADSCs. We found that both ADSCs and ADSCKs express mesenchymal antigens, even if only ADSCs can differentiate into the three typical cell lineages (adipocytes, chondrocytes and osteocytes, whereas ADSCKs, from SBMA patients, showed a lower growth potential and differentiated only into adipocyte. Moreover, analysing AR expression on our mesenchymal cultures we found lower levels in all ADSCKs than ADSCs, possibly related to negative pressures exerted by toxic ARpolyQ in ADSCKs. In addition, with proteasome inhibition the ARpolyQ levels increased specifically in ADSCKs, inducing the formation of HSP70 and ubiquitin positive nuclear ARpolyQ inclusions. Considering all of this evidence, SBMA patients adipose-derived MSCs cultures should be considered an innovative in vitro human model to understand the molecular mechanisms of ARpolyQ toxicity and to test novel therapeutic approaches in SBMA.

  18. Human adipose-derived mesenchymal stem cells as a new model of spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Dossena, Marta; Bedini, Gloria; Rusmini, Paola; Giorgetti, Elisa; Canazza, Alessandra; Tosetti, Valentina; Salsano, Ettore; Sagnelli, Anna; Mariotti, Caterina; Gellera, Cinzia; Navone, Stefania Elena; Marfia, Giovanni; Alessandri, Giulio; Corsi, Fabio; Parati, Eugenio Agostino; Pareyson, Davide; Poletti, Angelo

    2014-01-01

    Spinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is an X-linked CAG/polyglutamine expansion motoneuron disease, in which an elongated polyglutamine tract (polyQ) in the N-terminal androgen receptor (ARpolyQ) confers toxicity to this protein. Typical markers of SBMA disease are ARpolyQ intranuclear inclusions. These are generated after the ARpolyQ binds to its endogenous ligands, which promotes AR release from chaperones, activation and nuclear translocation, but also cell toxicity. The SBMA mouse models developed so far, and used in preclinical studies, all contain an expanded CAG repeat significantly longer than that of SBMA patients. Here, we propose the use of SBMA patients adipose-derived mesenchymal stem cells (MSCs) as a new human in vitro model to study ARpolyQ toxicity. These cells have the advantage to express only ARpolyQ, and not the wild type AR allele. Therefore, we isolated and characterized adipose-derived MSCs from three SBMA patients (ADSC from Kennedy's patients, ADSCK) and three control volunteers (ADSCs). We found that both ADSCs and ADSCKs express mesenchymal antigens, even if only ADSCs can differentiate into the three typical cell lineages (adipocytes, chondrocytes and osteocytes), whereas ADSCKs, from SBMA patients, showed a lower growth potential and differentiated only into adipocyte. Moreover, analysing AR expression on our mesenchymal cultures we found lower levels in all ADSCKs than ADSCs, possibly related to negative pressures exerted by toxic ARpolyQ in ADSCKs. In addition, with proteasome inhibition the ARpolyQ levels increased specifically in ADSCKs, inducing the formation of HSP70 and ubiquitin positive nuclear ARpolyQ inclusions. Considering all of this evidence, SBMA patients adipose-derived MSCs cultures should be considered an innovative in vitro human model to understand the molecular mechanisms of ARpolyQ toxicity and to test novel therapeutic approaches in SBMA.

  19. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy.

    Science.gov (United States)

    Simerman, Ariel A; Dumesic, Daniel A; Chazenbalk, Gregorio D

    2014-01-01

    In 2010, Multilineage Differentiating Stress Enduring (Muse) cells were introduced to the scientific community, offering potential resolution to the issue of teratoma formation that plagues both embryonic stem (ES) and induced pluripotent (iPS) stem cells. Isolated from human bone marrow, dermal fibroblasts, adipose tissue and commercially available adipose stem cells (ASCs) under severe cellular stress conditions, Muse cells self-renew in a controlled manner and do not form teratomas when injected into immune-deficient mice. Furthermore, Muse cells express classic pluripotency markers and differentiate into cells from the three embryonic germ layers both spontaneously and under media-specific induction. When transplanted in vivo, Muse cells contribute to tissue generation and repair. This review delves into the aspects of Muse cells that set them apart from ES, iPS, and various reported adult pluripotent stem cell lines, with specific emphasis on Muse cells derived from adipose tissue (Muse-AT), and their potential to revolutionize the field of regenerative medicine and stem cell therapy.

  20. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Achim Salamon

    2014-02-01

    Full Text Available Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.

  1. Human and Autologous Adipose-derived Stromal Cells Increase Flap Survival in Rats Independently of Host Immune Response.

    Science.gov (United States)

    Toyserkani, Navid Mohamadpour; Jensen, Charlotte Harken; Andersen, Ditte Caroline; Sheikh, Søren Paludan; Sørensen, Jens Ahm

    2017-07-22

    There is a rising interest in adipose-derived stromal cells for clinical use; however, it is unknown whether freshly isolated stromal cells (SVF) or culture-expanded cells (ASCs) are more efficacious. We therefore aimed to compare the 2 cellular therapies in an in vivo model of angiogenesis, the ischemic flap in rats, which induces acute ischemia. We also aimed to determine the importance of cell presence and the host immune response. A total of 96 rats (n = 12 in each group) were used, and in each rat, a caudally based random flap measuring 2 × 7 cm was made. The study was conducted in 3 phases. First, each rat was treated with human SVF cells, human ASCs, or vehicle. Second, each rat was treated with human SVF, human SVF lysate, or vehicle. Finally, each rat was treated with rat (autologous) SVF cells or vehicle. Flap survival, vessel density, and stromal cell retention were evaluated after 7 days. The mean survival rates for SVF treatment regardless of human or autologous origin were significantly increased as compared with the control group. Adipose stem/stromal cell and SVF lysate injection did not increase flap survival. Vessel density was increased for human and rat SVF and human ASC but not for SVF lysate. Human cells were not detected in the flaps after 7 days. Flap survival increased with SVF treatment regardless of human or autologous origin, suggesting that increased flap survival is independent of the host immune response. All cell injections lead to increased vessel density, but it did not necessarily lead to increased flap survival. Further research should elaborate which molecular events make SVF treatment more efficacious than ASC.

  2. Human Adipose Tissue Derived Stem Cells Promote Liver Regeneration in a Rat Model of Toxic Injury

    Directory of Open Access Journals (Sweden)

    Eva Koellensperger

    2013-01-01

    Full Text Available In the light of the persisting lack of donor organs and the risks of allotransplantations, the possibility of liver regeneration with autologous stem cells from adipose tissue (ADSC is an intriguing alternative. Using a model of a toxic liver damage in Sprague Dawley rats, generated by repetitive intraperitoneal application of retrorsine and allyl alcohol, the ability of human ADSC to support the restoration of liver function was investigated. A two-thirds hepatectomy was performed, and human ADSC were injected into one remaining liver lobe in group 1 (n = 20. Injection of cell culture medium performed in group 2 (n = 20 served as control. Cyclosporine was applied to achieve immunotolerance. Blood samples were drawn weekly after surgery to determine liver-correlated blood values. Six and twelve weeks after surgery, animals were sacrificed and histological sections were analyzed. ADSC significantly raised postoperative albumin (P < 0.017, total protein (P < 0.031, glutamic oxaloacetic transaminase (P < 0.001, and lactate dehydrogenase (P < 0.04 levels compared to injection of cell culture medium alone. Transplanted cells could be found up to twelve weeks after surgery in histological sections. This study points towards ADSC being a promising alternative to hepatocyte or liver organ transplantation in patients with severe liver failure.

  3. Parathyroid Hormone-Related Protein, Human Adipose-Derived Stem Cells Adipogenic Capacity and Healthy Obesity.

    Science.gov (United States)

    Roca-Rodríguez, María Mar; El Bekay, Rajaa; Garrido-Sanchez, Lourdes; Gómez-Serrano, María; Coin-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Lhamyani, Said; Clemente-Postigo, Mercedes; García-Santos, Eva; de Luna Diaz, Resi; Yubero-Serrano, Elena M; Fernández Real, José M; Peral, Belén; Tinahones, Francisco J

    2015-06-01

    This study aimed to define the potential role of PTHrP on adipogenic regulation and to analyze its relationship with obesity and insulin resistance. This was a cross-sectional study in which visceral (VAT) and subcutaneous (SAT) adipose tissue were extracted from 19 morbidly obese, 10 obese, and 10 lean subjects. PTHrP mRNA levels were measured in VAT and SAT. VAT mesenchymal stem cells and 3T3-L1 cells were differentiated into adipocytes in presence or absence of PTHrP siRNA. PTHrP mRNA and protein levels as well as adipogenic markers were evaluated by Western blotting or qPCR. Immunohistochemistry and immunofluorescence procedures were used for PTHrP intracellular localization. Both human VAT and SAT express PTHrP protein mainly in the nucleolar compartment of stromal vascular fraction cells. The highest levels of PTHrP mRNA and protein expression were detected in undifferentiated mesenchymal cells and progressively decreased during adipogenesis. Remarkably, adipogenic differentiation in human mesenchymal stem cells (A-hMSC) was significantly impaired in a pthrp knockdown. PTHrP seems to be related to obesity-associated insulin resistance (IR), given that we found that PTHrP mRNA expression was higher in VAT from morbidly obese with a low IR degree (MO-L-IR) subjects than those from morbidly obese with a high IR degree (MO-H-IR) and lean subjects, and correlated positively with body mass index and hip circumference. We also found that A-hMSC from MO-L-IRs displayed higher adipogenic capacity than those from both MO-H-IRs and leans. In addition, adipogenesis was impaired in VAT from MO-H-IRs, given that mRNA expression levels of key adipogenic regulators were lower than those from MO-L-IR subjects. PTHrP could be a potential new therapeutic target for the reprograming of adipogenesis and adipose tissue expansion, thus possibly ameliorating the metabolic syndrome in obese subjects.

  4. DHP-derivative and low oxygen tension effectively induces human adipose stromal cell reprogramming.

    Directory of Open Access Journals (Sweden)

    Min Ki Jee

    Full Text Available BACKGROUND AND METHODS: In this study, we utilized a combination of low oxygen tension and a novel anti-oxidant, 4-(3,4-dihydroxy-phenyl-derivative (DHP-d to directly induce adipose tissue stromal cells (ATSC to de-differentiate into more primitive stem cells. De-differentiated ATSCs was overexpress stemness genes, Rex-1, Oct-4, Sox-2, and Nanog. Additionally, demethylation of the regulatory regions of Rex-1, stemnesses, and HIF1alpha and scavenging of reactive oxygen species were finally resulted in an improved stem cell behavior of de-differentiate ATSC (de-ATSC. Proliferation activity of ATSCs after dedifferentiation was induced by REX1, Oct4, and JAK/STAT3 directly or indirectly. De-ATSCs showed increased migration activity that mediated by P38/JUNK and ERK phosphorylation. Moreover, regenerative efficacy of de-ATSC engrafted spinal cord-injured rats and chemical-induced diabetes animals were significantly restored their functions. CONCLUSIONS/SIGNIFICANCE: Our stem cell remodeling system may provide a good model which would provide insight into the molecular mechanisms underlying ATSC proliferation and transdifferentiation. Also, these multipotent stem cells can be harvested may provide us with a valuable reservoir of primitive and autologous stem cells for use in a broad spectrum of regenerative cell-based disease therapy.

  5. Osteogenic differentiation of human adipose-derived mesenchymal stem cells on gum tragacanth hydrogel.

    Science.gov (United States)

    Haeri, Seyed Mohammad Jafar; Sadeghi, Yousef; Salehi, Mohammad; Farahani, Reza Masteri; Mohsen, Nourozian

    2016-05-01

    Currently, natural polymer based hydrogels has attracted great attention of orthopedic surgeons for application in bone tissue engineering. With this aim, osteoinductive capacity of Gum Tragacanth (GT) based hydrogel was compared to collagen hydrogel and tissue culture plate (TCPS). For this purpose, adipose-derived mesenchymal stem cells (AT-MSCs) was cultured on the hydrogels and TCPS and after investigating the biocompatibility of hydrogels using MTT assay, osteoinductivity of hydrogels were evaluated using pan osteogenic markers such as Alizarin red staining, alkaline phosphatase (ALP) activity, calcium content and osteo-related genes. Increasing proliferation trend of AT-MSCs on GT hydrogel demonstrated that TG has no-cytotoxicity and can even be better than the other groups i.e., highest proliferation at day 5. GT hydrogel displayed highest ALP activity and mineralization when compared to the collagen hydrogel and TCPS. Relative gene expression levels have demonstrated that highest expression of Runx2, osteonectin and osteocalcin in the cells cultured GT hydrogel but the expression of collagen type-1 remains constant in hydrogels. Above results demonstrate that GT hydrogel could be an appropriate scaffold for accelerating and supporting the adhesion, proliferation and osteogenic differentiation of stem cells which further can be used for orthopedic applications.

  6. Adipose Tissue-Derived Stromal Cells Inhibit TGF-beta 1-Induced Differentiation of Human Dermal Fibroblasts and Keloid Scar-Derived Fibroblasts in a Paracrine Fashion

    NARCIS (Netherlands)

    Spiekman, Maroesjka; Przybyt, Ewa; Plantinga, Josee A.; Gibbs, Susan; van der Lei, Berend; Harmsen, Martin C.

    2014-01-01

    Background: Adipose tissue-derived stromal cells augment wound healing and skin regeneration. It is unknown whether and how they can also influence dermal scarring. The authors hypothesized that adipose tissue-derived stromal cells inhibit adverse differentiation of dermal fibroblasts induced by the

  7. Human adipose tissue derived pericytes increase life span in Utrn (tm1Ked) Dmd (mdx) /J mice.

    Science.gov (United States)

    Valadares, M C; Gomes, J P; Castello, G; Assoni, A; Pellati, M; Bueno, C; Corselli, M; Silva, H; Bartolini, P; Vainzof, M; Margarido, P F; Baracat, E; Péault, B; Zatz, M

    2014-12-01

    Duchenne muscular dystrophy (DMD) is still an untreatable lethal X-linked disorder, which affects 1 in 3500 male births. It is caused by the absence of muscle dystrophin due to mutations in the dystrophin gene. The potential regenerative capacity as well as immune privileged properties of mesenchymal Stem Cells (MSC) has been under investigation for many years in an attempt to treat DMD. One of the questions to be addressed is whether stem cells from distinct sources have comparable clinical effects when injected in murine or canine muscular dystrophy animal models. Many studies comparing different stem cells from various sources were reported but these cells were obtained from different donors and thus with different genetic backgrounds. Here we investigated whether human pericytes obtained from 4 different tissues (muscle, adipose tissue, fallopian tube and endometrium) from the same donor have a similar clinical impact when injected in double mutant Utrn (tm1Ked) Dmd (mdx) /J mice, a clinically relevant model for DMD. After a weekly regimen of intraperitoneal injections of 10(6) cells per 8 weeks we evaluated the motor ability as well as the life span of the treated mice as compared to controls. Our experiment showed that only adipose tissue derived pericytes are able to increase significantly (39 days on average) the life span of affected mice. Microarray analysis showed an inhibition of the interferon pathway by adipose derived pericytes. Our results suggest that the clinical benefit associated with intraperitoneal injections of these adult stem cells is related to immune modulation rather than tissue regeneration.

  8. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion.

  9. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Noor Azmi, Mat Adenan; Omar, Siti Zawiah [Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Chua, Kien Hui [Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Wan Safwani, Wan Kamarul Zaman, E-mail: wansafwani@um.edu.my [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2014-05-30

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O{sub 2} tension on their functional properties has not been well determined. In this study, we investigated the effects of O{sub 2} tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O{sub 2}) and hypoxia (2% O{sub 2}). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O{sub 2} tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.

  10. Adipose-Derived Stem Cells

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sheikh, Søren Paludan

    2015-01-01

    Emerging evidence has shown that adipose tissue is the richest and most accessible source of mesenchymal stem cells. Many different therapies for chronic wounds exist with varying success rates. The capacity of adipose-derived stem cells (ASCs) to promote angiogenesis, secrete growth factors......, regulate the inflammatory process, and differentiate into multiple cell types makes them a potential ideal therapy for chronic wounds. The aim of this article was to review all preclinical trials using ASCs in problem wound models. A systematic search was performed and 12 studies were found where different...... chronic wound models across different animals were treated with ASCs. Different ASC sources and delivery methods were used in the described studies. Studies demonstrated improved wound healing with utilization of ASC, and this treatment modality has so far shown great potential. However, more preclinical...

  11. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture.

    Science.gov (United States)

    Lei, Lei; Liao, WeiMing; Sheng, PuYi; Fu, Ming; He, AiShan; Huang, Gang

    2007-06-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell's replication activity and the donor's age factor, and to assess the stem cells as a new source for tissue engineering. hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: 61 years old groups). The protein markers (CD29, CD34, CD44, CD45, CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell, and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro. The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula "TD = t x log2/logNt - logN0" was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the 61 years old group (statistical analysis of variance (ANOVA), P=0.002, PhADAS cells replication activity was found in the younger donators, and they represent novel and valuable seed cells for studies of tissue engineering.

  12. Neuroprotective Effect of Human Adipose Stem Cell-Derived Extract in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Jeon, Gye Sun; Im, Wooseok; Shim, Yu-Mi; Lee, Mijung; Kim, Myung-Jin; Hong, Yoon-Ho; Seong, Seung-Yong; Kim, Manho; Sung, Jung-Joon

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) is a devastating human neurodegenerative disease. The precise pathogenic mechanisms of the disease remain uncertain, and as of yet, there is no effective cure. Human adipose stem cells (hASC) can be easily obtained during operative procedures. hASC have a clinically feasible potential to treat neurodegenerative disorders, since cytosolic extract of hASC contain a number of essential neurotrophic factors. In this study, we investigated effects of hASC extract on the SOD1 G93A mouse model of ALS and in vitro test. Administration of hASC extract improved motor function and prolonged the time until symptom onset, rotarod failure, and death in ALS mice. In the hASC extracts group, choline acetyltransferase immunostaining in the ventral horn of the lumbar spinal cord showed a large number of motor neurons, suggesting normal morphology. The neuroprotective effect of hASC extract in ALS mice was also suggested by western blot analysis of spinal cord extract from ALS mice and in vitro test. hASC extract treatment significantly increased expression of p-Akt, p-CREB, and PGC-1α in SOD1 G93A mouse model and in vitro test. Our results indicated that hASC extract reduced apoptotic cell death and recovered mutant SOD1-induced mitochondrial dysfunction. Moreover, hASC extract reduced mitochondrial membrane potential. In conclusion, we have demonstrated, for the first time, that hASC extract exert a potential therapeutic action in the SOD1 G93A mouse model of ALS and in vitro test. These findings suggest that hASC hold promise as a novel therapeutic strategy for treating ALS.

  13. Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts.

    Directory of Open Access Journals (Sweden)

    Brian G Rowan

    Full Text Available BACKGROUND: Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis. METHODOLOGY/PRINCIPAL FINDINGS: Human MDA-MB-231 breast cancer cells represents "triple negative" breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9, IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells. CONCLUSIONS: Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of

  14. Paracrine Activity from Adipose-Derived Stem Cells on In Vitro Wound Healing in Human Tympanic Membrane Keratinocytes.

    Science.gov (United States)

    Ong, Huan Ting; Redmond, Sharon L; Marano, Robert J; Atlas, Marcus D; von Unge, Magnus; Aabel, Peder; Dilley, Rodney J

    2017-03-15

    Stem cell therapies for tympanic membrane repair have shown initial experimental success using mesenchymal stem cells in rat models to promote healing; however, the mechanisms providing this benefit are not known. We investigated in vitro the paracrine effects of human adipose-derived stem cells (ADSCs) on wound healing mechanisms for human tympanic membrane-derived keratinocytes (hTM) and immortalized human keratinocytes (HaCaT). ADSC conditioned media (CMADSC) were assessed for paracrine activity on keratinocyte proliferation and migration, with hypoxic conditions for ADSC culture used to generate contrasting effects on cytokine gene expression. Keratinocytes cultured in CMADSC showed a significant increase in cell number compared to serum-free cultures and further significant increases in hypoxic CMADSC. Assessment of ADSC gene expression on a cytokine array showed a range of wound healing cytokines expressed and under stringent hypoxic and serum-free conditions was upregulated (VEGF A, MMP9, Tissue Factor, PAI-1) or downregulated (CXCL5, CCL7, TNF-α). Several of these may contribute to the activity of conditioned media on the keratinocytes with potential applications in TM perforation repair. VEGFA protein was confirmed by immunoassay to be increased in conditioned media. Together with gene regulation associated with hypoxia in ADSCs, this study has provided several strong leads for a stem cell-derived approach to TM wound healing.

  15. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Kevin Dzobo

    2016-08-01

    Full Text Available Mesenchymal stromal/stem cells (MSCs represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell–matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4, SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures.

  16. Human adipose-derived stem cells: definition, isolation, tissue-engineering applications.

    Science.gov (United States)

    Nae, S; Bordeianu, I; Stăncioiu, A T; Antohi, N

    2013-01-01

    Recent researches have demonstrated that the most effective repair system of the body is represented by stem cells - unspecialized cells, capable of self-renewal through successive mitoses, which have also the ability to transform into different cell types through differentiation. The discovery of adult stem cells represented an important step in regenerative medicine because they no longer raises ethical or legal issues and are more accessible. Only in 2002, stem cells isolated from adipose tissue were described as multipotent stem cells. Adipose tissue stem cells benefits in tissue engineering and regenerative medicine are numerous. Development of adipose tissue engineering techniques offers a great potential in surpassing the existing limits faced by the classical approaches used in plastic and reconstructive surgery. Adipose tissue engineering clinical applications are wide and varied, including reconstructive, corrective and cosmetic procedures. Nowadays, adipose tissue engineering is a fast developing field, both in terms of fundamental researches and medical applications, addressing issues related to current clinical pathology or trauma management of soft tissue injuries in different body locations.

  17. Sericin Enhances the Bioperformance of Collagen-Based Matrices Preseeded with Human-Adipose Derived Stem Cells (hADSCs

    Directory of Open Access Journals (Sweden)

    Marieta Costache

    2013-01-01

    Full Text Available Current clinical strategies for adipose tissue engineering (ATE, including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can’t face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications.

  18. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  19. Multifunctional nanocrystalline calcium phosphates loaded with Tetracycline antibiotic combined with human adipose derived mesenchymal stromal stem cells (hASCs).

    Science.gov (United States)

    Marycz, K; Pazik, R; Zawisza, K; Wiglusz, K; Maredziak, M; Sobierajska, P; Wiglusz, R J

    2016-12-01

    Osteoconductive drug delivery system composed of nanocrystalline calcium phosphates (Ca10(PO4)6(OH)2/β-Ca3(PO4)2) co-doped with Yb(3+)/Er(3+) ions loaded with Tetracycline antibiotic (TC) was developed. Their effect on human adipose derived mesenchymal stromal stem cells (hASCs) as a potential reconstructive biomaterial for bone tissue regeneration was studied. The XRD and TEM measurements were used in order to determine the crystal structure and morphology of the final products. The characteristics of nanocomposites with the TC and hASCs as potential regenerative materials as well as the antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 25923 as a model of the Gram-positive bacteria, Escherichia coli ATCC 8739 of the Gram-negative bacteria, were shown. These combinations can be a promising material for theranostic due to its regenerative, antimicrobial and fluorescent properties.

  20. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells

    NARCIS (Netherlands)

    M.J. Crop (Meindert); C.C. Baan (Carla); S.S. Korevaar (Sander); J.N.M. IJzermans (Jan); M. Pescatori (Mario); A. Stubbs (Andrew); W.F.J. van IJcken (Wilfred); M.H. Dahlke (Marc); E. Eggenhofer (Elke); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2010-01-01

    textabstractThere is emerging interest in the application of mesenchymal stem cells (MSC) for the prevention and treatment of autoimmune diseases, graft-versus-host disease and allograft rejection. It is, however, unknown how inflammatory conditions affect phenotype and function of MSC. Adipose tiss

  1. Isolation, amplification and identification of mesenchymal stem cells de-rived from human adipose tissue

    Directory of Open Access Journals (Sweden)

    Sanambar Sadighi

    2014-04-01

    Conclusion: Although we have not the results of in vivo tests to support in vivo adipo-genesis either alone or in combination with natural or synthetic matrix, the results showed that stem cells isolation from adipose tissue was successful, and we provided an environment for differentiation of stem cells.

  2. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy

    OpenAIRE

    Simerman, Ariel A; Dumesic, Daniel A; Chazenbalk, Gregorio D.

    2014-01-01

    In 2010, Multilineage Differentiating Stress Enduring (Muse) cells were introduced to the scientific community, offering potential resolution to the issue of teratoma formation that plagues both embryonic stem (ES) and induced pluripotent (iPS) stem cells. Isolated from human bone marrow, dermal fibroblasts, adipose tissue and commercially available adipose stem cells (ASCs) under severe cellular stress conditions, Muse cells self-renew in a controlled manner and do not form teratomas when in...

  3. Experimental study on adipose tissue engineering with human adipose-derived stem cells and adipose tissue extracellular matrix scaffold%人细胞外基质支架联合脂肪干细胞构建脂肪组织

    Institute of Scientific and Technical Information of China (English)

    察鹏飞; 高建华; 陈阳; 鲁峰

    2012-01-01

    目的 探讨人脂肪组织细胞外基质(ECM)支架联合人脂肪来源干细胞(ADSCs)构建工程化脂肪组织的可行性.方法 以酶消化法从人抽脂术抽吸物脂质部分获取人ADSCs,体外进行多向分化诱导鉴定,并行DiI荧光标记.从抽脂术的脂质部分分离提取人脂肪组织细胞外基质,经过低温冻干、粉碎、灭菌等处理,制备成粉末状,电镜扫描观察表面特征并将其与ADSCs进行黏附实验,探讨其作为支架材料的可行性.收集人ADSCs,以2×109/L的细胞密度与提取的细胞外基质支架复合后移植于裸鼠背部皮下,同鼠对侧背部皮下移植ECM支架和细胞培养液作为对照,每侧移植0.5 ml,共6只实验鼠.8周后取材,称量标本湿重.取出的标本行苏木素-伊红(HE)染色和油红O染色进行定性判断,分析人脂肪组织ECM支架联合人ADSCs构建工程化脂肪组织的能力.结果 从脂肪组织中分离得到人ADSCs和ECM支架.ADSCs在相应的诱导环境下能够分化成为脂肪细胞、骨细胞和软骨细胞.ECM支架电镜扫描和大体观察具有疏松、多孔的结构特征,适合ADSCs的黏附生长.ADSCs与支架相容性良好,黏附率达(89.87±2.59)%,细胞在支架表面可充分伸展生长.体内移植8周后,实验组和对照组都能够形成新生物,湿重比较实验组较对照组重(P<0.05).经HE切片及油红O染色均证实实验组形成成熟的脂肪组织,对照组不能形成脂肪组织.结论 人脂肪组织ECM支架联合人ADSCs在体内能够成功构建成熟的脂肪组织,8周后支架并无明显吸收.%Objective To explore the possibility of building tissue-engineered adipose tissue with human adipose-derived stem cells (ADSCs) and adipose tissue extracellular matrix (ECM) scaffold,and provide experimental basis for clinical application of tissue-engineered adipose tissue for the repair of soft tissue defects.Methods ADSCs were isolated from adipose tissue by liposuction with the

  4. Fluorescent immortalized human adipose derived stromal cells (hASCs-TS/GFP+) for studying cell drug delivery mediated by microvesicles.

    Science.gov (United States)

    Coccè, Valentina; Balducci, Luigi; Falchetti, Maria Laura; Pascucci, Luisa; Ciusani, Emilio; Brini, Anna Teresa; Sisto, Francesca; Piovani, Giovanna; Alessandri, Giulio; Parati, Eugenio; Cabeza, Laura; Pessina, Augusto

    2017-03-27

    A new tool for the drug delivery is based on the use of Mesenchymal Stromal Cells (MSCs) loaded in vitro with anti-cancer drugs. Unfortunately, the restricted lifespan of MSCs represents a significant limitation to produce them in high amounts and for long time studies. Immortalized MSCs from adipose tissue (hASC) have been generated as good source of cells with stable features. These cells could improve the development of standardized procedures for both in vitro and preclinical studies. Furthermore they facilitate procedures for preparing large amounts of secretome containing microvesicles (MVs). We used human adipose tissue derived MSCs immortalized with hTERT+SV40 (TS) genes and transfected with GFP (hASCs-TS/GFP+). This line was investigate for its ability to uptake and release anticancer drugs. Microvesicles associated to paclitaxel (MVs/PTX) were isolated, quantified, and tested on pancreatic cancer cells. The line hASCs-TS/GFP+ maintained the main mesenchymal characters and was able to uptake and release, in active form, both paclitaxel and gemcitabine. From paclitaxel loaded hASCs-TS/GFP+ cells were isolated microvesicles in sufficient amount to inhibit "in vitro" the proliferation of pancreatic tumor cells. Our study suggests that human immortalized MSCs could be used for a large scale production of cells for mediated drug delivery. Moreover, the secretion of drug-associated MVs could represent a new way for producing new drug formulation by "biogenesis". In the context of the "advanced cell therapy procedure", the MVs/PTX production would be less resource and time consuming and it could possibly contribute to simplification of GMP procedures. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture

    Institute of Scientific and Technical Information of China (English)

    LEI Lei; LIAO WeiMing; SHENG PuYi; FU Ming; HE AiShan; HUANG Gang

    2007-01-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell's replication activity and the donor's age factor, and to assess the stem cells as a new source for tissue engineering, hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: <20 years old, 21-40years old, 41-60 years old and >61 years old groups). The protein markers (CD29, CD34, CD44, CD45,CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell,and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro.The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula "TD = t log2/logNt - logN0 "was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the <20 years old group was lower than that of the >61 years old group (statistical analysis of variance (ANOVA), P=-0.002, P<0.05). These findings suggested that a higher level of hADAS cells replication activity was found in the younger donators, and they represent novel and valuable seed cells for studies of tissue engineering.

  6. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell’s replication activity and the donor’s age factor, and to assess the stem cells as a new source for tissue engineering. hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: <20 years old, 21―40 years old, 41―60 years old and >61 years old groups). The protein markers (CD29, CD34, CD44, CD45, CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell, and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro. The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula “ log2T D = t logN t ? logN 0” was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the <20 years old group was lower than that of the >61 years old group (statistical analysis of variance (ANOVA), P=0.002, P<0.05). These find- ings suggested that a higher level of hADAS cells replication activity was found in the younger dona- tors, and they represent novel and valuable seed cells for studies of tissue engineering.

  7. Involvement of PI3K and MMP1 in PDGF-induced Migration of Human Adipose-derived Stem Cells.

    Science.gov (United States)

    Lim, Yoonhwa; Lee, Minji; Jeong, Hyeju; Kim, Haekwon

    2017-06-01

    Human adult stem cells have widely been examined for their clinical application including their wound healing effect in vivo. To function as therapeutic cells, however, cells must represent the ability of directed migration in response to signals. This study aimed to investigate the mechanism of platelet-derived growth factor (PDGF)-induced migration of the human abdominal adipose-derived stem cells (hADSCs) in vitro. A general matrix metalloproteinase (MMP) inhibitor or a MMP2 inhibitor significantly inhibited the PDGF-induced migration. PDGF treatment exhibited greater mRNA level and denser protein level of MMP1. The conditioned medium of PDGF-treated cells showed a caseinolytic activity of MMP1. Transfection of cells with siRNA against MMP1 significantly inhibited MMP1 expression, its caseinolytic activity, and cell migration following PDGF treatment. Phosphatidylinositol 3-kinase (PI3K) inhibitor reduced the migration by about 50% without affecting ERK and MLC proteins. Rho-associated protein kinase inhibitor mostly abolished the migration and MLC proteins. The results suggest that PDGF might signal hADSCs through PI3K, and MMP1 activity could play an important role in this PDGF-induced migration in vitro.

  8. Effect of Low-Level Laser Therapy on Human Adipose-Derived Stem Cells: In Vitro and In Vivo Studies.

    Science.gov (United States)

    Min, Kyung Hee; Byun, Jin Hwan; Heo, Chan Yeong; Kim, Eun Hee; Choi, Hye Yeon; Pak, Chang Sik

    2015-10-01

    Low-level laser therapy (LLLT) continues to receive much attention in many clinical fields. Also, LLLT has been used to enhance the proliferation of various cell lines, including stem cells. This study investigated the effect of LLLT on human adipose-derived stem cells (ADSCs) through in vitro and in vivo studies. Low-level laser irradiation of cultured ADSCs was performed using a 830 nm Ga-Al-As (gallium-aluminum-arsenide) laser. Then, proliferation of ADSCs was quantified by a cell counting kit-8. In the in vivo study, irradiated ADSCs or non-irradiated ADSCs were transplanted, and then, low-level laser irradiation of each rat was performed as per the protocol. Cell viability was quantified by immunofluorescent staining using the human mitochondria antibody. In the in vitro study, the laser-irradiated groups showed an increase in absorbance compared to the control group. Also, in the in vivo study, there was a significant increase in the number of human ADSCs in the laser-irradiated groups compared to the control group (p Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .

  9. Recombinant human collagen-based microspheres mitigate cardiac conduction slowing induced by adipose tissue-derived stromal cells

    NARCIS (Netherlands)

    Smit, Nicoline W.; ten Sande, Judith N.; Parvizi, Mojtaba; van Amersfoorth, Shirley C. M.; Plantinga, Josee A.; van Spreuwel-Goossens, Carolien A. F. M.; van Dongen, Elisabeth M. W. M.; van Dessel, Pascal F. H. M.; Kluijtmans, Sebastianus G. J. M.; Meijborg, Veronique M. F.; de Bakker, Jacques M. T.; Harmsen, Martin C.; Coronel, Ruben

    2017-01-01

    Background Stem cell therapy to improve cardiac function after myocardial infarction is hampered by poor cell retention, while it may also increase the risk of arrhythmias by providing an arrhythmogenic substrate. We previously showed that porcine adipose tissue-derived-stromal cells (pASC) induce

  10. Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    C Lalande

    2011-04-01

    Full Text Available For bone tissue engineering, human Adipose Derived Stem Cells (hADSCs are proposed to be associated with a scaffold for promoting bone regeneration. After implantation, cellularised scaffolds require a non-invasive method for monitoring their fate in vivo. The purpose of this study was to use Magnetic Resonance Imaging (MRI-based tracking of these cells, labelled with magnetic agents for in vivo longitudinal assessment. hADSCs were isolated from adipose tissue and labelled with USPIO-rhodamine (Ultrasmall SuperParamagnetic Iron Oxide. USPIO internalisation, absence of toxicity towards hADSCs, and osteogenic differentiation of the labelled cells were evaluated in standard culture conditions. Labelled cells were then seeded within a 3D porous polysaccharide-based scaffold and imaged in vitro using fluorescence microscopy and MRI. Cellularised scaffolds were implanted subcutaneously in nude mice and MRI analyses were performed from 1 to 28 d after implantation. In vitro, no effect of USPIO labelling on cell viability and osteogenic differentiation was found. USPIO were efficiently internalised by hADSCs and generated a high T2* contrast. In vivo MRI revealed that hADSCs remain detectable until 28 d after implantation and could migrate from the scaffold and colonise the area around it. These data suggested that this scaffold might behave as a cell carrier capable of both holding a cell fraction and delivering cells to the site of implantation. In addition, the present findings evidenced that MRI is a reliable technique to validate cell-seeding procedures in 3D porous scaffolds, and to assess the fate of hADSCs transplanted in vivo.

  11. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells.

    Science.gov (United States)

    Bekhite, Mohamed M; Finkensieper, Andreas; Rebhan, Jennifer; Huse, Stephanie; Schultze-Mosgau, Stefan; Figulla, Hans-Reiner; Sauer, Heinrich; Wartenberg, Maria

    2014-02-15

    The plasticity of human adipose tissue-derived stem cells (hASCs) is promising, but differentiation in vitro toward endothelial cells is poorly understood. Flow cytometry demonstrated that hASCs isolated from excised fat tissue were positive for CD29, CD44, CD70, CD90, CD105, and CD166 and negative for the endothelial marker CD31, and the hematopoietic cell markers CD34 and CD133. hASCs differentiated into adipocytes after cultivation in adipogenic medium. Exposure of hASCs for 10 days under hypoxia (3% oxygen) in combination with leptin increased the percentage of CD31(+) endothelial cells as well as CD31, VE-Cadherin, Flk-1, Tie2, von Willebrand factor, and endothelial cell nitric oxide synthase mRNA expression. This was enhanced on co-incubation of vascular endothelial growth factor (VEGF) and leptin, whereas VEGF alone was not sufficient. Moreover, hASCs cultured on a matrigel surface under hypoxia/VEGF/leptin, showed a stable branching network. Hypoxic conditions significantly decreased apoptosis as evaluated by cleaved caspase-3, and increased prolyl hydroxylase domain 3 mRNA expression. Hypoxia increased expression of VEGF as well as leptin transcripts, which were significantly inhibited on co-incubation with either VEGF or leptin or a combination of both. Furthermore, leptin treatment of hypoxic cells increased the expression of the long/signaling form of the leptin receptor (ObRL), which was augmented on co-incubation with VEGF. The observed endothelial differentiation was dependent on the Akt pathway, as co-administration with Akt inhibitor abolished the observed effects. In conclusion, our data demonstrate that hASCs can be efficiently differentiated to endothelial cells by mimicking the hypoxic and pro-angiogenic microenvironment of adipose tissue.

  12. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein.

    Science.gov (United States)

    Sung, Min Sun; Mun, Ji-Young; Kwon, Ohsuk; Kwon, Ki-Sun; Oh, Doo-Byoung

    2013-07-19

    Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Beatrice Cousin

    Full Text Available BACKGROUND: Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. Disrupting this homeostasis can induce aberrant cell proliferation, adhesion, function and migration that might promote malignant behavior. Indeed, aberrant stromal-epithelial interactions contribute to pancreatic ductal adenocarcinoma (PDAC spread and metastasis, and this raises the possibility that novel stroma-targeted therapies represent additional approaches for combating this malignant disease. The aim of the present study was to determine the effect of human stromal cells derived from adipose tissue (ADSC on pancreatic tumor cell proliferation. PRINCIPAL FINDINGS: Co-culturing pancreatic tumor cells with ADSC and ADSC-conditioned medium sampled from different donors inhibited cancer cell viability and proliferation. ADSC-mediated inhibitory effect was further extended to other epithelial cancer-derived cell lines (liver, colon, prostate. ADSC conditioned medium induced cancer cell necrosis following G1-phase arrest, without evidence of apoptosis. In vivo, a single intra-tumoral injection of ADSC in a model of pancreatic adenocarcinoma induced a strong and long-lasting inhibition of tumor growth. CONCLUSION: These data indicate that ADSC strongly inhibit PDAC proliferation, both in vitro and in vivo and induce tumor cell death by altering cell cycle progression. Therefore, ADSC may constitute a potential cell-based therapeutic alternative for the treatment of PDAC for which no effective cure is available.

  14. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2017-01-01

    Full Text Available The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs, for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs, was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  15. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin

    Directory of Open Access Journals (Sweden)

    Cho Hyong-Ho

    2010-04-01

    Full Text Available Abstract Background Adult mesenchymal stem cells (MSCs derived from adipose tissue have the capacity to differentiate into mesenchymal as well as endodermal and ectodermal cell lineage in vitro. We characterized the multipotent ability of human adipose tissue-derived stem cells (hADSCs as MSCs and investigated the neural differentiation potential of these cells. Results Human ADSCs from earlobe fat maintained self-renewing capacity and differentiated into adipocytes, osteoblasts, or chondrocytes under specific culture conditions. Following neural induction with bFGF and forskolin, hADSCs were differentiated into various types of neural cells including neurons and glia in vitro. In neural differentiated-hADSCs (NI-hADSCs, the immunoreactivities for neural stem cell marker (nestin, neuronal markers (Tuj1, MAP2, NFL, NFM, NFH, NSE, and NeuN, astrocyte marker (GFAP, and oligodendrocyte marker (CNPase were significantly increased than in the primary hADSCs. RT-PCR analysis demonstrated that the mRNA levels encoding for ABCG2, nestin, Tuj1, MAP2, NFL, NFM, NSE, GAP43, SNAP25, GFAP, and CNPase were also highly increased in NI-hADSCs. Moreover, NI-hADSCs acquired neuron-like functions characterized by the display of voltage-dependent tetrodotoxin (TTX-sensitive sodium currents, outward potassium currents, and prominent negative resting membrane potentials under whole-cell patch clamp recordings. Further examination by RT-PCR showed that NI-hADSCs expressed high level of ionic channel genes for sodium (SCN5A, potassium (MaxiK, Kv4.2, and EAG2, and calcium channels (CACNA1C and CACNA1G, which were expressed constitutively in the primary hADSCs. In addition, we demonstrated that Kv4.3 and Eag1, potassium channel genes, and NE-Na, a TTX-sensitive sodium channel gene, were highly induced following neural differentiation. Conclusions These combined results indicate that hADSCs have the same self-renewing capacity and multipotency as stem cells, and can be

  16. Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells by activating the APPL1-AMPK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tong; Wu, Yu-wei; Lu, Hui; Guo, Yuan [Second Dental Center, Peking University School and Hospital of Stomatology, Beijing (China); National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing (China); Tang, Zhi-hui, E-mail: tang_zhihui@live.cn [Second Dental Center, Peking University School and Hospital of Stomatology, Beijing (China); National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing (China)

    2015-05-29

    Human adipose-derived stem cells (hASCs) are multipotent progenitor cells with multi-lineage differentiation potential including osteogenesis and adipogenesis. While significant progress has been made in understanding the transcriptional control of hASC fate, little is known about how hASC differentiation is regulated by the autocrine loop. The most abundant adipocytokine secreted by adipocytes, adiponectin (APN) plays a pivotal role in glucose metabolism and energy homeostasis. Growing evidence suggests a positive association between APN and bone formation yet little is known regarding the direct effects of APN on hASC osteogenesis. Therefore, this study was designed to investigate the varied osteogenic effects and regulatory mechanisms of APN in the osteogenic commitment of hASCs. We found that APN enhanced the expression of osteoblast-related genes in hASCs, such as osteocalcin, alkaline phosphatase, and runt-related transcription factor-2 (Runx2, also known as CBFa1), in a dose- and time-dependent manner. This was further confirmed by the higher expression levels of alkaline phosphatase and increased formation of mineralization nodules, along with the absence of inhibition of cell proliferation. Importantly, APN at 1 μg/ml was the optimal concentration, resulting in maximum deposition of calcium nodules, and was significant superior to bone morphogenetic protein 2. Mechanistically, we found for the first time that APN increased nuclear translocation of the leucine zipper motif (APPL)-1 as well as AMP-activated protein kinase (AMPK) phosphorylation, which were reversed by pretreatment with APPL1 siRNA. Our results indicate that APN promotes the osteogenic differentiation of hASCs by activating APPL1-AMPK signaling, suggesting that manipulation of APN is a novel therapeutic target for controlling hASC fate. - Highlights: • Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells. • The knock-down of APPL1 block the enhancement of

  17. The Effect of Antiseptics on Adipose-Derived Stem Cells.

    Science.gov (United States)

    Kim, Bong-Sung; Ott, Veronica; Boecker, Arne Hendrick; Stromps, Jan-Philipp; Paul, Nora Emilie; Alharbi, Ziyad; Cakmak, Ercan; Bernhagen, Jürgen; Bucala, Richard; Pallua, Norbert

    2017-03-01

    Although chemical antiseptics are the most basic measure to control wound infection and frequently come into contact with subcutaneous adipose tissue, no studies have evaluated their toxicity on adipose tissue and its cell fractions. In the present study, the effects of five different antiseptics on adipose-derived stem cells were evaluated. Human adipose-derived stem cells were harvested from healthy donors. Adipose-derived stem cell viability was measured after treatment with different concentrations of antiseptics over 5 days. Furthermore, the effect on the proliferation, adipogenic differentiation, and apoptosis/necrosis of adipose-derived stem cells was analyzed. Finally, the mRNA expression of the stem cell markers CD29, CD34, CD73, CD90, and CD105 was detected. Octenisept and Betaisodona significantly reduced cell proliferation and differentiation and led to considerable adipose-derived stem cell necrosis. Octenisept decreased stem cell viability at the lowest concentrations tested, and all stem cell markers were down-regulated by Octeniseptr and Betaisodona. Lavasept and Prontosan both led to reduced stem cell viability, proliferation, and differentiation, and increased apoptosis/necrosis, although the effects were less pronounced compared with Octenisept and Betaisodona. Adipose-derived stem cells survived treatment with mafenide acetate even at high concentrations, and mafenide acetate showed minimal negative effects on their proliferation, adipogenic differentiation, cell death, and stem cell marker expression. Mafenide acetate may be regarded as a feasible antiseptic for the treatment of wounds with exposed adipose tissue because of its low adipose-derived stem cell toxicity. Lavasept and Prontosan are possible alternatives to mafenide acetate. Octenisept and Betaisodona, by contrast, may be used only in highly diluted solutions. Therapeutic, V.

  18. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells.

    Science.gov (United States)

    Ko, Eunkyung; Yang, Kisuk; Shin, Jisoo; Cho, Seung-Woo

    2013-09-09

    Immobilization of osteoinductive molecules, including growth factors or peptides, on polymer scaffolds is critical for improving stem cell-mediated bone tissue engineering. Such molecules provide osteogenesis-stimulating signals for stem cells. Typical methods used for polymeric scaffold modification (e.g., chemical conjugation or physical adsorption), however, have limitations (e.g., multistep, complicated procedures, material denaturation, batch-to-batch inconsistency, and inadequate conjugation) that diminish the overall efficiency of the process. Therefore, in this study, we report a biologically inspired strategy to prepare functional polymer scaffolds that efficiently regulate the osteogenic differentiation of human adipose-derived stem cells (hADSCs). Polymerization of dopamine (DA), a repeated motif observed in mussel adhesive protein, under alkaline pH conditions, allows for coating of a polydopamine (pDA) layer onto polymer scaffolds. Our study demonstrates that predeposition of a pDA layer facilitates highly efficient, simple immobilization of peptides derived from osteogenic growth factor (bone morphogenetic protein-2; BMP-2) on poly(lactic-co-glycolic acid) (PLGA) scaffolds via catechol chemistry. The BMP-2 peptide-immobilized PLGA scaffolds greatly enhanced in vitro osteogenic differentiation and calcium mineralization of hADSCs using either osteogenic medium or nonosteogenic medium. Furthermore, transplantation of hADSCs using pDA-BMP-2-PLGA scaffolds significantly promoted in vivo bone formation in critical-sized calvarial bone defects. Therefore, pDA-mediated catechol functionalization would be a simple and effective method for developing tissue engineering scaffolds exhibiting enhanced osteoinductivity. To the best of our knowledge, this is the first study demonstrating that pDA-mediated surface modification of polymer scaffolds potentiates the regenerative capacity of human stem cells for healing tissue defect in vivo.

  19. RSPO3-LGR4 Regulates Osteogenic Differentiation Of Human Adipose-Derived Stem Cells Via ERK/FGF Signalling

    Science.gov (United States)

    Zhang, Min; Zhang, Ping; Liu, Yunsong; Lv, Longwei; Zhang, Xiao; Liu, Hao; Zhou, Yongsheng

    2017-01-01

    The four R-spondins (RSPOs) and their three related receptors, LGR4, 5 and 6, have emerged as a major ligand-receptor system with critical roles in development and stem cell survival. However, the exact roles of the RSPO-LGR system in osteogenesis remain largely unknown. In the present study, we showed that RSPO3-shRNA increased the osteogenic potential of human adipose-derived stem cells (hASCs) significantly. Mechanistically, we demonstrated that RSPO3 is a negative regulator of ERK/FGF signalling. We confirmed that inhibition of the ERK1/2 signalling pathway blocked osteogenic differentiation in hASCs, and the increased osteogenic capacity observed after RSPO3 knockdown in hASCs was reversed by inhibition of ERK signalling. Further, silencing of LGR4 inhibited the activity of ERK signalling and osteogenic differentiation of hASCs. Most importantly, we found that loss of LGR4 abrogated RSPO3-regulated osteogenesis and RSPO3-induced ERK1/2 signalling inhibition. Collectively, our data show that ERK signalling works downstream of LGR4 and RSPO3 regulates osteoblastic differentiation of hASCs possibly via the LGR4-ERK signalling. PMID:28220828

  20. Osteogenesis of human adipose-derived stem cells on hydroxyapatite-mineralized poly(lactic acid) nanofiber sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Fu-Chen [Department of Health Developing and Health Marketing, Kainan University, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@thu.edu.tw [Department of Chemical and Materials Engineering, Tunghai University, Taiwan (China); Lai, Wen-Fu T., E-mail: Laitw@tmu.edu.tw [Graduate Institute of Clinical Medicine, Taipei Medical University, Taiwan (China)

    2014-12-01

    Electrospun fiber sheets with various orientations (random, partially aligned, and aligned) and smooth and roughened casted membranes were prepared. Hydroxyapatite (HA) crystals were in situ formed on these material surfaces via immersion in 10 × simulated body fluid solution. The size and morphology of the resulting fibers were examined using scanning electron microscopy. The average diameter of the fibers ranged from 225 ± 25 to 1050 ± 150 nm depending on the electrospinning parameters. Biological experiment results show that human adipose-derived stem cells exhibit different adhesion and osteogenic differentiation on the three types of fiber. The cell proliferation and osteogenic differentiation were best on the aligned fibers. Similar results were found for phosphorylated focal adhesion kinase expression. Electrospun poly(lactic acid) aligned fibers mineralized with HA crystals provide a good environment for cell growth and osteogenic differentiation and thus have great potential in the tissue engineering field. - Highlights: • hADSCs show higher adhesion and proliferation on HA-precipitate electrospun fiber sheets than those of the control membranes. • HA-mineralized fiber groups greatly improve cell growth and increase FAK and p-FAK expressions. • HA-precipitate electrospun fiber sheets present higher ALP and OC activity through the study periods. • Electrospun PLA fiber mineralized with HA provides a good environment for cell growth and osteogenic differentiation. • A simple immersion of electrospun fibers in 10 × SBF are a potential matrix for bone tissue engineering.

  1. Dose-dependent Effect of Boric Acid on Myogenic Differentiation of Human Adipose-derived Stem Cells (hADSCs).

    Science.gov (United States)

    Apdik, Hüseyin; Doğan, Ayşegül; Demirci, Selami; Aydın, Safa; Şahin, Fikrettin

    2015-06-01

    Boron, a vital micronutrient for plant metabolism, is not fully elucidated for embryonic and adult body development, and tissue regeneration. Although optimized amount of boron supplement has been shown to be essential for normal gestational development in zebrafish and frog and beneficial for bone regeneration in higher animals, effects of boron on myogenesis and myo-regeneration remains to be solved. In the current study, we investigated dose-dependent activity of boric acid on myogenic differentiation of human adipose-derived stem cells (hADSCs) using immunocytochemical, gene, and protein expression analysis. The results revealed that while low- (81.9 μM) and high-dose (819.6 μM) boron treatment increased myogenic gene expression levels such as myosin heavy chain (MYH), MyoD, myogenin, and desmin at day 4 of differentiation, high-dose treatment decreased myogenic-related gene and protein levels at day 21 of differentiation, confirmed by immunocytochemical analysis. The findings of the study present not only an understanding of boron's effect on myogenic differentiation but also an opportunity for the development of scaffolds to be used in skeletal tissue engineering and supplements for embryonic muscle growth. However, fine dose tuning and treatment period arranging are highly warranted as boron treatment over required concentrations and time might result in detrimental outcomes to myogenesis and myo-regeneration.

  2. Propyl gallate inhibits adipogenesis by stimulating extracellular signal-related kinases in human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Jeung-Eun; Kim, Jung-Min; Jang, Hyun-Jun; Lim, Se-Young; Choi, Seon-Jeong; Lee, Nan-Hee; Suh, Pann-Ghill; Choi, Ung-Kyu

    2015-04-01

    Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.

  3. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    Science.gov (United States)

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant.

  4. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Wenyue Li

    Full Text Available Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7 that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1 onto the surface of poly-lactic-co-glycolic acid (PLGA substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs, being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP, osteocalcin (OC, and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications.

  5. Osteogenic Capacity of Human Adipose-Derived Stem Cells is Preserved Following Triggering of Shape Memory Scaffolds.

    Science.gov (United States)

    Tseng, Ling-Fang; Wang, Jing; Baker, Richard M; Wang, Guirong; Mather, Patrick T; Henderson, James H

    2016-08-01

    Recent advances in shape memory polymers have enabled the study of programmable, shape-changing, cytocompatible tissue engineering scaffolds. For treatment of bone defects, scaffolds with shape memory functionality have been studied for their potential for minimally invasive delivery, conformal fitting to defect margins, and defect stabilization. However, the extent to which the osteogenic differentiation capacity of stem cells resident in shape memory scaffolds is preserved following programmed shape change has not yet been determined. As a result, the feasibility of shape memory polymer scaffolds being employed in stem cell-based treatment strategies remains unclear. To test the hypothesis that stem cell osteogenic differentiation can be preserved during and following triggering of programmed architectural changes in shape memory polymer scaffolds, human adipose-derived stem cells were seeded in shape memory polymer foam scaffolds or in shape memory polymer fibrous scaffolds programmed to expand or contract, respectively, when warmed to body temperature. Osteogenic differentiation in shape-changing and control scaffolds was compared using mineral deposition, protein production, and gene expression assays. For both shape-changing and control scaffolds, qualitatively and quantitatively comparable amounts of mineral deposition were observed; comparable levels of alkaline phosphatase activity were measured; and no significant differences in the expression of genetic markers of osteogenesis were detected. These findings support the feasibility of employing shape memory in scaffolds for stem cell-based therapies for bone repair.

  6. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats.

    Science.gov (United States)

    Lin, Chi-Chang; Fu, Shu-Juan

    2016-01-01

    Electrospinning is a versatile technique to generate large quantities of micro- or nano-fibers from a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized electrospun nano-fibers and use a mussel-inspired surface coating to regulate adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared poly(lactic acid) (PLA) fibers coated with polydopamine (PDA). The morphology, chemical composition, and surface properties of PDA/PLA were characterized by SEM and XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. Increased focal adhesion kinase (FAK) and collagen I levels and enhanced cell attachment and cell cycle progression were observed upon an increase in PDA content. In addition, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on a pure PLA mat. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenesis differentiation. Our results demonstrate that the bio-inspired coating synthetic degradable PLA polymer can be used as a simple technique to render the surfaces of synthetic biodegradable fibers, thus enabling them to direct the specific responses of hADSCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA.

  8. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    Directory of Open Access Journals (Sweden)

    Kaisaier Aji

    2016-01-01

    Full Text Available The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII is known to participate in maintenance and switches of smooth muscle cell (SMC phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC, while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs.

  9. Bioceramic-collagen scaffolds loaded with human adipose-tissue derived stem cells for bone tissue engineering.

    Science.gov (United States)

    Daei-Farshbaf, Neda; Ardeshirylajimi, Abdolreza; Seyedjafari, Ehsan; Piryaei, Abbas; Fadaei Fathabady, Fatemeh; Hedayati, Mehdi; Salehi, Mohammad; Soleimani, Masoud; Nazarian, Hamid; Moradi, Sadegh-Lotfalah; Norouzian, Mohsen

    2014-02-01

    The combination of bioceramics and stem cells has attracted the interest of research community for bone tissue engineering applications. In the present study, a combination of Bio-Oss(®) and type 1 collagen gel as scaffold were loaded with human adipose-tissue derived mesenchymal stem cells (AT-MSCs) after isolation and characterization, and the capacity of them for bone regeneration was investigated in rat critical size defects using digital mammography, multi-slice spiral computed tomography imaging and histological analysis. 8 weeks after implantation, no mortality or sign of inflammation was observed in the site of defect. According to the results of imaging analysis, a higher level of bone regeneration was observed in the rats receiving Bio-Oss(®)-Gel compared to untreated group. In addition, MSC-seeded Bio-Oss-Gel induced the highest bone reconstruction among all groups. Histological staining confirmed these findings and impressive osseointegration was observed in MSC-seeded Bio-Oss-Gel compared with Bio-Oss-Gel. On the whole, it was demonstrated that combination of AT-MSCs, Bio-Oss and Gel synergistically enhanced bone regeneration and reconstruction and also could serve as an appropriate structure to bone regenerative medicine and tissue engineering application.

  10. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells.

    Science.gov (United States)

    Kim, Jangho; Choi, Kyoung Soon; Kim, Yeonju; Lim, Ki-Tack; Seonwoo, Hoon; Park, Yensil; Kim, Deok-Ho; Choung, Pill-Hoon; Cho, Chong-Su; Kim, Soo Young; Choung, Yun-Hoon; Chung, Jong Hoon

    2013-12-01

    Nanoscale topography of artificial substrates can greatly influence the fate of stem cells including adhesion, proliferation, and differentiation. Thus the design and manipulation of nanoscale stem cell culture platforms or scaffolds are of great importance as a strategy in stem cell and tissue engineering applications. In this report, we propose that a graphene oxide (GO) film is an efficient platform for modulating structure and function of human adipose-derived stem cells (hASCs). Using a self-assembly method, we successfully coated GO on glass for fabricating GO films. The hASCs grown on the GO films showed increased adhesion, indicated by a large number of focal adhesions, and higher correlation between the orientations of actin filaments and vinculin bands compared to hASCs grown on the glass (uncoated GO substrate). It was also found that the GO films showed the stronger affinity for hASCs than the glass. In addition, the GO film proved to be a suitable environment for the time-dependent viability of hASCs. The enhanced differentiation of hASCs included osteogenesis, adipogenesis, and epithelial genesis, while chondrogenic differentiation of hASCs was decreased, compared to tissue culture polystyrene as a control substrate. The data obtained here collectively demonstrates that the GO film is an efficient substratum for the adhesion, proliferation, and differentiation of hASCs.

  11. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  12. Awakened by Cellular Stress: Isolation and Characterization of a Novel Population of Pluripotent Stem Cells Derived from Human Adipose Tissue

    OpenAIRE

    Saleh Heneidi; Simerman, Ariel A; Erica Keller; Prapti Singh; Xinmin Li; Dumesic, Daniel A; Gregorio Chazenbalk

    2013-01-01

    Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT) derived pluripotent stem cells, termed Mul...

  13. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda;

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  14. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts

    OpenAIRE

    Li Hu; Juan Wang; Xin Zhou; Zehuan Xiong; Jiajia Zhao; Ran Yu; Fang Huang; Handong Zhang; Lili Chen

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell mi...

  15. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  16. 不同细胞促进脂肪移植存活的实验研究%Effects of different human adipose-derived cells in promoting human adipose tissue engraftment in nude mice

    Institute of Scientific and Technical Information of China (English)

    朱茗; 鲁峰; 高建华; 廖云君

    2012-01-01

    目的 探讨应用自人脂肪组织来源的不同细胞辅助脂肪移植,寻找促进移植物存活率的最佳种子细胞的有效方法,为干细胞进一步运用于临床提供实验依据.方法 从临床抽脂病人获取脂肪组织并提炼细胞,将0.3 ml待移植的脂肪颗粒分别与以下细胞进行混合处理:(1)低氧脂肪来源间充质干细胞(A组);(2)脂肪来源间充质干细胞(B组);(3)血管基质层细胞(SVFs)(C组);(4)加完全培养基的单纯脂肪颗粒为对照组(D组)脂肪颗粒与相应细胞混合后,注射移植于6只裸鼠背部皮下.术后3个月观察移植物情况,通过组织学、HE染色等方法进行分析.结果 A~D组湿重分别为(61.67±8.165)、(91.67±1.472)、(96.67±5.164)和(40.83±4.916)mg,A、B、C组脂肪存活率均高于D组(P<0.05),B、C两组之间比较差异无统计学意义(P>0.05)且都高于A组.A、B、C组血管密度均高于组D,且C组明显高于其他3组(P<0.05).A、B、C组存活脂肪细胞计数均高于D组,且B、C组最高(P<0.05),纤维组织计数均低于D组(P<0.05).结论 来源于人自体干细胞复合脂肪颗粒能够显著提高移植脂肪组织的成活率,其中血管基质层细胞及脂肪来源间充质干细胞移植脂肪的存活率最高.%Objective To explore the optimal seed cells derived from human adipose tissue for promoting the engraftment of transplanted adipose tissue in nude mice. Methods Human adipose tissue granules (0.3 ml) obtained from patients undergoing liposuction were mixed with hypoxic adipose-derived stem cells (ADCs, group A), ADCs (Group B), stromal vascular fraction (SVF) cells (group C), or pure adipose tissue granules in complete culture medium particles (group D). The mixtures were injected subcutaneously on the back of 6 nude mice, and the transplanted adipose tissues were harvested 3 months later to examine the engraftment using histological method and HE staining. Results The wet weights of the adipose

  17. Functional expression of smooth muscle-specific ion channels in TGF-β1-treated human adipose-derived mesenchymal stem cells

    OpenAIRE

    Park, Won Sun; Heo, Soon Chul; Jeon, Eun Su; Hong, Da Hye; Son, Youn Kyoung; Ko, Jae-Hong; Kim, Hyoung Kyu; Lee, Sun Young; Kim, Jae Ho; Han, Jin

    2013-01-01

    Human adipose tissue-derived mesenchymal stem cells (hASCs) have the power to differentiate into various cell types including chondrocytes, osteocytes, adipocytes, neurons, cardiomyocytes, and smooth muscle cells. We characterized the functional expression of ion channels after transforming growth factor-β1 (TGF-β1)-induced differentiation of hASCs, providing insights into the differentiation of vascular smooth muscle cells. The treatment of hASCs with TGF-β1 dramatically increased the contra...

  18. In vivo injectable human adipose tissue regeneration by adipose-derived stem cells isolated from the fluid portion of liposuction aspirates.

    Science.gov (United States)

    Dong, Ziqing; Luo, Lin; Liao, Yunjun; Zhang, Yunsong; Gao, Jianhua; Ogawa, Rei; Ou, Chunquan; Zhu, Ming; Yang, Bo; Lu, Feng

    2014-06-01

    Liposuction aspirates separate into fatty and fluid portions. Cells isolated from the fatty portion are termed processed lipoaspirate (PLA) cells and isolated from the fluid portion termed liposuction aspirate fluid (LAF) cells, both of which contain adipose-derived stromal cells (ASCs). Here, we examined the biological differences between PLA and LAF cells and then tested the differentiation capacity of LAF cells in vivo. The cell surface marker and the multiple differentiation ability of fresh isolated PLA and LAF cells and which from passaged 3-5 were examined in vitro. LAF cells were then incubated in adipogenic medium, stained with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine (DiI), mixed with fibrin glue then injected to nude mice; fibrin glue without cells was as a control. Three months later, the transplants were subjected to macroscopic observation and histological analysis. PLA and LAF cells were similar in growth kinetics, morphology, capacity for differentiation, and surface marker profiles. After plating, both PLA and LAF cells showed increased expression of CD29, CD44, CD133 and HLA DR and decreased expression of CD34. In vivo differentiation assay showed the mixture of LAF cells and fibrin glue formed adipose tissue which contained red fluorescent DiI-positive adipocytes. LAF cells can be harvested more easily than PLA cells. The in vivo adipogenic capacity suggested LAF cells would be useful and valuable for cell-based therapies and soft tissue reconstruction.

  19. Human Adipose-derived Mesenchymal Stem Cells Attenuate Early Stage of Bleomycin Induced Pulmonary Fibrosis: Comparison with Pirfenidone

    Science.gov (United States)

    Reddy, Manoj; Fonseca, Lyle; Gowda, Shashank; Chougule, Basavraj; Hari, Aarya; Totey, Satish

    2016-01-01

    Background and Objectives Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, invariably fatal fibrotic lung disease with no lasting option for therapy. Mesenchymal stem cells (MSCs) could be a promising modality for the treatment of IPF. Aim of the study was to investigate improvement in survivability and anti-fibrotic efficacy of human adipose-derived mesenchymal stem cells (AD-MSCs) in comparison with pirfenidone in the bleomycin-induced pulmonary fibrosis model. Methods Human AD-MSCs were administered intravenously on day 3, 6 and 9 after an intra-tracheal challenge with bleomycin, whereas, pirfenidone was given orally in drinking water at the rate of 100 mg/kg body weight three times a day daily from day 3 onward. AD-MSCs were labelled with PKH-67 before administration to detect engraftment. Disease severity and improvement was assessed and compared between sham control and vehicle control groups using Kaplan-Meier survival analysis, biochemical and molecular analysis, histopathology and high resolution computed tomography (HRCT) parameters at the end of study. Results Results demonstrated that AD-MSCs significantly increase survivability; reduce organ weight and collagen deposition better than pirfenidone group. Histological analyses and HRCT of the lung revealed that AD-MSCs afforded protection against bleomycin induced fibrosis and protect architecture of the lung. Gene expression analysis revealed that AD-MSCs potently suppressed pro-fibrotic genes induced by bleomycin. More importantly, AD-MSCs were found to inhibit pro-inflammatory related transcripts. Conclusions Our results provided direct evidence that AD-MSC-mediated immunomodulation and anti-fibrotic effect in the lungs resulted in marked protection in pulmonary fibrosis, but at an early stage of disease. PMID:27871152

  20. Effect of human adipose tissue-derived mesenchymal-stem-cell bioactive materials on porcine embryo development.

    Science.gov (United States)

    Park, Hyo-Young; Kim, Eun-Young; Lee, Seung-Eun; Choi, Hyun-Yong; Moon, Jeremiah Jiman; Park, Min-Jee; Son, Yeo-Jin; Lee, Jun-Beom; Jeong, Chang-Jin; Lee, Dong-Sun; Riu, Key-Jung; Park, Se-Pill

    2013-12-01

    Human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) secrete bioactive materials that are beneficial for tissue repair and regeneration. In this study, we characterized human hAT-MSC bioactive material (hAT-MSC-BM), and examined the effect of hAT-MSC-BM on porcine embryo development. hAT-MSC-BM was enriched with several growth factors and cytokines, including fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), and interleukin 6 (IL6). Among the various concentrations and days of treatment tested, 10% hAT-MSC-BM treatment beginning on culture Day 4 provided the best environment for the in vitro growth of parthenogenetic porcine embryos. While the addition of 10% fetal bovine serum (FBS) increased the hatching rate and the total cell number of parthenogenetic porcine embryos compared with the control and hAT-MSC culture medium group, the best results were from the group cultured with 10% hAT-MSC-BM. Mitochondrial activity was also higher in the 10% hAT-MSC-BM-treated group. Moreover, the relative mRNA expression levels of development and anti-apoptosis genes were significantly higher in the 10% hAT-MSC-BM-treated group than in control, hAT-MSC culture medium, or 10% FBS groups, whereas the transcript abundance of an apoptosis gene was slightly lower. Treatment with 10% hAT-MSC-BM starting on Day 4 also improved the development rate and the total cell number of in vitro-fertilized embryos. This is the first report on the benefits of hAT-MSC-BM in a porcine embryo in vitro culture system. We conclude that hAT-MSC-BM is a new, alternative supplement that can improve the development of porcine embryos during both parthenogenesis and fertilization in vitro.

  1. Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells.

    Science.gov (United States)

    He, Xiaoli; H'ng, Shiau-Chen; Leong, David T; Hutmacher, Dietmar W; Melendez, Alirio J

    2010-08-01

    High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

  2. Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells

    Science.gov (United States)

    Kim, Jin; Song, Sung Ho; Jin, Yoonhee; Park, Hyun-Ji; Yoon, Hyewon; Jeon, Seokwoo; Cho, Seung-Woo

    2016-04-01

    The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy.The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy. Electronic supplementary information (ESI) available: Additional results. See DOI: 10.1039/c6nr02143c

  3. Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cell function for soft tissue regeneration.

    Science.gov (United States)

    Xu, Fang-Tian; Liang, Zhi-Jie; Li, Hong-Mian; Peng, Qi-Liu; Huang, Min-Hong; Li, De Quan; Liang, Yi-Dan; Chi, Gang-Yi; Li, De Hui; Yu, Bing-Chao; Huang, Ji-Rong

    2016-06-01

    Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering.

  4. Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel

    DEFF Research Database (Denmark)

    Larsen, Bjarke Follin; Juhl, Morten; Cohen, Smadar

    2015-01-01

    . Hepatocyte growth factor mRNA was increased in ASCs cultivated in alginates compared with monolayer controls. Alginates and alginates containing ASCs did not induce dendritic cell maturation. ASCs in alginate responded like controls to interferon-gamma stimulation (licensing), and alginate culture increased...... is to inject the cells in an in situ cross-linked alginate hydrogel. METHODS: ASCs from abdominal human tissue were embedded in alginate hydrogel and alginate hydrogel modified with Arg-Gly-Asp motifs (RGD-alginate) and cultured for 1 week. Cell viability, phenotype, immunogenicity and paracrine activity were...... determined by confocal microscopy, dendritic cell co-culture, flow cytometry, reverse transcriptase quantitative polymerase chain reaction, Luminex multiplex, and lymphocyte proliferation experiments. RESULTS: ASCs performed equally well in alginate and RGD-alginate. After 1 week of alginate culture, cell...

  5. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs

    Directory of Open Access Journals (Sweden)

    Sujeong Jang

    2016-01-01

    Full Text Available Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks′ balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs.

  6. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation.

    Directory of Open Access Journals (Sweden)

    Xueying Yan

    Full Text Available The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a as compared to Ad-MSCs isolated from younger donors (<45 a. 5-hydroxymethylcytosine (5 hmC and 5-methylcytonsine (5 mC distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors.

  7. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Sun Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Bae, Yong Chan [Department of Plastic Surgery, School of Medicine, Pusan National University, Pusan 602-739 (Korea, Republic of); Jung, Jin Sup, E-mail: jsjung@pusan.ac.kr [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Institute, Pusan National University, Pusan 602-739 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  8. Characterization of novel akermanite:poly-ϵ-caprolactone scaffolds for human adipose-derived stem cells bone tissue engineering.

    Science.gov (United States)

    Zanetti, A S; McCandless, G T; Chan, J Y; Gimble, J M; Hayes, D J

    2015-04-01

    In this study, three different akermanite:poly-ϵ-caprolactone (PCL) composite scaffolds (wt%: 75:25, 50:50, 25:75) were characterized in terms of structure, compression strength, degradation rate and in vitro biocompatibility to human adipose-derived stem cells (hASC). Pure ceramic scaffolds [CellCeram™, custom-made, 40:60 wt%; β-tricalcium phosphate (β-TCP):hydroxyapatite (HA); and akermanite] and PCL scaffolds served as experimental controls. Compared to ceramic scaffolds, the authors hypothesized that optimal akermanite:PCL composites would have improved compression strength and comparable biocompatibility to hASC. Electron microscopy analysis revealed that PCL-containing scaffolds had the highest porosity but CellCeram™ had the greatest pore size. In general, compression strength in PCL-containing scaffolds was greater than in ceramic scaffolds. PCL-containing scaffolds were also more stable in culture than ceramic scaffolds. Nonetheless, mass losses after 21 days were observed in all scaffold types. Reduced hASC metabolic activity and increased cell detachment were observed after acute exposure to akermanite:PCL extracts (wt%: 75:25, 50:50). Among the PCL-containing scaffolds, hASC cultured for 21 days on akermanite:PCL (wt%: 75:25) discs displayed the highest viability, increased expression of osteogenic markers (alkaline phosphatase and osteocalcin) and lowest IL-6 expression. Together, the results indicate that akermanite:PCL composites may have appropriate mechanical and biocompatibility properties for use as bone tissue scaffolds.

  9. In vivo effects of human adipose-derived stem cells reseeding on acellular bovine pericardium in nude mice.

    Science.gov (United States)

    Wu, Qingkai; Dai, Miao; Xu, Peirong; Hou, Min; Teng, Yincheng; Feng, Jie

    2016-01-01

    Tissue-engineered biologic products may be a viable option in the reconstruction of pelvic organ prolapse (POP). This study was based on the hypothesis that human adipose-derived stem cells (hASCs) are viable in acellular bovine pericardium (ABP), when reseeded by two different techniques, and thus, aid in the reconstruction. To investigate the reseeding of hASCs on ABP grafts by using non-invasive bioluminescence imaging (BLI), and to identify the effective hASCs-scaffold combinations that enabled regeneration. Thirty female athymic nude mice were randomly divided into three groups: In the VIVO group, ABPs were implanted in the subcutaneous pockets and enhanced green fluorescent protein luciferase (eGFP·Luc)-hASCs (1 × 10(6) cells/50 µL) were injected on the ABP at the same time. In the VITRO group, the mice were implanted with grafts that ABP were co-cultured with eGFP·Luc-hASCs in vitro. The BLANK group mice were implanted with ABP only. The eGFP·Luc-hASCs reseeded on ABP were analyzed by BLI, histology, and immunohistochemistry. The eGFP·Luc-hASCs reseeded on ABP could be visualized at 12 weeks in vivo. Histology revealed that the VIVO group displayed the highest cell ingrowths, small vessels, and percent of collagen content per unit area. Desmin and α-smooth muscle actin were positive at the same site in the VIVO group cells. However, few smooth muscles were observed in the VITRO and BLANK groups. These results suggest that hASCs reseeded on ABP in vivo during surgery may further enhance the properties of ABP and may promote regeneration at the recipient site, resulting in a promising treatment option for POP. © 2016 by the Society for Experimental Biology and Medicine.

  10. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chi-Chang, E-mail: chichang31@thu.edu.tw; Fu, Shu-Juan

    2016-01-01

    Electrospinning is a versatile technique to generate large quantities of micro- or nano-fibers from a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized electrospun nano-fibers and use a mussel-inspired surface coating to regulate adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared poly(lactic acid) (PLA) fibers coated with polydopamine (PDA). The morphology, chemical composition, and surface properties of PDA/PLA were characterized by SEM and XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. Increased focal adhesion kinase (FAK) and collagen I levels and enhanced cell attachment and cell cycle progression were observed upon an increase in PDA content. In addition, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on a pure PLA mat. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenesis differentiation. Our results demonstrate that the bio-inspired coating synthetic degradable PLA polymer can be used as a simple technique to render the surfaces of synthetic biodegradable fibers, thus enabling them to direct the specific responses of hADSCs. - Highlights: • A simple method of preparing electrospun poly(lactic acid) nanofibers coated with polydopamine • Enhanced adhesion and proliferation of hADSCs on a PDA/PLA mat • Increased focal adhesion kinase (FAK), collagen I levels, cell attachment and cell cycle progression with a high PDA content • Up-regulation of the Ang-1 and vWF proteins associated with angiogenesis differentiation of hADSCs is observed. • A promising method for bio-inspired surface modification on organic fiber substrates using PDA.

  11. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Kazemi, Mohammad, E-mail: m_kazemi@med.mui.ac.i [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Mardani, Mohammad, E-mail: mardani@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esmaeili, Abolghasem, E-mail: abesmaeili@yahoo.com [Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  12. Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation

    Science.gov (United States)

    2013-01-01

    Background Antioxidants have been shown to enhance the proliferation of adipose-derived mesenchymal stem cells (ADMSCs) in vitro, although the detailed mechanism(s) and potential side effects are not fully understood. In this study, human ADMSCs cultured in ImF-A medium supplemented with antioxidants (N-acetyl-l-cysteine and ascorbic acid-2-phosphate) and fibroblast growth factor 2 (FGF-2) were compared with ADMSCs cultured with FGF-2 alone (ImF) or with FGF-2 under 5% pO2 conditions (ImF-H). Results During log-phase growth, exposure to ImF-A resulted in a higher percentage of ADMSCs in the S phase of the cell cycle and a smaller percentage in G0/G1 phase. This resulted in a significantly reduced cell-doubling time and increased number of cells in the antioxidant-supplemented cultures compared with those supplemented with FGF-2 alone, an approximately 225% higher cell density after 7 days. Western blotting showed that the levels of the CDK inhibitors p21 and p27 decreased after ImF-A treatment, whereas CDK2, CDK4, and CDC2 levels clearly increased. In addition, ImF-A resulted in significant reduction in the expression of CD29, CD90, and CD105, whereas relative telomere length, osteogenesis, adipogenesis, and chondrogenesis were enhanced. The results were similar for ADMSCs treated with antioxidants and those under hypoxic conditions. Conclusion Antioxidant treatment promotes entry of ADMSCs into the S phase by suppressing cyclin-dependent kinase inhibitors and results in rapid cell proliferation similar to that observed under hypoxic conditions. PMID:23915242

  13. Fascia tissue engineering with human adipose-derived stem cells in a murine model: Implications for pelvic floor reconstruction.

    Science.gov (United States)

    Hung, Man-Jung; Wen, Mei-Chin; Huang, Ying-Ting; Chen, Gin-Den; Chou, Min-Min; Yang, Vivian Cheng

    2014-10-01

    Mesh-augmented vaginal surgery for treatment of pelvic organ prolapse (POP) does not meet patients' needs. This study aims to test the hypothesis that fascia tissue engineering using adipose-derived stem cells (ADSCs) might be a potential therapeutic strategy for reconstructing the pelvic floor. Human ADSCs were isolated, differentiated, and characterized in vitro. Both ADSCs and fibroblastic-differentiated ADSCs were used to fabricate tissue-engineered fascia equivalents, which were then transplanted under the back skin of experimental nude mice. ADSCs prepared in our laboratory were characterized as a group of mesenchymal stem cells. In vitro fibroblastic differentiation of ADSCs showed significantly increased gene expression of cellular collagen type I and elastin (p fascia equivalents could be traced up to 12 weeks after transplantation in the subsequent animal study. Furthermore, the histological outcomes differed with a thin (111.0 ± 19.8 μm) lamellar connective tissue or a thick (414.3 ± 114.9 μm) adhesive fibrous tissue formation between the transplantation of ADSCs and fibroblastic-differentiated ADSCs, respectively. Nonetheless, the implantation of a scaffold without cell seeding (the control group) resulted in a thin (102.0 ± 17.1 μm) fibrotic band and tissue contracture. Our results suggest the ADSC-seeded implant is better than the implant alone in enhancing tissue regeneration after transplantation. ADSCs with or without fibroblastic differentiation might have a potential but different role in fascia tissue engineering to repair POP in the future. Copyright © 2013. Published by Elsevier B.V.

  14. Cardiosphere conditioned media influence the plasticity of human mediastinal adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Siciliano, Camilla; Chimenti, Isotta; Ibrahim, Mohsen; Napoletano, Chiara; Mangino, Giorgio; Scafetta, Gaia; Zoccai, Giuseppe Biondi; Rendina, Erino Angelo; Calogero, Antonella; Frati, Giacomo; De Falco, Elena

    2015-01-01

    Nowadays, cardiac regenerative medicine is facing many limitations because of the complexity to find the most suitable stem cell source and to understand the regenerative mechanisms involved. Mesenchymal stem cells (MSCs) have shown great regenerative potential due to their intrinsic properties and ability to restore cardiac functionality, directly by transdifferentiation and indirectly by paracrine effects. Yet, how MSCs could respond to definite cardiac-committing microenvironments, such as that created by resident cardiac progenitor cells in the form of cardiospheres (CSs), has never been addressed. Recently, a putative MSC pool has been described in the mediastinal fat (hmADMSCs), but both its biology and function remain hitherto unexplored. Accordingly, we investigated the potential of hmADMSCs to be committed toward a cardiovascular lineage after preconditioning with CS-conditioned media (CCM). Results indicated that CCM affects cell proliferation. Gene expression levels of multiple cardiovascular and stemness markers (MHC, KDR, Nkx2.5, Thy-1, c-kit, SMA) are significantly modulated, and the percentage of hmADMSCs preconditioned with CCM and positive for Nkx2.5, MHC, and KDR is significantly higher relative to FBS and explant-derived cell conditioned media (EDCM, the unselected stage before CS formation). Growth factor-specific and survival signaling pathways (i.e., Erk1/2, Akt, p38, mTOR, p53) present in CCM are all equally regulated. Nonetheless, earlier BAD phosphorylation (Ser112) occurs associated with the CS microenvironment (and to a lesser extent to EDCM), whereas faster phosphorylation of PRAS40 in FBS, and of Akt (Ser473) in EDCM and 5-azacytidine occurs compared to CCM. For the first time, we demonstrated that the MSC pool held in the mediastinal fat is adequately plastic to partially differentiate in vitro toward a cardiac-like lineage. Besides, we have provided novel evidence of the potent inductive niche-like microenvironment that the CS

  15. Human adipose-derived mesenchymal stem cell could participate in angiogenesis in a mouse model of acute hindlimb ischemia

    Directory of Open Access Journals (Sweden)

    Thuy Thi-Thanh Dao

    2016-08-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs transplantation for the treatment of acute hindlimb ischemia is recently attracting the attention of many scientists. Identifying the role of donor cells in the host is a crucial factor for improving the efficiency of treatment. This study evaluated the injury repair role of xenogeneic adipose-derived stem cell (ADSC transplantation in acute hindlimb ischemia mouse model. Methods: Human ADSCs were transplanted into the limb of ischemic mouse. The survival rate of grafted cells and expression of human VEGF-R2 and CD31 positive cells were assessed in the mouse. In addition, the morphological and functional recovery of ischemic hindlimb was also assessed. Results: The results showed that one-day post cell transplantation, the survival percentage of grafted cells was 3.62% +/- 2.06% at the injection site and 15.71% +/- 12.29% around the injection site. The rate of VEGFR2-positive cells had highest expression at 4 days post transplantation, 5.46% +/- 2.13% at the injection site; 9.12% +/- 7.17% at the opposite of injection site, and 7.22% +/- 4.59% at the lateral gastrocnemius. The percentage of CD31 positive cells increased on day 4 at the injection site to 0.8% +/- 1.60%, and further increased on day 8 at the lateral gastrocnemius site and the opposite injection site to 1.56% +/- 0.44% and 1.17% +/- 1.69%, respectively. After 14 days, the cell presentation and the angiogenesis marker expression were decreased to zero, except for CD31 expression at the opposite of injection site (0.72% +/- 1.03%. Histological structure of the cell-injected muscle tissue remained stable as that of the normal muscle. New small blood vessels were found growing in hindlimb. On the other hand, approximately 66.67% of mice were fully recovered from ischemic hindlimb at grade 0 and I after cell injection. Conclusion: Thus, xenotransplantation of human ADSCs might play a significant role in the formation of new blood vessel and can

  16. Sirtuins 1-7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: influence of obesity and hypoxia.

    Science.gov (United States)

    Mariani, Stefania; Di Rocco, Giuliana; Toietta, Gabriele; Russo, Matteo A; Petrangeli, Elisa; Salvatori, Luisa

    2016-11-14

    The sirtuin family comprises seven NAD(+)-dependent deacetylases which control the overall health of organisms through the regulation of pleiotropic metabolic pathways. Sirtuins are important modulators of adipose tissue metabolism and their expression is higher in lean than obese subjects. At present, the role of sirtuins in adipose-derived stem cells has not been investigated yet. Therefore, in this study, we evaluated the expression of the complete panel of sirtuins in adipose-derived stem cells isolated from both subcutaneous and visceral fat of non-obese and obese subjects. We aimed at investigating the influence of obesity on sirtuins' levels, their role in obesity-associated inflammation, and the relationship with the peroxisome proliferator-activated receptor delta, which also plays functions in adipose tissue metabolism. The mRNA levels in the four types of adipose-derived stem cells were evaluated by quantitative polymerase chain reaction, in untreated cells and also after 8 h of hypoxia exposure. Correlations among sirtuins' expression and clinical and molecular parameters were also analyzed. We found that sirtuin1-6 exhibited significant higher mRNA expression in visceral adipose-derived stem cells compared to subcutaneous adipose-derived stem cells of non-obese subjects. Sirtuin1-6 levels were markedly reduced in visceral adipose-derived stem cells of obese patients. Sirtuins' expression in visceral adipose-derived stem cells correlated negatively with body mass index and C-reactive protein and positively with peroxisome proliferator-activated receptor delta. Finally, only in the visceral adipose-derived stem cells of obese patients hypoxia-induced mRNA expression of all of the sirtuins. Our results highlight that sirtuins' levels in adipose-derived stem cells are consistent with protective effects against visceral obesity and inflammation, and suggest a transcriptional mechanism through which acute hypoxia up-regulates sirtuins in the visceral

  17. Adipose-Derived Stem Cells

    NARCIS (Netherlands)

    Gathier, WA; Türktas, Z; Duckers, HJ

    2015-01-01

    Until recently bone marrow was perceived to be the only significant reservoir of stem cells in the body. However, it is now recognized that there are other and perhaps even more abundant sources, which include adipose tissue. Subcutaneous fat is readily available in most patients, and can easily be

  18. Pluripotential differentiation capability of human adipose-derived stem cells in a novel fibrin-agarose scaffold.

    Science.gov (United States)

    Nieto-Aguilar, R; Serrato, D; Garzón, I; Campos, A; Alaminos, M

    2011-03-01

    The potentiality of adipose-derived stem cells (ASCs) cultured on 2D systems has been previously established. Nevertheless, very little is known so far about the differentiation potentiality of ASCs in 3D culture systems using biomaterials. In this work, we have evaluated the transdifferentiation capabilities of ASCs cultured within a novel fibrin-agarose biomaterial by histological analysis, histochemistry and immunofluorescence. Our results showed that 3D fibrin-agarose biomaterial is highly biocompatible and supports the transdifferentiation capabilities of ASCs to the osteogenic, chondrogenic, adipogenic, and neurogenic lineages.

  19. Human and Autologous Adipose-derived Stromal Cells Increase Flap Survival in Rats Independently of Host Immune Response

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Jensen, Charlotte Harken; Andersen, Ditte Caroline

    2017-01-01

    evaluated after 7 days. RESULTS: The mean survival rates for SVF treatment regardless of human or autologous origin were significantly increased as compared with the control group. Adipose stem/stromal cell and SVF lysate injection did not increase flap survival. Vessel density was increased for human...... and rat SVF and human ASC but not for SVF lysate. Human cells were not detected in the flaps after 7 days. CONCLUSIONS: Flap survival increased with SVF treatment regardless of human or autologous origin, suggesting that increased flap survival is independent of the host immune response. All cell...... injections lead to increased vessel density, but it did not necessarily lead to increased flap survival. Further research should elaborate which molecular events make SVF treatment more efficacious than ASC....

  20. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  1. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series

    Directory of Open Access Journals (Sweden)

    Pak Jaewoo

    2011-07-01

    Full Text Available Abstract Introduction This is a series of clinical case reports demonstrating that a combination of percutaneously injected autologous adipose-tissue-derived stem cells, hyaluronic acid, platelet rich plasma and calcium chloride may be able to regenerate bones in human osteonecrosis, and with addition of a very low dose of dexamethasone, cartilage in human knee osteoarthritis. Case reports Stem cells were obtained from adipose tissue of abdominal origin by digesting lipoaspirate tissue with collagenase. These stem cells, along with hyaluronic acid, platelet rich plasma and calcium chloride, were injected into the right hip of a 29-year-old Korean woman and a 47-year-old Korean man. They both had a history of right hip osteonecrosis of the femoral head. For cartilage regeneration, a 70-year-old Korean woman and a 79-year-old Korean woman, both with a long history of knee pain due to osteoarthritis, were injected with stem cells along with hyaluronic acid, platelet rich plasma, calcium chloride and a nanogram dose of dexamethasone. Pre-treatment and post-treatment MRI scans, physical therapy, and pain score data were then analyzed. Conclusions The MRI data for all the patients in this series showed significant positive changes. Probable bone formation was clear in the patients with osteonecrosis, and cartilage regeneration in the patients with osteoarthritis. Along with MRI evidence, the measured physical therapy outcomes, subjective pain, and functional status all improved. Autologous mesenchymal stem cell injection, in conjunction with hyaluronic acid, platelet rich plasma and calcium chloride, is a promising minimally invasive therapy for osteonecrosis of femoral head and, with low-dose dexamethasone, for osteoarthritis of human knees.

  2. Editor's Highlight: Screening ToxCast Prioritized Chemicals for PPARG Function in a Human Adipose-Derived Stem Cell Model of Adipogenesis.

    Science.gov (United States)

    Foley, Briana; Doheny, Daniel L; Black, Michael B; Pendse, Salil N; Wetmore, Barbara A; Clewell, Rebecca A; Andersen, Melvin E; Deisenroth, Chad

    2017-01-01

    The developmental origins of obesity hypothesis posits a multifaceted contribution of factors to the fetal origins of obesity and metabolic disease. Adipocyte hyperplasia in gestation and early childhood may result in predisposition for obesity later in life. Rodent in vitro and in vivo studies indicate that some chemicals may directly affect adipose progenitor cell differentiation, but the human relevance of these findings is unclear. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARG) is the master regulator of adipogenesis. Human adipose-derived stem cells (hASC) isolated from adipose tissue express endogenous isoforms of PPARG and represent a biologically relevant cell-type for evaluating activity of PPARG ligands. Here, a multi-endpoint approach based on a phenotypic adipogenesis assay was applied to screen a set of 60 chemical compounds identified in ToxCast Phase I as PPARG active (49) or inactive (11). Chemicals showing activity in the adipogenesis screen were further evaluated in a series of 4 orthogonal assays representing 7 different key events in PPARG-dependent adipogenesis, including gene transcription, protein expression, and adipokine secretion. An siRNA screen was also used to evaluate PPARG-dependence of the adipogenesis phenotype. A universal concentration-response design enabled inter-assay comparability and implementation of a weight-of-evidence approach for bioactivity classification. Collectively, a total of 14/49 (29%) prioritized chemicals were identified with moderate-to-strong activity for human adipogenesis. These results provide the first integrated screening approach of prioritized ToxCast chemicals in a human stem cell model of adipogenesis and provide insight into the capacity of PPARG-activating chemicals to modulate early life programming of adipose tissue.

  3. Editor’s Highlight: Screening ToxCast Prioritized Chemicals for PPARG Function in a Human Adipose-Derived Stem Cell Model of Adipogenesis

    Science.gov (United States)

    Foley, Briana; Doheny, Daniel L.; Black, Michael B.; Pendse, Salil N.; Wetmore, Barbara A.; Clewell, Rebecca A.; Andersen, Melvin E.; Deisenroth, Chad

    2017-01-01

    The developmental origins of obesity hypothesis posits a multifaceted contribution of factors to the fetal origins of obesity and metabolic disease. Adipocyte hyperplasia in gestation and early childhood may result in predisposition for obesity later in life. Rodent in vitro and in vivo studies indicate that some chemicals may directly affect adipose progenitor cell differentiation, but the human relevance of these findings is unclear. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARG) is the master regulator of adipogenesis. Human adipose-derived stem cells (hASC) isolated from adipose tissue express endogenous isoforms of PPARG and represent a biologically relevant cell-type for evaluating activity of PPARG ligands. Here, a multi-endpoint approach based on a phenotypic adipogenesis assay was applied to screen a set of 60 chemical compounds identified in ToxCast Phase I as PPARG active (49) or inactive (11). Chemicals showing activity in the adipogenesis screen were further evaluated in a series of 4 orthogonal assays representing 7 different key events in PPARG-dependent adipogenesis, including gene transcription, protein expression, and adipokine secretion. An siRNA screen was also used to evaluate PPARG-dependence of the adipogenesis phenotype. A universal concentration-response design enabled inter-assay comparability and implementation of a weight-of-evidence approach for bioactivity classification. Collectively, a total of 14/49 (29%) prioritized chemicals were identified with moderate-to-strong activity for human adipogenesis. These results provide the first integrated screening approach of prioritized ToxCast chemicals in a human stem cell model of adipogenesis and provide insight into the capacity of PPARG-activating chemicals to modulate early life programming of adipose tissue. PMID:27664422

  4. [CHONDROGENESIS-SPECIFIC MICRORNA EXPRESSION PATTERN ANALYSIS IN CHONDROGENIC DIFFERENTIATION OF HUMAN ADIPOSE-DERIVED STEM CELLS].

    Science.gov (United States)

    Zhang, Ziji; Kang, Yan; Zhang, Zhiqi; Yang, Zibo; Fang, Shuying; Sheng, Puyi; He, Aishan; Fu, Ming; Liao, Weiming

    2015-01-01

    To investigate the microRNA (miRNA) expression profile during chondrogenic differentiation of human adipose-derived stem cells (hADSCs), and assess the roles of involved miRNAs during chondrogenesis. hADSCs were harvested and cultured from donors who underwent elective liposuction or other abdominal surgery. When the cells were passaged to P3, chondrogenic induction medium was used for chondrogenic differentiation. The morphology of the cells was observed by inverted phase contrast microscopy. Alcian blue staining was carried out at 21 days after induction to access the chondrogenic status. The expressions of chondrogenic proteins were detected by ELISA at 0, 7, 14, and 21 days. The miRNA expression profiles at pre- and post-chondrogenic induction were obtained by microarray assay, and differentially expressed miRNAs were verified by real-time quantitative PCR (qRT-PCR). The targets of the miRNAs were predicted by online software programs. hADSCs were cultured successfully and induced with chondrogenic medium. At 21 days after chondrogenic induction, the cells were stained positively for alcian blue staining. At 7, 14, and 21 days after chondrogenic induction, the levels of collogen type II, Col2a1, aggrecan, Coll0a1, and chondroitin sulfate in induced hADSCs were significantly higher than those in non-induced hADSCs (Pdifferentially expressed miRNAs were found, including seven up-regulated and four down-regulated. Predicted target genes of the differentially expressed miRNAs were based on the overlap from three public prediction algorithms, with the known functions of regulating chondrogenic differentiation of stem cells, self-renewal, signal transduction, intracellular signaling cascade, and cell cycle control. A group of miRNAs and their target genes are identified, which may play important roles in regulating chondrogenic differentiation of hADSCs. These results will facilitate the initial understanding of the molecular mechanism of chondrogenic differentiation

  5. [Effects of alginate/collagen scaffold on cell proliferation and differentiation of human adipose-derived mesenchymal stem cells].

    Science.gov (United States)

    Cheng, W; Han, X P; Mou, S L; Yang, F; Liu, L P

    2017-04-09

    Objective: To build scaffold materials with different concentrations of alginate and collagen, and to observe the effects of alginate/collagen ratio on the proliferation of human adipose-derived mesenchymal stem cells (hAMSC) and osteogenic differentiation. The optimal concentration of alginate/collagen will be chosen for constructing hydrogel that will be used for bone tissue engineering. Methods: Soluble hydrogel scaffold materials containing alginate/collagen were prepared, and the following groups were established based on different alginate/collagen ratio: 4∶1 (group A), 2∶1 (group B), and 1∶1 (group C). Cell proliferation on the material surface was observed using the cell counting kit-8 (CCK-8) assay, while cell viability in each material group were observed using live/dead staining. Quantitative real-time PCR(qPCR) was used to measure the differential expression of osteogenesis-related genes on and in the materials. Immunofluorescence staining was used to measure the differential gene expression of osteogenesis-related proteins in each group. Results: The results from the CCK-8 assay showed increasing cell proliferation rate on the lyophilized hydrogel material surface as the collagen concentration increased, and the highest cell proliferation was observed in group C. Live/dead staining assay indicated that cells were able to proliferate in all three types of hydrogel materials, and the highest cell viability was found in material from group B ([87.50±2.65]%). qPCR showed that the expression of osteogenesis-related genes in group C was the highest, among the three groups, while the expression of osteocalcin in group B was significantly higher than those in the other two groups (Palginate/collagen scaffold materials did not show adverse effects on the cell proliferation of hAMSC and osteogenenic differentiation. Bone tissue engineering can use 10% hydrogel material, and when the sodium alginate and collagen have a ratio of 2∶1, the hydrogel can be

  6. Effects of expanded human adipose tissue-derived mesenchymal stem cells on the viability of cryopreserved fat grafts in the nude mouse.

    Science.gov (United States)

    Ko, Myung-Soon; Jung, Ji-Youl; Shin, Il-Seob; Choi, Eun-Wha; Kim, Jae-Hoon; Kang, Sung Keun; Ra, Jeong Chan

    2011-03-14

    Adipose-derived mesenchymal stem cells (AdMSCs) augment the ability to contribute to microvascular remodeling in vivo and to modulate vascular stability in fresh fat grafts. Although cryopreserved adipose tissue is frequently used for soft tissue augmentation, the viability of the fat graft is poor. The effects of culture-expanded human adipose tissue-derived mesenchymal stem cells (hAdMSCs) on the survival and quality of the cryopreserved fat graft were determined. hAdMSCs from the same donor were mixed with fat tissues cryopreserved at -70 °C for 8 weeks and injected subcutaneously into 6-week-old BALB/c-nu nude mice. Graft volume and weight were measured, and histology was evaluated 4 and 15 weeks post-transplantation. The hAdMSC-treated group showed significantly enhanced graft volume and weight. The histological evaluation demonstrated significantly better fat cell integrity compared with the vehicle-treated control 4 weeks post-transplantation. No significant difference in graft weight, volume, or histological parameters was found among the groups 15 weeks post-transplantation. The hAdMSCs enhanced the survival and quality of transplanted cryopreserved fat tissues. Cultured and expanded hAdMSCs have reconstructive capacity in cryopreserved fat grafting by increasing the number of stem cells.

  7. Serum-free human MSC medium supports consistency in human but not in equine adipose-derived multipotent mesenchymal stromal cell culture.

    Science.gov (United States)

    Schubert, Susanna; Brehm, Walter; Hillmann, Aline; Burk, Janina

    2017-09-19

    For clinical applications of multipotent mesenchymal stromal cells (MSCs), serum-free culture is preferable to standardize cell products and prevent contamination with pathogens. In contrast to human MSCs, knowledge on serum-free culture of large animal MSCs is limited, despite its relevance for preclinical studies and development of veterinary cellular therapeutics. This study aimed to evaluate the suitability of a commercially available serum-free human MSC medium for culturing equine adipose-derived MSCs in comparison with human adipose MSCs. Enzyme-free isolation by explant technique and expansion of equine and human cells in the serum-free medium were feasible. However, serum-free culture altered the morphology and complicated handling of equine MSCs, with cell aggregation and spontaneous detachment of multilayers, compared to culture in standard medium supplemented with fetal bovine serum. Furthermore, proliferation and the surface immunophenotype of equine cells were more variable compared to the controls and appeared to depend on the lot of the serum-free medium. Particularly the expression of CD90 was different between experimental groups (P cells found in equine MSC samples cultured in serum-free medium (5.21-83.40%) compared to standard medium (86.20-99.50%). Additionally, small subpopulations expressing MSC exclusion markers such as CD14 (0.28-11.60%), CD34 (0.00-9.87%), CD45 (0.35-10.50%), or MHCII (0.00-3.67%) were found in equine samples after serum-free culture. In contrast, human samples displayed a more consistent morphology and a consistent CD29(+) (98.60-99.90%), CD73(+) (94.60-98.40%), CD90(+) (99.60-99.90%), and CD105(+) (97.40-99.80%) immunophenotype after culture in serum-free medium. The obtained data demonstrate that the serum-free medium was suitable for human MSC culture but did not lead to entirely satisfactory results in equine MSCs. This underlines that requirements regarding serum-free culture conditions are species

  8. Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management?

    Directory of Open Access Journals (Sweden)

    Jan-Philipp Stromps

    2014-01-01

    Full Text Available According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs and provides an outlook on promising future strategies.

  9. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Choi SY

    2015-07-01

    Full Text Available Seon Young Choi,1 Min Seok Song,1 Pan Dong Ryu,1 Anh Thu Ngoc Lam,2 Sang-Woo Joo,2 So Yeong Lee1 1Laboratory of Veterinary Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 2Department of Chemistry, Soongsil University, Seoul, South Korea Abstract: Gold nanoparticles (AuNPs are attractive materials for use in biomedicine due to their physical properties. Increasing evidence suggests that several nanoparticles induce the differentiation of human mesenchymal stem cells into osteoblasts and adipocytes. In this study, we hypothesized that chitosan-conjugated AuNPs promote the osteogenic differentiation of human adipose-derived mesenchymal stem cells. For the evaluation of osteogenic differentiation, alizarin red staining, an alamarBlue® assay, and a quantitative real-time polymerase chain reaction analysis were performed. In order to examine specific signaling pathways, immunofluorescence and a western blotting assay were performed. Our results demonstrate that chitosan-conjugated AuNPs increase the deposition of calcium content and the expression of marker genes related to osteogenic differentiation in human adipose-derived mesenchymal stem cells at nontoxic concentrations. These results indicate that chitosan-conjugated AuNPs promote osteogenesis through the Wnt/β-catenin signaling pathway. Therefore, chitosan-conjugated AuNPs can be used as a reagent for promoting bone formation. Keywords: chitosan-conjugated gold nanoparticle, mineralization, nonphosphorylated beta-catenin

  10. Extraction and identification of human adipose-derived stem cells%人脂肪干细胞的提取和鉴定

    Institute of Scientific and Technical Information of China (English)

    吴尉; 梁芳; 宋小琴; 胡平安; 刘敏

    2015-01-01

    BACKGROUND:Adipose-derived stem cel s are totipotent stem cel s in the adipose tissue, and have the function of self-renewal and multi-directional differentiation. Human adipose-derived stem cel s are ideal seed cel s with stable genetic milieu and few rejections. OBJECTIVE:To extract human adipose-derived stem cel s from human omental adipose tissue and to identify the cel s by adipogenic and osteogenic induction. METHODS:Omental adipose tissues were col ected from surgical patients to isolate and culture adipose-derived stem cel s using type I col agenase digestion, filtration and centrifugation. Cel growth was observed and proliferative curve of human adipose-derived stem cel s were drawn by cel counting method to calculate the doubling time at logarithmic growth phase. After adipogenic and osteogenic induction, induced cel s were identified using oil red O and alizarin red staining, respectively. RESULTS AND CONCLUSION:Human adipose-derived stem cel s were successful y isolated from the omentum tissues of surgical patients. Adherent cel s were fusiform-shaped and like fibroblasts. The growth curve of passage 3 cel s was in S shape, and the doubling time was 45.90 hours. After adipogenic and osteogenic induction for 2 and 3 hours, respectively, oil red O staining showed unequal-sized orange fat droplets, and alizarin red staining showed typical calcified nodules that were in orange. These findings indicate that adipose-derived stem cel s have the adipogenic and osteogenic capacity.%背景:脂肪干细胞是存在于脂肪中的全能干细胞,具备自我更新能力与多向分化潜能,遗传背景相当稳定,体内植入后免疫排斥少,是一种比较理想的种子细胞。目的:提取人大网膜脂肪干细胞,并进行成脂和成骨分化能力鉴定。  方法:收集手术患者大网膜的脂肪组织,经Ⅰ型胶原酶消化、过滤、离心后进行原代培养,观察细胞生长状态;用细胞计

  11. Low-frequency, low-magnitude vibrations (LFLM enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-02-01

    Full Text Available The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS, to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2, and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.

  12. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts.

    Science.gov (United States)

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-09-12

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair.

  13. Tissue Inhibitor of Matrix Metalloproteinases-1 Knockdown Suppresses the Proliferation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Peihua Zhang

    2016-01-01

    Full Text Available Tissue inhibitor of metalloproteinases-1 (TIMP-1 is a multifunctional matrix metalloproteinase, and it is involved in the regulation of cell proliferation and apoptosis in various cell types. However, little is known about the effect of TIMP-1 expression on the proliferation of adipose-derived stem cells (ADSCs. Therefore, TIMP-1 expression in the ADSCs was firstly detected by western blotting, and TIMP-1 gene was knocked down by lentivirus-mediated shRNA. Cell proliferation was then evaluated by MTT assay and Ki67 staining, respectively. Cell cycle progression was determined by flow cytometry. The changes of p51, p21, cyclin E, cyclin-dependent kinase 2 (CDK2, and P-CDK2 caused by TIMP-1 knockdown were detected by western blotting. The results indicated that ADSCs highly expressed TIMP-1 protein, and the knockdown of TIMP-1 inhibited cell proliferation and arrested cell cycle progression at G1 phase in the ADSCs possibly through the upregulation of p53, p21, and P-CDK2 protein levels and concurrent downregulation of cyclin E and CDK2 protein levels. These findings suggest that TIMP-1 works as a positive regulator of cell proliferation in ADSCs.

  14. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts

    Science.gov (United States)

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  15. The Use of Human Adipose-Derived Stem Cells in the Treatment of Physiological and Pathological Vulvar Dystrophies

    Directory of Open Access Journals (Sweden)

    Maria Giuseppina Onesti

    2016-01-01

    Full Text Available “Vulvar dystrophy” is characterized by chronic alterations of vulvar trophism, occurring in both physiological (menopause and pathological (lichen sclerosus, vulvar graft-versus-host disease conditions. Associated symptoms are itching, burning, dyspareunia and vaginal dryness. Current treatments often do not imply a complete remission of symptoms. Adipose-Derived Stem Cells (ADSCs injection represents a valid alternative therapy to enhance trophism and tone of dystrophic tissues. We evaluated efficacy of ADSCs-based therapy in the dystrophic areas. From February to April 2013 we enrolled 8 patients with vulvar dystrophy. A biopsy specimen was performed before and after treatment. Digital photographs were taken at baseline and during the follow-up. Pain was detected with Visual Analogue Scale and sexual function was evaluated with Female Sexual Function Index. All patients received 2 treatments in 3 months. Follow-up was at 1 week , 1 and 3 months, and 1 and 2 years. We obtained a significant vulvar trophism enhancement in all patients, who reported pain reduction and sexual function improvement. Objective exam with speculum was easy to perform after treatment. We believe ADSCs-based therapy finds its application in the treatment of vulvar dystrophies, since ADSCs could induce increased vascularization due to their angiogenic properties and tissue trophism improvement thanks to their eutrophic effect.

  16. RNA-seq analysis reveals different dynamics of differentiation of human dermis- and adipose-derived stromal stem cells.

    Directory of Open Access Journals (Sweden)

    Kersti Jääger

    Full Text Available BACKGROUND: Tissue regeneration and recovery in the adult body depends on self-renewal and differentiation of stem and progenitor cells. Mesenchymal stem cells (MSCs that have the ability to differentiate into various cell types, have been isolated from the stromal fraction of virtually all tissues. However, little is known about the true identity of MSCs. MSC populations exhibit great tissue-, location- and patient-specific variation in gene expression and are heterogeneous in cell composition. METHODOLOGY/PRINCIPAL FINDINGS: Our aim was to analyze the dynamics of differentiation of two closely related stromal cell types, adipose tissue-derived MSCs (AdMSCs and dermal fibroblasts (FBs along adipogenic, osteogenic and chondrogenic lineages using multiplex RNA-seq technology. We found that undifferentiated donor-matched AdMSCs and FBs are distinct populations that stay different upon differentiation into adipocytes, osteoblasts and chondrocytes. The changes in lineage-specific gene expression occur early in differentiation and persist over time in both AdMSCs and FBs. Further, AdMSCs and FBs exhibit similar dynamics of adipogenic and osteogenic differentiation but different dynamics of chondrogenic differentiation. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that stromal stem cells including AdMSCs and dermal FBs exploit different molecular mechanisms of differentiation to reach a common cell fate. The early mechanisms of differentiation are lineage-specific and are similar for adipogenic and osteogenic differentiation but are distinct for chondrogenic differentiation between AdMSCs and FBs.

  17. RNA-Seq Analysis Reveals Different Dynamics of Differentiation of Human Dermis- and Adipose-Derived Stromal Stem Cells

    Science.gov (United States)

    Jääger, Kersti; Islam, Saiful; Zajac, Pawel; Linnarsson, Sten; Neuman, Toomas

    2012-01-01

    Background Tissue regeneration and recovery in the adult body depends on self-renewal and differentiation of stem and progenitor cells. Mesenchymal stem cells (MSCs) that have the ability to differentiate into various cell types, have been isolated from the stromal fraction of virtually all tissues. However, little is known about the true identity of MSCs. MSC populations exhibit great tissue-, location- and patient-specific variation in gene expression and are heterogeneous in cell composition. Methodology/Principal Findings Our aim was to analyze the dynamics of differentiation of two closely related stromal cell types, adipose tissue-derived MSCs (AdMSCs) and dermal fibroblasts (FBs) along adipogenic, osteogenic and chondrogenic lineages using multiplex RNA-seq technology. We found that undifferentiated donor-matched AdMSCs and FBs are distinct populations that stay different upon differentiation into adipocytes, osteoblasts and chondrocytes. The changes in lineage-specific gene expression occur early in differentiation and persist over time in both AdMSCs and FBs. Further, AdMSCs and FBs exhibit similar dynamics of adipogenic and osteogenic differentiation but different dynamics of chondrogenic differentiation. Conclusions/Significance Our findings suggest that stromal stem cells including AdMSCs and dermal FBs exploit different molecular mechanisms of differentiation to reach a common cell fate. The early mechanisms of differentiation are lineage-specific and are similar for adipogenic and osteogenic differentiation but are distinct for chondrogenic differentiation between AdMSCs and FBs. PMID:22723894

  18. Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine.

    Science.gov (United States)

    Chung, Michael T; Zimmermann, Andrew S; Paik, Kevin J; Morrison, Shane D; Hyun, Jeong S; Lo, David D; McArdle, Adrian; Montoro, Daniel T; Walmsley, Graham G; Senarath-Yapa, Kshemendra; Sorkin, Michael; Rennert, Robert; Chen, Hsin-Han; Chung, Andrew S; Vistnes, Dean; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C

    2013-10-01

    Harvesting adipose-derived stromal cells (ASCs) for tissue engineering is frequently done through liposuction. However, several different techniques exist. Although third-generation ultrasound-assisted liposuction has been shown to not have a negative effect on ASCs, the impact of laser-assisted liposuction on the quality and differentiation potential of ASCs has not been studied. Therefore, ASCs were harvested from laser-assisted lipoaspirate and suction-assisted lipoaspirate. Next, in vitro parameters of cell yield, cell viability and proliferation, surface marker phenotype, osteogenic differentiation, and adipogenic differentiation were performed. Finally, in vivo bone formation was assessed using a critical-sized cranial defect in athymic nude mice. Although ASCs isolated from suction-assisted lipoaspirate and laser-assisted lipoaspirate both successfully underwent osteogenic and adipogenic differentiation, the cell yield, viability, proliferation, and frequency of ASCs (CD34(+)CD31(-)CD45(-)) in the stromal vascular fraction were all significantly less with laser-assisted liposuction in vitro (p liposuction appears to negatively impact the biology of ASCs, cell harvest using suction-assisted liposuction is preferable for tissue-engineering purposes.

  19. Transcriptional signature of human adipose tissue-derived stem cells (hASCs) preconditioned for chondrogenesis in hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pilgaard, L.; Lund, P.; Duroux, M. [Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg (Denmark); Lockstone, H.; Taylor, J. [Bioinformatics and Statistical Genetics, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford, OX3 7BN (United Kingdom); Emmersen, J.; Fink, T. [Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg (Denmark); Ragoussis, J. [Genomics, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford, OX3 7BN (United Kingdom); Zachar, V., E-mail: vlaz@hst.aau.dk [Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg (Denmark)

    2009-07-01

    Hypoxia is an important factor involved in the control of stem cells. To obtain a better insight into the phenotypical changes brought about by hypoxic preconditioning prior to chondrogenic differentiation; we have investigated growth, colony-forming and chondrogenic capacity, and global transcriptional responses of six adipose tissue-derived stem cell lines expanded at oxygen concentrations ranging from ambient to 1%. The assessment of cell proliferation and colony-forming potential revealed that the hypoxic conditions corresponding to 1% oxygen played a major role. The chondrogenic inducibility, examined by high-density pellet model, however, did not improve on hypoxic preconditioning. While the microarray analysis revealed a distinctive inter-donor variability, the exposure to 1% hypoxia superseded the biological variability and produced a specific expression profile with 2581 significantly regulated genes and substantial functional enrichment in the pathways of cell proliferation and apoptosis. Additionally, exposure to 1% oxygen resulted in upregulation of factors related to angiogenesis and cell growth. In particular, leptin (LEP), the key regulator of body weight and food intake was found to be highly upregulated. In conclusion, the results of this investigation demonstrate the significance of donor demographics and the importance of further studies into the use of regulated oxygen tension as a tool for preparation of ASCs in order to exploit their full potential.

  20. Compatibility of Porous Chitosan Scaffold with the Attachment and Proliferation of human Adipose-Derived Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Gomathysankar S

    2016-11-01

    Full Text Available Adipose-derived stem cells (ASCs have potential applications in the repair and regeneration of various tissues and organs. The use of various scaffold materials as an excellent template for mimicking the extracellular matrix to induce the attachment and proliferation of different cell types has always been of interest in the field of tissue engineering because ideal biomaterials are in great demand. Chitosan, a marine polysaccharide, have wide clinical applications and it acts as a promising scaffold for cell migration and proliferation. ASCs, with their multi-differentiation potential, and chitosan, with its great biocompatibility with ASCs, were investigated in the present study. ASCs were isolated and were characterized by two different methods: immunocytochemistry and flow cytometry, using the mesenchymal stem cell markers CD90, CD105, CD73 and CD29. The ASCs were then induced to differentiate into adipogenic, osteogenic and chondrogenic lineages. These ASCs were incorporated into a porous chitosan scaffold (PCS, and their structural morphology was studied using a scanning electron microscope and hematoxylin and eosin staining. The proliferation rate of the ASCs on the PCS was assessed using a PrestoBlue viability assay. The results indicated that the PCS provides an excellent template for the adhesion and proliferation of ASCs. Thus, this study revealed that PCS is a promising biomaterial for inducing the proliferation of ASCs, which could lead to successful tissue reconstruction in the field of tissue engineering.

  1. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Science.gov (United States)

    Heneidi, Saleh; Simerman, Ariel A; Keller, Erica; Singh, Prapti; Li, Xinmin; Dumesic, Daniel A; Chazenbalk, Gregorio

    2013-01-01

    Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT) derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse) Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal). When compared to adipose stem cells (ASCs), microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell homing. Being

  2. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Saleh Heneidi

    Full Text Available Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal. When compared to adipose stem cells (ASCs, microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell

  3. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  4. Brown-like adipose progenitors derived from human induced pluripotent stem cells: Identification of critical pathways governing their adipogenic capacity

    Science.gov (United States)

    Hafner, Anne-Laure; Contet, Julian; Ravaud, Christophe; Yao, Xi; Villageois, Phi; Suknuntha, Kran; Annab, Karima; Peraldi, Pascal; Binetruy, Bernard; Slukvin, Igor I.; Ladoux, Annie; Dani, Christian

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) show great promise for obesity treatment as they represent an unlimited source of brown/brite adipose progenitors (BAPs). However, hiPSC-BAPs display a low adipogenic capacity compared to adult-BAPs when maintained in a traditional adipogenic cocktail. The reasons of this feature are unknown and hamper their use both in cell-based therapy and basic research. Here we show that treatment with TGFβ pathway inhibitor SB431542 together with ascorbic acid and EGF were required to promote hiPSCs-BAP differentiation at a level similar to adult-BAP differentiation. hiPSC-BAPs expressed the molecular identity of adult-UCP1 expressing cells (PAX3, CIDEA, DIO2) with both brown (ZIC1) and brite (CD137) adipocyte markers. Altogether, these data highlighted the critical role of TGFβ pathway in switching off hiPSC-brown adipogenesis and revealed novel factors to unlock their differentiation. As hiPSC-BAPs display similarities with adult-BAPs, it opens new opportunities to develop alternative strategies to counteract obesity. PMID:27577850

  5. Comparison of Markers and Functional Attributes of Human Adipose-Derived Stem Cells and Dedifferentiated Adipocyte Cells from Subcutaneous Fat of an Obese Diabetic Donor.

    Science.gov (United States)

    Watson, James E; Patel, Niketa A; Carter, Gay; Moor, Andrea; Patel, Rekha; Ghansah, Tomar; Mathur, Abhishek; Murr, Michel M; Bickford, Paula; Gould, Lisa J; Cooper, Denise R

    2014-03-01

    Objective: Adipose tissue is a robust source of adipose-derived stem cells (ADSCs) that may be able to provide secreted factors that promote the ability of wounded tissue to heal. However, adipocytes also have the potential to dedifferentiate in culture to cells with stem cell-like properties that may improve their behavior and functionality for certain applications. Approach: ADSCs are adult mesenchymal stem cells that are cultured from the stromal vascular fraction of adipose tissue. However, adipocytes are capable of dedifferentiating into cells with stem cell properties. In this case study, we compare ADSC and dedifferentiated fat (DFAT) cells from the same patient and fat depot for mesenchymal cell markers, embryonic stem cell markers, ability to differentiate to adipocytes and osteoblasts, senescence and telomerase levels, and ability of conditioned media (CM) to stimulate migration of human dermal fibroblasts (HDFs). Innovation and Conclusions: ADSCs and DFAT cells displayed identical levels of CD90, CD44, CD105, and were CD34- and CD45-negative. They also expressed similar levels of Oct4, BMI1, KLF4, and SALL4. DFAT cells, however, showed higher efficiency in adipogenic and osteogenic capacity. Telomerase levels of DFAT cells were double those of ADSCs, and senescence declined in DFAT cells. CM from both cell types altered the migration of fibroblasts. Despite reports of ADSCs from a number of human depots, there have been no comparisons of the ability of dedifferentiated DFAT cells from the same donor and depot to differentiate or modulate migration of HDFs. Since ADSCs were from an obese diabetic donor, reprogramming of DFAT cells may help improve a patient's cells for regenerative medicine applications.

  6. Human serum is a suitable supplement for the osteogenic differentiation of human adipose-derived stem cells seeded on poly-3-hydroxibutyrate-co-3-hydroxyvalerate scaffolds.

    Science.gov (United States)

    de Paula, Ana Cláudia Chagas; Zonari, Alessandra Arcoverde Cavalcanti; Martins, Thaís Maria da Mata; Novikoff, Silviene; da Silva, Alexandra Rodrigues Pereira; Correlo, Vitor Manuel; Reis, Rui L; Gomes, Dawidson Assis; Goes, Alfredo Miranda

    2013-01-01

    Human adipose-derived stem cells (hASCs) are currently a point of focus for bone tissue engineering applications. However, the ex vivo expansion of stem cells before clinical application remains a challenge. Fetal bovine serum (FBS) is largely used as a medium supplement and exposes the recipient to infections and immunological reactions. In this study, we evaluated the osteogenic differentiation process of hASCs in poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) scaffolds with the osteogenic medium supplemented with pooled allogeneic human serum (aHS). The hASCs grown in the presence of FBS or aHS did not show remarkable differences in morphology or immunophenotype. The PHB-HV scaffolds, which were developed by the freeze-drying technique, showed an adequate porous structure and mechanical performance as observed by micro-computed tomography, scanning electron microscopy (SEM), and compression test. The three-dimensional structure was suitable for allowing cell colonization, which was revealed by SEM micrographs. Moreover, these scaffolds were not toxic to cells as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation capacity of hASCs seeded on scaffolds was confirmed by the reduction of the proliferation, the alkaline phosphatase (AP) activity, expression of osteogenic gene markers (AP, collagen type I, Runx2, and osteocalcin), and the expression of bone markers, such as osteopontin, osteocalcin, and collagen type I. The osteogenic capacity of hASCs seeded on PHB-HV scaffolds indicates that this scaffold is adequate for cell growth and differentiation and that aHS is a promising supplement for the in vitro expansion of hASCs. In conclusion, this strategy seems to be useful and safe for application in bone tissue engineering.

  7. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues.

    Science.gov (United States)

    Kim, Yeon Jeong; Hwang, Soo Hyun; Cho, Hyun Hwa; Shin, Keun Koo; Bae, Yong Chan; Jung, Jin Sup

    2012-01-01

    A better understanding of the molecular mechanisms that govern human adipose tissue-derived mesenchymal stem cells (hASCs) differentiation could provide new insights into a number of diseases including obesity. Our previous study demonstrated that microRNA-21 (miR-21) controls the adipogenic differentiation of hASCs. In this study, we determined the expression of miR-21 in white adipose tissues in a high-fat diet (HFD)-induced obesity mouse model to examine the relationship between miR-21 and obesity and the effect of miR-21 on hASCs proliferation. Our study showed biphasic changes of miR-21 expression and a correlation between miR-21 level and adipocyte number in the epididymal fat of HFD mice. Over-expression of miR-21 decreased cell proliferation, whereas inhibiting miR-21 with 2'-O-methyl-antisense RNA increased it. Over-expression of miR-21 decreased both protein and mRNA levels of STAT3, whereas inhibiting miR-21 with 2'-O-methyl-antisense RNA increased these levels. The activity of a luciferase construct containing the miR-21 target site from the STAT3 3'UTR was lower in LV-miR21-infected hASCs than in LV-miLacZ infected cells. RNA interference-mediated down-regulation of STAT3 decreased cell proliferation without affecting adipogenic differentiation. These findings provide the evidence of the correlation between miR-21 level and adipocyte number in the white adipose tissue of HFD-induced obese mice, which provides new insights into the mechanisms of obesity.

  8. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2014-01-01

    Full Text Available Human mesenchymal stem cells (MSCs have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs. We found (1 MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2 MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3 real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4 furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.

  9. Study of Carbon Nano-Tubes Effects on the Chondrogenesis of Human Adipose Derived Stem Cells in Alginate Scaffold

    Directory of Open Access Journals (Sweden)

    Ali Valiani

    2014-01-01

    Full Text Available Background: Osteoarthritis is one of the most common diseases in middle-aged populations in the World and could become the fourth principal cause of disability by the year 2020. One of the critical properties for cartilage tissue engineering (TE is the ability of scaffolds to closely mimic the extracellular matrix and bond to the host tissue. Therefore, TE has been presented as a technique to introduce the best combination of cells and biomaterial scaffold and to stimulate growth factors to produce a cartilage tissue resembling natural articular cartilage. The aim of study is to improve differentiation of adipose derived stem cells (ADSCs into chondrocytes in order to provide a safe and modern treatment for patients suffering from cartilage damages. Methods: After functionalization, dispersions and sterilizing carbon nano-tubes (CNTs, a new type of nanocomposite gel was prepared from water-soluble CNTs and alginate. ADSCs seeded in 1.5% alginate scaffold and cultured in chondrogenic media with and without transforming growth factor-β1 (TGF-β1 for 7 and 14 days. The genes expression of sex determining region Y-box 9 (SOX9, types II and X collagens was assessed by real-time polymerase chain reaction and the amount of aggrecan (AGC and type I collagen was measured by ELISA. Results: Our findings showed that the expression of essential cartilage markers, SOX9, type II collagen and AGC, in differentiated ADSCs at the concentration of 1 μg/ml CNTs in the presence of TGF-β1 were significantly increased in comparison with the control group (P < 0.001. Meanwhile, type X collagen expression and also type I collagen production were significantly decreased (P < 0.001. Conclusions: The results showed that utilized three-dimensional scaffold had a brilliant effect in promoting gene expression of chondrogenesis.

  10. Wnt antagonist secreted frizzled-related protein 4 upregulates adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Malini Visweswaran

    Full Text Available With more than 1.4 billion overweight or obese adults worldwide, obesity and progression of the metabolic syndrome are major health and economic challenges. To address mechanisms of obesity, adipose tissue-derived mesenchymal stem cells (ADSCs are being studied to detail the molecular mechanisms involved in adipogenic differentiation. Activation of the Wnt signalling pathway has inhibited adipogenesis from precursor cells. In our study, we examined this anti-adipogenic effect in further detail stimulating Wnt with lithium chloride (LiCl and 6-bromo indirubin 3'oxime (BIO. We also examined the effect of Wnt inhibition using secreted frizzled-related protein 4 (sFRP4, which we have previously shown to be pro-apoptotic, anti-angiogenic, and anti-tumorigenic. Wnt stimulation in LiCl and BIO-treated ADSCs resulted in a significant reduction (2.7-fold and 12-fold respectively in lipid accumulation as measured by Oil red O staining while Wnt inhibition with sFRP4 induced a 1.5-fold increase in lipid accumulation. Furthermore, there was significant 1.2-fold increase in peroxisome proliferator-activated receptor gamma (PPARγ and CCAAT/enhancer binding protein alpha (C/EBPα, and 1.3-fold increase in acetyl CoA carboxylase protein levels. In contrast, the expression of adipogenic proteins (PPARγ, C/EBPα, and acetyl CoA carboxylase were decreased significantly with LiCl (by 1.6, 2.6, and 1.9-fold respectively and BIO (by 7, 17, and 5.6-fold respectively treatments. These investigations demonstrate interplay between Wnt antagonism and Wnt activation during adipogenesis and indicate pathways for therapeutic intervention to control this process.

  11. Functional responses of human adipose tissue-derived mesenchymal stem cells to metal oxide nanoparticles in vitro.

    Science.gov (United States)

    Hackenberg, Stephan; Scherzed, Agmal; Technau, Antje; Froelich, Katrin; Hagen, Rudolf; Kleinsasser, Norbert

    2013-01-01

    Nanoparticles (NPs) are frequently applied in biomedical applications. The use of human mesenchymal stem cells (hMSC) in biomedicine is pivotal, especially in oncology and tissue engineering. Titanium dioxide (TiO2) and zinc oxide (ZnO) NPs are interesting agents in experimental oncology and stem cells are discussed to be a potential vehicle for NPs to tumor sites. However, little is known about hazardous effects of NPs in hMSC. The aim of the present study was to analyze functional impairment of hMSC by ZnO- and TiO2-NPs. Cytotoxic effects of NPs were evaluated by the MTT-assay. Furthermore, multi-differentiation capacity, spheroid formation and migration were assessed. The immunophenotype was observed by flow cytometry. Cytotoxic effects were observed at 625 nM ZnO-NPs whereas no cytotoxicity was seen in hMSC by TiO2-NPs. The differentiation capacity of hMSC into osteogenic and adipose lineages was unchanged. A long-term period cultivation of hMSC for 3 weeks after NP exposure revealed a persistence of NPs in the cytoplasm. The migration capability was impaired whereas the ability to form spheroids was not affected. Flow cytometric analysis revealed distinct alteration of cell surface markers CD 90 and CD 73. Major functional properties of hMSC were unaffected by TiO2- and ZnO-NPs. However, restricted migration might critically influence wound healing capacity. Further information is needed to assess the clinical impact of these findings.

  12. Pooled human platelet lysate versus fetal bovine serum—investigating the proliferation rate, chromosome stability and angiogenic potential of human adipose tissue-derived stem cells intended for clinical use

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter V

    2013-01-01

    Because of an increasing focus on the use of adipose-derived stem cells (ASCs) in clinical trials, the culture conditions for these cells are being optimized. We compared the proliferation rates and chromosomal stability of ASCs that had been cultured in Dulbecco's modified Eagle's Medium (DMEM......) supplemented with either pooled human platelet lysate (pHPL) or clinical-grade fetal bovine serum (FBS) (DMEM(pHPL) versus DMEM(FBS))....

  13. Decreased MicroRNA-221 is Associated with High Levels of TNF-α in Human Adipose Tissue-Derived Mesenchymal Stem Cells From Obese Woman

    Directory of Open Access Journals (Sweden)

    Wen-Wen Chou

    2013-07-01

    Full Text Available Aim: The present study aimed to investigate the regulation and involvement of miR-221 in the differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs. The relationships between miR-221 and pro-inflammatory markers and adipokines were also explored. Methods: Eight adipose tissues were obtained from four obese (mean body mass index (BMI =31.7 kg/m2 and four lean (mean BMI= 21.5 kg/m2 women. hASCs were induced to differentiate, and the related gene expression were measured in the hASC-differentiated adipocytes using real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR. Results: During adipogenesis, miR-221 was significantly down-regulated; furthermore, miR-221 levels were lower in hASC-differentiated adipocytes from obese subjects than in the corresponding adipocytes from lean subjects. Higher TNF-α mRNA levels were associated with lower levels of miR-221. In addition, the miR-221 levels in the adipocytes were inversely correlated with BMI. Conclusion: Our results support the link between miR-221 and obesity development as well as obesity related inflammatory status.

  14. Preparation and In Vitro and In Vivo Performance of Magnesium Ion Substituted Biphasic Calcium Phosphate Spherical Microscaffolds as Human Adipose Tissue-Derived Mesenchymal Stem Cell Microcarriers

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Kim

    2013-01-01

    Full Text Available Magnesium ion substituted biphasic calcium phosphate (Mg-BCP bioceramic microscaffolds with spherical and porous morphology were successfully prepared using in situ coprecipitation and rotary spray drying atomization process for application of tissue engineering combined with human adipose tissue-derived mesenchymal stem cells (hAT-MSCs. After 4 weeks of immersion in Hanks’ balanced salt solution (HBSS, Mg-BCP micro-scaffolds showed the enhanced biodegradation and bioactivity due to the substituted Mg2+ ion present in the BCP structure. In this study, it was observed that hAT-MSCs have clearly attached on the surface of Mg-BCP micro-scaffolds. In addition, Mg-BCP micro-scaffolds exhibited the improved biocompatibility and osteoconductivity via in vitro and in vivo biological tests with hAT-MSCs. Therefore, these bioceramic micro-scaffolds had potential to be used as hAT-MSCs microcarriers for biomedical applications.

  15. Undifferentiated Human Adipose-derived Stromal/Stem Cells loaded onto Wet-Spun Starch-polycaprolactone Scaffolds Enhance Bone Regeneration: Nude Mice Calvarial Defect in vivo Study

    Science.gov (United States)

    Carvalho, Pedro P.; Leonor, Isabel B.; Smith, Brenda J.; Dias, Isabel R.; Reis, Rui L.; Gimble, Jeffrey M.; Gomes, Manuela E.

    2014-01-01

    The repair of large bony defects remains challenging in the clinical setting. Human adipose-derived stromal/stem cells (hASCs) have been reported to differentiate along different cell lineages, including the osteogenic. The objective of the present study was to assess the bone regeneration potential of undifferentiated hASCs loaded in starch-polycaprolactone (SPCL) scaffolds, in a critical-sized nude mice calvarial defect. Human ASCs were isolated from lipoaspirate of five female donors, cryopreserved and pooled together. Critical-sized (4 mm) calvarial defects were created in the parietal bone of adult male nude mice. Defects were either left empty, treated with an SPCL scaffold alone, or SPCL scaffold with human ASCs. Histological analysis and Micro-CT imaging of the retrieved implants were performed. Improved new bone deposition and osseointegration was observed in SPCL loaded with hASC engrafted calvarial defects as compared to control groups that showed little healing. Non differentiated human ASCs enhance ossification of non-healing nude mice calvarial defects, and wet-spun SPCL confirmed its suitability for bone tissue engineering. This study supports the potential translation for ASC use in the treatment of human skeletal defects. PMID:24123913

  16. Adipose derived stem cells and nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Alessandro Faroni; Richard JP Smith; Adam J Reid

    2014-01-01

    Injuries to peripheral nerves are common and cause life-changing problems for patients along-side high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacriifcing a section of nerve from elsewhere in the body to pro-vide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacriifce of a functional nerve. Stem cells are prime candidates as accelerators of re-generation in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.

  17. Comparative expression profiles of mRNAs and microRNAs among human mesenchymal stem cells derived from breast, face, and abdominal adipose tissues.

    Science.gov (United States)

    Wang, Kai-Hung; Kao, An-Pei; Singh, Sher; Yu, Sung-Liang; Kao, Li-Pin; Tsai, Zong Yun; Lin, Sin-Daw; Li, Steven Shoei-Lung

    2010-03-01

    We determined the expression of both mRNAs and microRNAs (miRNAs) from human mesenchymal stem cells BM19, FM30, and AM3, which is derived from breast, face, and abdominal adipose tissues, respectively. BM19, FM30, and AM3 cells exhibited considerably similar mRNA profiles, and their 1,038 abundantly common genes were involved in regulating six cell adhesion and three cytoskeleton remodeling processes among the top ten GeneGo canonical pathway maps. The 39 most abundant miRNAs in AM3 cells were expressed at very similar levels in BM19 cells. However, seven abundant miRNAs (miR-19b, miR-320, miR-186, miR-199a, miR-339, miR-99a, and miR-152) in AM3 cells were expressed at much lower levels than that in FM30 cells, and 38 genes targeted by these miRNAs were consequently upregulated more than 3-fold in FM30 cells compared with AM3 cells. Therefore, autologous abdominal adipose-derived mesenchymal stem cells are suitable for tissue engineering of breast reconstruction because of very similar expression profiles of mRNAs and miRNAs between AM3 and BM19 cells. Conversely, abdominal AM3 cells might not be suitable for facial rejuvenation, since the 38 highly expressed genes targeted by miRNAs in FM30 cells might play an important role(s) in the development of facial tissue.

  18. The Potential of GMP-Compliant Platelet Lysate to Induce a Permissive State for Cardiovascular Transdifferentiation in Human Mediastinal Adipose Tissue-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Camilla Siciliano

    2015-01-01

    Full Text Available Human adipose tissue-derived mesenchymal stem cells (ADMSCs are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL, a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs.

  19. The Potential of GMP-Compliant Platelet Lysate to Induce a Permissive State for Cardiovascular Transdifferentiation in Human Mediastinal Adipose Tissue-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Siciliano, Camilla; Chimenti, Isotta; Bordin, Antonella; Ponti, Donatella; Iudicone, Paola; Peruzzi, Mariangela; Rendina, Erino Angelo; Calogero, Antonella; Pierelli, Luca; Ibrahim, Mohsen; De Falco, Elena

    2015-01-01

    Human adipose tissue-derived mesenchymal stem cells (ADMSCs) are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL), a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs. PMID:26495284

  20. AMP-Activated Kinase (AMPK Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype.

    Directory of Open Access Journals (Sweden)

    Omar Abdul-Rahman

    Full Text Available Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R-5-(4-Carbamoyl-5-aminoimidazol-1-yl-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR, a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained

  1. A Cell-Based Self-Assembly Approach for the Production of Human Osseous Tissues from Adipose-Derived Stromal/Stem Cells.

    Science.gov (United States)

    Galbraith, Todd; Clafshenkel, William P; Kawecki, Fabien; Blanckaert, Camille; Labbé, Benoit; Fortin, Michel; Auger, François A; Fradette, Julie

    2017-02-01

    Achieving optimal bone defect repair is a clinical challenge driving intensive research in the field of bone tissue engineering. Many strategies focus on seeding graft materials with progenitor cells prior to in vivo implantation. Given the benefits of closely mimicking tissue structure and function with natural materials, the authors hypothesize that under specific culture conditions, human adipose-derived stem/stromal cells (hASCs) can solely be used to engineer human reconstructed osseous tissues (hROTs) by undergoing osteoblastic differentiation with concomitant extracellular matrix production and mineralization. Therefore, the authors are developing a self-assembly methodology allowing the production of such osseous tissues. Three-dimensional (3D) tissues reconstructed from osteogenically-induced cell sheets contain abundant collagen type I and are 2.7-fold less contractile compared to non-osteogenically induced tissues. In particular, hROT differentiation and mineralization is reflected by a greater amount of homogenously distributed alkaline phosphatase, as well as higher calcium-containing hydroxyapatite (P tissues. Taken together, these findings show that hASC-driven tissue engineering leads to hROTs that demonstrate structural and functional characteristics similar to native osseous tissue. These highly biomimetic human osseous tissues will advantageously serve as a platform for molecular studies as well as for future therapeutic in vivo translation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  3. Human adipose tissue-derived multilineage progenitor cells exposed to oxidative stress induce neurite outgrowth in PC12 cells through p38 MAPK signaling

    Directory of Open Access Journals (Sweden)

    Moriyama Mariko

    2012-08-01

    Full Text Available Abstract Background Adipose tissues contain populations of pluripotent mesenchymal stem cells that also secrete various cytokines and growth factors to support repair of damaged tissues. In this study, we examined the role of oxidative stress on human adipose-derived multilineage progenitor cells (hADMPCs in neurite outgrowth in cells of the rat pheochromocytoma cell line (PC12. Results We found that glutathione depletion in hADMPCs, caused by treatment with buthionine sulfoximine (BSO, resulted in the promotion of neurite outgrowth in PC12 cells through upregulation of bone morphogenetic protein 2 (BMP2 and fibroblast growth factor 2 (FGF2 transcription in, and secretion from, hADMPCs. Addition of N-acetylcysteine, a precursor of the intracellular antioxidant glutathione, suppressed the BSO-mediated upregulation of BMP2 and FGF2. Moreover, BSO treatment caused phosphorylation of p38 MAPK in hADMPCs. Inhibition of p38 MAPK was sufficient to suppress BMP2 and FGF2 expression, while this expression was significantly upregulated by overexpression of a constitutively active form of MKK6, which is an upstream molecule from p38 MAPK. Conclusions Our results clearly suggest that glutathione depletion, followed by accumulation of reactive oxygen species, stimulates the activation of p38 MAPK and subsequent expression of BMP2 and FGF2 in hADMPCs. Thus, transplantation of hADMPCs into neurodegenerative lesions such as stroke and Parkinson’s disease, in which the transplanted hADMPCs are exposed to oxidative stress, can be the basis for simple and safe therapies.

  4. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation.

    Directory of Open Access Journals (Sweden)

    Sang-Hyug Park

    Full Text Available Adipose tissue-derived stem cells (ASCs are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen and integrin (CD11b and CD31 expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1 and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.

  5. Electrospun poly(L-lactide/poly(ε-caprolactone blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available The essence of tissue engineering is the fabrication of autologous cells or induced stem cells in naturally derived or synthetic scaffolds to form specific tissues. Polymer is thought as an appealing source of cell-seeded scaffold owing to the diversity of its physicochemical property and can be electrospun into nano-size to mimic natural structure. Poly (L-lactic acid (PLLA and poly (ε-caprolactone (PCL are both excellent aliphatic polyester with almost "opposite" characteristics. The controlling combination of PLLA and PCL provides varying properties and makes diverse applications. Compared with the copolymers of the same components, PLLA/PCL blend demonstrates its potential in regenerative medicine as a simple, efficient and scalable alternative. In this study, we electrospun PLLA/PCL blends of different weight ratios into nanofibrous scaffolds (NFS and their properties were detected including morphology, porosity, degradation, ATR-FTIR analysis, stress-stain assay, and inflammatory reaction. To explore the biocompatibility of the NFS we synthesized, human adipose-derived stem cells (hASCs were used to evaluate proliferation, attachment, viability and multi-lineage differentiation. In conclusion, the electrospun PLLA/PCL blend nanofibrous scaffold with the indicated weight ratios all supported hASCs well. However, the NFS of 1/1 weight ratio showed better properties and cellular responses in all assessments, implying it a biocompatible scaffold for tissue engineering.

  6. Induced pluripotent stem cells generated from human adipose-derived stem cells using a non-viral polycistronic plasmid in feeder-free conditions.

    Directory of Open Access Journals (Sweden)

    Xinjian Qu

    Full Text Available Induced pluripotent stem cells (iPSCs can be generated from somatic cells by ectopic expression of defined transcription factors (TFs. However, the optimal cell type and the easy reprogramming approaches that minimize genetic aberrations of parent cells must be considered before generating the iPSCs. This paper reports a method to generate iPSCs from adult human adipose-derived stem cells (hADSCs without the use of a feeder layer, by ectopic expression of the defined transcription factors OCT4, SOX2, KLF4 and C-MYC using a polycistronic plasmid. The results, based on the expression of pluripotent marker, demonstrated that the iPSCs have the characteristics similar to those of embryonic stem cells (ESCs. The iPSCs differentiated into three embryonic germ layers both in vitro by embryoid body generation and in vivo by teratoma formation after being injected into immunodeficient mice. More importantly, the plasmid DNA does not integrate into the genome of human iPSCs as revealed by Southern blotting experiments. Karyotypic analysis also demonstrated that the reprogramming of hADSCs by the defined factors did not induce chromosomal abnormalities. Therefore, this technology provides a platform for studying the biology of iPSCs without viral vectors, and can hopefully overcome immune rejection and ethical concerns, which are the two important barriers of ESC applications.

  7. MicroRNA-498 Inhibition Enhances the Differentiation of Human Adipose-Derived Mesenchymal Stem Cells into Podocyte-Like Cells.

    Science.gov (United States)

    Zhang, Lina; Li, Kanghua; Yan, Xi; Liang, Xiaolei; Wang, Shihua; Han, Qin; Zhao, Robert Chunhua

    2015-12-15

    Podocyte depletion is a key event in the progression of end-stage kidney disease (ESKD) resulting in nephrotic proteinuria and renal failure, but the treatment options are limited to dialysis and renal transplantation. So there is an urgent need for renal regenerative therapies. Generation of podocytes from human stem cells is regarded as a promising therapeutic strategy to repair or regenerate the damaged kidneys; however, the reliable induction system remains a challenge. In this study, we established a two-stage induction protocol for podocyte generation from human adipose-derived mesenchymal stem cells (hAD-MSCs). We initially established a condition that induces hAD-MSCs toward intermediate mesoderm cells with activin A and high concentration of retinoic acid (RA). Subsequently, by using the combination of activin A and low concentration of RA and BMP7, we generated podocyte-like cells expressing multiple podocyte-specific markers and able to integrate into a developing nephron of embryonic kidney explant culture and ameliorate proteinuria and kidney injure in adriamycin-treated mice. Furthermore, we identified that miRNA-498 inhibitor has potential to improve the differentiation of hAD-MSCs into podocyte-like cells and established a robust induction protocol. Thereby, our study advocated an efficient method for the induction of kidney podocyte-like (iPod) cells from hAD-MSCs and provided an ideal candidate for regenerative therapies of the kidney.

  8. In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis.

    Directory of Open Access Journals (Sweden)

    Jane Ru Choi

    Full Text Available Adipose tissue-derived stromal cells (ASCs natively reside in a relatively low-oxygen tension (i.e., hypoxic microenvironment in human body. Low oxygen tension (i.e., in situ normoxia, has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2 or in situ normoxia (2% O2. We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics.

  9. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation

    Energy Technology Data Exchange (ETDEWEB)

    Tatrai, Peter, E-mail: peter.tatrai@biomembrane.hu [Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Karolina ut 29, H-1113 Budapest (Hungary); Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Szepesi, Aron, E-mail: aron.szepesi@biomembrane.hu [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Matula, Zsolt, E-mail: matula.zsolt@gmail.com [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Szigeti, Anna, E-mail: anna.szigeti@biomembrane.hu [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Buchan, Gyoengyi, E-mail: buchan@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Madi, Andras, E-mail: madi@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Stem Cell, Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Uher, Ferenc, E-mail: uher@biomembrane.hu [Stem Cell Laboratory, Hungarian National Blood Transfusion Service, Dioszegi ut 64, H-1113 Budapest (Hungary); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer We immortalized human adipose stromal cells (ASCs) with hTERT, Bmi-1, and SV40T. Black-Right-Pointing-Pointer hTERT-only ASCs are prone to transformation, while Bmi-only ASCs become senescent. Black-Right-Pointing-Pointer SV40T introduced along with hTERT abrogates proliferation control and multipotency. Black-Right-Pointing-Pointer hTERT combined with Bmi-1 yields stable phenotype up to 140 population doublings. -- Abstract: Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASC{sup hTERT}, ASC{sup Bmi-1}, ASC{sup Bmi-1+hTERT} and ASC{sup SV40T+hTERT} were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASC{sup Bmi-1} had limited replicative potential, while the rapidly proliferating ASC{sup SV40T+hTERT} acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASC{sup hTERT} and ASC{sup hTERT+Bmi-1}, on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASC{sup hTERT} also acquired aberrant karyotype and showed signs of transformation after long-term culture

  10. Fabrication of novel high surface area mushroom gilled fibers and their effects on human adipose derived stem cells under pulsatile fluid flow for tissue engineering applications.

    Science.gov (United States)

    Tuin, Stephen A; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2016-05-01

    The fabrication and characterization of novel high surface area hollow gilled fiber tissue engineering scaffolds via industrially relevant, scalable, repeatable, high speed, and economical nonwoven carding technology is described. Scaffolds were validated as tissue engineering scaffolds using human adipose derived stem cells (hASC) exposed to pulsatile fluid flow (PFF). The effects of fiber morphology on the proliferation and viability of hASC, as well as effects of varied magnitudes of shear stress applied via PFF on the expression of the early osteogenic gene marker runt related transcription factor 2 (RUNX2) were evaluated. Gilled fiber scaffolds led to a significant increase in proliferation of hASC after seven days in static culture, and exhibited fewer dead cells compared to pure PLA round fiber controls. Further, hASC-seeded scaffolds exposed to 3 and 6dyn/cm(2) resulted in significantly increased mRNA expression of RUNX2 after one hour of PFF in the absence of soluble osteogenic induction factors. This is the first study to describe a method for the fabrication of high surface area gilled fibers and scaffolds. The scalable manufacturing process and potential fabrication across multiple nonwoven and woven platforms makes them promising candidates for a variety of applications that require high surface area fibrous materials. We report here for the first time the successful fabrication of novel high surface area gilled fiber scaffolds for tissue engineering applications. Gilled fibers led to a significant increase in proliferation of human adipose derived stem cells after one week in culture, and a greater number of viable cells compared to round fiber controls. Further, in the absence of osteogenic induction factors, gilled fibers led to significantly increased mRNA expression of an early marker for osteogenesis after exposure to pulsatile fluid flow. This is the first study to describe gilled fiber fabrication and their potential for tissue engineering

  11. Inflammatory peptides derived from adipose tissue

    Directory of Open Access Journals (Sweden)

    Barzilai Nir

    2005-01-01

    Full Text Available Abstract The low-grade inflammation seen with aging is noted particularly in subjects with the metabolic syndrome of aging. Insulin resistance, obesity/abdominal obesity, and risks for many age-related diseases characterize this common syndrome. It is becoming clear that this increased adipose tissue is not simply a reservoir for excess nutrients, but rather an active and dynamic organ capable of expressing several cytokines and other fat-derived peptides (FDP. Some, but not all, FDP may have a role in development of the metabolic syndrome but there is no evidence that these FDP are causing inflammation directly. We suggest that high levels of inflammatory peptides are markers for obesity/abdominal obesity seen with aging, but some may not necessarily have a causative role in the development of inflammation.

  12. In vitro differentiation of human adipose-derived adult stromal cells into neuron-like cells in hippocampal astrocyte conditioned medium

    Institute of Scientific and Technical Information of China (English)

    Xinchun Ye; Hongjun He; Feng Yang; Kepeng Zhao; Jun Yao; Bin Liu

    2006-01-01

    BACKGROUND: At present, researches on differentiating from human adipose-derived adult stromal cells (hADASC) to neuron-like cells are focus on inducing by artificial-synthetic compound solution;however,hippocampal astrocyte conditioned medium(HCAM)can induce in vitro differentiation from hADASC to neuron-like cells is still unclear.OBJECTIVE:To observe whether HCAM can induce in vitro differentiation from hADASC to neuron-like cells.DESIGN:Randomized control study.SETTING:Department of Neurology,Taixing People's Hospital;Central Laboratory,North China Coal Medical College.MATERIALS:Donor of adipose tissue was donated by female volunteers suffering from caesarean section in the department of obstetrics & gynecology in our hospital and aged 20-35 years. Adipose tissue was collected from subcutaneous tissue of abdomen during the operation.In addition.8 male newborn Wistar rats within 24 hours with average body mass of 20 g were provided by Animal Institute of Chinese Academy of Medical Sciences.Rabbit-anti-human Nestin polyclonal antibody.Rabbit-anti-human glial fibriliary acidic protein (GFAP)polyclonal antibody, rabbit-anti-human neuro-specific enolase polyclonal antibody and mouse-anti-human microtubal associated protein 2(MAP-2)polyclonal antibody were provided by Wuhan Boster Company.METHODS:The experiment was carried out in the Central Laboratory of North China Coal Medical College from October 2004 to June 2005.hADASC was cultured with HCAM and its growth and morphological changes were observed under inverted phase contrast microscope.Immunocytochemistry.immunofluorescence and Western blotting were used to evaluate the expressions of Nestin,which was a specific sign of nerve precursor,neuro-specific enolase and MAP-2,which was a specific sign of nerve cell,and GFAP,which was a specific sign of neuroglial cells.MAIN OUTCOME MEASURES:Nestin,which was a specific sign of nerve precursor,neuro-specific enolase and MAP-2,which was a specific sign of nerve cell

  13. Allogeneic Platelet Releasate Preparations Derived via a Novel Rapid Thrombin Activation Process Promote Rapid Growth and Increased BMP-2 and BMP-4 Expression in Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    McLaughlin, Michael; Gagnet, Paul; Cunningham, Elizabeth; Yeager, Randi; D'Amico, Michael; Guski, Katie; Scarpone, Michael; Kuebler, Daniel

    2016-01-01

    The administration of human adipose-derived stem cells (ASCs) represents a promising regenerative therapy for the treatment of orthopedic injuries. While ASCs can be easily isolated from liposuction-derived adipose tissue, most clinical applications will likely require in vitro culture expansion of these cells using nonxenogeneic components. In this study, platelet releasate was generated using a novel rapid thrombin activation method (tPR). ASCs grown in media supplemented with tPR proliferated much faster than ASCs grown in media supplemented with 10% fetal bovine serum. The cells also retained the ability to differentiate along chondrogenic, adipogenic, and osteogenic lineages. The tPR cultured ASCs displayed elevated expression of BMP-4 (5.7 ± 0.97-fold increase) and BMP-2 (4.7 ± 1.3-fold increase) and decreased expression of PDGF-B (4.0 ± 1.4-fold decrease) and FGF-2 (33 ± 9.0-fold decrease). No significant changes in expression were seen with TGF-β and VEGF. This pattern of gene expression was consistent across different allogeneic tPR samples and different ASC lines. The use of allogeneic rapidly activated tPR to culture ASCs is associated with both an increased cell yield and a defined gene expression profile making it an attractive option for cell expansion prior to cell-based therapy for orthopedic applications.

  14. Allogeneic Platelet Releasate Preparations Derived via a Novel Rapid Thrombin Activation Process Promote Rapid Growth and Increased BMP-2 and BMP-4 Expression in Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Michael McLaughlin

    2016-01-01

    Full Text Available The administration of human adipose-derived stem cells (ASCs represents a promising regenerative therapy for the treatment of orthopedic injuries. While ASCs can be easily isolated from liposuction-derived adipose tissue, most clinical applications will likely require in vitro culture expansion of these cells using nonxenogeneic components. In this study, platelet releasate was generated using a novel rapid thrombin activation method (tPR. ASCs grown in media supplemented with tPR proliferated much faster than ASCs grown in media supplemented with 10% fetal bovine serum. The cells also retained the ability to differentiate along chondrogenic, adipogenic, and osteogenic lineages. The tPR cultured ASCs displayed elevated expression of BMP-4 (5.7 ± 0.97-fold increase and BMP-2 (4.7 ± 1.3-fold increase and decreased expression of PDGF-B (4.0 ± 1.4-fold decrease and FGF-2 (33 ± 9.0-fold decrease. No significant changes in expression were seen with TGF-β and VEGF. This pattern of gene expression was consistent across different allogeneic tPR samples and different ASC lines. The use of allogeneic rapidly activated tPR to culture ASCs is associated with both an increased cell yield and a defined gene expression profile making it an attractive option for cell expansion prior to cell-based therapy for orthopedic applications.

  15. 3D Spheroid Culture Enhances the Expression of Antifibrotic Factors in Human Adipose-Derived MSCs and Improves Their Therapeutic Effects on Hepatic Fibrosis

    Directory of Open Access Journals (Sweden)

    Xuan Zhang

    2016-01-01

    Full Text Available Three-dimensional (3D cell culture has been reported to increase the therapeutic potentials of mesenchymal stem cells (MSCs. However, the action mechanisms of 3D MSCs vary greatly and are far from being thoroughly investigated. In this study, we aimed to investigate the therapeutic effects of 3D spheroids of human adipose-derived MSCs for hepatic fibrosis. Our results showed that 3D culture enhanced the expression of antifibrotic factors by MSCs, including insulin growth factor 1 (IGF-1, interleukin-6 (IL-6, and hepatocyte growth factor (HGF. In vitro studies indicated conditioned medium of 3D cultured MSCs protected hepatocytes from cell injury and apoptosis more effectively compared with 2D cultured cells. More importantly, when transplanted into model mice with hepatic fibrosis, 3D spheroids of MSCs were more beneficial in ameliorating hepatic fibrosis and improving liver function than 2D cultured cells. Therefore, the 3D culture strategy improved the therapeutic effects of MSCs and might be promising for treatment of hepatic fibrosis.

  16. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Melvin Anyasi Ambele

    2016-05-01

    Full Text Available We have undertaken an in-depth transcriptome analysis of adipogenesis in human adipose-derived stromal cells (ASCs induced to differentiate into adipocytes in vitro. Gene expression was assessed on days 1, 7, 14 and 21 post-induction and genes differentially expressed numbered 128, 218, 253 and 240 respectively. Up-regulated genes were associated with blood vessel development, leukocyte migration, as well as tumor growth, invasion and metastasis. They also shared common pathways with certain obesity-related pathophysiological conditions. Down-regulated genes were enriched for immune response processes. KLF15, LMO3, FOXO1 and ZBTB16 transcription factors were up-regulated throughout the differentiation process. CEBPA, PPARG, ZNF117, MLXIPL, MMP3 and RORB were up-regulated only on days 14 and 21, which coincide with the maturation of adipocytes and could possibly serve as candidates for controlling fat accumulation and the size of mature adipocytes. In summary, we have identified genes that were up-regulated only on days 1 and 7 or days 14 and 21 that could serve as potential early and late-stage differentiation markers.

  17. Ameliorative effects of human adipose tissue-derived mesenchymal stem cells on myelin basic protein-induced experimental autoimmune encephalomyelitis in Lewis rats

    Institute of Scientific and Technical Information of China (English)

    Myung-Soon Ko; Hyeong-geun Park; Young-Min Yun; Jeong Chan Ra; Taekyun Shin; Kyoung-Kap Lee

    2011-01-01

    Mesenchymal stem cells have been previously shown to exert an immunomodulatory function. The present study sought to investigate the effects of multipotential human adipose tissue-derived mesenchymal stem cells (hAdMSCs) on disease progression and cytokine expression in Lewis rats with experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein. The duration of EAE paralysis in the group treated on day 7 postimmunization with 5 × 106 hAdMSCs was significantly reduced compared with the vehicle-treated controls and the 1 × 106 hAdMSC- treated group. The duration of EAE paralysis in the groups treated with 5 × 106 hAdMSCs on both day 1 and day 7 postimmunization was significantly reduced compared with the vehicle-treated controls and the groups treated with 5 × 106 hAdMSCs on both day 7 and day 10 postimmunization. The mRNA expression of interleukin-10 and indoleamine 2, 3-dioxygenase was significantly decreased in the hAdMSC-treated group compared with the vehicle-treated group. These findings suggest that the ameliorative effects of hAdMSCs on EAE symptoms operate in a dose- and time-dependent manner and can be mediated in part by the ample production of anti-inflammatory cytokines.

  18. Enhancement of Matrix Metalloproteinase-2 (MMP-2) as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Arai, Yoshie; Park, Sunghyun; Choi, Bogyu; Ko, Kyoung-Won; Choi, Won Chul; Lee, Joong-Myung; Han, Dong-Wook; Park, Hun-Kuk; Han, Inbo; Lee, Jong Hun; Lee, Soo-Hong

    2016-06-17

    Human adipose-derived stem cells (hASCs) have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs) are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs.

  19. Potential Biomedical Application of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges—Biocompatible Scaffolds Inducing Chondrogenic Differentiation of Human Adipose Derived Multipotent Stromal Cells

    Directory of Open Access Journals (Sweden)

    Anna Zimoch-Korzycka

    2016-08-01

    Full Text Available Current regenerative strategies used for cartilage repair rely on biomaterial functionality as a scaffold for cells that may have potential in chondrogenic differentiation. The purpose of the research was to investigate the biocompatibility of enzymatically treated alginate/chitosan hydrosol sponges and their suitability to support chondrogenic differentiation of human adipose derived multipotent stromal cells (hASCs. The alginate/chitosan and enzyme/alginate/chitosan sponges were formed from hydrosols with various proportions and were used as a biomaterial in this study. Sponges were tested for porosity and wettability. The porosity of each sponge was higher than 80%. An equal dose of alginate and chitosan in the composition of sponges improved their swelling ability. It was found that equal concentrations of alginate and chitosan in hydrosols sponges assure high biocompatibility properties that may be further improved by enzymatic treatment. Importantly, the high biocompatibility of these biomaterials turned out to be crucial in the context of hydrosols’ pro-chondrogenic function. After exposure to the chondrogenic conditions, the hASCs in N/A/C and L/A/C sponges formed well developed nodules and revealed increased expression of collagen type II, aggrecan and decreased expression of collagen type I. Moreover, in these cultures, the reactive oxygen species level was lowered while superoxide dismutase activity increased. Based on the obtained results, we conclude that N/A/C and L/A/C sponges may have prospective application as hASCs carriers for cartilage repair.

  20. Dual Inhibition of Activin/Nodal/TGF-β and BMP Signaling Pathways by SB431542 and Dorsomorphin Induces Neuronal Differentiation of Human Adipose Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Vedavathi Madhu

    2016-01-01

    Full Text Available Damage to the nervous system can cause devastating diseases or musculoskeletal dysfunctions and transplantation of progenitor stem cells can be an excellent treatment option in this regard. Preclinical studies demonstrate that untreated stem cells, unlike stem cells activated to differentiate into neuronal lineage, do not survive in the neuronal tissues. Conventional methods of inducing neuronal differentiation of stem cells are complex and expensive. We therefore sought to determine if a simple, one-step, and cost effective method, previously reported to induce neuronal differentiation of embryonic stem cells and induced-pluripotent stem cells, can be applied to adult stem cells. Indeed, dual inhibition of activin/nodal/TGF-β and BMP pathways using SB431542 and dorsomorphin, respectively, induced neuronal differentiation of human adipose derived stem cells (hADSCs as evidenced by formation of neurite extensions, protein expression of neuron-specific gamma enolase, and mRNA expression of neuron-specific transcription factors Sox1 and Pax6 and matured neuronal marker NF200. This process correlated with enhanced phosphorylation of p38, Erk1/2, PI3K, and Akt1/3. Additionally, in vitro subcutaneous implants of SB431542 and dorsomorphin treated hADSCs displayed significantly higher expression of active-axonal-growth-specific marker GAP43. Our data offers novel insights into cell-based therapies for the nervous system repair.

  1. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Wu Minjuan

    2016-01-01

    Full Text Available Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs onto the human acellular amniotic membrane (AAM. The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration.

  2. Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming.

    Science.gov (United States)

    Santo, Vítor E; Duarte, Ana Rita C; Popa, Elena G; Gomes, Manuela E; Mano, João F; Reis, Rui L

    2012-08-20

    A new generation of scaffolds capable of acting not only as support for cells but also as a source of biological cues to promote tissue regeneration is currently a hot topic of in bone Tissue Engineering (TE) research. The inclusion of growth factor (GF) controlled release functionalities in the scaffolds is a possible strategy to achieve such goal. Platelet Lysate (PL) is an autologous source of GFs, providing several bioactive agents known to act on bone regeneration. In this study, chitosan-chondroitin sulfate nanoparticles loaded with PL were included in a poly(D,L-lactic acid) foam produced by supercritical fluid foaming. The tridimensional (3D) structures were then seeded with human adipose-derived stem cells (hASCs) and cultured in vitro under osteogenic stimulus. The osteogenic differentiation of the seeded hASCs was observed earlier for the PL-loaded constructs, as shown by the earlier alkaline phosphatase peak and calcium detection and stronger Runx2 expression at day 7 of culture, in comparison with the control scaffolds. Osteocalcin gene expression was upregulated in presence of PL during all culture period, which indicates an enhanced osteogenic induction. These results suggest the synergistic effect of PL and hASCs in combinatory TE strategies and support the potential of PL to increase the multifunctionality of the 3D hybrid construct for bone TE applications.

  3. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration. PMID:27597871

  4. Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells.

    Science.gov (United States)

    Franquesa, M; Mensah, F K; Huizinga, R; Strini, T; Boon, L; Lombardo, E; DelaRosa, O; Laman, J D; Grinyó, J M; Weimar, W; Betjes, M G H; Baan, C C; Hoogduijn, M J

    2015-03-01

    Mesenchymal or stromal stem cells (MSC) interact with cells of the immune system in multiple ways. Modulation of the immune system by MSC is believed to be a therapeutic option for autoimmune disease and transplant rejection. In recent years, B cells have moved into the focus of the attention as targets for the treatment of immune disorders. Current B-cell targeting treatment is based on the indiscriminate depletion of B cells. The aim of this study was to examine whether human adipose tissue-derived MSC (ASC) interact with B cells to affect their proliferation, differentiation, and immune function. ASC supported the survival of quiescent B cells predominantly via contact-dependent mechanisms. Coculture of B cells with activated T helper cells led to proliferation and differentiation of B cells into CD19(+) CD27(high) CD38(high) antibody-producing plasmablasts. ASC inhibited the proliferation of B cells and this effect was dependent on the presence of T cells. In contrast, ASC directly targeted B-cell differentiation, independently of T cells. In the presence of ASC, plasmablast formation was reduced and IL-10-producing CD19(+) CD24(high) CD38(high) B cells, known as regulatory B cells, were induced. These results demonstrate that ASC affect B cell biology in vitro, suggesting that they can be a tool for the modulation of the B-cell response in immune disease.

  5. Human Adipose-Derived Stem Cells Impair Natural Killer Cell Function and Exhibit Low Susceptibility to Natural Killer-Mediated Lysis

    Science.gov (United States)

    DelaRosa, Olga; Sánchez-Correa, Beatriz; Morgado, Sara; Ramírez, Cristina; del Río, Borja; Menta, Ramón; Lombardo, Eleuterio

    2012-01-01

    Human adipose-derived stem cells (hASCs) have been successfully used in treating numerous diseases. However, several aspects need to be considered, particularly in the context of allogeneic cell therapy. To better understand hASCs-host interactions, we studied the phenotype of hASCs and their modulatory effect on natural killer (NK) cells by using bone marrow-mesenchymal stem cells (hBM-MSCs) as a reference. The hASCs displayed a lower susceptibility to NK cell-mediated lysis and a lower expression of ligands for DNAM-1 when compared with hBM-MSCs. Moreover, here we demonstrated that hASCs and hBM-MSCs can modulate NK cells through the action of soluble factors such as indoleamine 2,3-dioxygenase. Altogether, these results suggest that for an adoptive cell therapy based on the transfer of allogeneic hASCs, the NK-hASCs crosstalk will not result in an immediate recognition of the transferred cells. Thus, hASCs may remain in the tissue long enough to balance the immune response before being cleared. PMID:21867426

  6. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kwangseon Jung

    Full Text Available Ultraviolet A (UVA irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs. Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  7. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Jung, Kwangseon; Cho, Jae Youl; Soh, Young-Jin; Lee, Jienny; Shin, Seoung Woo; Jang, Sunghee; Jung, Eunsun; Kim, Min Hee; Lee, Jongsung

    2015-01-01

    Ultraviolet A (UVA) irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF)-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  8. Enhancement of Matrix Metalloproteinase-2 (MMP-2 as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Yoshie Arai

    2016-06-01

    Full Text Available Human adipose-derived stem cells (hASCs have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs.

  9. Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-κB activity.

    Science.gov (United States)

    Wu, Jyun-Yi; Chen, Chia-Hsin; Wang, Chau-Zen; Ho, Mei-Ling; Yeh, Ming-Long; Wang, Yan-Hsiung

    2013-01-01

    Mesenchymal stem cell (MSC)-based tissue regeneration is a promising therapeutic strategy for treating damaged tissues. However, the inflammatory microenvironment that exists at a local injury site might restrict reconstruction. Low-power laser irradiation (LPLI) has been widely applied to retard the inflammatory reaction. The purpose of this study was to investigate the anti-inflammatory effect of LPLI on human adipose-derived stem cells (hADSCs) in an inflammatory environment. We showed that the hADSCs expressed Toll-like Receptors (TLR) 1, TLR2, TLR3, TLR4, and TLR6 and that lipopolysaccharide (LPS) significantly induced the production of pro-inflammatory cytokines (Cyclooxygenase-2 (Cox-2), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Interleukin-8 (IL-8)). LPLI markedly inhibited LPS-induced, pro-inflammatory cytokine expression at an optimal dose of 8 J/cm². The inhibitory effect triggered by LPLI might occur through an increase in the intracellular level of cyclic AMP (cAMP), which acts to down-regulate nuclear factor kappa B (NF-κB) transcriptional activity. These data collectively provide insight for further investigations of the potential application of anti-inflammatory treatment followed by stem cell therapy.

  10. Translating textiles to tissue engineering: Creation and evaluation of microporous, biocompatible, degradable scaffolds using industry relevant manufacturing approaches and human adipose derived stem cells.

    Science.gov (United States)

    Haslauer, Carla M; Avery, Matthew R; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2015-07-01

    Polymeric scaffolds have emerged as a means of generating three-dimensional tissues, such as for the treatment of bone injuries and nonunions. In this study, a fibrous scaffold was designed using the biocompatible, degradable polymer poly-lactic acid in combination with a water dispersible sacrificial polymer, EastONE. Fibers were generated via industry relevant, facile scale-up melt-spinning techniques with an islands-in-the-sea geometry. Following removal of EastONE, a highly porous fiber remained possessing 12 longitudinal channels and pores throughout all internal and external fiber walls. Weight loss and surface area characterization confirmed the generation of highly porous fibers as observed via focused ion beam/scanning electron microscopy. Porous fibers were then knit into a three-dimensional scaffold and seeded with human adipose-derived stem cells (hASC). Confocal microscopy images confirmed hASC attachment to the fiber walls and proliferation throughout the knit structure. Quantification of cell-mediated calcium accretion following culture in osteogenic differentiation medium confirmed hASC differentiation throughout the porous constructs. These results suggest incorporation of a sacrificial polymer within islands-in-the-sea fibers generates a highly porous scaffold capable of supporting stem cell viability and differentiation with the potential to generate large three-dimensional constructs for bone regeneration and/or other tissue engineering applications.

  11. Osteogenesis for postoperative temporal bone defects using human ear adipose-derived stromal cells and tissue engineering: an animal model study.

    Science.gov (United States)

    Kim, Yeon Ju; Park, Seung Gu; Shin, Beomyong; Kim, Jangho; Kim, Seung Won; Choo, Oak-Sung; Yin, Xiang Yun; Min, Byoung Hyun; Choung, Yun-Hoon

    2017-09-05

    Mastoidectomy, the removal of infected mastoid bones, is a common surgical procedure for the treatment of chronic otitis media. Persistent and recurrent otorrhea and accumulation of keratin debris following open cavity mastoidectomy are still bothersome issues for both patients and otologists. In this study, we used human ear adipose-derived stromal cells (hEASCs) in combination with polycaprolactone (PCL) scaffolds and osteogenic differentiation medium (ODM) to regenerate temporal bone defects. The hEASCs showed stem cell phenotypes, and these characteristics were maintained up to passage 5. Mastoid bulla and cranial bone defects were induced in Sprague-Dawley rats using AgNO3 and burr hole drilling, respectively, and the rats were then divided into five groups: (1) control, (2) hEASCs, (3) hEASCs + ODM, (4) hEASCs + PCL scaffolds, and (5) hEASCs + PCL scaffolds + ODM. Osteogenesis was evaluated by micro-computed tomography and histology. Compared with the control group, the groups transplanted with hEASCs and PCL scaffolds had significantly higher bone formation along the periphery of the mastoid bulla area. Moreover, ODM synergistically enhanced bone formation in mastoid bulla defects. Our results suggest that combining hEASCs with PCL scaffolds represents a promising method for anatomical and functional reconstruction of postoperative temporal bone defects following mastoidectomy. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  12. Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-κB activity.

    Directory of Open Access Journals (Sweden)

    Jyun-Yi Wu

    Full Text Available Mesenchymal stem cell (MSC-based tissue regeneration is a promising therapeutic strategy for treating damaged tissues. However, the inflammatory microenvironment that exists at a local injury site might restrict reconstruction. Low-power laser irradiation (LPLI has been widely applied to retard the inflammatory reaction. The purpose of this study was to investigate the anti-inflammatory effect of LPLI on human adipose-derived stem cells (hADSCs in an inflammatory environment. We showed that the hADSCs expressed Toll-like Receptors (TLR 1, TLR2, TLR3, TLR4, and TLR6 and that lipopolysaccharide (LPS significantly induced the production of pro-inflammatory cytokines (Cyclooxygenase-2 (Cox-2, Interleukin-1β (IL-1β, Interleukin-6 (IL-6, and Interleukin-8 (IL-8. LPLI markedly inhibited LPS-induced, pro-inflammatory cytokine expression at an optimal dose of 8 J/cm². The inhibitory effect triggered by LPLI might occur through an increase in the intracellular level of cyclic AMP (cAMP, which acts to down-regulate nuclear factor kappa B (NF-κB transcriptional activity. These data collectively provide insight for further investigations of the potential application of anti-inflammatory treatment followed by stem cell therapy.

  13. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

    Science.gov (United States)

    Joo, Hyung Joon; Kim, Jong-Ho

    2017-01-01

    Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration.

  14. Fibroblast growth factor 21 improves insulin sensitivity and synergizes with insulin in human adipose stem cell-derived (hASC adipocytes.

    Directory of Open Access Journals (Sweden)

    Darwin V Lee

    Full Text Available Fibroblast growth factor 21 (FGF21 has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR, insulin receptor substrate-1 (IRS-1, and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway.

  15. Human adipose dynamics and metabolic health.

    Science.gov (United States)

    Feng, Bin; Zhang, Tracy; Xu, Haiyan

    2013-04-01

    The two types of adipose tissue in humans, white and brown, have distinct developmental origins and functions. Human white adipose tissue plays a pivotal role in maintaining whole-body energy homeostasis by storing triglycerides when energy is in surplus, releasing free fatty acids as a fuel during energy shortage, and secreting adipokines that are important for regulating lipid and glucose metabolism. The size of white adipose mass needs to be kept at a proper set point. Dramatic expansion of white fat mass causes obesity--now become a global epidemic disease--and increases the risk for the development of many life-threatening diseases. The absence of white adipose tissue or abnormal white adipose tissue redistribution leads to lipodystrophy, a condition often associated with metabolic disorders. Brown adipose tissue is a thermogenic organ whose mass is inversely correlated with body mass index and age. Therapeutic approaches targeting adipose tissue have been proven to be effective in improving obesity-related metabolic disorders, and promising new therapies could be developed in the near future. © 2013 New York Academy of Sciences.

  16. Combined effects of electromagnetic field and low-level laser increase proliferation and alter the morphology of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Nurković, Jasmin; Zaletel, Ivan; Nurković, Selmina; Hajrović, Šefćet; Mustafić, Fahrudin; Isma, Jovan; Škevin, Aleksandra Jurišić; Grbović, Vesna; Filipović, Milica Kovačević; Dolićanin, Zana

    2017-01-01

    In recent years, electromagnetic field (EMF) and low-level laser (LLL) have been found to affect various biological processes, the growth and proliferation of cells, and especially that of stem cells. The aim of this study was to investigate the effects of EMF and LLL on proliferation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and thus to examine the impact of these therapeutic physical modalities on stem cell engraftment. hAT-MSCs were isolated from subcutaneous adipose tissue of six persons ranging in age from 21 to 56 years. EMF was applied for a period of 7 days, once a day for 30 min, via a magnetic cushion surface at a frequency of 50 Hz and an intensity of 3 mT. LLL was applied also for 7 days, once a day for 5 min, at radiation energies of 3 J/cm(2), with a wavelength of 808 nm, power output of 200 mW, and power density of 0.2 W/cm(2). Nonexposed cells (control) were cultivated under the same culture conditions. Seven days after treatment, the cells were examined for cell viability, proliferation, and morphology. We found that after 7 days, the number of EMF-treated hAT-MSCs was significantly higher than the number of the untreated cells, LLL-treated hAT-MSCs were more numerous than EMF-treated cells, and hAT-MSCs that were treated with the combination of EMF and LLL were the most numerous. EMF and/or LLL treatment did not significantly affect hAT-MSC viability by itself. Changes in cell morphology were also observed, in terms of an increase in cell surface area and fractal dimension in hAT-MSCs treated with EMF and the combination of EMF and LLL. In conclusion, EMF and/or LLL treatment accelerated the proliferation of hAT-MSCs without compromising their viability, and therefore, they may be used in stem cell tissue engineering.

  17. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro

    Directory of Open Access Journals (Sweden)

    Zhang YL

    2017-03-01

    Full Text Available Yanling Zhang,1,* Weihong Dong,1,* Junjie Wang,2 Jing Cai,1 Zehua Wang1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 2Department of Obstetrics and Gynecology, Renhe Hospital, China Three Gorges University, Yichang, People’s Republic of China *These authors contributed equally to this work Abstract: Mesenchymal stem cells (MSCs have been reported to participate in the formation of supportive tumor stroma. The abilities of proliferation and invasion of human epithelial ovarian cancer (EOC cells were significantly enhanced when indirectly cocultured with human omental adipose-derived MSCs (O-ADSCs in vitro. However, the underlying mechanisms remain poorly understood. In this study, EOC cells were cultured with conditioned medium (CM from O-ADSCs (O-ADSC, and the effect of O-ADSC CM on the proteomic profile of EOC cells was assessed by two-dimensional gel electrophoresis (2-DE, followed by liquid chromatography and tandem mass spectrometry. The 2-DE assays revealed a global increase in protein expression in the EOC cells treated with CM. Nine proteins were identified from 11 selected protein spots with differential expression after treatment with CM from O-ADSCs. All the nine proteins have been linked to carcinoma and apoptosis, and the migration ability of tumor cells can be regulated by these proteins. Moreover, the upregulation of prohibitin and serine/arginine-rich splicing factor 1 in EOC cells treated with CM was further confirmed by quantitative real-time polymerase chain reaction. These results suggest that O-ADSCs affect the proteomic profile of EOC cells via paracrine mechanism in favor of EOC progression. Keywords: ovarian cancer, mesenchymal stromal cells, mesenchymal stem cells, omentum, proteomic

  18. Preliminary study on non-viral transfection of F9 (factor IX gene by nucleofection in human adipose-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Susana Olmedillas López

    2016-04-01

    Full Text Available Background. Hemophilia is a rare recessive X-linked disease characterized by a deficiency of coagulation factor VIII or factor IX. Its current treatment is merely palliative. Advanced therapies are likely to become the treatment of choice for the disease as they could provide a curative treatment. Methods. The present study looks into the use of a safe non-viral transfection method based on nucleofection to express and secrete human clotting factor IX (hFIX where human adipose tissue derived mesenchymal stem cells were used as target cells in vitro studies and NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice were used to analyze factor IX expression in vivo studies. Previously, acute liver injury was induced by an injected intraperitoneal dose of 500 mg/kg body weight of acetaminophen. Results. Nucleofection showed a percentage of positive cells ranging between 30.7% and 41.9% and a cell viability rate of 29.8%, and cells were shown to secrete amounts of hFIX between 36.8 and 71.9 ng/mL. hFIX levels in the blood of NSG mice injected with ASCs transfected with this vector, were 2.7 ng/mL 48 h after injection. Expression and secretion of hFIX were achieved both in vitro cell culture media and in vivo in the plasma of mice treated with the transfected ASCs. Such cells are capable of eventually migrating to a previously damaged target tissue (the liver where they secrete hFIX, releasing it to the bloodstream over a period of at least five days from administration. Conclusions. The results obtained in the present study may form a preliminary basis for the establishment of a future ex vivo non-viral gene/cellular safe therapy protocol that may eventually contribute to advancing the treatment of hemophilia.

  19. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1.

    Science.gov (United States)

    Yang, Zhuo; Bian, Chunjing; Zhou, Hong; Huang, Shan; Wang, Shihua; Liao, Lianming; Zhao, Robert Chunhua

    2011-02-01

    A better understanding of the molecular mechanisms underlying the differentiation of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) could provide new insights into the pathogenesis of a number of diseases, such as obesity and diabetes, and broaden the spectrum of potential hAD-MSCs-based cell therapy. In this study, we reported that a human microRNA, hsa-miR-138, could inhibit the adipogenic differentiation of hAD-MSCs. Our results showed that miR-138 was significantly down-regulated during adipogenic differentiation. Overexpression of miR-138 in hAD-MSCs could effectively reduce lipid droplets accumulation, inhibit expression of key adipogenic transcription factors cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT) enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma 2 as well as several other adipogenic marker genes, such as fatty acid binding protein 4 and lipoprotein lipase. Further studies showed that the expression of adenovirus early region 1-A-like inhibitor of differentiation 1 (EID-1), a nuclear receptor coregulator, was inversely correlated with that of miR-138 when hAD-MSCs were differentiated into adipocytes. Knockdown of EID-1 by RNA interference inhibited adipocyte differentiation of hAD-MSCs. In addition, luciferase reporter assays demonstrated that miR-138 directly targeted the 3' untranslated region of EID-1, implying that the negative role of miR-138 in the adipocyte differentiation of hAD-MSCs is at least partially mediated via repressing EID-1. Taken together, this study shows that miR-138 plays a negative role in adipogenic differentiation and sheds light on the role of miRNAs during differentiation of hAD-MSCs toward adipocytes.

  20. Current use of autologous adipose tissue-derived stromal vascular fraction cells for orthopedic applications.

    Science.gov (United States)

    Pak, Jaewoo; Lee, Jung Hun; Park, Kwang Seung; Park, Moonhee; Kang, Lin-Woo; Lee, Sang Hee

    2017-01-31

    Autologous adipose stromal vascular fractions (SVFs) containing adipose tissue-derived stem cells (ASCs) are currently being used in clinical settings for various orthopedic applications for human patients. Due to its potential capability of regenerating cartilage, bone, and tendons, autologous adipose SVFs are being tried in treating patients with osteoarthritis (OA), chondromalacia, meniscus tear, osteonecrosis of the femoral head, and tendon injuries. Here, we have reviewed available human clinical studies with regard to patient applications of autologous adipose SVF containing ASCs, specifically assessing effectiveness and safety in the field of orthopedic disorders. All studies reviewed in this article presents potential benefits of autologous adipose SVF in various orthopedic applications without any serious side effects.

  1. Maxadilan 对人脂肪干细胞的影响%Influence of maxadilan on human adipose-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    连瑞玲; 郭晓令; 郭永龙; 刘庆; 陈建苏

    2015-01-01

    [ ABSTRACT] AIM:To investigate the effect of maxadilan, which specifically activates pituitary adenylate cycla-se-activating polypeptide type I receptor (PAC1 receptor), on the proliferation, apoptosis and differentiation potential of human adipose-derived stem cells ( ASCs) .METHODS:ASCs from human adipose tissue were isolated by enzymatic di-gestion and cultured.ASCs were confirmed by the analysis of the markers for cell phenotypes by flow cytometry ( FCM) and adipogenic/osteogenic induction.The effect of maxadilan on ASCs viability was analyzed by CCK-8 assay and FCM.ASCs were irradiated by ultraviolet C ( UVC) at 254 nm and the absorbance of apoptotic ASCs induced by various doses of UVC was measured by CCK-8 assay.ASCs were exposed to 702 J/m2 UVC for 24 h to induce apoptosis.The effect of maxadilan on ASC apoptosis was analyzed by FCM and the determination of caspase 3 and caspase 9 levels.RESULTS:Adipose-de-rived stem cells were confirmed by the detection of the positive expression of cell phenotypes including CD29, CD44, CD59 and CD105 by FCM.The data of CCK-8 assay revealed that ASCs treated with maxadilan (80 nmol/L) had the strongest ability of proliferation.The data of FCM also demonstrated that the addition of 80 nmol/L maxadilan to ASCs in experimen-tal group markedly improved the proliferation capacity of the cells compared with control group (P<0.05).The apoptosis of ASCs exposed to 702 J/m2UVC was dramatically inhibited by the treatment with maxadilan (80 nmol/L).Such process involved the caspase signaling pathway including caspase 3 and caspase 9.There was statistical significance (P<0.05) between experiment group ( ASCs irradiated by UVC and supplemented with maxadilan) and control group ( ASCs only irra-diated by UVC) .Meanwhile, adipogenic and osteogenic differentiation potentials were both positive in experiment group and control group.CONCLUSION:Maxadilan promotes proliferation and inhibits apoptosis of the ASCs.The differentia-tion potential

  2. Type I and II Diabetic Adipose-Derived Stem Cells Respond In Vitro to Dehydrated Human Amnion/Chorion Membrane Allograft Treatment by Increasing Proliferation, Migration, and Altering Cytokine Secretion

    OpenAIRE

    Massee, Michelle; Chinn, Kathryn; Lim, Jeremy J; Godwin, Lisa; Young, Conan S.; Koob, Thomas J.

    2016-01-01

    Objective: Human amniotic membranes have been shown to be effective for healing diabetic foot ulcers clinically and to regulate stem cell activity in vitro and in vivo; however, diabetic stem cells may be impaired as a sequela of the disease. In this study, dehydrated human amnion/chorion membrane (dHACM) allografts (EpiFix®; MiMedx Group) were evaluated for their ability to regulate diabetic stem cells in vitro. Approach: Human adipose-derived stem cells (ADSCs) from normal, type I diabetic,...

  3. Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo

    Science.gov (United States)

    Liu, Yun-Song; Sun, Yu-chun; Wang, Yu-guang; Wang, Yong; Lyu, Pei-Jun

    2016-01-01

    Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3D) bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN). Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E) staining, Masson trichrome staining, and OCN immunohistochemical staining. Results from live/dead cell staining showed that most of the cells remained alive, with a cell viability of 89%, on day 1 after printing. In vitro osteogenic induction of the 3D construct showed that the expression levels of RUNX2, OSX, and OCN were significantly increased on days 7 and 14 after printing in cells cultured in osteogenic medium (OM) compared with that in normal proliferation medium (PM). Fluorescence microscopy and western blotting showed that the expression of osteogenesis-related proteins was significantly higher in cells cultured in OM than in cells cultured in PM. In vivo studies demonstrated obvious bone matrix formation in the 3D bioprinted constructs. These results indicated that 3D bioprinted constructs consisting of hASCs had the ability to promote mineralized matrix formation and that hASCs could be used in 3D bioprinted constructs for the repair of large bone tissue defects. PMID:27332814

  4. Cartilage Tissue Engineering via Avocado/Soybean Unsaponifible and Human Adipose Derived Stem Cells on Poly (lactide-co–glycolide /Hyaluronic acid composite scaffold

    Directory of Open Access Journals (Sweden)

    Zynolabedin Sharifian

    2016-09-01

    Full Text Available Background: Growth factors and chemical stimulants have key role in stem cell to chondrocyte differentiation in cartilage tissue engineering, but this agents have adverse effects on cells as well as they are expensive and they have short half time. Todays there is great interest in the application of herbal agent for treatment of diseases.Avocado/soybean unsaponifiable (ASU with herbal components has chondroprotective, anti-inflammatory and pro-anabolic effects that it causes stimulate of deposition of extracellular matrix in chondrocytes and relief of osteoarthritis. The aim of this study was an investigation of the chondrogenic effect of ASU in human adipose derived stem cells (hADSCs on PLGA/HA scaffold. Materials and Methods: The 3-D scaffold of Poly lactide-co –glycolide acid (PLGA prepared via solvent/casting leaching method and impregnated with hyaluronic acid to produce composite scaffold. The characterizations of the scaffold, such as surfaces morphology were observed by scanning electron microscopy (SEM and the degradation behaviour of the composite scaffold were evaluated. hADSCs seeded in PLGA/HA scaffold and cultured in chondrogenic media with and without ASU. The expression of chondrogenic related genes (Sox9, type II collagen, Aggrecan and hypertrophic marker (type X collagen were quantified by real time PCR and viability of cells in different groups were assessed by MTT. Results: Our results showed that the expression of genes related chondrogenesis markers Sox9 and type II collagen and aggrecan in differentiated cells in the presence of ASU were significantly increased compared with the control groups (P<0.05, on the other hand, type X collagen expression was not significantly increased. Conclusions: Our results indicated that ASU could be as an appropriate inducer for chondrogenesis of hADSCs and cartilage tissue engineering.

  5. The effect of magnetic stimulation on the osteogenic and chondrogenic differentiation of human stem cells derived from the adipose tissue (hASCs)

    Energy Technology Data Exchange (ETDEWEB)

    Lima, João; Gonçalves, Ana I.; Rodrigues, Márcia T.; Reis, Rui L. [3Bs Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães (Portugal); ICVS/3Bs–PT Government Associate Laboratory, Braga/Guimarães (Portugal); Gomes, Manuela E., E-mail: megomes@dep.uminho.pt [3Bs Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães (Portugal); ICVS/3Bs–PT Government Associate Laboratory, Braga/Guimarães (Portugal)

    2015-11-01

    The use of magnetic nanoparticles (MNPs) towards the musculoskeletal tissues has been the focus of many studies, regarding MNPs ability to promote and direct cellular stimulation and orient tissue responses. This is thought to be mainly achieved by mechano-responsive pathways, which can induce changes in cell behavior, including the processes of proliferation and differentiation, in response to external mechanical stimuli. Thus, the application of MNP-based strategies in tissue engineering may hold potential to propose novel solutions for cell therapy on bone and cartilage strategies to accomplish tissue regeneration. The present work aims at studying the influence of MNPs on the osteogenic and chondrogenic differentiation of human adipose derived stem cells (hASCs). MNPs were incorporated in hASCs and cultured in medium supplemented for osteogenic and chondrogenic differentiation. Cultures were maintained up to 28 days with/without an external magnetic stimulus provided by a magnetic bioreactor, to determine if the MNPs alone could affect the osteogenic or chondrogenic phenotype of the hASCs. Results indicate that the incorporation of MNPs does not negatively affect the viability nor the proliferation of hASCs. Furthermore, Alizarin Red staining evidences an enhancement in extracellular (ECM) mineralization under the influence of an external magnetic field. Although not as evident as for osteogenic differentiation, Toluidine blue and Safranin-O stainings also suggest the presence of a cartilage-like ECM with glycosaminoglycans and proteoglycans under the magnetic stimulus provided. Thus, MNPs incorporated in hASCs under the influence of an external magnetic field have the potential to induce differentiation towards the osteogenic and chondrogenic lineages. - Highlights: • Cellular viability was not negatively influenced by the nanoparticles. • Chondrogenic medium influences more the synthesis of cartilage-like ECM than MNPs. • Synergetic effect among

  6. Synergy Between Choroid Plexus Epithelial Cell-Conditioned Medium and Knockout Serum Replacement Converts Human Adipose-Derived Stem Cells to Dopamine-Secreting Neurons.

    Science.gov (United States)

    Boroujeni, Mahdi Eskandarian; Gardaneh, Mossa; Shahriari, Mehrnoosh Hasan; Aliaghaei, Abbas; Hasani, Sanaz

    2017-08-01

    Human adipose-derived stem cells (hADSCs) have great capacity to differentiate into mesodermal origins as well as nonmesodermal lineages, including neural cells. This valuable feature paves the way for the therapeutic application of hADSCs for neurodegenerative maladies such as Parkinson's disease (PD). We tested the capacity of choroid plexus epithelial cell-conditioned medium (CPEC-CM) alone or cocktailed with knockout serum (KS) to induce dopaminergic (DAergic) differentiation of hADSCs. To this end, hADSCs from lipoaspirate were phenotypically characterized and shown to maintain mesodermal multipotency so that selected media easily differentiated them into osteoblasts, chondrocytes, and adipocytes. To begin inducing hADSC neuronal differentiation, we isolated CPECs from rat brain and expanded them in culture to obtain CPEC-CM. We then treated hADSCs with optimized quantities of collected CPEC-CM, KS, or both. The ADSCs treated with either CPEC-CM or CPEC-CM and KS displayed morphological changes typical of neuron-like phenotypes. As revealed by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), and immunostaining analyses, hADSCs cotreated with CPEC-CM and KS expressed significantly higher levels of neuronal and DAergic markers in comparison with single-treated groups. Moreover, the hADSCs began expressing dopamine-biosynthesizing enzymes mainly after cotreatment with CPEC-CM and KS. Consequently, only cotreated hADSCs were capable of synthesizing and releasing dopamine detectable by high-performance liquid chromatography (HPLC). Finally, hADSCs growing in an ordinary medium were found positive for astrocytic marker glial fibrillary acidic protein (GFAP), but stopped GFAP expression on either single or cotreatments. These combined results suggest that CPEC-CM and KS can synergize to remarkably augment DAergic induction of hADSCs, an effect that has implications for cell replacement therapy for PD and related disorders.

  7. The effect of magnetic stimulation on the osteogenic and chondrogenic differentiation of human stem cells derived from the adipose tissue (hASCs)

    Science.gov (United States)

    Lima, João; Gonçalves, Ana I.; Rodrigues, Márcia T.; Reis, Rui L.; Gomes, Manuela E.

    2015-11-01

    The use of magnetic nanoparticles (MNPs) towards the musculoskeletal tissues has been the focus of many studies, regarding MNPs ability to promote and direct cellular stimulation and orient tissue responses. This is thought to be mainly achieved by mechano-responsive pathways, which can induce changes in cell behavior, including the processes of proliferation and differentiation, in response to external mechanical stimuli. Thus, the application of MNP-based strategies in tissue engineering may hold potential to propose novel solutions for cell therapy on bone and cartilage strategies to accomplish tissue regeneration. The present work aims at studying the influence of MNPs on the osteogenic and chondrogenic differentiation of human adipose derived stem cells (hASCs). MNPs were incorporated in hASCs and cultured in medium supplemented for osteogenic and chondrogenic differentiation. Cultures were maintained up to 28 days with/without an external magnetic stimulus provided by a magnetic bioreactor, to determine if the MNPs alone could affect the osteogenic or chondrogenic phenotype of the hASCs. Results indicate that the incorporation of MNPs does not negatively affect the viability nor the proliferation of hASCs. Furthermore, Alizarin Red staining evidences an enhancement in extracellular (ECM) mineralization under the influence of an external magnetic field. Although not as evident as for osteogenic differentiation, Toluidine blue and Safranin-O stainings also suggest the presence of a cartilage-like ECM with glycosaminoglycans and proteoglycans under the magnetic stimulus provided. Thus, MNPs incorporated in hASCs under the influence of an external magnetic field have the potential to induce differentiation towards the osteogenic and chondrogenic lineages.

  8. In vitro evaluation of different methods of handling human liposuction aspirate and their effect on adipocytes and adipose derived stem cells.

    Science.gov (United States)

    Palumbo, Paola; Miconi, Gianfranca; Cinque, Benedetta; La Torre, Cristina; Lombardi, Francesca; Zoccali, Giovanni; Orsini, Gino; Leocata, Pietro; Giuliani, Maurizio; Cifone, Maria Grazia

    2015-08-01

    Nowadays, fat tissue transplantation is widely used in regenerative and reconstructive surgery. However, a shared method of lipoaspirate handling for ensuring a good quality fat transplant has not yet been established. The study was to identify a method to recover from the lipoaspirate samples the highest number of human viable adipose tissue-derived stem cells (hADSCs) included in stromal vascular fraction (SVF) cells and of adipocytes suitable for transplantation, avoiding an extreme handling. We compared the lipoaspirate spontaneous stratification (10-20-30 min) with the centrifugation technique at different speeds (90-400-1500 × g). After each procedure, lipoaspirate was separated into top oily lipid layer, liquid fraction, "middle layer", and bottom layer. We assessed the number of both adipocytes in the middle layer and SVF cells in all layers. The histology of middle layer and the surface phenotype of SVF cells by stemness markers (CD105+, CD90+, CD45-) was analyzed as well. The results showed a normal architecture in all conditions except for samples centrifuged at 1500 × g. In both methods, the flow cytometry analysis showed that greater number of ADSCs was in middle layer; in the fluid portion and in bottom layer was not revealed significant expression levels of stemness markers. Our findings indicate that spontaneous stratification at 20 min and centrifugation at 400 × g are efficient approaches to obtain highly viable ADSCs cells and adipocytes, ensuring a good thickness of lipoaspirate for autologous fat transfer. Since an important aspect of surgery practice consists of gain time, the 400 × g centrifugation could be the recommended method when the necessary instrumentation is available.

  9. Catechol-Functionalized Hyaluronic Acid Hydrogels Enhance Angiogenesis and Osteogenesis of Human Adipose-Derived Stem Cells in Critical Tissue Defects.

    Science.gov (United States)

    Park, Hyun-Ji; Jin, Yoonhee; Shin, Jisoo; Yang, Kisuk; Lee, Changhyun; Yang, Hee Seok; Cho, Seung-Woo

    2016-06-13

    Over the last few decades, stem cell therapies have been highlighted for their potential to heal damaged tissue and aid in tissue reconstruction. However, materials used to deliver and support implanted cells often display limited efficacy, which has resulted in delaying translation of stem cell therapies into the clinic. In our previous work, we developed a mussel-inspired, catechol-functionalized hyaluronic acid (HA-CA) hydrogel that enabled effective cell transplantation due to its improved biocompatibility and strong tissue adhesiveness. The present study was performed to further expand the utility of HA-CA hydrogels for use in stem cell therapies to treat more clinically relevant tissue defect models. Specifically, we utilized HA-CA hydrogels to potentiate stem cell-mediated angiogenesis and osteogenesis in two tissue defect models: critical limb ischemia and critical-sized calvarial bone defect. HA-CA hydrogels were found to be less cytotoxic to human adipose-derived stem cells (hADSCs) in vitro compared to conventional photopolymerized HA hydrogels. HA-CA hydrogels also retained the angiogenic functionality of hADSCs and supported osteogenic differentiation of hADSCs. Because of their superior tissue adhesiveness, HA-CA hydrogels were able to mediate efficient engraftment of hADSCs into the defect regions. When compared to photopolymerized HA hydrogels, HA-CA hydrogels significantly enhanced hADSC-mediated therapeutic angiogenesis (promoted capillary/arteriole formation, improved vascular perfusion, attenuated ischemic muscle degeneration/fibrosis, and reduced limb amputation) and bone reconstruction (mineralized bone formation, enhanced osteogenic marker expression, and collagen deposition). This study proves the feasibility of using bioinspired HA-CA hydrogels as functional biomaterials for improved tissue regeneration in critical tissue defects.

  10. Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Wang

    Full Text Available Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs in three-dimensional (3D bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN. Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E staining, Masson trichrome staining, and OCN immunohistochemical staining. Results from live/dead cell staining showed that most of the cells remained alive, with a cell viability of 89%, on day 1 after printing. In vitro osteogenic induction of the 3D construct showed that the expression levels of RUNX2, OSX, and OCN were significantly increased on days 7 and 14 after printing in cells cultured in osteogenic medium (OM compared with that in normal proliferation medium (PM. Fluorescence microscopy and western blotting showed that the expression of osteogenesis-related proteins was significantly higher in cells cultured in OM than in cells cultured in PM. In vivo studies demonstrated obvious bone matrix formation in the 3D bioprinted constructs. These results indicated that 3D bioprinted constructs consisting of hASCs had the ability to promote mineralized matrix formation and that hASCs could be used in 3D bioprinted constructs for the repair of large bone tissue defects.

  11. Functional expression of smooth muscle-specific ion channels in TGF-β(1)-treated human adipose-derived mesenchymal stem cells.

    Science.gov (United States)

    Park, Won Sun; Heo, Soon Chul; Jeon, Eun Su; Hong, Da Hye; Son, Youn Kyoung; Ko, Jae-Hong; Kim, Hyoung Kyu; Lee, Sun Young; Kim, Jae Ho; Han, Jin

    2013-08-15

    Human adipose tissue-derived mesenchymal stem cells (hASCs) have the power to differentiate into various cell types including chondrocytes, osteocytes, adipocytes, neurons, cardiomyocytes, and smooth muscle cells. We characterized the functional expression of ion channels after transforming growth factor-β1 (TGF-β1)-induced differentiation of hASCs, providing insights into the differentiation of vascular smooth muscle cells. The treatment of hASCs with TGF-β1 dramatically increased the contraction of a collagen-gel lattice and the expression levels of specific genes for smooth muscle including α-smooth muscle actin, calponin, smooth mucle-myosin heavy chain, smoothelin-B, myocardin, and h-caldesmon. We observed Ca(2+), big-conductance Ca(2+)-activated K(+) (BKCa), and voltage-dependent K(+) (Kv) currents in TGF-β1-induced, differentiated hASCs and not in undifferentiated hASCs. The currents share the characteristics of vascular smooth muscle cells (SMCs). RT-PCR and Western blotting revealed that the L-type (Cav1.2) and T-type (Cav3.1, 3.2, and 3.3), known to be expressed in vascular SMCs, dramatically increased along with the Cavβ1 and Cavβ3 subtypes in TGF-β1-induced, differentiated hASCs. Although the expression-level changes of the β-subtype BKCa channels varied, the major α-subtype BKCa channel (KCa1.1) clearly increased in the TGF-β1-induced, differentiated hASCs. Most of the Kv subtypes, also known to be expressed in vascular SMCs, dramatically increased in the TGF-β1-induced, differentiated hASCs. Our results suggest that TGF-β1 induces the increased expression of vascular SMC-like ion channels and the differentiation of hASCs into contractile vascular SMCs.

  12. Functional expression of smooth muscle-specific ion channels in TGF-β1-treated human adipose-derived mesenchymal stem cells

    Science.gov (United States)

    Park, Won Sun; Heo, Soon Chul; Jeon, Eun Su; Hong, Da Hye; Son, Youn Kyoung; Ko, Jae-Hong; Kim, Hyoung Kyu; Lee, Sun Young; Kim, Jae Ho

    2013-01-01

    Human adipose tissue-derived mesenchymal stem cells (hASCs) have the power to differentiate into various cell types including chondrocytes, osteocytes, adipocytes, neurons, cardiomyocytes, and smooth muscle cells. We characterized the functional expression of ion channels after transforming growth factor-β1 (TGF-β1)-induced differentiation of hASCs, providing insights into the differentiation of vascular smooth muscle cells. The treatment of hASCs with TGF-β1 dramatically increased the contraction of a collagen-gel lattice and the expression levels of specific genes for smooth muscle including α-smooth muscle actin, calponin, smooth mucle-myosin heavy chain, smoothelin-B, myocardin, and h-caldesmon. We observed Ca2+, big-conductance Ca2+-activated K+ (BKCa), and voltage-dependent K+ (Kv) currents in TGF-β1-induced, differentiated hASCs and not in undifferentiated hASCs. The currents share the characteristics of vascular smooth muscle cells (SMCs). RT-PCR and Western blotting revealed that the L-type (Cav1.2) and T-type (Cav3.1, 3.2, and 3.3), known to be expressed in vascular SMCs, dramatically increased along with the Cavβ1 and Cavβ3 subtypes in TGF-β1-induced, differentiated hASCs. Although the expression-level changes of the β-subtype BKCa channels varied, the major α-subtype BKCa channel (KCa1.1) clearly increased in the TGF-β1-induced, differentiated hASCs. Most of the Kv subtypes, also known to be expressed in vascular SMCs, dramatically increased in the TGF-β1-induced, differentiated hASCs. Our results suggest that TGF-β1 induces the increased expression of vascular SMC-like ion channels and the differentiation of hASCs into contractile vascular SMCs. PMID:23761629

  13. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage.

    Directory of Open Access Journals (Sweden)

    Jae-Yol Lim

    Full Text Available OBJECTIVES: Cell-based therapy has been reported to repair or restore damaged salivary gland (SG tissue after irradiation. This study was aimed at determining whether systemic administration of human adipose-derived mesenchymal stem cells (hAdMSCs can ameliorate radiation-induced SG damage. METHODS: hAdMSCs (1 × 10(6 were administered through a tail vein of C3H mice immediately after local irradiation, and then this infusion was repeated once a week for 3 consecutive weeks. At 12 weeks after irradiation, functional evaluations were conducted by measuring salivary flow rates (SFRs and salivation lag times, and histopathologic and immunofluorescence histochemistry studies were performed to assay microstructural changes, apoptosis, and proliferation indices. The engraftment and in vivo differentiation of infused hAdMSCs were also investigated, and the transdifferentiation of hAdMSCs into amylase-producing SG epithelial cells (SGCs was observed in vitro using a co-culture system. RESULTS: The systemic administration of hAdMSCs exhibited improved SFRs at 12 weeks after irradiation. hAdMSC-transplanted SGs showed fewer damaged and atrophied acinar cells and higher mucin and amylase production levels than untreated irradiated SGs. Immunofluorescence TUNEL assays revealed fewer apoptotic cells in the hAdMSC group than in the untreated group. Infused hAdMSCs were detected in transplanted SGs at 4 weeks after irradiation and some cells were found to have differentiated into SGCs. In vitro, a low number of co-cultured hAdMSCs (13%-18% were observed to transdifferentiate into SGCs. CONCLUSION: The findings of this study indicate that hAdMSCs have the potential to protect against irradiation-induced cell loss and to transdifferentiate into SGCs, and suggest that hAdMSC administration should be viewed as a candidate therapy for the treatment of radiation-induced SG damage.

  14. Osteogenic potential of human adipose-derived stromal cells on 3-dimensional mesoporous TiO{sub 2} coating with magnesium impregnation

    Energy Technology Data Exchange (ETDEWEB)

    Cecchinato, Francesca, E-mail: francesca.cecchinato@mah.se [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Karlsson, Johan [Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg (Sweden); Ferroni, Letizia; Gardin, Chiara [Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Padova (Italy); Galli, Silvia; Wennerberg, Ann [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Zavan, Barbara [Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Padova (Italy); Andersson, Martin [Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg (Sweden); Jimbo, Ryo [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki (Japan)

    2015-07-01

    The aim of this study was to evaluate the osteogenic response of human adipose-derived stromal cells (ADScs) to mesoporous titania (TiO{sub 2}) coatings produced with evaporation-induced self-assembly method (EISA) and loaded with magnesium. Our emphasis with the magnesium release functionality was to modulate progenitor cell osteogenic differentiation under standard culture conditions. Osteogenic properties of the coatings were assessed for stromal cells by means of scanning electron microscopy (SEM) imaging, colorimetric mitochondrial viability assay (MTT), colorimetric alkaline phosphates activity (ALP) assay and real time RT-polymerase chain reaction (PCR). Using atomic force microscopy (AFM) it was shown that the surface expansion area (S{sub dr}) was strongly enhanced by the presence of magnesium. From MTT results it was shown that ADSc viability was significantly increased on mesoporous surfaces compared to the non-porous one at a longer cell culture time. However, no differences were observed between the magnesium impregnated and non-impregnated surfaces. The alkaline phosphatase activity confirmed that ADSc started to differentiate into the osteogenic phenotype after 2 weeks of culturing. The gene expression profile at 2 weeks of cell growth showed that such coatings were capable to incorporate specific osteogenic markers inside their interconnected nano-pores and, at 3 weeks, ADSc differentiated into osteoblasts. Interestingly, magnesium significantly promoted the osteopontin gene expression, which is an essential gene for the early biomaterial–cell osteogenic interaction. - Highlights: • The magnesium loading presents a transitory effect on mesoporous TiO{sub 2} surface topography • The mesoporous structure promotes cellular attachment and spreading • The mesoporous structure activates osteogenesis of mesenchymal stem cells in absence of osteogenic promoters • The physical adsorbed magnesium is suggested to be involved in the expression of

  15. Enhanced biological performance of human adipose-derived stem cells cultured on titanium-based biomaterials and silicon carbide sheets for orthopaedic applications.

    Science.gov (United States)

    Lopa, S; De Girolamo, L; Arrigoni, E; Stanco, D; Rimondini, L; Baruffaldi Preis, F W; Lanfranchi, L; Ghigo, M; Chiesa, R; Brini, A T

    2011-01-01

    It is well known that the surface properties of biomaterials may affect bone-healing processes by modulating both cell viability and osteogenic differentiation. In this study we evaluated proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs) cultured on three prototypes of titanium disks and on thin layers of silicon carbide (SiC-PECVD), a material characterized by a high hardness and wear resistance. Our data indicated that all the tested surfaces supported cell growth, in particular, hASCs seeded on both titanium treated by a double-step etching process (TIT) and titanium modified by two Anodic Spark Deposition processes (TAA) grew better respect to the ones cultured on titanium obtained by KOH alkali etching process on TAA (TAAK). Furthermore, hASCs well colonized SiC-PECVD surface, showing a quite similar viability to cells cultured on plastic (PA). TIT and TAA better supported osteogenic differentiation of hASCs compared to PA, as shown by a marked increase of both alkaline phosphatase activity and calcified extracellular matrix deposition; in contrast TAAK did not positively affect hASCs differentiation. SiC-PECVD did not alter osteogenic differentiation of hASC cells: indeed, ALP and calcium deposition levels were comparable to those of cells cultured on plastic. Furthermore, we observed similar results testing hASCs either pre-differentiated for 14 days in osteogenic medium or directly differentiated on biomaterials. Our study suggests that modifications of titanium surface may improve osteo-integration of implant devices and that SiC-PECVD may represent a valid alternative for the coating of prosthetic devices to reduce wear and metallosis events.

  16. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues.

    Science.gov (United States)

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-03-31

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine.

  17. 0Adipose-derived stem cells: Implications in tissue regeneration

    Institute of Scientific and Technical Information of China (English)

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  18. Reduced UCP-1 content in in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity.

    Directory of Open Access Journals (Sweden)

    Andrew L Carey

    Full Text Available INTRODUCTION: Brown adipose tissue (BAT is a potential therapeutic target to reverse obesity. The purpose of this study was to determine whether primary precursor cells isolated from human adult subcutaneous white adipose tissue (WAT can be induced to differentiate in-vitro into adipocytes that express key markers of brown or beige adipose, and whether the expression level of such markers differs between lean and obese young adult males. METHODS: Adipogenic precursor cells were isolated from lean and obese individuals from subcutaneous abdominal WAT biopsies. Cells were grown to confluence, differentiated for 2.5 weeks then harvested for measurement of gene expression and UCP1 protein. RESULTS: There was no difference between groups with respect to differentiation into adipocytes, as indicated by oil red-O staining, rates of lipolysis, and expression of adipogenic genes (FABP4, PPARG. WAT genes (HOXC9, RB1 were expressed equally in the two groups. Post differentiation, the beige adipose specific genes CITED1 and CD137 were significantly increased in both groups, but classic BAT markers ZIC1 and LHX8 decreased significantly. Cell lines from both groups also equally increased post-differentiation expression of the thermogenic-responsive gene PPARGC1A (PGC-1α. UCP1 gene expression was undetectable prior to differentiation, however after differentiation both gene expression and protein content were increased in both groups and were significantly greater in cultures from lean compared with obese individuals (p<0.05. CONCLUSION: Human subcutaneous WAT cells can be induced to attain BAT characteristics, but this capacity is reduced in WAT cells from obese individuals.

  19. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source.

    Science.gov (United States)

    Mellor, Liliana F; Mohiti-Asli, Mahsa; Williams, John; Kannan, Arthi; Dent, Morgan R; Guilak, Farshid; Loboa, Elizabeth G

    2015-09-01

    We have previously shown that elevating extracellular calcium from a concentration of 1.8 to 8 mM accelerates and increases human adipose-derived stem cell (hASC) osteogenic differentiation and cell-mediated calcium accretion, even in the absence of any other soluble osteogenic factors in the culture medium. However, the effects of elevated calcium on hASC chondrogenic differentiation have not been reported. The goal of this study was to determine the effects of varied calcium concentrations on chondrogenic differentiation of hASC. We hypothesized that exposure to elevated extracellular calcium (8 mM concentration) in a chondrogenic differentiation medium (CDM) would inhibit chondrogenesis of hASC when compared to basal calcium (1.8 mM concentration) controls. We further hypothesized that a full osteochondral construct could be engineered by controlling local release of calcium to induce site-specific chondrogenesis and osteogenesis using only hASC as the cell source. Human ASC was cultured as micromass pellets in CDM containing transforming growth factor-β1 and bone morphogenetic protein 6 for 28 days at extracellular calcium concentrations of either 1.8 mM (basal) or 8 mM (elevated). Our findings indicated that elevated calcium induced osteogenesis and inhibited chondrogenesis in hASC. Based on these findings, stacked polylactic acid nanofibrous scaffolds containing either 0% or 20% tricalcium phosphate (TCP) nanoparticles were electrospun and tested for site-specific chondrogenesis and osteogenesis. Histological assays confirmed that human ASC differentiated locally to generate calcified tissue in layers containing 20% TCP, and cartilage in the layers with no TCP when cultured in CDM. This is the first study to report the effects of elevated calcium on chondrogenic differentiation of hASC, and to develop osteochondral nanofibrous scaffolds using a single cell source and controlled calcium release to induce site-specific differentiation. This approach

  20. Addition of bone morphogenetic protein type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Ariadne Cristiane Cabral Cruz

    2012-12-01

    Full Text Available Bone morphogenetic protein type 2 (BMP-2 is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. OBJECTIVES: This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs in medium supplemented with ascorbate and β-glycerophosphate. MATERIAL AND METHODS: Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2 or absence (ASCs+OM of BMP-2. The alkaline phosphatase (ALP activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II, osteonectin, and osteocalcin were evaluated by qPCR. Results: ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. CONCLUSIONS: We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity, intermediate (osteonectin and osteocalcin, or final (calcium deposition phases, suggesting that the exogenous addition of BMP-2 did not improve

  1. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    Science.gov (United States)

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  2. Role of adipose-derived stem cells in wound healing.

    Science.gov (United States)

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. © 2014 by the Wound Healing Society.

  3. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells

    DEFF Research Database (Denmark)

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten

    2015-01-01

    INTRODUCTION: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF...... cytometry. Microarray gene expressions were obtained using the Affymetrix HT HG-U133+ GeneChip®. Gene set enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes and gene ontology terms. Transcription of selected genes of interest was confirmed by quantitative PCR. RESULTS...

  4. Células-tronco derivadas de tecido adiposo humano: desafios atuais e perspectivas clínicas Human adipose-derived stem cells: current challenges and clinical perspectives

    Directory of Open Access Journals (Sweden)

    Samira Yarak

    2010-10-01

    Full Text Available As células-tronco adultas ou somáticas detêm grande promessa para a reparação e regeneração de tecidos. Atualmente, o interesse dos cientistas é contínuo na investigação da biologia de células-tronco mesenquimais, tanto em aspectos básicos, quanto no potencial de aplicações terapêuticas. As células-tronco adultas derivadas do estroma do tecido adiposo, em comparação com as células-tronco derivadas do estroma da medula óssea, apresentam como vantagem o método fácil de obtenção da fonte tecidual. As células-tronco adultas derivadas do estroma do tecido adiposo apresentam potencial para se diferenciarem em células de tecidos mesodérmicos, como os adipócitos, as cartilagens, os ossos e o músculo esquelético e não mesodérmicos, como os hepatócitos, as células pancreáticas endócrinas, os neurônios, os hepatócitos e as células endoteliais vasculares. Entretanto, os dados disponíveis na literatura científica sobre as características das células-tronco adultas derivadas do estroma do tecido adiposo e os procedimentos para sua obtenção e manipulação no laboratório são inconsistentes. É necessário o desenvolvimento de metodologias e procedimentos eficazes de isolamento dessas células para obtenção de células em quantidade e qualidade suficientes para aplicação terapêutica. Nesta revisão, são discutidos os métodos correntes de coleta de tecido adiposo, isolamento e caracterização de células-tronco adultas derivadas do estroma do tecido adiposo, com ênfase na futura aplicação em medicina regenerativa e nos possíveis desafios nesse recente campo da ciência.Adult or somatic stem cells hold great promise for tissue regeneration. Currently, one major scientific interest is focused on the basic biology and clinical application of mesenchymal stem cells. Adipose tissue-derived stem cells share similar characteristics with bone marrow mesenchymal stem cells, but have some advantages including

  5. Sustainable three-dimensional tissue model of human adipose tissue.

    Science.gov (United States)

    Bellas, Evangelia; Marra, Kacey G; Kaplan, David L

    2013-10-01

    The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31 expression), metabolic functions (leptin, glycerol production, gene expression for GLUT4, and PPARγ) and cell replication (DNA content). The cocultures maintained size and shape over this extended period in static cultures, while increasing in diameter by 12.5% in spinner flask culture. Spinner flask cultures yielded improved adipose tissue outcomes overall, based on structure and function, when compared to the static cultures. This work establishes a tissue model system that can be applied to the development of chronic metabolic dysfunction systems associated with human adipose tissue, such as obesity and diabetes, due to the long term sustainable functions demonstrated here.

  6. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering.

    Science.gov (United States)

    E, Ling-Ling; Xu, Lu-Lu; Wu, Xia; Wang, Dong-Sheng; Lv, Yan; Wang, Jia-Zhu; Liu, Hong-Chen

    2010-09-01

    Cells, scaffolds, and growth factors are the three main factors for creating a stem-cell-based tissue-engineered construct, but the interactions between three factors are not very clear. We hereby explored the interactions between rat-adipose-derived stromal cells (rASCs), recombinant human bone morphogenetic protein-2 (rhBMP-2), and beta-tricalcium phosphate (beta-TCP) to provide evidence for their application in bone tissue engineering by evaluating the protein adsorption of beta-TCP, the cell attachment, alkaline phosphatase (ALP) activity/protein, osteocalcin (OCN) content, mineral formation, calcium content, phosphonium content, cell vitality, gene expression, and implantation in the backs of severe combined immunodeficient mice of rhBMP-2 preinducing rASCs seeded onto beta-TCP. The results showed that beta-TCP could adsorb the proteins from the media. The attachment, proliferation, and osteogenic properties of rASCs were supported by beta-TCP, as revealed using scanning electron microscopy. Compared with rASCs cultured on the culture plate, rASCs cultured on beta-TCP had significantly higher ALP activity/protein, OCN content, and mineral formation. These values for rASCs cultured on beta-TCP with rhBMP-2 increased most significantly. The rhBMP-2 significantly increased the calcium content, phosphonium content, and ALP, type I collagen, and OCN mRNA levels of rASCs cultured on beta-TCP. The methylthiazol tetrazolium method revealed that the vitality of rASCs cultured on beta-TCP with or without rhBMP-2 for 4, 7, and 28 days in vitro was insignificantly different. After 8 and 12 weeks of implantation, each group displayed increased bone formation over the 12-week period. The percentage of the new bone formed areas for beta-TCP/rhBMP-2 and beta-TCP was not significantly different. This value for rASCs/beta-TCP construct was significantly higher than that for beta-TCP group, but the maximal and robust bone formation was presented in rASCs/beta-TCP with rhBMP-2

  7. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Razieh Alipour

    2010-01-01

    Conclusions: Both cell populations derived from adipose tissue and dental pulp showed common phenotypic markers of mesenchymal stem cells. In conclusion, mesenchymal stem cells could be isolated and cultured successfully from dental pulp of human exfo-liated deciduous teeth, they are very good candidates for treatment and prevention of human diseases.

  8. 人脂肪源性干细胞生物学特性的研究%Study on the biological characterisitics of human adipose derived stem cells

    Institute of Scientific and Technical Information of China (English)

    王伟; 撒亚莲; 严新民; 李士欣

    2011-01-01

    Objective To establish the culture systems of human adipose derived stem cells (hADSCs) and observe the biological characteristics. Methods hADSCs were isolated from adult human subcutaneous fat and digested by collagenase type I , which were grown in L-DMEM with 100 ml/L fetal bovine serum, as well as were subcultured using 2. 5 g/L Trypsin-0. 2g/L EDTA. The morphological changes of hADSCs were observed under phase contrast inverted microscope . Growth curve of cells in 3rd and 8th passage was measured by cells counting. The phenotypic analysis of hADSCs including CD 44, CD90, CD105, CD34 and CD45 were identified by flow cytometry. Vimentin was detected by immunocytochemistry. The hADSCs can differentiate into adipocytes like cell in the culture medium containing dexamesasone , insulin, indometacin and 3-isobutyl-l-methylxanine (IBMX) , which identified by oil-red stain. Results Under phase contrast inverted microscope , hADSCs appeared fibroblast -likely, spindle shape and homogeneous arranged parallel. hADSCs were still in latent phase after being subculture for 2 days, followed by logarithmical proliferation from day 3,reached the growth platform at day 7. The positive expression rate of CD44,CD90, CD105 was 100% ,98. 6% ,99. 5% ,respectively. The pattern of CD34 and CD45 expression was negative. The immunohistochemistry expression of vimentin showed strong positive staining . After adipocyte like cells committed induction, the morphology of these cells changed to round and with lipid vacuoles accumulated in the cytoplasm gradually , which could be stained by oil-red 0. Conclusions hADSCs with a high proliferation ability can be effectively isolated from human subcutaneous fat with collagenase type I . hADSCs take onadhering growth character, display a fibroblast-like morphology and differentiation potentiating of fat like cells, which provide one of the new seed cells for tissue engineering .%目的 建立人脂肪源性干细胞(human adipose derived stem

  9. Differential response of human adipose tissue-derived mesenchymal stem cells, dermal fibroblasts, and keratinocytes to burn wound exudates: potential role of skin-specific chemokine CCL27.

    Science.gov (United States)

    van den Broek, Lenie J; Kroeze, Kim L; Waaijman, Taco; Breetveld, Melanie; Sampat-Sardjoepersad, Shakun C; Niessen, Frank B; Middelkoop, Esther; Scheper, Rik J; Gibbs, Susan

    2014-01-01

    Many cell-based regenerative medicine strategies toward tissue-engineered constructs are currently being explored. Cell-cell interactions and interactions with different biomaterials are extensively investigated, whereas very few studies address how cultured cells will interact with soluble wound-healing mediators that are present within the wound bed after transplantation. The aim of this study was to determine how adipose tissue-derived mesenchymal stem cells (ASC), dermal fibroblasts, and keratinocytes will react when they come in contact with the deep cutaneous burn wound bed. Burn wound exudates isolated from deep burn wounds were found to contain many cytokines, including chemokines and growth factors related to inflammation and wound healing. Seventeen mediators were identified by ELISA (concentration range 0.0006-9 ng/mg total protein), including the skin-specific chemokine CCL27. Burn wound exudates activated both ASC and dermal fibroblasts, but not keratinocytes, to increase secretion of CXCL1, CXCL8, CCL2, and CCL20. Notably, ASC but not fibroblasts or keratinocytes showed significant increased secretion of vascular endothelial growth factor (5-fold) and interleukin-6 (253-fold), although when the cells were incorporated in bi-layered skin substitute (SS) these differences were less pronounced. A similar discrepancy between ASC and dermal fibroblast mono-cultures was observed when recombinant human-CCL27 was used instead of burn wound exudates. Although CCL27 did not stimulate the secretion of any of the wound-healing mediators by keratinocytes, these cells, in contrast to ASC or dermal fibroblasts, showed increased proliferation and migration. Taken together, these results indicate that on transplantation, keratinocytes are primarily activated to promote wound closure. In contrast, dermal fibroblasts and, in particular, ASC respond vigorously to factors present in the wound bed, leading to increased secretion of angiogenesis/granulation tissue formation

  10. Long Term Study of Protective Mechanisms of Human Adipose Derived Mesenchymal Stem Cells on Cisplatin Induced Kidney injury in Sprague-Daweley Rats

    Directory of Open Access Journals (Sweden)

    Elhusseini FM

    2016-05-01

    Full Text Available Background/Aims: Long-term evaluation of cisplatin induced nephrotoxicity and the probable renal protective activities of stem cells are lacking up until now. We evaluated the early and long-term role of human adipose derived mesenchymal stem cells (ADMSCs in prevention or amelioration of cisplatin induced acute kidney injury (AKI in Sprague-Dawley rats. For this, we determined the kidney tissue level of oxidative stress markers in conjugation with a renal histopathological scoring system of both acute and chronic renal changes. Methods: This study used eighty Sprague-Dawley (SD rats weighing 250-300g. They were assigned into four equal groups (each group n=20: (I Negative control group, rats injected with single dose of 1 ml normal saline. (II Positive control cisplatin, rats injected with a single dose of 5 mg/kg I.P in 1 ml saline. (III Cisplatin and culture media group, rats injected with 0.5 ml of culture media single dose into the tail vein and (IV Cisplatin and ADMSCs group, rats injected with a single dose of 0.5 ml of culture media containing 5 x106ADMSCs into the tail vein one day after cisplatin administration. Each main group was further divided according to the timing of sacrifice into four subgroups (each subgroup n=5. Rats in the subgroup A were sacrificed after 4 days; subgroup B were sacrificed after 7 days; subgroup C were sacrificed after 11 days; and subgroup D were sacrificed after 30 days. Before sacrifice, 24 hrs.-urine was collected using a metabolic cage. Renal function was evaluated through blood urea nitrogen (BUN, serum creatinine and creatinine clearance. Kidney tissue homogenate oxidative stress parameters, Malondialdehyde (MDA, Superoxide dismutase (SOD and Glutathione (GSH were determined. In addition, histopathological analysis for active injury, regenerative and chronic changes was performed. Results: ADMSCs were characterized and their capability of differentiation was proved. Cisplatin induced a significant

  11. The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo.

    Science.gov (United States)

    Li, Xiaoming; Liu, Haifeng; Niu, Xufeng; Yu, Bo; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Watari, Fumio

    2012-06-01

    Carbon nanotubes (CNTs), one of the most concerned nanomaterials, with unique electrical, mechanical and surface properties, have been shown suitable for biomedical application. In this study, we evaluated attachment, proliferation, osteogenic gene expression, ALP/DNA, protein/DNA and mineralization of human adipose-derived stem cells cultured in vitro on multi-walled carbon nanotubes (MWNTs) and graphite (GP) compacts with the same dimension. Moreover, we assessed the effect of these two kinds of compacts on ectopic bone formation in vivo. First of all, higher ability of the MWNTs compacts to adsorb proteins, comparing with the GP compacts, was shown. During the conventional culture, it was shown that MWNTs could induce the expression of ALP, cbfa1 and COLIA1 genes while GP could not. Furthermore, alkaline phosphatase (ALP)/DNA and protein/DNA of the cell on the MWNTs compacts, was significantly higher than those of the cells on the GP compacts. With the adsorption of the proteins in culture medium with 50% fetal bovine serum (FBS) in advance, the increments of the ALP/DNA and protein/DNA for the MWNTs compacts were found respectively significantly more than the increments of those for the GP compacts, suggesting that the larger amount of protein adsorbed on the MWNTs was crucial. More results showed that ALP/DNA and protein/DNA of the cells on the two kinds of compacts pre-soaked in culture medium having additional rhBMP-2 were both higher than those of the cells on the samples re-soaked in culture medium with 50% FBS, and that those values for the MWNTs compacts increased much more. Larger mineral content was found on the MWNTs compacts than on the GP compacts at day 7. In vivo experiment showed that the MWNTs could induce ectopic bone formation in the dorsal musculature of ddy mice while GP could not. The results indicated that MWNTs might stimulate inducible cells in soft tissues to form inductive bone by concentrating more proteins, including bone

  12. Preservation media, durations and cell concentrations of short-term storage affect key features of human adipose-derived mesenchymal stem cells for therapeutic application

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2017-05-01

    Full Text Available Background Adipose-derived mesenchymal stem cells (ADSCs have shown great potential in the treatment of various diseases. However, the optimum short-term storage condition of ADSCs in 2∼8 °C is rarely reported. This study aimed at optimizing a short-term storage condition to ensure the viability and function of ADSCs before transplantation. Methods Preservation media and durations of storage were evaluated by cell viability, apoptosis, adhesion ability and colony-forming unit (CFU capacity of ADSCs. The abilities of cell proliferation and differentiation were used to optimize cell concentrations. Optimized preservation condition was evaluated by cell surface markers, cell cycle and immunosuppressive capacity. Results A total of 5% human serum albumin in multiple electrolytes (ME + HSA was the optimized medium with high cell viability, low cluster rate, good adhesion ability and high CFU capacity of ADSCs. Duration of storage should be limited to 24 h to ensure the quality of ADSCs before transplantation. A concentration of 5 × 106 cells/ml was the most suitable cell concentration with low late stage apoptosis, rapid proliferation and good osteogenic and adipogenic differentiation ability. This selected condition did not change surface markers, cell cycle, indoleamine 2, 3-dioxygenase 1 (IDO1 gene expression and kynurenine (Kyn concentration significantly. Discussion In this study, ME + HSA was found to be the best medium, most likely due to the supplement of HSA which could protect cells, the physiological pH (7.4 of ME and sodium gluconate ingredient in ME which could provide energy for cells. Duration should be limited to 24 h because of reduced nutrient supply and increased waste and lactic acid accumulation during prolonged storage. To keep cell proliferation and limit lactic acid accumulation, the proper cell concentration is 5× 106 cells/ml. Surface markers, cell cycle and immunosuppressive capacity did not change significantly

  13. Is 1, 25-dihydroxyvitamin D3 an ideal substitute for dexamethasone for inducing osteogenic differentiation of human adipose tissue-derived stromal cells in vitro?

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-sheng; LIU Yun-song; TAN Jian-guo

    2006-01-01

    Background Human adipose tissue-derived stromal cells (hADSCs) can be induced to differentiate along anosteoblastic lineage under stimulation of dexamethasone (DEX). Recent studies, however, have questioned theefficacy of glucocorticoids such as DEX in mediating the osteogenesis process of skeletal progenitor cells andprocessed lipoaspirate cells. Is it possible to find a substitute for DEX? Therefore, this study was designed toinvestigate osteogenic capacity and regulating mechanisms for osteoblastic differentiation of hADSCs bycomparing osteogenic media (OM) containing either 1, 25-dihydroxyvitamin D3 (VD) or DEX and determine ifVD was an ideal substitute for DEX as an induction agent for the osteogenesis of hADSCs.Methods Osteogenic differentiation of hADSCs was induced by osteogenic medium (OM) containing either 10nmol/L VD or 100 nmol/L DEX. Differentiation of hADSCs into osteoblastic lineage was identified by alkalinephosphatase (ALP) staining, von Kossa staining, and reverse transcription-polymerase chain reaction assays formRNA expression of osteogenesis-related genes such as type Ⅰ collagen (COL Ⅰ), bone sialoprotein (BSP),osteocalcin (OC), bone morphogenetic protein (BMP)-2, BMP-4, BMP-6, BMP-7, runt-related transcriptionfactor 2/core binding factor α1 (Runx2/Cbfal), osterix (Osx), and LIM mineralization protein-1 (LMP-1).Results von Kossa staining revealed that the differentiated cells induced by both VD and DEX weremineralized in vitro. They also expressed osteoblast-related markers, such as ALP, COL I, BSP, and OC.Runx2/Cbfal, Osx, BMP-6, and LMP-1 were upregulated during VD and DEX-induced hADSC osteoblasticdifferentiation, but BMP-4, BMP-7 were not. BMP-2 was only expressed in VD-induced differentiated cells.Conclusions VD or DEX-induced hADSCs differentiate toward the osteoblastic lineage in vitro. Runx2/Cbfa1,Osx, BMP-2, BMP-6, and LMP-1 are involved in regulating osteoblastic differentiation of hADSCs, but BMP-4,BMP-7 are not. VD, but not DEX

  14. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Maroni, Paola [Istituto Ortopedico Galeazzi, Milano (Italy); Brini, Anna Teresa [Istituto Ortopedico Galeazzi, Milano (Italy); Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universita degli Studi di Milano, Milano (Italy); Arrigoni, Elena [Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universita degli Studi di Milano, Milano (Italy); Girolamo, Laura de [Istituto Ortopedico Galeazzi, Milano (Italy); Niada, Stefania [Istituto Ortopedico Galeazzi, Milano (Italy); Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universita degli Studi di Milano, Milano (Italy); Matteucci, Emanuela; Bendinelli, Paola [Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Universita degli Studi di Milano, Milano (Italy); Desiderio, Maria Alfonsina, E-mail: a.desiderio@unimi.it [Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Universita degli Studi di Milano, Milano (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Acetylation affected hASCs osteodifferentiation through Runx2-PPAR{gamma}. Black-Right-Pointing-Pointer HDACs knocking-down favoured the commitment effect of osteogenic medium. Black-Right-Pointing-Pointer HDACs silencing early activated Runx2 and ALP. Black-Right-Pointing-Pointer PPAR{gamma} reduction and calcium/collagen deposition occurred later. Black-Right-Pointing-Pointer Runx2/PPAR{gamma} target genes were modulated in line with HDACs role in osteo-commitment. -- Abstract: The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) {gamma}. These key osteogenic and adipogenic transcription factors are oppositely involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPAR{gamma} and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPAR{gamma}/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPAR{gamma} target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our results reveal

  15. Upregulation of CC Chemokine Receptor 7 (CCR7) Enables Migration of Xenogeneic Human Adipose-Derived Mesenchymal Stem Cells to Rat Secondary Lymphoid Organs.

    Science.gov (United States)

    Ma, Tian; Luan, Shao-Liang; Huang, Hong; Sun, Xing-Kun; Yang, Yan-Mei; Zhang, Hui; Han, Wei-Dong; Li, Hong; Han, Yan

    2016-12-30

    BACKGROUND CC chemokine receptor 7 (CCR7) expression is vital for cell migration to secondary lymphoid organs (SLOs). Our previous work showed that inducing CCR7 expression enabled syngeneic mesenchymal stem cells (MSCs) to migrate into SLOs, resulting in enhanced immunosuppressive performance in mice. Given that human adipose-derived stem cells (hASCs) are widely used in clinical therapy, we further investigated whether upregulation of CCR7 enables xenogeneic hASCs to migrate to rat SLOs. MATERIAL AND METHODS hASCs rarely express CCR7; therefore, hASCs were transfected with lentivirus encoding rat CCR7 (rCCR7) plus green fluorescence protein (GFP) or GFP alone. CCR7 mRNA and cell surface expression of rCCR7-hASCs and GFP-hASCs were examined by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry (FCM), respectively. The phenotype, differentiation, and proliferation capacity of each cell type was also determined. To examine migration, rCCR7-hASCs and GFP-hASCs were injected intravenously into Lewis rats, and the proportion of GFP-positive cells in the spleen and lymph nodes was determined with FCM. RESULTS mRNA and cell surface protein expression of CCR7 was essentially undetectable in hASCs and GFP-ASCs; however, CCR7 was highly expressed in rCCR7-ASCs. rCCR7-hASCs, GFP-hASCs, and hASCs shared a similar immunophenotype, and maintained the ability of multilineage differentiation and proliferation. In addition, the average proportion of GFP-positive cells was significantly higher following transplantation of rCCR7-hASCs compared with GFP-hASCs (p<0.01). CONCLUSIONS These results suggest that upregulation of rat CCR7 expression does not change the phenotype, differentiation, or proliferation capacity of hASCs, but does enable efficient migration of hASCs to rat SLOs.

  16. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Fang, Cheng-Hu; Jin, Jiyong; Joe, Jun-Ho; Song, Yi-Sun; So, Byung-Im; Lim, Sang Moo; Cheon, Gi Jeong; Woo, Sang-Keun; Ra, Jeong-Chan; Lee, Young-Yiul; Kim, Kyung-Soo

    2012-01-01

    Human amniotic epithelial cells (h-AECs), which have various merits as a cell source for cell therapy, are known to differentiate into cardiomyocytes in vitro. However, the ability of h-AECs to differentiate into cardiomyocytes in vivo and their cell transplantation effects on myocardial infarction are still unknown. In this study, we assessed whether h-AECs could differentiate into cardiomyocytes in vivo and whether h-AECs transplantation can decrease infarct size and improve cardiac function, in comparison to transplantation of cord blood-derived mesenchymal stem cells (MSCs) or adipose tissue-derived MSCs. For our study, we injected h-AECs, cord blood-derived MSCs, adipose tissue-derived MSCs, and saline into areas of myocardial infarction in athymic nude rats. After 4 weeks, 3% of the surviving h-AECs expressed myosin heavy chain, a marker specific to the myocardium. Compared with the saline group, all cell-implanted groups showed a higher ejection fraction, lower infarct area by positron emission tomography and histology, and more abundant myocardial gene and protein expression in the infarct area. We showed that h-AECs can differentiate into cardiomyocyte-like cells, decrease infarct size, and improve cardiac function in vivo. The beneficial effects of h-AECs were comparable to those of cord blood and adipose tissue-derived MSCs. These results support the need for further studies of h-AECs as a cell source for myocardial regeneration due to their plentiful availability, low immunity, and lack of ethical issues related to their use.

  17. Methods for analyzing microRNA expression and function during osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, Yeon Jeong; Jung, Jin Sup

    2011-01-01

    MicroRNAs (miRNA) are single-stranded RNA molecules of 21-23 nucleotides in length that regulate gene expression at the posttranscriptional level. They may play important roles during osteogenic differentiation of adipose tissue-derived mesenchymal stem cells (hASC). In this chapter, we focus on the methods and strategies for elucidating miRNA function during osteogenic differentiation. We describe a miRNA expression analysis protocol, and a lentiviral vector strategy for the ectopic expression of miRNA in hASC to determine the role of miRNA during osteogenic differentiation. We also describe miRNA inhibition to further determine the role of miRNA during osteogenic differentiation, and a luciferase assay to demonstrate direct binding between a specific miRNA and its putative target.

  18. Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2

    Directory of Open Access Journals (Sweden)

    A Mehrkens

    2012-09-01

    Full Text Available Engineered osteogenic constructs for bone repair typically involve complex and costly processes for cell expansion. Adipose tissue includes mesenchymal precursors in large amounts, in principle allowing for an intraoperative production of osteogenic grafts and their immediate implantation. However, stromal vascular fraction (SVF cells from adipose tissue were reported to require a molecular trigger to differentiate into functional osteoblasts. The present study tested whether physiological doses of recombinant human BMP-2 (rhBMP-2 could induce freshly harvested human SVF cells to generate ectopic bone tissue. Enzymatically dissociated SVF cells from 7 healthy donors (1 x 106 or 4 x 106 were immediately embedded in a fibrin gel with or without 250 ng rhBMP-2, mixed with porous silicated calcium-phosphate granules (Actifuse®, Apatech (final construct size: 0.1 cm3 and implanted ectopically for eight weeks in nude mice. In the presence of rhBMP-2, SVF cells not only supported but directly contributed to the formation of bone ossicles, which were not observed in control cell-free, rhBMP-2 loaded implants. In vitro analysis indicated that rhBMP-2 did not involve an increase in the percentage of SVF cells recruited to the osteogenic lineage, but rather induced a stimulation of the osteoblastic differentiation of the committed progenitors. These findings confirm the feasibility of generating fully osteogenic grafts using an easily accessible autologous cell source and low amounts of rhBMP-2, in a timing compatible with an intraoperative schedule. The study warrants further investigation at an orthotopic site of implantation, where the delivery of rhBMP-2 could be bypassed thanks to the properties of the local milieu.

  19. Influence of different oxygen partial pressures on cytokines secreted from human adipose-derived stem cells%不同氧分压时人脂肪干细胞细胞因子的分泌

    Institute of Scientific and Technical Information of China (English)

    姜亦瑶; 刘晓程; 裴宇; 朱德琳

    2013-01-01

    背景:不同氧分压对人脂肪来源干细胞分泌细胞因子的影响目前尚未定论,这些差异可能由于研究者对于氧分压的选取不同而造成影响。  目的:检测不同氧分压对人脂肪来源干细胞分泌细胞因子的影响。  方法:体外分离培养人脂肪来源干细胞进行免疫表型进行鉴定。将人脂肪来源干细胞分别在1%,3%,5%,10%,21%氧分压的环境中培养24 h后,使用实时定量PCR和酶联免疫吸附法对人脂肪来源干细胞分泌的血管内皮生长因子、肝细胞生长因子、神经细胞生长因子、角质细胞生长因子,在基因水平以及蛋白水平上进行检测分析。  结果与结论:人脂肪来源的人脂肪来源干细胞阳性表达 CD71,CD73,CD90,CD105,阴性表达 CD34, CD45,CD54及HLA-DR。经单因素方差分析统计,在基因水平上,低氧环境(体积分数1%,3%氧)均可促进人脂肪来源干细胞显著性高表达血管内皮生长因子、神经生长因子(P均0.05)。在蛋白水平上,低氧促进人脂肪来源干细胞分泌肝细胞生长因子、血管内皮生长因子蛋白(P均 OBJECTIVE:To investigate the influence of different oxygen partial pressures on cytokines secreted from human adipose-derived stem cells. METHODS:Human adipose-derived stem cells were cultured in vitro and identified by its immunophenotype. Human adipose-derived stem cells were divided into five groups and cultured under different oxygen partial pressure conditions (1%, 3%, 5%, 10%, 21%) for 24 hours, respectively. With quantitative real-time PCR and enzyme linked immunosorbent assay, the secretion of cytokines, vascular endothelial growth factor, hepatocyte growth factor, nerve growth factor, keratinocyte growth factor, from human adipose-derived stem cells were analyzed on the gene and protein levels. RESULTS AND CONCLUSION:Human adipose-derived stem cells were positive for CD71, CD73, CD90, CD105 and

  20. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy

    DEFF Research Database (Denmark)

    Perin, Emerson C; Sanz-Ruiz, Ricardo; Sánchez, Pedro L

    2014-01-01

    AIMS: Adipose-derived regenerative cells (ADRCs) can be isolated from liposuction aspirates and prepared as fresh cells for immediate administration in cell therapy. We performed the first randomized, placebo-controlled, double-blind trial to examine the safety and feasibility of the transendocar...

  1. Adipose tissues differentiated by adipose-derived stemcells harvested from transgenic mice

    Institute of Scientific and Technical Information of China (English)

    LU Feng; GAO Jian-hua; Rei Ogawa; Hiroshi Mizuro; Hiki Hykusoku

    2006-01-01

    Objective: To induce adipocyte differentiation in vitro by adipose-derived stromal cells (ASCs) harvested from transgenic mice with green fluorescent protein (GFP)and assess the possibility of constructing adipose tissues via attachment of ASCs to type Ⅰ collagen scaffolds.Methods: Inguinal fat pads from GFP transgenic mice were digested by enzymes for isolation of ASCs (primary culture). After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks, and the adipocyte differentiation by ASCs in vitro was assessed by morphological observation and Oil Red O staining. Then they were attached to collagen scaffolds and co-cultured for 12 hours, followed by hypodermic implantation to the dorsal skin of nude mice for 2 months. The newly-formed tissues were detected by HE staining.Results: The cultured primary stem cells were fibroblast-like and showed active proliferation. After being incubated in an adipocyte differentiation medium, the lipid droplets in the cytoplasm accumulated gradually and finally developed into mature adipocytes, which showed positive in Oil Red O staining. A 0.5-cm3 new tissue clot was found under the dorsal skin of the nude mice and it was confirmed as mature adipose tissues by fluorescent observation and HE staining.Conclusions: ASCs can successfully differentiate adipose tissues into mature adipocytes, which exhibit an adipocyte-like morphology and express as intracytoplasmic lipid droplets. It is an efficient model of adipose tissues engineered with ASCs and type Ⅰ collagen scaffolds.

  2. A chromatin immunoprecipitation (ChIP) protocol for use in whole human adipose tissue.

    Science.gov (United States)

    Haim, Yulia; Tarnovscki, Tanya; Bashari, Dana; Rudich, Assaf

    2013-11-01

    Chromatin immunoprecipitation (ChIP) has become a central method when studying in vivo protein-DNA interactions, with the major challenge being the hope to capture "authentic" interactions. While ChIP protocols have been optimized for use with specific cell types and tissues including adipose tissue-derived cells, a working ChIP protocol addressing the challenges imposed by fresh whole human adipose tissue has not been described. Utilizing human paired omental and subcutaneous adipose tissue obtained during elective abdominal surgeries, we have carefully identified and optimized individual steps in the ChIP protocol employed directly on fresh tissue fragments. We describe a complete working protocol for using ChIP on whole adipose tissue fragments. Specific steps required adaptation of the ChIP protocol to human whole adipose tissue. In particular, a cross-linking step was performed directly on fresh small tissue fragments. Nuclei were isolated before releasing chromatin, allowing better management of fat content; a sonication protocol to obtain fragmented chromatin was optimized. We also demonstrate the high sensitivity of immunoprecipitated chromatin from adipose tissue to freezing. In conclusion, we describe the development of a ChIP protocol optimized for use in studying whole human adipose tissue, providing solutions for the unique challenges imposed by this tissue. Unraveling protein-DNA interaction in whole human adipose tissue will likely contribute to elucidating molecular pathways contributing to common human diseases such as obesity and type 2 diabetes.

  3. Human Adipose-Derived Stem Cells Expanded Under Ambient Oxygen Concentration Accumulate Oxidative DNA Lesions and Experience Procarcinogenic DNA Replication Stress.

    Science.gov (United States)

    Bétous, Rémy; Renoud, Marie-Laure; Hoede, Claire; Gonzalez, Ignacio; Jones, Natalie; Longy, Michel; Sensebé, Luc; Cazaux, Christophe; Hoffmann, Jean-Sébastien

    2017-01-01

    Adipose-derived stem cells (ADSCs) have led to growing interest in cell-based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA-seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress-associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68-76.

  4. in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells.

    Science.gov (United States)

    Castells-Sala, Cristina; Martínez-Ramos, Cristina; Vallés-Lluch, Ana; Monleón Pradas, Manuel; Semino, Carlos

    2015-11-01

    Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue-derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16-I peptide gel in microporous poly(ethyl acrylate) polymers using two-dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self-assembling peptide RAD16-I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16-I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16-I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction.

  5. Cinnamaldehyde and eugenol change the expression folds of AKT1 and DKC1 genes and decrease the telomere length of human adipose-derived stem cells (hASCs: An experimental and in silico study

    Directory of Open Access Journals (Sweden)

    Abdorrahim Absalan

    2017-03-01

    Full Text Available Objective(s: To investigate the effect of cinnamaldehyde and eugenol on the telomere-dependent senescence of stem cells. In addition, to search the probable targets of mentioned phytochemicals between human telomere interacting proteins (TIPs using in silico studies. Materials and Methods: Human adipose derived stem cells (hASCs were studied under treatments with 2.5 µM/ml cinnamaldehyde, 0.1 µg/ml eugenol, 0.01% DMSO or any additive. The expression of TERT, AKT1 and DKC1 genes and the telomere length were assessed over 48-hr treatment. In addition, docking study was conducted to show probable ways through which phytochemicals interact with TIPs. Results: Treated and untreated hASCs had undetectable TERT expression, but they did affect the AKT1 and DKC1 expression levels (CI=0.95; P

  6. Delivery of human mesenchymal adipose-derived stem cells restores multiple urological dysfunctions in a rat model mimicking radical prostatectomy damages through tissue-specific paracrine mechanisms.

    Science.gov (United States)

    Yiou, René; Mahrouf-Yorgov, Meriem; Trébeau, Céline; Zanaty, Marc; Lecointe, Cécile; Souktani, Richard; Zadigue, Patricia; Figeac, Florence; Rodriguez, Anne-Marie

    2016-02-01

    Urinary incontinence (UI) and erectile dysfunction (ED) are the most common functional urological disorders and the main sequels of radical prostatectomy (RP) for prostate cancer. Mesenchymal stem cell (MSC) therapy holds promise for repairing tissue damage due to RP. Because animal studies accurately replicating post-RP clinical UI and ED are lacking, little is known about the mechanisms underlying the urological benefits of MSC in this setting. To determine whether and by which mechanisms MSC can repair damages to both striated urethral sphincter (SUS) and penis in the same animal, we delivered human multipotent adipose stem cells, used as MSC model, in an immunocompetent rat model replicating post-RP UI and ED. In this model, we demonstrated by using noninvasive methods in the same animal from day 7 to day 90 post-RP injury that MSC administration into both the SUS and the penis significantly improved urinary continence and erectile function. The regenerative effects of MSC therapy were not due to transdifferentiation and robust engraftment at injection sites. Rather, our results suggest that MSC benefits in both target organs may involve a paracrine process with not only soluble factor release by the MSC but also activation of the recipient's secretome. These two effects of MSC varied across target tissues and damaged-cell types. In conclusion, our work provides new insights into the regenerative properties of MSC and supports the ability of MSC from a single source to repair multiple types of damage, such as those seen after RP, in the same individual.

  7. Combined effects of brain-derived neurotrophic factor immobilized poly-lactic-co-glycolic acid membrane with human adipose-derived stem cells and basic fibroblast growth factor hydrogel on recovery of erectile dysfunction.

    Science.gov (United States)

    Lee, Seung Hwan; Kim, In Gul; Jung, Ae Ryang; Shrestha, Kshitiz Raj; Lee, Jin Ho; Park, Ki Dong; Chung, Byung Ha; Kim, Sae Woong; Kim, Ki Hean; Lee, Ji Youl

    2014-09-01

    Erectile dysfunction (ED) is the most frequent long-term problem after radical prostatectomy. We aimed to evaluate whether the use of combination therapy with basic fibroblast growth factor (bFGF)-hydrogel on corpus cavernosum and with adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF)-immobilized poly-lactic-co-glycolic acid (PLGA) membrane on the cavernous nerve (CN) could improve erectile function in a rat model of bilateral cavernous nerve crush injury (BCNI). Rats were randomly divided into five groups (n=15 per group): a normal group (N group), a group receiving saline application after bilateral cavernous nerve crush injury (BCNI), a group undergoing bFGF-hydrogel injection in the corpus cavernosum after BCNI (bFGF), a group receiving ADSC application covered with BDNF-membrane after BCNI (ADSC/BDNF), and a group undergoing coadministration of bFGF-hydrogel injection and BDNF-membrane with ADSCs after BDNF (bFGF+ADSC/BDNF). Four weeks postoperatively, the erectile function was assessed by detecting the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP). Smooth muscle and collagen contents were measured using Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. The protein expression of the α-smooth muscle actin (α-SMA) and the cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by western blot and cGMP assay, respectively. In the bFGF+ADSC/BDNF group, the erectile function was significantly elevated compared with the BCNI and other treated groups and showed a significantly increased smooth muscle/collagen ratio, nNOS content, α-SMA expression, and cGMP level. In particular, there were no statistical differences in the ICP/MAP ratio, smooth muscle/collagen ratio, and α-SMA and cGMP levels between the bFGF+ADSC/BDNF group and normal group. Application of the BDNF-immobilized PLGA membrane with

  8. Adipose tissue-derived stem cells in neural regenerative medicine.

    Science.gov (United States)

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.

  9. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model.

    Science.gov (United States)

    Zhou, Fei; Gao, Shane; Wang, Lin; Sun, Chenxi; Chen, Lu; Yuan, Ping; Zhao, Haiyang; Yi, Yi; Qin, Ying; Dong, Zhiqiang; Cao, Limei; Ren, Haiyan; Zhu, Liang; Li, Qiang; Lu, Bing; Liang, Aibin; Xu, Guo-Tong; Zhu, Hongwen; Gao, Zhengliang; Ma, Jie; Xu, Jun; Chen, Xu

    2015-05-09

    Growing evidence has brought stem cell therapy to the forefront as new promising approaches towards stroke treatment. Of all candidate seeding cells, adipose-derived stem cells (ADSCs) are considered as one of the most appropriate for stroke treatment. However, previous experimental data could not reach to an agreement on the efficacy of ADSC transplantation for treating stroke in vivo as well as its mechanism which hinders their further clinical translational application. To explore their in vivo mechanism of hADSC administration on neurological injury, hADSC were labeled with Enhanced Green Fluorescence Protein expressing FG12 lentivirus and injected into MCAO mouse infarct area by in situ way. Neurological function was evaluated by Rogers Scaling System and their spatial learning and memory was determined by Morris Test. 2,3,5-triphenyltetrazolium chloride was carried out to compare the infarct area among groups. Histoimmunostaining was used to track the injected hADSCs for their in vivo migration, transdifferentiation and integration with the endogenous neuronal circuitry. To better address the underlying rescuing mechanism, qRT-PCR was performed on neural markers of MBP, MAP2, GFAP, microglia marker of Iba1. It was found that hADSCs could promote both spatial learning and memory of MCAO mice. Co-localization of GFP and MAP2 were found in the whole cortex with significantly (Pcells were found at whole cortex. Meanwhile, Iba1(+) microglia and GFAP(+) astrocyte cells were significantly (Pcells (MAP2(+)) in vivo and probably used as seeding cells for replacement based stem cell therapy of stroke. Also, significant immunomodulation was found. Meanwhile hADSCs could significantly protect the endogenous neuron survival. This study demonstrated that hADSC intervention with MCAO mice could apparently ameliorate stroke symptoms by direct cell replacement, enhanced immnunosuppression and increasing the viability of endogenous neurons.

  10. miR-34a inhibits differentiation of human adipose tissue-derived stem cells by regulating cell cycle and senescence induction.

    Science.gov (United States)

    Park, Ho; Park, Hyeon; Pak, Ha-Jin; Yang, Dong-Yun; Kim, Yun-Hong; Choi, Won-Jun; Park, Se-Jin; Cho, Jung-Ah; Lee, Kyo-Won

    2015-01-01

    MicroRNAs (miRNAs) are critical in the maintenance, differentiation, and lineage commitment of stem cells. Stem cells have the unique property to differentiate into tissue-specific cell types (lineage commitment) during cell division (self-renewal). In this study, we investigated whether miR-34a, a cell cycle-regulating microRNA, could control the stem cell properties of adipose tissue-derived stem cells (ADSCs). First, we found that the expression level of miR-34a was increased as the cell passage number was increased. This finding, however, was inversely correlated with our finding that the overexpression of miR-34a induced the decrease of cell proliferation. In addition, miR-34a overexpression decreased the expression of various cell cycle regulators such as CDKs (-2, -4, -6) and cyclins (-E, -D), but not p21 and p53. The cell cycle analysis showed accumulation of dividing cells at S phase by miR-34a, which was reversible by co-treatment with anti-miR-34a. The potential of adipogenesis and osteogenesis of ADSCs was also decreased by miR-34a overexpression, which was recovered by co-treatment with anti-miR-34a. The surface expression of stem cell markers including CD44 was also down-regulated by miR-34a overexpression as similar to that elicited by cell cycle inhibitors. miR-34a also caused a significant decrease in mRNA expression of stem cell transcription factors as well as STAT-3 expression and phosphorylation. Cytokine profiling revealed that miR-34a significantly modulated IL-6 and -8 production, which was strongly related to cellular senescence. These data suggest the importance of miR-34a for the fate of ADSCs toward senescence rather than differentiation.

  11. Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine.

    Science.gov (United States)

    Nejati-Koshki, Kazem; Pilehvar-Soltanahmadi, Younes; Alizadeh, Effat; Ebrahimi-Kalan, Abbas; Mortazavi, Yousef; Zarghami, Nosratollah

    2017-08-10

    Adipose tissue-derived stem cells (ASCs) are promising candidate in stem cell therapies, and maintaining their stemness potential is vital to achieve effective treatment. Natural-based scaffolds have been recently attracted increasing attention in nanomedicine and drug delivery. In the present study, a polymeric nanofibrous scaffold was developed based on the polycaprolactone/Collagen (PCL/Coll) containing Emu oil as a bioactive material to induce the proliferation of ASCs, while simultaneously preserving the stemness property of those cells. Fabrication of the electrospun Emu oil-loaded PCL/Coll nanofibers was confirmed by using FE-SEM, FTIR, and tensile test. ASCs were seeded on two types of nanofibers (PCL/Coll and Emu oil-loaded PCL/Coll) and their proliferation, cell cycle progression, and stemness gene expressions were evaluated using MTT, propidium iodide staining, and qPCR during 14 days, respectively. The results indicated that ASCs displayed improved adhesion capacity with the higher rates of bioactivity and proliferation on the Emu oil-loaded nanofibers than the other groups. The proliferation capacity of ASCs on Emu oil-loaded PCL/Coll nanofibers was further confirmed by the cell cycle progression analysis. It was also found that Emu oil-loaded nanofibers significantly up-regulated the expression of stemness markers including sox-2, nanog, oct4, klf4, and c-Myc. The results demonstrated that the nanofibers containing Emu oil can reinforce the cell adhesion and enhance ASCs proliferation while preserving their stemness; therefore, using scaffolds containing natural products may have a great potential to enhance the in vitro expansion capacity of ASCs in the field of stem cell therapy and regenerative medicine.

  12. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells

    Science.gov (United States)

    Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders.

  13. Lipokines and oxysterols: novel adipose-derived lipid hormones linking adipose dysfunction and insulin resistance.

    Science.gov (United States)

    Murdolo, Giuseppe; Bartolini, Desirée; Tortoioli, Cristina; Piroddi, Marta; Iuliano, Luigi; Galli, Francesco

    2013-12-01

    The expansion of adipose tissue (AT) is, by definition, a hallmark of obesity. However, not all increases in fat mass are associated with pathophysiological cues. Indeed, whereas a "healthy" fat mass accrual, mainly in the subcutaneous depots, preserves metabolic homeostasis, explaining the occurrence of the metabolically healthy obese phenotype, "unhealthy" AT expansion is importantly associated with insulin resistance/type 2 diabetes and the metabolic syndrome. The development of a dysfunctional adipose organ may find mechanistic explanation in a reduced ability to recruit new and functional (pre)adipocytes from undifferentiated precursor cells. Such a failure of the adipogenic process underlies the "AT expandability" paradigm. The inability of AT to expand further to store excess nutrients, rather than obesity per se, induces a diabetogenic milieu by promoting the overflow and the ectopic deposition of fatty acids in insulin-dependent organs (i.e., lipotoxicity), the secretion of various metabolically detrimental adipose-derived hormones (i.e., adipokines and lipokines), and the occurrence of local and systemic inflammation and oxidative stress. Hitherto, fatty acids (i.e., lipokines) and the oxidation by-products of cholesterol and polyunsaturated fatty acids, such as nonenzymatic oxysterols and reactive aldehyde species, respectively, emerge as key modulators of (pre)adipocyte signaling through Wnt/β-catenin and MAPK pathways and potential regulators of glucose homeostasis. These and other mechanistic insights linking adipose dysfunction, oxidative stress, and impairment of glucose homeostasis are discussed in this review article, which focuses on adipose peroxidation as a potential instigator of, and a putative therapeutic target for, obesity-associated metabolic dysfunctions.

  14. 人脂肪干细胞向内皮细胞的定向分化%Directional differentiation of human adipose-derived stem cells into endothelial cells

    Institute of Scientific and Technical Information of China (English)

    杨旭芳; 何旭; 张丽红; 何牮; 刘学娟; 杨丽; 谭晓华; 李玉林

    2011-01-01

    Objective To investigate the possibility of directional differentiation of human adipose stem cells (hADSCs) into endothelial cells (EC), so as to provide seed cells for tissue engineered vessels.Methods hADSCs were isolated from human adipose tissue by collagenase digestion, cultured and amplified by adherence to flasks. Then hADSCs were directionally induced to differentiate into EC by a combination of fibronectin ( FN ), endothelial cells support liquid ( EGM2-MV ) containing various growth factors and high concentration of VEGF165 (50 ng/ml). Then, the cells morphology, phenotype and function were identified. Results Highly homologous hADSCs were obtained, and then hADSCs were directionally differentiated into EC. CD31 and CD34, the specific markers for EC, and vascular endothelial growth factor receptor (KDR) were positive by immunohistochemical staining and RT-PCR. In addition,unique Weibel-Palade bodies in EC were observed under transmission electron microscope. Functionally,hADSCs could swallow Dil-Ac-LDL and form tube-like structures in matrigel after endothelial differentiation. Conclusions hADSCs can be successfully induced to differentiate into endothelial cells in vitro.%目的 为解决血管组织工程种子细胞来源不足问题,分离和培养人脂肪干细胞(hADSCs),并在体外定向诱导hADSCs分化为内皮细胞.方法 利用胶原酶消化法和贴壁筛选法从人脂肪组织中分离、培养及扩增hADSCs;应用纤维粘连蛋白(FN)与富含多种生长因子的内皮细胞支持液EGM2-MV及高浓度血管内皮细胞生长因子(VEGFi6s)50 ng/ml,协同定向诱导hADSCs分化为内皮细胞,然后对其进行形态、表型及功能鉴定.结果 体外分离、培养出高度同源性的hADSCs,hADSCs定向内皮分化后免疫组化及RT-PCR结果显示,内皮特异性标志物CD31、CD34及血管内皮细胞生长因子受体(KDR)阳性表达,透射电镜下观察到内皮特异性结构怀布尔-帕拉德(Weibel-Palade)小

  15. Relationships between rodent white adipose fat pads and human white adipose fat depots

    Directory of Open Access Journals (Sweden)

    Daniella E. Chusyd

    2016-04-01

    Full Text Available The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of white adipose tissue. Thus, further research is warranted to more carefully define the strengths and limitations of rodent white adipose tissue as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat.

  16. Farnesol Has an Anti-obesity Effect in High-Fat Diet-Induced Obese Mice and Induces the Development of Beige Adipocytes in Human Adipose Tissue Derived-Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Hye-Lin Kim

    2017-09-01

    Full Text Available Brown adipocytes dissipate energy as heat and hence have an important therapeutic capacity for obesity. Development of brown-like adipocytes (also called beige is also another attractive target for obesity treatment. Here, we investigated the effect of farnesol, an isoprenoid, on adipogenesis in adipocytes and on the browning of white adipose tissue (WAT as well as on the weight gain of high-fat diet (HFD-induced obese mice. Farnesol inhibited adipogenesis and the related key regulators including peroxisome proliferator-activated receptor γ (PPARγ and CCAAT/enhancer binding protein α through the up-regulation of AMP-activated protein kinase in 3T3-L1 murine adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs. Farnesol markedly increased the expression of uncoupling protein 1 and PPARγ coactivator 1 α in differentiated hAMSCs. In addition, farnesol limited the weight gain in HFD obese mice and induced the development of beige adipocytes in both inguinal and epididymal WAT. These results suggest that farnesol could be a potential therapeutic agent for obesity treatment.

  17. A Standardized Method of Isolating Adipose-Derived Stem Cells for Clinical Applications.

    Science.gov (United States)

    Raposio, Edoardo; Caruana, Giorgia; Petrella, Maira; Bonomini, Sabrina; Grieco, Michele P

    2016-01-01

    White adipose tissue is the most abundant and accessible source of stem cells in the adult human body. In this paper, we present a standardised and safe method of isolating and maximizing the number of adipose-derived stem cells (ASCs) from conventional liposuction for clinical applications, which was carried out through both mechanical (centrifuge) and enzymatic (collagenase) means. Isolated cells were characterized through flow cytometry assay. Gathered data showed a greater amount (9.06 × 10(5) ASCs from 100 mL of adipose tissue) of isolated ASCs compared to previous protocol, also with high (99%) cell vitality; the procedure we presented is easy and fast (80 minutes), allowing collecting a significative number of mesenchymal stem cells, which can be used for clinical purposes, such as wound healing.

  18. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells.

    Science.gov (United States)

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten; Brorsen, Sonja Kim; Kastrup, Jens; Ekblond, Annette

    2015-04-13

    Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns of ASCs. Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow cytometry. Microarray gene expressions were obtained using the Affymetrix HT HG-U133+ GeneChip®. Gene set enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes and gene ontology terms. Transcription of selected genes of interest was confirmed by quantitative PCR. Compared to ASCs in complete medium, 190 and 108 genes were significantly altered by serum deprivation and serum deprivation combined with VEGF, respectively. No significant differences in gene expression patterns between serum-deprived ASCs and serum-deprived ASCs combined with VEGF stimulation were found. Genes most prominently and significantly upregulated by both conditions were growth factors (IGF1, BMP6, PDGFD, FGF9), adhesion molecule CLSTN2, extracellular matrix-related proteins such as matricellular proteins SMOC2, SPON1 and ADAMTS12, and inhibitors of proliferation (JAG1). The most significantly downregulated genes included matrix metalloproteinases (MMP3, MMP1), and proliferation markers (CDKN3) and GREM2 (a BMP6 antagonist). The decisive factor for the observed change in ASC gene expression proves to

  19. Platelet-Rich Plasma Greatly Potentiates Insulin-Induced Adipogenic Differentiation of Human Adipose-Derived Stem Cells Through a Serine/Threonine Kinase Akt-Dependent Mechanism and Promotes Clinical Fat Graft Maintenance

    Science.gov (United States)

    Cervelli, Valerio; Scioli, Maria G.; Gentile, Pietro; Doldo, Elena; Bonanno, Elena; Spagnoli, Luigi G.

    2012-01-01

    The potential plasticity and therapeutic utility in tissue regeneration of human adipose-derived stem cells (ASCs) isolated from adult adipose tissue have recently been highlighted. The use of autologous platelet-rich plasma (PRP) represents an alternative strategy in regenerative medicine for the local release of multiple endogenous growth factors. Here we investigated the signaling pathways and effects of PRP and human recombinant insulin on proliferation and adipogenic differentiation of ASCs in vitro. PRP stimulated proliferation (EC50 = 15.3 ± 1.3% vol/vol), whereas insulin's effect was the opposite (IC50 = 3.0 ± 0.5 μM). Although PRP alone did not increase adipogenesis, in association with insulin it prevented ASC proliferative arrest, greatly enhanced intracytoplasmic lipid accumulation, strongly increased serine/threonine kinase Akt phosphorylation and mouse monoclonal anti-sterol regulatory element binding protein-1 accumulation, and downregulated Erk-1 activity; adipogenic effects were markedly prevented by the Akt inhibitor wortmannin. PRP with insulin synergistically upregulated fibroblast growth factor receptor (FGFR) and downregulated epidermal growth factor receptor (ErbB) expression; moreover, PRP in association prevented insulin-induced insulin-like growth factor-1 receptor and insulin receptor downregulation. The inhibition of FGFR-1, epidermal growth factor receptor (EGFR), and epidermal growth factor receptor-2 (ErbB2) activity reduced ASC proliferation, but only that of FGFR-1 reduced adipogenesis and Akt phosphorylation, whereas the ErbB2 inhibition effects were the opposite. However, EGFR activity was needed for ErbB2-mediated inhibition of ASC adipogenesis. Clinically, the injection of insulin further ameliorated patients' 1-year PRP-induced fat graft volume maintenance and contour restoring. Our results ascertain that PRP in association with insulin greatly potentiates adipogenesis in human ASCs through a FGFR-1 and ErbB2-regulated Akt

  20. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  1. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds.

    Science.gov (United States)

    Han, Tim Tian Y; Toutounji, Sandra; Amsden, Brian G; Flynn, Lauren E

    2015-12-01

    Decellularized adipose tissue (DAT) has shown promise as an adipogenic bioscaffold for soft tissue augmentation and reconstruction. The objective of the current study was to investigate the effects of allogeneic adipose-derived stem/stromal cells (ASCs) on in vivo fat regeneration in DAT bioscaffolds using an immunocompetent rat model. ASC seeding significantly enhanced angiogenesis and adipogenesis, with cell tracking studies indicating that the newly-forming tissues were host-derived. Incorporating ASCs also mediated the inflammatory response and promoted a more constructive macrophage phenotype. A fraction of the CD163(+) macrophages in the implants expressed adipogenic markers, with higher levels of this "adipocyte-like" phenotype in proximity to the developing adipose tissues. Our results indicate that the combination of ASCs and adipose extracellular matrix (ECM) provides an inductive microenvironment for adipose regeneration mediated by infiltrating host cell populations. The DAT scaffolds are a useful tissue-specific model system for investigating the mechanisms of in vivo adipogenesis that may help to develop a better understanding of this complex process in the context of both regeneration and disease. Overall, combining adipose-derived matrices with ASCs is a highly promising approach for the in situ regeneration of host-derived adipose tissue.

  2. Tissue Source and Cell Expansion Condition Influence Phenotypic Changes of Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Lauren H. Mangum

    2017-01-01

    Full Text Available Stem cells derived from the subcutaneous adipose tissue of debrided burned skin represent an appealing source of adipose-derived stem cells (ASCs for regenerative medicine. Traditional tissue culture uses fetal bovine serum (FBS, which complicates utilization of ASCs in human medicine. Human platelet lysate (hPL is one potential xeno-free, alternative supplement for use in ASC culture. In this study, adipogenic and osteogenic differentiation in media supplemented with 10% FBS or 10% hPL was compared in human ASCs derived from abdominoplasty (HAP or from adipose associated with debrided burned skin (BH. Most (95–99% cells cultured in FBS were stained positive for CD73, CD90, CD105, and CD142. FBS supplementation was associated with increased triglyceride content and expression of adipogenic genes. Culture in hPL significantly decreased surface staining of CD105 by 31% and 48% and CD142 by 27% and 35% in HAP and BH, respectively (p<0.05. Culture of BH-ASCs in hPL also increased expression of markers of osteogenesis and increased ALP activity. These data indicate that application of ASCs for wound healing may be influenced by ASC source as well as culture conditions used to expand them. As such, these factors must be taken into consideration before ASCs are used for regenerative purposes.

  3. Adipose tissue-derived stromal cells express neuronal phenotypes

    Institute of Scientific and Technical Information of China (English)

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  4. Epigenetic programming of adipose-derived stem cells in low birthweight individuals

    DEFF Research Database (Denmark)

    Broholm, Christa; Olsson, Anders H; Perfilyev, Alexander

    2016-01-01

    AIMS/HYPOTHESIS: Low birthweight (LBW) is associated with dysfunctions of adipose tissue and metabolic disease in adult life. We hypothesised that altered epigenetic and transcriptional regulation of adipose-derived stem cells (ADSCs) could play a role in programming adipose tissue dysfunction...

  5. Altered autophagy in human adipose tissues in obesity

    Science.gov (United States)

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  6. Induced Differentiation of Adipose-derived Stromal Cells into Myoblasts

    Institute of Scientific and Technical Information of China (English)

    吴桂珠; 郑秀; 江忠清; 王金华; 宋岩峰

    2010-01-01

    This study aimed to induce the differentiation of isolated and purified adipose-derived stromal cells(ADSCs) into myoblasts,which may provide a new strategy for tissue engineering in patients with stress urinary incontinence(SUI).ADSCs,isolated and cultured ex vivo,were identified by flow cytometry and induced to differentiate into myoblasts in the presence of an induction solution consisting of DMEM supplemented with 5-azacytidine(5-aza),5% FBS,and 5% horse serum.Cellular morphology was observed under an i...

  7. Adipose-derived stem cells: selecting for translational success.

    Science.gov (United States)

    Johal, Kavan S; Lees, Vivien C; Reid, Adam J

    2015-01-01

    We have witnessed a rapid expansion of in vitro characterization and differentiation of adipose-derived stem cells, with increasing translation to both in vivo models and a breadth of clinical specialties. However, an appreciation of the truly heterogeneous nature of this unique stem cell group has identified a need to more accurately delineate subpopulations by any of a host of methods, to include functional properties or surface marker expression. Cells selected for improved proliferative, differentiative, angiogenic or ischemia-resistant properties are but a few attributes that could prove beneficial for targeted treatments or therapies. Optimizing cell culture conditions to permit re-introduction to patients is critical for clinical translation.

  8. Differential effects of bone morphogenetic protein-2 and transforming growth factor-β1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Knippenberg, M.; Helder, M.N.; Doulabi, B.Z.; Bank, R.A.; Wuisman, P.I.J.M.; Klein-Nulend, J.

    2009-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-β1 (TGF-β1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with

  9. Differential effects of bone morphogenetic protein-2 and transforming growth factor-β1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Knippenberg, M.; Helder, M.N.; Doulabi, B.Z.; Bank, R.A.; Wuisman, P.I.J.M.; Klein-Nulend, J.

    2009-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-β1 (TGF-β1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with

  10. Case Reports of Adipose-derived Stem Cell Therapy

    Directory of Open Access Journals (Sweden)

    Min Su Jung

    2012-01-01

    Full Text Available With the gradual increase of cases using fillers, cases of patients treated by non-medicalprofessionals or inexperienced physicians resulting in complications are also increasing. Weherein report 2 patients who experienced acute complications after receiving filler injectionsand were successfully treated with adipose-derived stem cell (ADSCs therapy. Case 1 wasa 23-year-old female patient who received a filler (Restylane injection in her forehead,glabella, and nose by a non-medical professional. The day after her injection, inflammationwas observed with a 3×3 cm skin necrosis. Case 2 was a 30-year-old woman who receiveda filler injection of hyaluronic acid gel (Juvederm on her nasal dorsum and tip at a privateclinic. She developed erythema and swelling in the filler-injected area A solution containingADSCs harvested from each patient’s abdominal subcutaneous tissue was injected intothe lesion at the subcutaneous and dermis levels. The wounds healed without additionaltreatment. With continuous follow-up, both patients experienced only fine linear scars 6months postoperatively. By using adipose-derived stem cells, we successfully treated theacute complications of skin necrosis after the filler injection, resulting in much less scarring,and more satisfactory results were achieved not only in wound healing, but also in esthetics.

  11. Lipolysis in human adipose tissue during exercise

    DEFF Research Database (Denmark)

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik

    2002-01-01

    Subcutaneous adipose tissue lipolysis was studied in vivo by Fick's arteriovenous (a-v) principle using either calculated (microdialysis) or directly measured (catheterization) adipose tissue venous glycerol concentration. We compared results during steady-state (rest and prolonged continuous...... exercise), as well as during non-steady-state (onset of exercise and early exercise) experimental settings. Fourteen healthy women [age: 74 +/- 1 (SE) yr] were studied at rest and during 60-min continuous bicycling at 60% of peak O(2) uptake. Calculated and measured subcutaneous abdominal adipose tissue...... adipose tissue venous glycerol concentration. Despite several methodological limitations inherent to both techniques, the results strongly suggest that microdialysis and catheterization provide similar estimates of subcutaneous adipose tissue lipolysis in steady-state experimental settings like rest...

  12. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells.

    Science.gov (United States)

    Ritter, Andreas; Friemel, Alexandra; Fornoff, Friderike; Adjan, Mouhib; Solbach, Christine; Yuan, Juping; Louwen, Frank

    2015-10-27

    Adipose-derived stem cells are capable of differentiating into multiple cell types and thus considered useful for regenerative medicine. However, this differentiation feature seems to be associated with tumor initiation and metastasis raising safety concerns, which requires further investigation. In this study, we isolated adipose-derived stem cells from subcutaneous as well as from visceral adipose tissues of the same donor and systematically compared their features. Although being characteristic of mesenchymal stem cells, subcutaneous adipose-derived stem cells tend to be spindle form-like and are more able to home to cancer cells, whereas visceral adipose-derived stem cells incline to be "epithelial"-like and more competent to differentiate. Moreover, compared to subcutaneous adipose-derived stem cells, visceral adipose-derived stem cells are more capable of promoting proliferation, inducing the epithelial-to-mesenchymal transition, enhancing migration and invasion of breast cancer cells by cell-cell contact and by secreting interleukins such as IL-6 and IL-8. Importantly, ASCs affect the low malignant breast cancer cells MCF-7 more than the highly metastatic MDA-MB-231 cells. Induction of the epithelial-to-mesenchymal transition is mediated by the activation of multiple pathways especially the PI3K/AKT signaling in breast cancer cells. BCL6, an important player in B-cell lymphoma and breast cancer progression, is crucial for this transition. Finally, this transition fuels malignant properties of breast cancer cells and render them resistant to ATP competitive Polo-like kinase 1 inhibitors BI 2535 and BI 6727.

  13. Irradiation Response of Adipose-derived Stem Cells under Three-dimensional Culture Condition

    Institute of Scientific and Technical Information of China (English)

    DU Ya Rong; PAN Dong; CHEN Ya Xiong; XUE Gang; REN Zhen Xin; LI Xiao Man; ZHANG Shi Chuan; HU Bu Rong

    2015-01-01

    Objective Adipose tissue distributes widely in human body. The irradiation response of the adipose cells in vivo remains to be investigated. In this study we investigated irradiation response of adipose-derived stem cells (ASCs) under three-dimensional culture condition. Methods ASCs were isolated and cultured in low attachment dishes to form three-dimensional (3D) spheres in vitro. The neuronal differentiation potential and stem-liked characteristics was monitored by using immunofluoresence staining and flow cytometry in monolayer and 3D culture. To investigate the irradiation sensitivity of 3D sphere culture, the fraction of colony survival and micronucleus were detected in monolayer and 3D culture. Soft agar assays were performed for measuring malignant transformation for the irradiated monolayer and 3D culture. Results The 3D cultured ASCs had higher differentiation potential and an higher stem-like cell percentage. The 3D cultures were more radioresistant after either high linear energy transfer (LET) carbon ion beam or low LET X-ray irradiation compared with the monolayer cell. The ASCs’ potential of cellular transformation was lower after irradiation by soft agar assay. Conclusion These findings suggest that adipose tissue cell are relatively genomic stable and resistant to genotoxic stress.

  14. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  15. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  16. The stem cell potential and multipotency of human adipose tissue-derived stem cells vary by cell donor and are different from those of other types of stem cells.

    Science.gov (United States)

    Yang, Hyun Jin; Kim, Ki-Joo; Kim, Min Kyoung; Lee, Su Jin; Ryu, Yeon Hee; Seo, Bommie F; Oh, Deuk-Young; Ahn, Sang-Tae; Lee, Hee Young; Rhie, Jong Won

    2014-01-01

    Human adipose tissue-derived mesenchymal stem cells (AT-MSCs) from various sites are applied in tissue engineering and cell therapy. The condition of AT-MSCs depends on the donor's age, body mass index (BMI), and gender. AT-MSCs from 66 human donors were analyzed, and the cells were sorted according to donor age (10-19 years: n = 1; 20-29 years: n = 5; 30-39 years: n = 12; 40-49 years: n = 22; 50-59 years: n = 12; 60-69 years: n = 9, and 70 years or older: n = 5), BMI (under 25, 25-30, and over 30), and gender (19 males and 48 females). Additionally, AT-MSCs were compared to bone marrow MSCs and chorionic tissue-derived MSCs. We measured the MSC yield, growth rate, colony-forming units, multipotency, and surface antigens. AT-MSC proliferation was greater in cells isolated from individuals aged less than 30 years compared to the proliferation of AT-MSCs from those over 50 years old. BMI was correlated with osteogenic differentiation potency; increased BMI enhanced osteogenesis. Adipogenic differentiation was more strongly induced in cells isolated from donors aged less than 30 years compared to those isolated from other age groups. Also, a BMI above 30 was associated with enhanced adipogenic differentiation compared to cells isolated from individuals with a BMI below 25. Bone marrow MSCs were strongly induced to differentiate along both osteogenic and adipogenic lineages, whereas AT-MSCs predominantly differentiated into the chondrogenic lineage. Therefore, the type of regeneration required and variations among potential donors must be carefully considered when selecting MSCs for use in applied tissue engineering or cell therapy.

  17. Subcutaneous Construction of Engineered Adipose Tissue with Fat Lobule-Like Structure Using Injectable Poly-Benzyl-L-Glutamate Microspheres Loaded with Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Wentao Sun

    Full Text Available Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate (PBLG polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group and non-induced hASC/PBLG complex (ASC/PBLG group served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.

  18. Subcutaneous Construction of Engineered Adipose Tissue with Fat Lobule-Like Structure Using Injectable Poly-Benzyl-L-Glutamate Microspheres Loaded with Adipose-Derived Stem Cells.

    Science.gov (United States)

    Sun, Wentao; Fang, Jianjun; Yong, Qi; Li, Sufang; Xie, Qingping; Yin, Jingbo; Cui, Lei

    2015-01-01

    Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate) (PBLG) polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs) seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group) was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group) and non-induced hASC/PBLG complex (ASC/PBLG group) served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.

  19. Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells.

    Science.gov (United States)

    Wang, Yuguang; Huang, Ying-Ying; Wang, Yong; Lyu, Peijun; Hamblin, Michael R

    2017-08-10

    We previously showed that blue (415 nm) and green (540 nm) wavelengths were more effective in stimulating osteoblast differentiation of human adipose-derived stem cells (hASC), compared to red (660 nm) and near-infrared (NIR, 810 nm). Intracellular calcium was higher after blue/green, and could be inhibited by the ion channel blocker, capsazepine. In the present study we asked what was the effect of these four wavelengths on proliferation of the hASC? When cultured in proliferation medium there was a clear difference between blue/green which inhibited proliferation and red/NIR which stimulated proliferation, all at 3 J/cm(2). Blue/green reduced cellular ATP, while red/NIR increased ATP in a biphasic manner. Blue/green produced a bigger increase in intracellular calcium and reactive oxygen species (ROS). Blue/green reduced mitochondrial membrane potential (MMP) and lowered intracellular pH, while red/NIR had the opposite effect. Transient receptor potential vanilloid 1 (TRPV1) ion channel was expressed in hADSC, and the TRPV1 ligand capsaicin (5uM) stimulated proliferation, which could be abrogated by capsazepine. The inhibition of proliferation caused by blue/green could also be abrogated by capsazepine, and by the antioxidant, N-acetylcysteine. The data suggest that blue/green light inhibits proliferation by activating TRPV1, and increasing calcium and ROS.

  20. Biphasic Polyurethane/Polylactide Sponges Doped with Nano-Hydroxyapatite (nHAp Combined with Human Adipose-Derived Mesenchymal Stromal Stem Cells for Regenerative Medicine Applications

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-10-01

    Full Text Available Cartilage and bone tissue injuries are common targets in regenerative medicine. The degeneration of cartilage tissue results in tissue loss with a limited ability to regenerate. However, the application of mesenchymal stem cells in the course of such condition makes it possible to manage this disorder by improving the structure of the remaining tissue and even stimulating its regeneration. Nevertheless, in the case of significant tissue loss, standard local injection of cell suspensions is insufficient, due to the low engraftment of transplanted cells. Introduction of mesenchymal stem cells on the surface of a compatible biomaterial can be a promising tool for inducing the regeneration by both retaining the cells at the desired site and filling the tissue gap. In order to obtain such a cell-biomaterial hybrid, we developed complex, biphasic polymer blend biomaterials composed of various polyurethane (PU-to-polylactide (PLA ratios, and doped with different concentrations of nano-hydroxyapatite (nHAp. We have determined the optimal blend composition and nano-hydroxyapatite concentration for adipose mesenchymal stem cells cultured on the biomaterial. We applied biological in vitro techniques, including cell viability assay, determination of oxidative stress factors level, osteogenic and chondrogenic differentiation potentials as well as cell proteomic analysis. We have shown that the optimal composition of biphasic scaffold was 20:80 of PU:PLA with 20% of nHAp for osteogenic differentiation, and 80:20 of PU:PLA with 10% of nHAp for chondrogenic differentiation, which suggest the optimal composition of final biphasic implant for regenerative medicine applications.

  1. In vitro and in vivo induction of bone formation based on adeno-associ-ated virus-mediated BMP-7 gene therapy using human adipose-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Yan KANG; Wei-ming LIAO; Zhen-hua YUAN; Pu-yi SHENG; Long-juan ZHANG; Xiang-wei YUAN; Lei LEI

    2007-01-01

    Aim: To determine whether adeno-associated virus (AAV)-2-mediated, bone mor-phogenetic protein (BMP)-7-expressing human adipose-derived mesenchymal stem cells (ADMS) cells would induce bone formation in vitro and in vivo.Methods:ADMS cells were harvested from patients undergoing selective suction-assisted fipectomy and transduced with AAV carrying the human BMP-7 gene. Non-trans-duced cells and cells transduced with AAV serotype 2 carrying the enhanced green fluorescence protein gene served as controls. ADMS cells were qualita-tively assessed for the production of BMP-7 and osteocalcin, and subjected to alkaline phosphatase (ALP) and Chinalizarin staining. A total of 2.5x 106 cells mixed with type Ⅰ collagen were implanted into the hind limb of severe combined immune-deficient (SCID) mice and subjected to a histological analysis 3 weeks post implantation.Results: Transfection of the ADMS cells achieved an effi-ciency of 99% at d 7. Transduction with AAV2-BMP-7 induced the expression of BMP-7 until d 56, which was markedly increased by d 7. The cells were positively stained for ALP. Osteocalcin production and matrix mineralization further con-firmed that these cells differentiated into osteoblasts and induced bone formation in vitro. A histological examination demonstrated that implantation of BMP-7-expressing ADMS cells could induce new bone formation in vivo.Conclusion: The present in vitro and in vivo study demonstrated that human ADMS cells would be a promising source of autologous mesenchymal stem cells for BMP gene therapy and tissue engineering.

  2. Type I and II Diabetic Adipose-Derived Stem Cells Respond In Vitro to Dehydrated Human Amnion/Chorion Membrane Allograft Treatment by Increasing Proliferation, Migration, and Altering Cytokine Secretion.

    Science.gov (United States)

    Massee, Michelle; Chinn, Kathryn; Lim, Jeremy J; Godwin, Lisa; Young, Conan S; Koob, Thomas J

    2016-02-01

    Objective: Human amniotic membranes have been shown to be effective for healing diabetic foot ulcers clinically and to regulate stem cell activity in vitro and in vivo; however, diabetic stem cells may be impaired as a sequela of the disease. In this study, dehydrated human amnion/chorion membrane (dHACM) allografts (EpiFix(®); MiMedx Group) were evaluated for their ability to regulate diabetic stem cells in vitro. Approach: Human adipose-derived stem cells (ADSCs) from normal, type I diabetic, and type II diabetic donors were treated with soluble extracts of dHACM and evaluated for proliferation after 3 days by DNA assay, chemotactic migration after 1 day by transwell assay, cytokine secretion after 3 days by multiplex ELISA, and gene expression after 5 days by reverse transcription-polymerase chain reaction. Results: Although diabetic ADSCs demonstrated decreased responses compared to normal ADSCs, dHACM treatment stimulated diabetic ADSCs to proliferate after 3 days and enhanced migration over 24 h, similar to normal ADSCs. dHACM-treated diabetic ADSCs modulated secretion of soluble signals, including regulators of inflammation, angiogenesis, and healing. All ADSCs evaluated also responded to dHACM treatment with altered expression of immunomodulatory genes, including interleukins (IL)-1α, IL-1β, and IL-1RA. Innovation: This is the first reported case demonstrating that diabetic ADSCs respond to novel amniotic membrane therapies, specifically treatment with dHACM. Conclusion: dHACM stimulated diabetic ADSCs to migrate, proliferate, and alter cytokine expression suggesting that, despite their diabetic origin, ADSCs may respond to dHACM to accelerate diabetic wound healing.

  3. Analysis of in vitro secretion profiles from adipose-derived cell populations

    Directory of Open Access Journals (Sweden)

    Blaber Sinead P

    2012-08-01

    Full Text Available Abstract Background Adipose tissue is an attractive source of cells for therapeutic purposes because of the ease of harvest and the high frequency of mesenchymal stem cells (MSCs. Whilst it is clear that MSCs have significant therapeutic potential via their ability to secrete immuno-modulatory and trophic cytokines, the therapeutic use of mixed cell populations from the adipose stromal vascular fraction (SVF is becoming increasingly common. Methods In this study we have measured a panel of 27 cytokines and growth factors secreted by various combinations of human adipose-derived cell populations. These were 1. co-culture of freshly isolated SVF with adipocytes, 2. freshly isolated SVF cultured alone, 3. freshly isolated adipocytes alone and 4. adherent adipose-derived mesenchymal stem cells (ADSCs at passage 2. In addition, we produced an ‘in silico’ dataset by combining the individual secretion profiles obtained from culturing the SVF with that of the adipocytes. This was compared to the secretion profile of co-cultured SVF and adipocytes. Two-tailed t-tests were performed on the secretion profiles obtained from the SVF, adipocytes, ADSCs and the ‘in silico’ dataset and compared to the secretion profiles obtained from the co-culture of the SVF with adipocytes. A p-value of  Results A co-culture of SVF and adipocytes results in a distinct secretion profile when compared to all other adipose-derived cell populations studied. This illustrates that cellular crosstalk during co-culture of the SVF with adipocytes modulates the production of cytokines by one or more cell types. No biologically relevant differences were detected in the proteomes of SVF cultured alone or co-cultured with adipocytes. Conclusions The use of mixed adipose cell populations does not appear to induce cellular stress and results in enhanced secretion profiles. Given the importance of secreted cytokines in cell therapy, the use of a mixed cell population such as the

  4. Comparison of different fabrication techniques for human adipose tissue engineering in severe combined immunodeficient mice.

    Science.gov (United States)

    Frerich, Bernhard; Winter, Karsten; Scheller, Konstanze; Braumann, Ulf-Dietrich

    2012-03-01

    Adipose tissue engineering has been advocated for soft-tissue augmentation and for the treatment of soft tissue defects. The efficacy in terms of persistence of the engineered fat is, however, not yet understood and could depend on the nature of fabrication and application. The high metabolic demand of adipose tissue also points to the problem of vascularization. Endothelial cell (EC) cotransplantation could be a solution. Human adipose tissue-derived stromal cells were seeded on collagen microcarriers and submitted to adipogenic differentiation ("microparticles"). In a first run of experiments, these microparticles were implanted under the skin of severe combined immunodeficient (SCID) mice (n = 45) with and without the addition of human umbilical vein ECs (HUVECs). A group of carriers without any cells served as control. In a second run, adipose tissue constructs were fabricated by embedding microparticles in fibrin matrix with and without the addition of HUVEC, and were also implanted in SCID mice (n = 30). The mice were sacrificed after 12 days, 4 weeks, and 4 months. Mature adipose tissue, fibrous tissue, and acellular regions were quantified on whole-specimen histological sections. The implantation of microparticles showed a better sustainment of tissue volume and a higher degree of mature adipose tissue compared with adipose tissue constructs. Immunohistology proved obviously perfused human tissue-engineered vessels. There was a limited but not significant advantage in EC cotransplantation after 4 weeks in terms of tissue volume. In groups with EC cotransplantation, there were significantly fewer acellular/necrotic areas after 4 weeks and 4 months. In conclusion, the size of the implanted tissue equivalents is a crucial parameter, affecting volume maintenance and the gain of mature adipose tissue. EC cotransplantation leads to functional stable vascular networks connecting in part to the host vasculature and contributing to tissue perfusion; however

  5. Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways.

    Science.gov (United States)

    Müller, Sebastian; Balaz, Miroslav; Stefanicka, Patrik; Varga, Lukas; Amri, Ez-Zoubir; Ukropec, Jozef; Wollscheid, Bernd; Wolfrum, Christian

    2016-07-15

    Human brown adipose tissue (BAT) has become an attractive target to combat the current epidemical spread of obesity and its associated co-morbidities. Currently, information on its functional role is primarily derived from rodent studies. Here, we present the first comparative proteotype analysis of primary human brown adipose tissue versus adjacent white adipose tissue, which reveals significant quantitative differences in protein abundances and in turn differential functional capabilities. The majority of the 318 proteins with increased abundance in BAT are associated with mitochondrial metabolism and confirm the increased oxidative capacity. In addition to uncoupling protein 1 (UCP1), the main functional effector for uncoupled respiration, we also detected the mitochondrial creatine kinases (CKMT1A/B, CKMT2), as effective modulators of ATP synthase coupled respiration, to be exclusively expressed in BAT. The abundant expression and utilization of both energy expenditure pathways in parallel highlights the complex functional involvement of BAT in human physiology.

  6. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells.

    Science.gov (United States)

    Pak, Jaewoo; Lee, Jung Hun; Lee, Sang Hee

    2014-01-01

    Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee.

  7. 45S5-Bioglass(®)-based 3D-scaffolds seeded with human adipose tissue-derived stem cells induce in vivo vascularization in the CAM angiogenesis assay.

    Science.gov (United States)

    Handel, Marina; Hammer, Timo R; Nooeaid, Patcharakamon; Boccaccini, Aldo R; Hoefer, Dirk

    2013-12-01

    Poor vascularization is the key limitation for long-term acceptance of large three-dimensional (3D) tissue engineering constructs in regenerative medicine. 45S5 Bioglass(®) was investigated given its potential for applications in bone engineering. Since native Bioglass(®) shows insufficient angiogenic properties, we used a collagen coating, to seed human adipose tissue-derived stem cells (hASC) confluently onto 3D 45S5 Bioglass(®)-based scaffolds. To investigate vascularization by semiquantitative analyses, these biofunctionalized scaffolds were then subjected to in vitro human umbilical vein endothelial cells formation assays, and were also investigated in the chorioallantoic membrane (CAM) angiogenesis model, an in vivo angiogenesis assay, which uses the CAM of the hen's egg. In their native, nonbiofunctionalized state, neither Bioglass(®)-based nor biologically inert fibrous polypropylene control scaffolds showed angiogenic properties. However, significant vascularization was induced by hASC-seeded scaffolds (Bioglass(®) and polypropylene) in the CAM angiogenesis assay. Biofunctionalized scaffolds also showed enhanced tube lengths, compared to unmodified scaffolds or constructs seeded with fibroblasts. In case of biologically inert hernia meshes, the quantification of vascular endothelial growth factor secretion as the key angiogenic stimulus strongly correlated to the tube lengths and vessel numbers in all models. This correlation proved the CAM angiogenesis assay to be a suitable semiquantitative tool to characterize angiogenic effects of larger 3D implants. In addition, our results suggest that combinations of suitable scaffold materials, such as 45S5 Bioglass(®), with hASC could be a promising approach for future tissue engineering applications.

  8. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Okura, Hanayuki [The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Department of Somatic Stem Cell Therapy and Health Policy, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Saga, Ayami; Soeda, Mayumi [Department of Somatic Stem Cell Therapy and Health Policy, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Miyagawa, Shigeru; Sawa, Yoshiki [Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Daimon, Takashi [Division of Biostatistics, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Ichinose, Akihiro [Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo (Japan); Matsuyama, Akifumi, E-mail: akifumi-matsuyama@umin.ac.jp [The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo (Japan); RIKEN Program for Drug Discovery and Medical Technology Platforms, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer We administered human CLCs in a swine model of MI via intracoronary artery. Black-Right-Pointing-Pointer Histological studies demonstrated engraftment of hCLCs into the scarred myocardium. Black-Right-Pointing-Pointer Echocardiography showed rescue of cardiac function in the hCLCs transplanted swine. Black-Right-Pointing-Pointer Transplantation of hCLCs is an effective therapeutics for cardiac regeneration. -- Abstract: Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringer's solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p = 0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of

  9. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification ...

  10. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    Science.gov (United States)

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  11. Study of adipose tissue engineering with human adipose-derived stem cells and collagen type I scaffold%人脂肪来源干细胞复合I型胶原支架构建工程化脂肪组织的实验研究

    Institute of Scientific and Technical Information of China (English)

    张云松; 高建华; 鲁峰; 朱茗; 廖云君; 李华

    2008-01-01

    Objective To explore the possibility of building tissue-engineered adipose tissue and looking for a new approach for the repair of soft tissue defects.Methods The ceils using enzymatic digestion from human liposuction part of the lipid extract were used as adipose tissue-derived cells and labeled with Dil fluorescent marker.theinduced group using I collagen scaffold material as a carrier.the induced cell were planted into left back subcutaneously in nude mice at 1×107/ml cell density.in the uninduced group cells were not induced by any.in the game cell density and type Ⅰ collagen scaffold composite inoculated in nude right mouse back skin,the blank control group Ⅰ collagen scaffold gaps in nude mice inoculated subcutaneously center of the neck,eachof the six mice;Remove implants after 12 weeks and judge the adipogenic capacity through general and fluorescence microscopy,wet-determination,histological detection and oil red O staining qualitative.Results The primmT source of fat cultured stem cells,similar to the fibroblast morphology,and has a strong proliferative capacity.In the role of adipose differentiation medium,it can be the mature fat cells in which cytoplasmic lipid droplets gather,oil red O staaining wsa positive.In the induced group,newborn tissue were found in the experimental groups of nude mice and its average weight is about 0.020 g.Conventional pathological glices and oil red O staining confirmed it is mature adipose tissue.the fluorescence smining positive cerium them are exogenous.Unindnced group newborn tissue are found in the experimental groups of nude mice and its average weight is about 0.014 g.Conventional pathological slices and oil red O staining confirmed it include some mature adipose tissue,the fluorescence staining positive confirm them are exogenous.Two groups of the new wet weight with have statistical significance (P<0.01);gaps in the control group no new organization formed.Conclusions The cells using enzymatic digestion from

  12. Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells

    Science.gov (United States)

    Kuhbier, Jörn W.; Weyand, Birgit; Radtke, Christine; Vogt, Peter M.; Kasper, Cornelia; Reimers, Kerstin

    While bone marrow-derived mesenchymal stem cells are known and have been investigated for a long time, mesenchymal stem cells derived from the adipose tissue were identified as such by Zuk et al. in 2001. However, as subcutaneous fat tissue is a rich source which is much more easily accessible than bone marrow and thus can be reached by less invasive procedures, adipose-derived stem cells have moved into the research spotlight over the last 8 years.

  13. Adipose tissue engineering with human adipose-derived stem cells and fibrin glue injectable scaffold%人脂肪来源干细胞复合纤维蛋白胶构建可注射型工程化脂肪组织的实验研究

    Institute of Scientific and Technical Information of China (English)

    张云松; 高建华; 鲁峰; 朱茗

    2008-01-01

    Objective To explore the possibility of building tissue-engineered adipose tissue and find a new approach for repairing soft tissue defects. Methods Using enzymatic digestion, adipose tissue derived stem cells (ASCs) were extracted from the lipid part of human liposuction aspirate, cultured, and underwent adipogenie induction or not. The adipegenie-induced and non-adipogenie-induced ASCs were labeled with 3, 3, 3', 3'-tetramcthylindo-carbecyanine perchlorate (DiI), a fluorescent marker, in vitro to be used as seed cells. Then, they were combined with injectable fibrin glue scaffold at 1×107/ml cell density. Six athymic BALB/C mice underwent subcutaneous injection of adipogonie-induced ASCs with fibrin glue scaffold at the density of 1×107 cells/ml into the left side of the low back (induced group), subcutaneous injection of non-adipegenic-inducad ASCs into the right side of the low back (non-induced group), and subcutaneous injection of injectable fibrin glue scaffold into the middle part of the neck (blank control group) ,with 0.2 ml per injection. Twelve weeks later the mice were killed and the implants were taken out. The wet weight was measured. HE and oil red O staining and light and fluorescence microscopy were used for morphological observation. Results Adipose tissue-like new-born tissues were found in the injection sites of the induced and un-induced groups. The average wet-weight of the induced group new-born tissue was (28±15) mg, significantly heavier than that of the un-induced group [(22±16) mg, P< 0.01]. HE staining and oil red O staining confirmed that the new-born tissue of the induced group was mature adipose tissue and DiI fluorescent staining approved its exogenousness. Most part of the new-born tissues of the un-induced group was fibroid tissue with only a few mature adipose tissues. Conclusion ASCs extracted from the lipid part after liposuction can be used as seed cells, mixed, after adipose-induction, with injectable scaffold of fibrin

  14. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    Directory of Open Access Journals (Sweden)

    Ribeiro Ricardo

    2012-04-01

    Full Text Available Abstract Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants or stromal vascular fraction (SVF from paired fat samples of periprostatic (PP and pre-peritoneal visceral (VIS anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs 2 and 9 activity. The effects of those conditioned media (CM on growth and migration of hormone-refractory (PC-3 and hormone-sensitive (LNCaP prostate cancer cells were measured. Results We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration

  15. CO2 laser increases the regenerative capacity of human adipose-derived stem cells by a mechanism involving the redox state and enhanced secretion of pro-angiogenic molecules.

    Science.gov (United States)

    Constantin, Alina; Dumitrescu, Madalina; Mihai Corotchi, Maria Cristina; Jianu, Dana; Simionescu, Maya

    2017-01-01

    CO2 laser has a beneficial effect on stem cells by mechanisms that are not clearly elucidated. We hypothesize that the effect of fractional CO2 laser on human adipose-derived stem cells (ADSC) could be due to changes in redox homeostasis and secretion of factors contributing to cellular proliferation and angiogenic potential. ADSC incubated in medium containing 0.5 or 10 % FBS were exposed to a single irradiation of a 10,600-nm fractional CO2 laser; non-irradiated ADSC were used as control. Viability/proliferation of ADSC was assessed by MTT assay; the intracellular reactive oxygen species (ROS) levels and the mitochondrial membrane potential (∆Ψm) were determined with DCFH-DA and JC-1 fluorescent probes, respectively. Molecules secreted by ADSC in the medium were determined by ELISA assay, and their capacity to support endothelial tube-like formation by the Matrigel assay. The results showed that compared to controls, ADSC kept in low FBS medium and irradiated with CO2 laser at 9 W exhibited: (a) increased proliferation (∼20 %), (b) transient increase of mitochondrial ROS and the capacity to restore Δψm after rotenone induced depolarization, and (c) augmented secretion in the conditioned medium of MMP-2 (twofold), MMP-9 (eightfold), VEGF (twofold), and adiponectin (∼50 %) that have the capacity to support angiogenesis of endothelial progenitor cells. In conclusion, the mechanisms underlying the benefic effect of CO2 laser on ADSC are the activation of the redox pathways which increases cell proliferation and enhances secretion of angiogenic molecules. These results explain, in part, the mechanisms involved in the increased regenerative potential of CO2 laser-exposed ADSC that could be exploited for clinical applications.

  16. Transplanted adipose-derived stem cells delay D-galactose-induced aging in rats

    Institute of Scientific and Technical Information of China (English)

    Chun Yang; Ou Sha; Jingxing Dai; Lin Yuan; Dongfei Li; Zhongqiu Wen; Huiying Yang; Meichun Yu; Hui Tao; Rongmei Qu; Yikuan Du; Yong Huang

    2011-01-01

    To investigate the effects of allogeneically transplanted, adipose-derived stem cells in aging rats, in the present study, we established a rat model of subacute aging using continuous subcutaneous injections of D-galactose. Two weeks after the adipose-derived stem cells transplantations, serum superoxide dismutase activity was significantly increased, malondialdehyde content was significantly reduced, hippocampal neuronal degeneration was ameliorated, the apoptotic index of hippocampal neurons was decreased, and learning and memory function was significantly improved in the aging rats. These results indicate that allogeneic transplantation of adipose-derived stem cells may effectively delay D-galactose-induced aging.

  17. Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jong Hoon Lee

    2012-11-01

    Full Text Available BackgroundThis study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs to differentiate into hepatocytes.MethodsThe adipose-derived stem cells (ADSCs were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA.ResultsThe majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers.ConclusionsMSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

  18. CD61阳性人脂肪来源细胞体外软骨分化潜能的初步研究%A Preliminary Study of in Vitro Chondrogenic Potential of Human CD61+Adipose Derived Cells

    Institute of Scientific and Technical Information of China (English)

    孙恒赟; 周广东; 曹谊林

    2013-01-01

    Objectives To sort out chondrogenic subpopulation of human adipose derived cell (ADCs) with flow cytome-try and preliminarily examine its in vitro chondrogenic potential. Methods ADCs were isolated by enzymes. CD61+ and CD61- subpopulations were sorted out with flow cytometry and chondrogenically induced in vitro. After 3-week induction, col-lagen II, the specific extracellular matrix of cartilage, was examined with immunofluorescent staining and SOX9 and COL II, the specific genes of chondrocyte, were checked with PCR. Results CD61 could be used as a surface marker for cell sorting of ADCs with flow cytometry. The results of immunofluorescent staining demonstrated that after chondrogenic induction, both of the two cell populations expressed collagen II. Quantitative PCR results showed that the expression of SOX9 and COL II were higher in CD61+group than in CD61- group (p<0.05). Conclusions CD61+ADCs had a stronger chondrogenic differentiation capacity than CD61- cells. CD61 could be used as a specific marker for purifying chondrogenic subpopulation of ADCs.%目的:利用流式细胞仪分选人脂肪来源细胞(adipose derived cells, ADCs)软骨潜能亚群并初步检测其体外成软骨能力。方法采用酶消化法分离ADCs,以CD61为表面标志,通过流式细胞仪分选纯化,所得CD61+和CD61-两群细胞进行体外成软骨诱导,3周后进行软骨特异性细胞外基质二型胶原免疫荧光染色和软骨特异性基因SOX9和COL II定量PCR检测。结果采用CD61作为分选标志可通过流式细胞仪分选纯化获得两群细胞亚群。免疫荧光染色结果显示两群细胞经软骨诱导后均表达二型胶原。定量PCR结果表明CD61+组SOX9和COL II表达高于CD61-组(p<0.05)。结论CD61+ADCs具有较强体外软骨分化能力,CD61有望成为ADCs软骨潜能亚群体外分选标志。

  19. Effect of human adipose-derived stromal cells on osteogenesis in vivo%体内成骨过程中人脂肪基质细胞对新骨形成的促进作用

    Institute of Scientific and Technical Information of China (English)

    刘云松; 吕珑薇; 周永胜; 马桂娥; 张晓; 范聪; 邵校

    2012-01-01

    Objective: To explore the effect of human adipose-derived stromal cells ( hASCs) on the osteogenesis during the process of bone formation in vivo, and to lay the foundation of further investigations on the mechanism of in vivo osteogenesis of hASCs. Methods; hASCs were isolated from adipose tissue by the method of collagenase digestion, and were routinely proliferated and passaged. In the in vivo study 16 nude mice were used and 4 groups were set and implanted subcutaneously into the back of nude mice; (1) blank; (2) β-tricalcium phosphate (β-TCP) scaffold only (scaffold control group) ; (3) β-TCP scaffold with human fibroblasts (negative cell control group) ; (4) β-TCP scaffold with hASCs (test group). After 1 week, 2 weeks, 4 weeks and 6 weeks of implantation, samples from the 4 nude mice were collected at each time point. Scanning electron microscope ( SEM ) observation and histological staining were performed to evaluate the in vivo osteogenesis of hASCs. Results; SEM images showed that large amount of extracellular matrix ( ECM ) could be observed around hASCs in test group after 2 weeks of implantation. At the time point of 4 weeks, mineral deposit was found in ECM. At the time point of 6 weeks, the mineral deposit was observed to increase significantly. HE staining showed that the ECM with eosinophilic staining could be observed around hASCs after 2 weeks of implantation. At the time point of 4 weeks, newly-formed bone-like tissue could be found in ECM around the scaffold materials. At the time point of 6 weeks, more bone-like tissues were observed in ECM with typical structure of bone tissue. In comparison, no obvious mineralization and bone-like tissue were found in other groups. Conclusion; hASCs play important roles in the process of osteogenesis in vivo, including secretion of large amount of ECM, acceleration of the mineralization of ECM and guidance for the formation of bone-like tissues.%目的:探索以人脂肪基质细胞(human adipose-derived

  20. 人脂肪基质细胞在骨组织工程学中的应用%Application of human adipose-derived stromal cells in bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    周永胜; 刘云松; 葛雯姝; 张晓; 马桂娥; 曾百进; 倪永伟

    2012-01-01

    口腔颌面部及全身骨组织缺损是临床医生经常要面对的困境.造成骨缺损的原因有很多,包括先天发育异常、炎症、肿瘤、外伤等,然而治疗骨缺损的方法却十分有限,以往主要应用自体骨移植或人工骨替代材料,但是,自体骨移植取材受限并且会增加手术创伤,人工材料生物相容性差并且成骨能力有限,因此,骨组织工程技术有望在今后成为主要的骨再生技术[1 ].一个经典的组织工程化骨系统一般由3个要素构成,即:种子细胞、成骨向诱导因子和三维支架材料,而其中种子细胞是骨组织工程研究的基础和关键[2].%SUMMARY Human adipose-derived stromal cells ( hASCs) can be obtained from adipose tissues that offer an abundant and easily accessible pool of stem cells. Thus, hASCs have become a highly attractive source of seed cells in bone tissue engineering and have promising prospects in bone regeneration. Since 2002, our research group has performed a series of experiments on hASCs and its application in bone tissue engineering, including: to substitute dexamethasone by 1,25 ( OH ) 2 vitamin D3 to induce osteogenic differentiation of hASCs; to explore the effect of epigenetic regulation and to inflammation on the osteogenic differentiation of hASCs; to construct a novel and simple tissue engineered bone system by hASCs and human platelet-rich plasma (hPRP) and to investigate the bone formation capability of this tissue engineered bone and the stimulatory effect of simvastatin. Our results suggested that 1,25( OH)2vitamin D3 could replace dexamethasone to induce the osteogenic differentiation of hASCs; retinoblastoma binding protein 2 ( RBP2 ) , as one of histone demethylases, could regulate the osteogenic differentiation of hASCs epigenetically while tumor necrosis factor a (TNFa) , as a inflammatory factor, could also influence the osteogenic differentiation of hASCs. Moreover, we found that in vivo bone formation could be

  1. Neuronal differentiation of adipose-derived stem cells and their transplantation for cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Guoping Tian; Xiaoguang Luo; Jin Zhou; Jinge Wang; Bing Xu; Li Li; Feng Zhu; Jian Han; Jianping Li; Siyang Zhang

    2012-01-01

    OBJECTIVE: To review published data on the biological characteristics, differentiation and applications of adipose-derived stem cells in ischemic diseases.DATA RETRIEVAL: A computer-based online search of reports published from January 2005 to June 2012 related to the development of adipose-derived stem cells and their transplantation for treatment of cerebral ischemia was performed in Web of Science using the key words"adipose-derived stem cells", "neural-like cells", "transplantation", "stroke", and "cerebral ischemia". SELECTION CRITERIA: The documents associated with the development of adipose-derived stem cells and their transplantation for treatment of cerebral ischemia were selected, and those published in the last 3-5 years or in authoritative journals were preferred in the same field. Totally 89 articles were obtained in the initial retrieval, of which 53 were chosen based on the inclusion criteria. MAIN OUTCOME MEASURES: Biological characteristics and induced differentiation ofadipose-derived stem cells and cell transplantation for disease treatment as well as the underlying mechanism of clinical application. RESULTS: The advantages of adipose-derived stem cells include their ease of procurement, wide availability, rapid expansion, low tumorigenesis, low immunogenicity, and absence of ethical constraints. Preclinical experiments have demonstrated that transplanted adipose-derived stem cells can improve neurological functions, reduce small regions of cerebral infarction, promote angiogenesis, and express neuron-specific markers. The improvement of neurological functions was demonstrated in experiments using different methods and time courses of adipose-derived stem cell transplantation, but the mechanisms remain unclear.CONCLUSION: Further research into the treatment of ischemic disease by adipose-derived stem cell transplantation is needed to determine their mechanism of action.

  2. Biosynthesis of collagen I, II, RUNX2 and lubricin at different time points of chondrogenic differentiation in a 3D in vitro model of human mesenchymal stem cells derived from adipose tissue.

    Science.gov (United States)

    Musumeci, Giuseppe; Mobasheri, Ali; Trovato, Francesca Maria; Szychlinska, Marta Anna; Graziano, Adriana Carol Eleonora; Lo Furno, Debora; Avola, Rosanna; Mangano, Sebastiano; Giuffrida, Rosario; Cardile, Venera

    2014-10-01

    The first aim of the study was to identify the most appropriate time for differentiation of adipose tissue derived mesenchymal stem cells (MSCs) to chondrocytes, through the self-assembly process. For this purpose, the expression of some chondrocyte markers, such as collagen type I, collagen type II, RUNX2 and lubricin was investigated at different times (7, 14, 21 and 28 days) of chondrogenic differentiation of MSCs, by using immunohistochemistry and Western blot analysis. The second aim of the study was to demonstrate that the expression of lubricin, such as the expression of collagen type II, could be a possible biomarker for the detection of chondrocytes well-being and viability in the natural self-assembling constructs, called 'cell pellets'. Histology (hematoxylin and eosin) and histochemistry (alcian blue staining) methods were used to assess the chondrogenic differentiation of MSCs. The results showed that after 21 days the differentiated chondrocytes, when compared with MSCs cultured without chondrogenic medium (CD44, CD90 and CD105 positive; CD45, CD14 and CD34 negative), were able to produce significant quantities of collagen type I, collagen type II, and lubricin, suggesting hyaline cartilage formation. During the differentiation phase, the cells showed a reduced expression of RUNX2, a protein expressed by osteoblasts. Our studies demonstrated that 21 days is the optimum time for the implantation of chondrocytes differentiated from adipose tissue-derived MSCs. This information could be useful for the future development of cell-based repair therapies for degenerative diseases of articular cartilage.

  3. In vitro isolation, culture and identification of adipose-derived stem cells*

    Institute of Scientific and Technical Information of China (English)

    Du Guo-jia; Chen Xiao-hong; Zhu Guo-hua; Fan Yan-dong; Wang Yun; Dang Mu-ren

    2013-01-01

    BACKGROUND:Adipose-derived stem cells are easily col ected and abundantly cultured, which can proliferate rapidly when being cultured in vitro. With multi-directional differentiation potential, adipose-derived stem cells are expected as seed cells for tissue engineering. OBJECTIVE:To isolate, culture and identify of adipose-derived stem cells from Sprague-Dawley rats in vitro. METHODS:The subcutaneous adipose tissue was obtained from the iliac region of rats under the aseptic condition, and then was digested with 0.075%type Ⅰ col agenase and cultured in vitro. The morphology and proliferation characteristics of the cells were observed under an inverted phase contrast microscope. The third passage was put into gauge for growth curve by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and the cells were also identified by CD44, a stem cellmarker, with immunofluorescence staining. Adipose-derived stem cells were induced and differentiated into adipocytes in Dulbecco’s modified Eagle’s medium/Ham’s nutrient mixture F-12 containing 10%fetal bovine serum, dexamethasone and insulin, and then the cells were identified with oil red“O”staining. Adipose-derived stem cells were induced and differentiated into neural cells, and then the cells were identified with immunohistochemical staining. RESULTS AND CONCLUSION:The growth curve of adipose-derived stem cells was opposite-like“S”shape, and it strongly expressed CD44 that can designate a stem cell. The passage cells were exposed to a defined medium for adipocyte differentiation, and then could be stained with oil red. After being induced and differentiated into nerve cells, the cells expressed neuron-specific enolase. The adipose-derived stem cells of Sprague-Dawley rats are characterized by easy isolation, culture and proliferation in vitro, expressing related phenotypes of mesenchymal stem cells, as wel as induction and differentiation under certain conditions.

  4. Benzofuran derivatives inhibit 11β-hydroxysteroid dehydrogenase type 1 activity in rat adipose tissue.

    Science.gov (United States)

    Kiyonaga, Daisuke; Tagawa, Noriko; Yamaguchi, Yuko; Wakabayashi, Midori; Kogure, Toshiaki; Ueda, Masafumi; Miyata, Okiko; Kobayashi, Yoshiharu

    2012-01-01

    Excess glucocorticoids promote visceral obesity and insulin resistance. The main regulator of intracellular glucocorticoid levels are 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive glucocorticoid into bioactive glucocorticoid such as cortisol in humans and corticosterone in rodents; therefore, the inhibition of 11β-HSD1 has considerable therapeutic potential for metabolic diseases including obesity and diabetes. Benzofuran is a key structure in many biologically active compounds such as benzbromarone, malibatol A and (+)-liphagal. The aim of this study was to investigate the inhibitory effect of benzofuran derivatives on 11β-HSD1 in mesenteric adipose tissue from rodents. 11β-HSD1 activity was determined by incubation of rat mesenteric adipose tissue microsomes in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) with and without benzofuran derivatives (Compounds 1-14). The corticosterone produced was measured by HPLC. More than 40% of 11β-HSD1 inhibition was observed in Compounds 1, 5, 7 and 8. Moreover, Compounds 7 and 8 inhibited the 11β-HSD1 activity in adipose microsomes dose- and time-dependently, as well as in 3T3-L1 adipocytes. Compounds 7 and 8 did not inhibit 11β-HSD type 2 (11β-HSD2), whereas Compounds 1 and 5 inhibited 11β-HSD2 by 18.7% and 56.3%, respectively. Further, a kinetic study revealed that Compounds 7 and 8 acted as non-competitive inhibitors of 11β-HSD1. Ki (nmol/h/mg protein) values of Compounds 7 and 8 were 17.5 and 24.0, respectively, with IC50 (µM) of 10.2 and 25.6, respectively. These data indicate that Compounds 7 and 8 are convincing candidates for seed compounds as specific inhibitors of 11β-HSD1 and have the potential to be developed as anti-obesity drugs.

  5. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  6. Adhesion and proliferation of adipose derived mesenchymal stromal cells on chitosan scaffolds with different degree of deacetylation

    Directory of Open Access Journals (Sweden)

    Rogulska O. Yu.

    2014-03-01

    Full Text Available Aim. Selection of the optimal scaffold for the creation of tissue engineering constructs is a key challenge of biotechnology. In this study we investigated the biocompatibility of human adipose derived mesenchymal stromal cells (MSCs within the three-dimensional matrices based on the chitosan with a different degree of deacetylation. Methods. MSCs were seeded on the chitosan scaffolds by a perfusion method and cultured for 7 days. The morphology, viability, metabolic activity and distribution of the cells within the matrices were analyzed. Results. The level of MSCs adhesion to the surface of the chitosan scaffolds with low degree of deacetylation (67 % was insignificant, the cells were round and formed aggregates. In the chitosan scaffolds with a high degree of deacetylation (82 % the cells attached to the surface of matrices, were able to spread and proliferate. Conclusions. The chitosan scaffolds with a high degree of deacetylation and the human adipose derived MSCs can be used for the creation of bioengineered structures.

  7. Immunomagnetic Separation of Fat Depot-Specific Sca1high Adipose-Derived Stem Cells (Ascs)

    Science.gov (United States)

    Barnes, Richard H; Chun, Tae-Hwa

    2016-01-01

    The isolation of adipose-derived stem cells (ASCs) is an important method in the field of adipose tissue biology, adipogenesis, and extracellular matrix (ECM) remodeling. In vivo, ECM-rich environment consisting of fibrillar collagens provides a structural support to adipose tissues during the progression and regression of obesity. Physiological ECM remodeling mediated by matrix metalloproteinases (MMPs) plays a major role in regulating adipose tissue size and function1, 2. The loss of physiological collagenolytic ECM remodeling may lead to excessive collagen accumulation (tissue fibrosis), macrophage infiltration, and ultimately, a loss of metabolic homeostasis including insulin resistance3, 4. When a phenotypic change of the adipose tissue is observed in gene-targeted mouse models, isolating primary ASCs from fat depots for in vitro studies is an effective approach to define the role of the specific gene in regulating the function of ASCs. In the following, we define an immunomagnetic separation of Sca1high ASCs. PMID:27583550

  8. Serum haptoglobin: a novel marker of adiposity in humans.

    Science.gov (United States)

    Chiellini, C; Santini, F; Marsili, A; Berti, P; Bertacca, A; Pelosini, C; Scartabelli, G; Pardini, E; López-Soriano, J; Centoni, R; Ciccarone, A M; Benzi, L; Vitti, P; Del Prato, S; Pinchera, A; Maffei, M

    2004-06-01

    Haptoglobin (Hp) is a glycoprotein involved in the acute phase response to inflammation. Our previous findings indicate that Hp mRNA and protein are present in the adipose tissue of rodents and that Hp gene expression is up-regulated in obese models. The aim of the present study was to establish whether Hp could be considered a marker of obesity in humans. In 312 subjects, serum Hp was correlated directly with body mass index (BMI), leptin, C-reactive protein (CRP), and age. In a multivariate stepwise regression analysis, BMI and CRP were independent determinants of serum Hp in females, with BMI having the strongest effect. CRP and age were independent determinants of serum Hp in males, although explaining only a modest percentage of the total variability. Serum Hp was positively associated with body fat, as assessed by dual-energy x-ray absorptiometry, both in female and in male groups. The level of significance improved when serum Hp was analyzed against fat mass adjusted for lean mass. Finally, Northern and Western blot analyses performed in biopsies of sc abdominal fat from 20 obese individuals showed the presence of Hp mRNA and protein in the human adipose tissue. In conclusion, serum Hp constitutes a novel marker of adiposity in humans, and the adipose tissue likely contributes to determine its levels.

  9. Isolation of human adipose-derived stem cells and the identification of biological characteristics%人脂肪源性干细胞的分离及生物学性状的鉴定

    Institute of Scientific and Technical Information of China (English)

    王洁晴; 柏树令; 侯伟健; 佟浩; 田晓红; 徐赫

    2011-01-01

    Objective To establish a method to isolate and culture adipose-derived stem cells (ASCs) from the human liposuction aspirates, and conduct observations of the cell morphology、 growth kinetics、 surface markers and differentiating capacity. Method Adipose tissues were obtained from 4 healthy adult women who were experienced abdominal liposuction. ASCs, from liposuction aspirates, were isolated by enzymatic digestion, and were cultured to passage 20, the morphology of the cultured cells was observed. The cell viability was evaluated with MTT, and compared among passage 3,9, 15 and 20. Cell growth curve was generated. The cell cycle and the surface marker profiles were detected by flow cytometry. Adipogenic differentiation and osteogenic differentiation of ASCs was assessed by oil red O and Alizarin Red staining respectively. Results The ASCs present a vortex pattern growth with a fibroblast-like appearance,and as shown by MTT, proliferation activity was strong when they subcultured to passage 15, then gradually slowed down,significantly reduced when they passed to passage 20. Statistical analysis showed that passage 20 and passage 3,9,15 were significantly different (P < 0.05 ). ASCs also showed characteristics of stem cell cycle. The positive expression of mesenchymal stem cell markers CD90, CD44 and negative expression of hematopoietic stem cell marker CD34, the blood cell marker CD45 ,the endothelial cell marker CD31 were observed in ASCs by flow cytometry. In addition, the expression of CD49d was low and of CD106 was negative. Oil red O staining of ASCs after adipogenic induction demonstrated numerous intracellular lipid droplets. Calcium nodules could seen after osteogenic induction and Alizarin red staining was positive. Conclusion ASCs can be isolated from human liposuction aspirates and expressing cell surface markers of stem cells with strong proliferative ability. ASCs also can be induced to differentiate into adipose tissue and osseous tissue under

  10. Characterization and assessment of hyperelastic and elastic properties of decellularized human adipose tissues.

    Science.gov (United States)

    Omidi, Ehsan; Fuetterer, Lydia; Reza Mousavi, Seyed; Armstrong, Ryan C; Flynn, Lauren E; Samani, Abbas

    2014-11-28

    Decellularized adipose tissue (DAT) has shown potential as a regenerative scaffold for plastic and reconstructive surgery to augment or replace damaged or missing adipose tissue (e.g. following lumpectomy or mastectomy). The mechanical properties of soft tissue substitutes are of paramount importance in restoring the natural shape and appearance of the affected tissues, and mechanical mismatching can lead to unpredictable scar tissue formation and poor implant integration. The goal of this work was to assess the linear elastic and hyperelastic properties of decellularized human adipose tissue and compare them to those of normal breast adipose tissue. To assess the influence of the adipose depot source on the mechanical properties of the resultant decellularized scaffolds, we performed indentation tests on DAT samples sourced from adipose tissue isolated from the breast, subcutaneous abdominal region, omentum, pericardial depot and thymic remnant, and their corresponding force-displacement data were acquired. Elastic and hyperelastic parameters were estimated using inverse finite element algorithms. Subsequently, a simulation was conducted in which the estimated hyperelastic parameters were tested in a real human breast model under gravity loading in order to assess the suitability of the scaffolds for implantation. Results of these tests showed that in the human breast, the DAT would show similar deformability to that of native normal tissue. Using the measured hyperelastic parameters, we were able to assess whether DAT derived from different depots exhibited different intrinsic nonlinearities. Results showed that DAT sourced from varying regions of the body exhibited little intrinsic nonlinearity, with no statistically significant differences between the groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Isolation and expansion of adipose-derived stem cells for tissue engineering

    DEFF Research Database (Denmark)

    Fink, Trine; Rasmussen, Jeppe Grøndahl; Lund, Pia

    2011-01-01

    For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs for subseq......For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs...

  12. Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues.

    Science.gov (United States)

    Coste, Cécile; Neirinckx, Virginie; Sharma, Anil; Agirman, Gulistan; Rogister, Bernard; Foguenne, Jacques; Lallemend, François; Gothot, André; Wislet, Sabine

    2017-01-01

    Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+ / BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow.

  13. Comparison of ex vivo culture characteristics between human and rabbit adipose derived stem cells%人与家兔脂肪来源干细胞体外培养特性的比较

    Institute of Scientific and Technical Information of China (English)

    赵建辉; 李龙; 梁丽华; 易成刚; 曾淑红; 郭树忠

    2012-01-01

    背景:不同种属来源的脂肪来源干细胞在体外培养时特性是否存在差异目前尚未定论.目的:观察在相同培养条件下,人与家兔脂肪来源干细胞体外培养特性的异同.方法:体外分离人腹部取皮植皮术来源的脂肪来源干细胞、家兔背部皮下脂肪来源的脂肪来源干细胞,体外培养并传代,观察各自生长形态,取第3代脂肪来源干细胞,比较二者生长及增殖能力、表面CD分子鉴定情况及成脂、成骨分化能力.结果与结论:人和家兔皮下脂肪均能在体外分离出"成纤维细胞样"贴壁生长呈长梭形的细胞;人脂肪来源干细胞一般6~ 8 d可传代,兔脂肪来源干细胞则需要四五天传代.四唑盐结果显示兔、人脂肪来源干细胞分别在第4,6天达到生长高峰.表面标记流式鉴定二者均显示CD29+CD31-.体外分离培养的人脂肪来源干细胞和兔脂肪来源干细胞均具有干细胞的培养特性.与人脂肪来源干细胞相比,兔脂肪来源干细胞具有更强的增殖和诱导成脂能力,但诱导成骨能力较差,家兔是做脂肪移植研究实验动物不错的选择.%BACKGROUND: Whether there are differences of different sources of adipose derived stem/stromal cells (ASCs) when cultured invitro has been poorly understood.OBJECTIVE: To investigate the differences of ex vivo culture characteristics between human and rabbit ASCs under the sameculture condition.METHODS: Human ASCs (hASCs) were isolated from intact fat of abdomen harvesting of skin grafts. Rabbit ASCs (rASCs) werederived from subcutaneous fat tissue of back. The hASCs and rASCs were cultured and passaged in vitro and the morphology ofthe cells was observed. Passage 3 ASCs were used to compare the ability of growth and proliferation, identification of CD surfacemolecules and the ability of adipogenic and osteogenic differentiation.RESULTS AND CONCLUSION: Fibroblast-like adherent spindle-shaped cells could be isolated from both human

  14. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial)

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Haack-Sørensen, Mandana; Mathiasen, Anders Bruun;

    2012-01-01

    for regenerative therapy to replace injured tissue by creating new blood vessels and cardiomyocytes in patients with chronic ischemic heart disease. The aim of this special report is to review the present preclinical data leading to clinical stem cell therapy using ADSCs in patients with ischemic heart disease......Adipose tissue represents an abundant, accessible source of multipotent adipose-derived stromal cells (ADSCs). Animal studies have suggested that ADSCs have the potential to differentiate in vivo into endothelial cells and cardiomyocytes. This makes ADSCs a promising new cell source....... In addition, we give an introduction to the first-in-man clinical trial, MyStromalCell Trial, which is a prospective, randomized, double-blind, placebo-controlled study using culture-expanded ADSCs obtained from adipose-derived cells from abdominal adipose tissue and stimulated with VEGF-A(165) the week...

  15. Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis.

    Directory of Open Access Journals (Sweden)

    Claudia Chavez-Munoz

    Full Text Available Skin regeneration is an important area of research in the field of tissue-engineering, especially for cases involving loss of massive areas of skin, where current treatments are not capable of inducing permanent satisfying replacements. Human adipose-derived stem cells (ASC have been shown to differentiate in-vitro into both mesenchymal lineages and non-mesenchymal lineages, confirming their transdifferentiation ability. This versatile differentiation potential, coupled with their ease of harvest, places ASC at the advancing front of stem cell-based therapies. In this study, we hypothesized that ASC also have the capacity to transdifferentiate into keratinocyte-like cells and furthermore are able to engineer a stratified epidermis. ASC were successfully isolated from lipoaspirates and cell sorted (FACS. After sorting, ASC were either co-cultured with human keratinocytes or with keratinocyte conditioned media. After a 14-day incubation period, ASC developed a polygonal cobblestone shape characteristic of human keratinocytes. Western blot and q-PCR analysis showed the presence of specific keratinocyte markers including cytokeratin-5, involucrin, filaggrin and stratifin in these keratinocyte-like cells (KLC; these markers were absent in ASC. To further evaluate if KLC were capable of stratification akin to human keratinocytes, ASC were seeded on top of human decellularized dermis and cultured in the presence or absence of EGF and high Ca(2+ concentrations. Histological analysis demonstrated a stratified structure similar to that observed in normal skin when cultured in the presence of EGF and high Ca(2+. Furthermore, immunohistochemical analysis revealed the presence of keratinocyte markers such as involucrin, cytokeratin-5 and cytokeratin-10. In conclusion this study demonstrates for the first time that ASC have the capacity to transdifferentiate into KLC and engineer a stratified epidermis. This study suggests that adipose tissue is potentially a

  16. Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease.

    Science.gov (United States)

    Badimon, Lina; Oñate, Blanca; Vilahur, Gemma

    2015-07-01

    Adipose tissue has long been considered an energy storage and endocrine organ; however, in recent decades, this tissue has also been considered an abundant source of mesenchymal cells. Adipose-derived stem cells are easily obtained, show a strong capacity for ex vivo expansion and differentiation to other cell types, release a large variety of angiogenic factors, and have immunomodulatory properties. Thus, adipose tissue is currently the focus of considerable interest in the field of regenerative medicine. In the context of coronary heart disease, numerous experimental studies have supported the safety and efficacy of adipose-derived stem cells in the setting of myocardial infarction. These results have encouraged the clinical use of these stem cells, possibly prematurely. Indeed, the presence of cardiovascular risk factors, such as hypertension, coronary disease, diabetes mellitus, and obesity, alter and reduce the functionality of adipose-derived stem cells, putting in doubt the efficacy of their autologous implantation. In the present article, white adipose tissue is described, the stem cells found in this tissue are characterized, and the use of these cells is discussed according to the preclinical and clinical trials performed so far. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine.

    Science.gov (United States)

    Mizuno, Hiroshi; Tobita, Morikuni; Uysal, A Cagri

    2012-05-01

    The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in the genetic manipulation of human ESCs, even though these cells are, theoretically, highly beneficial. Mesenchymal stem cells seem to be an ideal population of stem cells for practical regenerative medicine, because they are not subjected to the same restrictions. In particular, large number of adipose-derived stem cells (ASCs) can be easily harvested from adipose tissue. Furthermore, recent basic research and preclinical studies have revealed that the use of ASCs in regenerative medicine is not limited to mesodermal tissue but extends to both ectodermal and endodermal tissues and organs, although ASCs originate from mesodermal lineages. Based on this background knowledge, the primary purpose of this concise review is to summarize and describe the underlying biology of ASCs and their proliferation and differentiation capacities, together with current preclinical and clinical data from a variety of medical fields regarding the use of ASCs in regenerative medicine. In addition, future directions for ASCs in terms of cell-based therapies and regenerative medicine are discussed.

  18. Current progress in use of adipose derived stem cells inperipheral nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Shomari DL Zack-Williams; Peter E Butler; Deepak M Kalaskar

    2015-01-01

    Unlike central nervous system neurons; those in theperipheral nervous system have the potential for fullregeneration after injury. Following injury, recovery iscontrolled by schwann cells which replicate and modulatethe subsequent immune response. The level of nerverecovery is strongly linked to the severity of the initialinjury despite the significant advancements in imagingand surgical techniques. Multiple experimental modelshave been used with varying successes to augment thenatural regenerative processes which occur following nerveinjury. Stem cell therapy in peripheral nerve injury maybe an important future intervention to improve the bestattainable clinical results. In particular adipose derivedstem cells (ADSCs) are multipotent mesenchymal stemcells similar to bone marrow derived stem cells, which arethought to have neurotrophic properties and the ability todifferentiate into multiple lineages. They are ubiquitouswithin adipose tissue; they can form many structuresresembling the mature adult peripheral nervous system.Following early in vitro work; multiple small and largeanimal in vivo models have been used in conjunction withconduits, autografts and allografts to successfully bridgethe peripheral nerve gap. Some of the ADSC relatedneuroprotective and regenerative properties have beenelucidated however much work remains before a modelcan be used successfully in human peripheral nerve injury(PNI). This review aims to provide a detailed overview ofprogress made in the use of ADSC in PNI, with discussionon the role of a tissue engineered approach for PNI repair.

  19. Accumulation of 19 environmental phenolic and xenobiotic heterocyclic aromatic compounds in human adipose tissue.

    Science.gov (United States)

    Wang, Lei; Asimakopoulos, Alexandros G; Kannan, Kurunthachalam

    2015-05-01

    The extensive use of environmental phenols (e.g., bisphenol A) and heterocyclic aromatic compounds (e.g., benzothiazole) in consumer products as well as widespread exposure of humans to these compounds have been well documented. Biomonitoring studies have used urinary measurements to assess exposures, based on the assumption that these chemicals are metabolized and eliminated in urine. Despite the fact that some of these chemicals are moderately lipophilic, the extent of their accumulation in adipose fat tissues has not been convincingly demonstrated. In this study, human adipose fat samples (N=20) collected from New York City, USA, were analyzed for the presence of environmental phenols, including bisphenol A (BPA), benzophenone-3 (BP-3), triclosan (TCS), and parabens, as well as heterocyclic aromatic compounds, including benzotriazole (BTR), benzothiazole (BTH), and their derivatives. BPA and TCS were frequently detected in adipose tissues at concentrations (geometric mean [GM]: 3.95ng/g wet wt for BPA and 7.21ng/g wet wt for TCS) similar to or below the values reported for human urine. High concentrations of BP-3 were found in human adipose tissues (GM: 43.4; maximum: 4940ng/g wet wt) and a positive correlation between BP-3 concentrations and donor's age was observed. The metabolite of parabens, p-hydroxybenzoic acid (p-HB), also was found at elevated levels (GM: 4160; max.: 17,400ng/g wet wt) and a positive correlation between donor's age and sum concentration of parabens and p-HB were found. The GM concentrations of BTR and BTH in human adipose tissues were below 1ng/g, although the methylated forms of BTR (i.e., TTR and XTR) and the hydrated form of BTH (i.e., 2-OH-BTH) were frequently detected in adipose samples, indicating widespread exposure to these compounds. Our results suggest that adipose tissue is an important repository for BP-3 and parabens, including p-HB, in the human body.

  20. Treatment of breast cancer-related lymphedema with adipose-derived regenerative cells and fat grafts

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Jensen, Charlotte Harken; Andersen, Ditte Caroline

    2017-01-01

    Breast cancer-related lymphedema (BCRL) is a debilitating late complication with a lack of treatment opportunities. Recent studies have suggested that mesenchymal stromal cells can alleviate lymphedema. Herein, we report the results from the first human pilot study with freshly isolated adipose......-derived regenerative cells (ADRC) for treating lymphedema with 6 months follow-up. Ten BCRL patients were included. ADRC was injected directly into the axillary region, which was combined with a scar-releasing fat graft procedure. Primary endpoints were change in arm volume. Secondary endpoints were change in patient...... tolerated and only minor transient adverse events related to liposuction were noted. In this pilot study, a single injection of ADRC improved lymphedema based on patient-reported outcome measures, and there were no serious adverse events in the 6 months follow-up period. In addition, half of the patients...

  1. Autophagy activator promotes neuronal differentiation of adult adipose-derived stromal cells

    Institute of Scientific and Technical Information of China (English)

    Yanhui Lu; Xiaodong Yuan; Qiaoyu Sun; Ya Ou

    2013-01-01

    Preliminary research from our group found altered autophagy intensity during adipose-derived stromal cell differentiation into neuronal-like cells, and that this change was associated with morphological changes in differentiated cells. This study aimed to verify the role of rapamycin, an autophagy activator, in the process of adipose-derived stromal cell differentiation into neuronal-like cells. Immunohistochemical staining showed that expression of neuron-specific enolase and neurofilament-200 were gradually upregulated in adipose-derived stromal cells after 5 mM β-mercaptoethanol induction, and the differentiation rate gradually increased with induction time. Using transmission electron microscopy, induced cells were shown to exhibit cytoplasmic autophagosomes, with bilayer membranes, and autolysosomes. After rapamycin (200μg/L) induction for 1 hour, adipose-derived stromal cells began to extend long processes, similar to the morphology of neuronal-like cells, while untreated cells did not exhibit similar morphologies until 3 hours after induction. Moreover, the differentiation rate was significantly increased after rapamycin treatment. Compared with untreated cells, expression of LC3, an autophagy protein, was also significantly upregulated. Positive LC3 expression tended to concentrate at cell nuclei with increasing induction times. Our experimental findings indicate that autophagy can significantly increase the speed of adipose-derived stromal cell differentiation into neuronal-like cells.

  2. Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo

    OpenAIRE

    Scotney, Hannah; Symonds, Michael E; Law, James; Budge, Helen; Sharkey, Don; Manolopoulos, Konstantinos N.

    2017-01-01

    Introduction: Brown adipose tissue (BAT) is a thermogenic organ with substantial metabolic capacity and has important roles in the maintenance of body weight and metabolism. Regulation of BAT is primarily mediated through the ß-adrenoceptor (ß-AR) pathway. The in vivo endocrine regulation of this pathway in humans is unkown. The objective of our study was to assess the in vivo BAT temperature responses to acute glucocorticoid administration.\\ud Methods: We studied 8 healthy male volunteers, n...

  3. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications.

    Science.gov (United States)

    Harasymiak-Krzyżanowska, Izabela; Niedojadło, Alicja; Karwat, Jolanta; Kotuła, Lidia; Gil-Kulik, Paulina; Sawiuk, Magdalena; Kocki, Janusz

    2013-12-01

    The stromal-vascular cell fraction (SVF) of adipose tissue can be an abundant source of both multipotent and pluripotent stem cells, known as adipose-derived stem cells or adipose tissue-derived stromal cells (ADSCs). The SVF also contains vascular cells, targeted progenitor cells, and preadipocytes. Stromal cells isolated from adipose tissue express common surface antigens, show the ability to adhere to plastic, and produce forms that resemble fibroblasts. They are characterized by a high proliferation potential and the ability to differentiate into cells of meso-, ecto- and endodermal origin. Although stem cells obtained from an adult organism have smaller capabilities for differentiation in comparison to embryonic and induced pluripotent stem cells (iPSs), the cost of obtaining them is significantly lower. The 40 years of research that mainly focused on the potential of bone marrow stem cells (BMSCs) revealed a number of negative factors: the painful sampling procedure, frequent complications, and small cell yield. The number of stem cells in adipose tissue is relatively large, and obtaining them is less invasive. Sampling through simple procedures such as liposuction performed under local anesthesia is less painful, ensuring patient comfort. The isolated cells are easily grown in culture, and they retain their properties over many passages. That is why adipose tissue has recently been treated as an attractive alternative source of stem cells. Essential aspects of ADSC biology and their use in regenerative medicine will be analyzed in this article.

  4. Enantioselective gas chromatographic separation of methylsulfonyl PCBs in seal blubber, pelican muscle and human adipose tissues

    Energy Technology Data Exchange (ETDEWEB)

    Karasek, L.; Rosmus, J. [Veterinary Institute Prague (Czech Republic). Dept. of Chemistry; Hajslova, J. [Institute of Chemical Technology (Czech Republic). Dept. of Food Chemistry and Analysis; Huehnerfuss, H. [Hamburg Univ. (Germany). Inst. fuer Organische Chemie

    2004-09-15

    Methyl sulfone derivatives are known to represent primary metabolic products of PCBs (MeSO2- CB) and DDE (MeSO2-DDE). These metabolites are formed via mercapturic acid pathway and belong to persistent, lipophilic compounds which accumulate in the adipose, lung, liver and kidney tissues of mammals exposed to PCBs. In 1976 Jenssen and Jansson reported the identification of PCB methyl sulfones as metabolites of PCBs in Baltic grey seal blubber. Methyl sulfones are moderately polar compounds that are only slightly less hydrophobic than the parent PCBs, and their partition coefficients fulfill the requirements for bioaccumulation. The highest concentrations have been found in kidney and lung tissues of seals, otters, beluga whales, polar bears, fishes and in human tissues. In the present investigation two samples of seal blubber, two pelican muscles and eleven human adipose tissue samples were analysed with regard to their concentrations of PCB parent compounds as well as to the respective chiral methylsulfonyl metabolites.

  5. In vitro effects of tamoxifen on adipose-derived stem cells.

    Science.gov (United States)

    Pike, Steven; Zhang, Ping; Wei, Zhengyu; Wu, Nan; Klinger, Aaron; Chang, Shaohua; Jones, Robert; Carpenter, Jeffrey; Brown, Spencer A; DiMuzio, Paul; Tulenko, Thomas; Liu, Yuan

    2015-09-01

    In breast reconstructive procedures, adipose-derived stem cells (ASCs) that are present in clinical fat grafting isolates are considered to play the main role in improving wound healing. In patients following chemotherapy for breast cancer, poor soft tissue wound healing is a major problem. However, it is unclear if tamoxifen (TAM) as the most widely used hormonal therapeutic agent for breast cancer treatment, affects the ASCs and ultimately wound healing. This study evaluated whether TAM exposure to in vitro human ASCs modulate cellular functions. Human ASCs were isolated and treated with TAM at various concentrations. The effects of TAM on cell cycle, cell viability and proliferation rates of ASCs were examined by growth curves, MTT assay and BrdU incorporation, respectively. Annexin V and JC-1 Mitochondrial Membrane Potential assays were used to analyze ASC apoptosis rates. ASCs were cultured in derivative-specific differentiation media with or without TAM (5 uM) for 3 weeks. Adipogenic and osteogenic differentiation levels were measured by quantitative RT-PCR and histological staining. TAM has cytotoxic effects on human ASCs through apoptosis and inhibition of proliferation in dose- and time-dependent manners. TAM treatment significantly down-regulates the capacity of ASCs for adipogenic and osteogenic differentiation (ptissue wound healing and decreased fat graft survival in cancer patients receiving TAM. © 2015 by the Wound Healing Society.

  6. Adult adipose-derived stromal cells differentiate into neurons with normal electrophysiological functions

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Yuan; Yanan Cai; Ya Ou; Yanhui Lu

    2011-01-01

    β-mercaptoethanol was used to induce in vitro neuronal differentiation of adipose-derived stromal cells. Within an 8-hour period post-differentiation, the induced cells exhibited typical neuronal morphology, and expression of microtubule-associated protein 2 and neuron-specific enolase, which are markers of mature neurons, reached a peak at 5 hours. Specific organelle Nissl bodies of neurons were observed under transmission electron microscopy. Results of membrane potential showed that fluorescence intensity of cells was greater after 5 hours than adipose-derived stromal cells prior to induction. In addition, following stimulation with high-concentration potassium solution, fluorescence intensity increased. These experimental findings suggested that neurons differentiated from adipose-derived stromal cells and expressed mature K+ channels. In addition, following stimulation with high potassium solution, the membrane potential depolarized and fired an action potential, confirming that the induced cells possessed electrophysiological functions.

  7. Adipose Derived Mesenchymal Stem Cells In Wound Healing: A Clinical Review

    Directory of Open Access Journals (Sweden)

    Gunalp Uzun

    2014-08-01

    Full Text Available The aim of this article is to review clinical studies on the use of adipose derived mesenchymal stem cells in the treatment of chronic wounds. A search on PubMed was performed on April 30th, 2014 to identify the relevant clinical studies. We reviewed 13 articles that reported the use adipose derived stem cells in the treatment of different types of wounds. Adipose derived stem cells have the potential to be used in the treatment of chronic wounds. However, standard methods for isolation, storage and application of these cells are needed. New materials to transfer these stem cells to injured tissues should be investigated. [Dis Mol Med 2014; 2(4.000: 57-64

  8. Apoptosis during β-mercaptoethanol-induced differentiation of adult adipose-derived stromal cells into neurons

    Institute of Scientific and Technical Information of China (English)

    Yanan Cai; Xiaodong Yuan; Ya Ou; Yanhui Lu

    2011-01-01

    β-mercaptoethanol can induce adipose-derived stromal cells to rapidly and efficiently differentiate into neurons in vitro. However, because of the short survival time of the differentiated cells, clinical applications for this technique are limited. As such, we examined apoptosis of neurons differentiated from adipose-derived stromal cells induced with β-mercaptoethanol in vitro using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and transmission electron microscopy. The results revealed that the number of surviving cells decreased and apoptosis rate increased as induction time extended. Taken together, these results suggest that apoptosis occurring in the process of adipose-derived stromal cells differentiating into neurons is the main cause of cell death. However, the mechanism underlying cellular apoptosis should be researched further to develop methods of controlling apoptosis for clinical applications.

  9. 不同培养条件对人脂肪源性干细胞生长状态的影响%Effects of different culture conditions on the growth state of human adipose tissue-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    王鹏基; 周六化; 陈赟; 邱雪峰; 杨斌; 戴玉田

    2013-01-01

    目的 观察不同培养条件对人脂肪源性干细胞(hADSCs)体外生长状态的影响.方法 取腹部手术患者皮下脂肪组织,用0.1%的Ⅰ型胶原酶消化法分离出hADSCs,将获得的细胞分别在以下3组培养条件下培养:高糖DMEM培养基、高糖DMEM培养基+碱性成纤维生长因子(bFGF)、间充质干细胞培养基(MSCM).取第2代或者第3代细胞进行以下实验:细胞免疫荧光及流式细胞仪行细胞表面标志物CD31、CD34和Stro-1鉴定;绘制细胞生长曲线观察3组细胞的生长状态;采用不同的培养条件对3组细胞进行体外培养,观察细胞的增殖.结果 通过胶原酶消化法可成功地分离出hADSCs.流式细胞仪检测DMEM组CD31、CD34、Stro-1阳性率分别为0.9%、2.9%、56.7%;DMEM+ bFGF组CD31、CD34、Stro-1阳性率分别为1.3%、2.5%、73.5%;MSCM组CD31、CD34、Stro-1阳性率分别为0.7%、2.4%、84.5%.采用不同的培养条件对hADSCs进行培养,DMEM组、DMEM+ bFGF组、MSCM组细胞的倍增时间分别为93.7、64.5、49.1h,差异有统计学意义(p<0.01).此外,各组中所培养的细胞在MSCM和高糖DMEM+ bFGF的培养条件下的增殖速率明显高于高糖DMEM培养条件(P<0.05).结论 采用MSCM培养hADSCs可以在短期内获得大量细胞,在传统的高糖DMEM培养基中加入bFGF后也可以获得相似的效果,可以满足组织工程研究的种子细胞数量的要求.%Objective To observe the effects of different culture conditions on growth state of human adipose tissue-derived stem cells (hADSCs).Methods The subcutaneous adipose tissue was collected surgically.Primary hADSCs were isolated subsequently by the methods of stirring digestion within 1% collagenase type Ⅰ.The cells were divided into three groups and cultured in high-glucose DMEM,high-glucose DMEM containing basic fibroblast growth factor (bFGF) and mesenchymal stem cell media (MSCM)respectively.The expression levels of CD31,CD34 and

  10. Healing of grafted adipose tissue: current clinical applications of adipose-derived stem cells for breast and face reconstruction.

    Science.gov (United States)

    Philips, Brian J; Marra, Kacey G; Rubin, J Peter

    2014-05-01

    Since their isolation and characterization nearly a decade ago, adipose-derived stem cells (ASCs) have become one of the most popular adult stem cell populations for soft tissue engineering and regenerative medicine applications. Compared with other stem cell sources, ASCs offer several advantages including abundant autologous source, minor invasive harvesting (liposuction), significant proliferative capacity in culture, and multilineage potential. In this mini review, we focus on some of the more salient published clinical and preclinical data to date regarding ASC treatment for breast and facial soft tissue reconstruction. © 2014 by the Wound Healing Society.

  11. Role of adipose-derived stromal cells in pedicle skin flap survival in experimental animal models.

    Science.gov (United States)

    Foroglou, Pericles; Karathanasis, Vasileios; Demiri, Efterpi; Koliakos, George; Papadakis, Marios

    2016-03-26

    The use of skin flaps in reconstructive surgery is the first-line surgical treatment for the reconstruction of skin defects and is essentially considered the starting point of plastic surgery. Despite their excellent usability, their application includes general surgical risks or possible complications, the primary and most common is necrosis of the flap. To improve flap survival, researchers have used different methods, including the use of adipose-derived stem cells, with significant positive results. In our research we will report the use of adipose-derived stem cells in pedicle skin flap survival based on current literature on various experimental models in animals.

  12. Comparative characterization of stromal vascular cells derived from three types of vascular wall and adipose tissue.

    Science.gov (United States)

    Yang, Santsun; Eto, Hitomi; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Ma, Hsu; Tsai, Chi-Han; Chou, Wan-Ting; Yoshimura, Kotaro

    2013-12-01

    Multipotent stem/progenitor cells localize perivascularly in many organs and vessel walls. These tissue-resident stem/progenitor cells differentiate into vascular endothelial cells, pericytes, and other mesenchymal lineages, and participate in physiological maintenance and repair of vasculatures. In this study, we characterized stromal vascular cells obtained through the explant culture method from three different vessel walls in humans: arterial wall (ART; >500 μm in diameter), venous wall (VN; >500 μm in diameter), and small vessels in adipose tissue (SV; arterioles and venules, adipose-derived stem/stromal cells (ASCs). All stromal vascular cells of different origins presented fibroblast-like morphology and we could not visually discriminate one population from another. Flow cytometry showed that the cultured population heterogeneously expressed a variety of surface antigens associated with stem/progenitor cells, but CD105 was expressed by most cells in all groups, suggesting that the cells generally shared the characteristics of mesenchymal stem cells. Our histological and flow cytometric data suggested that the main population of vessel wall-derived stromal vascular cells were CD34(+)/CD31(-) and came from the tunica adventitia and areola tissue surrounding the adventitia. CD271 (p75NTR) was expressed by the vasa vasorum in the VN adventitia and by a limited population in the adventitia of SV. All three populations differentiated into multiple lineages as did ASCs. ART cells induced the largest quantity of calcium formation in the osteogenic medium, whereas ASCs showed the greatest adipogenic differentiation. SV and VN stromal cells had greater potency for network formation than did ART stromal cells. In conclusion, the three stromal vascular populations exhibited differential functional properties. Our results have clinical implications for vascular diseases such as arterial wall calcification and possible applications to regenerative therapies

  13. 人脂肪干细胞复合Ⅰ型胶原支架材料构建脂肪组织的实验研究%A preliminary study on collagen type I composite scaffold hybridized with human adipose-derived stem cells for adipose tissue formation

    Institute of Scientific and Technical Information of China (English)

    钟振东; 傅荣; 游晓波; 鲁峰

    2013-01-01

    Objective To investigate the adipose tissue formation potentiality of the type I Collagen scaffold and adipose-derived stem cells( ASCs) in vivo. Methods Collagen type I and adipogenic differentiated ASCs were mixed cultured in vitro for five days. The mixed materials were implanted subcutaneously under the back of nude mice. At the same time,blank scaffold is used for control. The implants were taken out for histological examination after 12 weeks. Results The average weight of newly constructed tissue is about 0. 015 g mixed with collagen scaffold. HE staining and Oil Red staining demonstrated that the newly constructed tissue was mature adipose tissue. No new tissue was found in the controls. Conclusion This study revealed that the adipo-ASCs could be used as the seed cells in the adipose tissue engineering.%目的 研究将人脂肪干细胞(ASCs)和支架材料(固态Ⅰ型胶原)复合体植入裸鼠体内构建脂肪组织的情况.方法 体外分离培养人脂肪组织来源干细胞.体外构建ASCs和1.0 cm×1.0 cm大小的胶原蛋白支架材料复合体,培养液培养5天后,植入裸鼠体内,并于术后第12周取出标本,进行大体观察和组织病理学分析.结果 从复合有细胞的支架材料侧获取了约黄豆大小(约4 mm×4 mm×2 mm)的脂肪样新生组织,空白支架对照侧肉眼未见新生组织块.结论 ASCs在体外培养扩增与诱导分化,体内环境下复合胶原支架材料,能在裸鼠皮下成功构建成熟的脂肪组织块.

  14. Making the Switch: Alternatives to Fetal Bovine Serum for Adipose-Derived Stromal Cell Expansion

    Science.gov (United States)

    Dessels, Carla; Potgieter, Marnie; Pepper, Michael S.

    2016-01-01

    Adipose-derived stromal cells (ASCs) are being used extensively in clinical trials. These trials require that ASCs are prepared using good manufacturing practices (GMPs) and are safe for use in humans. The majority of clinical trials in which ASCs are expanded make use of fetal bovine serum (FBS). While FBS is used traditionally in the research setting for in vitro expansion, it does carry the risk of xenoimmunization and zoonotic transmission when used for expanding cells destined for therapeutic purposes. In order to ensure a GMP quality product for cellular therapy, in vitro expansion of ASCs has been undertaken using xeno-free (XF), chemically-defined, and human blood-derived alternatives. These investigations usually include the criteria proposed by the International Society of Cellular Therapy (ISCT) and International Fat Applied Technology Society (IFATS). The majority of studies use these criteria to compare plastic-adherence, morphology, the immunophenotype and the trilineage differentiation of ASCs under the different medium supplemented conditions. Based on these studies, all of the alternatives to FBS seem to be suitable replacements; however, each has its own advantages and drawbacks. Very few studies have investigated the effects of the supplements on the immunomodulation of ASCs; the transcriptome, proteome and secretome; and the ultimate effects in appropriate animal models. The selection of medium supplementation will depend on the downstream application of the ASCs and their efficacy and safety in preclinical studies. PMID:27800478

  15. Making the switch: alternatives to foetal bovine serum for adipose-derived stromal cell expansion

    Directory of Open Access Journals (Sweden)

    Carla Dessels

    2016-10-01

    Full Text Available Adipose-derived stromal cells (ASCs are being used extensively in clinical trials. These trials require that ASCs are prepared using good manufacturing procedures (GMPs and are safe for use in humans. The majority of clinical trials in which ASCs are expanded make use of fetal bovine serum (FBS. While FBS is used traditionally in the research setting for in vitro expansion, it does carry the risk of xenoimmunization and zoonotic transmission when used for expanding cells destined for therapeutic purposes. In order to ensure a GMP quality product for cellular therapy, in vitro expansion of ASCs has been undertaken using xeno-free (XF, chemically-defined, and human blood-derived alternatives. These investigations usually include the criteria proposed by the International Society of Cellular Therapy (ISCT and International Fat Applied Technology Society (IFATS. The majority of studies use these criteria to compare plastic-adherence, morphology, the immunophenotype and the trilineage differentiation of ASCs under the different medium supplemented conditions. Based on these studies, all of the alternatives to FBS seem to be suitable replacements; however, each has its own advantages and drawbacks. Very few studies have investigated the effects of the supplements on the immunomodulation of ASCs; the transcriptome, proteome and secretome; and the ultimate effects in appropriate animal models. The selection of medium supplementation will depend on the downstream application of the ASCs and their efficacy and safety in preclinical studies.

  16. Senescence in adipose-derived stem cells and its implications in nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Cristina Mantovani; Giorgio Terenghi; Valerio Magnaghi

    2014-01-01

    Adult mesenchymal stem cells, specifically adipose-derived stem cells have self-renewal and multiple differentiation potentials and have shown to be the ideal candidate for therapeutic applications in regenerative medicine, particularly in peripheral nerve regeneration. Adipose-de-rived stem cells are easily harvested, although they may show the effects of aging, hence their potential in nerve repair may be limited by cellular senescence or donor age. Cellular senescence is a complex process whereby stem cells grow old as consequence of intrinsic events (e.g., DNA damage) or environmental cues (e.g., stressful stimuli or diseases), which determine a permanent growth arrest. Several mechanisms are implicated in stem cell senescence, although no one is exclusive of the others. In this review we report some of the most important factors modulating the senescence process, which can inlfuence adipose-derived stem cell morphology and function, and compromise their clinical application for peripheral nerve regenerative cell therapy.

  17. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Vogelaar, Pieter; Brouwer, Linda A; van der Graaf, Adrianus C; Henning, Robert H; Krenning, Guido

    2017-01-01

    Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their

  18. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Vogelaar, Pieter; Brouwer, Linda A.; Graaf, Adrianus Cornelis van der; Henning, Robert H.; Krenning, Guido

    Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their

  19. Biocompatibility of Genipin cross-linked type I collagen with human adipose-derived stem cells in vitro%京尼平交联Ⅰ型胶原蛋白材料与人脂肪间充质干细胞的生物相容性

    Institute of Scientific and Technical Information of China (English)

    王刚; 亢婷; 刘毅; 刘刚强

    2014-01-01

    BACKGROUND:Low toxicity of Genipin has certain species and cellspecificity. Biocompatibility of Genipin cross-linked type I colagen with human adipose-derived stem cels is essential for construction of tissue-engineered adipose. OBJECTIVE:To investigate the bbiocompatibility of Genipin cross-linked type I colagen with human adipose-derived stem cels. METHODS:Human adipose-derived stem cels were isolated and cultured to the third generation, and the cels were seeded on Genipin cross-linked type I colagen scaffold. MTT assay was used to evaluate the adhesion and proliferation of cels on the scaffold, and the toxic effects of Genipin cross-linked type I colagen on human adipose-derived stem cels. Optical microscopy and scanning electron microscopy were utilized to observe the adhesion and growth process of human adipose-derived stem cels on the scaffold as wel as the morphological changes of cels. RESULTS AND CONCLUSION:Human adipose-derived stem cels could adhere to the scaffold immediately after seeded and increase gradualy on the scaffold, with the average adhesion rate of 86.5%. Optical microscopy and scanning electron microscopy showed that human adipose-derived stem cels adhered wel on the scaffold. The cels increased gradualy over time, and could migrate into the scaffold, and distribute evenly with the passage of time when observed with optical microscopy. The result showed Genipin possesses very low cytotoxicity to the cels, and the outstanding biocompatibility is found between the cels and scaffoldin vitro after cross-linked with Genipin.%背景:京尼平的低毒性具有一定的种属和细胞特异性,人脂肪间充质干细胞与京尼平交联的Ⅰ型胶原蛋白支架材料的生物相容性对于应用两者构建组织工程脂肪至关重要。  目的:评估人脂肪间充质干细胞与京尼平交联的Ⅰ型胶原蛋白支架材料的生物相容性。  方法:分离培养人脂肪间充质干细胞,传代培养至第3代

  20. Adipose derived stromal vascular fraction improves early tendon healing: an experimental study in rabbits

    Directory of Open Access Journals (Sweden)

    Mehdi Behfar

    2011-11-01

    Full Text Available Tendon never restores the complete biological and mechanical properties after healing. Bone marrow and recently adipose tissue have been used as the sources of mesenchymal stem cells, which have been proven to enhance tendon healing. Stromal vascular fraction (SVF, derived from adipose tissue by an enzymatic digestion, represents an alternative source of multipotent cells, which undergo differentiation into multiple lineages to be used in regenerative medicine. In the present study, we investigated potentials of this source on tendon healing. Twenty rabbits were divided into control and treatment groups. Five rabbits were used as donors of adipose tissue. The injury model was unilateral complete transection through the middle one third of deep digital flexor tendon. Immediately after suture repair, either fresh stromal vascular fraction from enzymatic digestion of adipose tissue or placebo was intratendinously injected into the suture site in treatments and controls, respectively. Cast immobilization was continued for two weeks after surgery. Animals were sacrificed at the third week and tendons underwent histological, immunohistochemical, and mechanical evaluations. By histology, improved fibrillar organization and remodeling of neotendon were observed in treatment group. Immunohistochemistry revealed an insignificant increase in collagen type III and I expression in treatments over controls. Mechanical testing showed significant increase in maximum load and energy absorption in SVF treated tendons. The present study showed that intratendinous injection of uncultured adipose derived stromal vascular fraction improved structural and mechanical properties of repaired tendon and it could be an effective modality for treating tendon laceration.

  1. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    Directory of Open Access Journals (Sweden)

    Marijana Todorčević

    2015-12-01

    Full Text Available Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3 and docosahexaenoic acid (DHA; 22:6n-3. Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity.

  2. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  3. Hyperglycemia Induces Bioenergetic Changes in Adipose-Derived Stromal Cells While Their Pericytic Function Is Retained

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Elorza, Alvaro A.; Nies, Vera J. M.; Jensen, Erik L.; Nagy, Ruxandra A.; Harmsen, Martin C.

    2016-01-01

    Diabetic retinopathy (DR) is a hyperglycemia (HG)-mediated microvascular complication. In DR, the loss of pericytes and subsequently endothelial cells leads to pathologic angiogenesis in retina. Adipose-derived stromal cells (ASC) are a promising source of therapeutic cells to replace lost pericytes

  4. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis

    NARCIS (Netherlands)

    Huurne, M. ter; Schelbergen, R.; Blattes, R.; Blom, A.; Munter, W. de; Grevers, L.C.; Jeanson, J.; Noel, D.; Casteilla, L.; Jorgensen, C.; Berg, W.B. van den; Lent, P.L. van

    2012-01-01

    OBJECTIVE: In experimental collagenase-induced osteoarthritis (OA) in the mouse, synovial lining macrophages are crucial in mediating joint destruction. It was recently shown that adipose-derived stem cells (ASCs) express immunosuppressive characteristics. This study was undertaken to explore the ef

  5. Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer.

    Science.gov (United States)

    Qin, Yiren; Qin, Jilong; Zhou, Chikai; Li, Jinsong; Gao, Wei-Qiang

    2015-01-01

    Somatic cells can be reprogrammed into embryonic stem cells (ESCs) by nuclear transfer (NT-ESCs), or into induced pluripotent stem cells (iPSCs) by the "Yamanaka method." However, recent studies have indicated that mouse and human iPSCs are prone to epigenetic and transcriptional aberrations, and that NT-ESCs correspond more closely to ESCs derived from in vitro fertilized embryos than iPSCs. In addition, the procedure of NT-ESCs does not involve gene modification. Demonstration of generation of NT-ESCs using an easily-accessible source of adult cell types would be very important. Adipose tissue is a source of readily accessible donor cells and can be isolated from both males and females at different ages. Here we report that NT-ESCs can be generated from adipose tissue-derived cells (ADCs). At morphological, mRNA and protein levels, these NT-ESCs show classic ESC colonies, exhibit alkaline phosphatase (AP) activity, and display normal diploid karyotypes. Importantly, these cells express pluripotent markers including Oct4, Sox2, Nanog and SSEA-1. Furthermore, they can differentiate in vivo into various types of cells from 3 germinal layers by teratoma formation assays. This study demonstrates for the first time that ESCs can be generated from the adipose tissue by somatic cell nuclear transfer (SCNT) and suggests that ADCs can be a new donor-cell type for potential therapeutic cloning.

  6. 体外诱导人脂肪间充质干细胞成管状结构的实验研究%An experimental study of tubular structure inducted by human adipose derived mesenchymal stem cells in vitro

    Institute of Scientific and Technical Information of China (English)

    白晓智; 陶克; 李小强; 张月; 石继红; 汤朝武; 胡大海

    2012-01-01

    Objective To explore the feasibility of tubular structure inducted by human adipose derived mesenehymal stem cells (ADSCs), which provide the theoretical basis for the three-dimensional reconstruction of duet-like structures in vitro. Methods ADSCs were isolated and cultured in vitro, and expression of CD29 , CD31 and CD34, CD45, CD90, GDI05 in ADSCs were detected with flow (ytometry. ADSCs were induced into osteoeytes and lipoeytes by osteogenic induction medium ( 10% fetid bovine serum, 0. 1 μmol/L dexametha-sonc, 200 μmol/L ascorbic acid, 10 mmol/L β-glyecrophosphatc, DMEM culture medium )and adipogenie induction medium (10% fetal bovine serum, 1μmol/L, dexamethasone, 200 μmol/L indomcthaein, 0.5 mmol/L IBMX, 10 mg/L insulin in DMEM culture medium ) in vitro, respectively and then identificated by alkaline phosphatase staining and oil red O staining. The third generation of cultured ADSCs treated with DMEM conditioned medium (10% fetal bovine serum and 40 ng/ml HGF )were inducted into the three-dimensiona tubular structures in Matrigcl glue. Results The cultured human .ADSCs proliferated well with fusiform shape. Flow cy-tometry results showed rates of positive expression of CD29, CD90 and CDI05 were 86.4%, 97.7%, 89.8%, respectively; the positive rates of CD3I , CD34, CD45 expression were 4.1%, 3.7% , 2.3%,respectively. The induced cells were presented the phenotypie characteristics of the lipoeytes and bone osteoeytes which showed tubular structures at 5 days after treating by HGF in Matrigcl. Conclusion ADSCs could be used in tissue engi neering research, like constructing glandular duct-like structures.%目的 探索体外诱导人脂肪间充质干细胞成管状结构的可行性,为体外三维重建腺管样结构提供理论基础.方法 体外分离培养脂肪间充质干细胞,采用流式细胞仪检测细胞表面标记CD29、CD31、CD34、CD45、CD90、CD105的表达.经成骨诱导液(体积分数为10%胎牛血清,0.1μmol/L地塞米松,200

  7. Progesterone inhibits glucocorticoid-dependent aromatase induction in human adipose fibroblasts.

    Science.gov (United States)

    Schmidt, M; Renner, C; Löffler, G

    1998-09-01

    In fibroblasts derived from human adipose tissue, aromatase induction is observed after exposure to 1 microM cortisol in the presence of serum or platelet-derived growth factor (PDGF). Progesterone suppresses this induction in a dose-dependent manner, 10 microM resulting in complete inhibition. A reduced cortisol concentration (0.1 microM) concomitantly reduces the progesterone concentration required for effective inhibition (10-100 nM). This effect of progesterone is specific, as neither the release of cellular enzymes nor aromatase induction by dibutyryl-cAMP, which acts independently from cortisol, are affected. However, the inhibitory effect of progesterone requires its presence throughout the induction period. Kinetic studies in intact cells reveal a reduced number of aromatase active sites upon progesterone treatment, whereas progesterone at near-physiological concentration (100 nM) does not inhibit aromatase activity in isolated microsomes. Semi-quantitative reverse transcriptase PCR analysis shows reduced amounts of aromatase mRNA in progesterone-treated cells, indicating specific inhibition of the glucocorticoid-dependent pathway of aromatase induction. The inhibitory effect of progesterone is not blocked by the anti-progestin ZK114043, excluding action via progesterone receptors and indicating competition for the glucocorticoid receptor. Progesterone must be considered a potential physiological inhibitor of glucocorticoid-dependent aromatase induction in adipose tissue. It is proposed that it is a suppressor of aromatase induction in adipose tissue in premenopausal women.

  8. Polyurethane/Polylactide-Blend Films Doped with Zinc Ions for the Growth and Expansion of Human Olfactory Ensheathing Cells (OECs and Adipose-Derived Mesenchymal Stromal Stem Cells (ASCs for Regenerative Medicine Applications

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-04-01

    Full Text Available Polymeric biomaterials based on polyurethane and polylactide blends are promising candidates for regenerative medicine applications as biocompatible, bioresorbable carriers. In current research we showed that 80/20 polyurethane/polylactide blends (PU/PLDL with confirmed biological properties in vitro may be further improved by the addition of ZnO nanoparticles for the delivery of bioactive zinc oxide for cells. The PU/PLDL blends were doped with different concentrations of ZnO (0.001%, 0.01%, 0.05% and undertaken for in vitro biological evaluation using human adipose stromal stem cells (ASCs and olfactory ensheathing cells (OECs. The addition of 0.001% of ZnO to the biomaterials positively influenced the morphology, proliferation, and phenotype of cells cultured on the scaffolds. Moreover, the analysis of oxidative stress markers revealed that 0.001% of ZnO added to the material decreased the stress level in both cell lines. In addition, the levels of neural-specific genes were upregulated in OECs when cultured on sample 0.001 ZnO, while the apoptosis-related genes were downregulated in OECs and ASCs in the same group. Therefore, we showed that PU/PLDL blends doped with 0.001% of ZnO exert beneficial influence on ASCs and OECs in vitro and they may be considered for future applications in the field of regenerative medicine.

  9. The Effect of Age on Osteogenic and Adipogenic Differentiation Potential of Human Adipose Derived Stromal Stem Cells (hASCs and the Impact of Stress Factors in the Course of the Differentiation Process

    Directory of Open Access Journals (Sweden)

    Katarzyna Kornicka

    2015-01-01

    Full Text Available Human adipose tissue is a great source of autologous mesenchymal stem cells (hASCs, which are recognized for their vast therapeutic applications. Their ability to self-renew and differentiate into several lineages makes them a promising tool for cell-based therapies in different types of degenerative diseases. Thus it is crucial to evaluate age-related changes in hASCs, as the elderly are a group that will benefit most from their considerable potential. In this study we investigated the effect of donor age on growth kinetics, cellular senescence marker levels, and osteogenic and adipogenic potential of hASCs. It also has been known that, during life, organisms accumulate oxidative damage that negatively affects cell metabolism. Taking this into consideration, we evaluated the levels of nitric oxide, reactive oxygen species, and superoxide dismutase activity. We observed that ROS and NO increase with aging, while SOD activity is significantly reduced. Moreover cells obtained from older patients displayed senescence associated features, for example, β-galactosidase activity, enlarged morphology, and p53 protein upregulation. All of those characteristics seem to contribute to decreased proliferation potential of those cells. Our results suggest that due to aging some cellular modification may be required before applying aged cells efficiently in therapies such as tissue engineering and regenerative medicine.

  10. Neurogenic Differentiation of Murine Adipose Derived Stem Cells Transfected with EGFP in vitro

    Institute of Scientific and Technical Information of China (English)

    方忠; 杨琴; 熊伟; 李光辉; 肖骏; 郭风劲; 李锋; 陈安民

    2010-01-01

    Some studies indicate that adipose derived stem cells(ADSCs)can differentiate into adipogenic,chondrogenic,myogenic,and osteogenic cells in vitro.However,whether ADSCs can be induced to differentiate into neural cells in vitro has not been clearly demonstrated.In this study,the ADSCs isolated from the murine adipose tissue were cultured and transfected with the EGFP gene,and then the cells were induced for neural differentiation.The morphology of those ADSCs began to change within two days which developed i...

  11. Isolation and expansion of adipose-derived stem cells for tissue engineering

    DEFF Research Database (Denmark)

    Fink, Trine; Rasmussen, Jeppe Grøndahl; Lund, Pia

    2011-01-01

    For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs for subseq......For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs...... and serum replacers were evaluated regarding their ability to support cell growth and preserve differentiation potential. Most of serum replacers proved inferior to fetal calf serum. Among the media tested, modified Eagle's media alpha was superior in promoting cell growth while preserving the ability...

  12. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels.

    Science.gov (United States)

    Brown, Cody F C; Yan, Jing; Han, Tim Tian Y; Marecak, Dale M; Amsden, Brian G; Flynn, Lauren E

    2015-07-30

    An injectable composite scaffold incorporating decellularized adipose tissue (DAT) as a bioactive matrix within a hydrogel phase capable of in situ polymerization would be advantageous for adipose-derived stem cell (ASC) delivery in the filling of small or irregular soft tissue defects. Building on previous work, the current study investigates DAT milling methods and the effects of DAT particle size and cell seeding density on the response of human ASCs encapsulated in photo-cross-linkable methacrylated chondroitin sulphate (MCS)-DAT composite hydrogels. DAT particles were generated by milling lyophilized DAT and the particle size was controlled through the processing conditions with the goal of developing composite scaffolds with a tissue-specific 3D microenvironment tuned to enhance adipogenesis. ASC proliferation and adipogenic differentiation were assessed in vitro in scaffolds incorporating small (average diameter of 38   ±   6 μm) or large (average diameter of 278   ±   3 μm) DAT particles in comparison to MCS controls over a period of up to 21 d. Adipogenic differentiation was enhanced in the composites incorporating the smaller DAT particles and seeded at the higher density of 5   ×   10(5) ASCs/scaffold, as measured by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, semi-quantitative analysis of perilipin expression and oil red O staining of intracellular lipid accumulation. Overall, this study demonstrates that decellularized tissue particle size can impact stem cell differentiation through cell-cell and cell-matrix interactions, providing relevant insight towards the rational design of composite biomaterial scaffolds for adipose tissue engineering.

  13. Expression of Resistin Protein in Normal Human Subcutaneous Adipose Tissue and Pregnant Women Subcutaneous Adipose Tissue and Placenta

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yongming; GUO Tiecheng; ZHANG Muxun; GUO Wei; YU Meixia; XUE Keying; HUANG Shiang; CHEN Yanhong; ZHU Huanli; XU Lijun

    2006-01-01

    The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta and the relationship between obesity, type 2 diabetes mellitus (T2DM), pregnant physiological insulin resistance (IR) and gestational diabetes mellitus (GDM) was investigated. The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta was detected by using Western blotting method.Fasting serum glucose concentration was measured by glucose oxidase assay. Serum cholesterol (CHOL), serum triglycerides (TG), serum HDL cholesterol (HDL-C) and serum LDL cholesterol (LDL-C) were determined by full automatic biochemical instrument. Fasting insulin was measured by enzyme immunoassay to calculate insulin resistance index (IRI). Height, weight, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured to calculate body mass index (BMI) and body fat percentage (BF %). Resistin protein expression in pregnant women placental tissue (67 905±8441) (arbitrary A values) was much higher than that in subcutaneous adipose tissue in pregnant women abdomen (40 718 ± 3818, P < 0.01), non-pregnant women abdomen (38 288±2084, P<0.01), normal human abdomen (39 421±6087, P<0.01)and thigh (14 942 ±6706, P<0. 001) respectively. The resistin expression in abdominal subcutaneous adipose tissue showed no significant difference among pregnant, non-pregnant women and normal human, but much higher than that in thigh subcutaneous adipose tissue (P<0. 001). Pearson analysis revealed that resistin protein was correlated with BMI (r=0.42), fasting insulin concentration (r=0.38),IRI (r=0. 34), BF % (r=0.43) and fasting glucose (r=0. 39), but not with blood pressure,CHOL, TG, HDL-C and LDL-C. It was suggested that resistin protein expression in human abdominal subcutaneous adipose tissue was much higher

  14. Putative population of adipose-derived stem cells isolated from mediastinal tissue during cardiac surgery.

    Science.gov (United States)

    Patel, Amit N; Yockman, James; Vargas, Vanessa; Bull, David A

    2013-01-01

    Mesenchymal stem cells have been isolated from various adult human tissues and are valuable for not only therapeutic applications but for the study of tissue homeostasis and disease progression. Subcutaneous adipose depots have been shown to contain large amounts of stem cells. There is little information that has been reported to date describing the isolation and characterization of mesenchymal stem cells from visceral adipose tissue. In this study, we describe a mesenchymal stem cell population isolated from mediastinal adipose depots. The cells express CD44, CD105, CD166, and CD90 and are negative for hematopoietic markers CD34, CD45, and HLA-DR. In addition, the cells have a multilineage potential, with the ability to differentiate into adipogenic, osteogenic, and chondrogenic cell types. The biological function of visceral adipose tissue remains largely unknown and uncharacterized. However, the proximity of adipose tissue to the heart suggests a potential role in the pathogenesis of cardiovascular disease in obesity. In addition, with the ability of fat to regulate metabolic activity in humans, this novel stem cell source may be useful to further study the mechanisms involved in metabolic disorders.

  15. Adipose-Derived Stem Cells Promote Peripheral Nerve Regeneration In Vivo without Differentiation into Schwann-Like Lineage.

    Science.gov (United States)

    Sowa, Yoshihiro; Kishida, Tsunao; Imura, Tetsuya; Numajiri, Toshiaki; Nishino, Kenichi; Tabata, Yasuhiko; Mazda, Osam

    2016-02-01

    During recent decades, multipotent stem cells were found to reside in the adipose tissue, and these adipose-derived stem cells were shown to play beneficial roles, like those of Schwann cells, in peripheral nerve regeneration. However, it has not been well established whether adipose-derived stem cells offer beneficial effects to peripheral nerve injuries in vivo as Schwann cells do. Furthermore, the in situ survival and differentiation of adipose-derived stem cells after transplantation at the injured peripheral nerve tissue remain to be fully elucidated. Adipose-derived stem cells and Schwann cells were transplanted with gelatin hydrogel tubes at the artificially blunted sciatic nerve lesion in mice. Neuroregenerative abilities of them were comparably estimated. Cre-loxP-mediated fate tracking was performed to visualize survival in vivo of transplanted adipose-derived stem cells and to investigate whether they differentiated into Schwann linage cells at the peripheral nerve injury site. The transplantation of adipose-derived stem cells promoted regeneration of axons, formation of myelin, and restoration of denervation muscle atrophy to levels comparable to those achieved by Schwann cell transplantation. The adipose-derived stem cells survived for at least 4 weeks after transplantation without differentiating into Schwann cells. Transplanted adipose-derived stem cells did not differentiate into Schwann cells but promoted peripheral nerve regeneration at the injured site. The neuroregenerative ability was comparable to that of Schwann cells. Adipose-derived stem cells at an undifferentiated stage may be used as an alternative cell source for autologous cell therapy for patients with peripheral nerve injury.

  16. Adipose-derived stem cells - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2011-09-01

    Full Text Available This book is pleasing the reader already by the Authors’ preface. It is one in a million case to find a figure or a graph in the foreword presentation of a book. Here, Professors Gimble and Bunnell decided to give a warning to the reader about the increasing relevance that the topics covered by the book is playing in the life sciences researches: they simply decided to show the ISI Web of knowledge annual publications and citations for adipose stem cells. Clear enough, the statistics is impressive: few papers in 2000, nearly 600 in 2009 and 2010. The same pattern is present in the citations per year, quite a few in 2000 – 2001 and something like 12,000 in 2010 ! I think that these numbers justify the idea to have a volume devoted to cover all of the topics related to these intriguing stem cell type, likely originating from a perivascular histological niche within highly vascularized fat tissue. The book is divided in four parts.......

  17. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (HPG) axis.

    Science.gov (United States)

    Tsatsanis, Christos; Dermitzaki, Eirini; Avgoustinaki, Pavlina; Malliaraki, Niki; Mytaras, Vasilis; Margioris, Andrew N

    2015-01-01

    Adipose tissue produces factors, including adipokines, cytokines and chemokines which, when released, systemically exert endocrine effects on multiple tissues thereby affecting their physiology. Adipokines also affect the hypothalamic-pituitary-gonadal (HPG) axis both centrally, at the hypothalamic-pituitary level, and peripherally acting on the gonads themselves. Among the adipokines, leptin, adiponectin, resistin, chemerin and the peptide kisspeptin have pleiotropic actions on the HPG axis affecting male and female fertility. Furthermore, adipokines and adipose tissue-produced factors readily affect the immune system resulting in inflammation, which in turn impact the HPG axis, thus evidencing a link between metabolic inflammation and fertility. In this review we provide an overview of the existing extensive bibliography on the crosstalk between adipose tissue-derived factors and the HPG axis, with particular focus on the impact of obesity and the metabolic syndrome on gonadal function and fertility.

  18. Brown adipose tissue in humans: therapeutic potential to combat obesity.

    Science.gov (United States)

    Carey, Andrew L; Kingwell, Bronwyn A

    2013-10-01

    Harnessing the considerable capacity of brown adipose tissue (BAT) to consume energy was first proposed as a potential target to control obesity nearly 40years ago. The plausibility of this approach was, however, questioned due to the prevailing view that BAT was either not present or not functional in adult humans. Recent definitive identification of functional BAT in adult humans as well as a number of important advances in the understanding of BAT biology has reignited interest in BAT as an anti-obesity target. Proof-of-concept evidence demonstrating drug-induced BAT activation provides an important foundation for development of targeted pharmacological approaches with clinical application. This review considers evidence from both human and relevant animal studies to determine whether harnessing BAT for the treatment of obesity via pharmacological intervention is a realistic goal. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Evidence for two types of brown adipose tissue in humans.

    Science.gov (United States)

    Lidell, Martin E; Betz, Matthias J; Dahlqvist Leinhard, Olof; Heglind, Mikael; Elander, Louise; Slawik, Marc; Mussack, Thomas; Nilsson, Daniel; Romu, Thobias; Nuutila, Pirjo; Virtanen, Kirsi A; Beuschlein, Felix; Persson, Anders; Borga, Magnus; Enerbäck, Sven

    2013-05-01

    The previously observed supraclavicular depot of brown adipose tissue (BAT) in adult humans was commonly believed to be the equivalent of the interscapular thermogenic organ of small mammals. This view was recently disputed on the basis of the demonstration that this depot consists of beige (also called brite) brown adipocytes, a newly identified type of brown adipocyte that is distinct from the classical brown adipocytes that make up the interscapular thermogenic organs of other mammals. A combination of high-resolution imaging techniques and histological and biochemical analyses showed evidence for an anatomically distinguishable interscapular BAT (iBAT) depot in human infants that consists of classical brown adipocytes, a cell type that has so far not been shown to exist in humans. On the basis of these findings, we conclude that infants, similarly to rodents, have the bona fide iBAT thermogenic organ consisting of classical brown adipocytes that is essential for the survival of small mammals in a cold environment.

  20. Use of Adipose-Derived Mesenchymal Stem Cells in Keratoconjunctivitis Sicca in a Canine Model

    Directory of Open Access Journals (Sweden)

    Antonio J. Villatoro

    2015-01-01

    Full Text Available Keratoconjunctivitis sicca (KCS or dry eye disease (DED is an immune-mediated multifactorial disease, with high level of prevalence in humans and dogs. Our aim in this study was to investigate the therapeutic effects of allogeneic adipose-derived mesenchymal stromal cells (Ad-MSCs implanted around the lacrimal glands in 12 dogs (24 eyes with KCS, which is refractory to current available treatments. Schirmer tear test (STT and ocular surface integrity were assessed at 0 (before treatment, 3, 6, and 9 months after treatment. Average STT values and all clinical signs showed a statistically significant change (P<0.001 during the follow-up with reduction in all ocular parameters scored: ocular discharge, conjunctival hyperaemia, and corneal changes, and there were no signs of regression or worsening. Implanted cells were well tolerated and were effective reducing clinical signs of KCS with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that implantation of allogeneic Ad-MSCs around lacrimal glands has been found as an effective therapeutic alternative to treat dogs with KCS. These results could reinforce a good effective solution to be extrapolated to future studies in human.

  1. Use of Adipose-Derived Mesenchymal Stem Cells in Keratoconjunctivitis Sicca in a Canine Model

    Science.gov (United States)

    Villatoro, Antonio J.; Fernández, Viviana; Rico-Llanos, Gustavo A.; Becerra, José; Andrades, José A.

    2015-01-01

    Keratoconjunctivitis sicca (KCS) or dry eye disease (DED) is an immune-mediated multifactorial disease, with high level of prevalence in humans and dogs. Our aim in this study was to investigate the therapeutic effects of allogeneic adipose-derived mesenchymal stromal cells (Ad-MSCs) implanted around the lacrimal glands in 12 dogs (24 eyes) with KCS, which is refractory to current available treatments. Schirmer tear test (STT) and ocular surface integrity were assessed at 0 (before treatment), 3, 6, and 9 months after treatment. Average STT values and all clinical signs showed a statistically significant change (P < 0.001) during the follow-up with reduction in all ocular parameters scored: ocular discharge, conjunctival hyperaemia, and corneal changes, and there were no signs of regression or worsening. Implanted cells were well tolerated and were effective reducing clinical signs of KCS with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that implantation of allogeneic Ad-MSCs around lacrimal glands has been found as an effective therapeutic alternative to treat dogs with KCS. These results could reinforce a good effective solution to be extrapolated to future studies in human. PMID:25802852

  2. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.

    Directory of Open Access Journals (Sweden)

    Thomas A Mendel

    Full Text Available BACKGROUND: Retinal vasculopathies, including diabetic retinopathy (DR, threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy. METHODOLOGY/PRINCIPAL FINDINGS: We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR, ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area. ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction. Treatment of ASCs with transforming growth factor beta (TGF-β1 enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection. CONCLUSIONS/SIGNIFICANCE: ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple

  3. Two types of brown adipose tissue in humans.

    Science.gov (United States)

    Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven

    2014-01-01

    During the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype. Animal studies provide evidence for the existence of at least two types of brown adipocytes. Apart from the classical brown adipocyte that is found primarily in the interscapular region where it constitutes a thermogenic organ, a second type of brown adipocyte, the so-called beige adipocyte, can appear within white adipose tissue depots. The fact that the two cell types develop from different precursors suggests that they might be recruited and stimulated by different cues and therefore represent two distinct targets for therapeutic intervention. The aim of this commentary is to discuss recent work addressing the question whether also humans possess two types of brown adipocytes and to highlight some issues when looking for molecular markers for such cells.

  4. A novel and effective strategy for the isolation of adipose-derived stem cells: minimally manipulated adipose-derived stem cells for more rapid and safe stem cell therapy.

    Science.gov (United States)

    Raposio, Edoardo; Caruana, Giorgia; Bonomini, Sabrina; Libondi, Guido

    2014-06-01

    Adipose-derived stem cells are an ideal mesenchymal stem cell population for regenerative medical application. The isolation procedure is performed by mechanical isolation under a laminar air flow bench without using serum or animal-derived reagents; cells were characterized by flow cytometric analysis. Cell availability is improved compared with enzymatic digestion procedures. The adipose-derived stem cell mechanical isolating procedure presented here is easier, safer, cheaper, and faster than traditional currently performed enzymatic procedures.

  5. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage.

    Science.gov (United States)

    Zhang, Hai-Ning; Li, Lei; Leng, Ping; Wang, Ying-Zhen; Lv, Cheng-Yu

    2009-04-01

    To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects. Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro. Twenty-seven New Zealand white rabbits were divided into three groups randomly. The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint, and the defects repaired with gel or without treatment served as control groups. After 4, 8 and 12 weeks, the reconstructed tissue was evaluated macroscopically and microscopically. Histological analysis and qualitative scoring were also performed to detect the outcome. Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived tissue. The result was better in ADSCs group than the control ones. The microstructure of reconstructed tissue with ADSCs was similar to that of hyaline cartilage and contained more cells and regular matrix fibers, being better than other groups. Plenty of collagen fibers around cells could be seen under transmission electron microscopy. Statistical analysis revealed a significant difference in comparison with other groups at each time point (t equal to 4.360, P less than 0.01). These results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects.

  6. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-ning; LI Lei; LENG Ping; WANG Ying-zhen; Lü Cheng-yu

    2009-01-01

    Objective: To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects.Methods: Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro.Twentyseven New Zealand white rabbits were divided into three groups randomly.The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint,and the defects repaired with gel or without treatment served as control groups.After 4,8 and 12 weeks,the reconstructed tissue was evaluated macroscopically and microscopically.Histological analysis and qualitative scoring were also performed to detect the outcome.Results: Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived dssue.The result was better in ADSCs group than the control ones.The microstructure of reconstructed tissue with ADSCs was similar to that of hvaline cartilage and contained more cells and regular matrix fibers,being better than other groups.Plenty of collagen fibers around cells could be seen under transmission electron microscopy.Statistical analysis revealed a significant difference in comparison with other groups at each time point(t=4.360,P<0.01).Conclusion: Thcse results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects

  7. Prolactin suppresses malonyl-CoA concentration in human adipose tissue

    DEFF Research Database (Denmark)

    Nilsson, L. A.; Roepstorff, Carsten; Kiens, Bente

    2009-01-01

    +/-6% compared to control 100+/-5% (p=0.022) in cultured human adipose tissue. In addition, prolactin was found to decrease glucose transporter 4 ( GLUT4) mRNA expression, which may cause decreased glucose uptake. In conclusion, we propose that prolactin decreases lipogenesis in human adipose tissue...... as a consequence of suppressed malonyl-CoA concentration in parallel with decreased GLUT-4 expression. In the lactating woman, this regulation in adipose tissue may enhance the provision of nutrients for the infant instead of nutrients being stored in adipose tissue. In hyperprolactinemic individuals, a suppressed...

  8. Adipose-derived stromal vascular fraction improves tendon healing in rabbits

    Institute of Scientific and Technical Information of China (English)

    Mehdi Behfar; Farshid Sarrafzadeh-Rezaei; Rahim Hobbenaghi; Nowruz Delirezh; Bahram Dalir-Naghadeh

    2011-01-01

    Objective:To evaluate the potential effects of uncultured adipose-derived stromal vascular fraction on tendon healing.Methods:Twenty five adult male New Zealand white rabbits weighing 2.5-3.0 kg were used.Five rabbits were used as donors of adipose tissue and the rest were divided into control and treatment groups.The injury model was completed by unilateral tenotomy through the middle one third of deep digital flexor tendon.Immediately after suture repair,either fresh stromal vascular fraction from enzymatic digestion of adipose tissue or placebo was intratendinously injected at tendon stumps in treatment and control groups,respectively.Immobilization with cast was continued for two weeks after surgery.Animals were sacrificed at eight weeks after surgery and tendons underwent histological,immunohistochemical,and mechanical evaluations.Statistical analyses of quantitative and qualitative data were assessed using one-way analysis of variance and MannWhitney U-test,respectively.Results:Histological evaluations demonstrated superior fibrillar linearity and continuity,and decreased vascularity in treatment group indicated improved organization and remodeling of neotendons.Immunohistochemistry demonstrated a significant increase in collagen I expression in treatment group.Ultimate load and energy absorption capacity were both significantly increased in cell-treated repairs compared with controls.Conclusion: The present study shows that intratendinous injection of uncultured adipose-derived stromal vascular fraction results in improved structural and mechanical properties of tendon repairs and it could be an effective modality for treating tendon injury.

  9. MicroRNA regulation of adipose derived stem cells in aging rats.

    Directory of Open Access Journals (Sweden)

    Jia Fei

    Full Text Available BACKGROUND: Perturbations in abdominal fat secreted adipokines play a key role in metabolic syndrome. This process is further altered during the aging process, probably due to alterations in the preadipocytes (aka. stromal vascular fraction cells-SVF cells or adipose derived stem cells-ASCs composition and/or function. Since microRNAs regulate genes involved both in development and aging processes, we hypothesized that the impaired adipose function with aging is due to altered microRNA regulation of adipogenic pathways in SVF cells. METHODOLOGY AND PRINCIPAL FINDINGS: Alterations in mRNA and proteins associated with adipogenic differentiation (ERK5 and PPARg but not osteogenic (RUNX2 pathways were observed in SVF cells isolated from visceral adipose tissue with aging (6 to 30 mo in female Fischer 344 x Brown Norway Hybrid (FBN rats. The impaired differentiation capacity with aging correlated with altered levels of miRNAs involved in adipocyte differentiation (miRNA-143 and osteogenic pathways (miRNA-204. Gain and loss of function studies using premir or antagomir-143 validated the age associated adipocyte dysfunction. CONCLUSIONS AND SIGNIFICANCE: Our studies for the first time indicate a role for miRNA mediated regulation of SVF cells with aging. This discovery is important in the light of the findings that dysfunctional adipose derived stem cells contribute to age related chronic diseases.

  10. Data on isolating mesenchymal stromal cells from human adipose tissue using a collagenase-free method

    Directory of Open Access Journals (Sweden)

    Wassim Shebaby

    2016-03-01

    Full Text Available The present dataset describes a detailed protocol to isolate mesenchymal cells from human fat without the use of collagenase. Human fat specimen, surgically cleaned from non-fat tissues (e.g., blood vessels and reduced into smaller fat pieces of around 1–3 mm size, is incubated in complete culture media for five to seven days. Then, cells started to spread out from the fat explants and to grow in cultures according to an exponential pattern. Our data showed that primary mesenchymal cells presenting heterogeneous morphology start to acquire more homogenous fibroblastic-like shape when cultured for longer duration or when subcultured into new flasks. Cell isolation efficiency as well as cell doubling time were also calculated throughout the culturing experimentations and illustrated in a separate figure thereafter. This paper contains data previously considered as an alternative protocol to isolate adipose-derived mesenchymal stem cell published in “Proliferation and differentiation of human adipose-derived mesenchymal stem cells (ASCs into osteoblastic lineage are passage dependent” [1].

  11. Effect of basic fibroblast growth factor on the migration of human adipose-derived stem cells toward vascular endothelium%碱性成纤维细胞生长因子影响脂肪干细胞的血管内皮迁移

    Institute of Scientific and Technical Information of China (English)

    朱梦琳; 姜南; 徐扬阳; 曹菁; 杨柳

    2014-01-01

    背景:良好血运机制的建立是工程化组织成功植入的关键。  目的:观察外源性碱性成纤维细胞生长因子对植入小鼠皮下的人脂肪来源干细胞-透明质酸钠复合物中人脂肪来源干细胞向血管内皮迁移情况的影响。  方法:由吸脂术所得的脂肪组织中分离提取人脂肪来源干细胞进行培养传代,取第3代人脂肪来源干细胞进行cm-dil荧光标记后制成5×109 L-1的细胞悬液,碱性成纤维细胞生长因子配成2 mg/L的工作液。将由0.25 mL透明质酸钠凝胶、0.2 mL细胞悬液和0.05 mL工作液/DMEM混合制成的碱性成纤维细胞生长因子组/对照组移植物分别植入小鼠背部左右两侧皮下作自身对照,6周后取材,行苏木精-伊红染色和免疫荧光标记血管内皮细胞进行观察分析。  结果与结论:植入处未出现结节、坏死及液化,取材时无凝胶残留。苏木精-伊红染色见标本性质多为脂肪组织及疏松结缔组织。荧光显微镜下仍可见标记人脂肪来源干细胞的cm-dil荧光,其与标记小鼠血管内皮的FITC荧光重合数碱性成纤维细胞生长因子组多于对照组(P<0.05)。提示碱性成纤维细胞生长因子促进透明质酸钠支架中的人脂肪来源干细胞向血管内皮迁移、分化。%BACKGROUND:The establishment of a good blood supply is a key mechanism for successful implantation of engineered tissues. OBJECTIVE:To observe the effect of basic fibroblast growth factor on the migration of human adipose-derived stem cells via implanting the human adipose-derived stem cells and sodium hyaluronate composite graft at the subcutaneous site of BALB/C mice, in order to explore an optimal scheme for soft tissue reconstruction. METHODS:Human adipose-derived stem cells were isolated from the adipose tissue of healthy cosmetic patients which received liposuction, and the cells were subcultured. Then 5×109/L passage 3 cellsuspension

  12. Therapeutic Potential of Adipose-Derived SSEA-3-Positive Muse Cells for Treating Diabetic Skin Ulcers.

    Science.gov (United States)

    Kinoshita, Kahori; Kuno, Shinichiro; Ishimine, Hisako; Aoi, Noriyuki; Mineda, Kazuhide; Kato, Harunosuke; Doi, Kentaro; Kanayama, Koji; Feng, Jingwei; Mashiko, Takanobu; Kurisaki, Akira; Yoshimura, Kotaro

    2015-02-01

    Stage-specific embryonic antigen-3 (SSEA-3)-positive multipotent mesenchymal cells (multilineage differentiating stress-enduring [Muse] cells) were isolated from cultured human adipose tissue-derived stem/stromal cells (hASCs) and characterized, and their therapeutic potential for treating diabetic skin ulcers was evaluated. Cultured hASCs were separated using magnetic-activated cell sorting into positive and negative fractions, a SSEA-3+ cell-enriched fraction (Muse-rich) and the remaining fraction (Muse-poor). Muse-rich hASCs showed upregulated and downregulated pluripotency and cell proliferation genes, respectively, compared with Muse-poor hASCs. These cells also released higher amounts of certain growth factors, particularly under hypoxic conditions, compared with Muse-poor cells. Skin ulcers were generated in severe combined immunodeficiency (SCID) mice with type 1 diabetes, which showed delayed wound healing compared with nondiabetic SCID mice. Treatment with Muse-rich cells significantly accelerated wound healing compared with treatment with Muse-poor cells. Transplanted cells were integrated into the regenerated dermis as vascular endothelial cells and other cells. However, they were not detected in the surrounding intact regions. Thus, the selected population of ASCs has greater therapeutic effects to accelerate impaired wound healing associated with type 1 diabetes. These cells can be achieved in large amounts with minimal morbidity and could be a practical tool for a variety of stem cell-depleted or ischemic conditions of various organs and tissues.

  13. Adipose tissue-derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity

    Directory of Open Access Journals (Sweden)

    MW Laschke

    2014-10-01

    Full Text Available Adipose tissue-derived microvascular fragments are promising vascularisation units for applications in the field of tissue engineering. Elderly patients are the major future target population of such applications due to an increasing human life expectancy. Therefore, we herein investigated the effect of aging on the fragments’ vascularisation capacity. Microvascular fragments were isolated from epididymal fat pads of adult (8 months and aged (16 months C57BL/6 donor mice. These fragments were seeded onto porous polyurethane scaffolds, which were implanted into dorsal skinfold chambers to study their vascularisation using intravital fluorescence microscopy, histology and immunohistochemistry. Scaffolds seeded with fragments from aged donors exhibited a significantly lower functional microvessel density and intravascular blood flow velocity. This was associated with an impaired vessel maturation, as indicated by vessel wall irregularities, constantly elevated diameters and a lower fraction of CD31/α-smooth muscle actin double positive microvessels in the implants’ border and centre zones. Additional in vitro analyses revealed that microvascular fragments from adult and aged donors do not differ in their stem cell content as well as in their release of angiogenic growth factors, survival and proliferative activity under hypoxic conditions. However, fragments from aged donors exhibit a significantly lower number of matrix metalloproteinase -9-positive perivascular cells. Taken together, these findings demonstrate that aging is a crucial determinant for the vascularisation capacity of isolated microvascular fragments.

  14. Ultrastructure of neuronal-like cells differentiated from adult adipose-derived stromal cells

    Institute of Scientific and Technical Information of China (English)

    Changqing Ye; Xiaodong Yuan; Hui Liu; Yanan Cai; Ya Ou

    2010-01-01

    β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the present study, inverted phase contrast microscopy was utilized to observe β-mercaptcethanol-induced differentiation of neuronal-like cells from human ADSCs, and immunocytochemistry and real-time polymerase chain reaction were employed to detect expression of a neural stem cells marker (nestin), a neuronal marker (neuron-specific enolase), and a glial marker (glial fibrillary acidic protein). In addition, ultrastructure of neuronal-like cells was observed by transmission election microscopy. Results revealed highest expression rate of nestin and neuron-specific enolase at 3 and 5 hours following induced differentiation; cells in the 5-hour induction group exhibited a neuronal-specific structure, i.e., Nissl bodies. However, when induction solution was replaced by complete culture medium after 8-hour induction, the differentiated cells reverted to the fibroblast-like morphology from day 1. These results demonstrate that β-mercaptoethanol-induced ADSCs induced differentiation into neural stem cells, followed by morphology of neuronal-like cells. However, this differentiation state was not stable.

  15. Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells.

    Science.gov (United States)

    Klar, Agnieszka S; Güven, Sinan; Biedermann, Thomas; Luginbühl, Joachim; Böttcher-Haberzeth, Sophie; Meuli-Simmen, Claudia; Meuli, Martin; Martin, Ivan; Scherberich, Arnaud; Reichmann, Ernst

    2014-06-01

    The major problem in skin grafting is that tissue-engineered skin grafts after their transplantation are initially entirely dependent on diffusion. Since this process is slow and inefficient, nutrients, growth factors, and oxygen will insufficiently be supplied and the regenerating graft will undergo a physiological crisis, resulting in scar-like dermal structures and shrinkage. The tissue-engineering of a vascular network in human dermo-epidermal skin substitutes (DESS) is a promising approach to overcome this limitation. Here we report, for the first time, on the use of the adipose stromal vascular fraction (SVF)-derived endothelial cell population to tissue-engineer DESS containing a highly efficient capillary plexus. To develop vascular networks in vitro, we employed optimized 3D fibrin or collagen type I hydrogel systems. Upon transplantation onto immune-deficient rats, these pre-formed vascular networks anastomosed to the recipient's vasculature within only four days. As a consequence, the neo-epidermis efficiently established tissue homeostasis, the dermis underwent almost no contraction, and showed sustained epidermal coverage in vivo. Overall, the here described rapid and efficient perfusion of SVF-based skin grafts opens new perspectives for the treatment of hitherto unmet clinical needs in burn/plastic surgery and dermatology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jens Isak; Juhl, Morten; Nielsen, Thøger; Emmersen, Jeppe; Fink, Trine; Zachar, Vladimir; Pennisi, Cristian Pablo, E-mail: cpennisi@hst.aau.dk

    2014-07-25

    Highlights: • Uniaxial cyclic tensile strain (CTS) applied to ASCs alone or in coculture with myogenic precursors. • CTS promoted the formation of a highly ordered array of parallel ASCs. • Without biochemical supplements, CTS did not support advanced myogenic differentiation of ASCs. • Mechanical stimulation of cocultures boosted fusion of ASCs with skeletal myoblasts. - Abstract: Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.

  17. Brown Adipose Tissue Regulates Small Artery Function Through NADPH Oxidase 4-Derived Hydrogen Peroxide and Redox-Sensitive Protein Kinase G-1α.

    Science.gov (United States)

    Friederich-Persson, Malou; Nguyen Dinh Cat, Aurelie; Persson, Patrik; Montezano, Augusto C; Touyz, Rhian M

    2017-03-01

    Biomedical interest in brown adipose tissue (BAT) has increased since the discovery of functionally active BAT in adult humans. Although white adipose tissue (WAT) influences vascular function, vascular effects of BAT are elusive. Thus, we investigated the regulatory role and putative vasoprotective effects of BAT, focusing on hydrogen peroxide, nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4), and redox-sensitive signaling. Vascular reactivity was assessed in wild-type and Nox4-knockout mice (Nox4(-/-)) by wire myography in the absence and presence of perivascular adipose tissue of different phenotypes from various adipose depots: (1) mixed WAT/BAT (inguinal adipose tissue) and (2) WAT (epididymal visceral fat) and BAT (intrascapular fat). In wild-type mice, epididymal visceral fat and perivascular adipose tissue increased EC50 to noradrenaline without affecting maximum contraction. BAT increased EC50 and significantly decreased maximum contraction, which were prevented by a hydrogen peroxide scavenger (polyethylene glycated catalase) and a specific cyclic GMP-dependent protein kinase G type-1α inhibitor (DT-3), but not by inhibition of endothelial nitric oxide synthase or guanylate cyclase. BAT induced dimerization of cyclic GMP-dependent protein kinase G type-1α and reduced phosphorylation of myosin light chain phosphatase subunit 1 and myosin light chain 20. BAT from Nox4-knockout mice displayed reduced hydrogen peroxide levels and no anticontractile effects. Perivascular adipose tissue from β3 agonist-treated mice displayed browned perivascular adipose tissue and an increased anticontractile effect. We identify a novel vasoprotective action of BAT through an anticontractile effect that is mechanistically different to WAT. Specifically, BAT, via Nox4-derived hydrogen peroxide, induces cyclic GMP-dependent protein kinase G type-1α activation, resulting in reduced vascular contractility. BAT may constitute an interesting therapeutic target to

  18. Human adipose-derived mesenchymal stem cells from the infrapatellar fat pad:isolation, culture and identification%人髌下脂肪垫来源脂肪间充质干细胞的分离、培养及鉴定

    Institute of Scientific and Technical Information of China (English)

    刘玉平; 刘涛; 王明明; 李明; 俞光荣

    2015-01-01

    背景:髌下脂肪垫在膝关节手术中经常要部分切除,其可以作为脂肪间充质干细胞的重要来源。目的:探讨自髌下脂肪垫中分离、培养脂肪间充质干细胞的策略及细胞分子表面标记情况。方法:髌下脂肪垫组织取自膝关节镜手术的患者,以Ⅰ型胶原酶消化消化脂肪组织获取干细胞,用10%低糖DMEM培养基培养,利用MTT法测定不同代细胞增殖情况并绘制生长曲线。检测第5代细胞表面CD29及CD44的表达。结果与结论:培养24 h后可见原代细胞贴壁,1周后细胞呈纺锤型并且增殖速度加快,传代后的细胞贴壁及增殖细胞速度加快。生长曲线示第2及第5代的细胞增殖能力明显较第8代能力强。所取细胞能够分化为骨细胞和脂肪细胞。流式细胞仪检测结果显示第5代脂肪间充质干细胞重96.8%表达CD29,97.6%表达CD44。提示自髌下脂肪垫分离及提取脂肪干细胞简单易行,所得细胞的纯度及增殖能力均符合组织工程种子细胞的基本条件。%BACKGROUND:Infrapatelar fat pad is often partialy resected in the knee surgery, which can be used as an important source of adipose-derived mesenchymal stem cels. OBJECTIVE: To explore the strategies of isolation, culture, and identification of adipose-derived mesenchymal stem cels from the infrapatelar fat pad and to detect the expression of cel surface markers of human adipose-derived stem cels. METHODS: Infrapatelar fat pad was obtained from patients undergoing knee arthroscopy surgery, and attached cels were obtained from adipose tissue by using colagenase I. Cels were cultured in 10% low-sugar DMEM. Stem cels proliferation was detected by means of MTT and then, cel growth curve was made. The obtained cels were induced and differentiated into adipocytes and osteocytes. Expressions of cel surface markers CD29 and CD44 were detected. RESULTS AND CONCLUSION:A few of attached cels were observed after

  19. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    Science.gov (United States)

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. © FASEB.

  20. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine.

    Science.gov (United States)

    Ogura, Fumitaka; Wakao, Shohei; Kuroda, Yasumasa; Tsuchiyama, Kenichiro; Bagheri, Mozhdeh; Heneidi, Saleh; Chazenbalk, Gregorio; Aiba, Setsuya; Dezawa, Mari

    2014-04-01

    In this study, we demonstrate that a small population of pluripotent stem cells, termed adipose multilineage-differentiating stress-enduring (adipose-Muse) cells, exist in adult human adipose tissue and adipose-derived mesenchymal stem cells (adipose-MSCs). They can be identified as cells positive for both MSC markers (CD105 and CD90) and human pluripotent stem cell marker SSEA-3. They intrinsically retain lineage plasticity and the ability to self-renew. They spontaneously generate cells representative of all three germ layers from a single cell and successfully differentiate into targeted cells by cytokine induction. Cells other than adipose-Muse cells exist in adipose-MSCs, however, do not exhibit these properties and are unable to cross the boundaries from mesodermal to ectodermal or endodermal lineages even under cytokine inductions. Importantly, adipose-Muse cells demonstrate low telomerase activity and transplants do not promote teratogenesis in vivo. When compared with bone marrow (BM)- and dermal-Muse cells, adipose-Muse cells have the tendency to exhibit higher expression in mesodermal lineage markers, while BM- and dermal-Muse cells were generally higher in those of ectodermal and endodermal lineages. Adipose-Muse cells distinguish themselves as both easily obtainable and versatile in their capacity for differentiation, while low telomerase activity and lack of teratoma formation make these cells a practical cell source for potential stem cell therapies. Further, they will promote the effectiveness of currently performed adipose-MSC transplantation, particularly for ectodermal and endodermal tissues where transplanted cells need to differentiate across the lineage from mesodermal to ectodermal or endodermal in order to replenish lost cells for tissue repair.

  1. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells.

    Science.gov (United States)

    Kono, Shota; Kazama, Tomohiko; Kano, Koichiro; Harada, Kayoko; Uechi, Masami; Matsumoto, Taro

    2014-01-01

    It has been reported that mature adipocyte-derived dedifferentiated fat (DFAT) cells show multilineage differentiation potential similar to that observed in mesenchymal stem cells. Since DFAT cells can be prepared from a small quantity of adipose tissue, they could facilitate cell-based therapies in small companion animals such as cats. The present study examined whether multipotent DFAT cells can be generated from feline adipose tissue, and the properties of DFAT cells were compared with those of adipose-derived stem cells (ASCs). DFAT cells and ASCs were prepared from the floating mature adipocyte fraction and the stromal vascular fraction, respectively, of collagenase-digested feline omental adipose tissue. Both cell types were evaluated for growth kinetics, colony-forming unit fibroblast (CFU-F) frequency, immunophenotypic properties, and multilineage differentiation potential. DFAT cells and ASCs could be generated from approximately 1g of adipose tissue and were grown and subcultured on laminin-coated dishes. The frequency of CFU-Fs in DFAT cells (35.8%) was significantly higher than that in ASCs (20.8%) at passage 1 (P1). DFAT cells and ASCs displayed similar immunophenotypes (CD44(+), CD90(+), CD105(+), CD14(-), CD34(-) and CD45(-)). Alpha-smooth muscle actin-positive cells were readily detected in ASCs (15.2±7.2%) but were rare in DFAT cells (2.2±3.2%) at P1. Both cell types exhibited adipogenic, osteogenic, chondrogenic, and smooth muscle cell differentiation potential in vitro. In conclusion, feline DFAT cells exhibited similar properties to ASCs but displayed higher CFU-F frequency and greater homogeneity. DFAT cells, like ASCs, may be an attractive source for cell-based therapies in cats.

  2. Characterization of adipose-derived stem cells of anatomical region from mice.

    Science.gov (United States)

    Luna, Arthur C L; Madeira, Maria E P; Conceição, Thais O; Moreira, José A L C; Laiso, Rosa A N; Maria, Durvanei A

    2014-08-20

    Stem cells constitute a group of great capacity for self-renewal, long-term viability, and multi-lineage potential. Several studies have provided evidence that adipose tissue represents an alternative source of stem cells, with the main benefit of adipose-derived stem cells being that they can be easily harvested from patients by a simple minimally invasive method and can be easily cultured. The aim of this study was to establish a culture protocol for obtaining and characterizing adipose-derived stem cells (ADSCs) from C57BL/6 J mice. The results showed that the yield, viability, and cell morphology obtained differ according to the age of isolated anatomic regions of the adipose tissue from ovarian and epididymis. The results of determination of cyclin D1 showed uniformity in the expression between different populations of ADSCs. A significant increase in the expression of caspase-3 active, was also observed in large cell populations from mice after 120 days. ADSCs were positive for mesenchymal markers CD90 and CD105, Nanog, SSEA-1, CD106, and VEGFR-1, and negative for hematopoietic markers CD34 and CD45. A large number of cells in S + G2/M phases was also observed for both sexes, demonstrating high proliferative capacity of ADSCs. We observed that the adipose tissue of C57BL/6 J mice, isolated from the studied anatomic regions, is a promising source for obtaining pluripotent mesenchymal stem cells with high viability and proliferative response.

  3. Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells.

    Science.gov (United States)

    Hutton, Daphne L; Moore, Erika M; Gimble, Jeffrey M; Grayson, Warren L

    2013-09-01

    Vasculature is essential to the functional integration of a tissue-engineered bone graft to enable sufficient nutrient delivery and viability after implantation. Native bone and vasculature develop through intimately coupled, tightly regulated spatiotemporal cell-cell signaling. The complexity of these developmental processes has been a challenge for tissue engineers to recapitulate, resulting in poor codevelopment of both bone and vasculature within a unified graft. To address this, we cultured adipose-derived stromal/stem cells (ASCs), a clinically relevant, single cell source that has been previously investigated for its ability to give rise to vascularized bone grafts, and studied the effects of initial spatial organization of cells, the temporal addition of growth factors, and the presence of exogenous platelet-derived growth factor-BB (PDGF-BB) on the codevelopment of bone and vascular tissue structures. Human ASCs were aggregated into multicellular spheroids via the hanging drop method before encapsulation and subsequent outgrowth in fibrin gels. Cellular aggregation substantially increased vascular network density, interconnectivity, and pericyte coverage compared to monodispersed cultures. To form robust vessel networks, it was essential to culture ASCs in a purely vasculogenic medium for at least 8 days before the addition of osteogenic cues. Physiologically relevant concentrations of exogenous PDGF-BB (20 ng/mL) substantially enhanced both vascular network stability and osteogenic differentiation. Comparisons with the bone morphogenetic protein-2, another pro-osteogenic and proangiogenic growth factor, indicated that this potential to couple the formation of both lineages might be unique to PDGF-BB. Furthermore, the resulting tissue structure demonstrated the close association of mineral deposits with pre-existing vascular structures that have been described for developing tissues. This combination of a single cell source with a potent induction factor

  4. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Directory of Open Access Journals (Sweden)

    Sadanori Akita

    2010-01-01

    Full Text Available Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years.

  5. Skeletal Muscle Derived IL-6 in Liver and Adipose Tissue Metabolism

    DEFF Research Database (Denmark)

    Knudsen, Jakob Grunnet

    Summary Physical activity can lead to metabolic disease and treatment of several metabolic diseases include exercise training. Skeletal muscle has, due to its central role in glucose and fat metabolism at rest and during exercise been studied in detail with regard to exercise training. The role...... and adipose tissue metabolism is unknown. It has been suggested that myokines, such as IL-6, released from skeletal muscle affects liver and adipose tissue and are involved in the regulation of exercise training adaptations. Thus, the aim of this thesis was to investigate the role of skeletal muscle derived...... indicate that during 1h of exercise the liver utilizes carbohydrates for oxidation rather than gluconeogenesis and that gluconeogenic activity during 1h of exercise is not regulated through increases in protein content. The aim of study III was to investigate the role of skeletal muscle derived IL-6...

  6. Odontogenic differentiation of adipose-derived stem cells for tooth regeneration: necessity, possibility, and strategy.

    Science.gov (United States)

    Jing, Wei; Wu, Ling; Lin, Yunfeng; Liu, Lei; Tang, Wei; Tian, Weidong

    2008-01-01

    Tooth regeneration using tissue engineering concepts is a promising biological approach to solving problems of tooth loss in elderly patients. The seeding cells, however, for tooth regeneration such as odontoblasts from dental germ, stem cells from dental pulp and deciduous teeth, and ectomesenchymal cells from the first branchial arch are difficult, even impossible to harvest in clinic. Bone marrow mesenchymal stem cells have odontogenic capacity, but their differentiation abilities significantly decrease with the increasing age of the donors. Therefore, the cells mentioned above are not practical in the clinical application of tooth regeneration in the old. Adipose derived stem cells have many clinical advantages over bone marrow mesenchymal stem cells, and their differentiation potential can be maintained with aging. Here we propose the hypothesis that adipose derived stem cells could be induced into odontogenic lineage and might be used as suitable seeding cells for tooth regeneration to replace the lost tooth of elderly patients.

  7. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sinead P Blaber

    Full Text Available Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm fluorescently labeled (Dragon Green superparamagnetic iron oxide particles (M-SPIO particles; and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.

  8. Therapeutic Potential of Adipose-Derived SSEA-3-Positive Muse Cells for Treating Diabetic Skin Ulcers

    OpenAIRE

    Kinoshita, Kahori; Kuno, Shinichiro; Ishimine, Hisako; Aoi, Noriyuki; Mineda, Kazuhide; Kato, Harunosuke; Doi, Kentaro; Kanayama, Koji; Feng, Jingwei; Mashiko, Takanobu; Kurisaki, Akira; Yoshimura, Kotaro

    2015-01-01

    Refractory skin ulcers were generated in severe combined immunodeficiency (SCID) mice with type 1 diabetes and delayed wound healing compared with nondiabetic SCID mice. Treatment with a multilineage differentiating stress-enduring (Muse)-rich cell population significantly accelerated wound healing compared with the Muse-poor cell population, and these cells be achieved in large amounts with minimal morbidity. Adipose-derived Muse cells could be a practical tool for a variety of stem cell-dep...